]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
9pfs: use coroutine_fn annotation in hw/9pfs/9p.[ch]
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3
PB
44#include "sysemu/dma.h"
45#include "exec/address-spaces.h"
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
508127e2 57#include "exec/log.h"
67d95c15 58
9dfeca7c
BR
59#include "migration/vmstate.h"
60
b35ba30f 61#include "qemu/range.h"
794e8f30
MT
62#ifndef _WIN32
63#include "qemu/mmap-alloc.h"
64#endif
b35ba30f 65
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
e2eef170 68#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
69/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
71 */
0d53d9fe 72RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
73
74static MemoryRegion *system_memory;
309cb471 75static MemoryRegion *system_io;
62152b8a 76
f6790af6
AK
77AddressSpace address_space_io;
78AddressSpace address_space_memory;
2673a5da 79
0844e007 80MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 81static MemoryRegion io_mem_unassigned;
0e0df1e2 82
7bd4f430
PB
83/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84#define RAM_PREALLOC (1 << 0)
85
dbcb8981
PB
86/* RAM is mmap-ed with MAP_SHARED */
87#define RAM_SHARED (1 << 1)
88
62be4e3a
MT
89/* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
91 */
92#define RAM_RESIZEABLE (1 << 2)
93
e2eef170 94#endif
9fa3e853 95
bdc44640 96struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
97/* current CPU in the current thread. It is only valid inside
98 cpu_exec() */
f240eb6f 99__thread CPUState *current_cpu;
2e70f6ef 100/* 0 = Do not count executed instructions.
bf20dc07 101 1 = Precise instruction counting.
2e70f6ef 102 2 = Adaptive rate instruction counting. */
5708fc66 103int use_icount;
6a00d601 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
4346ae3e 106
1db8abb1
PB
107typedef struct PhysPageEntry PhysPageEntry;
108
109struct PhysPageEntry {
9736e55b 110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 111 uint32_t skip : 6;
9736e55b 112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 113 uint32_t ptr : 26;
1db8abb1
PB
114};
115
8b795765
MT
116#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117
03f49957 118/* Size of the L2 (and L3, etc) page tables. */
57271d63 119#define ADDR_SPACE_BITS 64
03f49957 120
026736ce 121#define P_L2_BITS 9
03f49957
PB
122#define P_L2_SIZE (1 << P_L2_BITS)
123
124#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125
126typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 127
53cb28cb 128typedef struct PhysPageMap {
79e2b9ae
PB
129 struct rcu_head rcu;
130
53cb28cb
MA
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137} PhysPageMap;
138
1db8abb1 139struct AddressSpaceDispatch {
79e2b9ae
PB
140 struct rcu_head rcu;
141
729633c2 142 MemoryRegionSection *mru_section;
1db8abb1
PB
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
145 */
146 PhysPageEntry phys_map;
53cb28cb 147 PhysPageMap map;
acc9d80b 148 AddressSpace *as;
1db8abb1
PB
149};
150
90260c6c
JK
151#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152typedef struct subpage_t {
153 MemoryRegion iomem;
acc9d80b 154 AddressSpace *as;
90260c6c
JK
155 hwaddr base;
156 uint16_t sub_section[TARGET_PAGE_SIZE];
157} subpage_t;
158
b41aac4f
LPF
159#define PHYS_SECTION_UNASSIGNED 0
160#define PHYS_SECTION_NOTDIRTY 1
161#define PHYS_SECTION_ROM 2
162#define PHYS_SECTION_WATCH 3
5312bd8b 163
e2eef170 164static void io_mem_init(void);
62152b8a 165static void memory_map_init(void);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
1ec9b909 168static MemoryRegion io_mem_watch;
32857f4d
PM
169
170/**
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
176 */
177struct CPUAddressSpace {
178 CPUState *cpu;
179 AddressSpace *as;
180 struct AddressSpaceDispatch *memory_dispatch;
181 MemoryListener tcg_as_listener;
182};
183
6658ffb8 184#endif
fd6ce8f6 185
6d9a1304 186#if !defined(CONFIG_USER_ONLY)
d6f2ea22 187
53cb28cb 188static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 189{
101420b8 190 static unsigned alloc_hint = 16;
53cb28cb 191 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 192 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
193 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
194 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 195 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 196 }
f7bf5461
AK
197}
198
db94604b 199static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
200{
201 unsigned i;
8b795765 202 uint32_t ret;
db94604b
PB
203 PhysPageEntry e;
204 PhysPageEntry *p;
f7bf5461 205
53cb28cb 206 ret = map->nodes_nb++;
db94604b 207 p = map->nodes[ret];
f7bf5461 208 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 209 assert(ret != map->nodes_nb_alloc);
db94604b
PB
210
211 e.skip = leaf ? 0 : 1;
212 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 213 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 214 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 215 }
f7bf5461 216 return ret;
d6f2ea22
AK
217}
218
53cb28cb
MA
219static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
220 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 221 int level)
f7bf5461
AK
222{
223 PhysPageEntry *p;
03f49957 224 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 225
9736e55b 226 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 227 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 228 }
db94604b 229 p = map->nodes[lp->ptr];
03f49957 230 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 231
03f49957 232 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 233 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 234 lp->skip = 0;
c19e8800 235 lp->ptr = leaf;
07f07b31
AK
236 *index += step;
237 *nb -= step;
2999097b 238 } else {
53cb28cb 239 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
240 }
241 ++lp;
f7bf5461
AK
242 }
243}
244
ac1970fb 245static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 246 hwaddr index, hwaddr nb,
2999097b 247 uint16_t leaf)
f7bf5461 248{
2999097b 249 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 250 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 251
53cb28cb 252 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
253}
254
b35ba30f
MT
255/* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
257 */
efee678d 258static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
259{
260 unsigned valid_ptr = P_L2_SIZE;
261 int valid = 0;
262 PhysPageEntry *p;
263 int i;
264
265 if (lp->ptr == PHYS_MAP_NODE_NIL) {
266 return;
267 }
268
269 p = nodes[lp->ptr];
270 for (i = 0; i < P_L2_SIZE; i++) {
271 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
272 continue;
273 }
274
275 valid_ptr = i;
276 valid++;
277 if (p[i].skip) {
efee678d 278 phys_page_compact(&p[i], nodes);
b35ba30f
MT
279 }
280 }
281
282 /* We can only compress if there's only one child. */
283 if (valid != 1) {
284 return;
285 }
286
287 assert(valid_ptr < P_L2_SIZE);
288
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
291 return;
292 }
293
294 lp->ptr = p[valid_ptr].ptr;
295 if (!p[valid_ptr].skip) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
300 * change this rule.
301 */
302 lp->skip = 0;
303 } else {
304 lp->skip += p[valid_ptr].skip;
305 }
306}
307
308static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
309{
b35ba30f 310 if (d->phys_map.skip) {
efee678d 311 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
312 }
313}
314
29cb533d
FZ
315static inline bool section_covers_addr(const MemoryRegionSection *section,
316 hwaddr addr)
317{
318 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
319 * the section must cover the entire address space.
320 */
321 return section->size.hi ||
322 range_covers_byte(section->offset_within_address_space,
323 section->size.lo, addr);
324}
325
97115a8d 326static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 327 Node *nodes, MemoryRegionSection *sections)
92e873b9 328{
31ab2b4a 329 PhysPageEntry *p;
97115a8d 330 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 331 int i;
f1f6e3b8 332
9736e55b 333 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 334 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 335 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 336 }
9affd6fc 337 p = nodes[lp.ptr];
03f49957 338 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 339 }
b35ba30f 340
29cb533d 341 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
342 return &sections[lp.ptr];
343 } else {
344 return &sections[PHYS_SECTION_UNASSIGNED];
345 }
f3705d53
AK
346}
347
e5548617
BS
348bool memory_region_is_unassigned(MemoryRegion *mr)
349{
2a8e7499 350 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 351 && mr != &io_mem_watch;
fd6ce8f6 352}
149f54b5 353
79e2b9ae 354/* Called from RCU critical section */
c7086b4a 355static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
356 hwaddr addr,
357 bool resolve_subpage)
9f029603 358{
729633c2 359 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 360 subpage_t *subpage;
729633c2 361 bool update;
90260c6c 362
729633c2
FZ
363 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
364 section_covers_addr(section, addr)) {
365 update = false;
366 } else {
367 section = phys_page_find(d->phys_map, addr, d->map.nodes,
368 d->map.sections);
369 update = true;
370 }
90260c6c
JK
371 if (resolve_subpage && section->mr->subpage) {
372 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 373 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 374 }
729633c2
FZ
375 if (update) {
376 atomic_set(&d->mru_section, section);
377 }
90260c6c 378 return section;
9f029603
JK
379}
380
79e2b9ae 381/* Called from RCU critical section */
90260c6c 382static MemoryRegionSection *
c7086b4a 383address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 384 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
385{
386 MemoryRegionSection *section;
965eb2fc 387 MemoryRegion *mr;
a87f3954 388 Int128 diff;
149f54b5 389
c7086b4a 390 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
391 /* Compute offset within MemoryRegionSection */
392 addr -= section->offset_within_address_space;
393
394 /* Compute offset within MemoryRegion */
395 *xlat = addr + section->offset_within_region;
396
965eb2fc 397 mr = section->mr;
b242e0e0
PB
398
399 /* MMIO registers can be expected to perform full-width accesses based only
400 * on their address, without considering adjacent registers that could
401 * decode to completely different MemoryRegions. When such registers
402 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
403 * regions overlap wildly. For this reason we cannot clamp the accesses
404 * here.
405 *
406 * If the length is small (as is the case for address_space_ldl/stl),
407 * everything works fine. If the incoming length is large, however,
408 * the caller really has to do the clamping through memory_access_size.
409 */
965eb2fc 410 if (memory_region_is_ram(mr)) {
e4a511f8 411 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
412 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
413 }
149f54b5
PB
414 return section;
415}
90260c6c 416
41063e1e 417/* Called from RCU critical section */
5c8a00ce
PB
418MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
419 hwaddr *xlat, hwaddr *plen,
420 bool is_write)
90260c6c 421{
30951157
AK
422 IOMMUTLBEntry iotlb;
423 MemoryRegionSection *section;
424 MemoryRegion *mr;
30951157
AK
425
426 for (;;) {
79e2b9ae
PB
427 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
428 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
429 mr = section->mr;
430
431 if (!mr->iommu_ops) {
432 break;
433 }
434
8d7b8cb9 435 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
436 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
437 | (addr & iotlb.addr_mask));
23820dbf 438 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
439 if (!(iotlb.perm & (1 << is_write))) {
440 mr = &io_mem_unassigned;
441 break;
442 }
443
444 as = iotlb.target_as;
445 }
446
fe680d0d 447 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 448 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 449 *plen = MIN(page, *plen);
a87f3954
PB
450 }
451
30951157
AK
452 *xlat = addr;
453 return mr;
90260c6c
JK
454}
455
79e2b9ae 456/* Called from RCU critical section */
90260c6c 457MemoryRegionSection *
d7898cda 458address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 459 hwaddr *xlat, hwaddr *plen)
90260c6c 460{
30951157 461 MemoryRegionSection *section;
d7898cda
PM
462 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
463
464 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
465
466 assert(!section->mr->iommu_ops);
467 return section;
90260c6c 468}
5b6dd868 469#endif
fd6ce8f6 470
b170fce3 471#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
472
473static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 474{
259186a7 475 CPUState *cpu = opaque;
a513fe19 476
5b6dd868
BS
477 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
478 version_id is increased. */
259186a7 479 cpu->interrupt_request &= ~0x01;
c01a71c1 480 tlb_flush(cpu, 1);
5b6dd868
BS
481
482 return 0;
a513fe19 483}
7501267e 484
6c3bff0e
PD
485static int cpu_common_pre_load(void *opaque)
486{
487 CPUState *cpu = opaque;
488
adee6424 489 cpu->exception_index = -1;
6c3bff0e
PD
490
491 return 0;
492}
493
494static bool cpu_common_exception_index_needed(void *opaque)
495{
496 CPUState *cpu = opaque;
497
adee6424 498 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
499}
500
501static const VMStateDescription vmstate_cpu_common_exception_index = {
502 .name = "cpu_common/exception_index",
503 .version_id = 1,
504 .minimum_version_id = 1,
5cd8cada 505 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
506 .fields = (VMStateField[]) {
507 VMSTATE_INT32(exception_index, CPUState),
508 VMSTATE_END_OF_LIST()
509 }
510};
511
bac05aa9
AS
512static bool cpu_common_crash_occurred_needed(void *opaque)
513{
514 CPUState *cpu = opaque;
515
516 return cpu->crash_occurred;
517}
518
519static const VMStateDescription vmstate_cpu_common_crash_occurred = {
520 .name = "cpu_common/crash_occurred",
521 .version_id = 1,
522 .minimum_version_id = 1,
523 .needed = cpu_common_crash_occurred_needed,
524 .fields = (VMStateField[]) {
525 VMSTATE_BOOL(crash_occurred, CPUState),
526 VMSTATE_END_OF_LIST()
527 }
528};
529
1a1562f5 530const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
531 .name = "cpu_common",
532 .version_id = 1,
533 .minimum_version_id = 1,
6c3bff0e 534 .pre_load = cpu_common_pre_load,
5b6dd868 535 .post_load = cpu_common_post_load,
35d08458 536 .fields = (VMStateField[]) {
259186a7
AF
537 VMSTATE_UINT32(halted, CPUState),
538 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 539 VMSTATE_END_OF_LIST()
6c3bff0e 540 },
5cd8cada
JQ
541 .subsections = (const VMStateDescription*[]) {
542 &vmstate_cpu_common_exception_index,
bac05aa9 543 &vmstate_cpu_common_crash_occurred,
5cd8cada 544 NULL
5b6dd868
BS
545 }
546};
1a1562f5 547
5b6dd868 548#endif
ea041c0e 549
38d8f5c8 550CPUState *qemu_get_cpu(int index)
ea041c0e 551{
bdc44640 552 CPUState *cpu;
ea041c0e 553
bdc44640 554 CPU_FOREACH(cpu) {
55e5c285 555 if (cpu->cpu_index == index) {
bdc44640 556 return cpu;
55e5c285 557 }
ea041c0e 558 }
5b6dd868 559
bdc44640 560 return NULL;
ea041c0e
FB
561}
562
09daed84 563#if !defined(CONFIG_USER_ONLY)
56943e8c 564void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 565{
12ebc9a7
PM
566 CPUAddressSpace *newas;
567
568 /* Target code should have set num_ases before calling us */
569 assert(asidx < cpu->num_ases);
570
56943e8c
PM
571 if (asidx == 0) {
572 /* address space 0 gets the convenience alias */
573 cpu->as = as;
574 }
575
12ebc9a7
PM
576 /* KVM cannot currently support multiple address spaces. */
577 assert(asidx == 0 || !kvm_enabled());
09daed84 578
12ebc9a7
PM
579 if (!cpu->cpu_ases) {
580 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 581 }
32857f4d 582
12ebc9a7
PM
583 newas = &cpu->cpu_ases[asidx];
584 newas->cpu = cpu;
585 newas->as = as;
56943e8c 586 if (tcg_enabled()) {
12ebc9a7
PM
587 newas->tcg_as_listener.commit = tcg_commit;
588 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 589 }
09daed84 590}
651a5bc0
PM
591
592AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
593{
594 /* Return the AddressSpace corresponding to the specified index */
595 return cpu->cpu_ases[asidx].as;
596}
09daed84
EI
597#endif
598
1c59eb39
BR
599void cpu_exec_exit(CPUState *cpu)
600{
9dfeca7c
BR
601 CPUClass *cc = CPU_GET_CLASS(cpu);
602
267f685b 603 cpu_list_remove(cpu);
9dfeca7c
BR
604
605 if (cc->vmsd != NULL) {
606 vmstate_unregister(NULL, cc->vmsd, cpu);
607 }
608 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
609 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
610 }
1c59eb39
BR
611}
612
4bad9e39 613void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 614{
1bc7e522 615 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
a07f953e 616 Error *local_err ATTRIBUTE_UNUSED = NULL;
5b6dd868 617
56943e8c 618 cpu->as = NULL;
12ebc9a7 619 cpu->num_ases = 0;
56943e8c 620
291135b5 621#ifndef CONFIG_USER_ONLY
291135b5 622 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
623
624 /* This is a softmmu CPU object, so create a property for it
625 * so users can wire up its memory. (This can't go in qom/cpu.c
626 * because that file is compiled only once for both user-mode
627 * and system builds.) The default if no link is set up is to use
628 * the system address space.
629 */
630 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
631 (Object **)&cpu->memory,
632 qdev_prop_allow_set_link_before_realize,
633 OBJ_PROP_LINK_UNREF_ON_RELEASE,
634 &error_abort);
635 cpu->memory = system_memory;
636 object_ref(OBJECT(cpu->memory));
291135b5
EH
637#endif
638
267f685b 639 cpu_list_add(cpu);
1bc7e522
IM
640
641#ifndef CONFIG_USER_ONLY
e0d47944 642 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 643 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 644 }
b170fce3 645 if (cc->vmsd != NULL) {
741da0d3 646 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 647 }
741da0d3 648#endif
ea041c0e
FB
649}
650
94df27fd 651#if defined(CONFIG_USER_ONLY)
00b941e5 652static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
653{
654 tb_invalidate_phys_page_range(pc, pc + 1, 0);
655}
656#else
00b941e5 657static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 658{
5232e4c7
PM
659 MemTxAttrs attrs;
660 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
661 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 662 if (phys != -1) {
5232e4c7 663 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 664 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 665 }
1e7855a5 666}
c27004ec 667#endif
d720b93d 668
c527ee8f 669#if defined(CONFIG_USER_ONLY)
75a34036 670void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
671
672{
673}
674
3ee887e8
PM
675int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
676 int flags)
677{
678 return -ENOSYS;
679}
680
681void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
682{
683}
684
75a34036 685int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
686 int flags, CPUWatchpoint **watchpoint)
687{
688 return -ENOSYS;
689}
690#else
6658ffb8 691/* Add a watchpoint. */
75a34036 692int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 693 int flags, CPUWatchpoint **watchpoint)
6658ffb8 694{
c0ce998e 695 CPUWatchpoint *wp;
6658ffb8 696
05068c0d 697 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 698 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
699 error_report("tried to set invalid watchpoint at %"
700 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
701 return -EINVAL;
702 }
7267c094 703 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
704
705 wp->vaddr = addr;
05068c0d 706 wp->len = len;
a1d1bb31
AL
707 wp->flags = flags;
708
2dc9f411 709 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
710 if (flags & BP_GDB) {
711 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
712 } else {
713 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
714 }
6658ffb8 715
31b030d4 716 tlb_flush_page(cpu, addr);
a1d1bb31
AL
717
718 if (watchpoint)
719 *watchpoint = wp;
720 return 0;
6658ffb8
PB
721}
722
a1d1bb31 723/* Remove a specific watchpoint. */
75a34036 724int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 725 int flags)
6658ffb8 726{
a1d1bb31 727 CPUWatchpoint *wp;
6658ffb8 728
ff4700b0 729 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 730 if (addr == wp->vaddr && len == wp->len
6e140f28 731 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 732 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
733 return 0;
734 }
735 }
a1d1bb31 736 return -ENOENT;
6658ffb8
PB
737}
738
a1d1bb31 739/* Remove a specific watchpoint by reference. */
75a34036 740void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 741{
ff4700b0 742 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 743
31b030d4 744 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 745
7267c094 746 g_free(watchpoint);
a1d1bb31
AL
747}
748
749/* Remove all matching watchpoints. */
75a34036 750void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 751{
c0ce998e 752 CPUWatchpoint *wp, *next;
a1d1bb31 753
ff4700b0 754 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
755 if (wp->flags & mask) {
756 cpu_watchpoint_remove_by_ref(cpu, wp);
757 }
c0ce998e 758 }
7d03f82f 759}
05068c0d
PM
760
761/* Return true if this watchpoint address matches the specified
762 * access (ie the address range covered by the watchpoint overlaps
763 * partially or completely with the address range covered by the
764 * access).
765 */
766static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
767 vaddr addr,
768 vaddr len)
769{
770 /* We know the lengths are non-zero, but a little caution is
771 * required to avoid errors in the case where the range ends
772 * exactly at the top of the address space and so addr + len
773 * wraps round to zero.
774 */
775 vaddr wpend = wp->vaddr + wp->len - 1;
776 vaddr addrend = addr + len - 1;
777
778 return !(addr > wpend || wp->vaddr > addrend);
779}
780
c527ee8f 781#endif
7d03f82f 782
a1d1bb31 783/* Add a breakpoint. */
b3310ab3 784int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 785 CPUBreakpoint **breakpoint)
4c3a88a2 786{
c0ce998e 787 CPUBreakpoint *bp;
3b46e624 788
7267c094 789 bp = g_malloc(sizeof(*bp));
4c3a88a2 790
a1d1bb31
AL
791 bp->pc = pc;
792 bp->flags = flags;
793
2dc9f411 794 /* keep all GDB-injected breakpoints in front */
00b941e5 795 if (flags & BP_GDB) {
f0c3c505 796 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 797 } else {
f0c3c505 798 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 799 }
3b46e624 800
f0c3c505 801 breakpoint_invalidate(cpu, pc);
a1d1bb31 802
00b941e5 803 if (breakpoint) {
a1d1bb31 804 *breakpoint = bp;
00b941e5 805 }
4c3a88a2 806 return 0;
4c3a88a2
FB
807}
808
a1d1bb31 809/* Remove a specific breakpoint. */
b3310ab3 810int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 811{
a1d1bb31
AL
812 CPUBreakpoint *bp;
813
f0c3c505 814 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 815 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 816 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
817 return 0;
818 }
7d03f82f 819 }
a1d1bb31 820 return -ENOENT;
7d03f82f
EI
821}
822
a1d1bb31 823/* Remove a specific breakpoint by reference. */
b3310ab3 824void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 825{
f0c3c505
AF
826 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
827
828 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 829
7267c094 830 g_free(breakpoint);
a1d1bb31
AL
831}
832
833/* Remove all matching breakpoints. */
b3310ab3 834void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 835{
c0ce998e 836 CPUBreakpoint *bp, *next;
a1d1bb31 837
f0c3c505 838 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
839 if (bp->flags & mask) {
840 cpu_breakpoint_remove_by_ref(cpu, bp);
841 }
c0ce998e 842 }
4c3a88a2
FB
843}
844
c33a346e
FB
845/* enable or disable single step mode. EXCP_DEBUG is returned by the
846 CPU loop after each instruction */
3825b28f 847void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 848{
ed2803da
AF
849 if (cpu->singlestep_enabled != enabled) {
850 cpu->singlestep_enabled = enabled;
851 if (kvm_enabled()) {
38e478ec 852 kvm_update_guest_debug(cpu, 0);
ed2803da 853 } else {
ccbb4d44 854 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 855 /* XXX: only flush what is necessary */
bbd77c18 856 tb_flush(cpu);
e22a25c9 857 }
c33a346e 858 }
c33a346e
FB
859}
860
a47dddd7 861void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
862{
863 va_list ap;
493ae1f0 864 va_list ap2;
7501267e
FB
865
866 va_start(ap, fmt);
493ae1f0 867 va_copy(ap2, ap);
7501267e
FB
868 fprintf(stderr, "qemu: fatal: ");
869 vfprintf(stderr, fmt, ap);
870 fprintf(stderr, "\n");
878096ee 871 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 872 if (qemu_log_separate()) {
93fcfe39
AL
873 qemu_log("qemu: fatal: ");
874 qemu_log_vprintf(fmt, ap2);
875 qemu_log("\n");
a0762859 876 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 877 qemu_log_flush();
93fcfe39 878 qemu_log_close();
924edcae 879 }
493ae1f0 880 va_end(ap2);
f9373291 881 va_end(ap);
7615936e 882 replay_finish();
fd052bf6
RV
883#if defined(CONFIG_USER_ONLY)
884 {
885 struct sigaction act;
886 sigfillset(&act.sa_mask);
887 act.sa_handler = SIG_DFL;
888 sigaction(SIGABRT, &act, NULL);
889 }
890#endif
7501267e
FB
891 abort();
892}
893
0124311e 894#if !defined(CONFIG_USER_ONLY)
0dc3f44a 895/* Called from RCU critical section */
041603fe
PB
896static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
897{
898 RAMBlock *block;
899
43771539 900 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 901 if (block && addr - block->offset < block->max_length) {
68851b98 902 return block;
041603fe 903 }
0dc3f44a 904 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 905 if (addr - block->offset < block->max_length) {
041603fe
PB
906 goto found;
907 }
908 }
909
910 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
911 abort();
912
913found:
43771539
PB
914 /* It is safe to write mru_block outside the iothread lock. This
915 * is what happens:
916 *
917 * mru_block = xxx
918 * rcu_read_unlock()
919 * xxx removed from list
920 * rcu_read_lock()
921 * read mru_block
922 * mru_block = NULL;
923 * call_rcu(reclaim_ramblock, xxx);
924 * rcu_read_unlock()
925 *
926 * atomic_rcu_set is not needed here. The block was already published
927 * when it was placed into the list. Here we're just making an extra
928 * copy of the pointer.
929 */
041603fe
PB
930 ram_list.mru_block = block;
931 return block;
932}
933
a2f4d5be 934static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 935{
9a13565d 936 CPUState *cpu;
041603fe 937 ram_addr_t start1;
a2f4d5be
JQ
938 RAMBlock *block;
939 ram_addr_t end;
940
941 end = TARGET_PAGE_ALIGN(start + length);
942 start &= TARGET_PAGE_MASK;
d24981d3 943
0dc3f44a 944 rcu_read_lock();
041603fe
PB
945 block = qemu_get_ram_block(start);
946 assert(block == qemu_get_ram_block(end - 1));
1240be24 947 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
948 CPU_FOREACH(cpu) {
949 tlb_reset_dirty(cpu, start1, length);
950 }
0dc3f44a 951 rcu_read_unlock();
d24981d3
JQ
952}
953
5579c7f3 954/* Note: start and end must be within the same ram block. */
03eebc9e
SH
955bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
956 ram_addr_t length,
957 unsigned client)
1ccde1cb 958{
5b82b703 959 DirtyMemoryBlocks *blocks;
03eebc9e 960 unsigned long end, page;
5b82b703 961 bool dirty = false;
03eebc9e
SH
962
963 if (length == 0) {
964 return false;
965 }
f23db169 966
03eebc9e
SH
967 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
968 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
969
970 rcu_read_lock();
971
972 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
973
974 while (page < end) {
975 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
976 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
977 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
978
979 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
980 offset, num);
981 page += num;
982 }
983
984 rcu_read_unlock();
03eebc9e
SH
985
986 if (dirty && tcg_enabled()) {
a2f4d5be 987 tlb_reset_dirty_range_all(start, length);
5579c7f3 988 }
03eebc9e
SH
989
990 return dirty;
1ccde1cb
FB
991}
992
79e2b9ae 993/* Called from RCU critical section */
bb0e627a 994hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
995 MemoryRegionSection *section,
996 target_ulong vaddr,
997 hwaddr paddr, hwaddr xlat,
998 int prot,
999 target_ulong *address)
e5548617 1000{
a8170e5e 1001 hwaddr iotlb;
e5548617
BS
1002 CPUWatchpoint *wp;
1003
cc5bea60 1004 if (memory_region_is_ram(section->mr)) {
e5548617 1005 /* Normal RAM. */
e4e69794 1006 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1007 if (!section->readonly) {
b41aac4f 1008 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1009 } else {
b41aac4f 1010 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1011 }
1012 } else {
0b8e2c10
PM
1013 AddressSpaceDispatch *d;
1014
1015 d = atomic_rcu_read(&section->address_space->dispatch);
1016 iotlb = section - d->map.sections;
149f54b5 1017 iotlb += xlat;
e5548617
BS
1018 }
1019
1020 /* Make accesses to pages with watchpoints go via the
1021 watchpoint trap routines. */
ff4700b0 1022 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1023 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1024 /* Avoid trapping reads of pages with a write breakpoint. */
1025 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1026 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1027 *address |= TLB_MMIO;
1028 break;
1029 }
1030 }
1031 }
1032
1033 return iotlb;
1034}
9fa3e853
FB
1035#endif /* defined(CONFIG_USER_ONLY) */
1036
e2eef170 1037#if !defined(CONFIG_USER_ONLY)
8da3ff18 1038
c227f099 1039static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1040 uint16_t section);
acc9d80b 1041static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1042
a2b257d6
IM
1043static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1044 qemu_anon_ram_alloc;
91138037
MA
1045
1046/*
1047 * Set a custom physical guest memory alloator.
1048 * Accelerators with unusual needs may need this. Hopefully, we can
1049 * get rid of it eventually.
1050 */
a2b257d6 1051void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1052{
1053 phys_mem_alloc = alloc;
1054}
1055
53cb28cb
MA
1056static uint16_t phys_section_add(PhysPageMap *map,
1057 MemoryRegionSection *section)
5312bd8b 1058{
68f3f65b
PB
1059 /* The physical section number is ORed with a page-aligned
1060 * pointer to produce the iotlb entries. Thus it should
1061 * never overflow into the page-aligned value.
1062 */
53cb28cb 1063 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1064
53cb28cb
MA
1065 if (map->sections_nb == map->sections_nb_alloc) {
1066 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1067 map->sections = g_renew(MemoryRegionSection, map->sections,
1068 map->sections_nb_alloc);
5312bd8b 1069 }
53cb28cb 1070 map->sections[map->sections_nb] = *section;
dfde4e6e 1071 memory_region_ref(section->mr);
53cb28cb 1072 return map->sections_nb++;
5312bd8b
AK
1073}
1074
058bc4b5
PB
1075static void phys_section_destroy(MemoryRegion *mr)
1076{
55b4e80b
DS
1077 bool have_sub_page = mr->subpage;
1078
dfde4e6e
PB
1079 memory_region_unref(mr);
1080
55b4e80b 1081 if (have_sub_page) {
058bc4b5 1082 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1083 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1084 g_free(subpage);
1085 }
1086}
1087
6092666e 1088static void phys_sections_free(PhysPageMap *map)
5312bd8b 1089{
9affd6fc
PB
1090 while (map->sections_nb > 0) {
1091 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1092 phys_section_destroy(section->mr);
1093 }
9affd6fc
PB
1094 g_free(map->sections);
1095 g_free(map->nodes);
5312bd8b
AK
1096}
1097
ac1970fb 1098static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1099{
1100 subpage_t *subpage;
a8170e5e 1101 hwaddr base = section->offset_within_address_space
0f0cb164 1102 & TARGET_PAGE_MASK;
97115a8d 1103 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1104 d->map.nodes, d->map.sections);
0f0cb164
AK
1105 MemoryRegionSection subsection = {
1106 .offset_within_address_space = base,
052e87b0 1107 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1108 };
a8170e5e 1109 hwaddr start, end;
0f0cb164 1110
f3705d53 1111 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1112
f3705d53 1113 if (!(existing->mr->subpage)) {
acc9d80b 1114 subpage = subpage_init(d->as, base);
3be91e86 1115 subsection.address_space = d->as;
0f0cb164 1116 subsection.mr = &subpage->iomem;
ac1970fb 1117 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1118 phys_section_add(&d->map, &subsection));
0f0cb164 1119 } else {
f3705d53 1120 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1121 }
1122 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1123 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1124 subpage_register(subpage, start, end,
1125 phys_section_add(&d->map, section));
0f0cb164
AK
1126}
1127
1128
052e87b0
PB
1129static void register_multipage(AddressSpaceDispatch *d,
1130 MemoryRegionSection *section)
33417e70 1131{
a8170e5e 1132 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1133 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1134 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1135 TARGET_PAGE_BITS));
dd81124b 1136
733d5ef5
PB
1137 assert(num_pages);
1138 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1139}
1140
ac1970fb 1141static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1142{
89ae337a 1143 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1144 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1145 MemoryRegionSection now = *section, remain = *section;
052e87b0 1146 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1147
733d5ef5
PB
1148 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1149 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1150 - now.offset_within_address_space;
1151
052e87b0 1152 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1153 register_subpage(d, &now);
733d5ef5 1154 } else {
052e87b0 1155 now.size = int128_zero();
733d5ef5 1156 }
052e87b0
PB
1157 while (int128_ne(remain.size, now.size)) {
1158 remain.size = int128_sub(remain.size, now.size);
1159 remain.offset_within_address_space += int128_get64(now.size);
1160 remain.offset_within_region += int128_get64(now.size);
69b67646 1161 now = remain;
052e87b0 1162 if (int128_lt(remain.size, page_size)) {
733d5ef5 1163 register_subpage(d, &now);
88266249 1164 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1165 now.size = page_size;
ac1970fb 1166 register_subpage(d, &now);
69b67646 1167 } else {
052e87b0 1168 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1169 register_multipage(d, &now);
69b67646 1170 }
0f0cb164
AK
1171 }
1172}
1173
62a2744c
SY
1174void qemu_flush_coalesced_mmio_buffer(void)
1175{
1176 if (kvm_enabled())
1177 kvm_flush_coalesced_mmio_buffer();
1178}
1179
b2a8658e
UD
1180void qemu_mutex_lock_ramlist(void)
1181{
1182 qemu_mutex_lock(&ram_list.mutex);
1183}
1184
1185void qemu_mutex_unlock_ramlist(void)
1186{
1187 qemu_mutex_unlock(&ram_list.mutex);
1188}
1189
e1e84ba0 1190#ifdef __linux__
04b16653
AW
1191static void *file_ram_alloc(RAMBlock *block,
1192 ram_addr_t memory,
7f56e740
PB
1193 const char *path,
1194 Error **errp)
c902760f 1195{
fd97fd44 1196 bool unlink_on_error = false;
c902760f 1197 char *filename;
8ca761f6
PF
1198 char *sanitized_name;
1199 char *c;
056b68af 1200 void *area = MAP_FAILED;
5c3ece79 1201 int fd = -1;
c902760f
MT
1202
1203 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1204 error_setg(errp,
1205 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1206 return NULL;
c902760f
MT
1207 }
1208
fd97fd44
MA
1209 for (;;) {
1210 fd = open(path, O_RDWR);
1211 if (fd >= 0) {
1212 /* @path names an existing file, use it */
1213 break;
8d31d6b6 1214 }
fd97fd44
MA
1215 if (errno == ENOENT) {
1216 /* @path names a file that doesn't exist, create it */
1217 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1218 if (fd >= 0) {
1219 unlink_on_error = true;
1220 break;
1221 }
1222 } else if (errno == EISDIR) {
1223 /* @path names a directory, create a file there */
1224 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1225 sanitized_name = g_strdup(memory_region_name(block->mr));
1226 for (c = sanitized_name; *c != '\0'; c++) {
1227 if (*c == '/') {
1228 *c = '_';
1229 }
1230 }
8ca761f6 1231
fd97fd44
MA
1232 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1233 sanitized_name);
1234 g_free(sanitized_name);
8d31d6b6 1235
fd97fd44
MA
1236 fd = mkstemp(filename);
1237 if (fd >= 0) {
1238 unlink(filename);
1239 g_free(filename);
1240 break;
1241 }
1242 g_free(filename);
8d31d6b6 1243 }
fd97fd44
MA
1244 if (errno != EEXIST && errno != EINTR) {
1245 error_setg_errno(errp, errno,
1246 "can't open backing store %s for guest RAM",
1247 path);
1248 goto error;
1249 }
1250 /*
1251 * Try again on EINTR and EEXIST. The latter happens when
1252 * something else creates the file between our two open().
1253 */
8d31d6b6 1254 }
c902760f 1255
863e9621
DDAG
1256 block->page_size = qemu_fd_getpagesize(fd);
1257 block->mr->align = MAX(block->page_size, QEMU_VMALLOC_ALIGN);
fd97fd44 1258
863e9621 1259 if (memory < block->page_size) {
fd97fd44 1260 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1261 "or larger than page size 0x%zx",
1262 memory, block->page_size);
f9a49dfa 1263 goto error;
c902760f 1264 }
c902760f 1265
863e9621 1266 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1267
1268 /*
1269 * ftruncate is not supported by hugetlbfs in older
1270 * hosts, so don't bother bailing out on errors.
1271 * If anything goes wrong with it under other filesystems,
1272 * mmap will fail.
1273 */
7f56e740 1274 if (ftruncate(fd, memory)) {
9742bf26 1275 perror("ftruncate");
7f56e740 1276 }
c902760f 1277
d2f39add
DD
1278 area = qemu_ram_mmap(fd, memory, block->mr->align,
1279 block->flags & RAM_SHARED);
c902760f 1280 if (area == MAP_FAILED) {
7f56e740 1281 error_setg_errno(errp, errno,
fd97fd44 1282 "unable to map backing store for guest RAM");
f9a49dfa 1283 goto error;
c902760f 1284 }
ef36fa14
MT
1285
1286 if (mem_prealloc) {
056b68af
IM
1287 os_mem_prealloc(fd, area, memory, errp);
1288 if (errp && *errp) {
1289 goto error;
1290 }
ef36fa14
MT
1291 }
1292
04b16653 1293 block->fd = fd;
c902760f 1294 return area;
f9a49dfa
MT
1295
1296error:
056b68af
IM
1297 if (area != MAP_FAILED) {
1298 qemu_ram_munmap(area, memory);
1299 }
fd97fd44
MA
1300 if (unlink_on_error) {
1301 unlink(path);
1302 }
5c3ece79
PB
1303 if (fd != -1) {
1304 close(fd);
1305 }
f9a49dfa 1306 return NULL;
c902760f
MT
1307}
1308#endif
1309
0dc3f44a 1310/* Called with the ramlist lock held. */
d17b5288 1311static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1312{
1313 RAMBlock *block, *next_block;
3e837b2c 1314 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1315
49cd9ac6
SH
1316 assert(size != 0); /* it would hand out same offset multiple times */
1317
0dc3f44a 1318 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1319 return 0;
0d53d9fe 1320 }
04b16653 1321
0dc3f44a 1322 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1323 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1324
62be4e3a 1325 end = block->offset + block->max_length;
04b16653 1326
0dc3f44a 1327 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1328 if (next_block->offset >= end) {
1329 next = MIN(next, next_block->offset);
1330 }
1331 }
1332 if (next - end >= size && next - end < mingap) {
3e837b2c 1333 offset = end;
04b16653
AW
1334 mingap = next - end;
1335 }
1336 }
3e837b2c
AW
1337
1338 if (offset == RAM_ADDR_MAX) {
1339 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1340 (uint64_t)size);
1341 abort();
1342 }
1343
04b16653
AW
1344 return offset;
1345}
1346
652d7ec2 1347ram_addr_t last_ram_offset(void)
d17b5288
AW
1348{
1349 RAMBlock *block;
1350 ram_addr_t last = 0;
1351
0dc3f44a
MD
1352 rcu_read_lock();
1353 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1354 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1355 }
0dc3f44a 1356 rcu_read_unlock();
d17b5288
AW
1357 return last;
1358}
1359
ddb97f1d
JB
1360static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1361{
1362 int ret;
ddb97f1d
JB
1363
1364 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1365 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1366 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1367 if (ret) {
1368 perror("qemu_madvise");
1369 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1370 "but dump_guest_core=off specified\n");
1371 }
1372 }
1373}
1374
422148d3
DDAG
1375const char *qemu_ram_get_idstr(RAMBlock *rb)
1376{
1377 return rb->idstr;
1378}
1379
ae3a7047 1380/* Called with iothread lock held. */
fa53a0e5 1381void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1382{
fa53a0e5 1383 RAMBlock *block;
20cfe881 1384
c5705a77
AK
1385 assert(new_block);
1386 assert(!new_block->idstr[0]);
84b89d78 1387
09e5ab63
AL
1388 if (dev) {
1389 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1390 if (id) {
1391 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1392 g_free(id);
84b89d78
CM
1393 }
1394 }
1395 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1396
ab0a9956 1397 rcu_read_lock();
0dc3f44a 1398 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1399 if (block != new_block &&
1400 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1401 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1402 new_block->idstr);
1403 abort();
1404 }
1405 }
0dc3f44a 1406 rcu_read_unlock();
c5705a77
AK
1407}
1408
ae3a7047 1409/* Called with iothread lock held. */
fa53a0e5 1410void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1411{
ae3a7047
MD
1412 /* FIXME: arch_init.c assumes that this is not called throughout
1413 * migration. Ignore the problem since hot-unplug during migration
1414 * does not work anyway.
1415 */
20cfe881
HT
1416 if (block) {
1417 memset(block->idstr, 0, sizeof(block->idstr));
1418 }
1419}
1420
863e9621
DDAG
1421size_t qemu_ram_pagesize(RAMBlock *rb)
1422{
1423 return rb->page_size;
1424}
1425
8490fc78
LC
1426static int memory_try_enable_merging(void *addr, size_t len)
1427{
75cc7f01 1428 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1429 /* disabled by the user */
1430 return 0;
1431 }
1432
1433 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1434}
1435
62be4e3a
MT
1436/* Only legal before guest might have detected the memory size: e.g. on
1437 * incoming migration, or right after reset.
1438 *
1439 * As memory core doesn't know how is memory accessed, it is up to
1440 * resize callback to update device state and/or add assertions to detect
1441 * misuse, if necessary.
1442 */
fa53a0e5 1443int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1444{
62be4e3a
MT
1445 assert(block);
1446
4ed023ce 1447 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1448
62be4e3a
MT
1449 if (block->used_length == newsize) {
1450 return 0;
1451 }
1452
1453 if (!(block->flags & RAM_RESIZEABLE)) {
1454 error_setg_errno(errp, EINVAL,
1455 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1456 " in != 0x" RAM_ADDR_FMT, block->idstr,
1457 newsize, block->used_length);
1458 return -EINVAL;
1459 }
1460
1461 if (block->max_length < newsize) {
1462 error_setg_errno(errp, EINVAL,
1463 "Length too large: %s: 0x" RAM_ADDR_FMT
1464 " > 0x" RAM_ADDR_FMT, block->idstr,
1465 newsize, block->max_length);
1466 return -EINVAL;
1467 }
1468
1469 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1470 block->used_length = newsize;
58d2707e
PB
1471 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1472 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1473 memory_region_set_size(block->mr, newsize);
1474 if (block->resized) {
1475 block->resized(block->idstr, newsize, block->host);
1476 }
1477 return 0;
1478}
1479
5b82b703
SH
1480/* Called with ram_list.mutex held */
1481static void dirty_memory_extend(ram_addr_t old_ram_size,
1482 ram_addr_t new_ram_size)
1483{
1484 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1485 DIRTY_MEMORY_BLOCK_SIZE);
1486 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1487 DIRTY_MEMORY_BLOCK_SIZE);
1488 int i;
1489
1490 /* Only need to extend if block count increased */
1491 if (new_num_blocks <= old_num_blocks) {
1492 return;
1493 }
1494
1495 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1496 DirtyMemoryBlocks *old_blocks;
1497 DirtyMemoryBlocks *new_blocks;
1498 int j;
1499
1500 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1501 new_blocks = g_malloc(sizeof(*new_blocks) +
1502 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1503
1504 if (old_num_blocks) {
1505 memcpy(new_blocks->blocks, old_blocks->blocks,
1506 old_num_blocks * sizeof(old_blocks->blocks[0]));
1507 }
1508
1509 for (j = old_num_blocks; j < new_num_blocks; j++) {
1510 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1511 }
1512
1513 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1514
1515 if (old_blocks) {
1516 g_free_rcu(old_blocks, rcu);
1517 }
1518 }
1519}
1520
528f46af 1521static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1522{
e1c57ab8 1523 RAMBlock *block;
0d53d9fe 1524 RAMBlock *last_block = NULL;
2152f5ca 1525 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1526 Error *err = NULL;
2152f5ca
JQ
1527
1528 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1529
b2a8658e 1530 qemu_mutex_lock_ramlist();
9b8424d5 1531 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1532
1533 if (!new_block->host) {
1534 if (xen_enabled()) {
9b8424d5 1535 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1536 new_block->mr, &err);
1537 if (err) {
1538 error_propagate(errp, err);
1539 qemu_mutex_unlock_ramlist();
39c350ee 1540 return;
37aa7a0e 1541 }
e1c57ab8 1542 } else {
9b8424d5 1543 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1544 &new_block->mr->align);
39228250 1545 if (!new_block->host) {
ef701d7b
HT
1546 error_setg_errno(errp, errno,
1547 "cannot set up guest memory '%s'",
1548 memory_region_name(new_block->mr));
1549 qemu_mutex_unlock_ramlist();
39c350ee 1550 return;
39228250 1551 }
9b8424d5 1552 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1553 }
c902760f 1554 }
94a6b54f 1555
dd631697
LZ
1556 new_ram_size = MAX(old_ram_size,
1557 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1558 if (new_ram_size > old_ram_size) {
1559 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1560 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1561 }
0d53d9fe
MD
1562 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1563 * QLIST (which has an RCU-friendly variant) does not have insertion at
1564 * tail, so save the last element in last_block.
1565 */
0dc3f44a 1566 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1567 last_block = block;
9b8424d5 1568 if (block->max_length < new_block->max_length) {
abb26d63
PB
1569 break;
1570 }
1571 }
1572 if (block) {
0dc3f44a 1573 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1574 } else if (last_block) {
0dc3f44a 1575 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1576 } else { /* list is empty */
0dc3f44a 1577 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1578 }
0d6d3c87 1579 ram_list.mru_block = NULL;
94a6b54f 1580
0dc3f44a
MD
1581 /* Write list before version */
1582 smp_wmb();
f798b07f 1583 ram_list.version++;
b2a8658e 1584 qemu_mutex_unlock_ramlist();
f798b07f 1585
9b8424d5 1586 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1587 new_block->used_length,
1588 DIRTY_CLIENTS_ALL);
94a6b54f 1589
a904c911
PB
1590 if (new_block->host) {
1591 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1592 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1593 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1594 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
e1c57ab8 1595 }
94a6b54f 1596}
e9a1ab19 1597
0b183fc8 1598#ifdef __linux__
528f46af
FZ
1599RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1600 bool share, const char *mem_path,
1601 Error **errp)
e1c57ab8
PB
1602{
1603 RAMBlock *new_block;
ef701d7b 1604 Error *local_err = NULL;
e1c57ab8
PB
1605
1606 if (xen_enabled()) {
7f56e740 1607 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1608 return NULL;
e1c57ab8
PB
1609 }
1610
1611 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1612 /*
1613 * file_ram_alloc() needs to allocate just like
1614 * phys_mem_alloc, but we haven't bothered to provide
1615 * a hook there.
1616 */
7f56e740
PB
1617 error_setg(errp,
1618 "-mem-path not supported with this accelerator");
528f46af 1619 return NULL;
e1c57ab8
PB
1620 }
1621
4ed023ce 1622 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1623 new_block = g_malloc0(sizeof(*new_block));
1624 new_block->mr = mr;
9b8424d5
MT
1625 new_block->used_length = size;
1626 new_block->max_length = size;
dbcb8981 1627 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1628 new_block->host = file_ram_alloc(new_block, size,
1629 mem_path, errp);
1630 if (!new_block->host) {
1631 g_free(new_block);
528f46af 1632 return NULL;
7f56e740
PB
1633 }
1634
528f46af 1635 ram_block_add(new_block, &local_err);
ef701d7b
HT
1636 if (local_err) {
1637 g_free(new_block);
1638 error_propagate(errp, local_err);
528f46af 1639 return NULL;
ef701d7b 1640 }
528f46af 1641 return new_block;
e1c57ab8 1642}
0b183fc8 1643#endif
e1c57ab8 1644
62be4e3a 1645static
528f46af
FZ
1646RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1647 void (*resized)(const char*,
1648 uint64_t length,
1649 void *host),
1650 void *host, bool resizeable,
1651 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1652{
1653 RAMBlock *new_block;
ef701d7b 1654 Error *local_err = NULL;
e1c57ab8 1655
4ed023ce
DDAG
1656 size = HOST_PAGE_ALIGN(size);
1657 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1658 new_block = g_malloc0(sizeof(*new_block));
1659 new_block->mr = mr;
62be4e3a 1660 new_block->resized = resized;
9b8424d5
MT
1661 new_block->used_length = size;
1662 new_block->max_length = max_size;
62be4e3a 1663 assert(max_size >= size);
e1c57ab8 1664 new_block->fd = -1;
863e9621 1665 new_block->page_size = getpagesize();
e1c57ab8
PB
1666 new_block->host = host;
1667 if (host) {
7bd4f430 1668 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1669 }
62be4e3a
MT
1670 if (resizeable) {
1671 new_block->flags |= RAM_RESIZEABLE;
1672 }
528f46af 1673 ram_block_add(new_block, &local_err);
ef701d7b
HT
1674 if (local_err) {
1675 g_free(new_block);
1676 error_propagate(errp, local_err);
528f46af 1677 return NULL;
ef701d7b 1678 }
528f46af 1679 return new_block;
e1c57ab8
PB
1680}
1681
528f46af 1682RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1683 MemoryRegion *mr, Error **errp)
1684{
1685 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1686}
1687
528f46af 1688RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1689{
62be4e3a
MT
1690 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1691}
1692
528f46af 1693RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1694 void (*resized)(const char*,
1695 uint64_t length,
1696 void *host),
1697 MemoryRegion *mr, Error **errp)
1698{
1699 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1700}
1701
43771539
PB
1702static void reclaim_ramblock(RAMBlock *block)
1703{
1704 if (block->flags & RAM_PREALLOC) {
1705 ;
1706 } else if (xen_enabled()) {
1707 xen_invalidate_map_cache_entry(block->host);
1708#ifndef _WIN32
1709 } else if (block->fd >= 0) {
2f3a2bb1 1710 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1711 close(block->fd);
1712#endif
1713 } else {
1714 qemu_anon_ram_free(block->host, block->max_length);
1715 }
1716 g_free(block);
1717}
1718
f1060c55 1719void qemu_ram_free(RAMBlock *block)
e9a1ab19 1720{
85bc2a15
MAL
1721 if (!block) {
1722 return;
1723 }
1724
b2a8658e 1725 qemu_mutex_lock_ramlist();
f1060c55
FZ
1726 QLIST_REMOVE_RCU(block, next);
1727 ram_list.mru_block = NULL;
1728 /* Write list before version */
1729 smp_wmb();
1730 ram_list.version++;
1731 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1732 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1733}
1734
cd19cfa2
HY
1735#ifndef _WIN32
1736void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1737{
1738 RAMBlock *block;
1739 ram_addr_t offset;
1740 int flags;
1741 void *area, *vaddr;
1742
0dc3f44a 1743 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1744 offset = addr - block->offset;
9b8424d5 1745 if (offset < block->max_length) {
1240be24 1746 vaddr = ramblock_ptr(block, offset);
7bd4f430 1747 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1748 ;
dfeaf2ab
MA
1749 } else if (xen_enabled()) {
1750 abort();
cd19cfa2
HY
1751 } else {
1752 flags = MAP_FIXED;
3435f395 1753 if (block->fd >= 0) {
dbcb8981
PB
1754 flags |= (block->flags & RAM_SHARED ?
1755 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1756 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1757 flags, block->fd, offset);
cd19cfa2 1758 } else {
2eb9fbaa
MA
1759 /*
1760 * Remap needs to match alloc. Accelerators that
1761 * set phys_mem_alloc never remap. If they did,
1762 * we'd need a remap hook here.
1763 */
1764 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1765
cd19cfa2
HY
1766 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1767 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1768 flags, -1, 0);
cd19cfa2
HY
1769 }
1770 if (area != vaddr) {
f15fbc4b
AP
1771 fprintf(stderr, "Could not remap addr: "
1772 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1773 length, addr);
1774 exit(1);
1775 }
8490fc78 1776 memory_try_enable_merging(vaddr, length);
ddb97f1d 1777 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1778 }
cd19cfa2
HY
1779 }
1780 }
1781}
1782#endif /* !_WIN32 */
1783
1b5ec234 1784/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1785 * This should not be used for general purpose DMA. Use address_space_map
1786 * or address_space_rw instead. For local memory (e.g. video ram) that the
1787 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1788 *
49b24afc 1789 * Called within RCU critical section.
1b5ec234 1790 */
0878d0e1 1791void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1792{
3655cb9c
GA
1793 RAMBlock *block = ram_block;
1794
1795 if (block == NULL) {
1796 block = qemu_get_ram_block(addr);
0878d0e1 1797 addr -= block->offset;
3655cb9c 1798 }
ae3a7047
MD
1799
1800 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1801 /* We need to check if the requested address is in the RAM
1802 * because we don't want to map the entire memory in QEMU.
1803 * In that case just map until the end of the page.
1804 */
1805 if (block->offset == 0) {
49b24afc 1806 return xen_map_cache(addr, 0, 0);
0d6d3c87 1807 }
ae3a7047
MD
1808
1809 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1810 }
0878d0e1 1811 return ramblock_ptr(block, addr);
dc828ca1
PB
1812}
1813
0878d0e1 1814/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 1815 * but takes a size argument.
0dc3f44a 1816 *
e81bcda5 1817 * Called within RCU critical section.
ae3a7047 1818 */
3655cb9c
GA
1819static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1820 hwaddr *size)
38bee5dc 1821{
3655cb9c 1822 RAMBlock *block = ram_block;
8ab934f9
SS
1823 if (*size == 0) {
1824 return NULL;
1825 }
e81bcda5 1826
3655cb9c
GA
1827 if (block == NULL) {
1828 block = qemu_get_ram_block(addr);
0878d0e1 1829 addr -= block->offset;
3655cb9c 1830 }
0878d0e1 1831 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
1832
1833 if (xen_enabled() && block->host == NULL) {
1834 /* We need to check if the requested address is in the RAM
1835 * because we don't want to map the entire memory in QEMU.
1836 * In that case just map the requested area.
1837 */
1838 if (block->offset == 0) {
1839 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1840 }
1841
e81bcda5 1842 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1843 }
e81bcda5 1844
0878d0e1 1845 return ramblock_ptr(block, addr);
38bee5dc
SS
1846}
1847
422148d3
DDAG
1848/*
1849 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1850 * in that RAMBlock.
1851 *
1852 * ptr: Host pointer to look up
1853 * round_offset: If true round the result offset down to a page boundary
1854 * *ram_addr: set to result ram_addr
1855 * *offset: set to result offset within the RAMBlock
1856 *
1857 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1858 *
1859 * By the time this function returns, the returned pointer is not protected
1860 * by RCU anymore. If the caller is not within an RCU critical section and
1861 * does not hold the iothread lock, it must have other means of protecting the
1862 * pointer, such as a reference to the region that includes the incoming
1863 * ram_addr_t.
1864 */
422148d3 1865RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 1866 ram_addr_t *offset)
5579c7f3 1867{
94a6b54f
PB
1868 RAMBlock *block;
1869 uint8_t *host = ptr;
1870
868bb33f 1871 if (xen_enabled()) {
f615f396 1872 ram_addr_t ram_addr;
0dc3f44a 1873 rcu_read_lock();
f615f396
PB
1874 ram_addr = xen_ram_addr_from_mapcache(ptr);
1875 block = qemu_get_ram_block(ram_addr);
422148d3 1876 if (block) {
d6b6aec4 1877 *offset = ram_addr - block->offset;
422148d3 1878 }
0dc3f44a 1879 rcu_read_unlock();
422148d3 1880 return block;
712c2b41
SS
1881 }
1882
0dc3f44a
MD
1883 rcu_read_lock();
1884 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1885 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1886 goto found;
1887 }
1888
0dc3f44a 1889 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1890 /* This case append when the block is not mapped. */
1891 if (block->host == NULL) {
1892 continue;
1893 }
9b8424d5 1894 if (host - block->host < block->max_length) {
23887b79 1895 goto found;
f471a17e 1896 }
94a6b54f 1897 }
432d268c 1898
0dc3f44a 1899 rcu_read_unlock();
1b5ec234 1900 return NULL;
23887b79
PB
1901
1902found:
422148d3
DDAG
1903 *offset = (host - block->host);
1904 if (round_offset) {
1905 *offset &= TARGET_PAGE_MASK;
1906 }
0dc3f44a 1907 rcu_read_unlock();
422148d3
DDAG
1908 return block;
1909}
1910
e3dd7493
DDAG
1911/*
1912 * Finds the named RAMBlock
1913 *
1914 * name: The name of RAMBlock to find
1915 *
1916 * Returns: RAMBlock (or NULL if not found)
1917 */
1918RAMBlock *qemu_ram_block_by_name(const char *name)
1919{
1920 RAMBlock *block;
1921
1922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1923 if (!strcmp(name, block->idstr)) {
1924 return block;
1925 }
1926 }
1927
1928 return NULL;
1929}
1930
422148d3
DDAG
1931/* Some of the softmmu routines need to translate from a host pointer
1932 (typically a TLB entry) back to a ram offset. */
07bdaa41 1933ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
1934{
1935 RAMBlock *block;
f615f396 1936 ram_addr_t offset;
422148d3 1937
f615f396 1938 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 1939 if (!block) {
07bdaa41 1940 return RAM_ADDR_INVALID;
422148d3
DDAG
1941 }
1942
07bdaa41 1943 return block->offset + offset;
e890261f 1944}
f471a17e 1945
49b24afc 1946/* Called within RCU critical section. */
a8170e5e 1947static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1948 uint64_t val, unsigned size)
9fa3e853 1949{
52159192 1950 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1951 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1952 }
0e0df1e2
AK
1953 switch (size) {
1954 case 1:
0878d0e1 1955 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1956 break;
1957 case 2:
0878d0e1 1958 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1959 break;
1960 case 4:
0878d0e1 1961 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1962 break;
1963 default:
1964 abort();
3a7d929e 1965 }
58d2707e
PB
1966 /* Set both VGA and migration bits for simplicity and to remove
1967 * the notdirty callback faster.
1968 */
1969 cpu_physical_memory_set_dirty_range(ram_addr, size,
1970 DIRTY_CLIENTS_NOCODE);
f23db169
FB
1971 /* we remove the notdirty callback only if the code has been
1972 flushed */
a2cd8c85 1973 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 1974 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 1975 }
9fa3e853
FB
1976}
1977
b018ddf6
PB
1978static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1979 unsigned size, bool is_write)
1980{
1981 return is_write;
1982}
1983
0e0df1e2 1984static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1985 .write = notdirty_mem_write,
b018ddf6 1986 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1987 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1988};
1989
0f459d16 1990/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 1991static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 1992{
93afeade 1993 CPUState *cpu = current_cpu;
568496c0 1994 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 1995 CPUArchState *env = cpu->env_ptr;
06d55cc1 1996 target_ulong pc, cs_base;
0f459d16 1997 target_ulong vaddr;
a1d1bb31 1998 CPUWatchpoint *wp;
89fee74a 1999 uint32_t cpu_flags;
0f459d16 2000
ff4700b0 2001 if (cpu->watchpoint_hit) {
06d55cc1
AL
2002 /* We re-entered the check after replacing the TB. Now raise
2003 * the debug interrupt so that is will trigger after the
2004 * current instruction. */
93afeade 2005 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2006 return;
2007 }
93afeade 2008 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2009 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2010 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2011 && (wp->flags & flags)) {
08225676
PM
2012 if (flags == BP_MEM_READ) {
2013 wp->flags |= BP_WATCHPOINT_HIT_READ;
2014 } else {
2015 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2016 }
2017 wp->hitaddr = vaddr;
66b9b43c 2018 wp->hitattrs = attrs;
ff4700b0 2019 if (!cpu->watchpoint_hit) {
568496c0
SF
2020 if (wp->flags & BP_CPU &&
2021 !cc->debug_check_watchpoint(cpu, wp)) {
2022 wp->flags &= ~BP_WATCHPOINT_HIT;
2023 continue;
2024 }
ff4700b0 2025 cpu->watchpoint_hit = wp;
239c51a5 2026 tb_check_watchpoint(cpu);
6e140f28 2027 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2028 cpu->exception_index = EXCP_DEBUG;
5638d180 2029 cpu_loop_exit(cpu);
6e140f28
AL
2030 } else {
2031 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2032 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2033 cpu_loop_exit_noexc(cpu);
6e140f28 2034 }
06d55cc1 2035 }
6e140f28
AL
2036 } else {
2037 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2038 }
2039 }
2040}
2041
6658ffb8
PB
2042/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2043 so these check for a hit then pass through to the normal out-of-line
2044 phys routines. */
66b9b43c
PM
2045static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2046 unsigned size, MemTxAttrs attrs)
6658ffb8 2047{
66b9b43c
PM
2048 MemTxResult res;
2049 uint64_t data;
79ed0416
PM
2050 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2051 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2052
2053 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2054 switch (size) {
66b9b43c 2055 case 1:
79ed0416 2056 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2057 break;
2058 case 2:
79ed0416 2059 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2060 break;
2061 case 4:
79ed0416 2062 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2063 break;
1ec9b909
AK
2064 default: abort();
2065 }
66b9b43c
PM
2066 *pdata = data;
2067 return res;
6658ffb8
PB
2068}
2069
66b9b43c
PM
2070static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2071 uint64_t val, unsigned size,
2072 MemTxAttrs attrs)
6658ffb8 2073{
66b9b43c 2074 MemTxResult res;
79ed0416
PM
2075 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2076 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2077
2078 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2079 switch (size) {
67364150 2080 case 1:
79ed0416 2081 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2082 break;
2083 case 2:
79ed0416 2084 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2085 break;
2086 case 4:
79ed0416 2087 address_space_stl(as, addr, val, attrs, &res);
67364150 2088 break;
1ec9b909
AK
2089 default: abort();
2090 }
66b9b43c 2091 return res;
6658ffb8
PB
2092}
2093
1ec9b909 2094static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2095 .read_with_attrs = watch_mem_read,
2096 .write_with_attrs = watch_mem_write,
1ec9b909 2097 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2098};
6658ffb8 2099
f25a49e0
PM
2100static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2101 unsigned len, MemTxAttrs attrs)
db7b5426 2102{
acc9d80b 2103 subpage_t *subpage = opaque;
ff6cff75 2104 uint8_t buf[8];
5c9eb028 2105 MemTxResult res;
791af8c8 2106
db7b5426 2107#if defined(DEBUG_SUBPAGE)
016e9d62 2108 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2109 subpage, len, addr);
db7b5426 2110#endif
5c9eb028
PM
2111 res = address_space_read(subpage->as, addr + subpage->base,
2112 attrs, buf, len);
2113 if (res) {
2114 return res;
f25a49e0 2115 }
acc9d80b
JK
2116 switch (len) {
2117 case 1:
f25a49e0
PM
2118 *data = ldub_p(buf);
2119 return MEMTX_OK;
acc9d80b 2120 case 2:
f25a49e0
PM
2121 *data = lduw_p(buf);
2122 return MEMTX_OK;
acc9d80b 2123 case 4:
f25a49e0
PM
2124 *data = ldl_p(buf);
2125 return MEMTX_OK;
ff6cff75 2126 case 8:
f25a49e0
PM
2127 *data = ldq_p(buf);
2128 return MEMTX_OK;
acc9d80b
JK
2129 default:
2130 abort();
2131 }
db7b5426
BS
2132}
2133
f25a49e0
PM
2134static MemTxResult subpage_write(void *opaque, hwaddr addr,
2135 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2136{
acc9d80b 2137 subpage_t *subpage = opaque;
ff6cff75 2138 uint8_t buf[8];
acc9d80b 2139
db7b5426 2140#if defined(DEBUG_SUBPAGE)
016e9d62 2141 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2142 " value %"PRIx64"\n",
2143 __func__, subpage, len, addr, value);
db7b5426 2144#endif
acc9d80b
JK
2145 switch (len) {
2146 case 1:
2147 stb_p(buf, value);
2148 break;
2149 case 2:
2150 stw_p(buf, value);
2151 break;
2152 case 4:
2153 stl_p(buf, value);
2154 break;
ff6cff75
PB
2155 case 8:
2156 stq_p(buf, value);
2157 break;
acc9d80b
JK
2158 default:
2159 abort();
2160 }
5c9eb028
PM
2161 return address_space_write(subpage->as, addr + subpage->base,
2162 attrs, buf, len);
db7b5426
BS
2163}
2164
c353e4cc 2165static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2166 unsigned len, bool is_write)
c353e4cc 2167{
acc9d80b 2168 subpage_t *subpage = opaque;
c353e4cc 2169#if defined(DEBUG_SUBPAGE)
016e9d62 2170 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2171 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2172#endif
2173
acc9d80b 2174 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2175 len, is_write);
c353e4cc
PB
2176}
2177
70c68e44 2178static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2179 .read_with_attrs = subpage_read,
2180 .write_with_attrs = subpage_write,
ff6cff75
PB
2181 .impl.min_access_size = 1,
2182 .impl.max_access_size = 8,
2183 .valid.min_access_size = 1,
2184 .valid.max_access_size = 8,
c353e4cc 2185 .valid.accepts = subpage_accepts,
70c68e44 2186 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2187};
2188
c227f099 2189static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2190 uint16_t section)
db7b5426
BS
2191{
2192 int idx, eidx;
2193
2194 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2195 return -1;
2196 idx = SUBPAGE_IDX(start);
2197 eidx = SUBPAGE_IDX(end);
2198#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2199 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2200 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2201#endif
db7b5426 2202 for (; idx <= eidx; idx++) {
5312bd8b 2203 mmio->sub_section[idx] = section;
db7b5426
BS
2204 }
2205
2206 return 0;
2207}
2208
acc9d80b 2209static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2210{
c227f099 2211 subpage_t *mmio;
db7b5426 2212
7267c094 2213 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2214
acc9d80b 2215 mmio->as = as;
1eec614b 2216 mmio->base = base;
2c9b15ca 2217 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2218 NULL, TARGET_PAGE_SIZE);
b3b00c78 2219 mmio->iomem.subpage = true;
db7b5426 2220#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2221 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2222 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2223#endif
b41aac4f 2224 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2225
2226 return mmio;
2227}
2228
a656e22f
PC
2229static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2230 MemoryRegion *mr)
5312bd8b 2231{
a656e22f 2232 assert(as);
5312bd8b 2233 MemoryRegionSection section = {
a656e22f 2234 .address_space = as,
5312bd8b
AK
2235 .mr = mr,
2236 .offset_within_address_space = 0,
2237 .offset_within_region = 0,
052e87b0 2238 .size = int128_2_64(),
5312bd8b
AK
2239 };
2240
53cb28cb 2241 return phys_section_add(map, &section);
5312bd8b
AK
2242}
2243
a54c87b6 2244MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2245{
a54c87b6
PM
2246 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2247 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2248 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2249 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2250
2251 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2252}
2253
e9179ce1
AK
2254static void io_mem_init(void)
2255{
1f6245e5 2256 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2257 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2258 NULL, UINT64_MAX);
2c9b15ca 2259 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2260 NULL, UINT64_MAX);
2c9b15ca 2261 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2262 NULL, UINT64_MAX);
e9179ce1
AK
2263}
2264
ac1970fb 2265static void mem_begin(MemoryListener *listener)
00752703
PB
2266{
2267 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2268 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2269 uint16_t n;
2270
a656e22f 2271 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2272 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2273 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2274 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2275 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2276 assert(n == PHYS_SECTION_ROM);
a656e22f 2277 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2278 assert(n == PHYS_SECTION_WATCH);
00752703 2279
9736e55b 2280 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2281 d->as = as;
2282 as->next_dispatch = d;
2283}
2284
79e2b9ae
PB
2285static void address_space_dispatch_free(AddressSpaceDispatch *d)
2286{
2287 phys_sections_free(&d->map);
2288 g_free(d);
2289}
2290
00752703 2291static void mem_commit(MemoryListener *listener)
ac1970fb 2292{
89ae337a 2293 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2294 AddressSpaceDispatch *cur = as->dispatch;
2295 AddressSpaceDispatch *next = as->next_dispatch;
2296
53cb28cb 2297 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2298
79e2b9ae 2299 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2300 if (cur) {
79e2b9ae 2301 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2302 }
9affd6fc
PB
2303}
2304
1d71148e 2305static void tcg_commit(MemoryListener *listener)
50c1e149 2306{
32857f4d
PM
2307 CPUAddressSpace *cpuas;
2308 AddressSpaceDispatch *d;
117712c3
AK
2309
2310 /* since each CPU stores ram addresses in its TLB cache, we must
2311 reset the modified entries */
32857f4d
PM
2312 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2313 cpu_reloading_memory_map();
2314 /* The CPU and TLB are protected by the iothread lock.
2315 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2316 * may have split the RCU critical section.
2317 */
2318 d = atomic_rcu_read(&cpuas->as->dispatch);
2319 cpuas->memory_dispatch = d;
2320 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2321}
2322
ac1970fb
AK
2323void address_space_init_dispatch(AddressSpace *as)
2324{
00752703 2325 as->dispatch = NULL;
89ae337a 2326 as->dispatch_listener = (MemoryListener) {
ac1970fb 2327 .begin = mem_begin,
00752703 2328 .commit = mem_commit,
ac1970fb
AK
2329 .region_add = mem_add,
2330 .region_nop = mem_add,
2331 .priority = 0,
2332 };
89ae337a 2333 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2334}
2335
6e48e8f9
PB
2336void address_space_unregister(AddressSpace *as)
2337{
2338 memory_listener_unregister(&as->dispatch_listener);
2339}
2340
83f3c251
AK
2341void address_space_destroy_dispatch(AddressSpace *as)
2342{
2343 AddressSpaceDispatch *d = as->dispatch;
2344
79e2b9ae
PB
2345 atomic_rcu_set(&as->dispatch, NULL);
2346 if (d) {
2347 call_rcu(d, address_space_dispatch_free, rcu);
2348 }
83f3c251
AK
2349}
2350
62152b8a
AK
2351static void memory_map_init(void)
2352{
7267c094 2353 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2354
57271d63 2355 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2356 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2357
7267c094 2358 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2359 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2360 65536);
7dca8043 2361 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2362}
2363
2364MemoryRegion *get_system_memory(void)
2365{
2366 return system_memory;
2367}
2368
309cb471
AK
2369MemoryRegion *get_system_io(void)
2370{
2371 return system_io;
2372}
2373
e2eef170
PB
2374#endif /* !defined(CONFIG_USER_ONLY) */
2375
13eb76e0
FB
2376/* physical memory access (slow version, mainly for debug) */
2377#if defined(CONFIG_USER_ONLY)
f17ec444 2378int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2379 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2380{
2381 int l, flags;
2382 target_ulong page;
53a5960a 2383 void * p;
13eb76e0
FB
2384
2385 while (len > 0) {
2386 page = addr & TARGET_PAGE_MASK;
2387 l = (page + TARGET_PAGE_SIZE) - addr;
2388 if (l > len)
2389 l = len;
2390 flags = page_get_flags(page);
2391 if (!(flags & PAGE_VALID))
a68fe89c 2392 return -1;
13eb76e0
FB
2393 if (is_write) {
2394 if (!(flags & PAGE_WRITE))
a68fe89c 2395 return -1;
579a97f7 2396 /* XXX: this code should not depend on lock_user */
72fb7daa 2397 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2398 return -1;
72fb7daa
AJ
2399 memcpy(p, buf, l);
2400 unlock_user(p, addr, l);
13eb76e0
FB
2401 } else {
2402 if (!(flags & PAGE_READ))
a68fe89c 2403 return -1;
579a97f7 2404 /* XXX: this code should not depend on lock_user */
72fb7daa 2405 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2406 return -1;
72fb7daa 2407 memcpy(buf, p, l);
5b257578 2408 unlock_user(p, addr, 0);
13eb76e0
FB
2409 }
2410 len -= l;
2411 buf += l;
2412 addr += l;
2413 }
a68fe89c 2414 return 0;
13eb76e0 2415}
8df1cd07 2416
13eb76e0 2417#else
51d7a9eb 2418
845b6214 2419static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2420 hwaddr length)
51d7a9eb 2421{
e87f7778 2422 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2423 addr += memory_region_get_ram_addr(mr);
2424
e87f7778
PB
2425 /* No early return if dirty_log_mask is or becomes 0, because
2426 * cpu_physical_memory_set_dirty_range will still call
2427 * xen_modified_memory.
2428 */
2429 if (dirty_log_mask) {
2430 dirty_log_mask =
2431 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2432 }
2433 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2434 tb_invalidate_phys_range(addr, addr + length);
2435 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2436 }
e87f7778 2437 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2438}
2439
23326164 2440static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2441{
e1622f4b 2442 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2443
2444 /* Regions are assumed to support 1-4 byte accesses unless
2445 otherwise specified. */
23326164
RH
2446 if (access_size_max == 0) {
2447 access_size_max = 4;
2448 }
2449
2450 /* Bound the maximum access by the alignment of the address. */
2451 if (!mr->ops->impl.unaligned) {
2452 unsigned align_size_max = addr & -addr;
2453 if (align_size_max != 0 && align_size_max < access_size_max) {
2454 access_size_max = align_size_max;
2455 }
82f2563f 2456 }
23326164
RH
2457
2458 /* Don't attempt accesses larger than the maximum. */
2459 if (l > access_size_max) {
2460 l = access_size_max;
82f2563f 2461 }
6554f5c0 2462 l = pow2floor(l);
23326164
RH
2463
2464 return l;
82f2563f
PB
2465}
2466
4840f10e 2467static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2468{
4840f10e
JK
2469 bool unlocked = !qemu_mutex_iothread_locked();
2470 bool release_lock = false;
2471
2472 if (unlocked && mr->global_locking) {
2473 qemu_mutex_lock_iothread();
2474 unlocked = false;
2475 release_lock = true;
2476 }
125b3806 2477 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2478 if (unlocked) {
2479 qemu_mutex_lock_iothread();
2480 }
125b3806 2481 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2482 if (unlocked) {
2483 qemu_mutex_unlock_iothread();
2484 }
125b3806 2485 }
4840f10e
JK
2486
2487 return release_lock;
125b3806
PB
2488}
2489
a203ac70
PB
2490/* Called within RCU critical section. */
2491static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2492 MemTxAttrs attrs,
2493 const uint8_t *buf,
2494 int len, hwaddr addr1,
2495 hwaddr l, MemoryRegion *mr)
13eb76e0 2496{
13eb76e0 2497 uint8_t *ptr;
791af8c8 2498 uint64_t val;
3b643495 2499 MemTxResult result = MEMTX_OK;
4840f10e 2500 bool release_lock = false;
3b46e624 2501
a203ac70 2502 for (;;) {
eb7eeb88
PB
2503 if (!memory_access_is_direct(mr, true)) {
2504 release_lock |= prepare_mmio_access(mr);
2505 l = memory_access_size(mr, l, addr1);
2506 /* XXX: could force current_cpu to NULL to avoid
2507 potential bugs */
2508 switch (l) {
2509 case 8:
2510 /* 64 bit write access */
2511 val = ldq_p(buf);
2512 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2513 attrs);
2514 break;
2515 case 4:
2516 /* 32 bit write access */
2517 val = ldl_p(buf);
2518 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2519 attrs);
2520 break;
2521 case 2:
2522 /* 16 bit write access */
2523 val = lduw_p(buf);
2524 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2525 attrs);
2526 break;
2527 case 1:
2528 /* 8 bit write access */
2529 val = ldub_p(buf);
2530 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2531 attrs);
2532 break;
2533 default:
2534 abort();
13eb76e0
FB
2535 }
2536 } else {
eb7eeb88 2537 /* RAM case */
0878d0e1 2538 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2539 memcpy(ptr, buf, l);
2540 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2541 }
4840f10e
JK
2542
2543 if (release_lock) {
2544 qemu_mutex_unlock_iothread();
2545 release_lock = false;
2546 }
2547
13eb76e0
FB
2548 len -= l;
2549 buf += l;
2550 addr += l;
a203ac70
PB
2551
2552 if (!len) {
2553 break;
2554 }
2555
2556 l = len;
2557 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2558 }
fd8aaa76 2559
3b643495 2560 return result;
13eb76e0 2561}
8df1cd07 2562
a203ac70
PB
2563MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2564 const uint8_t *buf, int len)
ac1970fb 2565{
eb7eeb88 2566 hwaddr l;
eb7eeb88
PB
2567 hwaddr addr1;
2568 MemoryRegion *mr;
2569 MemTxResult result = MEMTX_OK;
eb7eeb88 2570
a203ac70
PB
2571 if (len > 0) {
2572 rcu_read_lock();
eb7eeb88 2573 l = len;
a203ac70
PB
2574 mr = address_space_translate(as, addr, &addr1, &l, true);
2575 result = address_space_write_continue(as, addr, attrs, buf, len,
2576 addr1, l, mr);
2577 rcu_read_unlock();
2578 }
2579
2580 return result;
2581}
2582
2583/* Called within RCU critical section. */
2584MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2585 MemTxAttrs attrs, uint8_t *buf,
2586 int len, hwaddr addr1, hwaddr l,
2587 MemoryRegion *mr)
2588{
2589 uint8_t *ptr;
2590 uint64_t val;
2591 MemTxResult result = MEMTX_OK;
2592 bool release_lock = false;
eb7eeb88 2593
a203ac70 2594 for (;;) {
eb7eeb88
PB
2595 if (!memory_access_is_direct(mr, false)) {
2596 /* I/O case */
2597 release_lock |= prepare_mmio_access(mr);
2598 l = memory_access_size(mr, l, addr1);
2599 switch (l) {
2600 case 8:
2601 /* 64 bit read access */
2602 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2603 attrs);
2604 stq_p(buf, val);
2605 break;
2606 case 4:
2607 /* 32 bit read access */
2608 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2609 attrs);
2610 stl_p(buf, val);
2611 break;
2612 case 2:
2613 /* 16 bit read access */
2614 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2615 attrs);
2616 stw_p(buf, val);
2617 break;
2618 case 1:
2619 /* 8 bit read access */
2620 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2621 attrs);
2622 stb_p(buf, val);
2623 break;
2624 default:
2625 abort();
2626 }
2627 } else {
2628 /* RAM case */
0878d0e1 2629 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2630 memcpy(buf, ptr, l);
2631 }
2632
2633 if (release_lock) {
2634 qemu_mutex_unlock_iothread();
2635 release_lock = false;
2636 }
2637
2638 len -= l;
2639 buf += l;
2640 addr += l;
a203ac70
PB
2641
2642 if (!len) {
2643 break;
2644 }
2645
2646 l = len;
2647 mr = address_space_translate(as, addr, &addr1, &l, false);
2648 }
2649
2650 return result;
2651}
2652
3cc8f884
PB
2653MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2654 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2655{
2656 hwaddr l;
2657 hwaddr addr1;
2658 MemoryRegion *mr;
2659 MemTxResult result = MEMTX_OK;
2660
2661 if (len > 0) {
2662 rcu_read_lock();
2663 l = len;
2664 mr = address_space_translate(as, addr, &addr1, &l, false);
2665 result = address_space_read_continue(as, addr, attrs, buf, len,
2666 addr1, l, mr);
2667 rcu_read_unlock();
eb7eeb88 2668 }
eb7eeb88
PB
2669
2670 return result;
ac1970fb
AK
2671}
2672
eb7eeb88
PB
2673MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2674 uint8_t *buf, int len, bool is_write)
2675{
2676 if (is_write) {
2677 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2678 } else {
2679 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2680 }
2681}
ac1970fb 2682
a8170e5e 2683void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2684 int len, int is_write)
2685{
5c9eb028
PM
2686 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2687 buf, len, is_write);
ac1970fb
AK
2688}
2689
582b55a9
AG
2690enum write_rom_type {
2691 WRITE_DATA,
2692 FLUSH_CACHE,
2693};
2694
2a221651 2695static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2696 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2697{
149f54b5 2698 hwaddr l;
d0ecd2aa 2699 uint8_t *ptr;
149f54b5 2700 hwaddr addr1;
5c8a00ce 2701 MemoryRegion *mr;
3b46e624 2702
41063e1e 2703 rcu_read_lock();
d0ecd2aa 2704 while (len > 0) {
149f54b5 2705 l = len;
2a221651 2706 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2707
5c8a00ce
PB
2708 if (!(memory_region_is_ram(mr) ||
2709 memory_region_is_romd(mr))) {
b242e0e0 2710 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2711 } else {
d0ecd2aa 2712 /* ROM/RAM case */
0878d0e1 2713 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2714 switch (type) {
2715 case WRITE_DATA:
2716 memcpy(ptr, buf, l);
845b6214 2717 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2718 break;
2719 case FLUSH_CACHE:
2720 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2721 break;
2722 }
d0ecd2aa
FB
2723 }
2724 len -= l;
2725 buf += l;
2726 addr += l;
2727 }
41063e1e 2728 rcu_read_unlock();
d0ecd2aa
FB
2729}
2730
582b55a9 2731/* used for ROM loading : can write in RAM and ROM */
2a221651 2732void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2733 const uint8_t *buf, int len)
2734{
2a221651 2735 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2736}
2737
2738void cpu_flush_icache_range(hwaddr start, int len)
2739{
2740 /*
2741 * This function should do the same thing as an icache flush that was
2742 * triggered from within the guest. For TCG we are always cache coherent,
2743 * so there is no need to flush anything. For KVM / Xen we need to flush
2744 * the host's instruction cache at least.
2745 */
2746 if (tcg_enabled()) {
2747 return;
2748 }
2749
2a221651
EI
2750 cpu_physical_memory_write_rom_internal(&address_space_memory,
2751 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2752}
2753
6d16c2f8 2754typedef struct {
d3e71559 2755 MemoryRegion *mr;
6d16c2f8 2756 void *buffer;
a8170e5e
AK
2757 hwaddr addr;
2758 hwaddr len;
c2cba0ff 2759 bool in_use;
6d16c2f8
AL
2760} BounceBuffer;
2761
2762static BounceBuffer bounce;
2763
ba223c29 2764typedef struct MapClient {
e95205e1 2765 QEMUBH *bh;
72cf2d4f 2766 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2767} MapClient;
2768
38e047b5 2769QemuMutex map_client_list_lock;
72cf2d4f
BS
2770static QLIST_HEAD(map_client_list, MapClient) map_client_list
2771 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2772
e95205e1
FZ
2773static void cpu_unregister_map_client_do(MapClient *client)
2774{
2775 QLIST_REMOVE(client, link);
2776 g_free(client);
2777}
2778
33b6c2ed
FZ
2779static void cpu_notify_map_clients_locked(void)
2780{
2781 MapClient *client;
2782
2783 while (!QLIST_EMPTY(&map_client_list)) {
2784 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2785 qemu_bh_schedule(client->bh);
2786 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2787 }
2788}
2789
e95205e1 2790void cpu_register_map_client(QEMUBH *bh)
ba223c29 2791{
7267c094 2792 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2793
38e047b5 2794 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2795 client->bh = bh;
72cf2d4f 2796 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2797 if (!atomic_read(&bounce.in_use)) {
2798 cpu_notify_map_clients_locked();
2799 }
38e047b5 2800 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2801}
2802
38e047b5 2803void cpu_exec_init_all(void)
ba223c29 2804{
38e047b5 2805 qemu_mutex_init(&ram_list.mutex);
38e047b5 2806 io_mem_init();
680a4783 2807 memory_map_init();
38e047b5 2808 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2809}
2810
e95205e1 2811void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2812{
2813 MapClient *client;
2814
e95205e1
FZ
2815 qemu_mutex_lock(&map_client_list_lock);
2816 QLIST_FOREACH(client, &map_client_list, link) {
2817 if (client->bh == bh) {
2818 cpu_unregister_map_client_do(client);
2819 break;
2820 }
ba223c29 2821 }
e95205e1 2822 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2823}
2824
2825static void cpu_notify_map_clients(void)
2826{
38e047b5 2827 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2828 cpu_notify_map_clients_locked();
38e047b5 2829 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2830}
2831
51644ab7
PB
2832bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2833{
5c8a00ce 2834 MemoryRegion *mr;
51644ab7
PB
2835 hwaddr l, xlat;
2836
41063e1e 2837 rcu_read_lock();
51644ab7
PB
2838 while (len > 0) {
2839 l = len;
5c8a00ce
PB
2840 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2841 if (!memory_access_is_direct(mr, is_write)) {
2842 l = memory_access_size(mr, l, addr);
2843 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2844 return false;
2845 }
2846 }
2847
2848 len -= l;
2849 addr += l;
2850 }
41063e1e 2851 rcu_read_unlock();
51644ab7
PB
2852 return true;
2853}
2854
6d16c2f8
AL
2855/* Map a physical memory region into a host virtual address.
2856 * May map a subset of the requested range, given by and returned in *plen.
2857 * May return NULL if resources needed to perform the mapping are exhausted.
2858 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2859 * Use cpu_register_map_client() to know when retrying the map operation is
2860 * likely to succeed.
6d16c2f8 2861 */
ac1970fb 2862void *address_space_map(AddressSpace *as,
a8170e5e
AK
2863 hwaddr addr,
2864 hwaddr *plen,
ac1970fb 2865 bool is_write)
6d16c2f8 2866{
a8170e5e 2867 hwaddr len = *plen;
e3127ae0
PB
2868 hwaddr done = 0;
2869 hwaddr l, xlat, base;
2870 MemoryRegion *mr, *this_mr;
e81bcda5 2871 void *ptr;
6d16c2f8 2872
e3127ae0
PB
2873 if (len == 0) {
2874 return NULL;
2875 }
38bee5dc 2876
e3127ae0 2877 l = len;
41063e1e 2878 rcu_read_lock();
e3127ae0 2879 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2880
e3127ae0 2881 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2882 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2883 rcu_read_unlock();
e3127ae0 2884 return NULL;
6d16c2f8 2885 }
e85d9db5
KW
2886 /* Avoid unbounded allocations */
2887 l = MIN(l, TARGET_PAGE_SIZE);
2888 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2889 bounce.addr = addr;
2890 bounce.len = l;
d3e71559
PB
2891
2892 memory_region_ref(mr);
2893 bounce.mr = mr;
e3127ae0 2894 if (!is_write) {
5c9eb028
PM
2895 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2896 bounce.buffer, l);
8ab934f9 2897 }
6d16c2f8 2898
41063e1e 2899 rcu_read_unlock();
e3127ae0
PB
2900 *plen = l;
2901 return bounce.buffer;
2902 }
2903
2904 base = xlat;
e3127ae0
PB
2905
2906 for (;;) {
6d16c2f8
AL
2907 len -= l;
2908 addr += l;
e3127ae0
PB
2909 done += l;
2910 if (len == 0) {
2911 break;
2912 }
2913
2914 l = len;
2915 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2916 if (this_mr != mr || xlat != base + done) {
2917 break;
2918 }
6d16c2f8 2919 }
e3127ae0 2920
d3e71559 2921 memory_region_ref(mr);
e3127ae0 2922 *plen = done;
0878d0e1 2923 ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
e81bcda5
PB
2924 rcu_read_unlock();
2925
2926 return ptr;
6d16c2f8
AL
2927}
2928
ac1970fb 2929/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2930 * Will also mark the memory as dirty if is_write == 1. access_len gives
2931 * the amount of memory that was actually read or written by the caller.
2932 */
a8170e5e
AK
2933void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2934 int is_write, hwaddr access_len)
6d16c2f8
AL
2935{
2936 if (buffer != bounce.buffer) {
d3e71559
PB
2937 MemoryRegion *mr;
2938 ram_addr_t addr1;
2939
07bdaa41 2940 mr = memory_region_from_host(buffer, &addr1);
d3e71559 2941 assert(mr != NULL);
6d16c2f8 2942 if (is_write) {
845b6214 2943 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2944 }
868bb33f 2945 if (xen_enabled()) {
e41d7c69 2946 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2947 }
d3e71559 2948 memory_region_unref(mr);
6d16c2f8
AL
2949 return;
2950 }
2951 if (is_write) {
5c9eb028
PM
2952 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2953 bounce.buffer, access_len);
6d16c2f8 2954 }
f8a83245 2955 qemu_vfree(bounce.buffer);
6d16c2f8 2956 bounce.buffer = NULL;
d3e71559 2957 memory_region_unref(bounce.mr);
c2cba0ff 2958 atomic_mb_set(&bounce.in_use, false);
ba223c29 2959 cpu_notify_map_clients();
6d16c2f8 2960}
d0ecd2aa 2961
a8170e5e
AK
2962void *cpu_physical_memory_map(hwaddr addr,
2963 hwaddr *plen,
ac1970fb
AK
2964 int is_write)
2965{
2966 return address_space_map(&address_space_memory, addr, plen, is_write);
2967}
2968
a8170e5e
AK
2969void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2970 int is_write, hwaddr access_len)
ac1970fb
AK
2971{
2972 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2973}
2974
8df1cd07 2975/* warning: addr must be aligned */
50013115
PM
2976static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2977 MemTxAttrs attrs,
2978 MemTxResult *result,
2979 enum device_endian endian)
8df1cd07 2980{
8df1cd07 2981 uint8_t *ptr;
791af8c8 2982 uint64_t val;
5c8a00ce 2983 MemoryRegion *mr;
149f54b5
PB
2984 hwaddr l = 4;
2985 hwaddr addr1;
50013115 2986 MemTxResult r;
4840f10e 2987 bool release_lock = false;
8df1cd07 2988
41063e1e 2989 rcu_read_lock();
fdfba1a2 2990 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2991 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 2992 release_lock |= prepare_mmio_access(mr);
125b3806 2993
8df1cd07 2994 /* I/O case */
50013115 2995 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
2996#if defined(TARGET_WORDS_BIGENDIAN)
2997 if (endian == DEVICE_LITTLE_ENDIAN) {
2998 val = bswap32(val);
2999 }
3000#else
3001 if (endian == DEVICE_BIG_ENDIAN) {
3002 val = bswap32(val);
3003 }
3004#endif
8df1cd07
FB
3005 } else {
3006 /* RAM case */
0878d0e1 3007 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3008 switch (endian) {
3009 case DEVICE_LITTLE_ENDIAN:
3010 val = ldl_le_p(ptr);
3011 break;
3012 case DEVICE_BIG_ENDIAN:
3013 val = ldl_be_p(ptr);
3014 break;
3015 default:
3016 val = ldl_p(ptr);
3017 break;
3018 }
50013115
PM
3019 r = MEMTX_OK;
3020 }
3021 if (result) {
3022 *result = r;
8df1cd07 3023 }
4840f10e
JK
3024 if (release_lock) {
3025 qemu_mutex_unlock_iothread();
3026 }
41063e1e 3027 rcu_read_unlock();
8df1cd07
FB
3028 return val;
3029}
3030
50013115
PM
3031uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3032 MemTxAttrs attrs, MemTxResult *result)
3033{
3034 return address_space_ldl_internal(as, addr, attrs, result,
3035 DEVICE_NATIVE_ENDIAN);
3036}
3037
3038uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3039 MemTxAttrs attrs, MemTxResult *result)
3040{
3041 return address_space_ldl_internal(as, addr, attrs, result,
3042 DEVICE_LITTLE_ENDIAN);
3043}
3044
3045uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3046 MemTxAttrs attrs, MemTxResult *result)
3047{
3048 return address_space_ldl_internal(as, addr, attrs, result,
3049 DEVICE_BIG_ENDIAN);
3050}
3051
fdfba1a2 3052uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3053{
50013115 3054 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3055}
3056
fdfba1a2 3057uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3058{
50013115 3059 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3060}
3061
fdfba1a2 3062uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3063{
50013115 3064 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3065}
3066
84b7b8e7 3067/* warning: addr must be aligned */
50013115
PM
3068static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3069 MemTxAttrs attrs,
3070 MemTxResult *result,
3071 enum device_endian endian)
84b7b8e7 3072{
84b7b8e7
FB
3073 uint8_t *ptr;
3074 uint64_t val;
5c8a00ce 3075 MemoryRegion *mr;
149f54b5
PB
3076 hwaddr l = 8;
3077 hwaddr addr1;
50013115 3078 MemTxResult r;
4840f10e 3079 bool release_lock = false;
84b7b8e7 3080
41063e1e 3081 rcu_read_lock();
2c17449b 3082 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3083 false);
3084 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3085 release_lock |= prepare_mmio_access(mr);
125b3806 3086
84b7b8e7 3087 /* I/O case */
50013115 3088 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3089#if defined(TARGET_WORDS_BIGENDIAN)
3090 if (endian == DEVICE_LITTLE_ENDIAN) {
3091 val = bswap64(val);
3092 }
3093#else
3094 if (endian == DEVICE_BIG_ENDIAN) {
3095 val = bswap64(val);
3096 }
84b7b8e7
FB
3097#endif
3098 } else {
3099 /* RAM case */
0878d0e1 3100 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3101 switch (endian) {
3102 case DEVICE_LITTLE_ENDIAN:
3103 val = ldq_le_p(ptr);
3104 break;
3105 case DEVICE_BIG_ENDIAN:
3106 val = ldq_be_p(ptr);
3107 break;
3108 default:
3109 val = ldq_p(ptr);
3110 break;
3111 }
50013115
PM
3112 r = MEMTX_OK;
3113 }
3114 if (result) {
3115 *result = r;
84b7b8e7 3116 }
4840f10e
JK
3117 if (release_lock) {
3118 qemu_mutex_unlock_iothread();
3119 }
41063e1e 3120 rcu_read_unlock();
84b7b8e7
FB
3121 return val;
3122}
3123
50013115
PM
3124uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3125 MemTxAttrs attrs, MemTxResult *result)
3126{
3127 return address_space_ldq_internal(as, addr, attrs, result,
3128 DEVICE_NATIVE_ENDIAN);
3129}
3130
3131uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3132 MemTxAttrs attrs, MemTxResult *result)
3133{
3134 return address_space_ldq_internal(as, addr, attrs, result,
3135 DEVICE_LITTLE_ENDIAN);
3136}
3137
3138uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3139 MemTxAttrs attrs, MemTxResult *result)
3140{
3141 return address_space_ldq_internal(as, addr, attrs, result,
3142 DEVICE_BIG_ENDIAN);
3143}
3144
2c17449b 3145uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3146{
50013115 3147 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3148}
3149
2c17449b 3150uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3151{
50013115 3152 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3153}
3154
2c17449b 3155uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3156{
50013115 3157 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3158}
3159
aab33094 3160/* XXX: optimize */
50013115
PM
3161uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3162 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3163{
3164 uint8_t val;
50013115
PM
3165 MemTxResult r;
3166
3167 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3168 if (result) {
3169 *result = r;
3170 }
aab33094
FB
3171 return val;
3172}
3173
50013115
PM
3174uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3175{
3176 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3177}
3178
733f0b02 3179/* warning: addr must be aligned */
50013115
PM
3180static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3181 hwaddr addr,
3182 MemTxAttrs attrs,
3183 MemTxResult *result,
3184 enum device_endian endian)
aab33094 3185{
733f0b02
MT
3186 uint8_t *ptr;
3187 uint64_t val;
5c8a00ce 3188 MemoryRegion *mr;
149f54b5
PB
3189 hwaddr l = 2;
3190 hwaddr addr1;
50013115 3191 MemTxResult r;
4840f10e 3192 bool release_lock = false;
733f0b02 3193
41063e1e 3194 rcu_read_lock();
41701aa4 3195 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3196 false);
3197 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3198 release_lock |= prepare_mmio_access(mr);
125b3806 3199
733f0b02 3200 /* I/O case */
50013115 3201 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3202#if defined(TARGET_WORDS_BIGENDIAN)
3203 if (endian == DEVICE_LITTLE_ENDIAN) {
3204 val = bswap16(val);
3205 }
3206#else
3207 if (endian == DEVICE_BIG_ENDIAN) {
3208 val = bswap16(val);
3209 }
3210#endif
733f0b02
MT
3211 } else {
3212 /* RAM case */
0878d0e1 3213 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3214 switch (endian) {
3215 case DEVICE_LITTLE_ENDIAN:
3216 val = lduw_le_p(ptr);
3217 break;
3218 case DEVICE_BIG_ENDIAN:
3219 val = lduw_be_p(ptr);
3220 break;
3221 default:
3222 val = lduw_p(ptr);
3223 break;
3224 }
50013115
PM
3225 r = MEMTX_OK;
3226 }
3227 if (result) {
3228 *result = r;
733f0b02 3229 }
4840f10e
JK
3230 if (release_lock) {
3231 qemu_mutex_unlock_iothread();
3232 }
41063e1e 3233 rcu_read_unlock();
733f0b02 3234 return val;
aab33094
FB
3235}
3236
50013115
PM
3237uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3238 MemTxAttrs attrs, MemTxResult *result)
3239{
3240 return address_space_lduw_internal(as, addr, attrs, result,
3241 DEVICE_NATIVE_ENDIAN);
3242}
3243
3244uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3245 MemTxAttrs attrs, MemTxResult *result)
3246{
3247 return address_space_lduw_internal(as, addr, attrs, result,
3248 DEVICE_LITTLE_ENDIAN);
3249}
3250
3251uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3252 MemTxAttrs attrs, MemTxResult *result)
3253{
3254 return address_space_lduw_internal(as, addr, attrs, result,
3255 DEVICE_BIG_ENDIAN);
3256}
3257
41701aa4 3258uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3259{
50013115 3260 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3261}
3262
41701aa4 3263uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3264{
50013115 3265 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3266}
3267
41701aa4 3268uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3269{
50013115 3270 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3271}
3272
8df1cd07
FB
3273/* warning: addr must be aligned. The ram page is not masked as dirty
3274 and the code inside is not invalidated. It is useful if the dirty
3275 bits are used to track modified PTEs */
50013115
PM
3276void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3277 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3278{
8df1cd07 3279 uint8_t *ptr;
5c8a00ce 3280 MemoryRegion *mr;
149f54b5
PB
3281 hwaddr l = 4;
3282 hwaddr addr1;
50013115 3283 MemTxResult r;
845b6214 3284 uint8_t dirty_log_mask;
4840f10e 3285 bool release_lock = false;
8df1cd07 3286
41063e1e 3287 rcu_read_lock();
2198a121 3288 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3289 true);
3290 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3291 release_lock |= prepare_mmio_access(mr);
125b3806 3292
50013115 3293 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3294 } else {
0878d0e1 3295 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
8df1cd07 3296 stl_p(ptr, val);
74576198 3297
845b6214
PB
3298 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3299 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
0878d0e1
PB
3300 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
3301 4, dirty_log_mask);
50013115
PM
3302 r = MEMTX_OK;
3303 }
3304 if (result) {
3305 *result = r;
8df1cd07 3306 }
4840f10e
JK
3307 if (release_lock) {
3308 qemu_mutex_unlock_iothread();
3309 }
41063e1e 3310 rcu_read_unlock();
8df1cd07
FB
3311}
3312
50013115
PM
3313void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3314{
3315 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3316}
3317
8df1cd07 3318/* warning: addr must be aligned */
50013115
PM
3319static inline void address_space_stl_internal(AddressSpace *as,
3320 hwaddr addr, uint32_t val,
3321 MemTxAttrs attrs,
3322 MemTxResult *result,
3323 enum device_endian endian)
8df1cd07 3324{
8df1cd07 3325 uint8_t *ptr;
5c8a00ce 3326 MemoryRegion *mr;
149f54b5
PB
3327 hwaddr l = 4;
3328 hwaddr addr1;
50013115 3329 MemTxResult r;
4840f10e 3330 bool release_lock = false;
8df1cd07 3331
41063e1e 3332 rcu_read_lock();
ab1da857 3333 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3334 true);
3335 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3336 release_lock |= prepare_mmio_access(mr);
125b3806 3337
1e78bcc1
AG
3338#if defined(TARGET_WORDS_BIGENDIAN)
3339 if (endian == DEVICE_LITTLE_ENDIAN) {
3340 val = bswap32(val);
3341 }
3342#else
3343 if (endian == DEVICE_BIG_ENDIAN) {
3344 val = bswap32(val);
3345 }
3346#endif
50013115 3347 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3348 } else {
8df1cd07 3349 /* RAM case */
0878d0e1 3350 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3351 switch (endian) {
3352 case DEVICE_LITTLE_ENDIAN:
3353 stl_le_p(ptr, val);
3354 break;
3355 case DEVICE_BIG_ENDIAN:
3356 stl_be_p(ptr, val);
3357 break;
3358 default:
3359 stl_p(ptr, val);
3360 break;
3361 }
845b6214 3362 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3363 r = MEMTX_OK;
3364 }
3365 if (result) {
3366 *result = r;
8df1cd07 3367 }
4840f10e
JK
3368 if (release_lock) {
3369 qemu_mutex_unlock_iothread();
3370 }
41063e1e 3371 rcu_read_unlock();
8df1cd07
FB
3372}
3373
50013115
PM
3374void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3375 MemTxAttrs attrs, MemTxResult *result)
3376{
3377 address_space_stl_internal(as, addr, val, attrs, result,
3378 DEVICE_NATIVE_ENDIAN);
3379}
3380
3381void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3382 MemTxAttrs attrs, MemTxResult *result)
3383{
3384 address_space_stl_internal(as, addr, val, attrs, result,
3385 DEVICE_LITTLE_ENDIAN);
3386}
3387
3388void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3389 MemTxAttrs attrs, MemTxResult *result)
3390{
3391 address_space_stl_internal(as, addr, val, attrs, result,
3392 DEVICE_BIG_ENDIAN);
3393}
3394
ab1da857 3395void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3396{
50013115 3397 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3398}
3399
ab1da857 3400void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3401{
50013115 3402 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3403}
3404
ab1da857 3405void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3406{
50013115 3407 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3408}
3409
aab33094 3410/* XXX: optimize */
50013115
PM
3411void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3412 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3413{
3414 uint8_t v = val;
50013115
PM
3415 MemTxResult r;
3416
3417 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3418 if (result) {
3419 *result = r;
3420 }
3421}
3422
3423void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3424{
3425 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3426}
3427
733f0b02 3428/* warning: addr must be aligned */
50013115
PM
3429static inline void address_space_stw_internal(AddressSpace *as,
3430 hwaddr addr, uint32_t val,
3431 MemTxAttrs attrs,
3432 MemTxResult *result,
3433 enum device_endian endian)
aab33094 3434{
733f0b02 3435 uint8_t *ptr;
5c8a00ce 3436 MemoryRegion *mr;
149f54b5
PB
3437 hwaddr l = 2;
3438 hwaddr addr1;
50013115 3439 MemTxResult r;
4840f10e 3440 bool release_lock = false;
733f0b02 3441
41063e1e 3442 rcu_read_lock();
5ce5944d 3443 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3444 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3445 release_lock |= prepare_mmio_access(mr);
125b3806 3446
1e78bcc1
AG
3447#if defined(TARGET_WORDS_BIGENDIAN)
3448 if (endian == DEVICE_LITTLE_ENDIAN) {
3449 val = bswap16(val);
3450 }
3451#else
3452 if (endian == DEVICE_BIG_ENDIAN) {
3453 val = bswap16(val);
3454 }
3455#endif
50013115 3456 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3457 } else {
733f0b02 3458 /* RAM case */
0878d0e1 3459 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3460 switch (endian) {
3461 case DEVICE_LITTLE_ENDIAN:
3462 stw_le_p(ptr, val);
3463 break;
3464 case DEVICE_BIG_ENDIAN:
3465 stw_be_p(ptr, val);
3466 break;
3467 default:
3468 stw_p(ptr, val);
3469 break;
3470 }
845b6214 3471 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3472 r = MEMTX_OK;
3473 }
3474 if (result) {
3475 *result = r;
733f0b02 3476 }
4840f10e
JK
3477 if (release_lock) {
3478 qemu_mutex_unlock_iothread();
3479 }
41063e1e 3480 rcu_read_unlock();
aab33094
FB
3481}
3482
50013115
PM
3483void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3484 MemTxAttrs attrs, MemTxResult *result)
3485{
3486 address_space_stw_internal(as, addr, val, attrs, result,
3487 DEVICE_NATIVE_ENDIAN);
3488}
3489
3490void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3491 MemTxAttrs attrs, MemTxResult *result)
3492{
3493 address_space_stw_internal(as, addr, val, attrs, result,
3494 DEVICE_LITTLE_ENDIAN);
3495}
3496
3497void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3498 MemTxAttrs attrs, MemTxResult *result)
3499{
3500 address_space_stw_internal(as, addr, val, attrs, result,
3501 DEVICE_BIG_ENDIAN);
3502}
3503
5ce5944d 3504void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3505{
50013115 3506 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3507}
3508
5ce5944d 3509void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3510{
50013115 3511 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3512}
3513
5ce5944d 3514void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3515{
50013115 3516 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3517}
3518
aab33094 3519/* XXX: optimize */
50013115
PM
3520void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3521 MemTxAttrs attrs, MemTxResult *result)
aab33094 3522{
50013115 3523 MemTxResult r;
aab33094 3524 val = tswap64(val);
50013115
PM
3525 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3526 if (result) {
3527 *result = r;
3528 }
aab33094
FB
3529}
3530
50013115
PM
3531void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3532 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3533{
50013115 3534 MemTxResult r;
1e78bcc1 3535 val = cpu_to_le64(val);
50013115
PM
3536 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3537 if (result) {
3538 *result = r;
3539 }
3540}
3541void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3542 MemTxAttrs attrs, MemTxResult *result)
3543{
3544 MemTxResult r;
3545 val = cpu_to_be64(val);
3546 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3547 if (result) {
3548 *result = r;
3549 }
3550}
3551
3552void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3553{
3554 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3555}
3556
3557void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3558{
3559 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3560}
3561
f606604f 3562void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3563{
50013115 3564 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3565}
3566
5e2972fd 3567/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3568int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3569 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3570{
3571 int l;
a8170e5e 3572 hwaddr phys_addr;
9b3c35e0 3573 target_ulong page;
13eb76e0
FB
3574
3575 while (len > 0) {
5232e4c7
PM
3576 int asidx;
3577 MemTxAttrs attrs;
3578
13eb76e0 3579 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3580 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3581 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3582 /* if no physical page mapped, return an error */
3583 if (phys_addr == -1)
3584 return -1;
3585 l = (page + TARGET_PAGE_SIZE) - addr;
3586 if (l > len)
3587 l = len;
5e2972fd 3588 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3589 if (is_write) {
5232e4c7
PM
3590 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3591 phys_addr, buf, l);
2e38847b 3592 } else {
5232e4c7
PM
3593 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3594 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3595 buf, l, 0);
2e38847b 3596 }
13eb76e0
FB
3597 len -= l;
3598 buf += l;
3599 addr += l;
3600 }
3601 return 0;
3602}
038629a6
DDAG
3603
3604/*
3605 * Allows code that needs to deal with migration bitmaps etc to still be built
3606 * target independent.
3607 */
3608size_t qemu_target_page_bits(void)
3609{
3610 return TARGET_PAGE_BITS;
3611}
3612
a68fe89c 3613#endif
13eb76e0 3614
8e4a424b
BS
3615/*
3616 * A helper function for the _utterly broken_ virtio device model to find out if
3617 * it's running on a big endian machine. Don't do this at home kids!
3618 */
98ed8ecf
GK
3619bool target_words_bigendian(void);
3620bool target_words_bigendian(void)
8e4a424b
BS
3621{
3622#if defined(TARGET_WORDS_BIGENDIAN)
3623 return true;
3624#else
3625 return false;
3626#endif
3627}
3628
76f35538 3629#ifndef CONFIG_USER_ONLY
a8170e5e 3630bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3631{
5c8a00ce 3632 MemoryRegion*mr;
149f54b5 3633 hwaddr l = 1;
41063e1e 3634 bool res;
76f35538 3635
41063e1e 3636 rcu_read_lock();
5c8a00ce
PB
3637 mr = address_space_translate(&address_space_memory,
3638 phys_addr, &phys_addr, &l, false);
76f35538 3639
41063e1e
PB
3640 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3641 rcu_read_unlock();
3642 return res;
76f35538 3643}
bd2fa51f 3644
e3807054 3645int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3646{
3647 RAMBlock *block;
e3807054 3648 int ret = 0;
bd2fa51f 3649
0dc3f44a
MD
3650 rcu_read_lock();
3651 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3652 ret = func(block->idstr, block->host, block->offset,
3653 block->used_length, opaque);
3654 if (ret) {
3655 break;
3656 }
bd2fa51f 3657 }
0dc3f44a 3658 rcu_read_unlock();
e3807054 3659 return ret;
bd2fa51f 3660}
ec3f8c99 3661#endif