]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
roms: Add virtual Boot ROM for NPCM7xx SoCs
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
243af022 53#include "trace/trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
ce317be9
JL
80#ifdef CONFIG_LIBDAXCTL
81#include <daxctl/libdaxctl.h>
82#endif
83
db7b5426 84//#define DEBUG_SUBPAGE
1196be37 85
e2eef170 86#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
87/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
0d53d9fe 90RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
91
92static MemoryRegion *system_memory;
309cb471 93static MemoryRegion *system_io;
62152b8a 94
f6790af6
AK
95AddressSpace address_space_io;
96AddressSpace address_space_memory;
2673a5da 97
acc9d80b 98static MemoryRegion io_mem_unassigned;
e2eef170 99#endif
9fa3e853 100
a0be0c58
YZ
101uintptr_t qemu_host_page_size;
102intptr_t qemu_host_page_mask;
a0be0c58 103
e2eef170 104#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
105/* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108int use_icount;
4346ae3e 109
1db8abb1
PB
110typedef struct PhysPageEntry PhysPageEntry;
111
112struct PhysPageEntry {
9736e55b 113 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 114 uint32_t skip : 6;
9736e55b 115 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 116 uint32_t ptr : 26;
1db8abb1
PB
117};
118
8b795765
MT
119#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
120
03f49957 121/* Size of the L2 (and L3, etc) page tables. */
57271d63 122#define ADDR_SPACE_BITS 64
03f49957 123
026736ce 124#define P_L2_BITS 9
03f49957
PB
125#define P_L2_SIZE (1 << P_L2_BITS)
126
127#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
128
129typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 130
53cb28cb 131typedef struct PhysPageMap {
79e2b9ae
PB
132 struct rcu_head rcu;
133
53cb28cb
MA
134 unsigned sections_nb;
135 unsigned sections_nb_alloc;
136 unsigned nodes_nb;
137 unsigned nodes_nb_alloc;
138 Node *nodes;
139 MemoryRegionSection *sections;
140} PhysPageMap;
141
1db8abb1 142struct AddressSpaceDispatch {
729633c2 143 MemoryRegionSection *mru_section;
1db8abb1
PB
144 /* This is a multi-level map on the physical address space.
145 * The bottom level has pointers to MemoryRegionSections.
146 */
147 PhysPageEntry phys_map;
53cb28cb 148 PhysPageMap map;
1db8abb1
PB
149};
150
90260c6c
JK
151#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152typedef struct subpage_t {
153 MemoryRegion iomem;
16620684 154 FlatView *fv;
90260c6c 155 hwaddr base;
2615fabd 156 uint16_t sub_section[];
90260c6c
JK
157} subpage_t;
158
b41aac4f 159#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 160
e2eef170 161static void io_mem_init(void);
62152b8a 162static void memory_map_init(void);
9458a9a1 163static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 164static void tcg_commit(MemoryListener *listener);
e2eef170 165
32857f4d
PM
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
8deaf12c
GH
180struct DirtyBitmapSnapshot {
181 ram_addr_t start;
182 ram_addr_t end;
183 unsigned long dirty[];
184};
185
6658ffb8 186#endif
fd6ce8f6 187
6d9a1304 188#if !defined(CONFIG_USER_ONLY)
d6f2ea22 189
53cb28cb 190static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 191{
101420b8 192 static unsigned alloc_hint = 16;
53cb28cb 193 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 194 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 195 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 196 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 197 }
f7bf5461
AK
198}
199
db94604b 200static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
201{
202 unsigned i;
8b795765 203 uint32_t ret;
db94604b
PB
204 PhysPageEntry e;
205 PhysPageEntry *p;
f7bf5461 206
53cb28cb 207 ret = map->nodes_nb++;
db94604b 208 p = map->nodes[ret];
f7bf5461 209 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 210 assert(ret != map->nodes_nb_alloc);
db94604b
PB
211
212 e.skip = leaf ? 0 : 1;
213 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 214 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 215 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 216 }
f7bf5461 217 return ret;
d6f2ea22
AK
218}
219
53cb28cb 220static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 221 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 222 int level)
f7bf5461
AK
223{
224 PhysPageEntry *p;
03f49957 225 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 226
9736e55b 227 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 228 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 229 }
db94604b 230 p = map->nodes[lp->ptr];
03f49957 231 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 232
03f49957 233 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 234 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 235 lp->skip = 0;
c19e8800 236 lp->ptr = leaf;
07f07b31
AK
237 *index += step;
238 *nb -= step;
2999097b 239 } else {
53cb28cb 240 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
241 }
242 ++lp;
f7bf5461
AK
243 }
244}
245
ac1970fb 246static void phys_page_set(AddressSpaceDispatch *d,
56b15076 247 hwaddr index, uint64_t nb,
2999097b 248 uint16_t leaf)
f7bf5461 249{
2999097b 250 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 251 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 252
53cb28cb 253 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
254}
255
b35ba30f
MT
256/* Compact a non leaf page entry. Simply detect that the entry has a single child,
257 * and update our entry so we can skip it and go directly to the destination.
258 */
efee678d 259static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
260{
261 unsigned valid_ptr = P_L2_SIZE;
262 int valid = 0;
263 PhysPageEntry *p;
264 int i;
265
266 if (lp->ptr == PHYS_MAP_NODE_NIL) {
267 return;
268 }
269
270 p = nodes[lp->ptr];
271 for (i = 0; i < P_L2_SIZE; i++) {
272 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
273 continue;
274 }
275
276 valid_ptr = i;
277 valid++;
278 if (p[i].skip) {
efee678d 279 phys_page_compact(&p[i], nodes);
b35ba30f
MT
280 }
281 }
282
283 /* We can only compress if there's only one child. */
284 if (valid != 1) {
285 return;
286 }
287
288 assert(valid_ptr < P_L2_SIZE);
289
290 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
291 if (P_L2_LEVELS >= (1 << 6) &&
292 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
293 return;
294 }
295
296 lp->ptr = p[valid_ptr].ptr;
297 if (!p[valid_ptr].skip) {
298 /* If our only child is a leaf, make this a leaf. */
299 /* By design, we should have made this node a leaf to begin with so we
300 * should never reach here.
301 * But since it's so simple to handle this, let's do it just in case we
302 * change this rule.
303 */
304 lp->skip = 0;
305 } else {
306 lp->skip += p[valid_ptr].skip;
307 }
308}
309
8629d3fc 310void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 311{
b35ba30f 312 if (d->phys_map.skip) {
efee678d 313 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
314 }
315}
316
29cb533d
FZ
317static inline bool section_covers_addr(const MemoryRegionSection *section,
318 hwaddr addr)
319{
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
322 */
258dfaaa 323 return int128_gethi(section->size) ||
29cb533d 324 range_covers_byte(section->offset_within_address_space,
258dfaaa 325 int128_getlo(section->size), addr);
29cb533d
FZ
326}
327
003a0cf2 328static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 329{
003a0cf2
PX
330 PhysPageEntry lp = d->phys_map, *p;
331 Node *nodes = d->map.nodes;
332 MemoryRegionSection *sections = d->map.sections;
97115a8d 333 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 334 int i;
f1f6e3b8 335
9736e55b 336 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 337 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 338 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 339 }
9affd6fc 340 p = nodes[lp.ptr];
03f49957 341 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 342 }
b35ba30f 343
29cb533d 344 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
345 return &sections[lp.ptr];
346 } else {
347 return &sections[PHYS_SECTION_UNASSIGNED];
348 }
f3705d53
AK
349}
350
79e2b9ae 351/* Called from RCU critical section */
c7086b4a 352static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
353 hwaddr addr,
354 bool resolve_subpage)
9f029603 355{
729633c2 356 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
357 subpage_t *subpage;
358
07c114bb
PB
359 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
360 !section_covers_addr(section, addr)) {
003a0cf2 361 section = phys_page_find(d, addr);
07c114bb 362 atomic_set(&d->mru_section, section);
729633c2 363 }
90260c6c
JK
364 if (resolve_subpage && section->mr->subpage) {
365 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 366 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
367 }
368 return section;
9f029603
JK
369}
370
79e2b9ae 371/* Called from RCU critical section */
90260c6c 372static MemoryRegionSection *
c7086b4a 373address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 374 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
375{
376 MemoryRegionSection *section;
965eb2fc 377 MemoryRegion *mr;
a87f3954 378 Int128 diff;
149f54b5 379
c7086b4a 380 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
381 /* Compute offset within MemoryRegionSection */
382 addr -= section->offset_within_address_space;
383
384 /* Compute offset within MemoryRegion */
385 *xlat = addr + section->offset_within_region;
386
965eb2fc 387 mr = section->mr;
b242e0e0
PB
388
389 /* MMIO registers can be expected to perform full-width accesses based only
390 * on their address, without considering adjacent registers that could
391 * decode to completely different MemoryRegions. When such registers
392 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
393 * regions overlap wildly. For this reason we cannot clamp the accesses
394 * here.
395 *
396 * If the length is small (as is the case for address_space_ldl/stl),
397 * everything works fine. If the incoming length is large, however,
398 * the caller really has to do the clamping through memory_access_size.
399 */
965eb2fc 400 if (memory_region_is_ram(mr)) {
e4a511f8 401 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
402 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
403 }
149f54b5
PB
404 return section;
405}
90260c6c 406
a411c84b
PB
407/**
408 * address_space_translate_iommu - translate an address through an IOMMU
409 * memory region and then through the target address space.
410 *
411 * @iommu_mr: the IOMMU memory region that we start the translation from
412 * @addr: the address to be translated through the MMU
413 * @xlat: the translated address offset within the destination memory region.
414 * It cannot be %NULL.
415 * @plen_out: valid read/write length of the translated address. It
416 * cannot be %NULL.
417 * @page_mask_out: page mask for the translated address. This
418 * should only be meaningful for IOMMU translated
419 * addresses, since there may be huge pages that this bit
420 * would tell. It can be %NULL if we don't care about it.
421 * @is_write: whether the translation operation is for write
422 * @is_mmio: whether this can be MMIO, set true if it can
423 * @target_as: the address space targeted by the IOMMU
2f7b009c 424 * @attrs: transaction attributes
a411c84b
PB
425 *
426 * This function is called from RCU critical section. It is the common
427 * part of flatview_do_translate and address_space_translate_cached.
428 */
429static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
430 hwaddr *xlat,
431 hwaddr *plen_out,
432 hwaddr *page_mask_out,
433 bool is_write,
434 bool is_mmio,
2f7b009c
PM
435 AddressSpace **target_as,
436 MemTxAttrs attrs)
a411c84b
PB
437{
438 MemoryRegionSection *section;
439 hwaddr page_mask = (hwaddr)-1;
440
441 do {
442 hwaddr addr = *xlat;
443 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
444 int iommu_idx = 0;
445 IOMMUTLBEntry iotlb;
446
447 if (imrc->attrs_to_index) {
448 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
449 }
450
451 iotlb = imrc->translate(iommu_mr, addr, is_write ?
452 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
453
454 if (!(iotlb.perm & (1 << is_write))) {
455 goto unassigned;
456 }
457
458 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
459 | (addr & iotlb.addr_mask));
460 page_mask &= iotlb.addr_mask;
461 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
462 *target_as = iotlb.target_as;
463
464 section = address_space_translate_internal(
465 address_space_to_dispatch(iotlb.target_as), addr, xlat,
466 plen_out, is_mmio);
467
468 iommu_mr = memory_region_get_iommu(section->mr);
469 } while (unlikely(iommu_mr));
470
471 if (page_mask_out) {
472 *page_mask_out = page_mask;
473 }
474 return *section;
475
476unassigned:
477 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
478}
479
d5e5fafd
PX
480/**
481 * flatview_do_translate - translate an address in FlatView
482 *
483 * @fv: the flat view that we want to translate on
484 * @addr: the address to be translated in above address space
485 * @xlat: the translated address offset within memory region. It
486 * cannot be @NULL.
487 * @plen_out: valid read/write length of the translated address. It
488 * can be @NULL when we don't care about it.
489 * @page_mask_out: page mask for the translated address. This
490 * should only be meaningful for IOMMU translated
491 * addresses, since there may be huge pages that this bit
492 * would tell. It can be @NULL if we don't care about it.
493 * @is_write: whether the translation operation is for write
494 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 495 * @target_as: the address space targeted by the IOMMU
49e14aa8 496 * @attrs: memory transaction attributes
d5e5fafd
PX
497 *
498 * This function is called from RCU critical section
499 */
16620684
AK
500static MemoryRegionSection flatview_do_translate(FlatView *fv,
501 hwaddr addr,
502 hwaddr *xlat,
d5e5fafd
PX
503 hwaddr *plen_out,
504 hwaddr *page_mask_out,
16620684
AK
505 bool is_write,
506 bool is_mmio,
49e14aa8
PM
507 AddressSpace **target_as,
508 MemTxAttrs attrs)
052c8fa9 509{
052c8fa9 510 MemoryRegionSection *section;
3df9d748 511 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
512 hwaddr plen = (hwaddr)(-1);
513
ad2804d9
PB
514 if (!plen_out) {
515 plen_out = &plen;
d5e5fafd 516 }
052c8fa9 517
a411c84b
PB
518 section = address_space_translate_internal(
519 flatview_to_dispatch(fv), addr, xlat,
520 plen_out, is_mmio);
052c8fa9 521
a411c84b
PB
522 iommu_mr = memory_region_get_iommu(section->mr);
523 if (unlikely(iommu_mr)) {
524 return address_space_translate_iommu(iommu_mr, xlat,
525 plen_out, page_mask_out,
526 is_write, is_mmio,
2f7b009c 527 target_as, attrs);
052c8fa9 528 }
d5e5fafd 529 if (page_mask_out) {
a411c84b
PB
530 /* Not behind an IOMMU, use default page size. */
531 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
532 }
533
a764040c 534 return *section;
052c8fa9
JW
535}
536
537/* Called from RCU critical section */
a764040c 538IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 539 bool is_write, MemTxAttrs attrs)
90260c6c 540{
a764040c 541 MemoryRegionSection section;
076a93d7 542 hwaddr xlat, page_mask;
30951157 543
076a93d7
PX
544 /*
545 * This can never be MMIO, and we don't really care about plen,
546 * but page mask.
547 */
548 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
549 NULL, &page_mask, is_write, false, &as,
550 attrs);
30951157 551
a764040c
PX
552 /* Illegal translation */
553 if (section.mr == &io_mem_unassigned) {
554 goto iotlb_fail;
555 }
30951157 556
a764040c
PX
557 /* Convert memory region offset into address space offset */
558 xlat += section.offset_within_address_space -
559 section.offset_within_region;
560
a764040c 561 return (IOMMUTLBEntry) {
e76bb18f 562 .target_as = as,
076a93d7
PX
563 .iova = addr & ~page_mask,
564 .translated_addr = xlat & ~page_mask,
565 .addr_mask = page_mask,
a764040c
PX
566 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
567 .perm = IOMMU_RW,
568 };
569
570iotlb_fail:
571 return (IOMMUTLBEntry) {0};
572}
573
574/* Called from RCU critical section */
16620684 575MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
576 hwaddr *plen, bool is_write,
577 MemTxAttrs attrs)
a764040c
PX
578{
579 MemoryRegion *mr;
580 MemoryRegionSection section;
16620684 581 AddressSpace *as = NULL;
a764040c
PX
582
583 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 584 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 585 is_write, true, &as, attrs);
a764040c
PX
586 mr = section.mr;
587
fe680d0d 588 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 589 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 590 *plen = MIN(page, *plen);
a87f3954
PB
591 }
592
30951157 593 return mr;
90260c6c
JK
594}
595
1f871c5e
PM
596typedef struct TCGIOMMUNotifier {
597 IOMMUNotifier n;
598 MemoryRegion *mr;
599 CPUState *cpu;
600 int iommu_idx;
601 bool active;
602} TCGIOMMUNotifier;
603
604static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
605{
606 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
607
608 if (!notifier->active) {
609 return;
610 }
611 tlb_flush(notifier->cpu);
612 notifier->active = false;
613 /* We leave the notifier struct on the list to avoid reallocating it later.
614 * Generally the number of IOMMUs a CPU deals with will be small.
615 * In any case we can't unregister the iommu notifier from a notify
616 * callback.
617 */
618}
619
620static void tcg_register_iommu_notifier(CPUState *cpu,
621 IOMMUMemoryRegion *iommu_mr,
622 int iommu_idx)
623{
624 /* Make sure this CPU has an IOMMU notifier registered for this
625 * IOMMU/IOMMU index combination, so that we can flush its TLB
626 * when the IOMMU tells us the mappings we've cached have changed.
627 */
628 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
629 TCGIOMMUNotifier *notifier;
549d4005
EA
630 Error *err = NULL;
631 int i, ret;
1f871c5e
PM
632
633 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 634 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
635 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
636 break;
637 }
638 }
639 if (i == cpu->iommu_notifiers->len) {
640 /* Not found, add a new entry at the end of the array */
641 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
642 notifier = g_new0(TCGIOMMUNotifier, 1);
643 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
644
645 notifier->mr = mr;
646 notifier->iommu_idx = iommu_idx;
647 notifier->cpu = cpu;
648 /* Rather than trying to register interest in the specific part
649 * of the iommu's address space that we've accessed and then
650 * expand it later as subsequent accesses touch more of it, we
651 * just register interest in the whole thing, on the assumption
652 * that iommu reconfiguration will be rare.
653 */
654 iommu_notifier_init(&notifier->n,
655 tcg_iommu_unmap_notify,
656 IOMMU_NOTIFIER_UNMAP,
657 0,
658 HWADDR_MAX,
659 iommu_idx);
549d4005
EA
660 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
661 &err);
662 if (ret) {
663 error_report_err(err);
664 exit(1);
665 }
1f871c5e
PM
666 }
667
668 if (!notifier->active) {
669 notifier->active = true;
670 }
671}
672
673static void tcg_iommu_free_notifier_list(CPUState *cpu)
674{
675 /* Destroy the CPU's notifier list */
676 int i;
677 TCGIOMMUNotifier *notifier;
678
679 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 680 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 681 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 682 g_free(notifier);
1f871c5e
PM
683 }
684 g_array_free(cpu->iommu_notifiers, true);
685}
686
79e2b9ae 687/* Called from RCU critical section */
90260c6c 688MemoryRegionSection *
d7898cda 689address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
690 hwaddr *xlat, hwaddr *plen,
691 MemTxAttrs attrs, int *prot)
90260c6c 692{
30951157 693 MemoryRegionSection *section;
1f871c5e
PM
694 IOMMUMemoryRegion *iommu_mr;
695 IOMMUMemoryRegionClass *imrc;
696 IOMMUTLBEntry iotlb;
697 int iommu_idx;
f35e44e7 698 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 699
1f871c5e
PM
700 for (;;) {
701 section = address_space_translate_internal(d, addr, &addr, plen, false);
702
703 iommu_mr = memory_region_get_iommu(section->mr);
704 if (!iommu_mr) {
705 break;
706 }
707
708 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
709
710 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
711 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
712 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
713 * doesn't short-cut its translation table walk.
714 */
715 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
716 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
717 | (addr & iotlb.addr_mask));
718 /* Update the caller's prot bits to remove permissions the IOMMU
719 * is giving us a failure response for. If we get down to no
720 * permissions left at all we can give up now.
721 */
722 if (!(iotlb.perm & IOMMU_RO)) {
723 *prot &= ~(PAGE_READ | PAGE_EXEC);
724 }
725 if (!(iotlb.perm & IOMMU_WO)) {
726 *prot &= ~PAGE_WRITE;
727 }
728
729 if (!*prot) {
730 goto translate_fail;
731 }
732
733 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
734 }
30951157 735
3df9d748 736 assert(!memory_region_is_iommu(section->mr));
1f871c5e 737 *xlat = addr;
30951157 738 return section;
1f871c5e
PM
739
740translate_fail:
741 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 742}
5b6dd868 743#endif
fd6ce8f6 744
b170fce3 745#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
746
747static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 748{
259186a7 749 CPUState *cpu = opaque;
a513fe19 750
5b6dd868
BS
751 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
752 version_id is increased. */
259186a7 753 cpu->interrupt_request &= ~0x01;
d10eb08f 754 tlb_flush(cpu);
5b6dd868 755
15a356c4
PD
756 /* loadvm has just updated the content of RAM, bypassing the
757 * usual mechanisms that ensure we flush TBs for writes to
758 * memory we've translated code from. So we must flush all TBs,
759 * which will now be stale.
760 */
761 tb_flush(cpu);
762
5b6dd868 763 return 0;
a513fe19 764}
7501267e 765
6c3bff0e
PD
766static int cpu_common_pre_load(void *opaque)
767{
768 CPUState *cpu = opaque;
769
adee6424 770 cpu->exception_index = -1;
6c3bff0e
PD
771
772 return 0;
773}
774
775static bool cpu_common_exception_index_needed(void *opaque)
776{
777 CPUState *cpu = opaque;
778
adee6424 779 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
780}
781
782static const VMStateDescription vmstate_cpu_common_exception_index = {
783 .name = "cpu_common/exception_index",
784 .version_id = 1,
785 .minimum_version_id = 1,
5cd8cada 786 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
787 .fields = (VMStateField[]) {
788 VMSTATE_INT32(exception_index, CPUState),
789 VMSTATE_END_OF_LIST()
790 }
791};
792
bac05aa9
AS
793static bool cpu_common_crash_occurred_needed(void *opaque)
794{
795 CPUState *cpu = opaque;
796
797 return cpu->crash_occurred;
798}
799
800static const VMStateDescription vmstate_cpu_common_crash_occurred = {
801 .name = "cpu_common/crash_occurred",
802 .version_id = 1,
803 .minimum_version_id = 1,
804 .needed = cpu_common_crash_occurred_needed,
805 .fields = (VMStateField[]) {
806 VMSTATE_BOOL(crash_occurred, CPUState),
807 VMSTATE_END_OF_LIST()
808 }
809};
810
1a1562f5 811const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
812 .name = "cpu_common",
813 .version_id = 1,
814 .minimum_version_id = 1,
6c3bff0e 815 .pre_load = cpu_common_pre_load,
5b6dd868 816 .post_load = cpu_common_post_load,
35d08458 817 .fields = (VMStateField[]) {
259186a7
AF
818 VMSTATE_UINT32(halted, CPUState),
819 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 820 VMSTATE_END_OF_LIST()
6c3bff0e 821 },
5cd8cada
JQ
822 .subsections = (const VMStateDescription*[]) {
823 &vmstate_cpu_common_exception_index,
bac05aa9 824 &vmstate_cpu_common_crash_occurred,
5cd8cada 825 NULL
5b6dd868
BS
826 }
827};
1a1562f5 828
80ceb07a
PX
829void cpu_address_space_init(CPUState *cpu, int asidx,
830 const char *prefix, MemoryRegion *mr)
09daed84 831{
12ebc9a7 832 CPUAddressSpace *newas;
80ceb07a 833 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 834 char *as_name;
80ceb07a
PX
835
836 assert(mr);
87a621d8
PX
837 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
838 address_space_init(as, mr, as_name);
839 g_free(as_name);
12ebc9a7
PM
840
841 /* Target code should have set num_ases before calling us */
842 assert(asidx < cpu->num_ases);
843
56943e8c
PM
844 if (asidx == 0) {
845 /* address space 0 gets the convenience alias */
846 cpu->as = as;
847 }
848
12ebc9a7
PM
849 /* KVM cannot currently support multiple address spaces. */
850 assert(asidx == 0 || !kvm_enabled());
09daed84 851
12ebc9a7
PM
852 if (!cpu->cpu_ases) {
853 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 854 }
32857f4d 855
12ebc9a7
PM
856 newas = &cpu->cpu_ases[asidx];
857 newas->cpu = cpu;
858 newas->as = as;
56943e8c 859 if (tcg_enabled()) {
9458a9a1 860 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
861 newas->tcg_as_listener.commit = tcg_commit;
862 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 863 }
09daed84 864}
651a5bc0
PM
865
866AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
867{
868 /* Return the AddressSpace corresponding to the specified index */
869 return cpu->cpu_ases[asidx].as;
870}
09daed84
EI
871#endif
872
7bbc124e 873void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 874{
9dfeca7c
BR
875 CPUClass *cc = CPU_GET_CLASS(cpu);
876
816d9be5 877 tlb_destroy(cpu);
267f685b 878 cpu_list_remove(cpu);
9dfeca7c
BR
879
880 if (cc->vmsd != NULL) {
881 vmstate_unregister(NULL, cc->vmsd, cpu);
882 }
883 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
884 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
885 }
1f871c5e
PM
886#ifndef CONFIG_USER_ONLY
887 tcg_iommu_free_notifier_list(cpu);
888#endif
1c59eb39
BR
889}
890
c7e002c5
FZ
891Property cpu_common_props[] = {
892#ifndef CONFIG_USER_ONLY
893 /* Create a memory property for softmmu CPU object,
2e5b09fd 894 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
895 * because that file is compiled only once for both user-mode
896 * and system builds.) The default if no link is set up is to use
897 * the system address space.
898 */
899 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
900 MemoryRegion *),
901#endif
c1b70158 902 DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false),
c7e002c5
FZ
903 DEFINE_PROP_END_OF_LIST(),
904};
905
39e329e3 906void cpu_exec_initfn(CPUState *cpu)
ea041c0e 907{
56943e8c 908 cpu->as = NULL;
12ebc9a7 909 cpu->num_ases = 0;
56943e8c 910
291135b5 911#ifndef CONFIG_USER_ONLY
291135b5 912 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
913 cpu->memory = system_memory;
914 object_ref(OBJECT(cpu->memory));
291135b5 915#endif
39e329e3
LV
916}
917
ce5b1bbf 918void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 919{
55c3ceef 920 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 921 static bool tcg_target_initialized;
291135b5 922
267f685b 923 cpu_list_add(cpu);
1bc7e522 924
2dda6354
EC
925 if (tcg_enabled() && !tcg_target_initialized) {
926 tcg_target_initialized = true;
55c3ceef
RH
927 cc->tcg_initialize();
928 }
5005e253 929 tlb_init(cpu);
55c3ceef 930
30865f31
EC
931 qemu_plugin_vcpu_init_hook(cpu);
932
3e07593a
PMD
933#ifdef CONFIG_USER_ONLY
934 assert(cc->vmsd == NULL);
935#else /* !CONFIG_USER_ONLY */
e0d47944 936 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 937 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 938 }
b170fce3 939 if (cc->vmsd != NULL) {
741da0d3 940 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 941 }
1f871c5e 942
5601be3b 943 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 944#endif
ea041c0e
FB
945}
946
c1c8cfe5 947const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
948{
949 ObjectClass *oc;
950 CPUClass *cc;
951 gchar **model_pieces;
952 const char *cpu_type;
953
c1c8cfe5 954 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
955 if (!model_pieces[0]) {
956 error_report("-cpu option cannot be empty");
957 exit(1);
958 }
2278b939
IM
959
960 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
961 if (oc == NULL) {
962 error_report("unable to find CPU model '%s'", model_pieces[0]);
963 g_strfreev(model_pieces);
964 exit(EXIT_FAILURE);
965 }
966
967 cpu_type = object_class_get_name(oc);
968 cc = CPU_CLASS(oc);
969 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
970 g_strfreev(model_pieces);
971 return cpu_type;
972}
973
c40d4792 974#if defined(CONFIG_USER_ONLY)
8bca9a03 975void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 976{
406bc339 977 mmap_lock();
ce9f5e27 978 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
979 mmap_unlock();
980}
8bca9a03
PB
981
982static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
983{
984 tb_invalidate_phys_addr(pc);
985}
406bc339 986#else
8bca9a03
PB
987void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
988{
989 ram_addr_t ram_addr;
990 MemoryRegion *mr;
991 hwaddr l = 1;
992
c40d4792
PB
993 if (!tcg_enabled()) {
994 return;
995 }
996
694ea274 997 RCU_READ_LOCK_GUARD();
8bca9a03
PB
998 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
999 if (!(memory_region_is_ram(mr)
1000 || memory_region_is_romd(mr))) {
8bca9a03
PB
1001 return;
1002 }
1003 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1004 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1005}
1006
406bc339
PK
1007static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1008{
b55f54bc
MF
1009 /*
1010 * There may not be a virtual to physical translation for the pc
1011 * right now, but there may exist cached TB for this pc.
1012 * Flush the whole TB cache to force re-translation of such TBs.
1013 * This is heavyweight, but we're debugging anyway.
1014 */
1015 tb_flush(cpu);
1e7855a5 1016}
406bc339 1017#endif
d720b93d 1018
74841f04 1019#ifndef CONFIG_USER_ONLY
6658ffb8 1020/* Add a watchpoint. */
75a34036 1021int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1022 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1023{
c0ce998e 1024 CPUWatchpoint *wp;
2e886a24 1025 vaddr in_page;
6658ffb8 1026
05068c0d 1027 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1028 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1029 error_report("tried to set invalid watchpoint at %"
1030 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1031 return -EINVAL;
1032 }
7267c094 1033 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1034
1035 wp->vaddr = addr;
05068c0d 1036 wp->len = len;
a1d1bb31
AL
1037 wp->flags = flags;
1038
2dc9f411 1039 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1040 if (flags & BP_GDB) {
1041 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1042 } else {
1043 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1044 }
6658ffb8 1045
2e886a24
AB
1046 in_page = -(addr | TARGET_PAGE_MASK);
1047 if (len <= in_page) {
1048 tlb_flush_page(cpu, addr);
1049 } else {
1050 tlb_flush(cpu);
1051 }
a1d1bb31
AL
1052
1053 if (watchpoint)
1054 *watchpoint = wp;
1055 return 0;
6658ffb8
PB
1056}
1057
a1d1bb31 1058/* Remove a specific watchpoint. */
75a34036 1059int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1060 int flags)
6658ffb8 1061{
a1d1bb31 1062 CPUWatchpoint *wp;
6658ffb8 1063
ff4700b0 1064 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1065 if (addr == wp->vaddr && len == wp->len
6e140f28 1066 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1067 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1068 return 0;
1069 }
1070 }
a1d1bb31 1071 return -ENOENT;
6658ffb8
PB
1072}
1073
a1d1bb31 1074/* Remove a specific watchpoint by reference. */
75a34036 1075void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1076{
ff4700b0 1077 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1078
31b030d4 1079 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1080
7267c094 1081 g_free(watchpoint);
a1d1bb31
AL
1082}
1083
1084/* Remove all matching watchpoints. */
75a34036 1085void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1086{
c0ce998e 1087 CPUWatchpoint *wp, *next;
a1d1bb31 1088
ff4700b0 1089 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1090 if (wp->flags & mask) {
1091 cpu_watchpoint_remove_by_ref(cpu, wp);
1092 }
c0ce998e 1093 }
7d03f82f 1094}
05068c0d
PM
1095
1096/* Return true if this watchpoint address matches the specified
1097 * access (ie the address range covered by the watchpoint overlaps
1098 * partially or completely with the address range covered by the
1099 * access).
1100 */
56ad8b00
RH
1101static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1102 vaddr addr, vaddr len)
05068c0d
PM
1103{
1104 /* We know the lengths are non-zero, but a little caution is
1105 * required to avoid errors in the case where the range ends
1106 * exactly at the top of the address space and so addr + len
1107 * wraps round to zero.
1108 */
1109 vaddr wpend = wp->vaddr + wp->len - 1;
1110 vaddr addrend = addr + len - 1;
1111
1112 return !(addr > wpend || wp->vaddr > addrend);
1113}
1114
56ad8b00
RH
1115/* Return flags for watchpoints that match addr + prot. */
1116int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1117{
1118 CPUWatchpoint *wp;
1119 int ret = 0;
1120
1121 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 1122 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
1123 ret |= wp->flags;
1124 }
1125 }
1126 return ret;
1127}
74841f04 1128#endif /* !CONFIG_USER_ONLY */
7d03f82f 1129
a1d1bb31 1130/* Add a breakpoint. */
b3310ab3 1131int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1132 CPUBreakpoint **breakpoint)
4c3a88a2 1133{
c0ce998e 1134 CPUBreakpoint *bp;
3b46e624 1135
7267c094 1136 bp = g_malloc(sizeof(*bp));
4c3a88a2 1137
a1d1bb31
AL
1138 bp->pc = pc;
1139 bp->flags = flags;
1140
2dc9f411 1141 /* keep all GDB-injected breakpoints in front */
00b941e5 1142 if (flags & BP_GDB) {
f0c3c505 1143 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1144 } else {
f0c3c505 1145 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1146 }
3b46e624 1147
f0c3c505 1148 breakpoint_invalidate(cpu, pc);
a1d1bb31 1149
00b941e5 1150 if (breakpoint) {
a1d1bb31 1151 *breakpoint = bp;
00b941e5 1152 }
4c3a88a2 1153 return 0;
4c3a88a2
FB
1154}
1155
a1d1bb31 1156/* Remove a specific breakpoint. */
b3310ab3 1157int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1158{
a1d1bb31
AL
1159 CPUBreakpoint *bp;
1160
f0c3c505 1161 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1162 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1163 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1164 return 0;
1165 }
7d03f82f 1166 }
a1d1bb31 1167 return -ENOENT;
7d03f82f
EI
1168}
1169
a1d1bb31 1170/* Remove a specific breakpoint by reference. */
b3310ab3 1171void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1172{
f0c3c505
AF
1173 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1174
1175 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1176
7267c094 1177 g_free(breakpoint);
a1d1bb31
AL
1178}
1179
1180/* Remove all matching breakpoints. */
b3310ab3 1181void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1182{
c0ce998e 1183 CPUBreakpoint *bp, *next;
a1d1bb31 1184
f0c3c505 1185 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1186 if (bp->flags & mask) {
1187 cpu_breakpoint_remove_by_ref(cpu, bp);
1188 }
c0ce998e 1189 }
4c3a88a2
FB
1190}
1191
c33a346e
FB
1192/* enable or disable single step mode. EXCP_DEBUG is returned by the
1193 CPU loop after each instruction */
3825b28f 1194void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1195{
ed2803da
AF
1196 if (cpu->singlestep_enabled != enabled) {
1197 cpu->singlestep_enabled = enabled;
1198 if (kvm_enabled()) {
38e478ec 1199 kvm_update_guest_debug(cpu, 0);
ed2803da 1200 } else {
ccbb4d44 1201 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1202 /* XXX: only flush what is necessary */
bbd77c18 1203 tb_flush(cpu);
e22a25c9 1204 }
c33a346e 1205 }
c33a346e
FB
1206}
1207
a47dddd7 1208void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1209{
1210 va_list ap;
493ae1f0 1211 va_list ap2;
7501267e
FB
1212
1213 va_start(ap, fmt);
493ae1f0 1214 va_copy(ap2, ap);
7501267e
FB
1215 fprintf(stderr, "qemu: fatal: ");
1216 vfprintf(stderr, fmt, ap);
1217 fprintf(stderr, "\n");
90c84c56 1218 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1219 if (qemu_log_separate()) {
fc59d2d8 1220 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1221 qemu_log("qemu: fatal: ");
1222 qemu_log_vprintf(fmt, ap2);
1223 qemu_log("\n");
a0762859 1224 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1225 qemu_log_flush();
fc59d2d8 1226 qemu_log_unlock(logfile);
93fcfe39 1227 qemu_log_close();
924edcae 1228 }
493ae1f0 1229 va_end(ap2);
f9373291 1230 va_end(ap);
7615936e 1231 replay_finish();
fd052bf6
RV
1232#if defined(CONFIG_USER_ONLY)
1233 {
1234 struct sigaction act;
1235 sigfillset(&act.sa_mask);
1236 act.sa_handler = SIG_DFL;
8347c185 1237 act.sa_flags = 0;
fd052bf6
RV
1238 sigaction(SIGABRT, &act, NULL);
1239 }
1240#endif
7501267e
FB
1241 abort();
1242}
1243
0124311e 1244#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1245/* Called from RCU critical section */
041603fe
PB
1246static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1247{
1248 RAMBlock *block;
1249
43771539 1250 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1251 if (block && addr - block->offset < block->max_length) {
68851b98 1252 return block;
041603fe 1253 }
99e15582 1254 RAMBLOCK_FOREACH(block) {
9b8424d5 1255 if (addr - block->offset < block->max_length) {
041603fe
PB
1256 goto found;
1257 }
1258 }
1259
1260 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1261 abort();
1262
1263found:
43771539
PB
1264 /* It is safe to write mru_block outside the iothread lock. This
1265 * is what happens:
1266 *
1267 * mru_block = xxx
1268 * rcu_read_unlock()
1269 * xxx removed from list
1270 * rcu_read_lock()
1271 * read mru_block
1272 * mru_block = NULL;
1273 * call_rcu(reclaim_ramblock, xxx);
1274 * rcu_read_unlock()
1275 *
1276 * atomic_rcu_set is not needed here. The block was already published
1277 * when it was placed into the list. Here we're just making an extra
1278 * copy of the pointer.
1279 */
041603fe
PB
1280 ram_list.mru_block = block;
1281 return block;
1282}
1283
a2f4d5be 1284static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1285{
9a13565d 1286 CPUState *cpu;
041603fe 1287 ram_addr_t start1;
a2f4d5be
JQ
1288 RAMBlock *block;
1289 ram_addr_t end;
1290
f28d0dfd 1291 assert(tcg_enabled());
a2f4d5be
JQ
1292 end = TARGET_PAGE_ALIGN(start + length);
1293 start &= TARGET_PAGE_MASK;
d24981d3 1294
694ea274 1295 RCU_READ_LOCK_GUARD();
041603fe
PB
1296 block = qemu_get_ram_block(start);
1297 assert(block == qemu_get_ram_block(end - 1));
1240be24 1298 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1299 CPU_FOREACH(cpu) {
1300 tlb_reset_dirty(cpu, start1, length);
1301 }
d24981d3
JQ
1302}
1303
5579c7f3 1304/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1305bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1306 ram_addr_t length,
1307 unsigned client)
1ccde1cb 1308{
5b82b703 1309 DirtyMemoryBlocks *blocks;
25aa6b37 1310 unsigned long end, page, start_page;
5b82b703 1311 bool dirty = false;
077874e0
PX
1312 RAMBlock *ramblock;
1313 uint64_t mr_offset, mr_size;
03eebc9e
SH
1314
1315 if (length == 0) {
1316 return false;
1317 }
f23db169 1318
03eebc9e 1319 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1320 start_page = start >> TARGET_PAGE_BITS;
1321 page = start_page;
5b82b703 1322
694ea274
DDAG
1323 WITH_RCU_READ_LOCK_GUARD() {
1324 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1325 ramblock = qemu_get_ram_block(start);
1326 /* Range sanity check on the ramblock */
1327 assert(start >= ramblock->offset &&
1328 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1329
694ea274
DDAG
1330 while (page < end) {
1331 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1332 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1333 unsigned long num = MIN(end - page,
1334 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1335
694ea274
DDAG
1336 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1337 offset, num);
1338 page += num;
1339 }
5b82b703 1340
25aa6b37
MB
1341 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1342 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1343 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1344 }
1345
03eebc9e 1346 if (dirty && tcg_enabled()) {
a2f4d5be 1347 tlb_reset_dirty_range_all(start, length);
5579c7f3 1348 }
03eebc9e
SH
1349
1350 return dirty;
1ccde1cb
FB
1351}
1352
8deaf12c 1353DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1354 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1355{
1356 DirtyMemoryBlocks *blocks;
5dea4079 1357 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1358 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1359 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1360 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1361 DirtyBitmapSnapshot *snap;
1362 unsigned long page, end, dest;
1363
1364 snap = g_malloc0(sizeof(*snap) +
1365 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1366 snap->start = first;
1367 snap->end = last;
1368
1369 page = first >> TARGET_PAGE_BITS;
1370 end = last >> TARGET_PAGE_BITS;
1371 dest = 0;
1372
694ea274
DDAG
1373 WITH_RCU_READ_LOCK_GUARD() {
1374 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1375
694ea274
DDAG
1376 while (page < end) {
1377 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1378 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1379 unsigned long num = MIN(end - page,
1380 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1381
694ea274
DDAG
1382 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1383 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1384 offset >>= BITS_PER_LEVEL;
8deaf12c 1385
694ea274
DDAG
1386 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1387 blocks->blocks[idx] + offset,
1388 num);
1389 page += num;
1390 dest += num >> BITS_PER_LEVEL;
1391 }
8deaf12c
GH
1392 }
1393
8deaf12c
GH
1394 if (tcg_enabled()) {
1395 tlb_reset_dirty_range_all(start, length);
1396 }
1397
077874e0
PX
1398 memory_region_clear_dirty_bitmap(mr, offset, length);
1399
8deaf12c
GH
1400 return snap;
1401}
1402
1403bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1404 ram_addr_t start,
1405 ram_addr_t length)
1406{
1407 unsigned long page, end;
1408
1409 assert(start >= snap->start);
1410 assert(start + length <= snap->end);
1411
1412 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1413 page = (start - snap->start) >> TARGET_PAGE_BITS;
1414
1415 while (page < end) {
1416 if (test_bit(page, snap->dirty)) {
1417 return true;
1418 }
1419 page++;
1420 }
1421 return false;
1422}
1423
79e2b9ae 1424/* Called from RCU critical section */
bb0e627a 1425hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1426 MemoryRegionSection *section)
e5548617 1427{
8f5db641
RH
1428 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1429 return section - d->map.sections;
e5548617 1430}
9fa3e853
FB
1431#endif /* defined(CONFIG_USER_ONLY) */
1432
e2eef170 1433#if !defined(CONFIG_USER_ONLY)
8da3ff18 1434
b797ab1a
WY
1435static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1436 uint16_t section);
16620684 1437static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1438
06329cce 1439static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1440 qemu_anon_ram_alloc;
91138037
MA
1441
1442/*
1443 * Set a custom physical guest memory alloator.
1444 * Accelerators with unusual needs may need this. Hopefully, we can
1445 * get rid of it eventually.
1446 */
06329cce 1447void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1448{
1449 phys_mem_alloc = alloc;
1450}
1451
53cb28cb
MA
1452static uint16_t phys_section_add(PhysPageMap *map,
1453 MemoryRegionSection *section)
5312bd8b 1454{
68f3f65b
PB
1455 /* The physical section number is ORed with a page-aligned
1456 * pointer to produce the iotlb entries. Thus it should
1457 * never overflow into the page-aligned value.
1458 */
53cb28cb 1459 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1460
53cb28cb
MA
1461 if (map->sections_nb == map->sections_nb_alloc) {
1462 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1463 map->sections = g_renew(MemoryRegionSection, map->sections,
1464 map->sections_nb_alloc);
5312bd8b 1465 }
53cb28cb 1466 map->sections[map->sections_nb] = *section;
dfde4e6e 1467 memory_region_ref(section->mr);
53cb28cb 1468 return map->sections_nb++;
5312bd8b
AK
1469}
1470
058bc4b5
PB
1471static void phys_section_destroy(MemoryRegion *mr)
1472{
55b4e80b
DS
1473 bool have_sub_page = mr->subpage;
1474
dfde4e6e
PB
1475 memory_region_unref(mr);
1476
55b4e80b 1477 if (have_sub_page) {
058bc4b5 1478 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1479 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1480 g_free(subpage);
1481 }
1482}
1483
6092666e 1484static void phys_sections_free(PhysPageMap *map)
5312bd8b 1485{
9affd6fc
PB
1486 while (map->sections_nb > 0) {
1487 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1488 phys_section_destroy(section->mr);
1489 }
9affd6fc
PB
1490 g_free(map->sections);
1491 g_free(map->nodes);
5312bd8b
AK
1492}
1493
9950322a 1494static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1495{
9950322a 1496 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1497 subpage_t *subpage;
a8170e5e 1498 hwaddr base = section->offset_within_address_space
0f0cb164 1499 & TARGET_PAGE_MASK;
003a0cf2 1500 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1501 MemoryRegionSection subsection = {
1502 .offset_within_address_space = base,
052e87b0 1503 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1504 };
a8170e5e 1505 hwaddr start, end;
0f0cb164 1506
f3705d53 1507 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1508
f3705d53 1509 if (!(existing->mr->subpage)) {
16620684
AK
1510 subpage = subpage_init(fv, base);
1511 subsection.fv = fv;
0f0cb164 1512 subsection.mr = &subpage->iomem;
ac1970fb 1513 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1514 phys_section_add(&d->map, &subsection));
0f0cb164 1515 } else {
f3705d53 1516 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1517 }
1518 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1519 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1520 subpage_register(subpage, start, end,
1521 phys_section_add(&d->map, section));
0f0cb164
AK
1522}
1523
1524
9950322a 1525static void register_multipage(FlatView *fv,
052e87b0 1526 MemoryRegionSection *section)
33417e70 1527{
9950322a 1528 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1529 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1530 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1531 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1532 TARGET_PAGE_BITS));
dd81124b 1533
733d5ef5
PB
1534 assert(num_pages);
1535 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1536}
1537
494d1997
WY
1538/*
1539 * The range in *section* may look like this:
1540 *
1541 * |s|PPPPPPP|s|
1542 *
1543 * where s stands for subpage and P for page.
1544 */
8629d3fc 1545void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1546{
494d1997 1547 MemoryRegionSection remain = *section;
052e87b0 1548 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1549
494d1997
WY
1550 /* register first subpage */
1551 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1552 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1553 - remain.offset_within_address_space;
733d5ef5 1554
494d1997 1555 MemoryRegionSection now = remain;
052e87b0 1556 now.size = int128_min(int128_make64(left), now.size);
9950322a 1557 register_subpage(fv, &now);
494d1997
WY
1558 if (int128_eq(remain.size, now.size)) {
1559 return;
1560 }
052e87b0
PB
1561 remain.size = int128_sub(remain.size, now.size);
1562 remain.offset_within_address_space += int128_get64(now.size);
1563 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1564 }
1565
1566 /* register whole pages */
1567 if (int128_ge(remain.size, page_size)) {
1568 MemoryRegionSection now = remain;
1569 now.size = int128_and(now.size, int128_neg(page_size));
1570 register_multipage(fv, &now);
1571 if (int128_eq(remain.size, now.size)) {
1572 return;
69b67646 1573 }
494d1997
WY
1574 remain.size = int128_sub(remain.size, now.size);
1575 remain.offset_within_address_space += int128_get64(now.size);
1576 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1577 }
494d1997
WY
1578
1579 /* register last subpage */
1580 register_subpage(fv, &remain);
0f0cb164
AK
1581}
1582
62a2744c
SY
1583void qemu_flush_coalesced_mmio_buffer(void)
1584{
1585 if (kvm_enabled())
1586 kvm_flush_coalesced_mmio_buffer();
1587}
1588
b2a8658e
UD
1589void qemu_mutex_lock_ramlist(void)
1590{
1591 qemu_mutex_lock(&ram_list.mutex);
1592}
1593
1594void qemu_mutex_unlock_ramlist(void)
1595{
1596 qemu_mutex_unlock(&ram_list.mutex);
1597}
1598
be9b23c4
PX
1599void ram_block_dump(Monitor *mon)
1600{
1601 RAMBlock *block;
1602 char *psize;
1603
694ea274 1604 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1605 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1606 "Block Name", "PSize", "Offset", "Used", "Total");
1607 RAMBLOCK_FOREACH(block) {
1608 psize = size_to_str(block->page_size);
1609 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1610 " 0x%016" PRIx64 "\n", block->idstr, psize,
1611 (uint64_t)block->offset,
1612 (uint64_t)block->used_length,
1613 (uint64_t)block->max_length);
1614 g_free(psize);
1615 }
be9b23c4
PX
1616}
1617
9c607668
AK
1618#ifdef __linux__
1619/*
1620 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1621 * may or may not name the same files / on the same filesystem now as
1622 * when we actually open and map them. Iterate over the file
1623 * descriptors instead, and use qemu_fd_getpagesize().
1624 */
905b7ee4 1625static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1626{
9c607668
AK
1627 long *hpsize_min = opaque;
1628
1629 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1630 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1631 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1632
7d5489e6 1633 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1634 *hpsize_min = hpsize;
9c607668
AK
1635 }
1636 }
1637
1638 return 0;
1639}
1640
905b7ee4
DH
1641static int find_max_backend_pagesize(Object *obj, void *opaque)
1642{
1643 long *hpsize_max = opaque;
1644
1645 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1646 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1647 long hpsize = host_memory_backend_pagesize(backend);
1648
1649 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1650 *hpsize_max = hpsize;
1651 }
1652 }
1653
1654 return 0;
1655}
1656
1657/*
1658 * TODO: We assume right now that all mapped host memory backends are
1659 * used as RAM, however some might be used for different purposes.
1660 */
1661long qemu_minrampagesize(void)
9c607668
AK
1662{
1663 long hpsize = LONG_MAX;
ad1172d8 1664 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1665
ad1172d8 1666 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1667 return hpsize;
1668}
905b7ee4
DH
1669
1670long qemu_maxrampagesize(void)
1671{
ad1172d8 1672 long pagesize = 0;
905b7ee4
DH
1673 Object *memdev_root = object_resolve_path("/objects", NULL);
1674
ad1172d8 1675 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1676 return pagesize;
1677}
9c607668 1678#else
905b7ee4
DH
1679long qemu_minrampagesize(void)
1680{
038adc2f 1681 return qemu_real_host_page_size;
905b7ee4
DH
1682}
1683long qemu_maxrampagesize(void)
9c607668 1684{
038adc2f 1685 return qemu_real_host_page_size;
9c607668
AK
1686}
1687#endif
1688
d5dbde46 1689#ifdef CONFIG_POSIX
d6af99c9
HZ
1690static int64_t get_file_size(int fd)
1691{
72d41eb4
SH
1692 int64_t size;
1693#if defined(__linux__)
1694 struct stat st;
1695
1696 if (fstat(fd, &st) < 0) {
1697 return -errno;
1698 }
1699
1700 /* Special handling for devdax character devices */
1701 if (S_ISCHR(st.st_mode)) {
1702 g_autofree char *subsystem_path = NULL;
1703 g_autofree char *subsystem = NULL;
1704
1705 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1706 major(st.st_rdev), minor(st.st_rdev));
1707 subsystem = g_file_read_link(subsystem_path, NULL);
1708
1709 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1710 g_autofree char *size_path = NULL;
1711 g_autofree char *size_str = NULL;
1712
1713 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1714 major(st.st_rdev), minor(st.st_rdev));
1715
1716 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1717 return g_ascii_strtoll(size_str, NULL, 0);
1718 }
1719 }
1720 }
1721#endif /* defined(__linux__) */
1722
1723 /* st.st_size may be zero for special files yet lseek(2) works */
1724 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1725 if (size < 0) {
1726 return -errno;
1727 }
1728 return size;
1729}
1730
ce317be9
JL
1731static int64_t get_file_align(int fd)
1732{
1733 int64_t align = -1;
1734#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1735 struct stat st;
1736
1737 if (fstat(fd, &st) < 0) {
1738 return -errno;
1739 }
1740
1741 /* Special handling for devdax character devices */
1742 if (S_ISCHR(st.st_mode)) {
1743 g_autofree char *path = NULL;
1744 g_autofree char *rpath = NULL;
1745 struct daxctl_ctx *ctx;
1746 struct daxctl_region *region;
1747 int rc = 0;
1748
1749 path = g_strdup_printf("/sys/dev/char/%d:%d",
1750 major(st.st_rdev), minor(st.st_rdev));
1751 rpath = realpath(path, NULL);
1752
1753 rc = daxctl_new(&ctx);
1754 if (rc) {
1755 return -1;
1756 }
1757
1758 daxctl_region_foreach(ctx, region) {
1759 if (strstr(rpath, daxctl_region_get_path(region))) {
1760 align = daxctl_region_get_align(region);
1761 break;
1762 }
1763 }
1764 daxctl_unref(ctx);
1765 }
1766#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1767
1768 return align;
1769}
1770
8d37b030
MAL
1771static int file_ram_open(const char *path,
1772 const char *region_name,
1773 bool *created,
1774 Error **errp)
c902760f
MT
1775{
1776 char *filename;
8ca761f6
PF
1777 char *sanitized_name;
1778 char *c;
5c3ece79 1779 int fd = -1;
c902760f 1780
8d37b030 1781 *created = false;
fd97fd44
MA
1782 for (;;) {
1783 fd = open(path, O_RDWR);
1784 if (fd >= 0) {
1785 /* @path names an existing file, use it */
1786 break;
8d31d6b6 1787 }
fd97fd44
MA
1788 if (errno == ENOENT) {
1789 /* @path names a file that doesn't exist, create it */
1790 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1791 if (fd >= 0) {
8d37b030 1792 *created = true;
fd97fd44
MA
1793 break;
1794 }
1795 } else if (errno == EISDIR) {
1796 /* @path names a directory, create a file there */
1797 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1798 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1799 for (c = sanitized_name; *c != '\0'; c++) {
1800 if (*c == '/') {
1801 *c = '_';
1802 }
1803 }
8ca761f6 1804
fd97fd44
MA
1805 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1806 sanitized_name);
1807 g_free(sanitized_name);
8d31d6b6 1808
fd97fd44
MA
1809 fd = mkstemp(filename);
1810 if (fd >= 0) {
1811 unlink(filename);
1812 g_free(filename);
1813 break;
1814 }
1815 g_free(filename);
8d31d6b6 1816 }
fd97fd44
MA
1817 if (errno != EEXIST && errno != EINTR) {
1818 error_setg_errno(errp, errno,
1819 "can't open backing store %s for guest RAM",
1820 path);
8d37b030 1821 return -1;
fd97fd44
MA
1822 }
1823 /*
1824 * Try again on EINTR and EEXIST. The latter happens when
1825 * something else creates the file between our two open().
1826 */
8d31d6b6 1827 }
c902760f 1828
8d37b030
MAL
1829 return fd;
1830}
1831
1832static void *file_ram_alloc(RAMBlock *block,
1833 ram_addr_t memory,
1834 int fd,
1835 bool truncate,
1836 Error **errp)
1837{
1838 void *area;
1839
863e9621 1840 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1841 if (block->mr->align % block->page_size) {
1842 error_setg(errp, "alignment 0x%" PRIx64
1843 " must be multiples of page size 0x%zx",
1844 block->mr->align, block->page_size);
1845 return NULL;
61362b71
DH
1846 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1847 error_setg(errp, "alignment 0x%" PRIx64
1848 " must be a power of two", block->mr->align);
1849 return NULL;
98376843
HZ
1850 }
1851 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1852#if defined(__s390x__)
1853 if (kvm_enabled()) {
1854 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1855 }
1856#endif
fd97fd44 1857
863e9621 1858 if (memory < block->page_size) {
fd97fd44 1859 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1860 "or larger than page size 0x%zx",
1861 memory, block->page_size);
8d37b030 1862 return NULL;
1775f111
HZ
1863 }
1864
863e9621 1865 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1866
1867 /*
1868 * ftruncate is not supported by hugetlbfs in older
1869 * hosts, so don't bother bailing out on errors.
1870 * If anything goes wrong with it under other filesystems,
1871 * mmap will fail.
d6af99c9
HZ
1872 *
1873 * Do not truncate the non-empty backend file to avoid corrupting
1874 * the existing data in the file. Disabling shrinking is not
1875 * enough. For example, the current vNVDIMM implementation stores
1876 * the guest NVDIMM labels at the end of the backend file. If the
1877 * backend file is later extended, QEMU will not be able to find
1878 * those labels. Therefore, extending the non-empty backend file
1879 * is disabled as well.
c902760f 1880 */
8d37b030 1881 if (truncate && ftruncate(fd, memory)) {
9742bf26 1882 perror("ftruncate");
7f56e740 1883 }
c902760f 1884
d2f39add 1885 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1886 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1887 if (area == MAP_FAILED) {
7f56e740 1888 error_setg_errno(errp, errno,
fd97fd44 1889 "unable to map backing store for guest RAM");
8d37b030 1890 return NULL;
c902760f 1891 }
ef36fa14 1892
04b16653 1893 block->fd = fd;
c902760f
MT
1894 return area;
1895}
1896#endif
1897
154cc9ea
DDAG
1898/* Allocate space within the ram_addr_t space that governs the
1899 * dirty bitmaps.
1900 * Called with the ramlist lock held.
1901 */
d17b5288 1902static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1903{
1904 RAMBlock *block, *next_block;
3e837b2c 1905 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1906
49cd9ac6
SH
1907 assert(size != 0); /* it would hand out same offset multiple times */
1908
0dc3f44a 1909 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1910 return 0;
0d53d9fe 1911 }
04b16653 1912
99e15582 1913 RAMBLOCK_FOREACH(block) {
154cc9ea 1914 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1915
801110ab
DDAG
1916 /* Align blocks to start on a 'long' in the bitmap
1917 * which makes the bitmap sync'ing take the fast path.
1918 */
154cc9ea 1919 candidate = block->offset + block->max_length;
801110ab 1920 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1921
154cc9ea
DDAG
1922 /* Search for the closest following block
1923 * and find the gap.
1924 */
99e15582 1925 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1926 if (next_block->offset >= candidate) {
04b16653
AW
1927 next = MIN(next, next_block->offset);
1928 }
1929 }
154cc9ea
DDAG
1930
1931 /* If it fits remember our place and remember the size
1932 * of gap, but keep going so that we might find a smaller
1933 * gap to fill so avoiding fragmentation.
1934 */
1935 if (next - candidate >= size && next - candidate < mingap) {
1936 offset = candidate;
1937 mingap = next - candidate;
04b16653 1938 }
154cc9ea
DDAG
1939
1940 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1941 }
3e837b2c
AW
1942
1943 if (offset == RAM_ADDR_MAX) {
1944 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1945 (uint64_t)size);
1946 abort();
1947 }
1948
154cc9ea
DDAG
1949 trace_find_ram_offset(size, offset);
1950
04b16653
AW
1951 return offset;
1952}
1953
c136180c 1954static unsigned long last_ram_page(void)
d17b5288
AW
1955{
1956 RAMBlock *block;
1957 ram_addr_t last = 0;
1958
694ea274 1959 RCU_READ_LOCK_GUARD();
99e15582 1960 RAMBLOCK_FOREACH(block) {
62be4e3a 1961 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1962 }
b8c48993 1963 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1964}
1965
ddb97f1d
JB
1966static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1967{
1968 int ret;
ddb97f1d
JB
1969
1970 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1971 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1972 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1973 if (ret) {
1974 perror("qemu_madvise");
1975 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1976 "but dump_guest_core=off specified\n");
1977 }
1978 }
1979}
1980
422148d3
DDAG
1981const char *qemu_ram_get_idstr(RAMBlock *rb)
1982{
1983 return rb->idstr;
1984}
1985
754cb9c0
YK
1986void *qemu_ram_get_host_addr(RAMBlock *rb)
1987{
1988 return rb->host;
1989}
1990
1991ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1992{
1993 return rb->offset;
1994}
1995
1996ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1997{
1998 return rb->used_length;
1999}
2000
463a4ac2
DDAG
2001bool qemu_ram_is_shared(RAMBlock *rb)
2002{
2003 return rb->flags & RAM_SHARED;
2004}
2005
2ce16640
DDAG
2006/* Note: Only set at the start of postcopy */
2007bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2008{
2009 return rb->flags & RAM_UF_ZEROPAGE;
2010}
2011
2012void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2013{
2014 rb->flags |= RAM_UF_ZEROPAGE;
2015}
2016
b895de50
CLG
2017bool qemu_ram_is_migratable(RAMBlock *rb)
2018{
2019 return rb->flags & RAM_MIGRATABLE;
2020}
2021
2022void qemu_ram_set_migratable(RAMBlock *rb)
2023{
2024 rb->flags |= RAM_MIGRATABLE;
2025}
2026
2027void qemu_ram_unset_migratable(RAMBlock *rb)
2028{
2029 rb->flags &= ~RAM_MIGRATABLE;
2030}
2031
ae3a7047 2032/* Called with iothread lock held. */
fa53a0e5 2033void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2034{
fa53a0e5 2035 RAMBlock *block;
20cfe881 2036
c5705a77
AK
2037 assert(new_block);
2038 assert(!new_block->idstr[0]);
84b89d78 2039
09e5ab63
AL
2040 if (dev) {
2041 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2042 if (id) {
2043 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2044 g_free(id);
84b89d78
CM
2045 }
2046 }
2047 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2048
694ea274 2049 RCU_READ_LOCK_GUARD();
99e15582 2050 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2051 if (block != new_block &&
2052 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2053 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2054 new_block->idstr);
2055 abort();
2056 }
2057 }
c5705a77
AK
2058}
2059
ae3a7047 2060/* Called with iothread lock held. */
fa53a0e5 2061void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2062{
ae3a7047
MD
2063 /* FIXME: arch_init.c assumes that this is not called throughout
2064 * migration. Ignore the problem since hot-unplug during migration
2065 * does not work anyway.
2066 */
20cfe881
HT
2067 if (block) {
2068 memset(block->idstr, 0, sizeof(block->idstr));
2069 }
2070}
2071
863e9621
DDAG
2072size_t qemu_ram_pagesize(RAMBlock *rb)
2073{
2074 return rb->page_size;
2075}
2076
67f11b5c
DDAG
2077/* Returns the largest size of page in use */
2078size_t qemu_ram_pagesize_largest(void)
2079{
2080 RAMBlock *block;
2081 size_t largest = 0;
2082
99e15582 2083 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2084 largest = MAX(largest, qemu_ram_pagesize(block));
2085 }
2086
2087 return largest;
2088}
2089
8490fc78
LC
2090static int memory_try_enable_merging(void *addr, size_t len)
2091{
75cc7f01 2092 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2093 /* disabled by the user */
2094 return 0;
2095 }
2096
2097 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2098}
2099
62be4e3a
MT
2100/* Only legal before guest might have detected the memory size: e.g. on
2101 * incoming migration, or right after reset.
2102 *
2103 * As memory core doesn't know how is memory accessed, it is up to
2104 * resize callback to update device state and/or add assertions to detect
2105 * misuse, if necessary.
2106 */
fa53a0e5 2107int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2108{
ce4adc0b
DH
2109 const ram_addr_t unaligned_size = newsize;
2110
62be4e3a
MT
2111 assert(block);
2112
4ed023ce 2113 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2114
62be4e3a 2115 if (block->used_length == newsize) {
ce4adc0b
DH
2116 /*
2117 * We don't have to resize the ram block (which only knows aligned
2118 * sizes), however, we have to notify if the unaligned size changed.
2119 */
2120 if (unaligned_size != memory_region_size(block->mr)) {
2121 memory_region_set_size(block->mr, unaligned_size);
2122 if (block->resized) {
2123 block->resized(block->idstr, unaligned_size, block->host);
2124 }
2125 }
62be4e3a
MT
2126 return 0;
2127 }
2128
2129 if (!(block->flags & RAM_RESIZEABLE)) {
2130 error_setg_errno(errp, EINVAL,
2131 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2132 " in != 0x" RAM_ADDR_FMT, block->idstr,
2133 newsize, block->used_length);
2134 return -EINVAL;
2135 }
2136
2137 if (block->max_length < newsize) {
2138 error_setg_errno(errp, EINVAL,
2139 "Length too large: %s: 0x" RAM_ADDR_FMT
2140 " > 0x" RAM_ADDR_FMT, block->idstr,
2141 newsize, block->max_length);
2142 return -EINVAL;
2143 }
2144
2145 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2146 block->used_length = newsize;
58d2707e
PB
2147 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2148 DIRTY_CLIENTS_ALL);
ce4adc0b 2149 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 2150 if (block->resized) {
ce4adc0b 2151 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
2152 }
2153 return 0;
2154}
2155
61c490e2
BM
2156/*
2157 * Trigger sync on the given ram block for range [start, start + length]
2158 * with the backing store if one is available.
2159 * Otherwise no-op.
2160 * @Note: this is supposed to be a synchronous op.
2161 */
ab7e41e6 2162void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 2163{
61c490e2
BM
2164 /* The requested range should fit in within the block range */
2165 g_assert((start + length) <= block->used_length);
2166
2167#ifdef CONFIG_LIBPMEM
2168 /* The lack of support for pmem should not block the sync */
2169 if (ramblock_is_pmem(block)) {
5d4c9549 2170 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2171 pmem_persist(addr, length);
2172 return;
2173 }
2174#endif
2175 if (block->fd >= 0) {
2176 /**
2177 * Case there is no support for PMEM or the memory has not been
2178 * specified as persistent (or is not one) - use the msync.
2179 * Less optimal but still achieves the same goal
2180 */
5d4c9549 2181 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2182 if (qemu_msync(addr, length, block->fd)) {
2183 warn_report("%s: failed to sync memory range: start: "
2184 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2185 __func__, start, length);
2186 }
2187 }
2188}
2189
5b82b703
SH
2190/* Called with ram_list.mutex held */
2191static void dirty_memory_extend(ram_addr_t old_ram_size,
2192 ram_addr_t new_ram_size)
2193{
2194 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2195 DIRTY_MEMORY_BLOCK_SIZE);
2196 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2197 DIRTY_MEMORY_BLOCK_SIZE);
2198 int i;
2199
2200 /* Only need to extend if block count increased */
2201 if (new_num_blocks <= old_num_blocks) {
2202 return;
2203 }
2204
2205 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2206 DirtyMemoryBlocks *old_blocks;
2207 DirtyMemoryBlocks *new_blocks;
2208 int j;
2209
2210 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2211 new_blocks = g_malloc(sizeof(*new_blocks) +
2212 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2213
2214 if (old_num_blocks) {
2215 memcpy(new_blocks->blocks, old_blocks->blocks,
2216 old_num_blocks * sizeof(old_blocks->blocks[0]));
2217 }
2218
2219 for (j = old_num_blocks; j < new_num_blocks; j++) {
2220 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2221 }
2222
2223 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2224
2225 if (old_blocks) {
2226 g_free_rcu(old_blocks, rcu);
2227 }
2228 }
2229}
2230
06329cce 2231static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2232{
e1c57ab8 2233 RAMBlock *block;
0d53d9fe 2234 RAMBlock *last_block = NULL;
2152f5ca 2235 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2236 Error *err = NULL;
2152f5ca 2237
b8c48993 2238 old_ram_size = last_ram_page();
c5705a77 2239
b2a8658e 2240 qemu_mutex_lock_ramlist();
9b8424d5 2241 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2242
2243 if (!new_block->host) {
2244 if (xen_enabled()) {
9b8424d5 2245 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2246 new_block->mr, &err);
2247 if (err) {
2248 error_propagate(errp, err);
2249 qemu_mutex_unlock_ramlist();
39c350ee 2250 return;
37aa7a0e 2251 }
e1c57ab8 2252 } else {
9b8424d5 2253 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2254 &new_block->mr->align, shared);
39228250 2255 if (!new_block->host) {
ef701d7b
HT
2256 error_setg_errno(errp, errno,
2257 "cannot set up guest memory '%s'",
2258 memory_region_name(new_block->mr));
2259 qemu_mutex_unlock_ramlist();
39c350ee 2260 return;
39228250 2261 }
9b8424d5 2262 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2263 }
c902760f 2264 }
94a6b54f 2265
dd631697
LZ
2266 new_ram_size = MAX(old_ram_size,
2267 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2268 if (new_ram_size > old_ram_size) {
5b82b703 2269 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2270 }
0d53d9fe
MD
2271 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2272 * QLIST (which has an RCU-friendly variant) does not have insertion at
2273 * tail, so save the last element in last_block.
2274 */
99e15582 2275 RAMBLOCK_FOREACH(block) {
0d53d9fe 2276 last_block = block;
9b8424d5 2277 if (block->max_length < new_block->max_length) {
abb26d63
PB
2278 break;
2279 }
2280 }
2281 if (block) {
0dc3f44a 2282 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2283 } else if (last_block) {
0dc3f44a 2284 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2285 } else { /* list is empty */
0dc3f44a 2286 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2287 }
0d6d3c87 2288 ram_list.mru_block = NULL;
94a6b54f 2289
0dc3f44a
MD
2290 /* Write list before version */
2291 smp_wmb();
f798b07f 2292 ram_list.version++;
b2a8658e 2293 qemu_mutex_unlock_ramlist();
f798b07f 2294
9b8424d5 2295 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2296 new_block->used_length,
2297 DIRTY_CLIENTS_ALL);
94a6b54f 2298
a904c911
PB
2299 if (new_block->host) {
2300 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2301 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2302 /*
2303 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2304 * Configure it unless the machine is a qtest server, in which case
2305 * KVM is not used and it may be forked (eg for fuzzing purposes).
2306 */
2307 if (!qtest_enabled()) {
2308 qemu_madvise(new_block->host, new_block->max_length,
2309 QEMU_MADV_DONTFORK);
2310 }
0987d735 2311 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2312 }
94a6b54f 2313}
e9a1ab19 2314
d5dbde46 2315#ifdef CONFIG_POSIX
38b3362d 2316RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2317 uint32_t ram_flags, int fd,
38b3362d 2318 Error **errp)
e1c57ab8
PB
2319{
2320 RAMBlock *new_block;
ef701d7b 2321 Error *local_err = NULL;
ce317be9 2322 int64_t file_size, file_align;
e1c57ab8 2323
a4de8552
JH
2324 /* Just support these ram flags by now. */
2325 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2326
e1c57ab8 2327 if (xen_enabled()) {
7f56e740 2328 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2329 return NULL;
e1c57ab8
PB
2330 }
2331
e45e7ae2
MAL
2332 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2333 error_setg(errp,
2334 "host lacks kvm mmu notifiers, -mem-path unsupported");
2335 return NULL;
2336 }
2337
e1c57ab8
PB
2338 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2339 /*
2340 * file_ram_alloc() needs to allocate just like
2341 * phys_mem_alloc, but we haven't bothered to provide
2342 * a hook there.
2343 */
7f56e740
PB
2344 error_setg(errp,
2345 "-mem-path not supported with this accelerator");
528f46af 2346 return NULL;
e1c57ab8
PB
2347 }
2348
4ed023ce 2349 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2350 file_size = get_file_size(fd);
2351 if (file_size > 0 && file_size < size) {
c001c3b3 2352 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2353 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2354 file_size, size);
8d37b030
MAL
2355 return NULL;
2356 }
2357
ce317be9
JL
2358 file_align = get_file_align(fd);
2359 if (file_align > 0 && mr && file_align > mr->align) {
2360 error_setg(errp, "backing store align 0x%" PRIx64
5f509751 2361 " is larger than 'align' option 0x%" PRIx64,
ce317be9
JL
2362 file_align, mr->align);
2363 return NULL;
2364 }
2365
e1c57ab8
PB
2366 new_block = g_malloc0(sizeof(*new_block));
2367 new_block->mr = mr;
9b8424d5
MT
2368 new_block->used_length = size;
2369 new_block->max_length = size;
cbfc0171 2370 new_block->flags = ram_flags;
8d37b030 2371 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2372 if (!new_block->host) {
2373 g_free(new_block);
528f46af 2374 return NULL;
7f56e740
PB
2375 }
2376
cbfc0171 2377 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2378 if (local_err) {
2379 g_free(new_block);
2380 error_propagate(errp, local_err);
528f46af 2381 return NULL;
ef701d7b 2382 }
528f46af 2383 return new_block;
38b3362d
MAL
2384
2385}
2386
2387
2388RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2389 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2390 Error **errp)
2391{
2392 int fd;
2393 bool created;
2394 RAMBlock *block;
2395
2396 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2397 if (fd < 0) {
2398 return NULL;
2399 }
2400
cbfc0171 2401 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2402 if (!block) {
2403 if (created) {
2404 unlink(mem_path);
2405 }
2406 close(fd);
2407 return NULL;
2408 }
2409
2410 return block;
e1c57ab8 2411}
0b183fc8 2412#endif
e1c57ab8 2413
62be4e3a 2414static
528f46af
FZ
2415RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2416 void (*resized)(const char*,
2417 uint64_t length,
2418 void *host),
06329cce 2419 void *host, bool resizeable, bool share,
528f46af 2420 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2421{
2422 RAMBlock *new_block;
ef701d7b 2423 Error *local_err = NULL;
e1c57ab8 2424
4ed023ce
DDAG
2425 size = HOST_PAGE_ALIGN(size);
2426 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2427 new_block = g_malloc0(sizeof(*new_block));
2428 new_block->mr = mr;
62be4e3a 2429 new_block->resized = resized;
9b8424d5
MT
2430 new_block->used_length = size;
2431 new_block->max_length = max_size;
62be4e3a 2432 assert(max_size >= size);
e1c57ab8 2433 new_block->fd = -1;
038adc2f 2434 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2435 new_block->host = host;
2436 if (host) {
7bd4f430 2437 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2438 }
62be4e3a
MT
2439 if (resizeable) {
2440 new_block->flags |= RAM_RESIZEABLE;
2441 }
06329cce 2442 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2443 if (local_err) {
2444 g_free(new_block);
2445 error_propagate(errp, local_err);
528f46af 2446 return NULL;
ef701d7b 2447 }
528f46af 2448 return new_block;
e1c57ab8
PB
2449}
2450
528f46af 2451RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2452 MemoryRegion *mr, Error **errp)
2453{
06329cce
MA
2454 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2455 false, mr, errp);
62be4e3a
MT
2456}
2457
06329cce
MA
2458RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2459 MemoryRegion *mr, Error **errp)
6977dfe6 2460{
06329cce
MA
2461 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2462 share, mr, errp);
62be4e3a
MT
2463}
2464
528f46af 2465RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2466 void (*resized)(const char*,
2467 uint64_t length,
2468 void *host),
2469 MemoryRegion *mr, Error **errp)
2470{
06329cce
MA
2471 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2472 false, mr, errp);
6977dfe6
YT
2473}
2474
43771539
PB
2475static void reclaim_ramblock(RAMBlock *block)
2476{
2477 if (block->flags & RAM_PREALLOC) {
2478 ;
2479 } else if (xen_enabled()) {
2480 xen_invalidate_map_cache_entry(block->host);
2481#ifndef _WIN32
2482 } else if (block->fd >= 0) {
53adb9d4 2483 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2484 close(block->fd);
2485#endif
2486 } else {
2487 qemu_anon_ram_free(block->host, block->max_length);
2488 }
2489 g_free(block);
2490}
2491
f1060c55 2492void qemu_ram_free(RAMBlock *block)
e9a1ab19 2493{
85bc2a15
MAL
2494 if (!block) {
2495 return;
2496 }
2497
0987d735
PB
2498 if (block->host) {
2499 ram_block_notify_remove(block->host, block->max_length);
2500 }
2501
b2a8658e 2502 qemu_mutex_lock_ramlist();
f1060c55
FZ
2503 QLIST_REMOVE_RCU(block, next);
2504 ram_list.mru_block = NULL;
2505 /* Write list before version */
2506 smp_wmb();
2507 ram_list.version++;
2508 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2509 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2510}
2511
cd19cfa2
HY
2512#ifndef _WIN32
2513void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2514{
2515 RAMBlock *block;
2516 ram_addr_t offset;
2517 int flags;
2518 void *area, *vaddr;
2519
99e15582 2520 RAMBLOCK_FOREACH(block) {
cd19cfa2 2521 offset = addr - block->offset;
9b8424d5 2522 if (offset < block->max_length) {
1240be24 2523 vaddr = ramblock_ptr(block, offset);
7bd4f430 2524 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2525 ;
dfeaf2ab
MA
2526 } else if (xen_enabled()) {
2527 abort();
cd19cfa2
HY
2528 } else {
2529 flags = MAP_FIXED;
3435f395 2530 if (block->fd >= 0) {
dbcb8981
PB
2531 flags |= (block->flags & RAM_SHARED ?
2532 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2533 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2534 flags, block->fd, offset);
cd19cfa2 2535 } else {
2eb9fbaa
MA
2536 /*
2537 * Remap needs to match alloc. Accelerators that
2538 * set phys_mem_alloc never remap. If they did,
2539 * we'd need a remap hook here.
2540 */
2541 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2542
cd19cfa2
HY
2543 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2544 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2545 flags, -1, 0);
cd19cfa2
HY
2546 }
2547 if (area != vaddr) {
493d89bf
AF
2548 error_report("Could not remap addr: "
2549 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2550 length, addr);
cd19cfa2
HY
2551 exit(1);
2552 }
8490fc78 2553 memory_try_enable_merging(vaddr, length);
ddb97f1d 2554 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2555 }
cd19cfa2
HY
2556 }
2557 }
2558}
2559#endif /* !_WIN32 */
2560
1b5ec234 2561/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2562 * This should not be used for general purpose DMA. Use address_space_map
2563 * or address_space_rw instead. For local memory (e.g. video ram) that the
2564 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2565 *
49b24afc 2566 * Called within RCU critical section.
1b5ec234 2567 */
0878d0e1 2568void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2569{
3655cb9c
GA
2570 RAMBlock *block = ram_block;
2571
2572 if (block == NULL) {
2573 block = qemu_get_ram_block(addr);
0878d0e1 2574 addr -= block->offset;
3655cb9c 2575 }
ae3a7047
MD
2576
2577 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2578 /* We need to check if the requested address is in the RAM
2579 * because we don't want to map the entire memory in QEMU.
2580 * In that case just map until the end of the page.
2581 */
2582 if (block->offset == 0) {
1ff7c598 2583 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2584 }
ae3a7047 2585
1ff7c598 2586 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2587 }
0878d0e1 2588 return ramblock_ptr(block, addr);
dc828ca1
PB
2589}
2590
0878d0e1 2591/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2592 * but takes a size argument.
0dc3f44a 2593 *
e81bcda5 2594 * Called within RCU critical section.
ae3a7047 2595 */
3655cb9c 2596static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2597 hwaddr *size, bool lock)
38bee5dc 2598{
3655cb9c 2599 RAMBlock *block = ram_block;
8ab934f9
SS
2600 if (*size == 0) {
2601 return NULL;
2602 }
e81bcda5 2603
3655cb9c
GA
2604 if (block == NULL) {
2605 block = qemu_get_ram_block(addr);
0878d0e1 2606 addr -= block->offset;
3655cb9c 2607 }
0878d0e1 2608 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2609
2610 if (xen_enabled() && block->host == NULL) {
2611 /* We need to check if the requested address is in the RAM
2612 * because we don't want to map the entire memory in QEMU.
2613 * In that case just map the requested area.
2614 */
2615 if (block->offset == 0) {
f5aa69bd 2616 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2617 }
2618
f5aa69bd 2619 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2620 }
e81bcda5 2621
0878d0e1 2622 return ramblock_ptr(block, addr);
38bee5dc
SS
2623}
2624
f90bb71b
DDAG
2625/* Return the offset of a hostpointer within a ramblock */
2626ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2627{
2628 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2629 assert((uintptr_t)host >= (uintptr_t)rb->host);
2630 assert(res < rb->max_length);
2631
2632 return res;
2633}
2634
422148d3
DDAG
2635/*
2636 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2637 * in that RAMBlock.
2638 *
2639 * ptr: Host pointer to look up
2640 * round_offset: If true round the result offset down to a page boundary
2641 * *ram_addr: set to result ram_addr
2642 * *offset: set to result offset within the RAMBlock
2643 *
2644 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2645 *
2646 * By the time this function returns, the returned pointer is not protected
2647 * by RCU anymore. If the caller is not within an RCU critical section and
2648 * does not hold the iothread lock, it must have other means of protecting the
2649 * pointer, such as a reference to the region that includes the incoming
2650 * ram_addr_t.
2651 */
422148d3 2652RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2653 ram_addr_t *offset)
5579c7f3 2654{
94a6b54f
PB
2655 RAMBlock *block;
2656 uint8_t *host = ptr;
2657
868bb33f 2658 if (xen_enabled()) {
f615f396 2659 ram_addr_t ram_addr;
694ea274 2660 RCU_READ_LOCK_GUARD();
f615f396
PB
2661 ram_addr = xen_ram_addr_from_mapcache(ptr);
2662 block = qemu_get_ram_block(ram_addr);
422148d3 2663 if (block) {
d6b6aec4 2664 *offset = ram_addr - block->offset;
422148d3 2665 }
422148d3 2666 return block;
712c2b41
SS
2667 }
2668
694ea274 2669 RCU_READ_LOCK_GUARD();
0dc3f44a 2670 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2671 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2672 goto found;
2673 }
2674
99e15582 2675 RAMBLOCK_FOREACH(block) {
432d268c
JN
2676 /* This case append when the block is not mapped. */
2677 if (block->host == NULL) {
2678 continue;
2679 }
9b8424d5 2680 if (host - block->host < block->max_length) {
23887b79 2681 goto found;
f471a17e 2682 }
94a6b54f 2683 }
432d268c 2684
1b5ec234 2685 return NULL;
23887b79
PB
2686
2687found:
422148d3
DDAG
2688 *offset = (host - block->host);
2689 if (round_offset) {
2690 *offset &= TARGET_PAGE_MASK;
2691 }
422148d3
DDAG
2692 return block;
2693}
2694
e3dd7493
DDAG
2695/*
2696 * Finds the named RAMBlock
2697 *
2698 * name: The name of RAMBlock to find
2699 *
2700 * Returns: RAMBlock (or NULL if not found)
2701 */
2702RAMBlock *qemu_ram_block_by_name(const char *name)
2703{
2704 RAMBlock *block;
2705
99e15582 2706 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2707 if (!strcmp(name, block->idstr)) {
2708 return block;
2709 }
2710 }
2711
2712 return NULL;
2713}
2714
422148d3
DDAG
2715/* Some of the softmmu routines need to translate from a host pointer
2716 (typically a TLB entry) back to a ram offset. */
07bdaa41 2717ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2718{
2719 RAMBlock *block;
f615f396 2720 ram_addr_t offset;
422148d3 2721
f615f396 2722 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2723 if (!block) {
07bdaa41 2724 return RAM_ADDR_INVALID;
422148d3
DDAG
2725 }
2726
07bdaa41 2727 return block->offset + offset;
e890261f 2728}
f471a17e 2729
0f459d16 2730/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2731void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2732 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2733{
568496c0 2734 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2735 CPUWatchpoint *wp;
0f459d16 2736
5aa1ef71 2737 assert(tcg_enabled());
ff4700b0 2738 if (cpu->watchpoint_hit) {
50b107c5
RH
2739 /*
2740 * We re-entered the check after replacing the TB.
2741 * Now raise the debug interrupt so that it will
2742 * trigger after the current instruction.
2743 */
2744 qemu_mutex_lock_iothread();
93afeade 2745 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2746 qemu_mutex_unlock_iothread();
06d55cc1
AL
2747 return;
2748 }
0026348b
DH
2749
2750 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2751 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2752 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2753 && (wp->flags & flags)) {
08225676
PM
2754 if (flags == BP_MEM_READ) {
2755 wp->flags |= BP_WATCHPOINT_HIT_READ;
2756 } else {
2757 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2758 }
0026348b 2759 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2760 wp->hitattrs = attrs;
ff4700b0 2761 if (!cpu->watchpoint_hit) {
568496c0
SF
2762 if (wp->flags & BP_CPU &&
2763 !cc->debug_check_watchpoint(cpu, wp)) {
2764 wp->flags &= ~BP_WATCHPOINT_HIT;
2765 continue;
2766 }
ff4700b0 2767 cpu->watchpoint_hit = wp;
a5e99826 2768
0ac20318 2769 mmap_lock();
ae57db63 2770 tb_check_watchpoint(cpu, ra);
6e140f28 2771 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2772 cpu->exception_index = EXCP_DEBUG;
0ac20318 2773 mmap_unlock();
0026348b 2774 cpu_loop_exit_restore(cpu, ra);
6e140f28 2775 } else {
9b990ee5
RH
2776 /* Force execution of one insn next time. */
2777 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2778 mmap_unlock();
0026348b
DH
2779 if (ra) {
2780 cpu_restore_state(cpu, ra, true);
2781 }
6886b980 2782 cpu_loop_exit_noexc(cpu);
6e140f28 2783 }
06d55cc1 2784 }
6e140f28
AL
2785 } else {
2786 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2787 }
2788 }
2789}
2790
b2a44fca 2791static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2792 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2793static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2794 const void *buf, hwaddr len);
0c249ff7 2795static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2796 bool is_write, MemTxAttrs attrs);
16620684 2797
f25a49e0
PM
2798static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2799 unsigned len, MemTxAttrs attrs)
db7b5426 2800{
acc9d80b 2801 subpage_t *subpage = opaque;
ff6cff75 2802 uint8_t buf[8];
5c9eb028 2803 MemTxResult res;
791af8c8 2804
db7b5426 2805#if defined(DEBUG_SUBPAGE)
016e9d62 2806 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2807 subpage, len, addr);
db7b5426 2808#endif
16620684 2809 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2810 if (res) {
2811 return res;
f25a49e0 2812 }
6d3ede54
PM
2813 *data = ldn_p(buf, len);
2814 return MEMTX_OK;
db7b5426
BS
2815}
2816
f25a49e0
PM
2817static MemTxResult subpage_write(void *opaque, hwaddr addr,
2818 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2819{
acc9d80b 2820 subpage_t *subpage = opaque;
ff6cff75 2821 uint8_t buf[8];
acc9d80b 2822
db7b5426 2823#if defined(DEBUG_SUBPAGE)
016e9d62 2824 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2825 " value %"PRIx64"\n",
2826 __func__, subpage, len, addr, value);
db7b5426 2827#endif
6d3ede54 2828 stn_p(buf, len, value);
16620684 2829 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2830}
2831
c353e4cc 2832static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2833 unsigned len, bool is_write,
2834 MemTxAttrs attrs)
c353e4cc 2835{
acc9d80b 2836 subpage_t *subpage = opaque;
c353e4cc 2837#if defined(DEBUG_SUBPAGE)
016e9d62 2838 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2839 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2840#endif
2841
16620684 2842 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2843 len, is_write, attrs);
c353e4cc
PB
2844}
2845
70c68e44 2846static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2847 .read_with_attrs = subpage_read,
2848 .write_with_attrs = subpage_write,
ff6cff75
PB
2849 .impl.min_access_size = 1,
2850 .impl.max_access_size = 8,
2851 .valid.min_access_size = 1,
2852 .valid.max_access_size = 8,
c353e4cc 2853 .valid.accepts = subpage_accepts,
70c68e44 2854 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2855};
2856
b797ab1a
WY
2857static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2858 uint16_t section)
db7b5426
BS
2859{
2860 int idx, eidx;
2861
2862 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2863 return -1;
2864 idx = SUBPAGE_IDX(start);
2865 eidx = SUBPAGE_IDX(end);
2866#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2867 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2868 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2869#endif
db7b5426 2870 for (; idx <= eidx; idx++) {
5312bd8b 2871 mmio->sub_section[idx] = section;
db7b5426
BS
2872 }
2873
2874 return 0;
2875}
2876
16620684 2877static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2878{
c227f099 2879 subpage_t *mmio;
db7b5426 2880
b797ab1a 2881 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2882 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2883 mmio->fv = fv;
1eec614b 2884 mmio->base = base;
2c9b15ca 2885 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2886 NULL, TARGET_PAGE_SIZE);
b3b00c78 2887 mmio->iomem.subpage = true;
db7b5426 2888#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2889 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2890 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2891#endif
db7b5426
BS
2892
2893 return mmio;
2894}
2895
16620684 2896static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2897{
16620684 2898 assert(fv);
5312bd8b 2899 MemoryRegionSection section = {
16620684 2900 .fv = fv,
5312bd8b
AK
2901 .mr = mr,
2902 .offset_within_address_space = 0,
2903 .offset_within_region = 0,
052e87b0 2904 .size = int128_2_64(),
5312bd8b
AK
2905 };
2906
53cb28cb 2907 return phys_section_add(map, &section);
5312bd8b
AK
2908}
2909
2d54f194
PM
2910MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2911 hwaddr index, MemTxAttrs attrs)
aa102231 2912{
a54c87b6
PM
2913 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2914 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2915 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2916 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2917
2d54f194 2918 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2919}
2920
e9179ce1
AK
2921static void io_mem_init(void)
2922{
2c9b15ca 2923 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2924 NULL, UINT64_MAX);
e9179ce1
AK
2925}
2926
8629d3fc 2927AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2928{
53cb28cb
MA
2929 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2930 uint16_t n;
2931
16620684 2932 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2933 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2934
9736e55b 2935 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2936
2937 return d;
00752703
PB
2938}
2939
66a6df1d 2940void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2941{
2942 phys_sections_free(&d->map);
2943 g_free(d);
2944}
2945
9458a9a1
PB
2946static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2947{
2948}
2949
2950static void tcg_log_global_after_sync(MemoryListener *listener)
2951{
2952 CPUAddressSpace *cpuas;
2953
2954 /* Wait for the CPU to end the current TB. This avoids the following
2955 * incorrect race:
2956 *
2957 * vCPU migration
2958 * ---------------------- -------------------------
2959 * TLB check -> slow path
2960 * notdirty_mem_write
2961 * write to RAM
2962 * mark dirty
2963 * clear dirty flag
2964 * TLB check -> fast path
2965 * read memory
2966 * write to RAM
2967 *
2968 * by pushing the migration thread's memory read after the vCPU thread has
2969 * written the memory.
2970 */
86cf9e15
PD
2971 if (replay_mode == REPLAY_MODE_NONE) {
2972 /*
2973 * VGA can make calls to this function while updating the screen.
2974 * In record/replay mode this causes a deadlock, because
2975 * run_on_cpu waits for rr mutex. Therefore no races are possible
2976 * in this case and no need for making run_on_cpu when
2977 * record/replay is not enabled.
2978 */
2979 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2980 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2981 }
9458a9a1
PB
2982}
2983
1d71148e 2984static void tcg_commit(MemoryListener *listener)
50c1e149 2985{
32857f4d
PM
2986 CPUAddressSpace *cpuas;
2987 AddressSpaceDispatch *d;
117712c3 2988
f28d0dfd 2989 assert(tcg_enabled());
117712c3
AK
2990 /* since each CPU stores ram addresses in its TLB cache, we must
2991 reset the modified entries */
32857f4d
PM
2992 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2993 cpu_reloading_memory_map();
2994 /* The CPU and TLB are protected by the iothread lock.
2995 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2996 * may have split the RCU critical section.
2997 */
66a6df1d 2998 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2999 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3000 tlb_flush(cpuas->cpu);
50c1e149
AK
3001}
3002
62152b8a
AK
3003static void memory_map_init(void)
3004{
7267c094 3005 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3006
57271d63 3007 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3008 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3009
7267c094 3010 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3011 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3012 65536);
7dca8043 3013 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3014}
3015
3016MemoryRegion *get_system_memory(void)
3017{
3018 return system_memory;
3019}
3020
309cb471
AK
3021MemoryRegion *get_system_io(void)
3022{
3023 return system_io;
3024}
3025
e2eef170
PB
3026#endif /* !defined(CONFIG_USER_ONLY) */
3027
13eb76e0
FB
3028/* physical memory access (slow version, mainly for debug) */
3029#if defined(CONFIG_USER_ONLY)
f17ec444 3030int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3031 void *ptr, target_ulong len, bool is_write)
13eb76e0 3032{
0c249ff7
LZ
3033 int flags;
3034 target_ulong l, page;
53a5960a 3035 void * p;
d7ef71ef 3036 uint8_t *buf = ptr;
13eb76e0
FB
3037
3038 while (len > 0) {
3039 page = addr & TARGET_PAGE_MASK;
3040 l = (page + TARGET_PAGE_SIZE) - addr;
3041 if (l > len)
3042 l = len;
3043 flags = page_get_flags(page);
3044 if (!(flags & PAGE_VALID))
a68fe89c 3045 return -1;
13eb76e0
FB
3046 if (is_write) {
3047 if (!(flags & PAGE_WRITE))
a68fe89c 3048 return -1;
579a97f7 3049 /* XXX: this code should not depend on lock_user */
72fb7daa 3050 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3051 return -1;
72fb7daa
AJ
3052 memcpy(p, buf, l);
3053 unlock_user(p, addr, l);
13eb76e0
FB
3054 } else {
3055 if (!(flags & PAGE_READ))
a68fe89c 3056 return -1;
579a97f7 3057 /* XXX: this code should not depend on lock_user */
72fb7daa 3058 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3059 return -1;
72fb7daa 3060 memcpy(buf, p, l);
5b257578 3061 unlock_user(p, addr, 0);
13eb76e0
FB
3062 }
3063 len -= l;
3064 buf += l;
3065 addr += l;
3066 }
a68fe89c 3067 return 0;
13eb76e0 3068}
8df1cd07 3069
13eb76e0 3070#else
51d7a9eb 3071
845b6214 3072static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3073 hwaddr length)
51d7a9eb 3074{
e87f7778 3075 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3076 addr += memory_region_get_ram_addr(mr);
3077
e87f7778
PB
3078 /* No early return if dirty_log_mask is or becomes 0, because
3079 * cpu_physical_memory_set_dirty_range will still call
3080 * xen_modified_memory.
3081 */
3082 if (dirty_log_mask) {
3083 dirty_log_mask =
3084 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3085 }
3086 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3087 assert(tcg_enabled());
e87f7778
PB
3088 tb_invalidate_phys_range(addr, addr + length);
3089 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3090 }
e87f7778 3091 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3092}
3093
047be4ed
SH
3094void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3095{
3096 /*
3097 * In principle this function would work on other memory region types too,
3098 * but the ROM device use case is the only one where this operation is
3099 * necessary. Other memory regions should use the
3100 * address_space_read/write() APIs.
3101 */
3102 assert(memory_region_is_romd(mr));
3103
3104 invalidate_and_set_dirty(mr, addr, size);
3105}
3106
23326164 3107static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3108{
e1622f4b 3109 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3110
3111 /* Regions are assumed to support 1-4 byte accesses unless
3112 otherwise specified. */
23326164
RH
3113 if (access_size_max == 0) {
3114 access_size_max = 4;
3115 }
3116
3117 /* Bound the maximum access by the alignment of the address. */
3118 if (!mr->ops->impl.unaligned) {
3119 unsigned align_size_max = addr & -addr;
3120 if (align_size_max != 0 && align_size_max < access_size_max) {
3121 access_size_max = align_size_max;
3122 }
82f2563f 3123 }
23326164
RH
3124
3125 /* Don't attempt accesses larger than the maximum. */
3126 if (l > access_size_max) {
3127 l = access_size_max;
82f2563f 3128 }
6554f5c0 3129 l = pow2floor(l);
23326164
RH
3130
3131 return l;
82f2563f
PB
3132}
3133
4840f10e 3134static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3135{
4840f10e
JK
3136 bool unlocked = !qemu_mutex_iothread_locked();
3137 bool release_lock = false;
3138
3139 if (unlocked && mr->global_locking) {
3140 qemu_mutex_lock_iothread();
3141 unlocked = false;
3142 release_lock = true;
3143 }
125b3806 3144 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3145 if (unlocked) {
3146 qemu_mutex_lock_iothread();
3147 }
125b3806 3148 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3149 if (unlocked) {
3150 qemu_mutex_unlock_iothread();
3151 }
125b3806 3152 }
4840f10e
JK
3153
3154 return release_lock;
125b3806
PB
3155}
3156
a203ac70 3157/* Called within RCU critical section. */
16620684
AK
3158static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3159 MemTxAttrs attrs,
a152be43 3160 const void *ptr,
0c249ff7 3161 hwaddr len, hwaddr addr1,
16620684 3162 hwaddr l, MemoryRegion *mr)
13eb76e0 3163{
20804676 3164 uint8_t *ram_ptr;
791af8c8 3165 uint64_t val;
3b643495 3166 MemTxResult result = MEMTX_OK;
4840f10e 3167 bool release_lock = false;
a152be43 3168 const uint8_t *buf = ptr;
3b46e624 3169
a203ac70 3170 for (;;) {
eb7eeb88
PB
3171 if (!memory_access_is_direct(mr, true)) {
3172 release_lock |= prepare_mmio_access(mr);
3173 l = memory_access_size(mr, l, addr1);
3174 /* XXX: could force current_cpu to NULL to avoid
3175 potential bugs */
9bf825bf 3176 val = ldn_he_p(buf, l);
3d9e7c3e 3177 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3178 size_memop(l), attrs);
13eb76e0 3179 } else {
eb7eeb88 3180 /* RAM case */
20804676
PMD
3181 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3182 memcpy(ram_ptr, buf, l);
eb7eeb88 3183 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3184 }
4840f10e
JK
3185
3186 if (release_lock) {
3187 qemu_mutex_unlock_iothread();
3188 release_lock = false;
3189 }
3190
13eb76e0
FB
3191 len -= l;
3192 buf += l;
3193 addr += l;
a203ac70
PB
3194
3195 if (!len) {
3196 break;
3197 }
3198
3199 l = len;
efa99a2f 3200 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3201 }
fd8aaa76 3202
3b643495 3203 return result;
13eb76e0 3204}
8df1cd07 3205
4c6ebbb3 3206/* Called from RCU critical section. */
16620684 3207static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3208 const void *buf, hwaddr len)
ac1970fb 3209{
eb7eeb88 3210 hwaddr l;
eb7eeb88
PB
3211 hwaddr addr1;
3212 MemoryRegion *mr;
3213 MemTxResult result = MEMTX_OK;
eb7eeb88 3214
4c6ebbb3 3215 l = len;
efa99a2f 3216 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3217 result = flatview_write_continue(fv, addr, attrs, buf, len,
3218 addr1, l, mr);
a203ac70
PB
3219
3220 return result;
3221}
3222
3223/* Called within RCU critical section. */
16620684 3224MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3225 MemTxAttrs attrs, void *ptr,
0c249ff7 3226 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3227 MemoryRegion *mr)
a203ac70 3228{
20804676 3229 uint8_t *ram_ptr;
a203ac70
PB
3230 uint64_t val;
3231 MemTxResult result = MEMTX_OK;
3232 bool release_lock = false;
a152be43 3233 uint8_t *buf = ptr;
eb7eeb88 3234
a203ac70 3235 for (;;) {
eb7eeb88
PB
3236 if (!memory_access_is_direct(mr, false)) {
3237 /* I/O case */
3238 release_lock |= prepare_mmio_access(mr);
3239 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3240 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3241 size_memop(l), attrs);
3242 stn_he_p(buf, l, val);
eb7eeb88
PB
3243 } else {
3244 /* RAM case */
20804676
PMD
3245 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3246 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3247 }
3248
3249 if (release_lock) {
3250 qemu_mutex_unlock_iothread();
3251 release_lock = false;
3252 }
3253
3254 len -= l;
3255 buf += l;
3256 addr += l;
a203ac70
PB
3257
3258 if (!len) {
3259 break;
3260 }
3261
3262 l = len;
efa99a2f 3263 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3264 }
3265
3266 return result;
3267}
3268
b2a44fca
PB
3269/* Called from RCU critical section. */
3270static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3271 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3272{
3273 hwaddr l;
3274 hwaddr addr1;
3275 MemoryRegion *mr;
eb7eeb88 3276
b2a44fca 3277 l = len;
efa99a2f 3278 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3279 return flatview_read_continue(fv, addr, attrs, buf, len,
3280 addr1, l, mr);
ac1970fb
AK
3281}
3282
b2a44fca 3283MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3284 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3285{
3286 MemTxResult result = MEMTX_OK;
3287 FlatView *fv;
3288
3289 if (len > 0) {
694ea274 3290 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3291 fv = address_space_to_flatview(as);
3292 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3293 }
3294
3295 return result;
3296}
3297
4c6ebbb3
PB
3298MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3299 MemTxAttrs attrs,
daa3dda4 3300 const void *buf, hwaddr len)
4c6ebbb3
PB
3301{
3302 MemTxResult result = MEMTX_OK;
3303 FlatView *fv;
3304
3305 if (len > 0) {
694ea274 3306 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3307 fv = address_space_to_flatview(as);
3308 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3309 }
3310
3311 return result;
3312}
3313
db84fd97 3314MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3315 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3316{
3317 if (is_write) {
3318 return address_space_write(as, addr, attrs, buf, len);
3319 } else {
3320 return address_space_read_full(as, addr, attrs, buf, len);
3321 }
3322}
3323
d7ef71ef 3324void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3325 hwaddr len, bool is_write)
ac1970fb 3326{
5c9eb028
PM
3327 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3328 buf, len, is_write);
ac1970fb
AK
3329}
3330
582b55a9
AG
3331enum write_rom_type {
3332 WRITE_DATA,
3333 FLUSH_CACHE,
3334};
3335
75693e14
PM
3336static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3337 hwaddr addr,
3338 MemTxAttrs attrs,
daa3dda4 3339 const void *ptr,
0c249ff7 3340 hwaddr len,
75693e14 3341 enum write_rom_type type)
d0ecd2aa 3342{
149f54b5 3343 hwaddr l;
20804676 3344 uint8_t *ram_ptr;
149f54b5 3345 hwaddr addr1;
5c8a00ce 3346 MemoryRegion *mr;
daa3dda4 3347 const uint8_t *buf = ptr;
3b46e624 3348
694ea274 3349 RCU_READ_LOCK_GUARD();
d0ecd2aa 3350 while (len > 0) {
149f54b5 3351 l = len;
75693e14 3352 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3353
5c8a00ce
PB
3354 if (!(memory_region_is_ram(mr) ||
3355 memory_region_is_romd(mr))) {
b242e0e0 3356 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3357 } else {
d0ecd2aa 3358 /* ROM/RAM case */
20804676 3359 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3360 switch (type) {
3361 case WRITE_DATA:
20804676 3362 memcpy(ram_ptr, buf, l);
845b6214 3363 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3364 break;
3365 case FLUSH_CACHE:
20804676 3366 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3367 break;
3368 }
d0ecd2aa
FB
3369 }
3370 len -= l;
3371 buf += l;
3372 addr += l;
3373 }
75693e14 3374 return MEMTX_OK;
d0ecd2aa
FB
3375}
3376
582b55a9 3377/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3378MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3379 MemTxAttrs attrs,
daa3dda4 3380 const void *buf, hwaddr len)
582b55a9 3381{
3c8133f9
PM
3382 return address_space_write_rom_internal(as, addr, attrs,
3383 buf, len, WRITE_DATA);
582b55a9
AG
3384}
3385
0c249ff7 3386void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3387{
3388 /*
3389 * This function should do the same thing as an icache flush that was
3390 * triggered from within the guest. For TCG we are always cache coherent,
3391 * so there is no need to flush anything. For KVM / Xen we need to flush
3392 * the host's instruction cache at least.
3393 */
3394 if (tcg_enabled()) {
3395 return;
3396 }
3397
75693e14
PM
3398 address_space_write_rom_internal(&address_space_memory,
3399 start, MEMTXATTRS_UNSPECIFIED,
3400 NULL, len, FLUSH_CACHE);
582b55a9
AG
3401}
3402
6d16c2f8 3403typedef struct {
d3e71559 3404 MemoryRegion *mr;
6d16c2f8 3405 void *buffer;
a8170e5e
AK
3406 hwaddr addr;
3407 hwaddr len;
c2cba0ff 3408 bool in_use;
6d16c2f8
AL
3409} BounceBuffer;
3410
3411static BounceBuffer bounce;
3412
ba223c29 3413typedef struct MapClient {
e95205e1 3414 QEMUBH *bh;
72cf2d4f 3415 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3416} MapClient;
3417
38e047b5 3418QemuMutex map_client_list_lock;
b58deb34 3419static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3420 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3421
e95205e1
FZ
3422static void cpu_unregister_map_client_do(MapClient *client)
3423{
3424 QLIST_REMOVE(client, link);
3425 g_free(client);
3426}
3427
33b6c2ed
FZ
3428static void cpu_notify_map_clients_locked(void)
3429{
3430 MapClient *client;
3431
3432 while (!QLIST_EMPTY(&map_client_list)) {
3433 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3434 qemu_bh_schedule(client->bh);
3435 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3436 }
3437}
3438
e95205e1 3439void cpu_register_map_client(QEMUBH *bh)
ba223c29 3440{
7267c094 3441 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3442
38e047b5 3443 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3444 client->bh = bh;
72cf2d4f 3445 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3446 if (!atomic_read(&bounce.in_use)) {
3447 cpu_notify_map_clients_locked();
3448 }
38e047b5 3449 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3450}
3451
38e047b5 3452void cpu_exec_init_all(void)
ba223c29 3453{
38e047b5 3454 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3455 /* The data structures we set up here depend on knowing the page size,
3456 * so no more changes can be made after this point.
3457 * In an ideal world, nothing we did before we had finished the
3458 * machine setup would care about the target page size, and we could
3459 * do this much later, rather than requiring board models to state
3460 * up front what their requirements are.
3461 */
3462 finalize_target_page_bits();
38e047b5 3463 io_mem_init();
680a4783 3464 memory_map_init();
38e047b5 3465 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3466}
3467
e95205e1 3468void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3469{
3470 MapClient *client;
3471
e95205e1
FZ
3472 qemu_mutex_lock(&map_client_list_lock);
3473 QLIST_FOREACH(client, &map_client_list, link) {
3474 if (client->bh == bh) {
3475 cpu_unregister_map_client_do(client);
3476 break;
3477 }
ba223c29 3478 }
e95205e1 3479 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3480}
3481
3482static void cpu_notify_map_clients(void)
3483{
38e047b5 3484 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3485 cpu_notify_map_clients_locked();
38e047b5 3486 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3487}
3488
0c249ff7 3489static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3490 bool is_write, MemTxAttrs attrs)
51644ab7 3491{
5c8a00ce 3492 MemoryRegion *mr;
51644ab7
PB
3493 hwaddr l, xlat;
3494
3495 while (len > 0) {
3496 l = len;
efa99a2f 3497 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3498 if (!memory_access_is_direct(mr, is_write)) {
3499 l = memory_access_size(mr, l, addr);
eace72b7 3500 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3501 return false;
3502 }
3503 }
3504
3505 len -= l;
3506 addr += l;
3507 }
3508 return true;
3509}
3510
16620684 3511bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3512 hwaddr len, bool is_write,
fddffa42 3513 MemTxAttrs attrs)
16620684 3514{
11e732a5
PB
3515 FlatView *fv;
3516 bool result;
3517
694ea274 3518 RCU_READ_LOCK_GUARD();
11e732a5 3519 fv = address_space_to_flatview(as);
eace72b7 3520 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3521 return result;
16620684
AK
3522}
3523
715c31ec 3524static hwaddr
16620684 3525flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3526 hwaddr target_len,
3527 MemoryRegion *mr, hwaddr base, hwaddr len,
3528 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3529{
3530 hwaddr done = 0;
3531 hwaddr xlat;
3532 MemoryRegion *this_mr;
3533
3534 for (;;) {
3535 target_len -= len;
3536 addr += len;
3537 done += len;
3538 if (target_len == 0) {
3539 return done;
3540 }
3541
3542 len = target_len;
16620684 3543 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3544 &len, is_write, attrs);
715c31ec
PB
3545 if (this_mr != mr || xlat != base + done) {
3546 return done;
3547 }
3548 }
3549}
3550
6d16c2f8
AL
3551/* Map a physical memory region into a host virtual address.
3552 * May map a subset of the requested range, given by and returned in *plen.
3553 * May return NULL if resources needed to perform the mapping are exhausted.
3554 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3555 * Use cpu_register_map_client() to know when retrying the map operation is
3556 * likely to succeed.
6d16c2f8 3557 */
ac1970fb 3558void *address_space_map(AddressSpace *as,
a8170e5e
AK
3559 hwaddr addr,
3560 hwaddr *plen,
f26404fb
PM
3561 bool is_write,
3562 MemTxAttrs attrs)
6d16c2f8 3563{
a8170e5e 3564 hwaddr len = *plen;
715c31ec
PB
3565 hwaddr l, xlat;
3566 MemoryRegion *mr;
e81bcda5 3567 void *ptr;
ad0c60fa 3568 FlatView *fv;
6d16c2f8 3569
e3127ae0
PB
3570 if (len == 0) {
3571 return NULL;
3572 }
38bee5dc 3573
e3127ae0 3574 l = len;
694ea274 3575 RCU_READ_LOCK_GUARD();
ad0c60fa 3576 fv = address_space_to_flatview(as);
efa99a2f 3577 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3578
e3127ae0 3579 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3580 if (atomic_xchg(&bounce.in_use, true)) {
77f55eac 3581 *plen = 0;
e3127ae0 3582 return NULL;
6d16c2f8 3583 }
e85d9db5
KW
3584 /* Avoid unbounded allocations */
3585 l = MIN(l, TARGET_PAGE_SIZE);
3586 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3587 bounce.addr = addr;
3588 bounce.len = l;
d3e71559
PB
3589
3590 memory_region_ref(mr);
3591 bounce.mr = mr;
e3127ae0 3592 if (!is_write) {
16620684 3593 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3594 bounce.buffer, l);
8ab934f9 3595 }
6d16c2f8 3596
e3127ae0
PB
3597 *plen = l;
3598 return bounce.buffer;
3599 }
3600
e3127ae0 3601
d3e71559 3602 memory_region_ref(mr);
16620684 3603 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3604 l, is_write, attrs);
f5aa69bd 3605 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3606
3607 return ptr;
6d16c2f8
AL
3608}
3609
ac1970fb 3610/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3611 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3612 * the amount of memory that was actually read or written by the caller.
3613 */
a8170e5e 3614void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3615 bool is_write, hwaddr access_len)
6d16c2f8
AL
3616{
3617 if (buffer != bounce.buffer) {
d3e71559
PB
3618 MemoryRegion *mr;
3619 ram_addr_t addr1;
3620
07bdaa41 3621 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3622 assert(mr != NULL);
6d16c2f8 3623 if (is_write) {
845b6214 3624 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3625 }
868bb33f 3626 if (xen_enabled()) {
e41d7c69 3627 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3628 }
d3e71559 3629 memory_region_unref(mr);
6d16c2f8
AL
3630 return;
3631 }
3632 if (is_write) {
5c9eb028
PM
3633 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3634 bounce.buffer, access_len);
6d16c2f8 3635 }
f8a83245 3636 qemu_vfree(bounce.buffer);
6d16c2f8 3637 bounce.buffer = NULL;
d3e71559 3638 memory_region_unref(bounce.mr);
c2cba0ff 3639 atomic_mb_set(&bounce.in_use, false);
ba223c29 3640 cpu_notify_map_clients();
6d16c2f8 3641}
d0ecd2aa 3642
a8170e5e
AK
3643void *cpu_physical_memory_map(hwaddr addr,
3644 hwaddr *plen,
28c80bfe 3645 bool is_write)
ac1970fb 3646{
f26404fb
PM
3647 return address_space_map(&address_space_memory, addr, plen, is_write,
3648 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3649}
3650
a8170e5e 3651void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3652 bool is_write, hwaddr access_len)
ac1970fb
AK
3653{
3654 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3655}
3656
0ce265ff
PB
3657#define ARG1_DECL AddressSpace *as
3658#define ARG1 as
3659#define SUFFIX
3660#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3661#define RCU_READ_LOCK(...) rcu_read_lock()
3662#define RCU_READ_UNLOCK(...) rcu_read_unlock()
139c1837 3663#include "memory_ldst.c.inc"
1e78bcc1 3664
1f4e496e
PB
3665int64_t address_space_cache_init(MemoryRegionCache *cache,
3666 AddressSpace *as,
3667 hwaddr addr,
3668 hwaddr len,
3669 bool is_write)
3670{
48564041
PB
3671 AddressSpaceDispatch *d;
3672 hwaddr l;
3673 MemoryRegion *mr;
3674
3675 assert(len > 0);
3676
3677 l = len;
3678 cache->fv = address_space_get_flatview(as);
3679 d = flatview_to_dispatch(cache->fv);
3680 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3681
3682 mr = cache->mrs.mr;
3683 memory_region_ref(mr);
3684 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3685 /* We don't care about the memory attributes here as we're only
3686 * doing this if we found actual RAM, which behaves the same
3687 * regardless of attributes; so UNSPECIFIED is fine.
3688 */
48564041 3689 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3690 cache->xlat, l, is_write,
3691 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3692 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3693 } else {
3694 cache->ptr = NULL;
3695 }
3696
3697 cache->len = l;
3698 cache->is_write = is_write;
3699 return l;
1f4e496e
PB
3700}
3701
3702void address_space_cache_invalidate(MemoryRegionCache *cache,
3703 hwaddr addr,
3704 hwaddr access_len)
3705{
48564041
PB
3706 assert(cache->is_write);
3707 if (likely(cache->ptr)) {
3708 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3709 }
1f4e496e
PB
3710}
3711
3712void address_space_cache_destroy(MemoryRegionCache *cache)
3713{
48564041
PB
3714 if (!cache->mrs.mr) {
3715 return;
3716 }
3717
3718 if (xen_enabled()) {
3719 xen_invalidate_map_cache_entry(cache->ptr);
3720 }
3721 memory_region_unref(cache->mrs.mr);
3722 flatview_unref(cache->fv);
3723 cache->mrs.mr = NULL;
3724 cache->fv = NULL;
3725}
3726
3727/* Called from RCU critical section. This function has the same
3728 * semantics as address_space_translate, but it only works on a
3729 * predefined range of a MemoryRegion that was mapped with
3730 * address_space_cache_init.
3731 */
3732static inline MemoryRegion *address_space_translate_cached(
3733 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3734 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3735{
3736 MemoryRegionSection section;
3737 MemoryRegion *mr;
3738 IOMMUMemoryRegion *iommu_mr;
3739 AddressSpace *target_as;
3740
3741 assert(!cache->ptr);
3742 *xlat = addr + cache->xlat;
3743
3744 mr = cache->mrs.mr;
3745 iommu_mr = memory_region_get_iommu(mr);
3746 if (!iommu_mr) {
3747 /* MMIO region. */
3748 return mr;
3749 }
3750
3751 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3752 NULL, is_write, true,
2f7b009c 3753 &target_as, attrs);
48564041
PB
3754 return section.mr;
3755}
3756
3757/* Called from RCU critical section. address_space_read_cached uses this
3758 * out of line function when the target is an MMIO or IOMMU region.
3759 */
38df19fa 3760MemTxResult
48564041 3761address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3762 void *buf, hwaddr len)
48564041
PB
3763{
3764 hwaddr addr1, l;
3765 MemoryRegion *mr;
3766
3767 l = len;
bc6b1cec
PM
3768 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3769 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3770 return flatview_read_continue(cache->fv,
3771 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3772 addr1, l, mr);
48564041
PB
3773}
3774
3775/* Called from RCU critical section. address_space_write_cached uses this
3776 * out of line function when the target is an MMIO or IOMMU region.
3777 */
38df19fa 3778MemTxResult
48564041 3779address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3780 const void *buf, hwaddr len)
48564041
PB
3781{
3782 hwaddr addr1, l;
3783 MemoryRegion *mr;
3784
3785 l = len;
bc6b1cec
PM
3786 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3787 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3788 return flatview_write_continue(cache->fv,
3789 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3790 addr1, l, mr);
1f4e496e
PB
3791}
3792
3793#define ARG1_DECL MemoryRegionCache *cache
3794#define ARG1 cache
48564041
PB
3795#define SUFFIX _cached_slow
3796#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3797#define RCU_READ_LOCK() ((void)0)
3798#define RCU_READ_UNLOCK() ((void)0)
139c1837 3799#include "memory_ldst.c.inc"
1f4e496e 3800
5e2972fd 3801/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3802int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3803 void *ptr, target_ulong len, bool is_write)
13eb76e0 3804{
a8170e5e 3805 hwaddr phys_addr;
0c249ff7 3806 target_ulong l, page;
d7ef71ef 3807 uint8_t *buf = ptr;
13eb76e0 3808
79ca7a1b 3809 cpu_synchronize_state(cpu);
13eb76e0 3810 while (len > 0) {
5232e4c7
PM
3811 int asidx;
3812 MemTxAttrs attrs;
ddfc8b96 3813 MemTxResult res;
5232e4c7 3814
13eb76e0 3815 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3816 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3817 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3818 /* if no physical page mapped, return an error */
3819 if (phys_addr == -1)
3820 return -1;
3821 l = (page + TARGET_PAGE_SIZE) - addr;
3822 if (l > len)
3823 l = len;
5e2972fd 3824 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3825 if (is_write) {
ddfc8b96
PMD
3826 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3827 attrs, buf, l);
2e38847b 3828 } else {
ddfc8b96
PMD
3829 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3830 attrs, buf, l);
3831 }
3832 if (res != MEMTX_OK) {
3833 return -1;
2e38847b 3834 }
13eb76e0
FB
3835 len -= l;
3836 buf += l;
3837 addr += l;
3838 }
3839 return 0;
3840}
038629a6
DDAG
3841
3842/*
3843 * Allows code that needs to deal with migration bitmaps etc to still be built
3844 * target independent.
3845 */
20afaed9 3846size_t qemu_target_page_size(void)
038629a6 3847{
20afaed9 3848 return TARGET_PAGE_SIZE;
038629a6
DDAG
3849}
3850
46d702b1
JQ
3851int qemu_target_page_bits(void)
3852{
3853 return TARGET_PAGE_BITS;
3854}
3855
3856int qemu_target_page_bits_min(void)
3857{
3858 return TARGET_PAGE_BITS_MIN;
3859}
a68fe89c 3860#endif
13eb76e0 3861
98ed8ecf 3862bool target_words_bigendian(void)
8e4a424b
BS
3863{
3864#if defined(TARGET_WORDS_BIGENDIAN)
3865 return true;
3866#else
3867 return false;
3868#endif
3869}
3870
76f35538 3871#ifndef CONFIG_USER_ONLY
a8170e5e 3872bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3873{
5c8a00ce 3874 MemoryRegion*mr;
149f54b5 3875 hwaddr l = 1;
41063e1e 3876 bool res;
76f35538 3877
694ea274 3878 RCU_READ_LOCK_GUARD();
5c8a00ce 3879 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3880 phys_addr, &phys_addr, &l, false,
3881 MEMTXATTRS_UNSPECIFIED);
76f35538 3882
41063e1e 3883 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3884 return res;
76f35538 3885}
bd2fa51f 3886
e3807054 3887int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3888{
3889 RAMBlock *block;
e3807054 3890 int ret = 0;
bd2fa51f 3891
694ea274 3892 RCU_READ_LOCK_GUARD();
99e15582 3893 RAMBLOCK_FOREACH(block) {
754cb9c0 3894 ret = func(block, opaque);
e3807054
DDAG
3895 if (ret) {
3896 break;
3897 }
bd2fa51f 3898 }
e3807054 3899 return ret;
bd2fa51f 3900}
d3a5038c
DDAG
3901
3902/*
3903 * Unmap pages of memory from start to start+length such that
3904 * they a) read as 0, b) Trigger whatever fault mechanism
3905 * the OS provides for postcopy.
3906 * The pages must be unmapped by the end of the function.
3907 * Returns: 0 on success, none-0 on failure
3908 *
3909 */
3910int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3911{
3912 int ret = -1;
3913
3914 uint8_t *host_startaddr = rb->host + start;
3915
619bd31d 3916 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3917 error_report("ram_block_discard_range: Unaligned start address: %p",
3918 host_startaddr);
3919 goto err;
3920 }
3921
3922 if ((start + length) <= rb->used_length) {
db144f70 3923 bool need_madvise, need_fallocate;
619bd31d 3924 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3925 error_report("ram_block_discard_range: Unaligned length: %zx",
3926 length);
d3a5038c
DDAG
3927 goto err;
3928 }
3929
3930 errno = ENOTSUP; /* If we are missing MADVISE etc */
3931
db144f70
DDAG
3932 /* The logic here is messy;
3933 * madvise DONTNEED fails for hugepages
3934 * fallocate works on hugepages and shmem
3935 */
3936 need_madvise = (rb->page_size == qemu_host_page_size);
3937 need_fallocate = rb->fd != -1;
3938 if (need_fallocate) {
3939 /* For a file, this causes the area of the file to be zero'd
3940 * if read, and for hugetlbfs also causes it to be unmapped
3941 * so a userfault will trigger.
e2fa71f5
DDAG
3942 */
3943#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3944 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3945 start, length);
db144f70
DDAG
3946 if (ret) {
3947 ret = -errno;
3948 error_report("ram_block_discard_range: Failed to fallocate "
3949 "%s:%" PRIx64 " +%zx (%d)",
3950 rb->idstr, start, length, ret);
3951 goto err;
3952 }
3953#else
3954 ret = -ENOSYS;
3955 error_report("ram_block_discard_range: fallocate not available/file"
3956 "%s:%" PRIx64 " +%zx (%d)",
3957 rb->idstr, start, length, ret);
3958 goto err;
e2fa71f5
DDAG
3959#endif
3960 }
db144f70
DDAG
3961 if (need_madvise) {
3962 /* For normal RAM this causes it to be unmapped,
3963 * for shared memory it causes the local mapping to disappear
3964 * and to fall back on the file contents (which we just
3965 * fallocate'd away).
3966 */
3967#if defined(CONFIG_MADVISE)
3968 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3969 if (ret) {
3970 ret = -errno;
3971 error_report("ram_block_discard_range: Failed to discard range "
3972 "%s:%" PRIx64 " +%zx (%d)",
3973 rb->idstr, start, length, ret);
3974 goto err;
3975 }
3976#else
3977 ret = -ENOSYS;
3978 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3979 "%s:%" PRIx64 " +%zx (%d)",
3980 rb->idstr, start, length, ret);
db144f70
DDAG
3981 goto err;
3982#endif
d3a5038c 3983 }
db144f70
DDAG
3984 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3985 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3986 } else {
3987 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3988 "/%zx/" RAM_ADDR_FMT")",
3989 rb->idstr, start, length, rb->used_length);
3990 }
3991
3992err:
3993 return ret;
3994}
3995
a4de8552
JH
3996bool ramblock_is_pmem(RAMBlock *rb)
3997{
3998 return rb->flags & RAM_PMEM;
3999}
4000
ec3f8c99 4001#endif
a0be0c58
YZ
4002
4003void page_size_init(void)
4004{
4005 /* NOTE: we can always suppose that qemu_host_page_size >=
4006 TARGET_PAGE_SIZE */
a0be0c58
YZ
4007 if (qemu_host_page_size == 0) {
4008 qemu_host_page_size = qemu_real_host_page_size;
4009 }
4010 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4011 qemu_host_page_size = TARGET_PAGE_SIZE;
4012 }
4013 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4014}
5e8fd947
AK
4015
4016#if !defined(CONFIG_USER_ONLY)
4017
b6b71cb5 4018static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4019{
4020 if (start == end - 1) {
b6b71cb5 4021 qemu_printf("\t%3d ", start);
5e8fd947 4022 } else {
b6b71cb5 4023 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4024 }
b6b71cb5 4025 qemu_printf(" skip=%d ", skip);
5e8fd947 4026 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4027 qemu_printf(" ptr=NIL");
5e8fd947 4028 } else if (!skip) {
b6b71cb5 4029 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4030 } else {
b6b71cb5 4031 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4032 }
b6b71cb5 4033 qemu_printf("\n");
5e8fd947
AK
4034}
4035
4036#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4037 int128_sub((size), int128_one())) : 0)
4038
b6b71cb5 4039void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4040{
4041 int i;
4042
b6b71cb5
MA
4043 qemu_printf(" Dispatch\n");
4044 qemu_printf(" Physical sections\n");
5e8fd947
AK
4045
4046 for (i = 0; i < d->map.sections_nb; ++i) {
4047 MemoryRegionSection *s = d->map.sections + i;
4048 const char *names[] = { " [unassigned]", " [not dirty]",
4049 " [ROM]", " [watch]" };
4050
b6b71cb5
MA
4051 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4052 " %s%s%s%s%s",
5e8fd947
AK
4053 i,
4054 s->offset_within_address_space,
4055 s->offset_within_address_space + MR_SIZE(s->mr->size),
4056 s->mr->name ? s->mr->name : "(noname)",
4057 i < ARRAY_SIZE(names) ? names[i] : "",
4058 s->mr == root ? " [ROOT]" : "",
4059 s == d->mru_section ? " [MRU]" : "",
4060 s->mr->is_iommu ? " [iommu]" : "");
4061
4062 if (s->mr->alias) {
b6b71cb5 4063 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4064 s->mr->alias->name : "noname");
4065 }
b6b71cb5 4066 qemu_printf("\n");
5e8fd947
AK
4067 }
4068
b6b71cb5 4069 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4070 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4071 for (i = 0; i < d->map.nodes_nb; ++i) {
4072 int j, jprev;
4073 PhysPageEntry prev;
4074 Node *n = d->map.nodes + i;
4075
b6b71cb5 4076 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4077
4078 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4079 PhysPageEntry *pe = *n + j;
4080
4081 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4082 continue;
4083 }
4084
b6b71cb5 4085 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4086
4087 jprev = j;
4088 prev = *pe;
4089 }
4090
4091 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4092 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4093 }
4094 }
4095}
4096
d24f31db
DH
4097/*
4098 * If positive, discarding RAM is disabled. If negative, discarding RAM is
4099 * required to work and cannot be disabled.
4100 */
4101static int ram_block_discard_disabled;
4102
4103int ram_block_discard_disable(bool state)
4104{
4105 int old;
4106
4107 if (!state) {
4108 atomic_dec(&ram_block_discard_disabled);
4109 return 0;
4110 }
4111
4112 do {
4113 old = atomic_read(&ram_block_discard_disabled);
4114 if (old < 0) {
4115 return -EBUSY;
4116 }
4117 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old + 1) != old);
4118 return 0;
4119}
4120
4121int ram_block_discard_require(bool state)
4122{
4123 int old;
4124
4125 if (!state) {
4126 atomic_inc(&ram_block_discard_disabled);
4127 return 0;
4128 }
4129
4130 do {
4131 old = atomic_read(&ram_block_discard_disabled);
4132 if (old > 0) {
4133 return -EBUSY;
4134 }
4135 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old - 1) != old);
4136 return 0;
4137}
4138
4139bool ram_block_discard_is_disabled(void)
4140{
4141 return atomic_read(&ram_block_discard_disabled) > 0;
4142}
4143
4144bool ram_block_discard_is_required(void)
4145{
4146 return atomic_read(&ram_block_discard_disabled) < 0;
4147}
4148
5e8fd947 4149#endif