]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
f348b6d1 | 25 | #include "qemu/cutils.h" |
6180a181 | 26 | #include "cpu.h" |
b67d9a52 | 27 | #include "tcg.h" |
b3c7724c | 28 | #include "hw/hw.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
4485bd26 | 31 | #endif |
cc9e98cb | 32 | #include "hw/qdev.h" |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
0d09e41a | 35 | #include "hw/xen/xen.h" |
1de7afc9 PB |
36 | #include "qemu/timer.h" |
37 | #include "qemu/config-file.h" | |
75a34036 | 38 | #include "qemu/error-report.h" |
022c62cb | 39 | #include "exec/memory.h" |
9c17d615 | 40 | #include "sysemu/dma.h" |
022c62cb | 41 | #include "exec/address-spaces.h" |
53a5960a PB |
42 | #if defined(CONFIG_USER_ONLY) |
43 | #include <qemu.h> | |
432d268c | 44 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 45 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 46 | #include "trace.h" |
53a5960a | 47 | #endif |
0d6d3c87 | 48 | #include "exec/cpu-all.h" |
0dc3f44a | 49 | #include "qemu/rcu_queue.h" |
4840f10e | 50 | #include "qemu/main-loop.h" |
5b6dd868 | 51 | #include "translate-all.h" |
7615936e | 52 | #include "sysemu/replay.h" |
0cac1b66 | 53 | |
022c62cb | 54 | #include "exec/memory-internal.h" |
220c3ebd | 55 | #include "exec/ram_addr.h" |
508127e2 | 56 | #include "exec/log.h" |
67d95c15 | 57 | |
b35ba30f | 58 | #include "qemu/range.h" |
794e8f30 MT |
59 | #ifndef _WIN32 |
60 | #include "qemu/mmap-alloc.h" | |
61 | #endif | |
b35ba30f | 62 | |
db7b5426 | 63 | //#define DEBUG_SUBPAGE |
1196be37 | 64 | |
e2eef170 | 65 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
66 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
67 | * are protected by the ramlist lock. | |
68 | */ | |
0d53d9fe | 69 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
70 | |
71 | static MemoryRegion *system_memory; | |
309cb471 | 72 | static MemoryRegion *system_io; |
62152b8a | 73 | |
f6790af6 AK |
74 | AddressSpace address_space_io; |
75 | AddressSpace address_space_memory; | |
2673a5da | 76 | |
0844e007 | 77 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 78 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 79 | |
7bd4f430 PB |
80 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
81 | #define RAM_PREALLOC (1 << 0) | |
82 | ||
dbcb8981 PB |
83 | /* RAM is mmap-ed with MAP_SHARED */ |
84 | #define RAM_SHARED (1 << 1) | |
85 | ||
62be4e3a MT |
86 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
87 | * This used_length size can change across reboots. | |
88 | */ | |
89 | #define RAM_RESIZEABLE (1 << 2) | |
90 | ||
e2eef170 | 91 | #endif |
9fa3e853 | 92 | |
bdc44640 | 93 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
94 | /* current CPU in the current thread. It is only valid inside |
95 | cpu_exec() */ | |
f240eb6f | 96 | __thread CPUState *current_cpu; |
2e70f6ef | 97 | /* 0 = Do not count executed instructions. |
bf20dc07 | 98 | 1 = Precise instruction counting. |
2e70f6ef | 99 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 100 | int use_icount; |
6a00d601 | 101 | |
e2eef170 | 102 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 103 | |
1db8abb1 PB |
104 | typedef struct PhysPageEntry PhysPageEntry; |
105 | ||
106 | struct PhysPageEntry { | |
9736e55b | 107 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 108 | uint32_t skip : 6; |
9736e55b | 109 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 110 | uint32_t ptr : 26; |
1db8abb1 PB |
111 | }; |
112 | ||
8b795765 MT |
113 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
114 | ||
03f49957 | 115 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 116 | #define ADDR_SPACE_BITS 64 |
03f49957 | 117 | |
026736ce | 118 | #define P_L2_BITS 9 |
03f49957 PB |
119 | #define P_L2_SIZE (1 << P_L2_BITS) |
120 | ||
121 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
122 | ||
123 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 124 | |
53cb28cb | 125 | typedef struct PhysPageMap { |
79e2b9ae PB |
126 | struct rcu_head rcu; |
127 | ||
53cb28cb MA |
128 | unsigned sections_nb; |
129 | unsigned sections_nb_alloc; | |
130 | unsigned nodes_nb; | |
131 | unsigned nodes_nb_alloc; | |
132 | Node *nodes; | |
133 | MemoryRegionSection *sections; | |
134 | } PhysPageMap; | |
135 | ||
1db8abb1 | 136 | struct AddressSpaceDispatch { |
79e2b9ae PB |
137 | struct rcu_head rcu; |
138 | ||
729633c2 | 139 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
140 | /* This is a multi-level map on the physical address space. |
141 | * The bottom level has pointers to MemoryRegionSections. | |
142 | */ | |
143 | PhysPageEntry phys_map; | |
53cb28cb | 144 | PhysPageMap map; |
acc9d80b | 145 | AddressSpace *as; |
1db8abb1 PB |
146 | }; |
147 | ||
90260c6c JK |
148 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
149 | typedef struct subpage_t { | |
150 | MemoryRegion iomem; | |
acc9d80b | 151 | AddressSpace *as; |
90260c6c JK |
152 | hwaddr base; |
153 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
154 | } subpage_t; | |
155 | ||
b41aac4f LPF |
156 | #define PHYS_SECTION_UNASSIGNED 0 |
157 | #define PHYS_SECTION_NOTDIRTY 1 | |
158 | #define PHYS_SECTION_ROM 2 | |
159 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 160 | |
e2eef170 | 161 | static void io_mem_init(void); |
62152b8a | 162 | static void memory_map_init(void); |
09daed84 | 163 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 164 | |
1ec9b909 | 165 | static MemoryRegion io_mem_watch; |
32857f4d PM |
166 | |
167 | /** | |
168 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
169 | * @cpu: the CPU whose AddressSpace this is | |
170 | * @as: the AddressSpace itself | |
171 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
172 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
173 | */ | |
174 | struct CPUAddressSpace { | |
175 | CPUState *cpu; | |
176 | AddressSpace *as; | |
177 | struct AddressSpaceDispatch *memory_dispatch; | |
178 | MemoryListener tcg_as_listener; | |
179 | }; | |
180 | ||
6658ffb8 | 181 | #endif |
fd6ce8f6 | 182 | |
6d9a1304 | 183 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 184 | |
53cb28cb | 185 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 186 | { |
53cb28cb MA |
187 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
188 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
189 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
190 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 191 | } |
f7bf5461 AK |
192 | } |
193 | ||
db94604b | 194 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
195 | { |
196 | unsigned i; | |
8b795765 | 197 | uint32_t ret; |
db94604b PB |
198 | PhysPageEntry e; |
199 | PhysPageEntry *p; | |
f7bf5461 | 200 | |
53cb28cb | 201 | ret = map->nodes_nb++; |
db94604b | 202 | p = map->nodes[ret]; |
f7bf5461 | 203 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 204 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
205 | |
206 | e.skip = leaf ? 0 : 1; | |
207 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 208 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 209 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 210 | } |
f7bf5461 | 211 | return ret; |
d6f2ea22 AK |
212 | } |
213 | ||
53cb28cb MA |
214 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
215 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 216 | int level) |
f7bf5461 AK |
217 | { |
218 | PhysPageEntry *p; | |
03f49957 | 219 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 220 | |
9736e55b | 221 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 222 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 223 | } |
db94604b | 224 | p = map->nodes[lp->ptr]; |
03f49957 | 225 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 226 | |
03f49957 | 227 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 228 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 229 | lp->skip = 0; |
c19e8800 | 230 | lp->ptr = leaf; |
07f07b31 AK |
231 | *index += step; |
232 | *nb -= step; | |
2999097b | 233 | } else { |
53cb28cb | 234 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
235 | } |
236 | ++lp; | |
f7bf5461 AK |
237 | } |
238 | } | |
239 | ||
ac1970fb | 240 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 241 | hwaddr index, hwaddr nb, |
2999097b | 242 | uint16_t leaf) |
f7bf5461 | 243 | { |
2999097b | 244 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 245 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 246 | |
53cb28cb | 247 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
248 | } |
249 | ||
b35ba30f MT |
250 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
251 | * and update our entry so we can skip it and go directly to the destination. | |
252 | */ | |
253 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
254 | { | |
255 | unsigned valid_ptr = P_L2_SIZE; | |
256 | int valid = 0; | |
257 | PhysPageEntry *p; | |
258 | int i; | |
259 | ||
260 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
261 | return; | |
262 | } | |
263 | ||
264 | p = nodes[lp->ptr]; | |
265 | for (i = 0; i < P_L2_SIZE; i++) { | |
266 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
267 | continue; | |
268 | } | |
269 | ||
270 | valid_ptr = i; | |
271 | valid++; | |
272 | if (p[i].skip) { | |
273 | phys_page_compact(&p[i], nodes, compacted); | |
274 | } | |
275 | } | |
276 | ||
277 | /* We can only compress if there's only one child. */ | |
278 | if (valid != 1) { | |
279 | return; | |
280 | } | |
281 | ||
282 | assert(valid_ptr < P_L2_SIZE); | |
283 | ||
284 | /* Don't compress if it won't fit in the # of bits we have. */ | |
285 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
286 | return; | |
287 | } | |
288 | ||
289 | lp->ptr = p[valid_ptr].ptr; | |
290 | if (!p[valid_ptr].skip) { | |
291 | /* If our only child is a leaf, make this a leaf. */ | |
292 | /* By design, we should have made this node a leaf to begin with so we | |
293 | * should never reach here. | |
294 | * But since it's so simple to handle this, let's do it just in case we | |
295 | * change this rule. | |
296 | */ | |
297 | lp->skip = 0; | |
298 | } else { | |
299 | lp->skip += p[valid_ptr].skip; | |
300 | } | |
301 | } | |
302 | ||
303 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
304 | { | |
305 | DECLARE_BITMAP(compacted, nodes_nb); | |
306 | ||
307 | if (d->phys_map.skip) { | |
53cb28cb | 308 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
309 | } |
310 | } | |
311 | ||
29cb533d FZ |
312 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
313 | hwaddr addr) | |
314 | { | |
315 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
316 | * the section must cover the entire address space. | |
317 | */ | |
318 | return section->size.hi || | |
319 | range_covers_byte(section->offset_within_address_space, | |
320 | section->size.lo, addr); | |
321 | } | |
322 | ||
97115a8d | 323 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 324 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 325 | { |
31ab2b4a | 326 | PhysPageEntry *p; |
97115a8d | 327 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 328 | int i; |
f1f6e3b8 | 329 | |
9736e55b | 330 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 331 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 332 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 333 | } |
9affd6fc | 334 | p = nodes[lp.ptr]; |
03f49957 | 335 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 336 | } |
b35ba30f | 337 | |
29cb533d | 338 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
339 | return §ions[lp.ptr]; |
340 | } else { | |
341 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
342 | } | |
f3705d53 AK |
343 | } |
344 | ||
e5548617 BS |
345 | bool memory_region_is_unassigned(MemoryRegion *mr) |
346 | { | |
2a8e7499 | 347 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 348 | && mr != &io_mem_watch; |
fd6ce8f6 | 349 | } |
149f54b5 | 350 | |
79e2b9ae | 351 | /* Called from RCU critical section */ |
c7086b4a | 352 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
353 | hwaddr addr, |
354 | bool resolve_subpage) | |
9f029603 | 355 | { |
729633c2 | 356 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 357 | subpage_t *subpage; |
729633c2 | 358 | bool update; |
90260c6c | 359 | |
729633c2 FZ |
360 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
361 | section_covers_addr(section, addr)) { | |
362 | update = false; | |
363 | } else { | |
364 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
365 | d->map.sections); | |
366 | update = true; | |
367 | } | |
90260c6c JK |
368 | if (resolve_subpage && section->mr->subpage) { |
369 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 370 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 371 | } |
729633c2 FZ |
372 | if (update) { |
373 | atomic_set(&d->mru_section, section); | |
374 | } | |
90260c6c | 375 | return section; |
9f029603 JK |
376 | } |
377 | ||
79e2b9ae | 378 | /* Called from RCU critical section */ |
90260c6c | 379 | static MemoryRegionSection * |
c7086b4a | 380 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 381 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
382 | { |
383 | MemoryRegionSection *section; | |
965eb2fc | 384 | MemoryRegion *mr; |
a87f3954 | 385 | Int128 diff; |
149f54b5 | 386 | |
c7086b4a | 387 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
388 | /* Compute offset within MemoryRegionSection */ |
389 | addr -= section->offset_within_address_space; | |
390 | ||
391 | /* Compute offset within MemoryRegion */ | |
392 | *xlat = addr + section->offset_within_region; | |
393 | ||
965eb2fc | 394 | mr = section->mr; |
b242e0e0 PB |
395 | |
396 | /* MMIO registers can be expected to perform full-width accesses based only | |
397 | * on their address, without considering adjacent registers that could | |
398 | * decode to completely different MemoryRegions. When such registers | |
399 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
400 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
401 | * here. | |
402 | * | |
403 | * If the length is small (as is the case for address_space_ldl/stl), | |
404 | * everything works fine. If the incoming length is large, however, | |
405 | * the caller really has to do the clamping through memory_access_size. | |
406 | */ | |
965eb2fc | 407 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 408 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
409 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
410 | } | |
149f54b5 PB |
411 | return section; |
412 | } | |
90260c6c | 413 | |
41063e1e | 414 | /* Called from RCU critical section */ |
5c8a00ce PB |
415 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
416 | hwaddr *xlat, hwaddr *plen, | |
417 | bool is_write) | |
90260c6c | 418 | { |
30951157 AK |
419 | IOMMUTLBEntry iotlb; |
420 | MemoryRegionSection *section; | |
421 | MemoryRegion *mr; | |
30951157 AK |
422 | |
423 | for (;;) { | |
79e2b9ae PB |
424 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
425 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
426 | mr = section->mr; |
427 | ||
428 | if (!mr->iommu_ops) { | |
429 | break; | |
430 | } | |
431 | ||
8d7b8cb9 | 432 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
433 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
434 | | (addr & iotlb.addr_mask)); | |
23820dbf | 435 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
436 | if (!(iotlb.perm & (1 << is_write))) { |
437 | mr = &io_mem_unassigned; | |
438 | break; | |
439 | } | |
440 | ||
441 | as = iotlb.target_as; | |
442 | } | |
443 | ||
fe680d0d | 444 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 445 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 446 | *plen = MIN(page, *plen); |
a87f3954 PB |
447 | } |
448 | ||
30951157 AK |
449 | *xlat = addr; |
450 | return mr; | |
90260c6c JK |
451 | } |
452 | ||
79e2b9ae | 453 | /* Called from RCU critical section */ |
90260c6c | 454 | MemoryRegionSection * |
d7898cda | 455 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 456 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 457 | { |
30951157 | 458 | MemoryRegionSection *section; |
d7898cda PM |
459 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
460 | ||
461 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
462 | |
463 | assert(!section->mr->iommu_ops); | |
464 | return section; | |
90260c6c | 465 | } |
5b6dd868 | 466 | #endif |
fd6ce8f6 | 467 | |
b170fce3 | 468 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
469 | |
470 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 471 | { |
259186a7 | 472 | CPUState *cpu = opaque; |
a513fe19 | 473 | |
5b6dd868 BS |
474 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
475 | version_id is increased. */ | |
259186a7 | 476 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 477 | tlb_flush(cpu, 1); |
5b6dd868 BS |
478 | |
479 | return 0; | |
a513fe19 | 480 | } |
7501267e | 481 | |
6c3bff0e PD |
482 | static int cpu_common_pre_load(void *opaque) |
483 | { | |
484 | CPUState *cpu = opaque; | |
485 | ||
adee6424 | 486 | cpu->exception_index = -1; |
6c3bff0e PD |
487 | |
488 | return 0; | |
489 | } | |
490 | ||
491 | static bool cpu_common_exception_index_needed(void *opaque) | |
492 | { | |
493 | CPUState *cpu = opaque; | |
494 | ||
adee6424 | 495 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
496 | } |
497 | ||
498 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
499 | .name = "cpu_common/exception_index", | |
500 | .version_id = 1, | |
501 | .minimum_version_id = 1, | |
5cd8cada | 502 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
503 | .fields = (VMStateField[]) { |
504 | VMSTATE_INT32(exception_index, CPUState), | |
505 | VMSTATE_END_OF_LIST() | |
506 | } | |
507 | }; | |
508 | ||
bac05aa9 AS |
509 | static bool cpu_common_crash_occurred_needed(void *opaque) |
510 | { | |
511 | CPUState *cpu = opaque; | |
512 | ||
513 | return cpu->crash_occurred; | |
514 | } | |
515 | ||
516 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
517 | .name = "cpu_common/crash_occurred", | |
518 | .version_id = 1, | |
519 | .minimum_version_id = 1, | |
520 | .needed = cpu_common_crash_occurred_needed, | |
521 | .fields = (VMStateField[]) { | |
522 | VMSTATE_BOOL(crash_occurred, CPUState), | |
523 | VMSTATE_END_OF_LIST() | |
524 | } | |
525 | }; | |
526 | ||
1a1562f5 | 527 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
528 | .name = "cpu_common", |
529 | .version_id = 1, | |
530 | .minimum_version_id = 1, | |
6c3bff0e | 531 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 532 | .post_load = cpu_common_post_load, |
35d08458 | 533 | .fields = (VMStateField[]) { |
259186a7 AF |
534 | VMSTATE_UINT32(halted, CPUState), |
535 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 536 | VMSTATE_END_OF_LIST() |
6c3bff0e | 537 | }, |
5cd8cada JQ |
538 | .subsections = (const VMStateDescription*[]) { |
539 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 540 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 541 | NULL |
5b6dd868 BS |
542 | } |
543 | }; | |
1a1562f5 | 544 | |
5b6dd868 | 545 | #endif |
ea041c0e | 546 | |
38d8f5c8 | 547 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 548 | { |
bdc44640 | 549 | CPUState *cpu; |
ea041c0e | 550 | |
bdc44640 | 551 | CPU_FOREACH(cpu) { |
55e5c285 | 552 | if (cpu->cpu_index == index) { |
bdc44640 | 553 | return cpu; |
55e5c285 | 554 | } |
ea041c0e | 555 | } |
5b6dd868 | 556 | |
bdc44640 | 557 | return NULL; |
ea041c0e FB |
558 | } |
559 | ||
09daed84 | 560 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 561 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 562 | { |
12ebc9a7 PM |
563 | CPUAddressSpace *newas; |
564 | ||
565 | /* Target code should have set num_ases before calling us */ | |
566 | assert(asidx < cpu->num_ases); | |
567 | ||
56943e8c PM |
568 | if (asidx == 0) { |
569 | /* address space 0 gets the convenience alias */ | |
570 | cpu->as = as; | |
571 | } | |
572 | ||
12ebc9a7 PM |
573 | /* KVM cannot currently support multiple address spaces. */ |
574 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 575 | |
12ebc9a7 PM |
576 | if (!cpu->cpu_ases) { |
577 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 578 | } |
32857f4d | 579 | |
12ebc9a7 PM |
580 | newas = &cpu->cpu_ases[asidx]; |
581 | newas->cpu = cpu; | |
582 | newas->as = as; | |
56943e8c | 583 | if (tcg_enabled()) { |
12ebc9a7 PM |
584 | newas->tcg_as_listener.commit = tcg_commit; |
585 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 586 | } |
09daed84 | 587 | } |
651a5bc0 PM |
588 | |
589 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
590 | { | |
591 | /* Return the AddressSpace corresponding to the specified index */ | |
592 | return cpu->cpu_ases[asidx].as; | |
593 | } | |
09daed84 EI |
594 | #endif |
595 | ||
b7bca733 BR |
596 | #ifndef CONFIG_USER_ONLY |
597 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
598 | ||
599 | static int cpu_get_free_index(Error **errp) | |
600 | { | |
601 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
602 | ||
603 | if (cpu >= MAX_CPUMASK_BITS) { | |
604 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
605 | MAX_CPUMASK_BITS); | |
606 | return -1; | |
607 | } | |
608 | ||
609 | bitmap_set(cpu_index_map, cpu, 1); | |
610 | return cpu; | |
611 | } | |
612 | ||
613 | void cpu_exec_exit(CPUState *cpu) | |
614 | { | |
615 | if (cpu->cpu_index == -1) { | |
616 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
617 | return; | |
618 | } | |
619 | ||
620 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
621 | cpu->cpu_index = -1; | |
622 | } | |
623 | #else | |
624 | ||
625 | static int cpu_get_free_index(Error **errp) | |
626 | { | |
627 | CPUState *some_cpu; | |
628 | int cpu_index = 0; | |
629 | ||
630 | CPU_FOREACH(some_cpu) { | |
631 | cpu_index++; | |
632 | } | |
633 | return cpu_index; | |
634 | } | |
635 | ||
636 | void cpu_exec_exit(CPUState *cpu) | |
637 | { | |
638 | } | |
639 | #endif | |
640 | ||
4bad9e39 | 641 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 642 | { |
b170fce3 | 643 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 644 | int cpu_index; |
b7bca733 | 645 | Error *local_err = NULL; |
5b6dd868 | 646 | |
56943e8c | 647 | cpu->as = NULL; |
12ebc9a7 | 648 | cpu->num_ases = 0; |
56943e8c | 649 | |
291135b5 | 650 | #ifndef CONFIG_USER_ONLY |
291135b5 | 651 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
652 | |
653 | /* This is a softmmu CPU object, so create a property for it | |
654 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
655 | * because that file is compiled only once for both user-mode | |
656 | * and system builds.) The default if no link is set up is to use | |
657 | * the system address space. | |
658 | */ | |
659 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
660 | (Object **)&cpu->memory, | |
661 | qdev_prop_allow_set_link_before_realize, | |
662 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
663 | &error_abort); | |
664 | cpu->memory = system_memory; | |
665 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
666 | #endif |
667 | ||
5b6dd868 BS |
668 | #if defined(CONFIG_USER_ONLY) |
669 | cpu_list_lock(); | |
670 | #endif | |
b7bca733 BR |
671 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
672 | if (local_err) { | |
673 | error_propagate(errp, local_err); | |
674 | #if defined(CONFIG_USER_ONLY) | |
675 | cpu_list_unlock(); | |
676 | #endif | |
677 | return; | |
5b6dd868 | 678 | } |
bdc44640 | 679 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
680 | #if defined(CONFIG_USER_ONLY) |
681 | cpu_list_unlock(); | |
682 | #endif | |
e0d47944 AF |
683 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
684 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
685 | } | |
b170fce3 AF |
686 | if (cc->vmsd != NULL) { |
687 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
688 | } | |
ea041c0e FB |
689 | } |
690 | ||
94df27fd | 691 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 692 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
693 | { |
694 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
695 | } | |
696 | #else | |
00b941e5 | 697 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 698 | { |
5232e4c7 PM |
699 | MemTxAttrs attrs; |
700 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
701 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 702 | if (phys != -1) { |
5232e4c7 | 703 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 704 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 705 | } |
1e7855a5 | 706 | } |
c27004ec | 707 | #endif |
d720b93d | 708 | |
c527ee8f | 709 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 710 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
711 | |
712 | { | |
713 | } | |
714 | ||
3ee887e8 PM |
715 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
716 | int flags) | |
717 | { | |
718 | return -ENOSYS; | |
719 | } | |
720 | ||
721 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
722 | { | |
723 | } | |
724 | ||
75a34036 | 725 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
726 | int flags, CPUWatchpoint **watchpoint) |
727 | { | |
728 | return -ENOSYS; | |
729 | } | |
730 | #else | |
6658ffb8 | 731 | /* Add a watchpoint. */ |
75a34036 | 732 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 733 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 734 | { |
c0ce998e | 735 | CPUWatchpoint *wp; |
6658ffb8 | 736 | |
05068c0d | 737 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 738 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
739 | error_report("tried to set invalid watchpoint at %" |
740 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
741 | return -EINVAL; |
742 | } | |
7267c094 | 743 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
744 | |
745 | wp->vaddr = addr; | |
05068c0d | 746 | wp->len = len; |
a1d1bb31 AL |
747 | wp->flags = flags; |
748 | ||
2dc9f411 | 749 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
750 | if (flags & BP_GDB) { |
751 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
752 | } else { | |
753 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
754 | } | |
6658ffb8 | 755 | |
31b030d4 | 756 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
757 | |
758 | if (watchpoint) | |
759 | *watchpoint = wp; | |
760 | return 0; | |
6658ffb8 PB |
761 | } |
762 | ||
a1d1bb31 | 763 | /* Remove a specific watchpoint. */ |
75a34036 | 764 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 765 | int flags) |
6658ffb8 | 766 | { |
a1d1bb31 | 767 | CPUWatchpoint *wp; |
6658ffb8 | 768 | |
ff4700b0 | 769 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 770 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 771 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 772 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
773 | return 0; |
774 | } | |
775 | } | |
a1d1bb31 | 776 | return -ENOENT; |
6658ffb8 PB |
777 | } |
778 | ||
a1d1bb31 | 779 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 780 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 781 | { |
ff4700b0 | 782 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 783 | |
31b030d4 | 784 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 785 | |
7267c094 | 786 | g_free(watchpoint); |
a1d1bb31 AL |
787 | } |
788 | ||
789 | /* Remove all matching watchpoints. */ | |
75a34036 | 790 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 791 | { |
c0ce998e | 792 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 793 | |
ff4700b0 | 794 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
795 | if (wp->flags & mask) { |
796 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
797 | } | |
c0ce998e | 798 | } |
7d03f82f | 799 | } |
05068c0d PM |
800 | |
801 | /* Return true if this watchpoint address matches the specified | |
802 | * access (ie the address range covered by the watchpoint overlaps | |
803 | * partially or completely with the address range covered by the | |
804 | * access). | |
805 | */ | |
806 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
807 | vaddr addr, | |
808 | vaddr len) | |
809 | { | |
810 | /* We know the lengths are non-zero, but a little caution is | |
811 | * required to avoid errors in the case where the range ends | |
812 | * exactly at the top of the address space and so addr + len | |
813 | * wraps round to zero. | |
814 | */ | |
815 | vaddr wpend = wp->vaddr + wp->len - 1; | |
816 | vaddr addrend = addr + len - 1; | |
817 | ||
818 | return !(addr > wpend || wp->vaddr > addrend); | |
819 | } | |
820 | ||
c527ee8f | 821 | #endif |
7d03f82f | 822 | |
a1d1bb31 | 823 | /* Add a breakpoint. */ |
b3310ab3 | 824 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 825 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 826 | { |
c0ce998e | 827 | CPUBreakpoint *bp; |
3b46e624 | 828 | |
7267c094 | 829 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 830 | |
a1d1bb31 AL |
831 | bp->pc = pc; |
832 | bp->flags = flags; | |
833 | ||
2dc9f411 | 834 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 835 | if (flags & BP_GDB) { |
f0c3c505 | 836 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 837 | } else { |
f0c3c505 | 838 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 839 | } |
3b46e624 | 840 | |
f0c3c505 | 841 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 842 | |
00b941e5 | 843 | if (breakpoint) { |
a1d1bb31 | 844 | *breakpoint = bp; |
00b941e5 | 845 | } |
4c3a88a2 | 846 | return 0; |
4c3a88a2 FB |
847 | } |
848 | ||
a1d1bb31 | 849 | /* Remove a specific breakpoint. */ |
b3310ab3 | 850 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 851 | { |
a1d1bb31 AL |
852 | CPUBreakpoint *bp; |
853 | ||
f0c3c505 | 854 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 855 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 856 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
857 | return 0; |
858 | } | |
7d03f82f | 859 | } |
a1d1bb31 | 860 | return -ENOENT; |
7d03f82f EI |
861 | } |
862 | ||
a1d1bb31 | 863 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 864 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 865 | { |
f0c3c505 AF |
866 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
867 | ||
868 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 869 | |
7267c094 | 870 | g_free(breakpoint); |
a1d1bb31 AL |
871 | } |
872 | ||
873 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 874 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 875 | { |
c0ce998e | 876 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 877 | |
f0c3c505 | 878 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
879 | if (bp->flags & mask) { |
880 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
881 | } | |
c0ce998e | 882 | } |
4c3a88a2 FB |
883 | } |
884 | ||
c33a346e FB |
885 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
886 | CPU loop after each instruction */ | |
3825b28f | 887 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 888 | { |
ed2803da AF |
889 | if (cpu->singlestep_enabled != enabled) { |
890 | cpu->singlestep_enabled = enabled; | |
891 | if (kvm_enabled()) { | |
38e478ec | 892 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 893 | } else { |
ccbb4d44 | 894 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 895 | /* XXX: only flush what is necessary */ |
bbd77c18 | 896 | tb_flush(cpu); |
e22a25c9 | 897 | } |
c33a346e | 898 | } |
c33a346e FB |
899 | } |
900 | ||
a47dddd7 | 901 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
902 | { |
903 | va_list ap; | |
493ae1f0 | 904 | va_list ap2; |
7501267e FB |
905 | |
906 | va_start(ap, fmt); | |
493ae1f0 | 907 | va_copy(ap2, ap); |
7501267e FB |
908 | fprintf(stderr, "qemu: fatal: "); |
909 | vfprintf(stderr, fmt, ap); | |
910 | fprintf(stderr, "\n"); | |
878096ee | 911 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 912 | if (qemu_log_separate()) { |
93fcfe39 AL |
913 | qemu_log("qemu: fatal: "); |
914 | qemu_log_vprintf(fmt, ap2); | |
915 | qemu_log("\n"); | |
a0762859 | 916 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 917 | qemu_log_flush(); |
93fcfe39 | 918 | qemu_log_close(); |
924edcae | 919 | } |
493ae1f0 | 920 | va_end(ap2); |
f9373291 | 921 | va_end(ap); |
7615936e | 922 | replay_finish(); |
fd052bf6 RV |
923 | #if defined(CONFIG_USER_ONLY) |
924 | { | |
925 | struct sigaction act; | |
926 | sigfillset(&act.sa_mask); | |
927 | act.sa_handler = SIG_DFL; | |
928 | sigaction(SIGABRT, &act, NULL); | |
929 | } | |
930 | #endif | |
7501267e FB |
931 | abort(); |
932 | } | |
933 | ||
0124311e | 934 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 935 | /* Called from RCU critical section */ |
041603fe PB |
936 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
937 | { | |
938 | RAMBlock *block; | |
939 | ||
43771539 | 940 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 941 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 942 | return block; |
041603fe | 943 | } |
0dc3f44a | 944 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 945 | if (addr - block->offset < block->max_length) { |
041603fe PB |
946 | goto found; |
947 | } | |
948 | } | |
949 | ||
950 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
951 | abort(); | |
952 | ||
953 | found: | |
43771539 PB |
954 | /* It is safe to write mru_block outside the iothread lock. This |
955 | * is what happens: | |
956 | * | |
957 | * mru_block = xxx | |
958 | * rcu_read_unlock() | |
959 | * xxx removed from list | |
960 | * rcu_read_lock() | |
961 | * read mru_block | |
962 | * mru_block = NULL; | |
963 | * call_rcu(reclaim_ramblock, xxx); | |
964 | * rcu_read_unlock() | |
965 | * | |
966 | * atomic_rcu_set is not needed here. The block was already published | |
967 | * when it was placed into the list. Here we're just making an extra | |
968 | * copy of the pointer. | |
969 | */ | |
041603fe PB |
970 | ram_list.mru_block = block; |
971 | return block; | |
972 | } | |
973 | ||
a2f4d5be | 974 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 975 | { |
9a13565d | 976 | CPUState *cpu; |
041603fe | 977 | ram_addr_t start1; |
a2f4d5be JQ |
978 | RAMBlock *block; |
979 | ram_addr_t end; | |
980 | ||
981 | end = TARGET_PAGE_ALIGN(start + length); | |
982 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 983 | |
0dc3f44a | 984 | rcu_read_lock(); |
041603fe PB |
985 | block = qemu_get_ram_block(start); |
986 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 987 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
988 | CPU_FOREACH(cpu) { |
989 | tlb_reset_dirty(cpu, start1, length); | |
990 | } | |
0dc3f44a | 991 | rcu_read_unlock(); |
d24981d3 JQ |
992 | } |
993 | ||
5579c7f3 | 994 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
995 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
996 | ram_addr_t length, | |
997 | unsigned client) | |
1ccde1cb | 998 | { |
5b82b703 | 999 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1000 | unsigned long end, page; |
5b82b703 | 1001 | bool dirty = false; |
03eebc9e SH |
1002 | |
1003 | if (length == 0) { | |
1004 | return false; | |
1005 | } | |
f23db169 | 1006 | |
03eebc9e SH |
1007 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1008 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1009 | |
1010 | rcu_read_lock(); | |
1011 | ||
1012 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1013 | ||
1014 | while (page < end) { | |
1015 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1016 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1017 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1018 | ||
1019 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1020 | offset, num); | |
1021 | page += num; | |
1022 | } | |
1023 | ||
1024 | rcu_read_unlock(); | |
03eebc9e SH |
1025 | |
1026 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1027 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1028 | } |
03eebc9e SH |
1029 | |
1030 | return dirty; | |
1ccde1cb FB |
1031 | } |
1032 | ||
79e2b9ae | 1033 | /* Called from RCU critical section */ |
bb0e627a | 1034 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1035 | MemoryRegionSection *section, |
1036 | target_ulong vaddr, | |
1037 | hwaddr paddr, hwaddr xlat, | |
1038 | int prot, | |
1039 | target_ulong *address) | |
e5548617 | 1040 | { |
a8170e5e | 1041 | hwaddr iotlb; |
e5548617 BS |
1042 | CPUWatchpoint *wp; |
1043 | ||
cc5bea60 | 1044 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
1045 | /* Normal RAM. */ |
1046 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 1047 | + xlat; |
e5548617 | 1048 | if (!section->readonly) { |
b41aac4f | 1049 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1050 | } else { |
b41aac4f | 1051 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1052 | } |
1053 | } else { | |
0b8e2c10 PM |
1054 | AddressSpaceDispatch *d; |
1055 | ||
1056 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1057 | iotlb = section - d->map.sections; | |
149f54b5 | 1058 | iotlb += xlat; |
e5548617 BS |
1059 | } |
1060 | ||
1061 | /* Make accesses to pages with watchpoints go via the | |
1062 | watchpoint trap routines. */ | |
ff4700b0 | 1063 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1064 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1065 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1066 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1067 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1068 | *address |= TLB_MMIO; |
1069 | break; | |
1070 | } | |
1071 | } | |
1072 | } | |
1073 | ||
1074 | return iotlb; | |
1075 | } | |
9fa3e853 FB |
1076 | #endif /* defined(CONFIG_USER_ONLY) */ |
1077 | ||
e2eef170 | 1078 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1079 | |
c227f099 | 1080 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1081 | uint16_t section); |
acc9d80b | 1082 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1083 | |
a2b257d6 IM |
1084 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1085 | qemu_anon_ram_alloc; | |
91138037 MA |
1086 | |
1087 | /* | |
1088 | * Set a custom physical guest memory alloator. | |
1089 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1090 | * get rid of it eventually. | |
1091 | */ | |
a2b257d6 | 1092 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1093 | { |
1094 | phys_mem_alloc = alloc; | |
1095 | } | |
1096 | ||
53cb28cb MA |
1097 | static uint16_t phys_section_add(PhysPageMap *map, |
1098 | MemoryRegionSection *section) | |
5312bd8b | 1099 | { |
68f3f65b PB |
1100 | /* The physical section number is ORed with a page-aligned |
1101 | * pointer to produce the iotlb entries. Thus it should | |
1102 | * never overflow into the page-aligned value. | |
1103 | */ | |
53cb28cb | 1104 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1105 | |
53cb28cb MA |
1106 | if (map->sections_nb == map->sections_nb_alloc) { |
1107 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1108 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1109 | map->sections_nb_alloc); | |
5312bd8b | 1110 | } |
53cb28cb | 1111 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1112 | memory_region_ref(section->mr); |
53cb28cb | 1113 | return map->sections_nb++; |
5312bd8b AK |
1114 | } |
1115 | ||
058bc4b5 PB |
1116 | static void phys_section_destroy(MemoryRegion *mr) |
1117 | { | |
55b4e80b DS |
1118 | bool have_sub_page = mr->subpage; |
1119 | ||
dfde4e6e PB |
1120 | memory_region_unref(mr); |
1121 | ||
55b4e80b | 1122 | if (have_sub_page) { |
058bc4b5 | 1123 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1124 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1125 | g_free(subpage); |
1126 | } | |
1127 | } | |
1128 | ||
6092666e | 1129 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1130 | { |
9affd6fc PB |
1131 | while (map->sections_nb > 0) { |
1132 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1133 | phys_section_destroy(section->mr); |
1134 | } | |
9affd6fc PB |
1135 | g_free(map->sections); |
1136 | g_free(map->nodes); | |
5312bd8b AK |
1137 | } |
1138 | ||
ac1970fb | 1139 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1140 | { |
1141 | subpage_t *subpage; | |
a8170e5e | 1142 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1143 | & TARGET_PAGE_MASK; |
97115a8d | 1144 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1145 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1146 | MemoryRegionSection subsection = { |
1147 | .offset_within_address_space = base, | |
052e87b0 | 1148 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1149 | }; |
a8170e5e | 1150 | hwaddr start, end; |
0f0cb164 | 1151 | |
f3705d53 | 1152 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1153 | |
f3705d53 | 1154 | if (!(existing->mr->subpage)) { |
acc9d80b | 1155 | subpage = subpage_init(d->as, base); |
3be91e86 | 1156 | subsection.address_space = d->as; |
0f0cb164 | 1157 | subsection.mr = &subpage->iomem; |
ac1970fb | 1158 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1159 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1160 | } else { |
f3705d53 | 1161 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1162 | } |
1163 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1164 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1165 | subpage_register(subpage, start, end, |
1166 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1167 | } |
1168 | ||
1169 | ||
052e87b0 PB |
1170 | static void register_multipage(AddressSpaceDispatch *d, |
1171 | MemoryRegionSection *section) | |
33417e70 | 1172 | { |
a8170e5e | 1173 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1174 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1175 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1176 | TARGET_PAGE_BITS)); | |
dd81124b | 1177 | |
733d5ef5 PB |
1178 | assert(num_pages); |
1179 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1180 | } |
1181 | ||
ac1970fb | 1182 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1183 | { |
89ae337a | 1184 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1185 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1186 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1187 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1188 | |
733d5ef5 PB |
1189 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1190 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1191 | - now.offset_within_address_space; | |
1192 | ||
052e87b0 | 1193 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1194 | register_subpage(d, &now); |
733d5ef5 | 1195 | } else { |
052e87b0 | 1196 | now.size = int128_zero(); |
733d5ef5 | 1197 | } |
052e87b0 PB |
1198 | while (int128_ne(remain.size, now.size)) { |
1199 | remain.size = int128_sub(remain.size, now.size); | |
1200 | remain.offset_within_address_space += int128_get64(now.size); | |
1201 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1202 | now = remain; |
052e87b0 | 1203 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1204 | register_subpage(d, &now); |
88266249 | 1205 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1206 | now.size = page_size; |
ac1970fb | 1207 | register_subpage(d, &now); |
69b67646 | 1208 | } else { |
052e87b0 | 1209 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1210 | register_multipage(d, &now); |
69b67646 | 1211 | } |
0f0cb164 AK |
1212 | } |
1213 | } | |
1214 | ||
62a2744c SY |
1215 | void qemu_flush_coalesced_mmio_buffer(void) |
1216 | { | |
1217 | if (kvm_enabled()) | |
1218 | kvm_flush_coalesced_mmio_buffer(); | |
1219 | } | |
1220 | ||
b2a8658e UD |
1221 | void qemu_mutex_lock_ramlist(void) |
1222 | { | |
1223 | qemu_mutex_lock(&ram_list.mutex); | |
1224 | } | |
1225 | ||
1226 | void qemu_mutex_unlock_ramlist(void) | |
1227 | { | |
1228 | qemu_mutex_unlock(&ram_list.mutex); | |
1229 | } | |
1230 | ||
e1e84ba0 | 1231 | #ifdef __linux__ |
04b16653 AW |
1232 | static void *file_ram_alloc(RAMBlock *block, |
1233 | ram_addr_t memory, | |
7f56e740 PB |
1234 | const char *path, |
1235 | Error **errp) | |
c902760f | 1236 | { |
fd97fd44 | 1237 | bool unlink_on_error = false; |
c902760f | 1238 | char *filename; |
8ca761f6 PF |
1239 | char *sanitized_name; |
1240 | char *c; | |
794e8f30 | 1241 | void *area; |
5c3ece79 | 1242 | int fd = -1; |
e1fb6471 | 1243 | int64_t page_size; |
c902760f MT |
1244 | |
1245 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1246 | error_setg(errp, |
1247 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1248 | return NULL; |
c902760f MT |
1249 | } |
1250 | ||
fd97fd44 MA |
1251 | for (;;) { |
1252 | fd = open(path, O_RDWR); | |
1253 | if (fd >= 0) { | |
1254 | /* @path names an existing file, use it */ | |
1255 | break; | |
8d31d6b6 | 1256 | } |
fd97fd44 MA |
1257 | if (errno == ENOENT) { |
1258 | /* @path names a file that doesn't exist, create it */ | |
1259 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1260 | if (fd >= 0) { | |
1261 | unlink_on_error = true; | |
1262 | break; | |
1263 | } | |
1264 | } else if (errno == EISDIR) { | |
1265 | /* @path names a directory, create a file there */ | |
1266 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1267 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1268 | for (c = sanitized_name; *c != '\0'; c++) { | |
1269 | if (*c == '/') { | |
1270 | *c = '_'; | |
1271 | } | |
1272 | } | |
8ca761f6 | 1273 | |
fd97fd44 MA |
1274 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1275 | sanitized_name); | |
1276 | g_free(sanitized_name); | |
8d31d6b6 | 1277 | |
fd97fd44 MA |
1278 | fd = mkstemp(filename); |
1279 | if (fd >= 0) { | |
1280 | unlink(filename); | |
1281 | g_free(filename); | |
1282 | break; | |
1283 | } | |
1284 | g_free(filename); | |
8d31d6b6 | 1285 | } |
fd97fd44 MA |
1286 | if (errno != EEXIST && errno != EINTR) { |
1287 | error_setg_errno(errp, errno, | |
1288 | "can't open backing store %s for guest RAM", | |
1289 | path); | |
1290 | goto error; | |
1291 | } | |
1292 | /* | |
1293 | * Try again on EINTR and EEXIST. The latter happens when | |
1294 | * something else creates the file between our two open(). | |
1295 | */ | |
8d31d6b6 | 1296 | } |
c902760f | 1297 | |
e1fb6471 MA |
1298 | page_size = qemu_fd_getpagesize(fd); |
1299 | block->mr->align = page_size; | |
fd97fd44 | 1300 | |
e1fb6471 | 1301 | if (memory < page_size) { |
fd97fd44 MA |
1302 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1303 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1304 | memory, page_size); |
f9a49dfa | 1305 | goto error; |
c902760f | 1306 | } |
c902760f | 1307 | |
e1fb6471 | 1308 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1309 | |
1310 | /* | |
1311 | * ftruncate is not supported by hugetlbfs in older | |
1312 | * hosts, so don't bother bailing out on errors. | |
1313 | * If anything goes wrong with it under other filesystems, | |
1314 | * mmap will fail. | |
1315 | */ | |
7f56e740 | 1316 | if (ftruncate(fd, memory)) { |
9742bf26 | 1317 | perror("ftruncate"); |
7f56e740 | 1318 | } |
c902760f | 1319 | |
e1fb6471 | 1320 | area = qemu_ram_mmap(fd, memory, page_size, block->flags & RAM_SHARED); |
c902760f | 1321 | if (area == MAP_FAILED) { |
7f56e740 | 1322 | error_setg_errno(errp, errno, |
fd97fd44 | 1323 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1324 | goto error; |
c902760f | 1325 | } |
ef36fa14 MT |
1326 | |
1327 | if (mem_prealloc) { | |
38183310 | 1328 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1329 | } |
1330 | ||
04b16653 | 1331 | block->fd = fd; |
c902760f | 1332 | return area; |
f9a49dfa MT |
1333 | |
1334 | error: | |
fd97fd44 MA |
1335 | if (unlink_on_error) { |
1336 | unlink(path); | |
1337 | } | |
5c3ece79 PB |
1338 | if (fd != -1) { |
1339 | close(fd); | |
1340 | } | |
f9a49dfa | 1341 | return NULL; |
c902760f MT |
1342 | } |
1343 | #endif | |
1344 | ||
0dc3f44a | 1345 | /* Called with the ramlist lock held. */ |
d17b5288 | 1346 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1347 | { |
1348 | RAMBlock *block, *next_block; | |
3e837b2c | 1349 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1350 | |
49cd9ac6 SH |
1351 | assert(size != 0); /* it would hand out same offset multiple times */ |
1352 | ||
0dc3f44a | 1353 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1354 | return 0; |
0d53d9fe | 1355 | } |
04b16653 | 1356 | |
0dc3f44a | 1357 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1358 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1359 | |
62be4e3a | 1360 | end = block->offset + block->max_length; |
04b16653 | 1361 | |
0dc3f44a | 1362 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1363 | if (next_block->offset >= end) { |
1364 | next = MIN(next, next_block->offset); | |
1365 | } | |
1366 | } | |
1367 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1368 | offset = end; |
04b16653 AW |
1369 | mingap = next - end; |
1370 | } | |
1371 | } | |
3e837b2c AW |
1372 | |
1373 | if (offset == RAM_ADDR_MAX) { | |
1374 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1375 | (uint64_t)size); | |
1376 | abort(); | |
1377 | } | |
1378 | ||
04b16653 AW |
1379 | return offset; |
1380 | } | |
1381 | ||
652d7ec2 | 1382 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1383 | { |
1384 | RAMBlock *block; | |
1385 | ram_addr_t last = 0; | |
1386 | ||
0dc3f44a MD |
1387 | rcu_read_lock(); |
1388 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1389 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1390 | } |
0dc3f44a | 1391 | rcu_read_unlock(); |
d17b5288 AW |
1392 | return last; |
1393 | } | |
1394 | ||
ddb97f1d JB |
1395 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1396 | { | |
1397 | int ret; | |
ddb97f1d JB |
1398 | |
1399 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1400 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1401 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1402 | if (ret) { | |
1403 | perror("qemu_madvise"); | |
1404 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1405 | "but dump_guest_core=off specified\n"); | |
1406 | } | |
1407 | } | |
1408 | } | |
1409 | ||
0dc3f44a MD |
1410 | /* Called within an RCU critical section, or while the ramlist lock |
1411 | * is held. | |
1412 | */ | |
20cfe881 | 1413 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1414 | { |
20cfe881 | 1415 | RAMBlock *block; |
84b89d78 | 1416 | |
0dc3f44a | 1417 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1418 | if (block->offset == addr) { |
20cfe881 | 1419 | return block; |
c5705a77 AK |
1420 | } |
1421 | } | |
20cfe881 HT |
1422 | |
1423 | return NULL; | |
1424 | } | |
1425 | ||
422148d3 DDAG |
1426 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1427 | { | |
1428 | return rb->idstr; | |
1429 | } | |
1430 | ||
ae3a7047 | 1431 | /* Called with iothread lock held. */ |
20cfe881 HT |
1432 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1433 | { | |
ae3a7047 | 1434 | RAMBlock *new_block, *block; |
20cfe881 | 1435 | |
0dc3f44a | 1436 | rcu_read_lock(); |
ae3a7047 | 1437 | new_block = find_ram_block(addr); |
c5705a77 AK |
1438 | assert(new_block); |
1439 | assert(!new_block->idstr[0]); | |
84b89d78 | 1440 | |
09e5ab63 AL |
1441 | if (dev) { |
1442 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1443 | if (id) { |
1444 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1445 | g_free(id); |
84b89d78 CM |
1446 | } |
1447 | } | |
1448 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1449 | ||
0dc3f44a | 1450 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1451 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1452 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1453 | new_block->idstr); | |
1454 | abort(); | |
1455 | } | |
1456 | } | |
0dc3f44a | 1457 | rcu_read_unlock(); |
c5705a77 AK |
1458 | } |
1459 | ||
ae3a7047 | 1460 | /* Called with iothread lock held. */ |
20cfe881 HT |
1461 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1462 | { | |
ae3a7047 | 1463 | RAMBlock *block; |
20cfe881 | 1464 | |
ae3a7047 MD |
1465 | /* FIXME: arch_init.c assumes that this is not called throughout |
1466 | * migration. Ignore the problem since hot-unplug during migration | |
1467 | * does not work anyway. | |
1468 | */ | |
1469 | ||
0dc3f44a | 1470 | rcu_read_lock(); |
ae3a7047 | 1471 | block = find_ram_block(addr); |
20cfe881 HT |
1472 | if (block) { |
1473 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1474 | } | |
0dc3f44a | 1475 | rcu_read_unlock(); |
20cfe881 HT |
1476 | } |
1477 | ||
8490fc78 LC |
1478 | static int memory_try_enable_merging(void *addr, size_t len) |
1479 | { | |
75cc7f01 | 1480 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1481 | /* disabled by the user */ |
1482 | return 0; | |
1483 | } | |
1484 | ||
1485 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1486 | } | |
1487 | ||
62be4e3a MT |
1488 | /* Only legal before guest might have detected the memory size: e.g. on |
1489 | * incoming migration, or right after reset. | |
1490 | * | |
1491 | * As memory core doesn't know how is memory accessed, it is up to | |
1492 | * resize callback to update device state and/or add assertions to detect | |
1493 | * misuse, if necessary. | |
1494 | */ | |
1495 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1496 | { | |
1497 | RAMBlock *block = find_ram_block(base); | |
1498 | ||
1499 | assert(block); | |
1500 | ||
4ed023ce | 1501 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1502 | |
62be4e3a MT |
1503 | if (block->used_length == newsize) { |
1504 | return 0; | |
1505 | } | |
1506 | ||
1507 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1508 | error_setg_errno(errp, EINVAL, | |
1509 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1510 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1511 | newsize, block->used_length); | |
1512 | return -EINVAL; | |
1513 | } | |
1514 | ||
1515 | if (block->max_length < newsize) { | |
1516 | error_setg_errno(errp, EINVAL, | |
1517 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1518 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1519 | newsize, block->max_length); | |
1520 | return -EINVAL; | |
1521 | } | |
1522 | ||
1523 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1524 | block->used_length = newsize; | |
58d2707e PB |
1525 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1526 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1527 | memory_region_set_size(block->mr, newsize); |
1528 | if (block->resized) { | |
1529 | block->resized(block->idstr, newsize, block->host); | |
1530 | } | |
1531 | return 0; | |
1532 | } | |
1533 | ||
5b82b703 SH |
1534 | /* Called with ram_list.mutex held */ |
1535 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1536 | ram_addr_t new_ram_size) | |
1537 | { | |
1538 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1539 | DIRTY_MEMORY_BLOCK_SIZE); | |
1540 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1541 | DIRTY_MEMORY_BLOCK_SIZE); | |
1542 | int i; | |
1543 | ||
1544 | /* Only need to extend if block count increased */ | |
1545 | if (new_num_blocks <= old_num_blocks) { | |
1546 | return; | |
1547 | } | |
1548 | ||
1549 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1550 | DirtyMemoryBlocks *old_blocks; | |
1551 | DirtyMemoryBlocks *new_blocks; | |
1552 | int j; | |
1553 | ||
1554 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1555 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1556 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1557 | ||
1558 | if (old_num_blocks) { | |
1559 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1560 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1561 | } | |
1562 | ||
1563 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1564 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1565 | } | |
1566 | ||
1567 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1568 | ||
1569 | if (old_blocks) { | |
1570 | g_free_rcu(old_blocks, rcu); | |
1571 | } | |
1572 | } | |
1573 | } | |
1574 | ||
528f46af | 1575 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1576 | { |
e1c57ab8 | 1577 | RAMBlock *block; |
0d53d9fe | 1578 | RAMBlock *last_block = NULL; |
2152f5ca | 1579 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1580 | Error *err = NULL; |
2152f5ca JQ |
1581 | |
1582 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1583 | |
b2a8658e | 1584 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1585 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1586 | |
1587 | if (!new_block->host) { | |
1588 | if (xen_enabled()) { | |
9b8424d5 | 1589 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1590 | new_block->mr, &err); |
1591 | if (err) { | |
1592 | error_propagate(errp, err); | |
1593 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1594 | return; |
37aa7a0e | 1595 | } |
e1c57ab8 | 1596 | } else { |
9b8424d5 | 1597 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1598 | &new_block->mr->align); |
39228250 | 1599 | if (!new_block->host) { |
ef701d7b HT |
1600 | error_setg_errno(errp, errno, |
1601 | "cannot set up guest memory '%s'", | |
1602 | memory_region_name(new_block->mr)); | |
1603 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1604 | return; |
39228250 | 1605 | } |
9b8424d5 | 1606 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1607 | } |
c902760f | 1608 | } |
94a6b54f | 1609 | |
dd631697 LZ |
1610 | new_ram_size = MAX(old_ram_size, |
1611 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1612 | if (new_ram_size > old_ram_size) { | |
1613 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1614 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1615 | } |
0d53d9fe MD |
1616 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1617 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1618 | * tail, so save the last element in last_block. | |
1619 | */ | |
0dc3f44a | 1620 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1621 | last_block = block; |
9b8424d5 | 1622 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1623 | break; |
1624 | } | |
1625 | } | |
1626 | if (block) { | |
0dc3f44a | 1627 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1628 | } else if (last_block) { |
0dc3f44a | 1629 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1630 | } else { /* list is empty */ |
0dc3f44a | 1631 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1632 | } |
0d6d3c87 | 1633 | ram_list.mru_block = NULL; |
94a6b54f | 1634 | |
0dc3f44a MD |
1635 | /* Write list before version */ |
1636 | smp_wmb(); | |
f798b07f | 1637 | ram_list.version++; |
b2a8658e | 1638 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1639 | |
9b8424d5 | 1640 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1641 | new_block->used_length, |
1642 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1643 | |
a904c911 PB |
1644 | if (new_block->host) { |
1645 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1646 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1647 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1648 | if (kvm_enabled()) { | |
1649 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1650 | } | |
e1c57ab8 | 1651 | } |
94a6b54f | 1652 | } |
e9a1ab19 | 1653 | |
0b183fc8 | 1654 | #ifdef __linux__ |
528f46af FZ |
1655 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1656 | bool share, const char *mem_path, | |
1657 | Error **errp) | |
e1c57ab8 PB |
1658 | { |
1659 | RAMBlock *new_block; | |
ef701d7b | 1660 | Error *local_err = NULL; |
e1c57ab8 PB |
1661 | |
1662 | if (xen_enabled()) { | |
7f56e740 | 1663 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1664 | return NULL; |
e1c57ab8 PB |
1665 | } |
1666 | ||
1667 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1668 | /* | |
1669 | * file_ram_alloc() needs to allocate just like | |
1670 | * phys_mem_alloc, but we haven't bothered to provide | |
1671 | * a hook there. | |
1672 | */ | |
7f56e740 PB |
1673 | error_setg(errp, |
1674 | "-mem-path not supported with this accelerator"); | |
528f46af | 1675 | return NULL; |
e1c57ab8 PB |
1676 | } |
1677 | ||
4ed023ce | 1678 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1679 | new_block = g_malloc0(sizeof(*new_block)); |
1680 | new_block->mr = mr; | |
9b8424d5 MT |
1681 | new_block->used_length = size; |
1682 | new_block->max_length = size; | |
dbcb8981 | 1683 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1684 | new_block->host = file_ram_alloc(new_block, size, |
1685 | mem_path, errp); | |
1686 | if (!new_block->host) { | |
1687 | g_free(new_block); | |
528f46af | 1688 | return NULL; |
7f56e740 PB |
1689 | } |
1690 | ||
528f46af | 1691 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1692 | if (local_err) { |
1693 | g_free(new_block); | |
1694 | error_propagate(errp, local_err); | |
528f46af | 1695 | return NULL; |
ef701d7b | 1696 | } |
528f46af | 1697 | return new_block; |
e1c57ab8 | 1698 | } |
0b183fc8 | 1699 | #endif |
e1c57ab8 | 1700 | |
62be4e3a | 1701 | static |
528f46af FZ |
1702 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1703 | void (*resized)(const char*, | |
1704 | uint64_t length, | |
1705 | void *host), | |
1706 | void *host, bool resizeable, | |
1707 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1708 | { |
1709 | RAMBlock *new_block; | |
ef701d7b | 1710 | Error *local_err = NULL; |
e1c57ab8 | 1711 | |
4ed023ce DDAG |
1712 | size = HOST_PAGE_ALIGN(size); |
1713 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1714 | new_block = g_malloc0(sizeof(*new_block)); |
1715 | new_block->mr = mr; | |
62be4e3a | 1716 | new_block->resized = resized; |
9b8424d5 MT |
1717 | new_block->used_length = size; |
1718 | new_block->max_length = max_size; | |
62be4e3a | 1719 | assert(max_size >= size); |
e1c57ab8 PB |
1720 | new_block->fd = -1; |
1721 | new_block->host = host; | |
1722 | if (host) { | |
7bd4f430 | 1723 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1724 | } |
62be4e3a MT |
1725 | if (resizeable) { |
1726 | new_block->flags |= RAM_RESIZEABLE; | |
1727 | } | |
528f46af | 1728 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1729 | if (local_err) { |
1730 | g_free(new_block); | |
1731 | error_propagate(errp, local_err); | |
528f46af | 1732 | return NULL; |
ef701d7b | 1733 | } |
528f46af | 1734 | return new_block; |
e1c57ab8 PB |
1735 | } |
1736 | ||
528f46af | 1737 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1738 | MemoryRegion *mr, Error **errp) |
1739 | { | |
1740 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1741 | } | |
1742 | ||
528f46af | 1743 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1744 | { |
62be4e3a MT |
1745 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1746 | } | |
1747 | ||
528f46af | 1748 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1749 | void (*resized)(const char*, |
1750 | uint64_t length, | |
1751 | void *host), | |
1752 | MemoryRegion *mr, Error **errp) | |
1753 | { | |
1754 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1755 | } |
1756 | ||
43771539 PB |
1757 | static void reclaim_ramblock(RAMBlock *block) |
1758 | { | |
1759 | if (block->flags & RAM_PREALLOC) { | |
1760 | ; | |
1761 | } else if (xen_enabled()) { | |
1762 | xen_invalidate_map_cache_entry(block->host); | |
1763 | #ifndef _WIN32 | |
1764 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1765 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1766 | close(block->fd); |
1767 | #endif | |
1768 | } else { | |
1769 | qemu_anon_ram_free(block->host, block->max_length); | |
1770 | } | |
1771 | g_free(block); | |
1772 | } | |
1773 | ||
f1060c55 | 1774 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1775 | { |
85bc2a15 MAL |
1776 | if (!block) { |
1777 | return; | |
1778 | } | |
1779 | ||
b2a8658e | 1780 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1781 | QLIST_REMOVE_RCU(block, next); |
1782 | ram_list.mru_block = NULL; | |
1783 | /* Write list before version */ | |
1784 | smp_wmb(); | |
1785 | ram_list.version++; | |
1786 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1787 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1788 | } |
1789 | ||
cd19cfa2 HY |
1790 | #ifndef _WIN32 |
1791 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1792 | { | |
1793 | RAMBlock *block; | |
1794 | ram_addr_t offset; | |
1795 | int flags; | |
1796 | void *area, *vaddr; | |
1797 | ||
0dc3f44a | 1798 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1799 | offset = addr - block->offset; |
9b8424d5 | 1800 | if (offset < block->max_length) { |
1240be24 | 1801 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1802 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1803 | ; |
dfeaf2ab MA |
1804 | } else if (xen_enabled()) { |
1805 | abort(); | |
cd19cfa2 HY |
1806 | } else { |
1807 | flags = MAP_FIXED; | |
3435f395 | 1808 | if (block->fd >= 0) { |
dbcb8981 PB |
1809 | flags |= (block->flags & RAM_SHARED ? |
1810 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1811 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1812 | flags, block->fd, offset); | |
cd19cfa2 | 1813 | } else { |
2eb9fbaa MA |
1814 | /* |
1815 | * Remap needs to match alloc. Accelerators that | |
1816 | * set phys_mem_alloc never remap. If they did, | |
1817 | * we'd need a remap hook here. | |
1818 | */ | |
1819 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1820 | ||
cd19cfa2 HY |
1821 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1822 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1823 | flags, -1, 0); | |
cd19cfa2 HY |
1824 | } |
1825 | if (area != vaddr) { | |
f15fbc4b AP |
1826 | fprintf(stderr, "Could not remap addr: " |
1827 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1828 | length, addr); |
1829 | exit(1); | |
1830 | } | |
8490fc78 | 1831 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1832 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1833 | } |
cd19cfa2 HY |
1834 | } |
1835 | } | |
1836 | } | |
1837 | #endif /* !_WIN32 */ | |
1838 | ||
a35ba7be PB |
1839 | int qemu_get_ram_fd(ram_addr_t addr) |
1840 | { | |
ae3a7047 MD |
1841 | RAMBlock *block; |
1842 | int fd; | |
a35ba7be | 1843 | |
0dc3f44a | 1844 | rcu_read_lock(); |
ae3a7047 MD |
1845 | block = qemu_get_ram_block(addr); |
1846 | fd = block->fd; | |
0dc3f44a | 1847 | rcu_read_unlock(); |
ae3a7047 | 1848 | return fd; |
a35ba7be PB |
1849 | } |
1850 | ||
56a571d9 TM |
1851 | void qemu_set_ram_fd(ram_addr_t addr, int fd) |
1852 | { | |
1853 | RAMBlock *block; | |
1854 | ||
1855 | rcu_read_lock(); | |
1856 | block = qemu_get_ram_block(addr); | |
1857 | block->fd = fd; | |
1858 | rcu_read_unlock(); | |
1859 | } | |
1860 | ||
3fd74b84 DM |
1861 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1862 | { | |
ae3a7047 MD |
1863 | RAMBlock *block; |
1864 | void *ptr; | |
3fd74b84 | 1865 | |
0dc3f44a | 1866 | rcu_read_lock(); |
ae3a7047 MD |
1867 | block = qemu_get_ram_block(addr); |
1868 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1869 | rcu_read_unlock(); |
ae3a7047 | 1870 | return ptr; |
3fd74b84 DM |
1871 | } |
1872 | ||
1b5ec234 | 1873 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1874 | * This should not be used for general purpose DMA. Use address_space_map |
1875 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1876 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1877 | * |
49b24afc | 1878 | * Called within RCU critical section. |
1b5ec234 | 1879 | */ |
3655cb9c | 1880 | void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1881 | { |
3655cb9c GA |
1882 | RAMBlock *block = ram_block; |
1883 | ||
1884 | if (block == NULL) { | |
1885 | block = qemu_get_ram_block(addr); | |
1886 | } | |
ae3a7047 MD |
1887 | |
1888 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1889 | /* We need to check if the requested address is in the RAM |
1890 | * because we don't want to map the entire memory in QEMU. | |
1891 | * In that case just map until the end of the page. | |
1892 | */ | |
1893 | if (block->offset == 0) { | |
49b24afc | 1894 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1895 | } |
ae3a7047 MD |
1896 | |
1897 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1898 | } |
49b24afc | 1899 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1900 | } |
1901 | ||
38bee5dc | 1902 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1903 | * but takes a size argument. |
0dc3f44a | 1904 | * |
e81bcda5 | 1905 | * Called within RCU critical section. |
ae3a7047 | 1906 | */ |
3655cb9c GA |
1907 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1908 | hwaddr *size) | |
38bee5dc | 1909 | { |
3655cb9c | 1910 | RAMBlock *block = ram_block; |
e81bcda5 | 1911 | ram_addr_t offset_inside_block; |
8ab934f9 SS |
1912 | if (*size == 0) { |
1913 | return NULL; | |
1914 | } | |
e81bcda5 | 1915 | |
3655cb9c GA |
1916 | if (block == NULL) { |
1917 | block = qemu_get_ram_block(addr); | |
1918 | } | |
e81bcda5 PB |
1919 | offset_inside_block = addr - block->offset; |
1920 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1921 | ||
1922 | if (xen_enabled() && block->host == NULL) { | |
1923 | /* We need to check if the requested address is in the RAM | |
1924 | * because we don't want to map the entire memory in QEMU. | |
1925 | * In that case just map the requested area. | |
1926 | */ | |
1927 | if (block->offset == 0) { | |
1928 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1929 | } |
1930 | ||
e81bcda5 | 1931 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1932 | } |
e81bcda5 PB |
1933 | |
1934 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1935 | } |
1936 | ||
422148d3 DDAG |
1937 | /* |
1938 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1939 | * in that RAMBlock. | |
1940 | * | |
1941 | * ptr: Host pointer to look up | |
1942 | * round_offset: If true round the result offset down to a page boundary | |
1943 | * *ram_addr: set to result ram_addr | |
1944 | * *offset: set to result offset within the RAMBlock | |
1945 | * | |
1946 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1947 | * |
1948 | * By the time this function returns, the returned pointer is not protected | |
1949 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1950 | * does not hold the iothread lock, it must have other means of protecting the | |
1951 | * pointer, such as a reference to the region that includes the incoming | |
1952 | * ram_addr_t. | |
1953 | */ | |
422148d3 DDAG |
1954 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
1955 | ram_addr_t *ram_addr, | |
1956 | ram_addr_t *offset) | |
5579c7f3 | 1957 | { |
94a6b54f PB |
1958 | RAMBlock *block; |
1959 | uint8_t *host = ptr; | |
1960 | ||
868bb33f | 1961 | if (xen_enabled()) { |
0dc3f44a | 1962 | rcu_read_lock(); |
e41d7c69 | 1963 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
422148d3 DDAG |
1964 | block = qemu_get_ram_block(*ram_addr); |
1965 | if (block) { | |
1966 | *offset = (host - block->host); | |
1967 | } | |
0dc3f44a | 1968 | rcu_read_unlock(); |
422148d3 | 1969 | return block; |
712c2b41 SS |
1970 | } |
1971 | ||
0dc3f44a MD |
1972 | rcu_read_lock(); |
1973 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1974 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1975 | goto found; |
1976 | } | |
1977 | ||
0dc3f44a | 1978 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1979 | /* This case append when the block is not mapped. */ |
1980 | if (block->host == NULL) { | |
1981 | continue; | |
1982 | } | |
9b8424d5 | 1983 | if (host - block->host < block->max_length) { |
23887b79 | 1984 | goto found; |
f471a17e | 1985 | } |
94a6b54f | 1986 | } |
432d268c | 1987 | |
0dc3f44a | 1988 | rcu_read_unlock(); |
1b5ec234 | 1989 | return NULL; |
23887b79 PB |
1990 | |
1991 | found: | |
422148d3 DDAG |
1992 | *offset = (host - block->host); |
1993 | if (round_offset) { | |
1994 | *offset &= TARGET_PAGE_MASK; | |
1995 | } | |
1996 | *ram_addr = block->offset + *offset; | |
0dc3f44a | 1997 | rcu_read_unlock(); |
422148d3 DDAG |
1998 | return block; |
1999 | } | |
2000 | ||
e3dd7493 DDAG |
2001 | /* |
2002 | * Finds the named RAMBlock | |
2003 | * | |
2004 | * name: The name of RAMBlock to find | |
2005 | * | |
2006 | * Returns: RAMBlock (or NULL if not found) | |
2007 | */ | |
2008 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2009 | { | |
2010 | RAMBlock *block; | |
2011 | ||
2012 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
2013 | if (!strcmp(name, block->idstr)) { | |
2014 | return block; | |
2015 | } | |
2016 | } | |
2017 | ||
2018 | return NULL; | |
2019 | } | |
2020 | ||
422148d3 DDAG |
2021 | /* Some of the softmmu routines need to translate from a host pointer |
2022 | (typically a TLB entry) back to a ram offset. */ | |
2023 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
2024 | { | |
2025 | RAMBlock *block; | |
2026 | ram_addr_t offset; /* Not used */ | |
2027 | ||
2028 | block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | |
2029 | ||
2030 | if (!block) { | |
2031 | return NULL; | |
2032 | } | |
2033 | ||
2034 | return block->mr; | |
e890261f | 2035 | } |
f471a17e | 2036 | |
49b24afc | 2037 | /* Called within RCU critical section. */ |
a8170e5e | 2038 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2039 | uint64_t val, unsigned size) |
9fa3e853 | 2040 | { |
52159192 | 2041 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 2042 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2043 | } |
0e0df1e2 AK |
2044 | switch (size) { |
2045 | case 1: | |
3655cb9c | 2046 | stb_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2047 | break; |
2048 | case 2: | |
3655cb9c | 2049 | stw_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2050 | break; |
2051 | case 4: | |
3655cb9c | 2052 | stl_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2053 | break; |
2054 | default: | |
2055 | abort(); | |
3a7d929e | 2056 | } |
58d2707e PB |
2057 | /* Set both VGA and migration bits for simplicity and to remove |
2058 | * the notdirty callback faster. | |
2059 | */ | |
2060 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2061 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2062 | /* we remove the notdirty callback only if the code has been |
2063 | flushed */ | |
a2cd8c85 | 2064 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2065 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2066 | } |
9fa3e853 FB |
2067 | } |
2068 | ||
b018ddf6 PB |
2069 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2070 | unsigned size, bool is_write) | |
2071 | { | |
2072 | return is_write; | |
2073 | } | |
2074 | ||
0e0df1e2 | 2075 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2076 | .write = notdirty_mem_write, |
b018ddf6 | 2077 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2078 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2079 | }; |
2080 | ||
0f459d16 | 2081 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2082 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2083 | { |
93afeade | 2084 | CPUState *cpu = current_cpu; |
568496c0 | 2085 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2086 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2087 | target_ulong pc, cs_base; |
0f459d16 | 2088 | target_ulong vaddr; |
a1d1bb31 | 2089 | CPUWatchpoint *wp; |
06d55cc1 | 2090 | int cpu_flags; |
0f459d16 | 2091 | |
ff4700b0 | 2092 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2093 | /* We re-entered the check after replacing the TB. Now raise |
2094 | * the debug interrupt so that is will trigger after the | |
2095 | * current instruction. */ | |
93afeade | 2096 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2097 | return; |
2098 | } | |
93afeade | 2099 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2100 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2101 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2102 | && (wp->flags & flags)) { | |
08225676 PM |
2103 | if (flags == BP_MEM_READ) { |
2104 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2105 | } else { | |
2106 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2107 | } | |
2108 | wp->hitaddr = vaddr; | |
66b9b43c | 2109 | wp->hitattrs = attrs; |
ff4700b0 | 2110 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2111 | if (wp->flags & BP_CPU && |
2112 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2113 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2114 | continue; | |
2115 | } | |
ff4700b0 | 2116 | cpu->watchpoint_hit = wp; |
239c51a5 | 2117 | tb_check_watchpoint(cpu); |
6e140f28 | 2118 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2119 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2120 | cpu_loop_exit(cpu); |
6e140f28 AL |
2121 | } else { |
2122 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2123 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2124 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2125 | } |
06d55cc1 | 2126 | } |
6e140f28 AL |
2127 | } else { |
2128 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2129 | } |
2130 | } | |
2131 | } | |
2132 | ||
6658ffb8 PB |
2133 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2134 | so these check for a hit then pass through to the normal out-of-line | |
2135 | phys routines. */ | |
66b9b43c PM |
2136 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2137 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2138 | { |
66b9b43c PM |
2139 | MemTxResult res; |
2140 | uint64_t data; | |
79ed0416 PM |
2141 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2142 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2143 | |
2144 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2145 | switch (size) { |
66b9b43c | 2146 | case 1: |
79ed0416 | 2147 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2148 | break; |
2149 | case 2: | |
79ed0416 | 2150 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2151 | break; |
2152 | case 4: | |
79ed0416 | 2153 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2154 | break; |
1ec9b909 AK |
2155 | default: abort(); |
2156 | } | |
66b9b43c PM |
2157 | *pdata = data; |
2158 | return res; | |
6658ffb8 PB |
2159 | } |
2160 | ||
66b9b43c PM |
2161 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2162 | uint64_t val, unsigned size, | |
2163 | MemTxAttrs attrs) | |
6658ffb8 | 2164 | { |
66b9b43c | 2165 | MemTxResult res; |
79ed0416 PM |
2166 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2167 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2168 | |
2169 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2170 | switch (size) { |
67364150 | 2171 | case 1: |
79ed0416 | 2172 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2173 | break; |
2174 | case 2: | |
79ed0416 | 2175 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2176 | break; |
2177 | case 4: | |
79ed0416 | 2178 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2179 | break; |
1ec9b909 AK |
2180 | default: abort(); |
2181 | } | |
66b9b43c | 2182 | return res; |
6658ffb8 PB |
2183 | } |
2184 | ||
1ec9b909 | 2185 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2186 | .read_with_attrs = watch_mem_read, |
2187 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2188 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2189 | }; |
6658ffb8 | 2190 | |
f25a49e0 PM |
2191 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2192 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2193 | { |
acc9d80b | 2194 | subpage_t *subpage = opaque; |
ff6cff75 | 2195 | uint8_t buf[8]; |
5c9eb028 | 2196 | MemTxResult res; |
791af8c8 | 2197 | |
db7b5426 | 2198 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2199 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2200 | subpage, len, addr); |
db7b5426 | 2201 | #endif |
5c9eb028 PM |
2202 | res = address_space_read(subpage->as, addr + subpage->base, |
2203 | attrs, buf, len); | |
2204 | if (res) { | |
2205 | return res; | |
f25a49e0 | 2206 | } |
acc9d80b JK |
2207 | switch (len) { |
2208 | case 1: | |
f25a49e0 PM |
2209 | *data = ldub_p(buf); |
2210 | return MEMTX_OK; | |
acc9d80b | 2211 | case 2: |
f25a49e0 PM |
2212 | *data = lduw_p(buf); |
2213 | return MEMTX_OK; | |
acc9d80b | 2214 | case 4: |
f25a49e0 PM |
2215 | *data = ldl_p(buf); |
2216 | return MEMTX_OK; | |
ff6cff75 | 2217 | case 8: |
f25a49e0 PM |
2218 | *data = ldq_p(buf); |
2219 | return MEMTX_OK; | |
acc9d80b JK |
2220 | default: |
2221 | abort(); | |
2222 | } | |
db7b5426 BS |
2223 | } |
2224 | ||
f25a49e0 PM |
2225 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2226 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2227 | { |
acc9d80b | 2228 | subpage_t *subpage = opaque; |
ff6cff75 | 2229 | uint8_t buf[8]; |
acc9d80b | 2230 | |
db7b5426 | 2231 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2232 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2233 | " value %"PRIx64"\n", |
2234 | __func__, subpage, len, addr, value); | |
db7b5426 | 2235 | #endif |
acc9d80b JK |
2236 | switch (len) { |
2237 | case 1: | |
2238 | stb_p(buf, value); | |
2239 | break; | |
2240 | case 2: | |
2241 | stw_p(buf, value); | |
2242 | break; | |
2243 | case 4: | |
2244 | stl_p(buf, value); | |
2245 | break; | |
ff6cff75 PB |
2246 | case 8: |
2247 | stq_p(buf, value); | |
2248 | break; | |
acc9d80b JK |
2249 | default: |
2250 | abort(); | |
2251 | } | |
5c9eb028 PM |
2252 | return address_space_write(subpage->as, addr + subpage->base, |
2253 | attrs, buf, len); | |
db7b5426 BS |
2254 | } |
2255 | ||
c353e4cc | 2256 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2257 | unsigned len, bool is_write) |
c353e4cc | 2258 | { |
acc9d80b | 2259 | subpage_t *subpage = opaque; |
c353e4cc | 2260 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2261 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2262 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2263 | #endif |
2264 | ||
acc9d80b | 2265 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2266 | len, is_write); |
c353e4cc PB |
2267 | } |
2268 | ||
70c68e44 | 2269 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2270 | .read_with_attrs = subpage_read, |
2271 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2272 | .impl.min_access_size = 1, |
2273 | .impl.max_access_size = 8, | |
2274 | .valid.min_access_size = 1, | |
2275 | .valid.max_access_size = 8, | |
c353e4cc | 2276 | .valid.accepts = subpage_accepts, |
70c68e44 | 2277 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2278 | }; |
2279 | ||
c227f099 | 2280 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2281 | uint16_t section) |
db7b5426 BS |
2282 | { |
2283 | int idx, eidx; | |
2284 | ||
2285 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2286 | return -1; | |
2287 | idx = SUBPAGE_IDX(start); | |
2288 | eidx = SUBPAGE_IDX(end); | |
2289 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2290 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2291 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2292 | #endif |
db7b5426 | 2293 | for (; idx <= eidx; idx++) { |
5312bd8b | 2294 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2295 | } |
2296 | ||
2297 | return 0; | |
2298 | } | |
2299 | ||
acc9d80b | 2300 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2301 | { |
c227f099 | 2302 | subpage_t *mmio; |
db7b5426 | 2303 | |
7267c094 | 2304 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2305 | |
acc9d80b | 2306 | mmio->as = as; |
1eec614b | 2307 | mmio->base = base; |
2c9b15ca | 2308 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2309 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2310 | mmio->iomem.subpage = true; |
db7b5426 | 2311 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2312 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2313 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2314 | #endif |
b41aac4f | 2315 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2316 | |
2317 | return mmio; | |
2318 | } | |
2319 | ||
a656e22f PC |
2320 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2321 | MemoryRegion *mr) | |
5312bd8b | 2322 | { |
a656e22f | 2323 | assert(as); |
5312bd8b | 2324 | MemoryRegionSection section = { |
a656e22f | 2325 | .address_space = as, |
5312bd8b AK |
2326 | .mr = mr, |
2327 | .offset_within_address_space = 0, | |
2328 | .offset_within_region = 0, | |
052e87b0 | 2329 | .size = int128_2_64(), |
5312bd8b AK |
2330 | }; |
2331 | ||
53cb28cb | 2332 | return phys_section_add(map, §ion); |
5312bd8b AK |
2333 | } |
2334 | ||
a54c87b6 | 2335 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2336 | { |
a54c87b6 PM |
2337 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2338 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2339 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2340 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2341 | |
2342 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2343 | } |
2344 | ||
e9179ce1 AK |
2345 | static void io_mem_init(void) |
2346 | { | |
1f6245e5 | 2347 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2348 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2349 | NULL, UINT64_MAX); |
2c9b15ca | 2350 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2351 | NULL, UINT64_MAX); |
2c9b15ca | 2352 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2353 | NULL, UINT64_MAX); |
e9179ce1 AK |
2354 | } |
2355 | ||
ac1970fb | 2356 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2357 | { |
2358 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2359 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2360 | uint16_t n; | |
2361 | ||
a656e22f | 2362 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2363 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2364 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2365 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2366 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2367 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2368 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2369 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2370 | |
9736e55b | 2371 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2372 | d->as = as; |
2373 | as->next_dispatch = d; | |
2374 | } | |
2375 | ||
79e2b9ae PB |
2376 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2377 | { | |
2378 | phys_sections_free(&d->map); | |
2379 | g_free(d); | |
2380 | } | |
2381 | ||
00752703 | 2382 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2383 | { |
89ae337a | 2384 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2385 | AddressSpaceDispatch *cur = as->dispatch; |
2386 | AddressSpaceDispatch *next = as->next_dispatch; | |
2387 | ||
53cb28cb | 2388 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2389 | |
79e2b9ae | 2390 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2391 | if (cur) { |
79e2b9ae | 2392 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2393 | } |
9affd6fc PB |
2394 | } |
2395 | ||
1d71148e | 2396 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2397 | { |
32857f4d PM |
2398 | CPUAddressSpace *cpuas; |
2399 | AddressSpaceDispatch *d; | |
117712c3 AK |
2400 | |
2401 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2402 | reset the modified entries */ | |
32857f4d PM |
2403 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2404 | cpu_reloading_memory_map(); | |
2405 | /* The CPU and TLB are protected by the iothread lock. | |
2406 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2407 | * may have split the RCU critical section. | |
2408 | */ | |
2409 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2410 | cpuas->memory_dispatch = d; | |
2411 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2412 | } |
2413 | ||
ac1970fb AK |
2414 | void address_space_init_dispatch(AddressSpace *as) |
2415 | { | |
00752703 | 2416 | as->dispatch = NULL; |
89ae337a | 2417 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2418 | .begin = mem_begin, |
00752703 | 2419 | .commit = mem_commit, |
ac1970fb AK |
2420 | .region_add = mem_add, |
2421 | .region_nop = mem_add, | |
2422 | .priority = 0, | |
2423 | }; | |
89ae337a | 2424 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2425 | } |
2426 | ||
6e48e8f9 PB |
2427 | void address_space_unregister(AddressSpace *as) |
2428 | { | |
2429 | memory_listener_unregister(&as->dispatch_listener); | |
2430 | } | |
2431 | ||
83f3c251 AK |
2432 | void address_space_destroy_dispatch(AddressSpace *as) |
2433 | { | |
2434 | AddressSpaceDispatch *d = as->dispatch; | |
2435 | ||
79e2b9ae PB |
2436 | atomic_rcu_set(&as->dispatch, NULL); |
2437 | if (d) { | |
2438 | call_rcu(d, address_space_dispatch_free, rcu); | |
2439 | } | |
83f3c251 AK |
2440 | } |
2441 | ||
62152b8a AK |
2442 | static void memory_map_init(void) |
2443 | { | |
7267c094 | 2444 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2445 | |
57271d63 | 2446 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2447 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2448 | |
7267c094 | 2449 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2450 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2451 | 65536); | |
7dca8043 | 2452 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2453 | } |
2454 | ||
2455 | MemoryRegion *get_system_memory(void) | |
2456 | { | |
2457 | return system_memory; | |
2458 | } | |
2459 | ||
309cb471 AK |
2460 | MemoryRegion *get_system_io(void) |
2461 | { | |
2462 | return system_io; | |
2463 | } | |
2464 | ||
e2eef170 PB |
2465 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2466 | ||
13eb76e0 FB |
2467 | /* physical memory access (slow version, mainly for debug) */ |
2468 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2469 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2470 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2471 | { |
2472 | int l, flags; | |
2473 | target_ulong page; | |
53a5960a | 2474 | void * p; |
13eb76e0 FB |
2475 | |
2476 | while (len > 0) { | |
2477 | page = addr & TARGET_PAGE_MASK; | |
2478 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2479 | if (l > len) | |
2480 | l = len; | |
2481 | flags = page_get_flags(page); | |
2482 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2483 | return -1; |
13eb76e0 FB |
2484 | if (is_write) { |
2485 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2486 | return -1; |
579a97f7 | 2487 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2488 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2489 | return -1; |
72fb7daa AJ |
2490 | memcpy(p, buf, l); |
2491 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2492 | } else { |
2493 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2494 | return -1; |
579a97f7 | 2495 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2496 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2497 | return -1; |
72fb7daa | 2498 | memcpy(buf, p, l); |
5b257578 | 2499 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2500 | } |
2501 | len -= l; | |
2502 | buf += l; | |
2503 | addr += l; | |
2504 | } | |
a68fe89c | 2505 | return 0; |
13eb76e0 | 2506 | } |
8df1cd07 | 2507 | |
13eb76e0 | 2508 | #else |
51d7a9eb | 2509 | |
845b6214 | 2510 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2511 | hwaddr length) |
51d7a9eb | 2512 | { |
e87f7778 PB |
2513 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2514 | /* No early return if dirty_log_mask is or becomes 0, because | |
2515 | * cpu_physical_memory_set_dirty_range will still call | |
2516 | * xen_modified_memory. | |
2517 | */ | |
2518 | if (dirty_log_mask) { | |
2519 | dirty_log_mask = | |
2520 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2521 | } | |
2522 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2523 | tb_invalidate_phys_range(addr, addr + length); | |
2524 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2525 | } |
e87f7778 | 2526 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2527 | } |
2528 | ||
23326164 | 2529 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2530 | { |
e1622f4b | 2531 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2532 | |
2533 | /* Regions are assumed to support 1-4 byte accesses unless | |
2534 | otherwise specified. */ | |
23326164 RH |
2535 | if (access_size_max == 0) { |
2536 | access_size_max = 4; | |
2537 | } | |
2538 | ||
2539 | /* Bound the maximum access by the alignment of the address. */ | |
2540 | if (!mr->ops->impl.unaligned) { | |
2541 | unsigned align_size_max = addr & -addr; | |
2542 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2543 | access_size_max = align_size_max; | |
2544 | } | |
82f2563f | 2545 | } |
23326164 RH |
2546 | |
2547 | /* Don't attempt accesses larger than the maximum. */ | |
2548 | if (l > access_size_max) { | |
2549 | l = access_size_max; | |
82f2563f | 2550 | } |
6554f5c0 | 2551 | l = pow2floor(l); |
23326164 RH |
2552 | |
2553 | return l; | |
82f2563f PB |
2554 | } |
2555 | ||
4840f10e | 2556 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2557 | { |
4840f10e JK |
2558 | bool unlocked = !qemu_mutex_iothread_locked(); |
2559 | bool release_lock = false; | |
2560 | ||
2561 | if (unlocked && mr->global_locking) { | |
2562 | qemu_mutex_lock_iothread(); | |
2563 | unlocked = false; | |
2564 | release_lock = true; | |
2565 | } | |
125b3806 | 2566 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2567 | if (unlocked) { |
2568 | qemu_mutex_lock_iothread(); | |
2569 | } | |
125b3806 | 2570 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2571 | if (unlocked) { |
2572 | qemu_mutex_unlock_iothread(); | |
2573 | } | |
125b3806 | 2574 | } |
4840f10e JK |
2575 | |
2576 | return release_lock; | |
125b3806 PB |
2577 | } |
2578 | ||
a203ac70 PB |
2579 | /* Called within RCU critical section. */ |
2580 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2581 | MemTxAttrs attrs, | |
2582 | const uint8_t *buf, | |
2583 | int len, hwaddr addr1, | |
2584 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2585 | { |
13eb76e0 | 2586 | uint8_t *ptr; |
791af8c8 | 2587 | uint64_t val; |
3b643495 | 2588 | MemTxResult result = MEMTX_OK; |
4840f10e | 2589 | bool release_lock = false; |
3b46e624 | 2590 | |
a203ac70 | 2591 | for (;;) { |
eb7eeb88 PB |
2592 | if (!memory_access_is_direct(mr, true)) { |
2593 | release_lock |= prepare_mmio_access(mr); | |
2594 | l = memory_access_size(mr, l, addr1); | |
2595 | /* XXX: could force current_cpu to NULL to avoid | |
2596 | potential bugs */ | |
2597 | switch (l) { | |
2598 | case 8: | |
2599 | /* 64 bit write access */ | |
2600 | val = ldq_p(buf); | |
2601 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2602 | attrs); | |
2603 | break; | |
2604 | case 4: | |
2605 | /* 32 bit write access */ | |
2606 | val = ldl_p(buf); | |
2607 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2608 | attrs); | |
2609 | break; | |
2610 | case 2: | |
2611 | /* 16 bit write access */ | |
2612 | val = lduw_p(buf); | |
2613 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2614 | attrs); | |
2615 | break; | |
2616 | case 1: | |
2617 | /* 8 bit write access */ | |
2618 | val = ldub_p(buf); | |
2619 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2620 | attrs); | |
2621 | break; | |
2622 | default: | |
2623 | abort(); | |
13eb76e0 FB |
2624 | } |
2625 | } else { | |
eb7eeb88 PB |
2626 | addr1 += memory_region_get_ram_addr(mr); |
2627 | /* RAM case */ | |
3655cb9c | 2628 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2629 | memcpy(ptr, buf, l); |
2630 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2631 | } |
4840f10e JK |
2632 | |
2633 | if (release_lock) { | |
2634 | qemu_mutex_unlock_iothread(); | |
2635 | release_lock = false; | |
2636 | } | |
2637 | ||
13eb76e0 FB |
2638 | len -= l; |
2639 | buf += l; | |
2640 | addr += l; | |
a203ac70 PB |
2641 | |
2642 | if (!len) { | |
2643 | break; | |
2644 | } | |
2645 | ||
2646 | l = len; | |
2647 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2648 | } |
fd8aaa76 | 2649 | |
3b643495 | 2650 | return result; |
13eb76e0 | 2651 | } |
8df1cd07 | 2652 | |
a203ac70 PB |
2653 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2654 | const uint8_t *buf, int len) | |
ac1970fb | 2655 | { |
eb7eeb88 | 2656 | hwaddr l; |
eb7eeb88 PB |
2657 | hwaddr addr1; |
2658 | MemoryRegion *mr; | |
2659 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2660 | |
a203ac70 PB |
2661 | if (len > 0) { |
2662 | rcu_read_lock(); | |
eb7eeb88 | 2663 | l = len; |
a203ac70 PB |
2664 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2665 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2666 | addr1, l, mr); | |
2667 | rcu_read_unlock(); | |
2668 | } | |
2669 | ||
2670 | return result; | |
2671 | } | |
2672 | ||
2673 | /* Called within RCU critical section. */ | |
2674 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2675 | MemTxAttrs attrs, uint8_t *buf, | |
2676 | int len, hwaddr addr1, hwaddr l, | |
2677 | MemoryRegion *mr) | |
2678 | { | |
2679 | uint8_t *ptr; | |
2680 | uint64_t val; | |
2681 | MemTxResult result = MEMTX_OK; | |
2682 | bool release_lock = false; | |
eb7eeb88 | 2683 | |
a203ac70 | 2684 | for (;;) { |
eb7eeb88 PB |
2685 | if (!memory_access_is_direct(mr, false)) { |
2686 | /* I/O case */ | |
2687 | release_lock |= prepare_mmio_access(mr); | |
2688 | l = memory_access_size(mr, l, addr1); | |
2689 | switch (l) { | |
2690 | case 8: | |
2691 | /* 64 bit read access */ | |
2692 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2693 | attrs); | |
2694 | stq_p(buf, val); | |
2695 | break; | |
2696 | case 4: | |
2697 | /* 32 bit read access */ | |
2698 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2699 | attrs); | |
2700 | stl_p(buf, val); | |
2701 | break; | |
2702 | case 2: | |
2703 | /* 16 bit read access */ | |
2704 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2705 | attrs); | |
2706 | stw_p(buf, val); | |
2707 | break; | |
2708 | case 1: | |
2709 | /* 8 bit read access */ | |
2710 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2711 | attrs); | |
2712 | stb_p(buf, val); | |
2713 | break; | |
2714 | default: | |
2715 | abort(); | |
2716 | } | |
2717 | } else { | |
2718 | /* RAM case */ | |
8e41fb63 FZ |
2719 | ptr = qemu_get_ram_ptr(mr->ram_block, |
2720 | memory_region_get_ram_addr(mr) + addr1); | |
eb7eeb88 PB |
2721 | memcpy(buf, ptr, l); |
2722 | } | |
2723 | ||
2724 | if (release_lock) { | |
2725 | qemu_mutex_unlock_iothread(); | |
2726 | release_lock = false; | |
2727 | } | |
2728 | ||
2729 | len -= l; | |
2730 | buf += l; | |
2731 | addr += l; | |
a203ac70 PB |
2732 | |
2733 | if (!len) { | |
2734 | break; | |
2735 | } | |
2736 | ||
2737 | l = len; | |
2738 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2739 | } | |
2740 | ||
2741 | return result; | |
2742 | } | |
2743 | ||
3cc8f884 PB |
2744 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2745 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2746 | { |
2747 | hwaddr l; | |
2748 | hwaddr addr1; | |
2749 | MemoryRegion *mr; | |
2750 | MemTxResult result = MEMTX_OK; | |
2751 | ||
2752 | if (len > 0) { | |
2753 | rcu_read_lock(); | |
2754 | l = len; | |
2755 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2756 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2757 | addr1, l, mr); | |
2758 | rcu_read_unlock(); | |
eb7eeb88 | 2759 | } |
eb7eeb88 PB |
2760 | |
2761 | return result; | |
ac1970fb AK |
2762 | } |
2763 | ||
eb7eeb88 PB |
2764 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2765 | uint8_t *buf, int len, bool is_write) | |
2766 | { | |
2767 | if (is_write) { | |
2768 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2769 | } else { | |
2770 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2771 | } | |
2772 | } | |
ac1970fb | 2773 | |
a8170e5e | 2774 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2775 | int len, int is_write) |
2776 | { | |
5c9eb028 PM |
2777 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2778 | buf, len, is_write); | |
ac1970fb AK |
2779 | } |
2780 | ||
582b55a9 AG |
2781 | enum write_rom_type { |
2782 | WRITE_DATA, | |
2783 | FLUSH_CACHE, | |
2784 | }; | |
2785 | ||
2a221651 | 2786 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2787 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2788 | { |
149f54b5 | 2789 | hwaddr l; |
d0ecd2aa | 2790 | uint8_t *ptr; |
149f54b5 | 2791 | hwaddr addr1; |
5c8a00ce | 2792 | MemoryRegion *mr; |
3b46e624 | 2793 | |
41063e1e | 2794 | rcu_read_lock(); |
d0ecd2aa | 2795 | while (len > 0) { |
149f54b5 | 2796 | l = len; |
2a221651 | 2797 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2798 | |
5c8a00ce PB |
2799 | if (!(memory_region_is_ram(mr) || |
2800 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2801 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2802 | } else { |
5c8a00ce | 2803 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2804 | /* ROM/RAM case */ |
3655cb9c | 2805 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2806 | switch (type) { |
2807 | case WRITE_DATA: | |
2808 | memcpy(ptr, buf, l); | |
845b6214 | 2809 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2810 | break; |
2811 | case FLUSH_CACHE: | |
2812 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2813 | break; | |
2814 | } | |
d0ecd2aa FB |
2815 | } |
2816 | len -= l; | |
2817 | buf += l; | |
2818 | addr += l; | |
2819 | } | |
41063e1e | 2820 | rcu_read_unlock(); |
d0ecd2aa FB |
2821 | } |
2822 | ||
582b55a9 | 2823 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2824 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2825 | const uint8_t *buf, int len) |
2826 | { | |
2a221651 | 2827 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2828 | } |
2829 | ||
2830 | void cpu_flush_icache_range(hwaddr start, int len) | |
2831 | { | |
2832 | /* | |
2833 | * This function should do the same thing as an icache flush that was | |
2834 | * triggered from within the guest. For TCG we are always cache coherent, | |
2835 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2836 | * the host's instruction cache at least. | |
2837 | */ | |
2838 | if (tcg_enabled()) { | |
2839 | return; | |
2840 | } | |
2841 | ||
2a221651 EI |
2842 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2843 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2844 | } |
2845 | ||
6d16c2f8 | 2846 | typedef struct { |
d3e71559 | 2847 | MemoryRegion *mr; |
6d16c2f8 | 2848 | void *buffer; |
a8170e5e AK |
2849 | hwaddr addr; |
2850 | hwaddr len; | |
c2cba0ff | 2851 | bool in_use; |
6d16c2f8 AL |
2852 | } BounceBuffer; |
2853 | ||
2854 | static BounceBuffer bounce; | |
2855 | ||
ba223c29 | 2856 | typedef struct MapClient { |
e95205e1 | 2857 | QEMUBH *bh; |
72cf2d4f | 2858 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2859 | } MapClient; |
2860 | ||
38e047b5 | 2861 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2862 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2863 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2864 | |
e95205e1 FZ |
2865 | static void cpu_unregister_map_client_do(MapClient *client) |
2866 | { | |
2867 | QLIST_REMOVE(client, link); | |
2868 | g_free(client); | |
2869 | } | |
2870 | ||
33b6c2ed FZ |
2871 | static void cpu_notify_map_clients_locked(void) |
2872 | { | |
2873 | MapClient *client; | |
2874 | ||
2875 | while (!QLIST_EMPTY(&map_client_list)) { | |
2876 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2877 | qemu_bh_schedule(client->bh); |
2878 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2879 | } |
2880 | } | |
2881 | ||
e95205e1 | 2882 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2883 | { |
7267c094 | 2884 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2885 | |
38e047b5 | 2886 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2887 | client->bh = bh; |
72cf2d4f | 2888 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2889 | if (!atomic_read(&bounce.in_use)) { |
2890 | cpu_notify_map_clients_locked(); | |
2891 | } | |
38e047b5 | 2892 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2893 | } |
2894 | ||
38e047b5 | 2895 | void cpu_exec_init_all(void) |
ba223c29 | 2896 | { |
38e047b5 | 2897 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2898 | io_mem_init(); |
680a4783 | 2899 | memory_map_init(); |
38e047b5 | 2900 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2901 | } |
2902 | ||
e95205e1 | 2903 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2904 | { |
2905 | MapClient *client; | |
2906 | ||
e95205e1 FZ |
2907 | qemu_mutex_lock(&map_client_list_lock); |
2908 | QLIST_FOREACH(client, &map_client_list, link) { | |
2909 | if (client->bh == bh) { | |
2910 | cpu_unregister_map_client_do(client); | |
2911 | break; | |
2912 | } | |
ba223c29 | 2913 | } |
e95205e1 | 2914 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2915 | } |
2916 | ||
2917 | static void cpu_notify_map_clients(void) | |
2918 | { | |
38e047b5 | 2919 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2920 | cpu_notify_map_clients_locked(); |
38e047b5 | 2921 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2922 | } |
2923 | ||
51644ab7 PB |
2924 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2925 | { | |
5c8a00ce | 2926 | MemoryRegion *mr; |
51644ab7 PB |
2927 | hwaddr l, xlat; |
2928 | ||
41063e1e | 2929 | rcu_read_lock(); |
51644ab7 PB |
2930 | while (len > 0) { |
2931 | l = len; | |
5c8a00ce PB |
2932 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2933 | if (!memory_access_is_direct(mr, is_write)) { | |
2934 | l = memory_access_size(mr, l, addr); | |
2935 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2936 | return false; |
2937 | } | |
2938 | } | |
2939 | ||
2940 | len -= l; | |
2941 | addr += l; | |
2942 | } | |
41063e1e | 2943 | rcu_read_unlock(); |
51644ab7 PB |
2944 | return true; |
2945 | } | |
2946 | ||
6d16c2f8 AL |
2947 | /* Map a physical memory region into a host virtual address. |
2948 | * May map a subset of the requested range, given by and returned in *plen. | |
2949 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2950 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2951 | * Use cpu_register_map_client() to know when retrying the map operation is |
2952 | * likely to succeed. | |
6d16c2f8 | 2953 | */ |
ac1970fb | 2954 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2955 | hwaddr addr, |
2956 | hwaddr *plen, | |
ac1970fb | 2957 | bool is_write) |
6d16c2f8 | 2958 | { |
a8170e5e | 2959 | hwaddr len = *plen; |
e3127ae0 PB |
2960 | hwaddr done = 0; |
2961 | hwaddr l, xlat, base; | |
2962 | MemoryRegion *mr, *this_mr; | |
2963 | ram_addr_t raddr; | |
e81bcda5 | 2964 | void *ptr; |
6d16c2f8 | 2965 | |
e3127ae0 PB |
2966 | if (len == 0) { |
2967 | return NULL; | |
2968 | } | |
38bee5dc | 2969 | |
e3127ae0 | 2970 | l = len; |
41063e1e | 2971 | rcu_read_lock(); |
e3127ae0 | 2972 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2973 | |
e3127ae0 | 2974 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2975 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2976 | rcu_read_unlock(); |
e3127ae0 | 2977 | return NULL; |
6d16c2f8 | 2978 | } |
e85d9db5 KW |
2979 | /* Avoid unbounded allocations */ |
2980 | l = MIN(l, TARGET_PAGE_SIZE); | |
2981 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2982 | bounce.addr = addr; |
2983 | bounce.len = l; | |
d3e71559 PB |
2984 | |
2985 | memory_region_ref(mr); | |
2986 | bounce.mr = mr; | |
e3127ae0 | 2987 | if (!is_write) { |
5c9eb028 PM |
2988 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2989 | bounce.buffer, l); | |
8ab934f9 | 2990 | } |
6d16c2f8 | 2991 | |
41063e1e | 2992 | rcu_read_unlock(); |
e3127ae0 PB |
2993 | *plen = l; |
2994 | return bounce.buffer; | |
2995 | } | |
2996 | ||
2997 | base = xlat; | |
2998 | raddr = memory_region_get_ram_addr(mr); | |
2999 | ||
3000 | for (;;) { | |
6d16c2f8 AL |
3001 | len -= l; |
3002 | addr += l; | |
e3127ae0 PB |
3003 | done += l; |
3004 | if (len == 0) { | |
3005 | break; | |
3006 | } | |
3007 | ||
3008 | l = len; | |
3009 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
3010 | if (this_mr != mr || xlat != base + done) { | |
3011 | break; | |
3012 | } | |
6d16c2f8 | 3013 | } |
e3127ae0 | 3014 | |
d3e71559 | 3015 | memory_region_ref(mr); |
e3127ae0 | 3016 | *plen = done; |
3655cb9c | 3017 | ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen); |
e81bcda5 PB |
3018 | rcu_read_unlock(); |
3019 | ||
3020 | return ptr; | |
6d16c2f8 AL |
3021 | } |
3022 | ||
ac1970fb | 3023 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3024 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3025 | * the amount of memory that was actually read or written by the caller. | |
3026 | */ | |
a8170e5e AK |
3027 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3028 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3029 | { |
3030 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3031 | MemoryRegion *mr; |
3032 | ram_addr_t addr1; | |
3033 | ||
3034 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
3035 | assert(mr != NULL); | |
6d16c2f8 | 3036 | if (is_write) { |
845b6214 | 3037 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3038 | } |
868bb33f | 3039 | if (xen_enabled()) { |
e41d7c69 | 3040 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3041 | } |
d3e71559 | 3042 | memory_region_unref(mr); |
6d16c2f8 AL |
3043 | return; |
3044 | } | |
3045 | if (is_write) { | |
5c9eb028 PM |
3046 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3047 | bounce.buffer, access_len); | |
6d16c2f8 | 3048 | } |
f8a83245 | 3049 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3050 | bounce.buffer = NULL; |
d3e71559 | 3051 | memory_region_unref(bounce.mr); |
c2cba0ff | 3052 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3053 | cpu_notify_map_clients(); |
6d16c2f8 | 3054 | } |
d0ecd2aa | 3055 | |
a8170e5e AK |
3056 | void *cpu_physical_memory_map(hwaddr addr, |
3057 | hwaddr *plen, | |
ac1970fb AK |
3058 | int is_write) |
3059 | { | |
3060 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3061 | } | |
3062 | ||
a8170e5e AK |
3063 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3064 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3065 | { |
3066 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3067 | } | |
3068 | ||
8df1cd07 | 3069 | /* warning: addr must be aligned */ |
50013115 PM |
3070 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3071 | MemTxAttrs attrs, | |
3072 | MemTxResult *result, | |
3073 | enum device_endian endian) | |
8df1cd07 | 3074 | { |
8df1cd07 | 3075 | uint8_t *ptr; |
791af8c8 | 3076 | uint64_t val; |
5c8a00ce | 3077 | MemoryRegion *mr; |
149f54b5 PB |
3078 | hwaddr l = 4; |
3079 | hwaddr addr1; | |
50013115 | 3080 | MemTxResult r; |
4840f10e | 3081 | bool release_lock = false; |
8df1cd07 | 3082 | |
41063e1e | 3083 | rcu_read_lock(); |
fdfba1a2 | 3084 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3085 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3086 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3087 | |
8df1cd07 | 3088 | /* I/O case */ |
50013115 | 3089 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3090 | #if defined(TARGET_WORDS_BIGENDIAN) |
3091 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3092 | val = bswap32(val); | |
3093 | } | |
3094 | #else | |
3095 | if (endian == DEVICE_BIG_ENDIAN) { | |
3096 | val = bswap32(val); | |
3097 | } | |
3098 | #endif | |
8df1cd07 FB |
3099 | } else { |
3100 | /* RAM case */ | |
3655cb9c GA |
3101 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3102 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3103 | & TARGET_PAGE_MASK) |
149f54b5 | 3104 | + addr1); |
1e78bcc1 AG |
3105 | switch (endian) { |
3106 | case DEVICE_LITTLE_ENDIAN: | |
3107 | val = ldl_le_p(ptr); | |
3108 | break; | |
3109 | case DEVICE_BIG_ENDIAN: | |
3110 | val = ldl_be_p(ptr); | |
3111 | break; | |
3112 | default: | |
3113 | val = ldl_p(ptr); | |
3114 | break; | |
3115 | } | |
50013115 PM |
3116 | r = MEMTX_OK; |
3117 | } | |
3118 | if (result) { | |
3119 | *result = r; | |
8df1cd07 | 3120 | } |
4840f10e JK |
3121 | if (release_lock) { |
3122 | qemu_mutex_unlock_iothread(); | |
3123 | } | |
41063e1e | 3124 | rcu_read_unlock(); |
8df1cd07 FB |
3125 | return val; |
3126 | } | |
3127 | ||
50013115 PM |
3128 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3129 | MemTxAttrs attrs, MemTxResult *result) | |
3130 | { | |
3131 | return address_space_ldl_internal(as, addr, attrs, result, | |
3132 | DEVICE_NATIVE_ENDIAN); | |
3133 | } | |
3134 | ||
3135 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3136 | MemTxAttrs attrs, MemTxResult *result) | |
3137 | { | |
3138 | return address_space_ldl_internal(as, addr, attrs, result, | |
3139 | DEVICE_LITTLE_ENDIAN); | |
3140 | } | |
3141 | ||
3142 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3143 | MemTxAttrs attrs, MemTxResult *result) | |
3144 | { | |
3145 | return address_space_ldl_internal(as, addr, attrs, result, | |
3146 | DEVICE_BIG_ENDIAN); | |
3147 | } | |
3148 | ||
fdfba1a2 | 3149 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3150 | { |
50013115 | 3151 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3152 | } |
3153 | ||
fdfba1a2 | 3154 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3155 | { |
50013115 | 3156 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3157 | } |
3158 | ||
fdfba1a2 | 3159 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3160 | { |
50013115 | 3161 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3162 | } |
3163 | ||
84b7b8e7 | 3164 | /* warning: addr must be aligned */ |
50013115 PM |
3165 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3166 | MemTxAttrs attrs, | |
3167 | MemTxResult *result, | |
3168 | enum device_endian endian) | |
84b7b8e7 | 3169 | { |
84b7b8e7 FB |
3170 | uint8_t *ptr; |
3171 | uint64_t val; | |
5c8a00ce | 3172 | MemoryRegion *mr; |
149f54b5 PB |
3173 | hwaddr l = 8; |
3174 | hwaddr addr1; | |
50013115 | 3175 | MemTxResult r; |
4840f10e | 3176 | bool release_lock = false; |
84b7b8e7 | 3177 | |
41063e1e | 3178 | rcu_read_lock(); |
2c17449b | 3179 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3180 | false); |
3181 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3182 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3183 | |
84b7b8e7 | 3184 | /* I/O case */ |
50013115 | 3185 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3186 | #if defined(TARGET_WORDS_BIGENDIAN) |
3187 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3188 | val = bswap64(val); | |
3189 | } | |
3190 | #else | |
3191 | if (endian == DEVICE_BIG_ENDIAN) { | |
3192 | val = bswap64(val); | |
3193 | } | |
84b7b8e7 FB |
3194 | #endif |
3195 | } else { | |
3196 | /* RAM case */ | |
3655cb9c GA |
3197 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3198 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3199 | & TARGET_PAGE_MASK) |
149f54b5 | 3200 | + addr1); |
1e78bcc1 AG |
3201 | switch (endian) { |
3202 | case DEVICE_LITTLE_ENDIAN: | |
3203 | val = ldq_le_p(ptr); | |
3204 | break; | |
3205 | case DEVICE_BIG_ENDIAN: | |
3206 | val = ldq_be_p(ptr); | |
3207 | break; | |
3208 | default: | |
3209 | val = ldq_p(ptr); | |
3210 | break; | |
3211 | } | |
50013115 PM |
3212 | r = MEMTX_OK; |
3213 | } | |
3214 | if (result) { | |
3215 | *result = r; | |
84b7b8e7 | 3216 | } |
4840f10e JK |
3217 | if (release_lock) { |
3218 | qemu_mutex_unlock_iothread(); | |
3219 | } | |
41063e1e | 3220 | rcu_read_unlock(); |
84b7b8e7 FB |
3221 | return val; |
3222 | } | |
3223 | ||
50013115 PM |
3224 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3225 | MemTxAttrs attrs, MemTxResult *result) | |
3226 | { | |
3227 | return address_space_ldq_internal(as, addr, attrs, result, | |
3228 | DEVICE_NATIVE_ENDIAN); | |
3229 | } | |
3230 | ||
3231 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3232 | MemTxAttrs attrs, MemTxResult *result) | |
3233 | { | |
3234 | return address_space_ldq_internal(as, addr, attrs, result, | |
3235 | DEVICE_LITTLE_ENDIAN); | |
3236 | } | |
3237 | ||
3238 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3239 | MemTxAttrs attrs, MemTxResult *result) | |
3240 | { | |
3241 | return address_space_ldq_internal(as, addr, attrs, result, | |
3242 | DEVICE_BIG_ENDIAN); | |
3243 | } | |
3244 | ||
2c17449b | 3245 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3246 | { |
50013115 | 3247 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3248 | } |
3249 | ||
2c17449b | 3250 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3251 | { |
50013115 | 3252 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3253 | } |
3254 | ||
2c17449b | 3255 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3256 | { |
50013115 | 3257 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3258 | } |
3259 | ||
aab33094 | 3260 | /* XXX: optimize */ |
50013115 PM |
3261 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3262 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3263 | { |
3264 | uint8_t val; | |
50013115 PM |
3265 | MemTxResult r; |
3266 | ||
3267 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3268 | if (result) { | |
3269 | *result = r; | |
3270 | } | |
aab33094 FB |
3271 | return val; |
3272 | } | |
3273 | ||
50013115 PM |
3274 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3275 | { | |
3276 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3277 | } | |
3278 | ||
733f0b02 | 3279 | /* warning: addr must be aligned */ |
50013115 PM |
3280 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3281 | hwaddr addr, | |
3282 | MemTxAttrs attrs, | |
3283 | MemTxResult *result, | |
3284 | enum device_endian endian) | |
aab33094 | 3285 | { |
733f0b02 MT |
3286 | uint8_t *ptr; |
3287 | uint64_t val; | |
5c8a00ce | 3288 | MemoryRegion *mr; |
149f54b5 PB |
3289 | hwaddr l = 2; |
3290 | hwaddr addr1; | |
50013115 | 3291 | MemTxResult r; |
4840f10e | 3292 | bool release_lock = false; |
733f0b02 | 3293 | |
41063e1e | 3294 | rcu_read_lock(); |
41701aa4 | 3295 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3296 | false); |
3297 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3298 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3299 | |
733f0b02 | 3300 | /* I/O case */ |
50013115 | 3301 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3302 | #if defined(TARGET_WORDS_BIGENDIAN) |
3303 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3304 | val = bswap16(val); | |
3305 | } | |
3306 | #else | |
3307 | if (endian == DEVICE_BIG_ENDIAN) { | |
3308 | val = bswap16(val); | |
3309 | } | |
3310 | #endif | |
733f0b02 MT |
3311 | } else { |
3312 | /* RAM case */ | |
3655cb9c GA |
3313 | ptr = qemu_get_ram_ptr(mr->ram_block, |
3314 | (memory_region_get_ram_addr(mr) | |
06ef3525 | 3315 | & TARGET_PAGE_MASK) |
149f54b5 | 3316 | + addr1); |
1e78bcc1 AG |
3317 | switch (endian) { |
3318 | case DEVICE_LITTLE_ENDIAN: | |
3319 | val = lduw_le_p(ptr); | |
3320 | break; | |
3321 | case DEVICE_BIG_ENDIAN: | |
3322 | val = lduw_be_p(ptr); | |
3323 | break; | |
3324 | default: | |
3325 | val = lduw_p(ptr); | |
3326 | break; | |
3327 | } | |
50013115 PM |
3328 | r = MEMTX_OK; |
3329 | } | |
3330 | if (result) { | |
3331 | *result = r; | |
733f0b02 | 3332 | } |
4840f10e JK |
3333 | if (release_lock) { |
3334 | qemu_mutex_unlock_iothread(); | |
3335 | } | |
41063e1e | 3336 | rcu_read_unlock(); |
733f0b02 | 3337 | return val; |
aab33094 FB |
3338 | } |
3339 | ||
50013115 PM |
3340 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3341 | MemTxAttrs attrs, MemTxResult *result) | |
3342 | { | |
3343 | return address_space_lduw_internal(as, addr, attrs, result, | |
3344 | DEVICE_NATIVE_ENDIAN); | |
3345 | } | |
3346 | ||
3347 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3348 | MemTxAttrs attrs, MemTxResult *result) | |
3349 | { | |
3350 | return address_space_lduw_internal(as, addr, attrs, result, | |
3351 | DEVICE_LITTLE_ENDIAN); | |
3352 | } | |
3353 | ||
3354 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3355 | MemTxAttrs attrs, MemTxResult *result) | |
3356 | { | |
3357 | return address_space_lduw_internal(as, addr, attrs, result, | |
3358 | DEVICE_BIG_ENDIAN); | |
3359 | } | |
3360 | ||
41701aa4 | 3361 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3362 | { |
50013115 | 3363 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3364 | } |
3365 | ||
41701aa4 | 3366 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3367 | { |
50013115 | 3368 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3369 | } |
3370 | ||
41701aa4 | 3371 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3372 | { |
50013115 | 3373 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3374 | } |
3375 | ||
8df1cd07 FB |
3376 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3377 | and the code inside is not invalidated. It is useful if the dirty | |
3378 | bits are used to track modified PTEs */ | |
50013115 PM |
3379 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3380 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3381 | { |
8df1cd07 | 3382 | uint8_t *ptr; |
5c8a00ce | 3383 | MemoryRegion *mr; |
149f54b5 PB |
3384 | hwaddr l = 4; |
3385 | hwaddr addr1; | |
50013115 | 3386 | MemTxResult r; |
845b6214 | 3387 | uint8_t dirty_log_mask; |
4840f10e | 3388 | bool release_lock = false; |
8df1cd07 | 3389 | |
41063e1e | 3390 | rcu_read_lock(); |
2198a121 | 3391 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3392 | true); |
3393 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3394 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3395 | |
50013115 | 3396 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3397 | } else { |
5c8a00ce | 3398 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3399 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3400 | stl_p(ptr, val); |
74576198 | 3401 | |
845b6214 PB |
3402 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3403 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3404 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3405 | r = MEMTX_OK; |
3406 | } | |
3407 | if (result) { | |
3408 | *result = r; | |
8df1cd07 | 3409 | } |
4840f10e JK |
3410 | if (release_lock) { |
3411 | qemu_mutex_unlock_iothread(); | |
3412 | } | |
41063e1e | 3413 | rcu_read_unlock(); |
8df1cd07 FB |
3414 | } |
3415 | ||
50013115 PM |
3416 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3417 | { | |
3418 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3419 | } | |
3420 | ||
8df1cd07 | 3421 | /* warning: addr must be aligned */ |
50013115 PM |
3422 | static inline void address_space_stl_internal(AddressSpace *as, |
3423 | hwaddr addr, uint32_t val, | |
3424 | MemTxAttrs attrs, | |
3425 | MemTxResult *result, | |
3426 | enum device_endian endian) | |
8df1cd07 | 3427 | { |
8df1cd07 | 3428 | uint8_t *ptr; |
5c8a00ce | 3429 | MemoryRegion *mr; |
149f54b5 PB |
3430 | hwaddr l = 4; |
3431 | hwaddr addr1; | |
50013115 | 3432 | MemTxResult r; |
4840f10e | 3433 | bool release_lock = false; |
8df1cd07 | 3434 | |
41063e1e | 3435 | rcu_read_lock(); |
ab1da857 | 3436 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3437 | true); |
3438 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3439 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3440 | |
1e78bcc1 AG |
3441 | #if defined(TARGET_WORDS_BIGENDIAN) |
3442 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3443 | val = bswap32(val); | |
3444 | } | |
3445 | #else | |
3446 | if (endian == DEVICE_BIG_ENDIAN) { | |
3447 | val = bswap32(val); | |
3448 | } | |
3449 | #endif | |
50013115 | 3450 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3451 | } else { |
8df1cd07 | 3452 | /* RAM case */ |
5c8a00ce | 3453 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3454 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3455 | switch (endian) { |
3456 | case DEVICE_LITTLE_ENDIAN: | |
3457 | stl_le_p(ptr, val); | |
3458 | break; | |
3459 | case DEVICE_BIG_ENDIAN: | |
3460 | stl_be_p(ptr, val); | |
3461 | break; | |
3462 | default: | |
3463 | stl_p(ptr, val); | |
3464 | break; | |
3465 | } | |
845b6214 | 3466 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3467 | r = MEMTX_OK; |
3468 | } | |
3469 | if (result) { | |
3470 | *result = r; | |
8df1cd07 | 3471 | } |
4840f10e JK |
3472 | if (release_lock) { |
3473 | qemu_mutex_unlock_iothread(); | |
3474 | } | |
41063e1e | 3475 | rcu_read_unlock(); |
8df1cd07 FB |
3476 | } |
3477 | ||
50013115 PM |
3478 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3479 | MemTxAttrs attrs, MemTxResult *result) | |
3480 | { | |
3481 | address_space_stl_internal(as, addr, val, attrs, result, | |
3482 | DEVICE_NATIVE_ENDIAN); | |
3483 | } | |
3484 | ||
3485 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3486 | MemTxAttrs attrs, MemTxResult *result) | |
3487 | { | |
3488 | address_space_stl_internal(as, addr, val, attrs, result, | |
3489 | DEVICE_LITTLE_ENDIAN); | |
3490 | } | |
3491 | ||
3492 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3493 | MemTxAttrs attrs, MemTxResult *result) | |
3494 | { | |
3495 | address_space_stl_internal(as, addr, val, attrs, result, | |
3496 | DEVICE_BIG_ENDIAN); | |
3497 | } | |
3498 | ||
ab1da857 | 3499 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3500 | { |
50013115 | 3501 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3502 | } |
3503 | ||
ab1da857 | 3504 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3505 | { |
50013115 | 3506 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3507 | } |
3508 | ||
ab1da857 | 3509 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3510 | { |
50013115 | 3511 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3512 | } |
3513 | ||
aab33094 | 3514 | /* XXX: optimize */ |
50013115 PM |
3515 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3516 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3517 | { |
3518 | uint8_t v = val; | |
50013115 PM |
3519 | MemTxResult r; |
3520 | ||
3521 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3522 | if (result) { | |
3523 | *result = r; | |
3524 | } | |
3525 | } | |
3526 | ||
3527 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3528 | { | |
3529 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3530 | } |
3531 | ||
733f0b02 | 3532 | /* warning: addr must be aligned */ |
50013115 PM |
3533 | static inline void address_space_stw_internal(AddressSpace *as, |
3534 | hwaddr addr, uint32_t val, | |
3535 | MemTxAttrs attrs, | |
3536 | MemTxResult *result, | |
3537 | enum device_endian endian) | |
aab33094 | 3538 | { |
733f0b02 | 3539 | uint8_t *ptr; |
5c8a00ce | 3540 | MemoryRegion *mr; |
149f54b5 PB |
3541 | hwaddr l = 2; |
3542 | hwaddr addr1; | |
50013115 | 3543 | MemTxResult r; |
4840f10e | 3544 | bool release_lock = false; |
733f0b02 | 3545 | |
41063e1e | 3546 | rcu_read_lock(); |
5ce5944d | 3547 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3548 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3549 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3550 | |
1e78bcc1 AG |
3551 | #if defined(TARGET_WORDS_BIGENDIAN) |
3552 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3553 | val = bswap16(val); | |
3554 | } | |
3555 | #else | |
3556 | if (endian == DEVICE_BIG_ENDIAN) { | |
3557 | val = bswap16(val); | |
3558 | } | |
3559 | #endif | |
50013115 | 3560 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3561 | } else { |
733f0b02 | 3562 | /* RAM case */ |
5c8a00ce | 3563 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
3655cb9c | 3564 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3565 | switch (endian) { |
3566 | case DEVICE_LITTLE_ENDIAN: | |
3567 | stw_le_p(ptr, val); | |
3568 | break; | |
3569 | case DEVICE_BIG_ENDIAN: | |
3570 | stw_be_p(ptr, val); | |
3571 | break; | |
3572 | default: | |
3573 | stw_p(ptr, val); | |
3574 | break; | |
3575 | } | |
845b6214 | 3576 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3577 | r = MEMTX_OK; |
3578 | } | |
3579 | if (result) { | |
3580 | *result = r; | |
733f0b02 | 3581 | } |
4840f10e JK |
3582 | if (release_lock) { |
3583 | qemu_mutex_unlock_iothread(); | |
3584 | } | |
41063e1e | 3585 | rcu_read_unlock(); |
aab33094 FB |
3586 | } |
3587 | ||
50013115 PM |
3588 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3589 | MemTxAttrs attrs, MemTxResult *result) | |
3590 | { | |
3591 | address_space_stw_internal(as, addr, val, attrs, result, | |
3592 | DEVICE_NATIVE_ENDIAN); | |
3593 | } | |
3594 | ||
3595 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3596 | MemTxAttrs attrs, MemTxResult *result) | |
3597 | { | |
3598 | address_space_stw_internal(as, addr, val, attrs, result, | |
3599 | DEVICE_LITTLE_ENDIAN); | |
3600 | } | |
3601 | ||
3602 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3603 | MemTxAttrs attrs, MemTxResult *result) | |
3604 | { | |
3605 | address_space_stw_internal(as, addr, val, attrs, result, | |
3606 | DEVICE_BIG_ENDIAN); | |
3607 | } | |
3608 | ||
5ce5944d | 3609 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3610 | { |
50013115 | 3611 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3612 | } |
3613 | ||
5ce5944d | 3614 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3615 | { |
50013115 | 3616 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3617 | } |
3618 | ||
5ce5944d | 3619 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3620 | { |
50013115 | 3621 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3622 | } |
3623 | ||
aab33094 | 3624 | /* XXX: optimize */ |
50013115 PM |
3625 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3626 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3627 | { |
50013115 | 3628 | MemTxResult r; |
aab33094 | 3629 | val = tswap64(val); |
50013115 PM |
3630 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3631 | if (result) { | |
3632 | *result = r; | |
3633 | } | |
aab33094 FB |
3634 | } |
3635 | ||
50013115 PM |
3636 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3637 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3638 | { |
50013115 | 3639 | MemTxResult r; |
1e78bcc1 | 3640 | val = cpu_to_le64(val); |
50013115 PM |
3641 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3642 | if (result) { | |
3643 | *result = r; | |
3644 | } | |
3645 | } | |
3646 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3647 | MemTxAttrs attrs, MemTxResult *result) | |
3648 | { | |
3649 | MemTxResult r; | |
3650 | val = cpu_to_be64(val); | |
3651 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3652 | if (result) { | |
3653 | *result = r; | |
3654 | } | |
3655 | } | |
3656 | ||
3657 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3658 | { | |
3659 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3660 | } | |
3661 | ||
3662 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3663 | { | |
3664 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3665 | } |
3666 | ||
f606604f | 3667 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3668 | { |
50013115 | 3669 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3670 | } |
3671 | ||
5e2972fd | 3672 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3673 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3674 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3675 | { |
3676 | int l; | |
a8170e5e | 3677 | hwaddr phys_addr; |
9b3c35e0 | 3678 | target_ulong page; |
13eb76e0 FB |
3679 | |
3680 | while (len > 0) { | |
5232e4c7 PM |
3681 | int asidx; |
3682 | MemTxAttrs attrs; | |
3683 | ||
13eb76e0 | 3684 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3685 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3686 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3687 | /* if no physical page mapped, return an error */ |
3688 | if (phys_addr == -1) | |
3689 | return -1; | |
3690 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3691 | if (l > len) | |
3692 | l = len; | |
5e2972fd | 3693 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3694 | if (is_write) { |
5232e4c7 PM |
3695 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3696 | phys_addr, buf, l); | |
2e38847b | 3697 | } else { |
5232e4c7 PM |
3698 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3699 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3700 | buf, l, 0); |
2e38847b | 3701 | } |
13eb76e0 FB |
3702 | len -= l; |
3703 | buf += l; | |
3704 | addr += l; | |
3705 | } | |
3706 | return 0; | |
3707 | } | |
038629a6 DDAG |
3708 | |
3709 | /* | |
3710 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3711 | * target independent. | |
3712 | */ | |
3713 | size_t qemu_target_page_bits(void) | |
3714 | { | |
3715 | return TARGET_PAGE_BITS; | |
3716 | } | |
3717 | ||
a68fe89c | 3718 | #endif |
13eb76e0 | 3719 | |
8e4a424b BS |
3720 | /* |
3721 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3722 | * it's running on a big endian machine. Don't do this at home kids! | |
3723 | */ | |
98ed8ecf GK |
3724 | bool target_words_bigendian(void); |
3725 | bool target_words_bigendian(void) | |
8e4a424b BS |
3726 | { |
3727 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3728 | return true; | |
3729 | #else | |
3730 | return false; | |
3731 | #endif | |
3732 | } | |
3733 | ||
76f35538 | 3734 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3735 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3736 | { |
5c8a00ce | 3737 | MemoryRegion*mr; |
149f54b5 | 3738 | hwaddr l = 1; |
41063e1e | 3739 | bool res; |
76f35538 | 3740 | |
41063e1e | 3741 | rcu_read_lock(); |
5c8a00ce PB |
3742 | mr = address_space_translate(&address_space_memory, |
3743 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3744 | |
41063e1e PB |
3745 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3746 | rcu_read_unlock(); | |
3747 | return res; | |
76f35538 | 3748 | } |
bd2fa51f | 3749 | |
e3807054 | 3750 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3751 | { |
3752 | RAMBlock *block; | |
e3807054 | 3753 | int ret = 0; |
bd2fa51f | 3754 | |
0dc3f44a MD |
3755 | rcu_read_lock(); |
3756 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3757 | ret = func(block->idstr, block->host, block->offset, |
3758 | block->used_length, opaque); | |
3759 | if (ret) { | |
3760 | break; | |
3761 | } | |
bd2fa51f | 3762 | } |
0dc3f44a | 3763 | rcu_read_unlock(); |
e3807054 | 3764 | return ret; |
bd2fa51f | 3765 | } |
ec3f8c99 | 3766 | #endif |