]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
virtio-blk: On restart, process queued requests in the proper context
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
e2eef170 82#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
e2eef170 95#endif
9fa3e853 96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
6a00d601 102
a0be0c58
YZ
103uintptr_t qemu_host_page_size;
104intptr_t qemu_host_page_mask;
a0be0c58 105
e2eef170 106#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
107/* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110int use_icount;
4346ae3e 111
1db8abb1
PB
112typedef struct PhysPageEntry PhysPageEntry;
113
114struct PhysPageEntry {
9736e55b 115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 116 uint32_t skip : 6;
9736e55b 117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 118 uint32_t ptr : 26;
1db8abb1
PB
119};
120
8b795765
MT
121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
03f49957 123/* Size of the L2 (and L3, etc) page tables. */
57271d63 124#define ADDR_SPACE_BITS 64
03f49957 125
026736ce 126#define P_L2_BITS 9
03f49957
PB
127#define P_L2_SIZE (1 << P_L2_BITS)
128
129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 132
53cb28cb 133typedef struct PhysPageMap {
79e2b9ae
PB
134 struct rcu_head rcu;
135
53cb28cb
MA
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142} PhysPageMap;
143
1db8abb1 144struct AddressSpaceDispatch {
729633c2 145 MemoryRegionSection *mru_section;
1db8abb1
PB
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
53cb28cb 150 PhysPageMap map;
1db8abb1
PB
151};
152
90260c6c
JK
153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154typedef struct subpage_t {
155 MemoryRegion iomem;
16620684 156 FlatView *fv;
90260c6c 157 hwaddr base;
2615fabd 158 uint16_t sub_section[];
90260c6c
JK
159} subpage_t;
160
b41aac4f 161#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
9458a9a1 165static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
32857f4d
PM
168/**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180};
181
8deaf12c
GH
182struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186};
187
6658ffb8 188#endif
fd6ce8f6 189
6d9a1304 190#if !defined(CONFIG_USER_ONLY)
d6f2ea22 191
53cb28cb 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 193{
101420b8 194 static unsigned alloc_hint = 16;
53cb28cb 195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 198 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 199 }
f7bf5461
AK
200}
201
db94604b 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
203{
204 unsigned i;
8b795765 205 uint32_t ret;
db94604b
PB
206 PhysPageEntry e;
207 PhysPageEntry *p;
f7bf5461 208
53cb28cb 209 ret = map->nodes_nb++;
db94604b 210 p = map->nodes[ret];
f7bf5461 211 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 212 assert(ret != map->nodes_nb_alloc);
db94604b
PB
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 216 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 217 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 218 }
f7bf5461 219 return ret;
d6f2ea22
AK
220}
221
53cb28cb 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 223 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 224 int level)
f7bf5461
AK
225{
226 PhysPageEntry *p;
03f49957 227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 228
9736e55b 229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 230 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 231 }
db94604b 232 p = map->nodes[lp->ptr];
03f49957 233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 234
03f49957 235 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 236 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 237 lp->skip = 0;
c19e8800 238 lp->ptr = leaf;
07f07b31
AK
239 *index += step;
240 *nb -= step;
2999097b 241 } else {
53cb28cb 242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
243 }
244 ++lp;
f7bf5461
AK
245 }
246}
247
ac1970fb 248static void phys_page_set(AddressSpaceDispatch *d,
56b15076 249 hwaddr index, uint64_t nb,
2999097b 250 uint16_t leaf)
f7bf5461 251{
2999097b 252 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 254
53cb28cb 255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
256}
257
b35ba30f
MT
258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
efee678d 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
262{
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
efee678d 281 phys_page_compact(&p[i], nodes);
b35ba30f
MT
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310}
311
8629d3fc 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 313{
b35ba30f 314 if (d->phys_map.skip) {
efee678d 315 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
316 }
317}
318
29cb533d
FZ
319static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321{
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
258dfaaa 325 return int128_gethi(section->size) ||
29cb533d 326 range_covers_byte(section->offset_within_address_space,
258dfaaa 327 int128_getlo(section->size), addr);
29cb533d
FZ
328}
329
003a0cf2 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 331{
003a0cf2
PX
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
97115a8d 335 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 336 int i;
f1f6e3b8 337
9736e55b 338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 340 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 341 }
9affd6fc 342 p = nodes[lp.ptr];
03f49957 343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 344 }
b35ba30f 345
29cb533d 346 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
f3705d53
AK
351}
352
79e2b9ae 353/* Called from RCU critical section */
c7086b4a 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
355 hwaddr addr,
356 bool resolve_subpage)
9f029603 357{
729633c2 358 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
359 subpage_t *subpage;
360
07c114bb
PB
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
003a0cf2 363 section = phys_page_find(d, addr);
07c114bb 364 atomic_set(&d->mru_section, section);
729633c2 365 }
90260c6c
JK
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
369 }
370 return section;
9f029603
JK
371}
372
79e2b9ae 373/* Called from RCU critical section */
90260c6c 374static MemoryRegionSection *
c7086b4a 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 376 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
377{
378 MemoryRegionSection *section;
965eb2fc 379 MemoryRegion *mr;
a87f3954 380 Int128 diff;
149f54b5 381
c7086b4a 382 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
965eb2fc 389 mr = section->mr;
b242e0e0
PB
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
965eb2fc 402 if (memory_region_is_ram(mr)) {
e4a511f8 403 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
149f54b5
PB
406 return section;
407}
90260c6c 408
a411c84b
PB
409/**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
2f7b009c 426 * @attrs: transaction attributes
a411c84b
PB
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
2f7b009c
PM
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
a411c84b
PB
439{
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480}
481
d5e5fafd
PX
482/**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 497 * @target_as: the address space targeted by the IOMMU
49e14aa8 498 * @attrs: memory transaction attributes
d5e5fafd
PX
499 *
500 * This function is called from RCU critical section
501 */
16620684
AK
502static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
d5e5fafd
PX
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
16620684
AK
507 bool is_write,
508 bool is_mmio,
49e14aa8
PM
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
052c8fa9 511{
052c8fa9 512 MemoryRegionSection *section;
3df9d748 513 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
514 hwaddr plen = (hwaddr)(-1);
515
ad2804d9
PB
516 if (!plen_out) {
517 plen_out = &plen;
d5e5fafd 518 }
052c8fa9 519
a411c84b
PB
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
052c8fa9 523
a411c84b
PB
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
2f7b009c 529 target_as, attrs);
052c8fa9 530 }
d5e5fafd 531 if (page_mask_out) {
a411c84b
PB
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
534 }
535
a764040c 536 return *section;
052c8fa9
JW
537}
538
539/* Called from RCU critical section */
a764040c 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 541 bool is_write, MemTxAttrs attrs)
90260c6c 542{
a764040c 543 MemoryRegionSection section;
076a93d7 544 hwaddr xlat, page_mask;
30951157 545
076a93d7
PX
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
30951157 553
a764040c
PX
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
30951157 558
a764040c
PX
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
a764040c 563 return (IOMMUTLBEntry) {
e76bb18f 564 .target_as = as,
076a93d7
PX
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
a764040c
PX
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574}
575
576/* Called from RCU critical section */
16620684 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
a764040c
PX
580{
581 MemoryRegion *mr;
582 MemoryRegionSection section;
16620684 583 AddressSpace *as = NULL;
a764040c
PX
584
585 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 587 is_write, true, &as, attrs);
a764040c
PX
588 mr = section.mr;
589
fe680d0d 590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 592 *plen = MIN(page, *plen);
a87f3954
PB
593 }
594
30951157 595 return mr;
90260c6c
JK
596}
597
1f871c5e
PM
598typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604} TCGIOMMUNotifier;
605
606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607{
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620}
621
622static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625{
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
549d4005
EA
632 Error *err = NULL;
633 int i, ret;
1f871c5e
PM
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
549d4005
EA
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
1f871c5e
PM
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673}
674
675static void tcg_iommu_free_notifier_list(CPUState *cpu)
676{
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 684 g_free(notifier);
1f871c5e
PM
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687}
688
79e2b9ae 689/* Called from RCU critical section */
90260c6c 690MemoryRegionSection *
d7898cda 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
90260c6c 694{
30951157 695 MemoryRegionSection *section;
1f871c5e
PM
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
f35e44e7 700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 701
1f871c5e
PM
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
30951157 737
3df9d748 738 assert(!memory_region_is_iommu(section->mr));
1f871c5e 739 *xlat = addr;
30951157 740 return section;
1f871c5e
PM
741
742translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 744}
5b6dd868 745#endif
fd6ce8f6 746
b170fce3 747#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
748
749static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 750{
259186a7 751 CPUState *cpu = opaque;
a513fe19 752
5b6dd868
BS
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
259186a7 755 cpu->interrupt_request &= ~0x01;
d10eb08f 756 tlb_flush(cpu);
5b6dd868 757
15a356c4
PD
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
5b6dd868 765 return 0;
a513fe19 766}
7501267e 767
6c3bff0e
PD
768static int cpu_common_pre_load(void *opaque)
769{
770 CPUState *cpu = opaque;
771
adee6424 772 cpu->exception_index = -1;
6c3bff0e
PD
773
774 return 0;
775}
776
777static bool cpu_common_exception_index_needed(void *opaque)
778{
779 CPUState *cpu = opaque;
780
adee6424 781 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
782}
783
784static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
5cd8cada 788 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793};
794
bac05aa9
AS
795static bool cpu_common_crash_occurred_needed(void *opaque)
796{
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800}
801
802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811};
812
1a1562f5 813const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
6c3bff0e 817 .pre_load = cpu_common_pre_load,
5b6dd868 818 .post_load = cpu_common_post_load,
35d08458 819 .fields = (VMStateField[]) {
259186a7
AF
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 822 VMSTATE_END_OF_LIST()
6c3bff0e 823 },
5cd8cada
JQ
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
bac05aa9 826 &vmstate_cpu_common_crash_occurred,
5cd8cada 827 NULL
5b6dd868
BS
828 }
829};
1a1562f5 830
5b6dd868 831#endif
ea041c0e 832
38d8f5c8 833CPUState *qemu_get_cpu(int index)
ea041c0e 834{
bdc44640 835 CPUState *cpu;
ea041c0e 836
bdc44640 837 CPU_FOREACH(cpu) {
55e5c285 838 if (cpu->cpu_index == index) {
bdc44640 839 return cpu;
55e5c285 840 }
ea041c0e 841 }
5b6dd868 842
bdc44640 843 return NULL;
ea041c0e
FB
844}
845
09daed84 846#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
847void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
09daed84 849{
12ebc9a7 850 CPUAddressSpace *newas;
80ceb07a 851 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 852 char *as_name;
80ceb07a
PX
853
854 assert(mr);
87a621d8
PX
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
12ebc9a7
PM
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
56943e8c
PM
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
12ebc9a7
PM
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
09daed84 869
12ebc9a7
PM
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 872 }
32857f4d 873
12ebc9a7
PM
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
56943e8c 877 if (tcg_enabled()) {
9458a9a1 878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 881 }
09daed84 882}
651a5bc0
PM
883
884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885{
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888}
09daed84
EI
889#endif
890
7bbc124e 891void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 892{
9dfeca7c
BR
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
816d9be5 895 tlb_destroy(cpu);
267f685b 896 cpu_list_remove(cpu);
9dfeca7c
BR
897
898 if (cc->vmsd != NULL) {
899 vmstate_unregister(NULL, cc->vmsd, cpu);
900 }
901 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
902 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
903 }
1f871c5e
PM
904#ifndef CONFIG_USER_ONLY
905 tcg_iommu_free_notifier_list(cpu);
906#endif
1c59eb39
BR
907}
908
c7e002c5
FZ
909Property cpu_common_props[] = {
910#ifndef CONFIG_USER_ONLY
911 /* Create a memory property for softmmu CPU object,
2e5b09fd 912 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
913 * because that file is compiled only once for both user-mode
914 * and system builds.) The default if no link is set up is to use
915 * the system address space.
916 */
917 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
918 MemoryRegion *),
919#endif
920 DEFINE_PROP_END_OF_LIST(),
921};
922
39e329e3 923void cpu_exec_initfn(CPUState *cpu)
ea041c0e 924{
56943e8c 925 cpu->as = NULL;
12ebc9a7 926 cpu->num_ases = 0;
56943e8c 927
291135b5 928#ifndef CONFIG_USER_ONLY
291135b5 929 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
930 cpu->memory = system_memory;
931 object_ref(OBJECT(cpu->memory));
291135b5 932#endif
39e329e3
LV
933}
934
ce5b1bbf 935void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 936{
55c3ceef 937 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 938 static bool tcg_target_initialized;
291135b5 939
267f685b 940 cpu_list_add(cpu);
1bc7e522 941
2dda6354
EC
942 if (tcg_enabled() && !tcg_target_initialized) {
943 tcg_target_initialized = true;
55c3ceef
RH
944 cc->tcg_initialize();
945 }
5005e253 946 tlb_init(cpu);
55c3ceef 947
30865f31
EC
948 qemu_plugin_vcpu_init_hook(cpu);
949
3e07593a
PMD
950#ifdef CONFIG_USER_ONLY
951 assert(cc->vmsd == NULL);
952#else /* !CONFIG_USER_ONLY */
e0d47944 953 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 954 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 955 }
b170fce3 956 if (cc->vmsd != NULL) {
741da0d3 957 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 958 }
1f871c5e 959
5601be3b 960 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 961#endif
ea041c0e
FB
962}
963
c1c8cfe5 964const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
965{
966 ObjectClass *oc;
967 CPUClass *cc;
968 gchar **model_pieces;
969 const char *cpu_type;
970
c1c8cfe5 971 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
972 if (!model_pieces[0]) {
973 error_report("-cpu option cannot be empty");
974 exit(1);
975 }
2278b939
IM
976
977 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
978 if (oc == NULL) {
979 error_report("unable to find CPU model '%s'", model_pieces[0]);
980 g_strfreev(model_pieces);
981 exit(EXIT_FAILURE);
982 }
983
984 cpu_type = object_class_get_name(oc);
985 cc = CPU_CLASS(oc);
986 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
987 g_strfreev(model_pieces);
988 return cpu_type;
989}
990
c40d4792 991#if defined(CONFIG_USER_ONLY)
8bca9a03 992void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 993{
406bc339 994 mmap_lock();
ce9f5e27 995 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
996 mmap_unlock();
997}
8bca9a03
PB
998
999static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1000{
1001 tb_invalidate_phys_addr(pc);
1002}
406bc339 1003#else
8bca9a03
PB
1004void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1005{
1006 ram_addr_t ram_addr;
1007 MemoryRegion *mr;
1008 hwaddr l = 1;
1009
c40d4792
PB
1010 if (!tcg_enabled()) {
1011 return;
1012 }
1013
694ea274 1014 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1015 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1016 if (!(memory_region_is_ram(mr)
1017 || memory_region_is_romd(mr))) {
8bca9a03
PB
1018 return;
1019 }
1020 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1021 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1022}
1023
406bc339
PK
1024static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025{
b55f54bc
MF
1026 /*
1027 * There may not be a virtual to physical translation for the pc
1028 * right now, but there may exist cached TB for this pc.
1029 * Flush the whole TB cache to force re-translation of such TBs.
1030 * This is heavyweight, but we're debugging anyway.
1031 */
1032 tb_flush(cpu);
1e7855a5 1033}
406bc339 1034#endif
d720b93d 1035
74841f04 1036#ifndef CONFIG_USER_ONLY
6658ffb8 1037/* Add a watchpoint. */
75a34036 1038int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1039 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1040{
c0ce998e 1041 CPUWatchpoint *wp;
2e886a24 1042 vaddr in_page;
6658ffb8 1043
05068c0d 1044 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1045 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1046 error_report("tried to set invalid watchpoint at %"
1047 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1048 return -EINVAL;
1049 }
7267c094 1050 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1051
1052 wp->vaddr = addr;
05068c0d 1053 wp->len = len;
a1d1bb31
AL
1054 wp->flags = flags;
1055
2dc9f411 1056 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1057 if (flags & BP_GDB) {
1058 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1059 } else {
1060 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1061 }
6658ffb8 1062
2e886a24
AB
1063 in_page = -(addr | TARGET_PAGE_MASK);
1064 if (len <= in_page) {
1065 tlb_flush_page(cpu, addr);
1066 } else {
1067 tlb_flush(cpu);
1068 }
a1d1bb31
AL
1069
1070 if (watchpoint)
1071 *watchpoint = wp;
1072 return 0;
6658ffb8
PB
1073}
1074
a1d1bb31 1075/* Remove a specific watchpoint. */
75a34036 1076int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1077 int flags)
6658ffb8 1078{
a1d1bb31 1079 CPUWatchpoint *wp;
6658ffb8 1080
ff4700b0 1081 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1082 if (addr == wp->vaddr && len == wp->len
6e140f28 1083 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1084 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1085 return 0;
1086 }
1087 }
a1d1bb31 1088 return -ENOENT;
6658ffb8
PB
1089}
1090
a1d1bb31 1091/* Remove a specific watchpoint by reference. */
75a34036 1092void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1093{
ff4700b0 1094 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1095
31b030d4 1096 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1097
7267c094 1098 g_free(watchpoint);
a1d1bb31
AL
1099}
1100
1101/* Remove all matching watchpoints. */
75a34036 1102void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1103{
c0ce998e 1104 CPUWatchpoint *wp, *next;
a1d1bb31 1105
ff4700b0 1106 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1107 if (wp->flags & mask) {
1108 cpu_watchpoint_remove_by_ref(cpu, wp);
1109 }
c0ce998e 1110 }
7d03f82f 1111}
05068c0d
PM
1112
1113/* Return true if this watchpoint address matches the specified
1114 * access (ie the address range covered by the watchpoint overlaps
1115 * partially or completely with the address range covered by the
1116 * access).
1117 */
56ad8b00
RH
1118static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1119 vaddr addr, vaddr len)
05068c0d
PM
1120{
1121 /* We know the lengths are non-zero, but a little caution is
1122 * required to avoid errors in the case where the range ends
1123 * exactly at the top of the address space and so addr + len
1124 * wraps round to zero.
1125 */
1126 vaddr wpend = wp->vaddr + wp->len - 1;
1127 vaddr addrend = addr + len - 1;
1128
1129 return !(addr > wpend || wp->vaddr > addrend);
1130}
1131
56ad8b00
RH
1132/* Return flags for watchpoints that match addr + prot. */
1133int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1134{
1135 CPUWatchpoint *wp;
1136 int ret = 0;
1137
1138 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 1139 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
1140 ret |= wp->flags;
1141 }
1142 }
1143 return ret;
1144}
74841f04 1145#endif /* !CONFIG_USER_ONLY */
7d03f82f 1146
a1d1bb31 1147/* Add a breakpoint. */
b3310ab3 1148int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1149 CPUBreakpoint **breakpoint)
4c3a88a2 1150{
c0ce998e 1151 CPUBreakpoint *bp;
3b46e624 1152
7267c094 1153 bp = g_malloc(sizeof(*bp));
4c3a88a2 1154
a1d1bb31
AL
1155 bp->pc = pc;
1156 bp->flags = flags;
1157
2dc9f411 1158 /* keep all GDB-injected breakpoints in front */
00b941e5 1159 if (flags & BP_GDB) {
f0c3c505 1160 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1161 } else {
f0c3c505 1162 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1163 }
3b46e624 1164
f0c3c505 1165 breakpoint_invalidate(cpu, pc);
a1d1bb31 1166
00b941e5 1167 if (breakpoint) {
a1d1bb31 1168 *breakpoint = bp;
00b941e5 1169 }
4c3a88a2 1170 return 0;
4c3a88a2
FB
1171}
1172
a1d1bb31 1173/* Remove a specific breakpoint. */
b3310ab3 1174int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1175{
a1d1bb31
AL
1176 CPUBreakpoint *bp;
1177
f0c3c505 1178 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1179 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1180 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1181 return 0;
1182 }
7d03f82f 1183 }
a1d1bb31 1184 return -ENOENT;
7d03f82f
EI
1185}
1186
a1d1bb31 1187/* Remove a specific breakpoint by reference. */
b3310ab3 1188void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1189{
f0c3c505
AF
1190 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1191
1192 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1193
7267c094 1194 g_free(breakpoint);
a1d1bb31
AL
1195}
1196
1197/* Remove all matching breakpoints. */
b3310ab3 1198void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1199{
c0ce998e 1200 CPUBreakpoint *bp, *next;
a1d1bb31 1201
f0c3c505 1202 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1203 if (bp->flags & mask) {
1204 cpu_breakpoint_remove_by_ref(cpu, bp);
1205 }
c0ce998e 1206 }
4c3a88a2
FB
1207}
1208
c33a346e
FB
1209/* enable or disable single step mode. EXCP_DEBUG is returned by the
1210 CPU loop after each instruction */
3825b28f 1211void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1212{
ed2803da
AF
1213 if (cpu->singlestep_enabled != enabled) {
1214 cpu->singlestep_enabled = enabled;
1215 if (kvm_enabled()) {
38e478ec 1216 kvm_update_guest_debug(cpu, 0);
ed2803da 1217 } else {
ccbb4d44 1218 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1219 /* XXX: only flush what is necessary */
bbd77c18 1220 tb_flush(cpu);
e22a25c9 1221 }
c33a346e 1222 }
c33a346e
FB
1223}
1224
a47dddd7 1225void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1226{
1227 va_list ap;
493ae1f0 1228 va_list ap2;
7501267e
FB
1229
1230 va_start(ap, fmt);
493ae1f0 1231 va_copy(ap2, ap);
7501267e
FB
1232 fprintf(stderr, "qemu: fatal: ");
1233 vfprintf(stderr, fmt, ap);
1234 fprintf(stderr, "\n");
90c84c56 1235 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1236 if (qemu_log_separate()) {
fc59d2d8 1237 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1238 qemu_log("qemu: fatal: ");
1239 qemu_log_vprintf(fmt, ap2);
1240 qemu_log("\n");
a0762859 1241 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1242 qemu_log_flush();
fc59d2d8 1243 qemu_log_unlock(logfile);
93fcfe39 1244 qemu_log_close();
924edcae 1245 }
493ae1f0 1246 va_end(ap2);
f9373291 1247 va_end(ap);
7615936e 1248 replay_finish();
fd052bf6
RV
1249#if defined(CONFIG_USER_ONLY)
1250 {
1251 struct sigaction act;
1252 sigfillset(&act.sa_mask);
1253 act.sa_handler = SIG_DFL;
8347c185 1254 act.sa_flags = 0;
fd052bf6
RV
1255 sigaction(SIGABRT, &act, NULL);
1256 }
1257#endif
7501267e
FB
1258 abort();
1259}
1260
0124311e 1261#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1262/* Called from RCU critical section */
041603fe
PB
1263static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1264{
1265 RAMBlock *block;
1266
43771539 1267 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1268 if (block && addr - block->offset < block->max_length) {
68851b98 1269 return block;
041603fe 1270 }
99e15582 1271 RAMBLOCK_FOREACH(block) {
9b8424d5 1272 if (addr - block->offset < block->max_length) {
041603fe
PB
1273 goto found;
1274 }
1275 }
1276
1277 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1278 abort();
1279
1280found:
43771539
PB
1281 /* It is safe to write mru_block outside the iothread lock. This
1282 * is what happens:
1283 *
1284 * mru_block = xxx
1285 * rcu_read_unlock()
1286 * xxx removed from list
1287 * rcu_read_lock()
1288 * read mru_block
1289 * mru_block = NULL;
1290 * call_rcu(reclaim_ramblock, xxx);
1291 * rcu_read_unlock()
1292 *
1293 * atomic_rcu_set is not needed here. The block was already published
1294 * when it was placed into the list. Here we're just making an extra
1295 * copy of the pointer.
1296 */
041603fe
PB
1297 ram_list.mru_block = block;
1298 return block;
1299}
1300
a2f4d5be 1301static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1302{
9a13565d 1303 CPUState *cpu;
041603fe 1304 ram_addr_t start1;
a2f4d5be
JQ
1305 RAMBlock *block;
1306 ram_addr_t end;
1307
f28d0dfd 1308 assert(tcg_enabled());
a2f4d5be
JQ
1309 end = TARGET_PAGE_ALIGN(start + length);
1310 start &= TARGET_PAGE_MASK;
d24981d3 1311
694ea274 1312 RCU_READ_LOCK_GUARD();
041603fe
PB
1313 block = qemu_get_ram_block(start);
1314 assert(block == qemu_get_ram_block(end - 1));
1240be24 1315 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1316 CPU_FOREACH(cpu) {
1317 tlb_reset_dirty(cpu, start1, length);
1318 }
d24981d3
JQ
1319}
1320
5579c7f3 1321/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1322bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1323 ram_addr_t length,
1324 unsigned client)
1ccde1cb 1325{
5b82b703 1326 DirtyMemoryBlocks *blocks;
25aa6b37 1327 unsigned long end, page, start_page;
5b82b703 1328 bool dirty = false;
077874e0
PX
1329 RAMBlock *ramblock;
1330 uint64_t mr_offset, mr_size;
03eebc9e
SH
1331
1332 if (length == 0) {
1333 return false;
1334 }
f23db169 1335
03eebc9e 1336 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1337 start_page = start >> TARGET_PAGE_BITS;
1338 page = start_page;
5b82b703 1339
694ea274
DDAG
1340 WITH_RCU_READ_LOCK_GUARD() {
1341 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1342 ramblock = qemu_get_ram_block(start);
1343 /* Range sanity check on the ramblock */
1344 assert(start >= ramblock->offset &&
1345 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1346
694ea274
DDAG
1347 while (page < end) {
1348 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1349 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1350 unsigned long num = MIN(end - page,
1351 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1352
694ea274
DDAG
1353 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1354 offset, num);
1355 page += num;
1356 }
5b82b703 1357
25aa6b37
MB
1358 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1359 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1360 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1361 }
1362
03eebc9e 1363 if (dirty && tcg_enabled()) {
a2f4d5be 1364 tlb_reset_dirty_range_all(start, length);
5579c7f3 1365 }
03eebc9e
SH
1366
1367 return dirty;
1ccde1cb
FB
1368}
1369
8deaf12c 1370DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1371 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1372{
1373 DirtyMemoryBlocks *blocks;
5dea4079 1374 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1375 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1376 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1377 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1378 DirtyBitmapSnapshot *snap;
1379 unsigned long page, end, dest;
1380
1381 snap = g_malloc0(sizeof(*snap) +
1382 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1383 snap->start = first;
1384 snap->end = last;
1385
1386 page = first >> TARGET_PAGE_BITS;
1387 end = last >> TARGET_PAGE_BITS;
1388 dest = 0;
1389
694ea274
DDAG
1390 WITH_RCU_READ_LOCK_GUARD() {
1391 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1392
694ea274
DDAG
1393 while (page < end) {
1394 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1395 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1396 unsigned long num = MIN(end - page,
1397 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1398
694ea274
DDAG
1399 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1400 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1401 offset >>= BITS_PER_LEVEL;
8deaf12c 1402
694ea274
DDAG
1403 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1404 blocks->blocks[idx] + offset,
1405 num);
1406 page += num;
1407 dest += num >> BITS_PER_LEVEL;
1408 }
8deaf12c
GH
1409 }
1410
8deaf12c
GH
1411 if (tcg_enabled()) {
1412 tlb_reset_dirty_range_all(start, length);
1413 }
1414
077874e0
PX
1415 memory_region_clear_dirty_bitmap(mr, offset, length);
1416
8deaf12c
GH
1417 return snap;
1418}
1419
1420bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1421 ram_addr_t start,
1422 ram_addr_t length)
1423{
1424 unsigned long page, end;
1425
1426 assert(start >= snap->start);
1427 assert(start + length <= snap->end);
1428
1429 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1430 page = (start - snap->start) >> TARGET_PAGE_BITS;
1431
1432 while (page < end) {
1433 if (test_bit(page, snap->dirty)) {
1434 return true;
1435 }
1436 page++;
1437 }
1438 return false;
1439}
1440
79e2b9ae 1441/* Called from RCU critical section */
bb0e627a 1442hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1443 MemoryRegionSection *section)
e5548617 1444{
8f5db641
RH
1445 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1446 return section - d->map.sections;
e5548617 1447}
9fa3e853
FB
1448#endif /* defined(CONFIG_USER_ONLY) */
1449
e2eef170 1450#if !defined(CONFIG_USER_ONLY)
8da3ff18 1451
b797ab1a
WY
1452static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1453 uint16_t section);
16620684 1454static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1455
06329cce 1456static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1457 qemu_anon_ram_alloc;
91138037
MA
1458
1459/*
1460 * Set a custom physical guest memory alloator.
1461 * Accelerators with unusual needs may need this. Hopefully, we can
1462 * get rid of it eventually.
1463 */
06329cce 1464void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1465{
1466 phys_mem_alloc = alloc;
1467}
1468
53cb28cb
MA
1469static uint16_t phys_section_add(PhysPageMap *map,
1470 MemoryRegionSection *section)
5312bd8b 1471{
68f3f65b
PB
1472 /* The physical section number is ORed with a page-aligned
1473 * pointer to produce the iotlb entries. Thus it should
1474 * never overflow into the page-aligned value.
1475 */
53cb28cb 1476 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1477
53cb28cb
MA
1478 if (map->sections_nb == map->sections_nb_alloc) {
1479 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1480 map->sections = g_renew(MemoryRegionSection, map->sections,
1481 map->sections_nb_alloc);
5312bd8b 1482 }
53cb28cb 1483 map->sections[map->sections_nb] = *section;
dfde4e6e 1484 memory_region_ref(section->mr);
53cb28cb 1485 return map->sections_nb++;
5312bd8b
AK
1486}
1487
058bc4b5
PB
1488static void phys_section_destroy(MemoryRegion *mr)
1489{
55b4e80b
DS
1490 bool have_sub_page = mr->subpage;
1491
dfde4e6e
PB
1492 memory_region_unref(mr);
1493
55b4e80b 1494 if (have_sub_page) {
058bc4b5 1495 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1496 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1497 g_free(subpage);
1498 }
1499}
1500
6092666e 1501static void phys_sections_free(PhysPageMap *map)
5312bd8b 1502{
9affd6fc
PB
1503 while (map->sections_nb > 0) {
1504 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1505 phys_section_destroy(section->mr);
1506 }
9affd6fc
PB
1507 g_free(map->sections);
1508 g_free(map->nodes);
5312bd8b
AK
1509}
1510
9950322a 1511static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1512{
9950322a 1513 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1514 subpage_t *subpage;
a8170e5e 1515 hwaddr base = section->offset_within_address_space
0f0cb164 1516 & TARGET_PAGE_MASK;
003a0cf2 1517 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1518 MemoryRegionSection subsection = {
1519 .offset_within_address_space = base,
052e87b0 1520 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1521 };
a8170e5e 1522 hwaddr start, end;
0f0cb164 1523
f3705d53 1524 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1525
f3705d53 1526 if (!(existing->mr->subpage)) {
16620684
AK
1527 subpage = subpage_init(fv, base);
1528 subsection.fv = fv;
0f0cb164 1529 subsection.mr = &subpage->iomem;
ac1970fb 1530 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1531 phys_section_add(&d->map, &subsection));
0f0cb164 1532 } else {
f3705d53 1533 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1534 }
1535 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1536 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1537 subpage_register(subpage, start, end,
1538 phys_section_add(&d->map, section));
0f0cb164
AK
1539}
1540
1541
9950322a 1542static void register_multipage(FlatView *fv,
052e87b0 1543 MemoryRegionSection *section)
33417e70 1544{
9950322a 1545 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1546 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1547 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1548 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1549 TARGET_PAGE_BITS));
dd81124b 1550
733d5ef5
PB
1551 assert(num_pages);
1552 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1553}
1554
494d1997
WY
1555/*
1556 * The range in *section* may look like this:
1557 *
1558 * |s|PPPPPPP|s|
1559 *
1560 * where s stands for subpage and P for page.
1561 */
8629d3fc 1562void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1563{
494d1997 1564 MemoryRegionSection remain = *section;
052e87b0 1565 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1566
494d1997
WY
1567 /* register first subpage */
1568 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1569 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1570 - remain.offset_within_address_space;
733d5ef5 1571
494d1997 1572 MemoryRegionSection now = remain;
052e87b0 1573 now.size = int128_min(int128_make64(left), now.size);
9950322a 1574 register_subpage(fv, &now);
494d1997
WY
1575 if (int128_eq(remain.size, now.size)) {
1576 return;
1577 }
052e87b0
PB
1578 remain.size = int128_sub(remain.size, now.size);
1579 remain.offset_within_address_space += int128_get64(now.size);
1580 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1581 }
1582
1583 /* register whole pages */
1584 if (int128_ge(remain.size, page_size)) {
1585 MemoryRegionSection now = remain;
1586 now.size = int128_and(now.size, int128_neg(page_size));
1587 register_multipage(fv, &now);
1588 if (int128_eq(remain.size, now.size)) {
1589 return;
69b67646 1590 }
494d1997
WY
1591 remain.size = int128_sub(remain.size, now.size);
1592 remain.offset_within_address_space += int128_get64(now.size);
1593 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1594 }
494d1997
WY
1595
1596 /* register last subpage */
1597 register_subpage(fv, &remain);
0f0cb164
AK
1598}
1599
62a2744c
SY
1600void qemu_flush_coalesced_mmio_buffer(void)
1601{
1602 if (kvm_enabled())
1603 kvm_flush_coalesced_mmio_buffer();
1604}
1605
b2a8658e
UD
1606void qemu_mutex_lock_ramlist(void)
1607{
1608 qemu_mutex_lock(&ram_list.mutex);
1609}
1610
1611void qemu_mutex_unlock_ramlist(void)
1612{
1613 qemu_mutex_unlock(&ram_list.mutex);
1614}
1615
be9b23c4
PX
1616void ram_block_dump(Monitor *mon)
1617{
1618 RAMBlock *block;
1619 char *psize;
1620
694ea274 1621 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1622 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1623 "Block Name", "PSize", "Offset", "Used", "Total");
1624 RAMBLOCK_FOREACH(block) {
1625 psize = size_to_str(block->page_size);
1626 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1627 " 0x%016" PRIx64 "\n", block->idstr, psize,
1628 (uint64_t)block->offset,
1629 (uint64_t)block->used_length,
1630 (uint64_t)block->max_length);
1631 g_free(psize);
1632 }
be9b23c4
PX
1633}
1634
9c607668
AK
1635#ifdef __linux__
1636/*
1637 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1638 * may or may not name the same files / on the same filesystem now as
1639 * when we actually open and map them. Iterate over the file
1640 * descriptors instead, and use qemu_fd_getpagesize().
1641 */
905b7ee4 1642static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1643{
9c607668
AK
1644 long *hpsize_min = opaque;
1645
1646 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1647 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1648 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1649
7d5489e6 1650 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1651 *hpsize_min = hpsize;
9c607668
AK
1652 }
1653 }
1654
1655 return 0;
1656}
1657
905b7ee4
DH
1658static int find_max_backend_pagesize(Object *obj, void *opaque)
1659{
1660 long *hpsize_max = opaque;
1661
1662 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1663 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1664 long hpsize = host_memory_backend_pagesize(backend);
1665
1666 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1667 *hpsize_max = hpsize;
1668 }
1669 }
1670
1671 return 0;
1672}
1673
1674/*
1675 * TODO: We assume right now that all mapped host memory backends are
1676 * used as RAM, however some might be used for different purposes.
1677 */
1678long qemu_minrampagesize(void)
9c607668
AK
1679{
1680 long hpsize = LONG_MAX;
ad1172d8 1681 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1682
ad1172d8 1683 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1684 return hpsize;
1685}
905b7ee4
DH
1686
1687long qemu_maxrampagesize(void)
1688{
ad1172d8 1689 long pagesize = 0;
905b7ee4
DH
1690 Object *memdev_root = object_resolve_path("/objects", NULL);
1691
ad1172d8 1692 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1693 return pagesize;
1694}
9c607668 1695#else
905b7ee4
DH
1696long qemu_minrampagesize(void)
1697{
038adc2f 1698 return qemu_real_host_page_size;
905b7ee4
DH
1699}
1700long qemu_maxrampagesize(void)
9c607668 1701{
038adc2f 1702 return qemu_real_host_page_size;
9c607668
AK
1703}
1704#endif
1705
d5dbde46 1706#ifdef CONFIG_POSIX
d6af99c9
HZ
1707static int64_t get_file_size(int fd)
1708{
72d41eb4
SH
1709 int64_t size;
1710#if defined(__linux__)
1711 struct stat st;
1712
1713 if (fstat(fd, &st) < 0) {
1714 return -errno;
1715 }
1716
1717 /* Special handling for devdax character devices */
1718 if (S_ISCHR(st.st_mode)) {
1719 g_autofree char *subsystem_path = NULL;
1720 g_autofree char *subsystem = NULL;
1721
1722 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1723 major(st.st_rdev), minor(st.st_rdev));
1724 subsystem = g_file_read_link(subsystem_path, NULL);
1725
1726 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1727 g_autofree char *size_path = NULL;
1728 g_autofree char *size_str = NULL;
1729
1730 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1731 major(st.st_rdev), minor(st.st_rdev));
1732
1733 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1734 return g_ascii_strtoll(size_str, NULL, 0);
1735 }
1736 }
1737 }
1738#endif /* defined(__linux__) */
1739
1740 /* st.st_size may be zero for special files yet lseek(2) works */
1741 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1742 if (size < 0) {
1743 return -errno;
1744 }
1745 return size;
1746}
1747
8d37b030
MAL
1748static int file_ram_open(const char *path,
1749 const char *region_name,
1750 bool *created,
1751 Error **errp)
c902760f
MT
1752{
1753 char *filename;
8ca761f6
PF
1754 char *sanitized_name;
1755 char *c;
5c3ece79 1756 int fd = -1;
c902760f 1757
8d37b030 1758 *created = false;
fd97fd44
MA
1759 for (;;) {
1760 fd = open(path, O_RDWR);
1761 if (fd >= 0) {
1762 /* @path names an existing file, use it */
1763 break;
8d31d6b6 1764 }
fd97fd44
MA
1765 if (errno == ENOENT) {
1766 /* @path names a file that doesn't exist, create it */
1767 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1768 if (fd >= 0) {
8d37b030 1769 *created = true;
fd97fd44
MA
1770 break;
1771 }
1772 } else if (errno == EISDIR) {
1773 /* @path names a directory, create a file there */
1774 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1775 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1776 for (c = sanitized_name; *c != '\0'; c++) {
1777 if (*c == '/') {
1778 *c = '_';
1779 }
1780 }
8ca761f6 1781
fd97fd44
MA
1782 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1783 sanitized_name);
1784 g_free(sanitized_name);
8d31d6b6 1785
fd97fd44
MA
1786 fd = mkstemp(filename);
1787 if (fd >= 0) {
1788 unlink(filename);
1789 g_free(filename);
1790 break;
1791 }
1792 g_free(filename);
8d31d6b6 1793 }
fd97fd44
MA
1794 if (errno != EEXIST && errno != EINTR) {
1795 error_setg_errno(errp, errno,
1796 "can't open backing store %s for guest RAM",
1797 path);
8d37b030 1798 return -1;
fd97fd44
MA
1799 }
1800 /*
1801 * Try again on EINTR and EEXIST. The latter happens when
1802 * something else creates the file between our two open().
1803 */
8d31d6b6 1804 }
c902760f 1805
8d37b030
MAL
1806 return fd;
1807}
1808
1809static void *file_ram_alloc(RAMBlock *block,
1810 ram_addr_t memory,
1811 int fd,
1812 bool truncate,
1813 Error **errp)
1814{
1815 void *area;
1816
863e9621 1817 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1818 if (block->mr->align % block->page_size) {
1819 error_setg(errp, "alignment 0x%" PRIx64
1820 " must be multiples of page size 0x%zx",
1821 block->mr->align, block->page_size);
1822 return NULL;
61362b71
DH
1823 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1824 error_setg(errp, "alignment 0x%" PRIx64
1825 " must be a power of two", block->mr->align);
1826 return NULL;
98376843
HZ
1827 }
1828 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1829#if defined(__s390x__)
1830 if (kvm_enabled()) {
1831 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1832 }
1833#endif
fd97fd44 1834
863e9621 1835 if (memory < block->page_size) {
fd97fd44 1836 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1837 "or larger than page size 0x%zx",
1838 memory, block->page_size);
8d37b030 1839 return NULL;
1775f111
HZ
1840 }
1841
863e9621 1842 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1843
1844 /*
1845 * ftruncate is not supported by hugetlbfs in older
1846 * hosts, so don't bother bailing out on errors.
1847 * If anything goes wrong with it under other filesystems,
1848 * mmap will fail.
d6af99c9
HZ
1849 *
1850 * Do not truncate the non-empty backend file to avoid corrupting
1851 * the existing data in the file. Disabling shrinking is not
1852 * enough. For example, the current vNVDIMM implementation stores
1853 * the guest NVDIMM labels at the end of the backend file. If the
1854 * backend file is later extended, QEMU will not be able to find
1855 * those labels. Therefore, extending the non-empty backend file
1856 * is disabled as well.
c902760f 1857 */
8d37b030 1858 if (truncate && ftruncate(fd, memory)) {
9742bf26 1859 perror("ftruncate");
7f56e740 1860 }
c902760f 1861
d2f39add 1862 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1863 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1864 if (area == MAP_FAILED) {
7f56e740 1865 error_setg_errno(errp, errno,
fd97fd44 1866 "unable to map backing store for guest RAM");
8d37b030 1867 return NULL;
c902760f 1868 }
ef36fa14 1869
04b16653 1870 block->fd = fd;
c902760f
MT
1871 return area;
1872}
1873#endif
1874
154cc9ea
DDAG
1875/* Allocate space within the ram_addr_t space that governs the
1876 * dirty bitmaps.
1877 * Called with the ramlist lock held.
1878 */
d17b5288 1879static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1880{
1881 RAMBlock *block, *next_block;
3e837b2c 1882 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1883
49cd9ac6
SH
1884 assert(size != 0); /* it would hand out same offset multiple times */
1885
0dc3f44a 1886 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1887 return 0;
0d53d9fe 1888 }
04b16653 1889
99e15582 1890 RAMBLOCK_FOREACH(block) {
154cc9ea 1891 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1892
801110ab
DDAG
1893 /* Align blocks to start on a 'long' in the bitmap
1894 * which makes the bitmap sync'ing take the fast path.
1895 */
154cc9ea 1896 candidate = block->offset + block->max_length;
801110ab 1897 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1898
154cc9ea
DDAG
1899 /* Search for the closest following block
1900 * and find the gap.
1901 */
99e15582 1902 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1903 if (next_block->offset >= candidate) {
04b16653
AW
1904 next = MIN(next, next_block->offset);
1905 }
1906 }
154cc9ea
DDAG
1907
1908 /* If it fits remember our place and remember the size
1909 * of gap, but keep going so that we might find a smaller
1910 * gap to fill so avoiding fragmentation.
1911 */
1912 if (next - candidate >= size && next - candidate < mingap) {
1913 offset = candidate;
1914 mingap = next - candidate;
04b16653 1915 }
154cc9ea
DDAG
1916
1917 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1918 }
3e837b2c
AW
1919
1920 if (offset == RAM_ADDR_MAX) {
1921 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1922 (uint64_t)size);
1923 abort();
1924 }
1925
154cc9ea
DDAG
1926 trace_find_ram_offset(size, offset);
1927
04b16653
AW
1928 return offset;
1929}
1930
c136180c 1931static unsigned long last_ram_page(void)
d17b5288
AW
1932{
1933 RAMBlock *block;
1934 ram_addr_t last = 0;
1935
694ea274 1936 RCU_READ_LOCK_GUARD();
99e15582 1937 RAMBLOCK_FOREACH(block) {
62be4e3a 1938 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1939 }
b8c48993 1940 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1941}
1942
ddb97f1d
JB
1943static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1944{
1945 int ret;
ddb97f1d
JB
1946
1947 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1948 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1949 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1950 if (ret) {
1951 perror("qemu_madvise");
1952 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1953 "but dump_guest_core=off specified\n");
1954 }
1955 }
1956}
1957
422148d3
DDAG
1958const char *qemu_ram_get_idstr(RAMBlock *rb)
1959{
1960 return rb->idstr;
1961}
1962
754cb9c0
YK
1963void *qemu_ram_get_host_addr(RAMBlock *rb)
1964{
1965 return rb->host;
1966}
1967
1968ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1969{
1970 return rb->offset;
1971}
1972
1973ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1974{
1975 return rb->used_length;
1976}
1977
463a4ac2
DDAG
1978bool qemu_ram_is_shared(RAMBlock *rb)
1979{
1980 return rb->flags & RAM_SHARED;
1981}
1982
2ce16640
DDAG
1983/* Note: Only set at the start of postcopy */
1984bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1985{
1986 return rb->flags & RAM_UF_ZEROPAGE;
1987}
1988
1989void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1990{
1991 rb->flags |= RAM_UF_ZEROPAGE;
1992}
1993
b895de50
CLG
1994bool qemu_ram_is_migratable(RAMBlock *rb)
1995{
1996 return rb->flags & RAM_MIGRATABLE;
1997}
1998
1999void qemu_ram_set_migratable(RAMBlock *rb)
2000{
2001 rb->flags |= RAM_MIGRATABLE;
2002}
2003
2004void qemu_ram_unset_migratable(RAMBlock *rb)
2005{
2006 rb->flags &= ~RAM_MIGRATABLE;
2007}
2008
ae3a7047 2009/* Called with iothread lock held. */
fa53a0e5 2010void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2011{
fa53a0e5 2012 RAMBlock *block;
20cfe881 2013
c5705a77
AK
2014 assert(new_block);
2015 assert(!new_block->idstr[0]);
84b89d78 2016
09e5ab63
AL
2017 if (dev) {
2018 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2019 if (id) {
2020 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2021 g_free(id);
84b89d78
CM
2022 }
2023 }
2024 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2025
694ea274 2026 RCU_READ_LOCK_GUARD();
99e15582 2027 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2028 if (block != new_block &&
2029 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2030 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2031 new_block->idstr);
2032 abort();
2033 }
2034 }
c5705a77
AK
2035}
2036
ae3a7047 2037/* Called with iothread lock held. */
fa53a0e5 2038void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2039{
ae3a7047
MD
2040 /* FIXME: arch_init.c assumes that this is not called throughout
2041 * migration. Ignore the problem since hot-unplug during migration
2042 * does not work anyway.
2043 */
20cfe881
HT
2044 if (block) {
2045 memset(block->idstr, 0, sizeof(block->idstr));
2046 }
2047}
2048
863e9621
DDAG
2049size_t qemu_ram_pagesize(RAMBlock *rb)
2050{
2051 return rb->page_size;
2052}
2053
67f11b5c
DDAG
2054/* Returns the largest size of page in use */
2055size_t qemu_ram_pagesize_largest(void)
2056{
2057 RAMBlock *block;
2058 size_t largest = 0;
2059
99e15582 2060 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2061 largest = MAX(largest, qemu_ram_pagesize(block));
2062 }
2063
2064 return largest;
2065}
2066
8490fc78
LC
2067static int memory_try_enable_merging(void *addr, size_t len)
2068{
75cc7f01 2069 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2070 /* disabled by the user */
2071 return 0;
2072 }
2073
2074 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2075}
2076
62be4e3a
MT
2077/* Only legal before guest might have detected the memory size: e.g. on
2078 * incoming migration, or right after reset.
2079 *
2080 * As memory core doesn't know how is memory accessed, it is up to
2081 * resize callback to update device state and/or add assertions to detect
2082 * misuse, if necessary.
2083 */
fa53a0e5 2084int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2085{
ce4adc0b
DH
2086 const ram_addr_t unaligned_size = newsize;
2087
62be4e3a
MT
2088 assert(block);
2089
4ed023ce 2090 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2091
62be4e3a 2092 if (block->used_length == newsize) {
ce4adc0b
DH
2093 /*
2094 * We don't have to resize the ram block (which only knows aligned
2095 * sizes), however, we have to notify if the unaligned size changed.
2096 */
2097 if (unaligned_size != memory_region_size(block->mr)) {
2098 memory_region_set_size(block->mr, unaligned_size);
2099 if (block->resized) {
2100 block->resized(block->idstr, unaligned_size, block->host);
2101 }
2102 }
62be4e3a
MT
2103 return 0;
2104 }
2105
2106 if (!(block->flags & RAM_RESIZEABLE)) {
2107 error_setg_errno(errp, EINVAL,
2108 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2109 " in != 0x" RAM_ADDR_FMT, block->idstr,
2110 newsize, block->used_length);
2111 return -EINVAL;
2112 }
2113
2114 if (block->max_length < newsize) {
2115 error_setg_errno(errp, EINVAL,
2116 "Length too large: %s: 0x" RAM_ADDR_FMT
2117 " > 0x" RAM_ADDR_FMT, block->idstr,
2118 newsize, block->max_length);
2119 return -EINVAL;
2120 }
2121
2122 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2123 block->used_length = newsize;
58d2707e
PB
2124 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2125 DIRTY_CLIENTS_ALL);
ce4adc0b 2126 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 2127 if (block->resized) {
ce4adc0b 2128 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
2129 }
2130 return 0;
2131}
2132
61c490e2
BM
2133/*
2134 * Trigger sync on the given ram block for range [start, start + length]
2135 * with the backing store if one is available.
2136 * Otherwise no-op.
2137 * @Note: this is supposed to be a synchronous op.
2138 */
ab7e41e6 2139void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 2140{
61c490e2
BM
2141 /* The requested range should fit in within the block range */
2142 g_assert((start + length) <= block->used_length);
2143
2144#ifdef CONFIG_LIBPMEM
2145 /* The lack of support for pmem should not block the sync */
2146 if (ramblock_is_pmem(block)) {
5d4c9549 2147 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2148 pmem_persist(addr, length);
2149 return;
2150 }
2151#endif
2152 if (block->fd >= 0) {
2153 /**
2154 * Case there is no support for PMEM or the memory has not been
2155 * specified as persistent (or is not one) - use the msync.
2156 * Less optimal but still achieves the same goal
2157 */
5d4c9549 2158 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2159 if (qemu_msync(addr, length, block->fd)) {
2160 warn_report("%s: failed to sync memory range: start: "
2161 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2162 __func__, start, length);
2163 }
2164 }
2165}
2166
5b82b703
SH
2167/* Called with ram_list.mutex held */
2168static void dirty_memory_extend(ram_addr_t old_ram_size,
2169 ram_addr_t new_ram_size)
2170{
2171 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2172 DIRTY_MEMORY_BLOCK_SIZE);
2173 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2174 DIRTY_MEMORY_BLOCK_SIZE);
2175 int i;
2176
2177 /* Only need to extend if block count increased */
2178 if (new_num_blocks <= old_num_blocks) {
2179 return;
2180 }
2181
2182 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2183 DirtyMemoryBlocks *old_blocks;
2184 DirtyMemoryBlocks *new_blocks;
2185 int j;
2186
2187 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2188 new_blocks = g_malloc(sizeof(*new_blocks) +
2189 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2190
2191 if (old_num_blocks) {
2192 memcpy(new_blocks->blocks, old_blocks->blocks,
2193 old_num_blocks * sizeof(old_blocks->blocks[0]));
2194 }
2195
2196 for (j = old_num_blocks; j < new_num_blocks; j++) {
2197 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2198 }
2199
2200 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2201
2202 if (old_blocks) {
2203 g_free_rcu(old_blocks, rcu);
2204 }
2205 }
2206}
2207
06329cce 2208static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2209{
e1c57ab8 2210 RAMBlock *block;
0d53d9fe 2211 RAMBlock *last_block = NULL;
2152f5ca 2212 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2213 Error *err = NULL;
2152f5ca 2214
b8c48993 2215 old_ram_size = last_ram_page();
c5705a77 2216
b2a8658e 2217 qemu_mutex_lock_ramlist();
9b8424d5 2218 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2219
2220 if (!new_block->host) {
2221 if (xen_enabled()) {
9b8424d5 2222 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2223 new_block->mr, &err);
2224 if (err) {
2225 error_propagate(errp, err);
2226 qemu_mutex_unlock_ramlist();
39c350ee 2227 return;
37aa7a0e 2228 }
e1c57ab8 2229 } else {
9b8424d5 2230 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2231 &new_block->mr->align, shared);
39228250 2232 if (!new_block->host) {
ef701d7b
HT
2233 error_setg_errno(errp, errno,
2234 "cannot set up guest memory '%s'",
2235 memory_region_name(new_block->mr));
2236 qemu_mutex_unlock_ramlist();
39c350ee 2237 return;
39228250 2238 }
9b8424d5 2239 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2240 }
c902760f 2241 }
94a6b54f 2242
dd631697
LZ
2243 new_ram_size = MAX(old_ram_size,
2244 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2245 if (new_ram_size > old_ram_size) {
5b82b703 2246 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2247 }
0d53d9fe
MD
2248 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2249 * QLIST (which has an RCU-friendly variant) does not have insertion at
2250 * tail, so save the last element in last_block.
2251 */
99e15582 2252 RAMBLOCK_FOREACH(block) {
0d53d9fe 2253 last_block = block;
9b8424d5 2254 if (block->max_length < new_block->max_length) {
abb26d63
PB
2255 break;
2256 }
2257 }
2258 if (block) {
0dc3f44a 2259 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2260 } else if (last_block) {
0dc3f44a 2261 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2262 } else { /* list is empty */
0dc3f44a 2263 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2264 }
0d6d3c87 2265 ram_list.mru_block = NULL;
94a6b54f 2266
0dc3f44a
MD
2267 /* Write list before version */
2268 smp_wmb();
f798b07f 2269 ram_list.version++;
b2a8658e 2270 qemu_mutex_unlock_ramlist();
f798b07f 2271
9b8424d5 2272 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2273 new_block->used_length,
2274 DIRTY_CLIENTS_ALL);
94a6b54f 2275
a904c911
PB
2276 if (new_block->host) {
2277 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2278 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2279 /*
2280 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2281 * Configure it unless the machine is a qtest server, in which case
2282 * KVM is not used and it may be forked (eg for fuzzing purposes).
2283 */
2284 if (!qtest_enabled()) {
2285 qemu_madvise(new_block->host, new_block->max_length,
2286 QEMU_MADV_DONTFORK);
2287 }
0987d735 2288 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2289 }
94a6b54f 2290}
e9a1ab19 2291
d5dbde46 2292#ifdef CONFIG_POSIX
38b3362d 2293RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2294 uint32_t ram_flags, int fd,
38b3362d 2295 Error **errp)
e1c57ab8
PB
2296{
2297 RAMBlock *new_block;
ef701d7b 2298 Error *local_err = NULL;
8d37b030 2299 int64_t file_size;
e1c57ab8 2300
a4de8552
JH
2301 /* Just support these ram flags by now. */
2302 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2303
e1c57ab8 2304 if (xen_enabled()) {
7f56e740 2305 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2306 return NULL;
e1c57ab8
PB
2307 }
2308
e45e7ae2
MAL
2309 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2310 error_setg(errp,
2311 "host lacks kvm mmu notifiers, -mem-path unsupported");
2312 return NULL;
2313 }
2314
e1c57ab8
PB
2315 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2316 /*
2317 * file_ram_alloc() needs to allocate just like
2318 * phys_mem_alloc, but we haven't bothered to provide
2319 * a hook there.
2320 */
7f56e740
PB
2321 error_setg(errp,
2322 "-mem-path not supported with this accelerator");
528f46af 2323 return NULL;
e1c57ab8
PB
2324 }
2325
4ed023ce 2326 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2327 file_size = get_file_size(fd);
2328 if (file_size > 0 && file_size < size) {
c001c3b3 2329 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2330 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2331 file_size, size);
8d37b030
MAL
2332 return NULL;
2333 }
2334
e1c57ab8
PB
2335 new_block = g_malloc0(sizeof(*new_block));
2336 new_block->mr = mr;
9b8424d5
MT
2337 new_block->used_length = size;
2338 new_block->max_length = size;
cbfc0171 2339 new_block->flags = ram_flags;
8d37b030 2340 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2341 if (!new_block->host) {
2342 g_free(new_block);
528f46af 2343 return NULL;
7f56e740
PB
2344 }
2345
cbfc0171 2346 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2347 if (local_err) {
2348 g_free(new_block);
2349 error_propagate(errp, local_err);
528f46af 2350 return NULL;
ef701d7b 2351 }
528f46af 2352 return new_block;
38b3362d
MAL
2353
2354}
2355
2356
2357RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2358 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2359 Error **errp)
2360{
2361 int fd;
2362 bool created;
2363 RAMBlock *block;
2364
2365 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2366 if (fd < 0) {
2367 return NULL;
2368 }
2369
cbfc0171 2370 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2371 if (!block) {
2372 if (created) {
2373 unlink(mem_path);
2374 }
2375 close(fd);
2376 return NULL;
2377 }
2378
2379 return block;
e1c57ab8 2380}
0b183fc8 2381#endif
e1c57ab8 2382
62be4e3a 2383static
528f46af
FZ
2384RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2385 void (*resized)(const char*,
2386 uint64_t length,
2387 void *host),
06329cce 2388 void *host, bool resizeable, bool share,
528f46af 2389 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2390{
2391 RAMBlock *new_block;
ef701d7b 2392 Error *local_err = NULL;
e1c57ab8 2393
4ed023ce
DDAG
2394 size = HOST_PAGE_ALIGN(size);
2395 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2396 new_block = g_malloc0(sizeof(*new_block));
2397 new_block->mr = mr;
62be4e3a 2398 new_block->resized = resized;
9b8424d5
MT
2399 new_block->used_length = size;
2400 new_block->max_length = max_size;
62be4e3a 2401 assert(max_size >= size);
e1c57ab8 2402 new_block->fd = -1;
038adc2f 2403 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2404 new_block->host = host;
2405 if (host) {
7bd4f430 2406 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2407 }
62be4e3a
MT
2408 if (resizeable) {
2409 new_block->flags |= RAM_RESIZEABLE;
2410 }
06329cce 2411 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2412 if (local_err) {
2413 g_free(new_block);
2414 error_propagate(errp, local_err);
528f46af 2415 return NULL;
ef701d7b 2416 }
528f46af 2417 return new_block;
e1c57ab8
PB
2418}
2419
528f46af 2420RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2421 MemoryRegion *mr, Error **errp)
2422{
06329cce
MA
2423 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2424 false, mr, errp);
62be4e3a
MT
2425}
2426
06329cce
MA
2427RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2428 MemoryRegion *mr, Error **errp)
6977dfe6 2429{
06329cce
MA
2430 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2431 share, mr, errp);
62be4e3a
MT
2432}
2433
528f46af 2434RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2435 void (*resized)(const char*,
2436 uint64_t length,
2437 void *host),
2438 MemoryRegion *mr, Error **errp)
2439{
06329cce
MA
2440 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2441 false, mr, errp);
6977dfe6
YT
2442}
2443
43771539
PB
2444static void reclaim_ramblock(RAMBlock *block)
2445{
2446 if (block->flags & RAM_PREALLOC) {
2447 ;
2448 } else if (xen_enabled()) {
2449 xen_invalidate_map_cache_entry(block->host);
2450#ifndef _WIN32
2451 } else if (block->fd >= 0) {
53adb9d4 2452 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2453 close(block->fd);
2454#endif
2455 } else {
2456 qemu_anon_ram_free(block->host, block->max_length);
2457 }
2458 g_free(block);
2459}
2460
f1060c55 2461void qemu_ram_free(RAMBlock *block)
e9a1ab19 2462{
85bc2a15
MAL
2463 if (!block) {
2464 return;
2465 }
2466
0987d735
PB
2467 if (block->host) {
2468 ram_block_notify_remove(block->host, block->max_length);
2469 }
2470
b2a8658e 2471 qemu_mutex_lock_ramlist();
f1060c55
FZ
2472 QLIST_REMOVE_RCU(block, next);
2473 ram_list.mru_block = NULL;
2474 /* Write list before version */
2475 smp_wmb();
2476 ram_list.version++;
2477 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2478 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2479}
2480
cd19cfa2
HY
2481#ifndef _WIN32
2482void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2483{
2484 RAMBlock *block;
2485 ram_addr_t offset;
2486 int flags;
2487 void *area, *vaddr;
2488
99e15582 2489 RAMBLOCK_FOREACH(block) {
cd19cfa2 2490 offset = addr - block->offset;
9b8424d5 2491 if (offset < block->max_length) {
1240be24 2492 vaddr = ramblock_ptr(block, offset);
7bd4f430 2493 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2494 ;
dfeaf2ab
MA
2495 } else if (xen_enabled()) {
2496 abort();
cd19cfa2
HY
2497 } else {
2498 flags = MAP_FIXED;
3435f395 2499 if (block->fd >= 0) {
dbcb8981
PB
2500 flags |= (block->flags & RAM_SHARED ?
2501 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2502 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2503 flags, block->fd, offset);
cd19cfa2 2504 } else {
2eb9fbaa
MA
2505 /*
2506 * Remap needs to match alloc. Accelerators that
2507 * set phys_mem_alloc never remap. If they did,
2508 * we'd need a remap hook here.
2509 */
2510 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2511
cd19cfa2
HY
2512 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2513 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2514 flags, -1, 0);
cd19cfa2
HY
2515 }
2516 if (area != vaddr) {
493d89bf
AF
2517 error_report("Could not remap addr: "
2518 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2519 length, addr);
cd19cfa2
HY
2520 exit(1);
2521 }
8490fc78 2522 memory_try_enable_merging(vaddr, length);
ddb97f1d 2523 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2524 }
cd19cfa2
HY
2525 }
2526 }
2527}
2528#endif /* !_WIN32 */
2529
1b5ec234 2530/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2531 * This should not be used for general purpose DMA. Use address_space_map
2532 * or address_space_rw instead. For local memory (e.g. video ram) that the
2533 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2534 *
49b24afc 2535 * Called within RCU critical section.
1b5ec234 2536 */
0878d0e1 2537void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2538{
3655cb9c
GA
2539 RAMBlock *block = ram_block;
2540
2541 if (block == NULL) {
2542 block = qemu_get_ram_block(addr);
0878d0e1 2543 addr -= block->offset;
3655cb9c 2544 }
ae3a7047
MD
2545
2546 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2547 /* We need to check if the requested address is in the RAM
2548 * because we don't want to map the entire memory in QEMU.
2549 * In that case just map until the end of the page.
2550 */
2551 if (block->offset == 0) {
1ff7c598 2552 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2553 }
ae3a7047 2554
1ff7c598 2555 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2556 }
0878d0e1 2557 return ramblock_ptr(block, addr);
dc828ca1
PB
2558}
2559
0878d0e1 2560/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2561 * but takes a size argument.
0dc3f44a 2562 *
e81bcda5 2563 * Called within RCU critical section.
ae3a7047 2564 */
3655cb9c 2565static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2566 hwaddr *size, bool lock)
38bee5dc 2567{
3655cb9c 2568 RAMBlock *block = ram_block;
8ab934f9
SS
2569 if (*size == 0) {
2570 return NULL;
2571 }
e81bcda5 2572
3655cb9c
GA
2573 if (block == NULL) {
2574 block = qemu_get_ram_block(addr);
0878d0e1 2575 addr -= block->offset;
3655cb9c 2576 }
0878d0e1 2577 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2578
2579 if (xen_enabled() && block->host == NULL) {
2580 /* We need to check if the requested address is in the RAM
2581 * because we don't want to map the entire memory in QEMU.
2582 * In that case just map the requested area.
2583 */
2584 if (block->offset == 0) {
f5aa69bd 2585 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2586 }
2587
f5aa69bd 2588 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2589 }
e81bcda5 2590
0878d0e1 2591 return ramblock_ptr(block, addr);
38bee5dc
SS
2592}
2593
f90bb71b
DDAG
2594/* Return the offset of a hostpointer within a ramblock */
2595ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2596{
2597 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2598 assert((uintptr_t)host >= (uintptr_t)rb->host);
2599 assert(res < rb->max_length);
2600
2601 return res;
2602}
2603
422148d3
DDAG
2604/*
2605 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2606 * in that RAMBlock.
2607 *
2608 * ptr: Host pointer to look up
2609 * round_offset: If true round the result offset down to a page boundary
2610 * *ram_addr: set to result ram_addr
2611 * *offset: set to result offset within the RAMBlock
2612 *
2613 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2614 *
2615 * By the time this function returns, the returned pointer is not protected
2616 * by RCU anymore. If the caller is not within an RCU critical section and
2617 * does not hold the iothread lock, it must have other means of protecting the
2618 * pointer, such as a reference to the region that includes the incoming
2619 * ram_addr_t.
2620 */
422148d3 2621RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2622 ram_addr_t *offset)
5579c7f3 2623{
94a6b54f
PB
2624 RAMBlock *block;
2625 uint8_t *host = ptr;
2626
868bb33f 2627 if (xen_enabled()) {
f615f396 2628 ram_addr_t ram_addr;
694ea274 2629 RCU_READ_LOCK_GUARD();
f615f396
PB
2630 ram_addr = xen_ram_addr_from_mapcache(ptr);
2631 block = qemu_get_ram_block(ram_addr);
422148d3 2632 if (block) {
d6b6aec4 2633 *offset = ram_addr - block->offset;
422148d3 2634 }
422148d3 2635 return block;
712c2b41
SS
2636 }
2637
694ea274 2638 RCU_READ_LOCK_GUARD();
0dc3f44a 2639 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2640 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2641 goto found;
2642 }
2643
99e15582 2644 RAMBLOCK_FOREACH(block) {
432d268c
JN
2645 /* This case append when the block is not mapped. */
2646 if (block->host == NULL) {
2647 continue;
2648 }
9b8424d5 2649 if (host - block->host < block->max_length) {
23887b79 2650 goto found;
f471a17e 2651 }
94a6b54f 2652 }
432d268c 2653
1b5ec234 2654 return NULL;
23887b79
PB
2655
2656found:
422148d3
DDAG
2657 *offset = (host - block->host);
2658 if (round_offset) {
2659 *offset &= TARGET_PAGE_MASK;
2660 }
422148d3
DDAG
2661 return block;
2662}
2663
e3dd7493
DDAG
2664/*
2665 * Finds the named RAMBlock
2666 *
2667 * name: The name of RAMBlock to find
2668 *
2669 * Returns: RAMBlock (or NULL if not found)
2670 */
2671RAMBlock *qemu_ram_block_by_name(const char *name)
2672{
2673 RAMBlock *block;
2674
99e15582 2675 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2676 if (!strcmp(name, block->idstr)) {
2677 return block;
2678 }
2679 }
2680
2681 return NULL;
2682}
2683
422148d3
DDAG
2684/* Some of the softmmu routines need to translate from a host pointer
2685 (typically a TLB entry) back to a ram offset. */
07bdaa41 2686ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2687{
2688 RAMBlock *block;
f615f396 2689 ram_addr_t offset;
422148d3 2690
f615f396 2691 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2692 if (!block) {
07bdaa41 2693 return RAM_ADDR_INVALID;
422148d3
DDAG
2694 }
2695
07bdaa41 2696 return block->offset + offset;
e890261f 2697}
f471a17e 2698
0f459d16 2699/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2700void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2701 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2702{
568496c0 2703 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2704 CPUWatchpoint *wp;
0f459d16 2705
5aa1ef71 2706 assert(tcg_enabled());
ff4700b0 2707 if (cpu->watchpoint_hit) {
50b107c5
RH
2708 /*
2709 * We re-entered the check after replacing the TB.
2710 * Now raise the debug interrupt so that it will
2711 * trigger after the current instruction.
2712 */
2713 qemu_mutex_lock_iothread();
93afeade 2714 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2715 qemu_mutex_unlock_iothread();
06d55cc1
AL
2716 return;
2717 }
0026348b
DH
2718
2719 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2720 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2721 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2722 && (wp->flags & flags)) {
08225676
PM
2723 if (flags == BP_MEM_READ) {
2724 wp->flags |= BP_WATCHPOINT_HIT_READ;
2725 } else {
2726 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2727 }
0026348b 2728 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2729 wp->hitattrs = attrs;
ff4700b0 2730 if (!cpu->watchpoint_hit) {
568496c0
SF
2731 if (wp->flags & BP_CPU &&
2732 !cc->debug_check_watchpoint(cpu, wp)) {
2733 wp->flags &= ~BP_WATCHPOINT_HIT;
2734 continue;
2735 }
ff4700b0 2736 cpu->watchpoint_hit = wp;
a5e99826 2737
0ac20318 2738 mmap_lock();
ae57db63 2739 tb_check_watchpoint(cpu, ra);
6e140f28 2740 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2741 cpu->exception_index = EXCP_DEBUG;
0ac20318 2742 mmap_unlock();
0026348b 2743 cpu_loop_exit_restore(cpu, ra);
6e140f28 2744 } else {
9b990ee5
RH
2745 /* Force execution of one insn next time. */
2746 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2747 mmap_unlock();
0026348b
DH
2748 if (ra) {
2749 cpu_restore_state(cpu, ra, true);
2750 }
6886b980 2751 cpu_loop_exit_noexc(cpu);
6e140f28 2752 }
06d55cc1 2753 }
6e140f28
AL
2754 } else {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2756 }
2757 }
2758}
2759
b2a44fca 2760static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2761 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2762static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2763 const void *buf, hwaddr len);
0c249ff7 2764static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2765 bool is_write, MemTxAttrs attrs);
16620684 2766
f25a49e0
PM
2767static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2768 unsigned len, MemTxAttrs attrs)
db7b5426 2769{
acc9d80b 2770 subpage_t *subpage = opaque;
ff6cff75 2771 uint8_t buf[8];
5c9eb028 2772 MemTxResult res;
791af8c8 2773
db7b5426 2774#if defined(DEBUG_SUBPAGE)
016e9d62 2775 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2776 subpage, len, addr);
db7b5426 2777#endif
16620684 2778 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2779 if (res) {
2780 return res;
f25a49e0 2781 }
6d3ede54
PM
2782 *data = ldn_p(buf, len);
2783 return MEMTX_OK;
db7b5426
BS
2784}
2785
f25a49e0
PM
2786static MemTxResult subpage_write(void *opaque, hwaddr addr,
2787 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2788{
acc9d80b 2789 subpage_t *subpage = opaque;
ff6cff75 2790 uint8_t buf[8];
acc9d80b 2791
db7b5426 2792#if defined(DEBUG_SUBPAGE)
016e9d62 2793 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2794 " value %"PRIx64"\n",
2795 __func__, subpage, len, addr, value);
db7b5426 2796#endif
6d3ede54 2797 stn_p(buf, len, value);
16620684 2798 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2799}
2800
c353e4cc 2801static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2802 unsigned len, bool is_write,
2803 MemTxAttrs attrs)
c353e4cc 2804{
acc9d80b 2805 subpage_t *subpage = opaque;
c353e4cc 2806#if defined(DEBUG_SUBPAGE)
016e9d62 2807 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2808 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2809#endif
2810
16620684 2811 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2812 len, is_write, attrs);
c353e4cc
PB
2813}
2814
70c68e44 2815static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2816 .read_with_attrs = subpage_read,
2817 .write_with_attrs = subpage_write,
ff6cff75
PB
2818 .impl.min_access_size = 1,
2819 .impl.max_access_size = 8,
2820 .valid.min_access_size = 1,
2821 .valid.max_access_size = 8,
c353e4cc 2822 .valid.accepts = subpage_accepts,
70c68e44 2823 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2824};
2825
b797ab1a
WY
2826static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2827 uint16_t section)
db7b5426
BS
2828{
2829 int idx, eidx;
2830
2831 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2832 return -1;
2833 idx = SUBPAGE_IDX(start);
2834 eidx = SUBPAGE_IDX(end);
2835#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2836 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2837 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2838#endif
db7b5426 2839 for (; idx <= eidx; idx++) {
5312bd8b 2840 mmio->sub_section[idx] = section;
db7b5426
BS
2841 }
2842
2843 return 0;
2844}
2845
16620684 2846static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2847{
c227f099 2848 subpage_t *mmio;
db7b5426 2849
b797ab1a 2850 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2851 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2852 mmio->fv = fv;
1eec614b 2853 mmio->base = base;
2c9b15ca 2854 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2855 NULL, TARGET_PAGE_SIZE);
b3b00c78 2856 mmio->iomem.subpage = true;
db7b5426 2857#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2858 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2859 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2860#endif
db7b5426
BS
2861
2862 return mmio;
2863}
2864
16620684 2865static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2866{
16620684 2867 assert(fv);
5312bd8b 2868 MemoryRegionSection section = {
16620684 2869 .fv = fv,
5312bd8b
AK
2870 .mr = mr,
2871 .offset_within_address_space = 0,
2872 .offset_within_region = 0,
052e87b0 2873 .size = int128_2_64(),
5312bd8b
AK
2874 };
2875
53cb28cb 2876 return phys_section_add(map, &section);
5312bd8b
AK
2877}
2878
2d54f194
PM
2879MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2880 hwaddr index, MemTxAttrs attrs)
aa102231 2881{
a54c87b6
PM
2882 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2883 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2884 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2885 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2886
2d54f194 2887 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2888}
2889
e9179ce1
AK
2890static void io_mem_init(void)
2891{
2c9b15ca 2892 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2893 NULL, UINT64_MAX);
e9179ce1
AK
2894}
2895
8629d3fc 2896AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2897{
53cb28cb
MA
2898 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2899 uint16_t n;
2900
16620684 2901 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2902 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2903
9736e55b 2904 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2905
2906 return d;
00752703
PB
2907}
2908
66a6df1d 2909void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2910{
2911 phys_sections_free(&d->map);
2912 g_free(d);
2913}
2914
9458a9a1
PB
2915static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2916{
2917}
2918
2919static void tcg_log_global_after_sync(MemoryListener *listener)
2920{
2921 CPUAddressSpace *cpuas;
2922
2923 /* Wait for the CPU to end the current TB. This avoids the following
2924 * incorrect race:
2925 *
2926 * vCPU migration
2927 * ---------------------- -------------------------
2928 * TLB check -> slow path
2929 * notdirty_mem_write
2930 * write to RAM
2931 * mark dirty
2932 * clear dirty flag
2933 * TLB check -> fast path
2934 * read memory
2935 * write to RAM
2936 *
2937 * by pushing the migration thread's memory read after the vCPU thread has
2938 * written the memory.
2939 */
86cf9e15
PD
2940 if (replay_mode == REPLAY_MODE_NONE) {
2941 /*
2942 * VGA can make calls to this function while updating the screen.
2943 * In record/replay mode this causes a deadlock, because
2944 * run_on_cpu waits for rr mutex. Therefore no races are possible
2945 * in this case and no need for making run_on_cpu when
2946 * record/replay is not enabled.
2947 */
2948 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2949 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2950 }
9458a9a1
PB
2951}
2952
1d71148e 2953static void tcg_commit(MemoryListener *listener)
50c1e149 2954{
32857f4d
PM
2955 CPUAddressSpace *cpuas;
2956 AddressSpaceDispatch *d;
117712c3 2957
f28d0dfd 2958 assert(tcg_enabled());
117712c3
AK
2959 /* since each CPU stores ram addresses in its TLB cache, we must
2960 reset the modified entries */
32857f4d
PM
2961 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2962 cpu_reloading_memory_map();
2963 /* The CPU and TLB are protected by the iothread lock.
2964 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2965 * may have split the RCU critical section.
2966 */
66a6df1d 2967 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2968 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2969 tlb_flush(cpuas->cpu);
50c1e149
AK
2970}
2971
62152b8a
AK
2972static void memory_map_init(void)
2973{
7267c094 2974 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2975
57271d63 2976 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2977 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2978
7267c094 2979 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2980 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2981 65536);
7dca8043 2982 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2983}
2984
2985MemoryRegion *get_system_memory(void)
2986{
2987 return system_memory;
2988}
2989
309cb471
AK
2990MemoryRegion *get_system_io(void)
2991{
2992 return system_io;
2993}
2994
e2eef170
PB
2995#endif /* !defined(CONFIG_USER_ONLY) */
2996
13eb76e0
FB
2997/* physical memory access (slow version, mainly for debug) */
2998#if defined(CONFIG_USER_ONLY)
f17ec444 2999int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3000 void *ptr, target_ulong len, bool is_write)
13eb76e0 3001{
0c249ff7
LZ
3002 int flags;
3003 target_ulong l, page;
53a5960a 3004 void * p;
d7ef71ef 3005 uint8_t *buf = ptr;
13eb76e0
FB
3006
3007 while (len > 0) {
3008 page = addr & TARGET_PAGE_MASK;
3009 l = (page + TARGET_PAGE_SIZE) - addr;
3010 if (l > len)
3011 l = len;
3012 flags = page_get_flags(page);
3013 if (!(flags & PAGE_VALID))
a68fe89c 3014 return -1;
13eb76e0
FB
3015 if (is_write) {
3016 if (!(flags & PAGE_WRITE))
a68fe89c 3017 return -1;
579a97f7 3018 /* XXX: this code should not depend on lock_user */
72fb7daa 3019 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3020 return -1;
72fb7daa
AJ
3021 memcpy(p, buf, l);
3022 unlock_user(p, addr, l);
13eb76e0
FB
3023 } else {
3024 if (!(flags & PAGE_READ))
a68fe89c 3025 return -1;
579a97f7 3026 /* XXX: this code should not depend on lock_user */
72fb7daa 3027 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3028 return -1;
72fb7daa 3029 memcpy(buf, p, l);
5b257578 3030 unlock_user(p, addr, 0);
13eb76e0
FB
3031 }
3032 len -= l;
3033 buf += l;
3034 addr += l;
3035 }
a68fe89c 3036 return 0;
13eb76e0 3037}
8df1cd07 3038
13eb76e0 3039#else
51d7a9eb 3040
845b6214 3041static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3042 hwaddr length)
51d7a9eb 3043{
e87f7778 3044 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3045 addr += memory_region_get_ram_addr(mr);
3046
e87f7778
PB
3047 /* No early return if dirty_log_mask is or becomes 0, because
3048 * cpu_physical_memory_set_dirty_range will still call
3049 * xen_modified_memory.
3050 */
3051 if (dirty_log_mask) {
3052 dirty_log_mask =
3053 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3054 }
3055 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3056 assert(tcg_enabled());
e87f7778
PB
3057 tb_invalidate_phys_range(addr, addr + length);
3058 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3059 }
e87f7778 3060 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3061}
3062
047be4ed
SH
3063void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3064{
3065 /*
3066 * In principle this function would work on other memory region types too,
3067 * but the ROM device use case is the only one where this operation is
3068 * necessary. Other memory regions should use the
3069 * address_space_read/write() APIs.
3070 */
3071 assert(memory_region_is_romd(mr));
3072
3073 invalidate_and_set_dirty(mr, addr, size);
3074}
3075
23326164 3076static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3077{
e1622f4b 3078 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3079
3080 /* Regions are assumed to support 1-4 byte accesses unless
3081 otherwise specified. */
23326164
RH
3082 if (access_size_max == 0) {
3083 access_size_max = 4;
3084 }
3085
3086 /* Bound the maximum access by the alignment of the address. */
3087 if (!mr->ops->impl.unaligned) {
3088 unsigned align_size_max = addr & -addr;
3089 if (align_size_max != 0 && align_size_max < access_size_max) {
3090 access_size_max = align_size_max;
3091 }
82f2563f 3092 }
23326164
RH
3093
3094 /* Don't attempt accesses larger than the maximum. */
3095 if (l > access_size_max) {
3096 l = access_size_max;
82f2563f 3097 }
6554f5c0 3098 l = pow2floor(l);
23326164
RH
3099
3100 return l;
82f2563f
PB
3101}
3102
4840f10e 3103static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3104{
4840f10e
JK
3105 bool unlocked = !qemu_mutex_iothread_locked();
3106 bool release_lock = false;
3107
3108 if (unlocked && mr->global_locking) {
3109 qemu_mutex_lock_iothread();
3110 unlocked = false;
3111 release_lock = true;
3112 }
125b3806 3113 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3114 if (unlocked) {
3115 qemu_mutex_lock_iothread();
3116 }
125b3806 3117 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3118 if (unlocked) {
3119 qemu_mutex_unlock_iothread();
3120 }
125b3806 3121 }
4840f10e
JK
3122
3123 return release_lock;
125b3806
PB
3124}
3125
a203ac70 3126/* Called within RCU critical section. */
16620684
AK
3127static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3128 MemTxAttrs attrs,
a152be43 3129 const void *ptr,
0c249ff7 3130 hwaddr len, hwaddr addr1,
16620684 3131 hwaddr l, MemoryRegion *mr)
13eb76e0 3132{
20804676 3133 uint8_t *ram_ptr;
791af8c8 3134 uint64_t val;
3b643495 3135 MemTxResult result = MEMTX_OK;
4840f10e 3136 bool release_lock = false;
a152be43 3137 const uint8_t *buf = ptr;
3b46e624 3138
a203ac70 3139 for (;;) {
eb7eeb88
PB
3140 if (!memory_access_is_direct(mr, true)) {
3141 release_lock |= prepare_mmio_access(mr);
3142 l = memory_access_size(mr, l, addr1);
3143 /* XXX: could force current_cpu to NULL to avoid
3144 potential bugs */
9bf825bf 3145 val = ldn_he_p(buf, l);
3d9e7c3e 3146 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3147 size_memop(l), attrs);
13eb76e0 3148 } else {
eb7eeb88 3149 /* RAM case */
20804676
PMD
3150 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3151 memcpy(ram_ptr, buf, l);
eb7eeb88 3152 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3153 }
4840f10e
JK
3154
3155 if (release_lock) {
3156 qemu_mutex_unlock_iothread();
3157 release_lock = false;
3158 }
3159
13eb76e0
FB
3160 len -= l;
3161 buf += l;
3162 addr += l;
a203ac70
PB
3163
3164 if (!len) {
3165 break;
3166 }
3167
3168 l = len;
efa99a2f 3169 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3170 }
fd8aaa76 3171
3b643495 3172 return result;
13eb76e0 3173}
8df1cd07 3174
4c6ebbb3 3175/* Called from RCU critical section. */
16620684 3176static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3177 const void *buf, hwaddr len)
ac1970fb 3178{
eb7eeb88 3179 hwaddr l;
eb7eeb88
PB
3180 hwaddr addr1;
3181 MemoryRegion *mr;
3182 MemTxResult result = MEMTX_OK;
eb7eeb88 3183
4c6ebbb3 3184 l = len;
efa99a2f 3185 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3186 result = flatview_write_continue(fv, addr, attrs, buf, len,
3187 addr1, l, mr);
a203ac70
PB
3188
3189 return result;
3190}
3191
3192/* Called within RCU critical section. */
16620684 3193MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3194 MemTxAttrs attrs, void *ptr,
0c249ff7 3195 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3196 MemoryRegion *mr)
a203ac70 3197{
20804676 3198 uint8_t *ram_ptr;
a203ac70
PB
3199 uint64_t val;
3200 MemTxResult result = MEMTX_OK;
3201 bool release_lock = false;
a152be43 3202 uint8_t *buf = ptr;
eb7eeb88 3203
a203ac70 3204 for (;;) {
eb7eeb88
PB
3205 if (!memory_access_is_direct(mr, false)) {
3206 /* I/O case */
3207 release_lock |= prepare_mmio_access(mr);
3208 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3209 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3210 size_memop(l), attrs);
3211 stn_he_p(buf, l, val);
eb7eeb88
PB
3212 } else {
3213 /* RAM case */
20804676
PMD
3214 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3215 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3216 }
3217
3218 if (release_lock) {
3219 qemu_mutex_unlock_iothread();
3220 release_lock = false;
3221 }
3222
3223 len -= l;
3224 buf += l;
3225 addr += l;
a203ac70
PB
3226
3227 if (!len) {
3228 break;
3229 }
3230
3231 l = len;
efa99a2f 3232 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3233 }
3234
3235 return result;
3236}
3237
b2a44fca
PB
3238/* Called from RCU critical section. */
3239static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3240 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3241{
3242 hwaddr l;
3243 hwaddr addr1;
3244 MemoryRegion *mr;
eb7eeb88 3245
b2a44fca 3246 l = len;
efa99a2f 3247 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3248 return flatview_read_continue(fv, addr, attrs, buf, len,
3249 addr1, l, mr);
ac1970fb
AK
3250}
3251
b2a44fca 3252MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3253 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3254{
3255 MemTxResult result = MEMTX_OK;
3256 FlatView *fv;
3257
3258 if (len > 0) {
694ea274 3259 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3260 fv = address_space_to_flatview(as);
3261 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3262 }
3263
3264 return result;
3265}
3266
4c6ebbb3
PB
3267MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3268 MemTxAttrs attrs,
daa3dda4 3269 const void *buf, hwaddr len)
4c6ebbb3
PB
3270{
3271 MemTxResult result = MEMTX_OK;
3272 FlatView *fv;
3273
3274 if (len > 0) {
694ea274 3275 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3276 fv = address_space_to_flatview(as);
3277 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3278 }
3279
3280 return result;
3281}
3282
db84fd97 3283MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3284 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3285{
3286 if (is_write) {
3287 return address_space_write(as, addr, attrs, buf, len);
3288 } else {
3289 return address_space_read_full(as, addr, attrs, buf, len);
3290 }
3291}
3292
d7ef71ef 3293void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3294 hwaddr len, bool is_write)
ac1970fb 3295{
5c9eb028
PM
3296 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3297 buf, len, is_write);
ac1970fb
AK
3298}
3299
582b55a9
AG
3300enum write_rom_type {
3301 WRITE_DATA,
3302 FLUSH_CACHE,
3303};
3304
75693e14
PM
3305static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3306 hwaddr addr,
3307 MemTxAttrs attrs,
daa3dda4 3308 const void *ptr,
0c249ff7 3309 hwaddr len,
75693e14 3310 enum write_rom_type type)
d0ecd2aa 3311{
149f54b5 3312 hwaddr l;
20804676 3313 uint8_t *ram_ptr;
149f54b5 3314 hwaddr addr1;
5c8a00ce 3315 MemoryRegion *mr;
daa3dda4 3316 const uint8_t *buf = ptr;
3b46e624 3317
694ea274 3318 RCU_READ_LOCK_GUARD();
d0ecd2aa 3319 while (len > 0) {
149f54b5 3320 l = len;
75693e14 3321 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3322
5c8a00ce
PB
3323 if (!(memory_region_is_ram(mr) ||
3324 memory_region_is_romd(mr))) {
b242e0e0 3325 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3326 } else {
d0ecd2aa 3327 /* ROM/RAM case */
20804676 3328 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3329 switch (type) {
3330 case WRITE_DATA:
20804676 3331 memcpy(ram_ptr, buf, l);
845b6214 3332 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3333 break;
3334 case FLUSH_CACHE:
20804676 3335 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3336 break;
3337 }
d0ecd2aa
FB
3338 }
3339 len -= l;
3340 buf += l;
3341 addr += l;
3342 }
75693e14 3343 return MEMTX_OK;
d0ecd2aa
FB
3344}
3345
582b55a9 3346/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3347MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3348 MemTxAttrs attrs,
daa3dda4 3349 const void *buf, hwaddr len)
582b55a9 3350{
3c8133f9
PM
3351 return address_space_write_rom_internal(as, addr, attrs,
3352 buf, len, WRITE_DATA);
582b55a9
AG
3353}
3354
0c249ff7 3355void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3356{
3357 /*
3358 * This function should do the same thing as an icache flush that was
3359 * triggered from within the guest. For TCG we are always cache coherent,
3360 * so there is no need to flush anything. For KVM / Xen we need to flush
3361 * the host's instruction cache at least.
3362 */
3363 if (tcg_enabled()) {
3364 return;
3365 }
3366
75693e14
PM
3367 address_space_write_rom_internal(&address_space_memory,
3368 start, MEMTXATTRS_UNSPECIFIED,
3369 NULL, len, FLUSH_CACHE);
582b55a9
AG
3370}
3371
6d16c2f8 3372typedef struct {
d3e71559 3373 MemoryRegion *mr;
6d16c2f8 3374 void *buffer;
a8170e5e
AK
3375 hwaddr addr;
3376 hwaddr len;
c2cba0ff 3377 bool in_use;
6d16c2f8
AL
3378} BounceBuffer;
3379
3380static BounceBuffer bounce;
3381
ba223c29 3382typedef struct MapClient {
e95205e1 3383 QEMUBH *bh;
72cf2d4f 3384 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3385} MapClient;
3386
38e047b5 3387QemuMutex map_client_list_lock;
b58deb34 3388static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3389 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3390
e95205e1
FZ
3391static void cpu_unregister_map_client_do(MapClient *client)
3392{
3393 QLIST_REMOVE(client, link);
3394 g_free(client);
3395}
3396
33b6c2ed
FZ
3397static void cpu_notify_map_clients_locked(void)
3398{
3399 MapClient *client;
3400
3401 while (!QLIST_EMPTY(&map_client_list)) {
3402 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3403 qemu_bh_schedule(client->bh);
3404 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3405 }
3406}
3407
e95205e1 3408void cpu_register_map_client(QEMUBH *bh)
ba223c29 3409{
7267c094 3410 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3411
38e047b5 3412 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3413 client->bh = bh;
72cf2d4f 3414 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3415 if (!atomic_read(&bounce.in_use)) {
3416 cpu_notify_map_clients_locked();
3417 }
38e047b5 3418 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3419}
3420
38e047b5 3421void cpu_exec_init_all(void)
ba223c29 3422{
38e047b5 3423 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3424 /* The data structures we set up here depend on knowing the page size,
3425 * so no more changes can be made after this point.
3426 * In an ideal world, nothing we did before we had finished the
3427 * machine setup would care about the target page size, and we could
3428 * do this much later, rather than requiring board models to state
3429 * up front what their requirements are.
3430 */
3431 finalize_target_page_bits();
38e047b5 3432 io_mem_init();
680a4783 3433 memory_map_init();
38e047b5 3434 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3435}
3436
e95205e1 3437void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3438{
3439 MapClient *client;
3440
e95205e1
FZ
3441 qemu_mutex_lock(&map_client_list_lock);
3442 QLIST_FOREACH(client, &map_client_list, link) {
3443 if (client->bh == bh) {
3444 cpu_unregister_map_client_do(client);
3445 break;
3446 }
ba223c29 3447 }
e95205e1 3448 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3449}
3450
3451static void cpu_notify_map_clients(void)
3452{
38e047b5 3453 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3454 cpu_notify_map_clients_locked();
38e047b5 3455 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3456}
3457
0c249ff7 3458static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3459 bool is_write, MemTxAttrs attrs)
51644ab7 3460{
5c8a00ce 3461 MemoryRegion *mr;
51644ab7
PB
3462 hwaddr l, xlat;
3463
3464 while (len > 0) {
3465 l = len;
efa99a2f 3466 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3467 if (!memory_access_is_direct(mr, is_write)) {
3468 l = memory_access_size(mr, l, addr);
eace72b7 3469 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3470 return false;
3471 }
3472 }
3473
3474 len -= l;
3475 addr += l;
3476 }
3477 return true;
3478}
3479
16620684 3480bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3481 hwaddr len, bool is_write,
fddffa42 3482 MemTxAttrs attrs)
16620684 3483{
11e732a5
PB
3484 FlatView *fv;
3485 bool result;
3486
694ea274 3487 RCU_READ_LOCK_GUARD();
11e732a5 3488 fv = address_space_to_flatview(as);
eace72b7 3489 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3490 return result;
16620684
AK
3491}
3492
715c31ec 3493static hwaddr
16620684 3494flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3495 hwaddr target_len,
3496 MemoryRegion *mr, hwaddr base, hwaddr len,
3497 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3498{
3499 hwaddr done = 0;
3500 hwaddr xlat;
3501 MemoryRegion *this_mr;
3502
3503 for (;;) {
3504 target_len -= len;
3505 addr += len;
3506 done += len;
3507 if (target_len == 0) {
3508 return done;
3509 }
3510
3511 len = target_len;
16620684 3512 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3513 &len, is_write, attrs);
715c31ec
PB
3514 if (this_mr != mr || xlat != base + done) {
3515 return done;
3516 }
3517 }
3518}
3519
6d16c2f8
AL
3520/* Map a physical memory region into a host virtual address.
3521 * May map a subset of the requested range, given by and returned in *plen.
3522 * May return NULL if resources needed to perform the mapping are exhausted.
3523 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3524 * Use cpu_register_map_client() to know when retrying the map operation is
3525 * likely to succeed.
6d16c2f8 3526 */
ac1970fb 3527void *address_space_map(AddressSpace *as,
a8170e5e
AK
3528 hwaddr addr,
3529 hwaddr *plen,
f26404fb
PM
3530 bool is_write,
3531 MemTxAttrs attrs)
6d16c2f8 3532{
a8170e5e 3533 hwaddr len = *plen;
715c31ec
PB
3534 hwaddr l, xlat;
3535 MemoryRegion *mr;
e81bcda5 3536 void *ptr;
ad0c60fa 3537 FlatView *fv;
6d16c2f8 3538
e3127ae0
PB
3539 if (len == 0) {
3540 return NULL;
3541 }
38bee5dc 3542
e3127ae0 3543 l = len;
694ea274 3544 RCU_READ_LOCK_GUARD();
ad0c60fa 3545 fv = address_space_to_flatview(as);
efa99a2f 3546 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3547
e3127ae0 3548 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3549 if (atomic_xchg(&bounce.in_use, true)) {
77f55eac 3550 *plen = 0;
e3127ae0 3551 return NULL;
6d16c2f8 3552 }
e85d9db5
KW
3553 /* Avoid unbounded allocations */
3554 l = MIN(l, TARGET_PAGE_SIZE);
3555 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3556 bounce.addr = addr;
3557 bounce.len = l;
d3e71559
PB
3558
3559 memory_region_ref(mr);
3560 bounce.mr = mr;
e3127ae0 3561 if (!is_write) {
16620684 3562 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3563 bounce.buffer, l);
8ab934f9 3564 }
6d16c2f8 3565
e3127ae0
PB
3566 *plen = l;
3567 return bounce.buffer;
3568 }
3569
e3127ae0 3570
d3e71559 3571 memory_region_ref(mr);
16620684 3572 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3573 l, is_write, attrs);
f5aa69bd 3574 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3575
3576 return ptr;
6d16c2f8
AL
3577}
3578
ac1970fb 3579/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3580 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3581 * the amount of memory that was actually read or written by the caller.
3582 */
a8170e5e 3583void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3584 bool is_write, hwaddr access_len)
6d16c2f8
AL
3585{
3586 if (buffer != bounce.buffer) {
d3e71559
PB
3587 MemoryRegion *mr;
3588 ram_addr_t addr1;
3589
07bdaa41 3590 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3591 assert(mr != NULL);
6d16c2f8 3592 if (is_write) {
845b6214 3593 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3594 }
868bb33f 3595 if (xen_enabled()) {
e41d7c69 3596 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3597 }
d3e71559 3598 memory_region_unref(mr);
6d16c2f8
AL
3599 return;
3600 }
3601 if (is_write) {
5c9eb028
PM
3602 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3603 bounce.buffer, access_len);
6d16c2f8 3604 }
f8a83245 3605 qemu_vfree(bounce.buffer);
6d16c2f8 3606 bounce.buffer = NULL;
d3e71559 3607 memory_region_unref(bounce.mr);
c2cba0ff 3608 atomic_mb_set(&bounce.in_use, false);
ba223c29 3609 cpu_notify_map_clients();
6d16c2f8 3610}
d0ecd2aa 3611
a8170e5e
AK
3612void *cpu_physical_memory_map(hwaddr addr,
3613 hwaddr *plen,
28c80bfe 3614 bool is_write)
ac1970fb 3615{
f26404fb
PM
3616 return address_space_map(&address_space_memory, addr, plen, is_write,
3617 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3618}
3619
a8170e5e 3620void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3621 bool is_write, hwaddr access_len)
ac1970fb
AK
3622{
3623 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3624}
3625
0ce265ff
PB
3626#define ARG1_DECL AddressSpace *as
3627#define ARG1 as
3628#define SUFFIX
3629#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3630#define RCU_READ_LOCK(...) rcu_read_lock()
3631#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3632#include "memory_ldst.inc.c"
1e78bcc1 3633
1f4e496e
PB
3634int64_t address_space_cache_init(MemoryRegionCache *cache,
3635 AddressSpace *as,
3636 hwaddr addr,
3637 hwaddr len,
3638 bool is_write)
3639{
48564041
PB
3640 AddressSpaceDispatch *d;
3641 hwaddr l;
3642 MemoryRegion *mr;
3643
3644 assert(len > 0);
3645
3646 l = len;
3647 cache->fv = address_space_get_flatview(as);
3648 d = flatview_to_dispatch(cache->fv);
3649 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3650
3651 mr = cache->mrs.mr;
3652 memory_region_ref(mr);
3653 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3654 /* We don't care about the memory attributes here as we're only
3655 * doing this if we found actual RAM, which behaves the same
3656 * regardless of attributes; so UNSPECIFIED is fine.
3657 */
48564041 3658 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3659 cache->xlat, l, is_write,
3660 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3661 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3662 } else {
3663 cache->ptr = NULL;
3664 }
3665
3666 cache->len = l;
3667 cache->is_write = is_write;
3668 return l;
1f4e496e
PB
3669}
3670
3671void address_space_cache_invalidate(MemoryRegionCache *cache,
3672 hwaddr addr,
3673 hwaddr access_len)
3674{
48564041
PB
3675 assert(cache->is_write);
3676 if (likely(cache->ptr)) {
3677 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3678 }
1f4e496e
PB
3679}
3680
3681void address_space_cache_destroy(MemoryRegionCache *cache)
3682{
48564041
PB
3683 if (!cache->mrs.mr) {
3684 return;
3685 }
3686
3687 if (xen_enabled()) {
3688 xen_invalidate_map_cache_entry(cache->ptr);
3689 }
3690 memory_region_unref(cache->mrs.mr);
3691 flatview_unref(cache->fv);
3692 cache->mrs.mr = NULL;
3693 cache->fv = NULL;
3694}
3695
3696/* Called from RCU critical section. This function has the same
3697 * semantics as address_space_translate, but it only works on a
3698 * predefined range of a MemoryRegion that was mapped with
3699 * address_space_cache_init.
3700 */
3701static inline MemoryRegion *address_space_translate_cached(
3702 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3703 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3704{
3705 MemoryRegionSection section;
3706 MemoryRegion *mr;
3707 IOMMUMemoryRegion *iommu_mr;
3708 AddressSpace *target_as;
3709
3710 assert(!cache->ptr);
3711 *xlat = addr + cache->xlat;
3712
3713 mr = cache->mrs.mr;
3714 iommu_mr = memory_region_get_iommu(mr);
3715 if (!iommu_mr) {
3716 /* MMIO region. */
3717 return mr;
3718 }
3719
3720 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3721 NULL, is_write, true,
2f7b009c 3722 &target_as, attrs);
48564041
PB
3723 return section.mr;
3724}
3725
3726/* Called from RCU critical section. address_space_read_cached uses this
3727 * out of line function when the target is an MMIO or IOMMU region.
3728 */
38df19fa 3729MemTxResult
48564041 3730address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3731 void *buf, hwaddr len)
48564041
PB
3732{
3733 hwaddr addr1, l;
3734 MemoryRegion *mr;
3735
3736 l = len;
bc6b1cec
PM
3737 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3738 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3739 return flatview_read_continue(cache->fv,
3740 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3741 addr1, l, mr);
48564041
PB
3742}
3743
3744/* Called from RCU critical section. address_space_write_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3746 */
38df19fa 3747MemTxResult
48564041 3748address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3749 const void *buf, hwaddr len)
48564041
PB
3750{
3751 hwaddr addr1, l;
3752 MemoryRegion *mr;
3753
3754 l = len;
bc6b1cec
PM
3755 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3756 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3757 return flatview_write_continue(cache->fv,
3758 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3759 addr1, l, mr);
1f4e496e
PB
3760}
3761
3762#define ARG1_DECL MemoryRegionCache *cache
3763#define ARG1 cache
48564041
PB
3764#define SUFFIX _cached_slow
3765#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3766#define RCU_READ_LOCK() ((void)0)
3767#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3768#include "memory_ldst.inc.c"
3769
5e2972fd 3770/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3771int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3772 void *ptr, target_ulong len, bool is_write)
13eb76e0 3773{
a8170e5e 3774 hwaddr phys_addr;
0c249ff7 3775 target_ulong l, page;
d7ef71ef 3776 uint8_t *buf = ptr;
13eb76e0 3777
79ca7a1b 3778 cpu_synchronize_state(cpu);
13eb76e0 3779 while (len > 0) {
5232e4c7
PM
3780 int asidx;
3781 MemTxAttrs attrs;
ddfc8b96 3782 MemTxResult res;
5232e4c7 3783
13eb76e0 3784 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3785 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3786 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3787 /* if no physical page mapped, return an error */
3788 if (phys_addr == -1)
3789 return -1;
3790 l = (page + TARGET_PAGE_SIZE) - addr;
3791 if (l > len)
3792 l = len;
5e2972fd 3793 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3794 if (is_write) {
ddfc8b96
PMD
3795 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3796 attrs, buf, l);
2e38847b 3797 } else {
ddfc8b96
PMD
3798 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3799 attrs, buf, l);
3800 }
3801 if (res != MEMTX_OK) {
3802 return -1;
2e38847b 3803 }
13eb76e0
FB
3804 len -= l;
3805 buf += l;
3806 addr += l;
3807 }
3808 return 0;
3809}
038629a6
DDAG
3810
3811/*
3812 * Allows code that needs to deal with migration bitmaps etc to still be built
3813 * target independent.
3814 */
20afaed9 3815size_t qemu_target_page_size(void)
038629a6 3816{
20afaed9 3817 return TARGET_PAGE_SIZE;
038629a6
DDAG
3818}
3819
46d702b1
JQ
3820int qemu_target_page_bits(void)
3821{
3822 return TARGET_PAGE_BITS;
3823}
3824
3825int qemu_target_page_bits_min(void)
3826{
3827 return TARGET_PAGE_BITS_MIN;
3828}
a68fe89c 3829#endif
13eb76e0 3830
98ed8ecf 3831bool target_words_bigendian(void)
8e4a424b
BS
3832{
3833#if defined(TARGET_WORDS_BIGENDIAN)
3834 return true;
3835#else
3836 return false;
3837#endif
3838}
3839
76f35538 3840#ifndef CONFIG_USER_ONLY
a8170e5e 3841bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3842{
5c8a00ce 3843 MemoryRegion*mr;
149f54b5 3844 hwaddr l = 1;
41063e1e 3845 bool res;
76f35538 3846
694ea274 3847 RCU_READ_LOCK_GUARD();
5c8a00ce 3848 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3849 phys_addr, &phys_addr, &l, false,
3850 MEMTXATTRS_UNSPECIFIED);
76f35538 3851
41063e1e 3852 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3853 return res;
76f35538 3854}
bd2fa51f 3855
e3807054 3856int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3857{
3858 RAMBlock *block;
e3807054 3859 int ret = 0;
bd2fa51f 3860
694ea274 3861 RCU_READ_LOCK_GUARD();
99e15582 3862 RAMBLOCK_FOREACH(block) {
754cb9c0 3863 ret = func(block, opaque);
e3807054
DDAG
3864 if (ret) {
3865 break;
3866 }
bd2fa51f 3867 }
e3807054 3868 return ret;
bd2fa51f 3869}
d3a5038c
DDAG
3870
3871/*
3872 * Unmap pages of memory from start to start+length such that
3873 * they a) read as 0, b) Trigger whatever fault mechanism
3874 * the OS provides for postcopy.
3875 * The pages must be unmapped by the end of the function.
3876 * Returns: 0 on success, none-0 on failure
3877 *
3878 */
3879int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3880{
3881 int ret = -1;
3882
3883 uint8_t *host_startaddr = rb->host + start;
3884
619bd31d 3885 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3886 error_report("ram_block_discard_range: Unaligned start address: %p",
3887 host_startaddr);
3888 goto err;
3889 }
3890
3891 if ((start + length) <= rb->used_length) {
db144f70 3892 bool need_madvise, need_fallocate;
619bd31d 3893 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3894 error_report("ram_block_discard_range: Unaligned length: %zx",
3895 length);
d3a5038c
DDAG
3896 goto err;
3897 }
3898
3899 errno = ENOTSUP; /* If we are missing MADVISE etc */
3900
db144f70
DDAG
3901 /* The logic here is messy;
3902 * madvise DONTNEED fails for hugepages
3903 * fallocate works on hugepages and shmem
3904 */
3905 need_madvise = (rb->page_size == qemu_host_page_size);
3906 need_fallocate = rb->fd != -1;
3907 if (need_fallocate) {
3908 /* For a file, this causes the area of the file to be zero'd
3909 * if read, and for hugetlbfs also causes it to be unmapped
3910 * so a userfault will trigger.
e2fa71f5
DDAG
3911 */
3912#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3913 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3914 start, length);
db144f70
DDAG
3915 if (ret) {
3916 ret = -errno;
3917 error_report("ram_block_discard_range: Failed to fallocate "
3918 "%s:%" PRIx64 " +%zx (%d)",
3919 rb->idstr, start, length, ret);
3920 goto err;
3921 }
3922#else
3923 ret = -ENOSYS;
3924 error_report("ram_block_discard_range: fallocate not available/file"
3925 "%s:%" PRIx64 " +%zx (%d)",
3926 rb->idstr, start, length, ret);
3927 goto err;
e2fa71f5
DDAG
3928#endif
3929 }
db144f70
DDAG
3930 if (need_madvise) {
3931 /* For normal RAM this causes it to be unmapped,
3932 * for shared memory it causes the local mapping to disappear
3933 * and to fall back on the file contents (which we just
3934 * fallocate'd away).
3935 */
3936#if defined(CONFIG_MADVISE)
3937 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3938 if (ret) {
3939 ret = -errno;
3940 error_report("ram_block_discard_range: Failed to discard range "
3941 "%s:%" PRIx64 " +%zx (%d)",
3942 rb->idstr, start, length, ret);
3943 goto err;
3944 }
3945#else
3946 ret = -ENOSYS;
3947 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3948 "%s:%" PRIx64 " +%zx (%d)",
3949 rb->idstr, start, length, ret);
db144f70
DDAG
3950 goto err;
3951#endif
d3a5038c 3952 }
db144f70
DDAG
3953 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3954 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3955 } else {
3956 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3957 "/%zx/" RAM_ADDR_FMT")",
3958 rb->idstr, start, length, rb->used_length);
3959 }
3960
3961err:
3962 return ret;
3963}
3964
a4de8552
JH
3965bool ramblock_is_pmem(RAMBlock *rb)
3966{
3967 return rb->flags & RAM_PMEM;
3968}
3969
ec3f8c99 3970#endif
a0be0c58
YZ
3971
3972void page_size_init(void)
3973{
3974 /* NOTE: we can always suppose that qemu_host_page_size >=
3975 TARGET_PAGE_SIZE */
a0be0c58
YZ
3976 if (qemu_host_page_size == 0) {
3977 qemu_host_page_size = qemu_real_host_page_size;
3978 }
3979 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3980 qemu_host_page_size = TARGET_PAGE_SIZE;
3981 }
3982 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3983}
5e8fd947
AK
3984
3985#if !defined(CONFIG_USER_ONLY)
3986
b6b71cb5 3987static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3988{
3989 if (start == end - 1) {
b6b71cb5 3990 qemu_printf("\t%3d ", start);
5e8fd947 3991 } else {
b6b71cb5 3992 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3993 }
b6b71cb5 3994 qemu_printf(" skip=%d ", skip);
5e8fd947 3995 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3996 qemu_printf(" ptr=NIL");
5e8fd947 3997 } else if (!skip) {
b6b71cb5 3998 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3999 } else {
b6b71cb5 4000 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4001 }
b6b71cb5 4002 qemu_printf("\n");
5e8fd947
AK
4003}
4004
4005#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4006 int128_sub((size), int128_one())) : 0)
4007
b6b71cb5 4008void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4009{
4010 int i;
4011
b6b71cb5
MA
4012 qemu_printf(" Dispatch\n");
4013 qemu_printf(" Physical sections\n");
5e8fd947
AK
4014
4015 for (i = 0; i < d->map.sections_nb; ++i) {
4016 MemoryRegionSection *s = d->map.sections + i;
4017 const char *names[] = { " [unassigned]", " [not dirty]",
4018 " [ROM]", " [watch]" };
4019
b6b71cb5
MA
4020 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4021 " %s%s%s%s%s",
5e8fd947
AK
4022 i,
4023 s->offset_within_address_space,
4024 s->offset_within_address_space + MR_SIZE(s->mr->size),
4025 s->mr->name ? s->mr->name : "(noname)",
4026 i < ARRAY_SIZE(names) ? names[i] : "",
4027 s->mr == root ? " [ROOT]" : "",
4028 s == d->mru_section ? " [MRU]" : "",
4029 s->mr->is_iommu ? " [iommu]" : "");
4030
4031 if (s->mr->alias) {
b6b71cb5 4032 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4033 s->mr->alias->name : "noname");
4034 }
b6b71cb5 4035 qemu_printf("\n");
5e8fd947
AK
4036 }
4037
b6b71cb5 4038 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4039 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4040 for (i = 0; i < d->map.nodes_nb; ++i) {
4041 int j, jprev;
4042 PhysPageEntry prev;
4043 Node *n = d->map.nodes + i;
4044
b6b71cb5 4045 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4046
4047 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4048 PhysPageEntry *pe = *n + j;
4049
4050 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4051 continue;
4052 }
4053
b6b71cb5 4054 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4055
4056 jprev = j;
4057 prev = *pe;
4058 }
4059
4060 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4061 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4062 }
4063 }
4064}
4065
4066#endif