]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/ericb/tags/pull-bitmaps-2020-06-09' into staging
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
e2eef170 82#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
83/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
85 */
0d53d9fe 86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
87
88static MemoryRegion *system_memory;
309cb471 89static MemoryRegion *system_io;
62152b8a 90
f6790af6
AK
91AddressSpace address_space_io;
92AddressSpace address_space_memory;
2673a5da 93
acc9d80b 94static MemoryRegion io_mem_unassigned;
e2eef170 95#endif
9fa3e853 96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
6a00d601 102
a0be0c58
YZ
103uintptr_t qemu_host_page_size;
104intptr_t qemu_host_page_mask;
a0be0c58 105
e2eef170 106#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
107/* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110int use_icount;
4346ae3e 111
1db8abb1
PB
112typedef struct PhysPageEntry PhysPageEntry;
113
114struct PhysPageEntry {
9736e55b 115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 116 uint32_t skip : 6;
9736e55b 117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 118 uint32_t ptr : 26;
1db8abb1
PB
119};
120
8b795765
MT
121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122
03f49957 123/* Size of the L2 (and L3, etc) page tables. */
57271d63 124#define ADDR_SPACE_BITS 64
03f49957 125
026736ce 126#define P_L2_BITS 9
03f49957
PB
127#define P_L2_SIZE (1 << P_L2_BITS)
128
129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130
131typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 132
53cb28cb 133typedef struct PhysPageMap {
79e2b9ae
PB
134 struct rcu_head rcu;
135
53cb28cb
MA
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142} PhysPageMap;
143
1db8abb1 144struct AddressSpaceDispatch {
729633c2 145 MemoryRegionSection *mru_section;
1db8abb1
PB
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
148 */
149 PhysPageEntry phys_map;
53cb28cb 150 PhysPageMap map;
1db8abb1
PB
151};
152
90260c6c
JK
153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154typedef struct subpage_t {
155 MemoryRegion iomem;
16620684 156 FlatView *fv;
90260c6c 157 hwaddr base;
2615fabd 158 uint16_t sub_section[];
90260c6c
JK
159} subpage_t;
160
b41aac4f 161#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
9458a9a1 165static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
32857f4d
PM
168/**
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 */
175struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
180};
181
8deaf12c
GH
182struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
186};
187
6658ffb8 188#endif
fd6ce8f6 189
6d9a1304 190#if !defined(CONFIG_USER_ONLY)
d6f2ea22 191
53cb28cb 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 193{
101420b8 194 static unsigned alloc_hint = 16;
53cb28cb 195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 198 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 199 }
f7bf5461
AK
200}
201
db94604b 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
203{
204 unsigned i;
8b795765 205 uint32_t ret;
db94604b
PB
206 PhysPageEntry e;
207 PhysPageEntry *p;
f7bf5461 208
53cb28cb 209 ret = map->nodes_nb++;
db94604b 210 p = map->nodes[ret];
f7bf5461 211 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 212 assert(ret != map->nodes_nb_alloc);
db94604b
PB
213
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 216 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 217 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 218 }
f7bf5461 219 return ret;
d6f2ea22
AK
220}
221
53cb28cb 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 223 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 224 int level)
f7bf5461
AK
225{
226 PhysPageEntry *p;
03f49957 227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 228
9736e55b 229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 230 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 231 }
db94604b 232 p = map->nodes[lp->ptr];
03f49957 233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 234
03f49957 235 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 236 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 237 lp->skip = 0;
c19e8800 238 lp->ptr = leaf;
07f07b31
AK
239 *index += step;
240 *nb -= step;
2999097b 241 } else {
53cb28cb 242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
243 }
244 ++lp;
f7bf5461
AK
245 }
246}
247
ac1970fb 248static void phys_page_set(AddressSpaceDispatch *d,
56b15076 249 hwaddr index, uint64_t nb,
2999097b 250 uint16_t leaf)
f7bf5461 251{
2999097b 252 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 254
53cb28cb 255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
256}
257
b35ba30f
MT
258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
260 */
efee678d 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
262{
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
267
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
270 }
271
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
276 }
277
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
efee678d 281 phys_page_compact(&p[i], nodes);
b35ba30f
MT
282 }
283 }
284
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
288 }
289
290 assert(valid_ptr < P_L2_SIZE);
291
292 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
295 return;
296 }
297
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
305 */
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
309 }
310}
311
8629d3fc 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 313{
b35ba30f 314 if (d->phys_map.skip) {
efee678d 315 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
316 }
317}
318
29cb533d
FZ
319static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
321{
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
324 */
258dfaaa 325 return int128_gethi(section->size) ||
29cb533d 326 range_covers_byte(section->offset_within_address_space,
258dfaaa 327 int128_getlo(section->size), addr);
29cb533d
FZ
328}
329
003a0cf2 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 331{
003a0cf2
PX
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
97115a8d 335 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 336 int i;
f1f6e3b8 337
9736e55b 338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 340 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 341 }
9affd6fc 342 p = nodes[lp.ptr];
03f49957 343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 344 }
b35ba30f 345
29cb533d 346 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
350 }
f3705d53
AK
351}
352
79e2b9ae 353/* Called from RCU critical section */
c7086b4a 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
355 hwaddr addr,
356 bool resolve_subpage)
9f029603 357{
729633c2 358 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
359 subpage_t *subpage;
360
07c114bb
PB
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
003a0cf2 363 section = phys_page_find(d, addr);
07c114bb 364 atomic_set(&d->mru_section, section);
729633c2 365 }
90260c6c
JK
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
369 }
370 return section;
9f029603
JK
371}
372
79e2b9ae 373/* Called from RCU critical section */
90260c6c 374static MemoryRegionSection *
c7086b4a 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 376 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
377{
378 MemoryRegionSection *section;
965eb2fc 379 MemoryRegion *mr;
a87f3954 380 Int128 diff;
149f54b5 381
c7086b4a 382 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
385
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
388
965eb2fc 389 mr = section->mr;
b242e0e0
PB
390
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
397 *
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
401 */
965eb2fc 402 if (memory_region_is_ram(mr)) {
e4a511f8 403 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
405 }
149f54b5
PB
406 return section;
407}
90260c6c 408
a411c84b
PB
409/**
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
412 *
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
2f7b009c 426 * @attrs: transaction attributes
a411c84b
PB
427 *
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
430 */
431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
2f7b009c
PM
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
a411c84b
PB
439{
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
442
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
448
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
451 }
452
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
455
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
458 }
459
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
465
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
469
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
472
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
475 }
476 return *section;
477
478unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
480}
481
d5e5fafd
PX
482/**
483 * flatview_do_translate - translate an address in FlatView
484 *
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 497 * @target_as: the address space targeted by the IOMMU
49e14aa8 498 * @attrs: memory transaction attributes
d5e5fafd
PX
499 *
500 * This function is called from RCU critical section
501 */
16620684
AK
502static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
d5e5fafd
PX
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
16620684
AK
507 bool is_write,
508 bool is_mmio,
49e14aa8
PM
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
052c8fa9 511{
052c8fa9 512 MemoryRegionSection *section;
3df9d748 513 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
514 hwaddr plen = (hwaddr)(-1);
515
ad2804d9
PB
516 if (!plen_out) {
517 plen_out = &plen;
d5e5fafd 518 }
052c8fa9 519
a411c84b
PB
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
052c8fa9 523
a411c84b
PB
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
2f7b009c 529 target_as, attrs);
052c8fa9 530 }
d5e5fafd 531 if (page_mask_out) {
a411c84b
PB
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
534 }
535
a764040c 536 return *section;
052c8fa9
JW
537}
538
539/* Called from RCU critical section */
a764040c 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 541 bool is_write, MemTxAttrs attrs)
90260c6c 542{
a764040c 543 MemoryRegionSection section;
076a93d7 544 hwaddr xlat, page_mask;
30951157 545
076a93d7
PX
546 /*
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
549 */
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
30951157 553
a764040c
PX
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
557 }
30951157 558
a764040c
PX
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
562
a764040c 563 return (IOMMUTLBEntry) {
e76bb18f 564 .target_as = as,
076a93d7
PX
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
a764040c
PX
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
570 };
571
572iotlb_fail:
573 return (IOMMUTLBEntry) {0};
574}
575
576/* Called from RCU critical section */
16620684 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
a764040c
PX
580{
581 MemoryRegion *mr;
582 MemoryRegionSection section;
16620684 583 AddressSpace *as = NULL;
a764040c
PX
584
585 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 587 is_write, true, &as, attrs);
a764040c
PX
588 mr = section.mr;
589
fe680d0d 590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 592 *plen = MIN(page, *plen);
a87f3954
PB
593 }
594
30951157 595 return mr;
90260c6c
JK
596}
597
1f871c5e
PM
598typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604} TCGIOMMUNotifier;
605
606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607{
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609
610 if (!notifier->active) {
611 return;
612 }
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
619 */
620}
621
622static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
625{
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
629 */
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
549d4005
EA
632 Error *err = NULL;
633 int i, ret;
1f871c5e
PM
634
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
639 }
640 }
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
646
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
655 */
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
659 0,
660 HWADDR_MAX,
661 iommu_idx);
549d4005
EA
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
667 }
1f871c5e
PM
668 }
669
670 if (!notifier->active) {
671 notifier->active = true;
672 }
673}
674
675static void tcg_iommu_free_notifier_list(CPUState *cpu)
676{
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
680
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 684 g_free(notifier);
1f871c5e
PM
685 }
686 g_array_free(cpu->iommu_notifiers, true);
687}
688
79e2b9ae 689/* Called from RCU critical section */
90260c6c 690MemoryRegionSection *
d7898cda 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
90260c6c 694{
30951157 695 MemoryRegionSection *section;
1f871c5e
PM
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
f35e44e7 700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 701
1f871c5e
PM
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
704
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
708 }
709
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
716 */
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
723 */
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 }
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
729 }
730
731 if (!*prot) {
732 goto translate_fail;
733 }
734
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
736 }
30951157 737
3df9d748 738 assert(!memory_region_is_iommu(section->mr));
1f871c5e 739 *xlat = addr;
30951157 740 return section;
1f871c5e
PM
741
742translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 744}
5b6dd868 745#endif
fd6ce8f6 746
b170fce3 747#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
748
749static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 750{
259186a7 751 CPUState *cpu = opaque;
a513fe19 752
5b6dd868
BS
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
259186a7 755 cpu->interrupt_request &= ~0x01;
d10eb08f 756 tlb_flush(cpu);
5b6dd868 757
15a356c4
PD
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
762 */
763 tb_flush(cpu);
764
5b6dd868 765 return 0;
a513fe19 766}
7501267e 767
6c3bff0e
PD
768static int cpu_common_pre_load(void *opaque)
769{
770 CPUState *cpu = opaque;
771
adee6424 772 cpu->exception_index = -1;
6c3bff0e
PD
773
774 return 0;
775}
776
777static bool cpu_common_exception_index_needed(void *opaque)
778{
779 CPUState *cpu = opaque;
780
adee6424 781 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
782}
783
784static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
5cd8cada 788 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
792 }
793};
794
bac05aa9
AS
795static bool cpu_common_crash_occurred_needed(void *opaque)
796{
797 CPUState *cpu = opaque;
798
799 return cpu->crash_occurred;
800}
801
802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
810 }
811};
812
1a1562f5 813const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
6c3bff0e 817 .pre_load = cpu_common_pre_load,
5b6dd868 818 .post_load = cpu_common_post_load,
35d08458 819 .fields = (VMStateField[]) {
259186a7
AF
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 822 VMSTATE_END_OF_LIST()
6c3bff0e 823 },
5cd8cada
JQ
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
bac05aa9 826 &vmstate_cpu_common_crash_occurred,
5cd8cada 827 NULL
5b6dd868
BS
828 }
829};
1a1562f5 830
5b6dd868 831#endif
ea041c0e 832
38d8f5c8 833CPUState *qemu_get_cpu(int index)
ea041c0e 834{
bdc44640 835 CPUState *cpu;
ea041c0e 836
bdc44640 837 CPU_FOREACH(cpu) {
55e5c285 838 if (cpu->cpu_index == index) {
bdc44640 839 return cpu;
55e5c285 840 }
ea041c0e 841 }
5b6dd868 842
bdc44640 843 return NULL;
ea041c0e
FB
844}
845
09daed84 846#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
847void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
09daed84 849{
12ebc9a7 850 CPUAddressSpace *newas;
80ceb07a 851 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 852 char *as_name;
80ceb07a
PX
853
854 assert(mr);
87a621d8
PX
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
12ebc9a7
PM
858
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
861
56943e8c
PM
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
865 }
866
12ebc9a7
PM
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
09daed84 869
12ebc9a7
PM
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 872 }
32857f4d 873
12ebc9a7
PM
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
56943e8c 877 if (tcg_enabled()) {
9458a9a1 878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 881 }
09daed84 882}
651a5bc0
PM
883
884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885{
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
888}
09daed84
EI
889#endif
890
7bbc124e 891void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 892{
9dfeca7c
BR
893 CPUClass *cc = CPU_GET_CLASS(cpu);
894
267f685b 895 cpu_list_remove(cpu);
9dfeca7c
BR
896
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
899 }
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 }
1f871c5e
PM
903#ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905#endif
1c59eb39
BR
906}
907
c7e002c5
FZ
908Property cpu_common_props[] = {
909#ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
2e5b09fd 911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
915 */
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918#endif
919 DEFINE_PROP_END_OF_LIST(),
920};
921
39e329e3 922void cpu_exec_initfn(CPUState *cpu)
ea041c0e 923{
56943e8c 924 cpu->as = NULL;
12ebc9a7 925 cpu->num_ases = 0;
56943e8c 926
291135b5 927#ifndef CONFIG_USER_ONLY
291135b5 928 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
291135b5 931#endif
39e329e3
LV
932}
933
ce5b1bbf 934void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 935{
55c3ceef 936 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 937 static bool tcg_target_initialized;
291135b5 938
267f685b 939 cpu_list_add(cpu);
1bc7e522 940
2dda6354
EC
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
55c3ceef
RH
943 cc->tcg_initialize();
944 }
5005e253 945 tlb_init(cpu);
55c3ceef 946
30865f31
EC
947 qemu_plugin_vcpu_init_hook(cpu);
948
3e07593a
PMD
949#ifdef CONFIG_USER_ONLY
950 assert(cc->vmsd == NULL);
951#else /* !CONFIG_USER_ONLY */
e0d47944 952 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 953 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 954 }
b170fce3 955 if (cc->vmsd != NULL) {
741da0d3 956 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 957 }
1f871c5e 958
5601be3b 959 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 960#endif
ea041c0e
FB
961}
962
c1c8cfe5 963const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
964{
965 ObjectClass *oc;
966 CPUClass *cc;
967 gchar **model_pieces;
968 const char *cpu_type;
969
c1c8cfe5 970 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
971 if (!model_pieces[0]) {
972 error_report("-cpu option cannot be empty");
973 exit(1);
974 }
2278b939
IM
975
976 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
977 if (oc == NULL) {
978 error_report("unable to find CPU model '%s'", model_pieces[0]);
979 g_strfreev(model_pieces);
980 exit(EXIT_FAILURE);
981 }
982
983 cpu_type = object_class_get_name(oc);
984 cc = CPU_CLASS(oc);
985 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
986 g_strfreev(model_pieces);
987 return cpu_type;
988}
989
c40d4792 990#if defined(CONFIG_USER_ONLY)
8bca9a03 991void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 992{
406bc339 993 mmap_lock();
ce9f5e27 994 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
995 mmap_unlock();
996}
8bca9a03
PB
997
998static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
999{
1000 tb_invalidate_phys_addr(pc);
1001}
406bc339 1002#else
8bca9a03
PB
1003void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1004{
1005 ram_addr_t ram_addr;
1006 MemoryRegion *mr;
1007 hwaddr l = 1;
1008
c40d4792
PB
1009 if (!tcg_enabled()) {
1010 return;
1011 }
1012
694ea274 1013 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1014 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1015 if (!(memory_region_is_ram(mr)
1016 || memory_region_is_romd(mr))) {
8bca9a03
PB
1017 return;
1018 }
1019 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1020 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1021}
1022
406bc339
PK
1023static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024{
b55f54bc
MF
1025 /*
1026 * There may not be a virtual to physical translation for the pc
1027 * right now, but there may exist cached TB for this pc.
1028 * Flush the whole TB cache to force re-translation of such TBs.
1029 * This is heavyweight, but we're debugging anyway.
1030 */
1031 tb_flush(cpu);
1e7855a5 1032}
406bc339 1033#endif
d720b93d 1034
74841f04 1035#ifndef CONFIG_USER_ONLY
6658ffb8 1036/* Add a watchpoint. */
75a34036 1037int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1038 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1039{
c0ce998e 1040 CPUWatchpoint *wp;
2e886a24 1041 vaddr in_page;
6658ffb8 1042
05068c0d 1043 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1044 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1045 error_report("tried to set invalid watchpoint at %"
1046 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1047 return -EINVAL;
1048 }
7267c094 1049 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1050
1051 wp->vaddr = addr;
05068c0d 1052 wp->len = len;
a1d1bb31
AL
1053 wp->flags = flags;
1054
2dc9f411 1055 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1056 if (flags & BP_GDB) {
1057 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1058 } else {
1059 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1060 }
6658ffb8 1061
2e886a24
AB
1062 in_page = -(addr | TARGET_PAGE_MASK);
1063 if (len <= in_page) {
1064 tlb_flush_page(cpu, addr);
1065 } else {
1066 tlb_flush(cpu);
1067 }
a1d1bb31
AL
1068
1069 if (watchpoint)
1070 *watchpoint = wp;
1071 return 0;
6658ffb8
PB
1072}
1073
a1d1bb31 1074/* Remove a specific watchpoint. */
75a34036 1075int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1076 int flags)
6658ffb8 1077{
a1d1bb31 1078 CPUWatchpoint *wp;
6658ffb8 1079
ff4700b0 1080 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1081 if (addr == wp->vaddr && len == wp->len
6e140f28 1082 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1083 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1084 return 0;
1085 }
1086 }
a1d1bb31 1087 return -ENOENT;
6658ffb8
PB
1088}
1089
a1d1bb31 1090/* Remove a specific watchpoint by reference. */
75a34036 1091void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1092{
ff4700b0 1093 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1094
31b030d4 1095 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1096
7267c094 1097 g_free(watchpoint);
a1d1bb31
AL
1098}
1099
1100/* Remove all matching watchpoints. */
75a34036 1101void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1102{
c0ce998e 1103 CPUWatchpoint *wp, *next;
a1d1bb31 1104
ff4700b0 1105 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1106 if (wp->flags & mask) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1108 }
c0ce998e 1109 }
7d03f82f 1110}
05068c0d
PM
1111
1112/* Return true if this watchpoint address matches the specified
1113 * access (ie the address range covered by the watchpoint overlaps
1114 * partially or completely with the address range covered by the
1115 * access).
1116 */
56ad8b00
RH
1117static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1118 vaddr addr, vaddr len)
05068c0d
PM
1119{
1120 /* We know the lengths are non-zero, but a little caution is
1121 * required to avoid errors in the case where the range ends
1122 * exactly at the top of the address space and so addr + len
1123 * wraps round to zero.
1124 */
1125 vaddr wpend = wp->vaddr + wp->len - 1;
1126 vaddr addrend = addr + len - 1;
1127
1128 return !(addr > wpend || wp->vaddr > addrend);
1129}
1130
56ad8b00
RH
1131/* Return flags for watchpoints that match addr + prot. */
1132int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1133{
1134 CPUWatchpoint *wp;
1135 int ret = 0;
1136
1137 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 1138 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
1139 ret |= wp->flags;
1140 }
1141 }
1142 return ret;
1143}
74841f04 1144#endif /* !CONFIG_USER_ONLY */
7d03f82f 1145
a1d1bb31 1146/* Add a breakpoint. */
b3310ab3 1147int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1148 CPUBreakpoint **breakpoint)
4c3a88a2 1149{
c0ce998e 1150 CPUBreakpoint *bp;
3b46e624 1151
7267c094 1152 bp = g_malloc(sizeof(*bp));
4c3a88a2 1153
a1d1bb31
AL
1154 bp->pc = pc;
1155 bp->flags = flags;
1156
2dc9f411 1157 /* keep all GDB-injected breakpoints in front */
00b941e5 1158 if (flags & BP_GDB) {
f0c3c505 1159 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1160 } else {
f0c3c505 1161 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1162 }
3b46e624 1163
f0c3c505 1164 breakpoint_invalidate(cpu, pc);
a1d1bb31 1165
00b941e5 1166 if (breakpoint) {
a1d1bb31 1167 *breakpoint = bp;
00b941e5 1168 }
4c3a88a2 1169 return 0;
4c3a88a2
FB
1170}
1171
a1d1bb31 1172/* Remove a specific breakpoint. */
b3310ab3 1173int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1174{
a1d1bb31
AL
1175 CPUBreakpoint *bp;
1176
f0c3c505 1177 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1178 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1179 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1180 return 0;
1181 }
7d03f82f 1182 }
a1d1bb31 1183 return -ENOENT;
7d03f82f
EI
1184}
1185
a1d1bb31 1186/* Remove a specific breakpoint by reference. */
b3310ab3 1187void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1188{
f0c3c505
AF
1189 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1190
1191 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1192
7267c094 1193 g_free(breakpoint);
a1d1bb31
AL
1194}
1195
1196/* Remove all matching breakpoints. */
b3310ab3 1197void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1198{
c0ce998e 1199 CPUBreakpoint *bp, *next;
a1d1bb31 1200
f0c3c505 1201 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1202 if (bp->flags & mask) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1204 }
c0ce998e 1205 }
4c3a88a2
FB
1206}
1207
c33a346e
FB
1208/* enable or disable single step mode. EXCP_DEBUG is returned by the
1209 CPU loop after each instruction */
3825b28f 1210void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1211{
ed2803da
AF
1212 if (cpu->singlestep_enabled != enabled) {
1213 cpu->singlestep_enabled = enabled;
1214 if (kvm_enabled()) {
38e478ec 1215 kvm_update_guest_debug(cpu, 0);
ed2803da 1216 } else {
ccbb4d44 1217 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1218 /* XXX: only flush what is necessary */
bbd77c18 1219 tb_flush(cpu);
e22a25c9 1220 }
c33a346e 1221 }
c33a346e
FB
1222}
1223
a47dddd7 1224void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1225{
1226 va_list ap;
493ae1f0 1227 va_list ap2;
7501267e
FB
1228
1229 va_start(ap, fmt);
493ae1f0 1230 va_copy(ap2, ap);
7501267e
FB
1231 fprintf(stderr, "qemu: fatal: ");
1232 vfprintf(stderr, fmt, ap);
1233 fprintf(stderr, "\n");
90c84c56 1234 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1235 if (qemu_log_separate()) {
fc59d2d8 1236 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1237 qemu_log("qemu: fatal: ");
1238 qemu_log_vprintf(fmt, ap2);
1239 qemu_log("\n");
a0762859 1240 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1241 qemu_log_flush();
fc59d2d8 1242 qemu_log_unlock(logfile);
93fcfe39 1243 qemu_log_close();
924edcae 1244 }
493ae1f0 1245 va_end(ap2);
f9373291 1246 va_end(ap);
7615936e 1247 replay_finish();
fd052bf6
RV
1248#if defined(CONFIG_USER_ONLY)
1249 {
1250 struct sigaction act;
1251 sigfillset(&act.sa_mask);
1252 act.sa_handler = SIG_DFL;
8347c185 1253 act.sa_flags = 0;
fd052bf6
RV
1254 sigaction(SIGABRT, &act, NULL);
1255 }
1256#endif
7501267e
FB
1257 abort();
1258}
1259
0124311e 1260#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1261/* Called from RCU critical section */
041603fe
PB
1262static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1263{
1264 RAMBlock *block;
1265
43771539 1266 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1267 if (block && addr - block->offset < block->max_length) {
68851b98 1268 return block;
041603fe 1269 }
99e15582 1270 RAMBLOCK_FOREACH(block) {
9b8424d5 1271 if (addr - block->offset < block->max_length) {
041603fe
PB
1272 goto found;
1273 }
1274 }
1275
1276 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1277 abort();
1278
1279found:
43771539
PB
1280 /* It is safe to write mru_block outside the iothread lock. This
1281 * is what happens:
1282 *
1283 * mru_block = xxx
1284 * rcu_read_unlock()
1285 * xxx removed from list
1286 * rcu_read_lock()
1287 * read mru_block
1288 * mru_block = NULL;
1289 * call_rcu(reclaim_ramblock, xxx);
1290 * rcu_read_unlock()
1291 *
1292 * atomic_rcu_set is not needed here. The block was already published
1293 * when it was placed into the list. Here we're just making an extra
1294 * copy of the pointer.
1295 */
041603fe
PB
1296 ram_list.mru_block = block;
1297 return block;
1298}
1299
a2f4d5be 1300static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1301{
9a13565d 1302 CPUState *cpu;
041603fe 1303 ram_addr_t start1;
a2f4d5be
JQ
1304 RAMBlock *block;
1305 ram_addr_t end;
1306
f28d0dfd 1307 assert(tcg_enabled());
a2f4d5be
JQ
1308 end = TARGET_PAGE_ALIGN(start + length);
1309 start &= TARGET_PAGE_MASK;
d24981d3 1310
694ea274 1311 RCU_READ_LOCK_GUARD();
041603fe
PB
1312 block = qemu_get_ram_block(start);
1313 assert(block == qemu_get_ram_block(end - 1));
1240be24 1314 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1315 CPU_FOREACH(cpu) {
1316 tlb_reset_dirty(cpu, start1, length);
1317 }
d24981d3
JQ
1318}
1319
5579c7f3 1320/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1321bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1322 ram_addr_t length,
1323 unsigned client)
1ccde1cb 1324{
5b82b703 1325 DirtyMemoryBlocks *blocks;
25aa6b37 1326 unsigned long end, page, start_page;
5b82b703 1327 bool dirty = false;
077874e0
PX
1328 RAMBlock *ramblock;
1329 uint64_t mr_offset, mr_size;
03eebc9e
SH
1330
1331 if (length == 0) {
1332 return false;
1333 }
f23db169 1334
03eebc9e 1335 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1336 start_page = start >> TARGET_PAGE_BITS;
1337 page = start_page;
5b82b703 1338
694ea274
DDAG
1339 WITH_RCU_READ_LOCK_GUARD() {
1340 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1341 ramblock = qemu_get_ram_block(start);
1342 /* Range sanity check on the ramblock */
1343 assert(start >= ramblock->offset &&
1344 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1345
694ea274
DDAG
1346 while (page < end) {
1347 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1348 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1349 unsigned long num = MIN(end - page,
1350 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1351
694ea274
DDAG
1352 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1353 offset, num);
1354 page += num;
1355 }
5b82b703 1356
25aa6b37
MB
1357 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1358 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1359 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1360 }
1361
03eebc9e 1362 if (dirty && tcg_enabled()) {
a2f4d5be 1363 tlb_reset_dirty_range_all(start, length);
5579c7f3 1364 }
03eebc9e
SH
1365
1366 return dirty;
1ccde1cb
FB
1367}
1368
8deaf12c 1369DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1370 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1371{
1372 DirtyMemoryBlocks *blocks;
5dea4079 1373 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1374 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1375 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1376 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1377 DirtyBitmapSnapshot *snap;
1378 unsigned long page, end, dest;
1379
1380 snap = g_malloc0(sizeof(*snap) +
1381 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1382 snap->start = first;
1383 snap->end = last;
1384
1385 page = first >> TARGET_PAGE_BITS;
1386 end = last >> TARGET_PAGE_BITS;
1387 dest = 0;
1388
694ea274
DDAG
1389 WITH_RCU_READ_LOCK_GUARD() {
1390 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1391
694ea274
DDAG
1392 while (page < end) {
1393 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1394 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1395 unsigned long num = MIN(end - page,
1396 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1397
694ea274
DDAG
1398 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1399 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1400 offset >>= BITS_PER_LEVEL;
8deaf12c 1401
694ea274
DDAG
1402 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1403 blocks->blocks[idx] + offset,
1404 num);
1405 page += num;
1406 dest += num >> BITS_PER_LEVEL;
1407 }
8deaf12c
GH
1408 }
1409
8deaf12c
GH
1410 if (tcg_enabled()) {
1411 tlb_reset_dirty_range_all(start, length);
1412 }
1413
077874e0
PX
1414 memory_region_clear_dirty_bitmap(mr, offset, length);
1415
8deaf12c
GH
1416 return snap;
1417}
1418
1419bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1420 ram_addr_t start,
1421 ram_addr_t length)
1422{
1423 unsigned long page, end;
1424
1425 assert(start >= snap->start);
1426 assert(start + length <= snap->end);
1427
1428 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1429 page = (start - snap->start) >> TARGET_PAGE_BITS;
1430
1431 while (page < end) {
1432 if (test_bit(page, snap->dirty)) {
1433 return true;
1434 }
1435 page++;
1436 }
1437 return false;
1438}
1439
79e2b9ae 1440/* Called from RCU critical section */
bb0e627a 1441hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1442 MemoryRegionSection *section)
e5548617 1443{
8f5db641
RH
1444 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1445 return section - d->map.sections;
e5548617 1446}
9fa3e853
FB
1447#endif /* defined(CONFIG_USER_ONLY) */
1448
e2eef170 1449#if !defined(CONFIG_USER_ONLY)
8da3ff18 1450
b797ab1a
WY
1451static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1452 uint16_t section);
16620684 1453static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1454
06329cce 1455static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1456 qemu_anon_ram_alloc;
91138037
MA
1457
1458/*
1459 * Set a custom physical guest memory alloator.
1460 * Accelerators with unusual needs may need this. Hopefully, we can
1461 * get rid of it eventually.
1462 */
06329cce 1463void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1464{
1465 phys_mem_alloc = alloc;
1466}
1467
53cb28cb
MA
1468static uint16_t phys_section_add(PhysPageMap *map,
1469 MemoryRegionSection *section)
5312bd8b 1470{
68f3f65b
PB
1471 /* The physical section number is ORed with a page-aligned
1472 * pointer to produce the iotlb entries. Thus it should
1473 * never overflow into the page-aligned value.
1474 */
53cb28cb 1475 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1476
53cb28cb
MA
1477 if (map->sections_nb == map->sections_nb_alloc) {
1478 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1479 map->sections = g_renew(MemoryRegionSection, map->sections,
1480 map->sections_nb_alloc);
5312bd8b 1481 }
53cb28cb 1482 map->sections[map->sections_nb] = *section;
dfde4e6e 1483 memory_region_ref(section->mr);
53cb28cb 1484 return map->sections_nb++;
5312bd8b
AK
1485}
1486
058bc4b5
PB
1487static void phys_section_destroy(MemoryRegion *mr)
1488{
55b4e80b
DS
1489 bool have_sub_page = mr->subpage;
1490
dfde4e6e
PB
1491 memory_region_unref(mr);
1492
55b4e80b 1493 if (have_sub_page) {
058bc4b5 1494 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1495 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1496 g_free(subpage);
1497 }
1498}
1499
6092666e 1500static void phys_sections_free(PhysPageMap *map)
5312bd8b 1501{
9affd6fc
PB
1502 while (map->sections_nb > 0) {
1503 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1504 phys_section_destroy(section->mr);
1505 }
9affd6fc
PB
1506 g_free(map->sections);
1507 g_free(map->nodes);
5312bd8b
AK
1508}
1509
9950322a 1510static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1511{
9950322a 1512 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1513 subpage_t *subpage;
a8170e5e 1514 hwaddr base = section->offset_within_address_space
0f0cb164 1515 & TARGET_PAGE_MASK;
003a0cf2 1516 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1517 MemoryRegionSection subsection = {
1518 .offset_within_address_space = base,
052e87b0 1519 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1520 };
a8170e5e 1521 hwaddr start, end;
0f0cb164 1522
f3705d53 1523 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1524
f3705d53 1525 if (!(existing->mr->subpage)) {
16620684
AK
1526 subpage = subpage_init(fv, base);
1527 subsection.fv = fv;
0f0cb164 1528 subsection.mr = &subpage->iomem;
ac1970fb 1529 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1530 phys_section_add(&d->map, &subsection));
0f0cb164 1531 } else {
f3705d53 1532 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1533 }
1534 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1535 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1536 subpage_register(subpage, start, end,
1537 phys_section_add(&d->map, section));
0f0cb164
AK
1538}
1539
1540
9950322a 1541static void register_multipage(FlatView *fv,
052e87b0 1542 MemoryRegionSection *section)
33417e70 1543{
9950322a 1544 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1545 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1546 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1547 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1548 TARGET_PAGE_BITS));
dd81124b 1549
733d5ef5
PB
1550 assert(num_pages);
1551 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1552}
1553
494d1997
WY
1554/*
1555 * The range in *section* may look like this:
1556 *
1557 * |s|PPPPPPP|s|
1558 *
1559 * where s stands for subpage and P for page.
1560 */
8629d3fc 1561void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1562{
494d1997 1563 MemoryRegionSection remain = *section;
052e87b0 1564 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1565
494d1997
WY
1566 /* register first subpage */
1567 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1568 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1569 - remain.offset_within_address_space;
733d5ef5 1570
494d1997 1571 MemoryRegionSection now = remain;
052e87b0 1572 now.size = int128_min(int128_make64(left), now.size);
9950322a 1573 register_subpage(fv, &now);
494d1997
WY
1574 if (int128_eq(remain.size, now.size)) {
1575 return;
1576 }
052e87b0
PB
1577 remain.size = int128_sub(remain.size, now.size);
1578 remain.offset_within_address_space += int128_get64(now.size);
1579 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1580 }
1581
1582 /* register whole pages */
1583 if (int128_ge(remain.size, page_size)) {
1584 MemoryRegionSection now = remain;
1585 now.size = int128_and(now.size, int128_neg(page_size));
1586 register_multipage(fv, &now);
1587 if (int128_eq(remain.size, now.size)) {
1588 return;
69b67646 1589 }
494d1997
WY
1590 remain.size = int128_sub(remain.size, now.size);
1591 remain.offset_within_address_space += int128_get64(now.size);
1592 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1593 }
494d1997
WY
1594
1595 /* register last subpage */
1596 register_subpage(fv, &remain);
0f0cb164
AK
1597}
1598
62a2744c
SY
1599void qemu_flush_coalesced_mmio_buffer(void)
1600{
1601 if (kvm_enabled())
1602 kvm_flush_coalesced_mmio_buffer();
1603}
1604
b2a8658e
UD
1605void qemu_mutex_lock_ramlist(void)
1606{
1607 qemu_mutex_lock(&ram_list.mutex);
1608}
1609
1610void qemu_mutex_unlock_ramlist(void)
1611{
1612 qemu_mutex_unlock(&ram_list.mutex);
1613}
1614
be9b23c4
PX
1615void ram_block_dump(Monitor *mon)
1616{
1617 RAMBlock *block;
1618 char *psize;
1619
694ea274 1620 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1621 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1622 "Block Name", "PSize", "Offset", "Used", "Total");
1623 RAMBLOCK_FOREACH(block) {
1624 psize = size_to_str(block->page_size);
1625 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1626 " 0x%016" PRIx64 "\n", block->idstr, psize,
1627 (uint64_t)block->offset,
1628 (uint64_t)block->used_length,
1629 (uint64_t)block->max_length);
1630 g_free(psize);
1631 }
be9b23c4
PX
1632}
1633
9c607668
AK
1634#ifdef __linux__
1635/*
1636 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1637 * may or may not name the same files / on the same filesystem now as
1638 * when we actually open and map them. Iterate over the file
1639 * descriptors instead, and use qemu_fd_getpagesize().
1640 */
905b7ee4 1641static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1642{
9c607668
AK
1643 long *hpsize_min = opaque;
1644
1645 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1646 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1647 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1648
7d5489e6 1649 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1650 *hpsize_min = hpsize;
9c607668
AK
1651 }
1652 }
1653
1654 return 0;
1655}
1656
905b7ee4
DH
1657static int find_max_backend_pagesize(Object *obj, void *opaque)
1658{
1659 long *hpsize_max = opaque;
1660
1661 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1662 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1663 long hpsize = host_memory_backend_pagesize(backend);
1664
1665 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1666 *hpsize_max = hpsize;
1667 }
1668 }
1669
1670 return 0;
1671}
1672
1673/*
1674 * TODO: We assume right now that all mapped host memory backends are
1675 * used as RAM, however some might be used for different purposes.
1676 */
1677long qemu_minrampagesize(void)
9c607668
AK
1678{
1679 long hpsize = LONG_MAX;
ad1172d8 1680 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1681
ad1172d8 1682 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1683 return hpsize;
1684}
905b7ee4
DH
1685
1686long qemu_maxrampagesize(void)
1687{
ad1172d8 1688 long pagesize = 0;
905b7ee4
DH
1689 Object *memdev_root = object_resolve_path("/objects", NULL);
1690
ad1172d8 1691 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1692 return pagesize;
1693}
9c607668 1694#else
905b7ee4
DH
1695long qemu_minrampagesize(void)
1696{
038adc2f 1697 return qemu_real_host_page_size;
905b7ee4
DH
1698}
1699long qemu_maxrampagesize(void)
9c607668 1700{
038adc2f 1701 return qemu_real_host_page_size;
9c607668
AK
1702}
1703#endif
1704
d5dbde46 1705#ifdef CONFIG_POSIX
d6af99c9
HZ
1706static int64_t get_file_size(int fd)
1707{
72d41eb4
SH
1708 int64_t size;
1709#if defined(__linux__)
1710 struct stat st;
1711
1712 if (fstat(fd, &st) < 0) {
1713 return -errno;
1714 }
1715
1716 /* Special handling for devdax character devices */
1717 if (S_ISCHR(st.st_mode)) {
1718 g_autofree char *subsystem_path = NULL;
1719 g_autofree char *subsystem = NULL;
1720
1721 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1722 major(st.st_rdev), minor(st.st_rdev));
1723 subsystem = g_file_read_link(subsystem_path, NULL);
1724
1725 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1726 g_autofree char *size_path = NULL;
1727 g_autofree char *size_str = NULL;
1728
1729 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1730 major(st.st_rdev), minor(st.st_rdev));
1731
1732 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1733 return g_ascii_strtoll(size_str, NULL, 0);
1734 }
1735 }
1736 }
1737#endif /* defined(__linux__) */
1738
1739 /* st.st_size may be zero for special files yet lseek(2) works */
1740 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1741 if (size < 0) {
1742 return -errno;
1743 }
1744 return size;
1745}
1746
8d37b030
MAL
1747static int file_ram_open(const char *path,
1748 const char *region_name,
1749 bool *created,
1750 Error **errp)
c902760f
MT
1751{
1752 char *filename;
8ca761f6
PF
1753 char *sanitized_name;
1754 char *c;
5c3ece79 1755 int fd = -1;
c902760f 1756
8d37b030 1757 *created = false;
fd97fd44
MA
1758 for (;;) {
1759 fd = open(path, O_RDWR);
1760 if (fd >= 0) {
1761 /* @path names an existing file, use it */
1762 break;
8d31d6b6 1763 }
fd97fd44
MA
1764 if (errno == ENOENT) {
1765 /* @path names a file that doesn't exist, create it */
1766 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1767 if (fd >= 0) {
8d37b030 1768 *created = true;
fd97fd44
MA
1769 break;
1770 }
1771 } else if (errno == EISDIR) {
1772 /* @path names a directory, create a file there */
1773 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1774 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1775 for (c = sanitized_name; *c != '\0'; c++) {
1776 if (*c == '/') {
1777 *c = '_';
1778 }
1779 }
8ca761f6 1780
fd97fd44
MA
1781 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1782 sanitized_name);
1783 g_free(sanitized_name);
8d31d6b6 1784
fd97fd44
MA
1785 fd = mkstemp(filename);
1786 if (fd >= 0) {
1787 unlink(filename);
1788 g_free(filename);
1789 break;
1790 }
1791 g_free(filename);
8d31d6b6 1792 }
fd97fd44
MA
1793 if (errno != EEXIST && errno != EINTR) {
1794 error_setg_errno(errp, errno,
1795 "can't open backing store %s for guest RAM",
1796 path);
8d37b030 1797 return -1;
fd97fd44
MA
1798 }
1799 /*
1800 * Try again on EINTR and EEXIST. The latter happens when
1801 * something else creates the file between our two open().
1802 */
8d31d6b6 1803 }
c902760f 1804
8d37b030
MAL
1805 return fd;
1806}
1807
1808static void *file_ram_alloc(RAMBlock *block,
1809 ram_addr_t memory,
1810 int fd,
1811 bool truncate,
1812 Error **errp)
1813{
1814 void *area;
1815
863e9621 1816 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1817 if (block->mr->align % block->page_size) {
1818 error_setg(errp, "alignment 0x%" PRIx64
1819 " must be multiples of page size 0x%zx",
1820 block->mr->align, block->page_size);
1821 return NULL;
61362b71
DH
1822 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1823 error_setg(errp, "alignment 0x%" PRIx64
1824 " must be a power of two", block->mr->align);
1825 return NULL;
98376843
HZ
1826 }
1827 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1828#if defined(__s390x__)
1829 if (kvm_enabled()) {
1830 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1831 }
1832#endif
fd97fd44 1833
863e9621 1834 if (memory < block->page_size) {
fd97fd44 1835 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1836 "or larger than page size 0x%zx",
1837 memory, block->page_size);
8d37b030 1838 return NULL;
1775f111
HZ
1839 }
1840
863e9621 1841 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1842
1843 /*
1844 * ftruncate is not supported by hugetlbfs in older
1845 * hosts, so don't bother bailing out on errors.
1846 * If anything goes wrong with it under other filesystems,
1847 * mmap will fail.
d6af99c9
HZ
1848 *
1849 * Do not truncate the non-empty backend file to avoid corrupting
1850 * the existing data in the file. Disabling shrinking is not
1851 * enough. For example, the current vNVDIMM implementation stores
1852 * the guest NVDIMM labels at the end of the backend file. If the
1853 * backend file is later extended, QEMU will not be able to find
1854 * those labels. Therefore, extending the non-empty backend file
1855 * is disabled as well.
c902760f 1856 */
8d37b030 1857 if (truncate && ftruncate(fd, memory)) {
9742bf26 1858 perror("ftruncate");
7f56e740 1859 }
c902760f 1860
d2f39add 1861 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1862 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1863 if (area == MAP_FAILED) {
7f56e740 1864 error_setg_errno(errp, errno,
fd97fd44 1865 "unable to map backing store for guest RAM");
8d37b030 1866 return NULL;
c902760f 1867 }
ef36fa14 1868
04b16653 1869 block->fd = fd;
c902760f
MT
1870 return area;
1871}
1872#endif
1873
154cc9ea
DDAG
1874/* Allocate space within the ram_addr_t space that governs the
1875 * dirty bitmaps.
1876 * Called with the ramlist lock held.
1877 */
d17b5288 1878static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1879{
1880 RAMBlock *block, *next_block;
3e837b2c 1881 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1882
49cd9ac6
SH
1883 assert(size != 0); /* it would hand out same offset multiple times */
1884
0dc3f44a 1885 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1886 return 0;
0d53d9fe 1887 }
04b16653 1888
99e15582 1889 RAMBLOCK_FOREACH(block) {
154cc9ea 1890 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1891
801110ab
DDAG
1892 /* Align blocks to start on a 'long' in the bitmap
1893 * which makes the bitmap sync'ing take the fast path.
1894 */
154cc9ea 1895 candidate = block->offset + block->max_length;
801110ab 1896 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1897
154cc9ea
DDAG
1898 /* Search for the closest following block
1899 * and find the gap.
1900 */
99e15582 1901 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1902 if (next_block->offset >= candidate) {
04b16653
AW
1903 next = MIN(next, next_block->offset);
1904 }
1905 }
154cc9ea
DDAG
1906
1907 /* If it fits remember our place and remember the size
1908 * of gap, but keep going so that we might find a smaller
1909 * gap to fill so avoiding fragmentation.
1910 */
1911 if (next - candidate >= size && next - candidate < mingap) {
1912 offset = candidate;
1913 mingap = next - candidate;
04b16653 1914 }
154cc9ea
DDAG
1915
1916 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1917 }
3e837b2c
AW
1918
1919 if (offset == RAM_ADDR_MAX) {
1920 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1921 (uint64_t)size);
1922 abort();
1923 }
1924
154cc9ea
DDAG
1925 trace_find_ram_offset(size, offset);
1926
04b16653
AW
1927 return offset;
1928}
1929
c136180c 1930static unsigned long last_ram_page(void)
d17b5288
AW
1931{
1932 RAMBlock *block;
1933 ram_addr_t last = 0;
1934
694ea274 1935 RCU_READ_LOCK_GUARD();
99e15582 1936 RAMBLOCK_FOREACH(block) {
62be4e3a 1937 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1938 }
b8c48993 1939 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1940}
1941
ddb97f1d
JB
1942static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1943{
1944 int ret;
ddb97f1d
JB
1945
1946 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1947 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1948 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1949 if (ret) {
1950 perror("qemu_madvise");
1951 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1952 "but dump_guest_core=off specified\n");
1953 }
1954 }
1955}
1956
422148d3
DDAG
1957const char *qemu_ram_get_idstr(RAMBlock *rb)
1958{
1959 return rb->idstr;
1960}
1961
754cb9c0
YK
1962void *qemu_ram_get_host_addr(RAMBlock *rb)
1963{
1964 return rb->host;
1965}
1966
1967ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1968{
1969 return rb->offset;
1970}
1971
1972ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1973{
1974 return rb->used_length;
1975}
1976
463a4ac2
DDAG
1977bool qemu_ram_is_shared(RAMBlock *rb)
1978{
1979 return rb->flags & RAM_SHARED;
1980}
1981
2ce16640
DDAG
1982/* Note: Only set at the start of postcopy */
1983bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1984{
1985 return rb->flags & RAM_UF_ZEROPAGE;
1986}
1987
1988void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1989{
1990 rb->flags |= RAM_UF_ZEROPAGE;
1991}
1992
b895de50
CLG
1993bool qemu_ram_is_migratable(RAMBlock *rb)
1994{
1995 return rb->flags & RAM_MIGRATABLE;
1996}
1997
1998void qemu_ram_set_migratable(RAMBlock *rb)
1999{
2000 rb->flags |= RAM_MIGRATABLE;
2001}
2002
2003void qemu_ram_unset_migratable(RAMBlock *rb)
2004{
2005 rb->flags &= ~RAM_MIGRATABLE;
2006}
2007
ae3a7047 2008/* Called with iothread lock held. */
fa53a0e5 2009void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2010{
fa53a0e5 2011 RAMBlock *block;
20cfe881 2012
c5705a77
AK
2013 assert(new_block);
2014 assert(!new_block->idstr[0]);
84b89d78 2015
09e5ab63
AL
2016 if (dev) {
2017 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2018 if (id) {
2019 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2020 g_free(id);
84b89d78
CM
2021 }
2022 }
2023 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2024
694ea274 2025 RCU_READ_LOCK_GUARD();
99e15582 2026 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2027 if (block != new_block &&
2028 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2029 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2030 new_block->idstr);
2031 abort();
2032 }
2033 }
c5705a77
AK
2034}
2035
ae3a7047 2036/* Called with iothread lock held. */
fa53a0e5 2037void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2038{
ae3a7047
MD
2039 /* FIXME: arch_init.c assumes that this is not called throughout
2040 * migration. Ignore the problem since hot-unplug during migration
2041 * does not work anyway.
2042 */
20cfe881
HT
2043 if (block) {
2044 memset(block->idstr, 0, sizeof(block->idstr));
2045 }
2046}
2047
863e9621
DDAG
2048size_t qemu_ram_pagesize(RAMBlock *rb)
2049{
2050 return rb->page_size;
2051}
2052
67f11b5c
DDAG
2053/* Returns the largest size of page in use */
2054size_t qemu_ram_pagesize_largest(void)
2055{
2056 RAMBlock *block;
2057 size_t largest = 0;
2058
99e15582 2059 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2060 largest = MAX(largest, qemu_ram_pagesize(block));
2061 }
2062
2063 return largest;
2064}
2065
8490fc78
LC
2066static int memory_try_enable_merging(void *addr, size_t len)
2067{
75cc7f01 2068 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2069 /* disabled by the user */
2070 return 0;
2071 }
2072
2073 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2074}
2075
62be4e3a
MT
2076/* Only legal before guest might have detected the memory size: e.g. on
2077 * incoming migration, or right after reset.
2078 *
2079 * As memory core doesn't know how is memory accessed, it is up to
2080 * resize callback to update device state and/or add assertions to detect
2081 * misuse, if necessary.
2082 */
fa53a0e5 2083int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2084{
ce4adc0b
DH
2085 const ram_addr_t unaligned_size = newsize;
2086
62be4e3a
MT
2087 assert(block);
2088
4ed023ce 2089 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2090
62be4e3a 2091 if (block->used_length == newsize) {
ce4adc0b
DH
2092 /*
2093 * We don't have to resize the ram block (which only knows aligned
2094 * sizes), however, we have to notify if the unaligned size changed.
2095 */
2096 if (unaligned_size != memory_region_size(block->mr)) {
2097 memory_region_set_size(block->mr, unaligned_size);
2098 if (block->resized) {
2099 block->resized(block->idstr, unaligned_size, block->host);
2100 }
2101 }
62be4e3a
MT
2102 return 0;
2103 }
2104
2105 if (!(block->flags & RAM_RESIZEABLE)) {
2106 error_setg_errno(errp, EINVAL,
2107 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2108 " in != 0x" RAM_ADDR_FMT, block->idstr,
2109 newsize, block->used_length);
2110 return -EINVAL;
2111 }
2112
2113 if (block->max_length < newsize) {
2114 error_setg_errno(errp, EINVAL,
2115 "Length too large: %s: 0x" RAM_ADDR_FMT
2116 " > 0x" RAM_ADDR_FMT, block->idstr,
2117 newsize, block->max_length);
2118 return -EINVAL;
2119 }
2120
2121 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2122 block->used_length = newsize;
58d2707e
PB
2123 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2124 DIRTY_CLIENTS_ALL);
ce4adc0b 2125 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 2126 if (block->resized) {
ce4adc0b 2127 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
2128 }
2129 return 0;
2130}
2131
61c490e2
BM
2132/*
2133 * Trigger sync on the given ram block for range [start, start + length]
2134 * with the backing store if one is available.
2135 * Otherwise no-op.
2136 * @Note: this is supposed to be a synchronous op.
2137 */
ab7e41e6 2138void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 2139{
61c490e2
BM
2140 /* The requested range should fit in within the block range */
2141 g_assert((start + length) <= block->used_length);
2142
2143#ifdef CONFIG_LIBPMEM
2144 /* The lack of support for pmem should not block the sync */
2145 if (ramblock_is_pmem(block)) {
5d4c9549 2146 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2147 pmem_persist(addr, length);
2148 return;
2149 }
2150#endif
2151 if (block->fd >= 0) {
2152 /**
2153 * Case there is no support for PMEM or the memory has not been
2154 * specified as persistent (or is not one) - use the msync.
2155 * Less optimal but still achieves the same goal
2156 */
5d4c9549 2157 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2158 if (qemu_msync(addr, length, block->fd)) {
2159 warn_report("%s: failed to sync memory range: start: "
2160 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2161 __func__, start, length);
2162 }
2163 }
2164}
2165
5b82b703
SH
2166/* Called with ram_list.mutex held */
2167static void dirty_memory_extend(ram_addr_t old_ram_size,
2168 ram_addr_t new_ram_size)
2169{
2170 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2171 DIRTY_MEMORY_BLOCK_SIZE);
2172 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2173 DIRTY_MEMORY_BLOCK_SIZE);
2174 int i;
2175
2176 /* Only need to extend if block count increased */
2177 if (new_num_blocks <= old_num_blocks) {
2178 return;
2179 }
2180
2181 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2182 DirtyMemoryBlocks *old_blocks;
2183 DirtyMemoryBlocks *new_blocks;
2184 int j;
2185
2186 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2187 new_blocks = g_malloc(sizeof(*new_blocks) +
2188 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2189
2190 if (old_num_blocks) {
2191 memcpy(new_blocks->blocks, old_blocks->blocks,
2192 old_num_blocks * sizeof(old_blocks->blocks[0]));
2193 }
2194
2195 for (j = old_num_blocks; j < new_num_blocks; j++) {
2196 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2197 }
2198
2199 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2200
2201 if (old_blocks) {
2202 g_free_rcu(old_blocks, rcu);
2203 }
2204 }
2205}
2206
06329cce 2207static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2208{
e1c57ab8 2209 RAMBlock *block;
0d53d9fe 2210 RAMBlock *last_block = NULL;
2152f5ca 2211 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2212 Error *err = NULL;
2152f5ca 2213
b8c48993 2214 old_ram_size = last_ram_page();
c5705a77 2215
b2a8658e 2216 qemu_mutex_lock_ramlist();
9b8424d5 2217 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2218
2219 if (!new_block->host) {
2220 if (xen_enabled()) {
9b8424d5 2221 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2222 new_block->mr, &err);
2223 if (err) {
2224 error_propagate(errp, err);
2225 qemu_mutex_unlock_ramlist();
39c350ee 2226 return;
37aa7a0e 2227 }
e1c57ab8 2228 } else {
9b8424d5 2229 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2230 &new_block->mr->align, shared);
39228250 2231 if (!new_block->host) {
ef701d7b
HT
2232 error_setg_errno(errp, errno,
2233 "cannot set up guest memory '%s'",
2234 memory_region_name(new_block->mr));
2235 qemu_mutex_unlock_ramlist();
39c350ee 2236 return;
39228250 2237 }
9b8424d5 2238 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2239 }
c902760f 2240 }
94a6b54f 2241
dd631697
LZ
2242 new_ram_size = MAX(old_ram_size,
2243 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2244 if (new_ram_size > old_ram_size) {
5b82b703 2245 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2246 }
0d53d9fe
MD
2247 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2248 * QLIST (which has an RCU-friendly variant) does not have insertion at
2249 * tail, so save the last element in last_block.
2250 */
99e15582 2251 RAMBLOCK_FOREACH(block) {
0d53d9fe 2252 last_block = block;
9b8424d5 2253 if (block->max_length < new_block->max_length) {
abb26d63
PB
2254 break;
2255 }
2256 }
2257 if (block) {
0dc3f44a 2258 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2259 } else if (last_block) {
0dc3f44a 2260 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2261 } else { /* list is empty */
0dc3f44a 2262 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2263 }
0d6d3c87 2264 ram_list.mru_block = NULL;
94a6b54f 2265
0dc3f44a
MD
2266 /* Write list before version */
2267 smp_wmb();
f798b07f 2268 ram_list.version++;
b2a8658e 2269 qemu_mutex_unlock_ramlist();
f798b07f 2270
9b8424d5 2271 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2272 new_block->used_length,
2273 DIRTY_CLIENTS_ALL);
94a6b54f 2274
a904c911
PB
2275 if (new_block->host) {
2276 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2277 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2278 /*
2279 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2280 * Configure it unless the machine is a qtest server, in which case
2281 * KVM is not used and it may be forked (eg for fuzzing purposes).
2282 */
2283 if (!qtest_enabled()) {
2284 qemu_madvise(new_block->host, new_block->max_length,
2285 QEMU_MADV_DONTFORK);
2286 }
0987d735 2287 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2288 }
94a6b54f 2289}
e9a1ab19 2290
d5dbde46 2291#ifdef CONFIG_POSIX
38b3362d 2292RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2293 uint32_t ram_flags, int fd,
38b3362d 2294 Error **errp)
e1c57ab8
PB
2295{
2296 RAMBlock *new_block;
ef701d7b 2297 Error *local_err = NULL;
8d37b030 2298 int64_t file_size;
e1c57ab8 2299
a4de8552
JH
2300 /* Just support these ram flags by now. */
2301 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2302
e1c57ab8 2303 if (xen_enabled()) {
7f56e740 2304 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2305 return NULL;
e1c57ab8
PB
2306 }
2307
e45e7ae2
MAL
2308 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2309 error_setg(errp,
2310 "host lacks kvm mmu notifiers, -mem-path unsupported");
2311 return NULL;
2312 }
2313
e1c57ab8
PB
2314 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2315 /*
2316 * file_ram_alloc() needs to allocate just like
2317 * phys_mem_alloc, but we haven't bothered to provide
2318 * a hook there.
2319 */
7f56e740
PB
2320 error_setg(errp,
2321 "-mem-path not supported with this accelerator");
528f46af 2322 return NULL;
e1c57ab8
PB
2323 }
2324
4ed023ce 2325 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2326 file_size = get_file_size(fd);
2327 if (file_size > 0 && file_size < size) {
c001c3b3 2328 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2329 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2330 file_size, size);
8d37b030
MAL
2331 return NULL;
2332 }
2333
e1c57ab8
PB
2334 new_block = g_malloc0(sizeof(*new_block));
2335 new_block->mr = mr;
9b8424d5
MT
2336 new_block->used_length = size;
2337 new_block->max_length = size;
cbfc0171 2338 new_block->flags = ram_flags;
8d37b030 2339 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2340 if (!new_block->host) {
2341 g_free(new_block);
528f46af 2342 return NULL;
7f56e740
PB
2343 }
2344
cbfc0171 2345 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2346 if (local_err) {
2347 g_free(new_block);
2348 error_propagate(errp, local_err);
528f46af 2349 return NULL;
ef701d7b 2350 }
528f46af 2351 return new_block;
38b3362d
MAL
2352
2353}
2354
2355
2356RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2357 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2358 Error **errp)
2359{
2360 int fd;
2361 bool created;
2362 RAMBlock *block;
2363
2364 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2365 if (fd < 0) {
2366 return NULL;
2367 }
2368
cbfc0171 2369 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2370 if (!block) {
2371 if (created) {
2372 unlink(mem_path);
2373 }
2374 close(fd);
2375 return NULL;
2376 }
2377
2378 return block;
e1c57ab8 2379}
0b183fc8 2380#endif
e1c57ab8 2381
62be4e3a 2382static
528f46af
FZ
2383RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2384 void (*resized)(const char*,
2385 uint64_t length,
2386 void *host),
06329cce 2387 void *host, bool resizeable, bool share,
528f46af 2388 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2389{
2390 RAMBlock *new_block;
ef701d7b 2391 Error *local_err = NULL;
e1c57ab8 2392
4ed023ce
DDAG
2393 size = HOST_PAGE_ALIGN(size);
2394 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2395 new_block = g_malloc0(sizeof(*new_block));
2396 new_block->mr = mr;
62be4e3a 2397 new_block->resized = resized;
9b8424d5
MT
2398 new_block->used_length = size;
2399 new_block->max_length = max_size;
62be4e3a 2400 assert(max_size >= size);
e1c57ab8 2401 new_block->fd = -1;
038adc2f 2402 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2403 new_block->host = host;
2404 if (host) {
7bd4f430 2405 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2406 }
62be4e3a
MT
2407 if (resizeable) {
2408 new_block->flags |= RAM_RESIZEABLE;
2409 }
06329cce 2410 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2411 if (local_err) {
2412 g_free(new_block);
2413 error_propagate(errp, local_err);
528f46af 2414 return NULL;
ef701d7b 2415 }
528f46af 2416 return new_block;
e1c57ab8
PB
2417}
2418
528f46af 2419RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2420 MemoryRegion *mr, Error **errp)
2421{
06329cce
MA
2422 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2423 false, mr, errp);
62be4e3a
MT
2424}
2425
06329cce
MA
2426RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2427 MemoryRegion *mr, Error **errp)
6977dfe6 2428{
06329cce
MA
2429 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2430 share, mr, errp);
62be4e3a
MT
2431}
2432
528f46af 2433RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2434 void (*resized)(const char*,
2435 uint64_t length,
2436 void *host),
2437 MemoryRegion *mr, Error **errp)
2438{
06329cce
MA
2439 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2440 false, mr, errp);
6977dfe6
YT
2441}
2442
43771539
PB
2443static void reclaim_ramblock(RAMBlock *block)
2444{
2445 if (block->flags & RAM_PREALLOC) {
2446 ;
2447 } else if (xen_enabled()) {
2448 xen_invalidate_map_cache_entry(block->host);
2449#ifndef _WIN32
2450 } else if (block->fd >= 0) {
53adb9d4 2451 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2452 close(block->fd);
2453#endif
2454 } else {
2455 qemu_anon_ram_free(block->host, block->max_length);
2456 }
2457 g_free(block);
2458}
2459
f1060c55 2460void qemu_ram_free(RAMBlock *block)
e9a1ab19 2461{
85bc2a15
MAL
2462 if (!block) {
2463 return;
2464 }
2465
0987d735
PB
2466 if (block->host) {
2467 ram_block_notify_remove(block->host, block->max_length);
2468 }
2469
b2a8658e 2470 qemu_mutex_lock_ramlist();
f1060c55
FZ
2471 QLIST_REMOVE_RCU(block, next);
2472 ram_list.mru_block = NULL;
2473 /* Write list before version */
2474 smp_wmb();
2475 ram_list.version++;
2476 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2477 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2478}
2479
cd19cfa2
HY
2480#ifndef _WIN32
2481void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2482{
2483 RAMBlock *block;
2484 ram_addr_t offset;
2485 int flags;
2486 void *area, *vaddr;
2487
99e15582 2488 RAMBLOCK_FOREACH(block) {
cd19cfa2 2489 offset = addr - block->offset;
9b8424d5 2490 if (offset < block->max_length) {
1240be24 2491 vaddr = ramblock_ptr(block, offset);
7bd4f430 2492 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2493 ;
dfeaf2ab
MA
2494 } else if (xen_enabled()) {
2495 abort();
cd19cfa2
HY
2496 } else {
2497 flags = MAP_FIXED;
3435f395 2498 if (block->fd >= 0) {
dbcb8981
PB
2499 flags |= (block->flags & RAM_SHARED ?
2500 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2501 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2502 flags, block->fd, offset);
cd19cfa2 2503 } else {
2eb9fbaa
MA
2504 /*
2505 * Remap needs to match alloc. Accelerators that
2506 * set phys_mem_alloc never remap. If they did,
2507 * we'd need a remap hook here.
2508 */
2509 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2510
cd19cfa2
HY
2511 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2512 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2513 flags, -1, 0);
cd19cfa2
HY
2514 }
2515 if (area != vaddr) {
493d89bf
AF
2516 error_report("Could not remap addr: "
2517 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2518 length, addr);
cd19cfa2
HY
2519 exit(1);
2520 }
8490fc78 2521 memory_try_enable_merging(vaddr, length);
ddb97f1d 2522 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2523 }
cd19cfa2
HY
2524 }
2525 }
2526}
2527#endif /* !_WIN32 */
2528
1b5ec234 2529/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2530 * This should not be used for general purpose DMA. Use address_space_map
2531 * or address_space_rw instead. For local memory (e.g. video ram) that the
2532 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2533 *
49b24afc 2534 * Called within RCU critical section.
1b5ec234 2535 */
0878d0e1 2536void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2537{
3655cb9c
GA
2538 RAMBlock *block = ram_block;
2539
2540 if (block == NULL) {
2541 block = qemu_get_ram_block(addr);
0878d0e1 2542 addr -= block->offset;
3655cb9c 2543 }
ae3a7047
MD
2544
2545 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2546 /* We need to check if the requested address is in the RAM
2547 * because we don't want to map the entire memory in QEMU.
2548 * In that case just map until the end of the page.
2549 */
2550 if (block->offset == 0) {
1ff7c598 2551 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2552 }
ae3a7047 2553
1ff7c598 2554 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2555 }
0878d0e1 2556 return ramblock_ptr(block, addr);
dc828ca1
PB
2557}
2558
0878d0e1 2559/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2560 * but takes a size argument.
0dc3f44a 2561 *
e81bcda5 2562 * Called within RCU critical section.
ae3a7047 2563 */
3655cb9c 2564static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2565 hwaddr *size, bool lock)
38bee5dc 2566{
3655cb9c 2567 RAMBlock *block = ram_block;
8ab934f9
SS
2568 if (*size == 0) {
2569 return NULL;
2570 }
e81bcda5 2571
3655cb9c
GA
2572 if (block == NULL) {
2573 block = qemu_get_ram_block(addr);
0878d0e1 2574 addr -= block->offset;
3655cb9c 2575 }
0878d0e1 2576 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2577
2578 if (xen_enabled() && block->host == NULL) {
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map the requested area.
2582 */
2583 if (block->offset == 0) {
f5aa69bd 2584 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2585 }
2586
f5aa69bd 2587 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2588 }
e81bcda5 2589
0878d0e1 2590 return ramblock_ptr(block, addr);
38bee5dc
SS
2591}
2592
f90bb71b
DDAG
2593/* Return the offset of a hostpointer within a ramblock */
2594ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2595{
2596 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2597 assert((uintptr_t)host >= (uintptr_t)rb->host);
2598 assert(res < rb->max_length);
2599
2600 return res;
2601}
2602
422148d3
DDAG
2603/*
2604 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2605 * in that RAMBlock.
2606 *
2607 * ptr: Host pointer to look up
2608 * round_offset: If true round the result offset down to a page boundary
2609 * *ram_addr: set to result ram_addr
2610 * *offset: set to result offset within the RAMBlock
2611 *
2612 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2613 *
2614 * By the time this function returns, the returned pointer is not protected
2615 * by RCU anymore. If the caller is not within an RCU critical section and
2616 * does not hold the iothread lock, it must have other means of protecting the
2617 * pointer, such as a reference to the region that includes the incoming
2618 * ram_addr_t.
2619 */
422148d3 2620RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2621 ram_addr_t *offset)
5579c7f3 2622{
94a6b54f
PB
2623 RAMBlock *block;
2624 uint8_t *host = ptr;
2625
868bb33f 2626 if (xen_enabled()) {
f615f396 2627 ram_addr_t ram_addr;
694ea274 2628 RCU_READ_LOCK_GUARD();
f615f396
PB
2629 ram_addr = xen_ram_addr_from_mapcache(ptr);
2630 block = qemu_get_ram_block(ram_addr);
422148d3 2631 if (block) {
d6b6aec4 2632 *offset = ram_addr - block->offset;
422148d3 2633 }
422148d3 2634 return block;
712c2b41
SS
2635 }
2636
694ea274 2637 RCU_READ_LOCK_GUARD();
0dc3f44a 2638 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2639 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2640 goto found;
2641 }
2642
99e15582 2643 RAMBLOCK_FOREACH(block) {
432d268c
JN
2644 /* This case append when the block is not mapped. */
2645 if (block->host == NULL) {
2646 continue;
2647 }
9b8424d5 2648 if (host - block->host < block->max_length) {
23887b79 2649 goto found;
f471a17e 2650 }
94a6b54f 2651 }
432d268c 2652
1b5ec234 2653 return NULL;
23887b79
PB
2654
2655found:
422148d3
DDAG
2656 *offset = (host - block->host);
2657 if (round_offset) {
2658 *offset &= TARGET_PAGE_MASK;
2659 }
422148d3
DDAG
2660 return block;
2661}
2662
e3dd7493
DDAG
2663/*
2664 * Finds the named RAMBlock
2665 *
2666 * name: The name of RAMBlock to find
2667 *
2668 * Returns: RAMBlock (or NULL if not found)
2669 */
2670RAMBlock *qemu_ram_block_by_name(const char *name)
2671{
2672 RAMBlock *block;
2673
99e15582 2674 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2675 if (!strcmp(name, block->idstr)) {
2676 return block;
2677 }
2678 }
2679
2680 return NULL;
2681}
2682
422148d3
DDAG
2683/* Some of the softmmu routines need to translate from a host pointer
2684 (typically a TLB entry) back to a ram offset. */
07bdaa41 2685ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2686{
2687 RAMBlock *block;
f615f396 2688 ram_addr_t offset;
422148d3 2689
f615f396 2690 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2691 if (!block) {
07bdaa41 2692 return RAM_ADDR_INVALID;
422148d3
DDAG
2693 }
2694
07bdaa41 2695 return block->offset + offset;
e890261f 2696}
f471a17e 2697
0f459d16 2698/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2699void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2700 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2701{
568496c0 2702 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2703 CPUWatchpoint *wp;
0f459d16 2704
5aa1ef71 2705 assert(tcg_enabled());
ff4700b0 2706 if (cpu->watchpoint_hit) {
50b107c5
RH
2707 /*
2708 * We re-entered the check after replacing the TB.
2709 * Now raise the debug interrupt so that it will
2710 * trigger after the current instruction.
2711 */
2712 qemu_mutex_lock_iothread();
93afeade 2713 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2714 qemu_mutex_unlock_iothread();
06d55cc1
AL
2715 return;
2716 }
0026348b
DH
2717
2718 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2719 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2720 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2721 && (wp->flags & flags)) {
08225676
PM
2722 if (flags == BP_MEM_READ) {
2723 wp->flags |= BP_WATCHPOINT_HIT_READ;
2724 } else {
2725 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2726 }
0026348b 2727 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2728 wp->hitattrs = attrs;
ff4700b0 2729 if (!cpu->watchpoint_hit) {
568496c0
SF
2730 if (wp->flags & BP_CPU &&
2731 !cc->debug_check_watchpoint(cpu, wp)) {
2732 wp->flags &= ~BP_WATCHPOINT_HIT;
2733 continue;
2734 }
ff4700b0 2735 cpu->watchpoint_hit = wp;
a5e99826 2736
0ac20318 2737 mmap_lock();
ae57db63 2738 tb_check_watchpoint(cpu, ra);
6e140f28 2739 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2740 cpu->exception_index = EXCP_DEBUG;
0ac20318 2741 mmap_unlock();
0026348b 2742 cpu_loop_exit_restore(cpu, ra);
6e140f28 2743 } else {
9b990ee5
RH
2744 /* Force execution of one insn next time. */
2745 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2746 mmap_unlock();
0026348b
DH
2747 if (ra) {
2748 cpu_restore_state(cpu, ra, true);
2749 }
6886b980 2750 cpu_loop_exit_noexc(cpu);
6e140f28 2751 }
06d55cc1 2752 }
6e140f28
AL
2753 } else {
2754 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2755 }
2756 }
2757}
2758
b2a44fca 2759static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2760 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2761static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2762 const void *buf, hwaddr len);
0c249ff7 2763static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2764 bool is_write, MemTxAttrs attrs);
16620684 2765
f25a49e0
PM
2766static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2767 unsigned len, MemTxAttrs attrs)
db7b5426 2768{
acc9d80b 2769 subpage_t *subpage = opaque;
ff6cff75 2770 uint8_t buf[8];
5c9eb028 2771 MemTxResult res;
791af8c8 2772
db7b5426 2773#if defined(DEBUG_SUBPAGE)
016e9d62 2774 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2775 subpage, len, addr);
db7b5426 2776#endif
16620684 2777 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2778 if (res) {
2779 return res;
f25a49e0 2780 }
6d3ede54
PM
2781 *data = ldn_p(buf, len);
2782 return MEMTX_OK;
db7b5426
BS
2783}
2784
f25a49e0
PM
2785static MemTxResult subpage_write(void *opaque, hwaddr addr,
2786 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2787{
acc9d80b 2788 subpage_t *subpage = opaque;
ff6cff75 2789 uint8_t buf[8];
acc9d80b 2790
db7b5426 2791#if defined(DEBUG_SUBPAGE)
016e9d62 2792 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2793 " value %"PRIx64"\n",
2794 __func__, subpage, len, addr, value);
db7b5426 2795#endif
6d3ede54 2796 stn_p(buf, len, value);
16620684 2797 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2798}
2799
c353e4cc 2800static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2801 unsigned len, bool is_write,
2802 MemTxAttrs attrs)
c353e4cc 2803{
acc9d80b 2804 subpage_t *subpage = opaque;
c353e4cc 2805#if defined(DEBUG_SUBPAGE)
016e9d62 2806 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2807 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2808#endif
2809
16620684 2810 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2811 len, is_write, attrs);
c353e4cc
PB
2812}
2813
70c68e44 2814static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2815 .read_with_attrs = subpage_read,
2816 .write_with_attrs = subpage_write,
ff6cff75
PB
2817 .impl.min_access_size = 1,
2818 .impl.max_access_size = 8,
2819 .valid.min_access_size = 1,
2820 .valid.max_access_size = 8,
c353e4cc 2821 .valid.accepts = subpage_accepts,
70c68e44 2822 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2823};
2824
b797ab1a
WY
2825static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2826 uint16_t section)
db7b5426
BS
2827{
2828 int idx, eidx;
2829
2830 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2831 return -1;
2832 idx = SUBPAGE_IDX(start);
2833 eidx = SUBPAGE_IDX(end);
2834#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2835 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2836 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2837#endif
db7b5426 2838 for (; idx <= eidx; idx++) {
5312bd8b 2839 mmio->sub_section[idx] = section;
db7b5426
BS
2840 }
2841
2842 return 0;
2843}
2844
16620684 2845static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2846{
c227f099 2847 subpage_t *mmio;
db7b5426 2848
b797ab1a 2849 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2850 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2851 mmio->fv = fv;
1eec614b 2852 mmio->base = base;
2c9b15ca 2853 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2854 NULL, TARGET_PAGE_SIZE);
b3b00c78 2855 mmio->iomem.subpage = true;
db7b5426 2856#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2857 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2858 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2859#endif
db7b5426
BS
2860
2861 return mmio;
2862}
2863
16620684 2864static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2865{
16620684 2866 assert(fv);
5312bd8b 2867 MemoryRegionSection section = {
16620684 2868 .fv = fv,
5312bd8b
AK
2869 .mr = mr,
2870 .offset_within_address_space = 0,
2871 .offset_within_region = 0,
052e87b0 2872 .size = int128_2_64(),
5312bd8b
AK
2873 };
2874
53cb28cb 2875 return phys_section_add(map, &section);
5312bd8b
AK
2876}
2877
2d54f194
PM
2878MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2879 hwaddr index, MemTxAttrs attrs)
aa102231 2880{
a54c87b6
PM
2881 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2882 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2883 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2884 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2885
2d54f194 2886 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2887}
2888
e9179ce1
AK
2889static void io_mem_init(void)
2890{
2c9b15ca 2891 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2892 NULL, UINT64_MAX);
e9179ce1
AK
2893}
2894
8629d3fc 2895AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2896{
53cb28cb
MA
2897 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2898 uint16_t n;
2899
16620684 2900 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2901 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2902
9736e55b 2903 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2904
2905 return d;
00752703
PB
2906}
2907
66a6df1d 2908void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2909{
2910 phys_sections_free(&d->map);
2911 g_free(d);
2912}
2913
9458a9a1
PB
2914static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2915{
2916}
2917
2918static void tcg_log_global_after_sync(MemoryListener *listener)
2919{
2920 CPUAddressSpace *cpuas;
2921
2922 /* Wait for the CPU to end the current TB. This avoids the following
2923 * incorrect race:
2924 *
2925 * vCPU migration
2926 * ---------------------- -------------------------
2927 * TLB check -> slow path
2928 * notdirty_mem_write
2929 * write to RAM
2930 * mark dirty
2931 * clear dirty flag
2932 * TLB check -> fast path
2933 * read memory
2934 * write to RAM
2935 *
2936 * by pushing the migration thread's memory read after the vCPU thread has
2937 * written the memory.
2938 */
86cf9e15
PD
2939 if (replay_mode == REPLAY_MODE_NONE) {
2940 /*
2941 * VGA can make calls to this function while updating the screen.
2942 * In record/replay mode this causes a deadlock, because
2943 * run_on_cpu waits for rr mutex. Therefore no races are possible
2944 * in this case and no need for making run_on_cpu when
2945 * record/replay is not enabled.
2946 */
2947 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2948 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2949 }
9458a9a1
PB
2950}
2951
1d71148e 2952static void tcg_commit(MemoryListener *listener)
50c1e149 2953{
32857f4d
PM
2954 CPUAddressSpace *cpuas;
2955 AddressSpaceDispatch *d;
117712c3 2956
f28d0dfd 2957 assert(tcg_enabled());
117712c3
AK
2958 /* since each CPU stores ram addresses in its TLB cache, we must
2959 reset the modified entries */
32857f4d
PM
2960 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2961 cpu_reloading_memory_map();
2962 /* The CPU and TLB are protected by the iothread lock.
2963 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2964 * may have split the RCU critical section.
2965 */
66a6df1d 2966 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2967 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2968 tlb_flush(cpuas->cpu);
50c1e149
AK
2969}
2970
62152b8a
AK
2971static void memory_map_init(void)
2972{
7267c094 2973 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2974
57271d63 2975 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2976 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2977
7267c094 2978 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2979 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2980 65536);
7dca8043 2981 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2982}
2983
2984MemoryRegion *get_system_memory(void)
2985{
2986 return system_memory;
2987}
2988
309cb471
AK
2989MemoryRegion *get_system_io(void)
2990{
2991 return system_io;
2992}
2993
e2eef170
PB
2994#endif /* !defined(CONFIG_USER_ONLY) */
2995
13eb76e0
FB
2996/* physical memory access (slow version, mainly for debug) */
2997#if defined(CONFIG_USER_ONLY)
f17ec444 2998int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 2999 void *ptr, target_ulong len, bool is_write)
13eb76e0 3000{
0c249ff7
LZ
3001 int flags;
3002 target_ulong l, page;
53a5960a 3003 void * p;
d7ef71ef 3004 uint8_t *buf = ptr;
13eb76e0
FB
3005
3006 while (len > 0) {
3007 page = addr & TARGET_PAGE_MASK;
3008 l = (page + TARGET_PAGE_SIZE) - addr;
3009 if (l > len)
3010 l = len;
3011 flags = page_get_flags(page);
3012 if (!(flags & PAGE_VALID))
a68fe89c 3013 return -1;
13eb76e0
FB
3014 if (is_write) {
3015 if (!(flags & PAGE_WRITE))
a68fe89c 3016 return -1;
579a97f7 3017 /* XXX: this code should not depend on lock_user */
72fb7daa 3018 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3019 return -1;
72fb7daa
AJ
3020 memcpy(p, buf, l);
3021 unlock_user(p, addr, l);
13eb76e0
FB
3022 } else {
3023 if (!(flags & PAGE_READ))
a68fe89c 3024 return -1;
579a97f7 3025 /* XXX: this code should not depend on lock_user */
72fb7daa 3026 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3027 return -1;
72fb7daa 3028 memcpy(buf, p, l);
5b257578 3029 unlock_user(p, addr, 0);
13eb76e0
FB
3030 }
3031 len -= l;
3032 buf += l;
3033 addr += l;
3034 }
a68fe89c 3035 return 0;
13eb76e0 3036}
8df1cd07 3037
13eb76e0 3038#else
51d7a9eb 3039
845b6214 3040static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3041 hwaddr length)
51d7a9eb 3042{
e87f7778 3043 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3044 addr += memory_region_get_ram_addr(mr);
3045
e87f7778
PB
3046 /* No early return if dirty_log_mask is or becomes 0, because
3047 * cpu_physical_memory_set_dirty_range will still call
3048 * xen_modified_memory.
3049 */
3050 if (dirty_log_mask) {
3051 dirty_log_mask =
3052 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3053 }
3054 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3055 assert(tcg_enabled());
e87f7778
PB
3056 tb_invalidate_phys_range(addr, addr + length);
3057 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3058 }
e87f7778 3059 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3060}
3061
047be4ed
SH
3062void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3063{
3064 /*
3065 * In principle this function would work on other memory region types too,
3066 * but the ROM device use case is the only one where this operation is
3067 * necessary. Other memory regions should use the
3068 * address_space_read/write() APIs.
3069 */
3070 assert(memory_region_is_romd(mr));
3071
3072 invalidate_and_set_dirty(mr, addr, size);
3073}
3074
23326164 3075static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3076{
e1622f4b 3077 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3078
3079 /* Regions are assumed to support 1-4 byte accesses unless
3080 otherwise specified. */
23326164
RH
3081 if (access_size_max == 0) {
3082 access_size_max = 4;
3083 }
3084
3085 /* Bound the maximum access by the alignment of the address. */
3086 if (!mr->ops->impl.unaligned) {
3087 unsigned align_size_max = addr & -addr;
3088 if (align_size_max != 0 && align_size_max < access_size_max) {
3089 access_size_max = align_size_max;
3090 }
82f2563f 3091 }
23326164
RH
3092
3093 /* Don't attempt accesses larger than the maximum. */
3094 if (l > access_size_max) {
3095 l = access_size_max;
82f2563f 3096 }
6554f5c0 3097 l = pow2floor(l);
23326164
RH
3098
3099 return l;
82f2563f
PB
3100}
3101
4840f10e 3102static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3103{
4840f10e
JK
3104 bool unlocked = !qemu_mutex_iothread_locked();
3105 bool release_lock = false;
3106
3107 if (unlocked && mr->global_locking) {
3108 qemu_mutex_lock_iothread();
3109 unlocked = false;
3110 release_lock = true;
3111 }
125b3806 3112 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3113 if (unlocked) {
3114 qemu_mutex_lock_iothread();
3115 }
125b3806 3116 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3117 if (unlocked) {
3118 qemu_mutex_unlock_iothread();
3119 }
125b3806 3120 }
4840f10e
JK
3121
3122 return release_lock;
125b3806
PB
3123}
3124
a203ac70 3125/* Called within RCU critical section. */
16620684
AK
3126static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3127 MemTxAttrs attrs,
a152be43 3128 const void *ptr,
0c249ff7 3129 hwaddr len, hwaddr addr1,
16620684 3130 hwaddr l, MemoryRegion *mr)
13eb76e0 3131{
20804676 3132 uint8_t *ram_ptr;
791af8c8 3133 uint64_t val;
3b643495 3134 MemTxResult result = MEMTX_OK;
4840f10e 3135 bool release_lock = false;
a152be43 3136 const uint8_t *buf = ptr;
3b46e624 3137
a203ac70 3138 for (;;) {
eb7eeb88
PB
3139 if (!memory_access_is_direct(mr, true)) {
3140 release_lock |= prepare_mmio_access(mr);
3141 l = memory_access_size(mr, l, addr1);
3142 /* XXX: could force current_cpu to NULL to avoid
3143 potential bugs */
9bf825bf 3144 val = ldn_he_p(buf, l);
3d9e7c3e 3145 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3146 size_memop(l), attrs);
13eb76e0 3147 } else {
eb7eeb88 3148 /* RAM case */
20804676
PMD
3149 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3150 memcpy(ram_ptr, buf, l);
eb7eeb88 3151 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3152 }
4840f10e
JK
3153
3154 if (release_lock) {
3155 qemu_mutex_unlock_iothread();
3156 release_lock = false;
3157 }
3158
13eb76e0
FB
3159 len -= l;
3160 buf += l;
3161 addr += l;
a203ac70
PB
3162
3163 if (!len) {
3164 break;
3165 }
3166
3167 l = len;
efa99a2f 3168 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3169 }
fd8aaa76 3170
3b643495 3171 return result;
13eb76e0 3172}
8df1cd07 3173
4c6ebbb3 3174/* Called from RCU critical section. */
16620684 3175static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3176 const void *buf, hwaddr len)
ac1970fb 3177{
eb7eeb88 3178 hwaddr l;
eb7eeb88
PB
3179 hwaddr addr1;
3180 MemoryRegion *mr;
3181 MemTxResult result = MEMTX_OK;
eb7eeb88 3182
4c6ebbb3 3183 l = len;
efa99a2f 3184 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3185 result = flatview_write_continue(fv, addr, attrs, buf, len,
3186 addr1, l, mr);
a203ac70
PB
3187
3188 return result;
3189}
3190
3191/* Called within RCU critical section. */
16620684 3192MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3193 MemTxAttrs attrs, void *ptr,
0c249ff7 3194 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3195 MemoryRegion *mr)
a203ac70 3196{
20804676 3197 uint8_t *ram_ptr;
a203ac70
PB
3198 uint64_t val;
3199 MemTxResult result = MEMTX_OK;
3200 bool release_lock = false;
a152be43 3201 uint8_t *buf = ptr;
eb7eeb88 3202
a203ac70 3203 for (;;) {
eb7eeb88
PB
3204 if (!memory_access_is_direct(mr, false)) {
3205 /* I/O case */
3206 release_lock |= prepare_mmio_access(mr);
3207 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3208 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3209 size_memop(l), attrs);
3210 stn_he_p(buf, l, val);
eb7eeb88
PB
3211 } else {
3212 /* RAM case */
20804676
PMD
3213 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3214 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3215 }
3216
3217 if (release_lock) {
3218 qemu_mutex_unlock_iothread();
3219 release_lock = false;
3220 }
3221
3222 len -= l;
3223 buf += l;
3224 addr += l;
a203ac70
PB
3225
3226 if (!len) {
3227 break;
3228 }
3229
3230 l = len;
efa99a2f 3231 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3232 }
3233
3234 return result;
3235}
3236
b2a44fca
PB
3237/* Called from RCU critical section. */
3238static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3239 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3240{
3241 hwaddr l;
3242 hwaddr addr1;
3243 MemoryRegion *mr;
eb7eeb88 3244
b2a44fca 3245 l = len;
efa99a2f 3246 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3247 return flatview_read_continue(fv, addr, attrs, buf, len,
3248 addr1, l, mr);
ac1970fb
AK
3249}
3250
b2a44fca 3251MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3252 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3253{
3254 MemTxResult result = MEMTX_OK;
3255 FlatView *fv;
3256
3257 if (len > 0) {
694ea274 3258 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3259 fv = address_space_to_flatview(as);
3260 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3261 }
3262
3263 return result;
3264}
3265
4c6ebbb3
PB
3266MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3267 MemTxAttrs attrs,
daa3dda4 3268 const void *buf, hwaddr len)
4c6ebbb3
PB
3269{
3270 MemTxResult result = MEMTX_OK;
3271 FlatView *fv;
3272
3273 if (len > 0) {
694ea274 3274 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3275 fv = address_space_to_flatview(as);
3276 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3277 }
3278
3279 return result;
3280}
3281
db84fd97 3282MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3283 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3284{
3285 if (is_write) {
3286 return address_space_write(as, addr, attrs, buf, len);
3287 } else {
3288 return address_space_read_full(as, addr, attrs, buf, len);
3289 }
3290}
3291
d7ef71ef 3292void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3293 hwaddr len, bool is_write)
ac1970fb 3294{
5c9eb028
PM
3295 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3296 buf, len, is_write);
ac1970fb
AK
3297}
3298
582b55a9
AG
3299enum write_rom_type {
3300 WRITE_DATA,
3301 FLUSH_CACHE,
3302};
3303
75693e14
PM
3304static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3305 hwaddr addr,
3306 MemTxAttrs attrs,
daa3dda4 3307 const void *ptr,
0c249ff7 3308 hwaddr len,
75693e14 3309 enum write_rom_type type)
d0ecd2aa 3310{
149f54b5 3311 hwaddr l;
20804676 3312 uint8_t *ram_ptr;
149f54b5 3313 hwaddr addr1;
5c8a00ce 3314 MemoryRegion *mr;
daa3dda4 3315 const uint8_t *buf = ptr;
3b46e624 3316
694ea274 3317 RCU_READ_LOCK_GUARD();
d0ecd2aa 3318 while (len > 0) {
149f54b5 3319 l = len;
75693e14 3320 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3321
5c8a00ce
PB
3322 if (!(memory_region_is_ram(mr) ||
3323 memory_region_is_romd(mr))) {
b242e0e0 3324 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3325 } else {
d0ecd2aa 3326 /* ROM/RAM case */
20804676 3327 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3328 switch (type) {
3329 case WRITE_DATA:
20804676 3330 memcpy(ram_ptr, buf, l);
845b6214 3331 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3332 break;
3333 case FLUSH_CACHE:
20804676 3334 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3335 break;
3336 }
d0ecd2aa
FB
3337 }
3338 len -= l;
3339 buf += l;
3340 addr += l;
3341 }
75693e14 3342 return MEMTX_OK;
d0ecd2aa
FB
3343}
3344
582b55a9 3345/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3346MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3347 MemTxAttrs attrs,
daa3dda4 3348 const void *buf, hwaddr len)
582b55a9 3349{
3c8133f9
PM
3350 return address_space_write_rom_internal(as, addr, attrs,
3351 buf, len, WRITE_DATA);
582b55a9
AG
3352}
3353
0c249ff7 3354void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3355{
3356 /*
3357 * This function should do the same thing as an icache flush that was
3358 * triggered from within the guest. For TCG we are always cache coherent,
3359 * so there is no need to flush anything. For KVM / Xen we need to flush
3360 * the host's instruction cache at least.
3361 */
3362 if (tcg_enabled()) {
3363 return;
3364 }
3365
75693e14
PM
3366 address_space_write_rom_internal(&address_space_memory,
3367 start, MEMTXATTRS_UNSPECIFIED,
3368 NULL, len, FLUSH_CACHE);
582b55a9
AG
3369}
3370
6d16c2f8 3371typedef struct {
d3e71559 3372 MemoryRegion *mr;
6d16c2f8 3373 void *buffer;
a8170e5e
AK
3374 hwaddr addr;
3375 hwaddr len;
c2cba0ff 3376 bool in_use;
6d16c2f8
AL
3377} BounceBuffer;
3378
3379static BounceBuffer bounce;
3380
ba223c29 3381typedef struct MapClient {
e95205e1 3382 QEMUBH *bh;
72cf2d4f 3383 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3384} MapClient;
3385
38e047b5 3386QemuMutex map_client_list_lock;
b58deb34 3387static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3388 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3389
e95205e1
FZ
3390static void cpu_unregister_map_client_do(MapClient *client)
3391{
3392 QLIST_REMOVE(client, link);
3393 g_free(client);
3394}
3395
33b6c2ed
FZ
3396static void cpu_notify_map_clients_locked(void)
3397{
3398 MapClient *client;
3399
3400 while (!QLIST_EMPTY(&map_client_list)) {
3401 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3402 qemu_bh_schedule(client->bh);
3403 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3404 }
3405}
3406
e95205e1 3407void cpu_register_map_client(QEMUBH *bh)
ba223c29 3408{
7267c094 3409 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3410
38e047b5 3411 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3412 client->bh = bh;
72cf2d4f 3413 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3414 if (!atomic_read(&bounce.in_use)) {
3415 cpu_notify_map_clients_locked();
3416 }
38e047b5 3417 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3418}
3419
38e047b5 3420void cpu_exec_init_all(void)
ba223c29 3421{
38e047b5 3422 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3423 /* The data structures we set up here depend on knowing the page size,
3424 * so no more changes can be made after this point.
3425 * In an ideal world, nothing we did before we had finished the
3426 * machine setup would care about the target page size, and we could
3427 * do this much later, rather than requiring board models to state
3428 * up front what their requirements are.
3429 */
3430 finalize_target_page_bits();
38e047b5 3431 io_mem_init();
680a4783 3432 memory_map_init();
38e047b5 3433 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3434}
3435
e95205e1 3436void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3437{
3438 MapClient *client;
3439
e95205e1
FZ
3440 qemu_mutex_lock(&map_client_list_lock);
3441 QLIST_FOREACH(client, &map_client_list, link) {
3442 if (client->bh == bh) {
3443 cpu_unregister_map_client_do(client);
3444 break;
3445 }
ba223c29 3446 }
e95205e1 3447 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3448}
3449
3450static void cpu_notify_map_clients(void)
3451{
38e047b5 3452 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3453 cpu_notify_map_clients_locked();
38e047b5 3454 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3455}
3456
0c249ff7 3457static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3458 bool is_write, MemTxAttrs attrs)
51644ab7 3459{
5c8a00ce 3460 MemoryRegion *mr;
51644ab7
PB
3461 hwaddr l, xlat;
3462
3463 while (len > 0) {
3464 l = len;
efa99a2f 3465 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3466 if (!memory_access_is_direct(mr, is_write)) {
3467 l = memory_access_size(mr, l, addr);
eace72b7 3468 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3469 return false;
3470 }
3471 }
3472
3473 len -= l;
3474 addr += l;
3475 }
3476 return true;
3477}
3478
16620684 3479bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3480 hwaddr len, bool is_write,
fddffa42 3481 MemTxAttrs attrs)
16620684 3482{
11e732a5
PB
3483 FlatView *fv;
3484 bool result;
3485
694ea274 3486 RCU_READ_LOCK_GUARD();
11e732a5 3487 fv = address_space_to_flatview(as);
eace72b7 3488 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3489 return result;
16620684
AK
3490}
3491
715c31ec 3492static hwaddr
16620684 3493flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3494 hwaddr target_len,
3495 MemoryRegion *mr, hwaddr base, hwaddr len,
3496 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3497{
3498 hwaddr done = 0;
3499 hwaddr xlat;
3500 MemoryRegion *this_mr;
3501
3502 for (;;) {
3503 target_len -= len;
3504 addr += len;
3505 done += len;
3506 if (target_len == 0) {
3507 return done;
3508 }
3509
3510 len = target_len;
16620684 3511 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3512 &len, is_write, attrs);
715c31ec
PB
3513 if (this_mr != mr || xlat != base + done) {
3514 return done;
3515 }
3516 }
3517}
3518
6d16c2f8
AL
3519/* Map a physical memory region into a host virtual address.
3520 * May map a subset of the requested range, given by and returned in *plen.
3521 * May return NULL if resources needed to perform the mapping are exhausted.
3522 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3523 * Use cpu_register_map_client() to know when retrying the map operation is
3524 * likely to succeed.
6d16c2f8 3525 */
ac1970fb 3526void *address_space_map(AddressSpace *as,
a8170e5e
AK
3527 hwaddr addr,
3528 hwaddr *plen,
f26404fb
PM
3529 bool is_write,
3530 MemTxAttrs attrs)
6d16c2f8 3531{
a8170e5e 3532 hwaddr len = *plen;
715c31ec
PB
3533 hwaddr l, xlat;
3534 MemoryRegion *mr;
e81bcda5 3535 void *ptr;
ad0c60fa 3536 FlatView *fv;
6d16c2f8 3537
e3127ae0
PB
3538 if (len == 0) {
3539 return NULL;
3540 }
38bee5dc 3541
e3127ae0 3542 l = len;
694ea274 3543 RCU_READ_LOCK_GUARD();
ad0c60fa 3544 fv = address_space_to_flatview(as);
efa99a2f 3545 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3546
e3127ae0 3547 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3548 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3549 return NULL;
6d16c2f8 3550 }
e85d9db5
KW
3551 /* Avoid unbounded allocations */
3552 l = MIN(l, TARGET_PAGE_SIZE);
3553 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3554 bounce.addr = addr;
3555 bounce.len = l;
d3e71559
PB
3556
3557 memory_region_ref(mr);
3558 bounce.mr = mr;
e3127ae0 3559 if (!is_write) {
16620684 3560 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3561 bounce.buffer, l);
8ab934f9 3562 }
6d16c2f8 3563
e3127ae0
PB
3564 *plen = l;
3565 return bounce.buffer;
3566 }
3567
e3127ae0 3568
d3e71559 3569 memory_region_ref(mr);
16620684 3570 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3571 l, is_write, attrs);
f5aa69bd 3572 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3573
3574 return ptr;
6d16c2f8
AL
3575}
3576
ac1970fb 3577/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3578 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3579 * the amount of memory that was actually read or written by the caller.
3580 */
a8170e5e 3581void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3582 bool is_write, hwaddr access_len)
6d16c2f8
AL
3583{
3584 if (buffer != bounce.buffer) {
d3e71559
PB
3585 MemoryRegion *mr;
3586 ram_addr_t addr1;
3587
07bdaa41 3588 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3589 assert(mr != NULL);
6d16c2f8 3590 if (is_write) {
845b6214 3591 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3592 }
868bb33f 3593 if (xen_enabled()) {
e41d7c69 3594 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3595 }
d3e71559 3596 memory_region_unref(mr);
6d16c2f8
AL
3597 return;
3598 }
3599 if (is_write) {
5c9eb028
PM
3600 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3601 bounce.buffer, access_len);
6d16c2f8 3602 }
f8a83245 3603 qemu_vfree(bounce.buffer);
6d16c2f8 3604 bounce.buffer = NULL;
d3e71559 3605 memory_region_unref(bounce.mr);
c2cba0ff 3606 atomic_mb_set(&bounce.in_use, false);
ba223c29 3607 cpu_notify_map_clients();
6d16c2f8 3608}
d0ecd2aa 3609
a8170e5e
AK
3610void *cpu_physical_memory_map(hwaddr addr,
3611 hwaddr *plen,
28c80bfe 3612 bool is_write)
ac1970fb 3613{
f26404fb
PM
3614 return address_space_map(&address_space_memory, addr, plen, is_write,
3615 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3616}
3617
a8170e5e 3618void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3619 bool is_write, hwaddr access_len)
ac1970fb
AK
3620{
3621 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3622}
3623
0ce265ff
PB
3624#define ARG1_DECL AddressSpace *as
3625#define ARG1 as
3626#define SUFFIX
3627#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3628#define RCU_READ_LOCK(...) rcu_read_lock()
3629#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3630#include "memory_ldst.inc.c"
1e78bcc1 3631
1f4e496e
PB
3632int64_t address_space_cache_init(MemoryRegionCache *cache,
3633 AddressSpace *as,
3634 hwaddr addr,
3635 hwaddr len,
3636 bool is_write)
3637{
48564041
PB
3638 AddressSpaceDispatch *d;
3639 hwaddr l;
3640 MemoryRegion *mr;
3641
3642 assert(len > 0);
3643
3644 l = len;
3645 cache->fv = address_space_get_flatview(as);
3646 d = flatview_to_dispatch(cache->fv);
3647 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3648
3649 mr = cache->mrs.mr;
3650 memory_region_ref(mr);
3651 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3652 /* We don't care about the memory attributes here as we're only
3653 * doing this if we found actual RAM, which behaves the same
3654 * regardless of attributes; so UNSPECIFIED is fine.
3655 */
48564041 3656 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3657 cache->xlat, l, is_write,
3658 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3659 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3660 } else {
3661 cache->ptr = NULL;
3662 }
3663
3664 cache->len = l;
3665 cache->is_write = is_write;
3666 return l;
1f4e496e
PB
3667}
3668
3669void address_space_cache_invalidate(MemoryRegionCache *cache,
3670 hwaddr addr,
3671 hwaddr access_len)
3672{
48564041
PB
3673 assert(cache->is_write);
3674 if (likely(cache->ptr)) {
3675 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3676 }
1f4e496e
PB
3677}
3678
3679void address_space_cache_destroy(MemoryRegionCache *cache)
3680{
48564041
PB
3681 if (!cache->mrs.mr) {
3682 return;
3683 }
3684
3685 if (xen_enabled()) {
3686 xen_invalidate_map_cache_entry(cache->ptr);
3687 }
3688 memory_region_unref(cache->mrs.mr);
3689 flatview_unref(cache->fv);
3690 cache->mrs.mr = NULL;
3691 cache->fv = NULL;
3692}
3693
3694/* Called from RCU critical section. This function has the same
3695 * semantics as address_space_translate, but it only works on a
3696 * predefined range of a MemoryRegion that was mapped with
3697 * address_space_cache_init.
3698 */
3699static inline MemoryRegion *address_space_translate_cached(
3700 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3701 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3702{
3703 MemoryRegionSection section;
3704 MemoryRegion *mr;
3705 IOMMUMemoryRegion *iommu_mr;
3706 AddressSpace *target_as;
3707
3708 assert(!cache->ptr);
3709 *xlat = addr + cache->xlat;
3710
3711 mr = cache->mrs.mr;
3712 iommu_mr = memory_region_get_iommu(mr);
3713 if (!iommu_mr) {
3714 /* MMIO region. */
3715 return mr;
3716 }
3717
3718 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3719 NULL, is_write, true,
2f7b009c 3720 &target_as, attrs);
48564041
PB
3721 return section.mr;
3722}
3723
3724/* Called from RCU critical section. address_space_read_cached uses this
3725 * out of line function when the target is an MMIO or IOMMU region.
3726 */
3727void
3728address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3729 void *buf, hwaddr len)
48564041
PB
3730{
3731 hwaddr addr1, l;
3732 MemoryRegion *mr;
3733
3734 l = len;
bc6b1cec
PM
3735 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3736 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3737 flatview_read_continue(cache->fv,
3738 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3739 addr1, l, mr);
3740}
3741
3742/* Called from RCU critical section. address_space_write_cached uses this
3743 * out of line function when the target is an MMIO or IOMMU region.
3744 */
3745void
3746address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3747 const void *buf, hwaddr len)
48564041
PB
3748{
3749 hwaddr addr1, l;
3750 MemoryRegion *mr;
3751
3752 l = len;
bc6b1cec
PM
3753 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3754 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3755 flatview_write_continue(cache->fv,
3756 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3757 addr1, l, mr);
1f4e496e
PB
3758}
3759
3760#define ARG1_DECL MemoryRegionCache *cache
3761#define ARG1 cache
48564041
PB
3762#define SUFFIX _cached_slow
3763#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3764#define RCU_READ_LOCK() ((void)0)
3765#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3766#include "memory_ldst.inc.c"
3767
5e2972fd 3768/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3769int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3770 void *ptr, target_ulong len, bool is_write)
13eb76e0 3771{
a8170e5e 3772 hwaddr phys_addr;
0c249ff7 3773 target_ulong l, page;
d7ef71ef 3774 uint8_t *buf = ptr;
13eb76e0 3775
79ca7a1b 3776 cpu_synchronize_state(cpu);
13eb76e0 3777 while (len > 0) {
5232e4c7
PM
3778 int asidx;
3779 MemTxAttrs attrs;
3780
13eb76e0 3781 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3782 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3783 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3784 /* if no physical page mapped, return an error */
3785 if (phys_addr == -1)
3786 return -1;
3787 l = (page + TARGET_PAGE_SIZE) - addr;
3788 if (l > len)
3789 l = len;
5e2972fd 3790 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3791 if (is_write) {
3c8133f9 3792 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3793 attrs, buf, l);
2e38847b 3794 } else {
19f70347
PM
3795 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3796 l);
2e38847b 3797 }
13eb76e0
FB
3798 len -= l;
3799 buf += l;
3800 addr += l;
3801 }
3802 return 0;
3803}
038629a6
DDAG
3804
3805/*
3806 * Allows code that needs to deal with migration bitmaps etc to still be built
3807 * target independent.
3808 */
20afaed9 3809size_t qemu_target_page_size(void)
038629a6 3810{
20afaed9 3811 return TARGET_PAGE_SIZE;
038629a6
DDAG
3812}
3813
46d702b1
JQ
3814int qemu_target_page_bits(void)
3815{
3816 return TARGET_PAGE_BITS;
3817}
3818
3819int qemu_target_page_bits_min(void)
3820{
3821 return TARGET_PAGE_BITS_MIN;
3822}
a68fe89c 3823#endif
13eb76e0 3824
98ed8ecf 3825bool target_words_bigendian(void)
8e4a424b
BS
3826{
3827#if defined(TARGET_WORDS_BIGENDIAN)
3828 return true;
3829#else
3830 return false;
3831#endif
3832}
3833
76f35538 3834#ifndef CONFIG_USER_ONLY
a8170e5e 3835bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3836{
5c8a00ce 3837 MemoryRegion*mr;
149f54b5 3838 hwaddr l = 1;
41063e1e 3839 bool res;
76f35538 3840
694ea274 3841 RCU_READ_LOCK_GUARD();
5c8a00ce 3842 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3843 phys_addr, &phys_addr, &l, false,
3844 MEMTXATTRS_UNSPECIFIED);
76f35538 3845
41063e1e 3846 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3847 return res;
76f35538 3848}
bd2fa51f 3849
e3807054 3850int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3851{
3852 RAMBlock *block;
e3807054 3853 int ret = 0;
bd2fa51f 3854
694ea274 3855 RCU_READ_LOCK_GUARD();
99e15582 3856 RAMBLOCK_FOREACH(block) {
754cb9c0 3857 ret = func(block, opaque);
e3807054
DDAG
3858 if (ret) {
3859 break;
3860 }
bd2fa51f 3861 }
e3807054 3862 return ret;
bd2fa51f 3863}
d3a5038c
DDAG
3864
3865/*
3866 * Unmap pages of memory from start to start+length such that
3867 * they a) read as 0, b) Trigger whatever fault mechanism
3868 * the OS provides for postcopy.
3869 * The pages must be unmapped by the end of the function.
3870 * Returns: 0 on success, none-0 on failure
3871 *
3872 */
3873int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3874{
3875 int ret = -1;
3876
3877 uint8_t *host_startaddr = rb->host + start;
3878
619bd31d 3879 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3880 error_report("ram_block_discard_range: Unaligned start address: %p",
3881 host_startaddr);
3882 goto err;
3883 }
3884
3885 if ((start + length) <= rb->used_length) {
db144f70 3886 bool need_madvise, need_fallocate;
619bd31d 3887 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3888 error_report("ram_block_discard_range: Unaligned length: %zx",
3889 length);
d3a5038c
DDAG
3890 goto err;
3891 }
3892
3893 errno = ENOTSUP; /* If we are missing MADVISE etc */
3894
db144f70
DDAG
3895 /* The logic here is messy;
3896 * madvise DONTNEED fails for hugepages
3897 * fallocate works on hugepages and shmem
3898 */
3899 need_madvise = (rb->page_size == qemu_host_page_size);
3900 need_fallocate = rb->fd != -1;
3901 if (need_fallocate) {
3902 /* For a file, this causes the area of the file to be zero'd
3903 * if read, and for hugetlbfs also causes it to be unmapped
3904 * so a userfault will trigger.
e2fa71f5
DDAG
3905 */
3906#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3907 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3908 start, length);
db144f70
DDAG
3909 if (ret) {
3910 ret = -errno;
3911 error_report("ram_block_discard_range: Failed to fallocate "
3912 "%s:%" PRIx64 " +%zx (%d)",
3913 rb->idstr, start, length, ret);
3914 goto err;
3915 }
3916#else
3917 ret = -ENOSYS;
3918 error_report("ram_block_discard_range: fallocate not available/file"
3919 "%s:%" PRIx64 " +%zx (%d)",
3920 rb->idstr, start, length, ret);
3921 goto err;
e2fa71f5
DDAG
3922#endif
3923 }
db144f70
DDAG
3924 if (need_madvise) {
3925 /* For normal RAM this causes it to be unmapped,
3926 * for shared memory it causes the local mapping to disappear
3927 * and to fall back on the file contents (which we just
3928 * fallocate'd away).
3929 */
3930#if defined(CONFIG_MADVISE)
3931 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3932 if (ret) {
3933 ret = -errno;
3934 error_report("ram_block_discard_range: Failed to discard range "
3935 "%s:%" PRIx64 " +%zx (%d)",
3936 rb->idstr, start, length, ret);
3937 goto err;
3938 }
3939#else
3940 ret = -ENOSYS;
3941 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3942 "%s:%" PRIx64 " +%zx (%d)",
3943 rb->idstr, start, length, ret);
db144f70
DDAG
3944 goto err;
3945#endif
d3a5038c 3946 }
db144f70
DDAG
3947 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3948 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3949 } else {
3950 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3951 "/%zx/" RAM_ADDR_FMT")",
3952 rb->idstr, start, length, rb->used_length);
3953 }
3954
3955err:
3956 return ret;
3957}
3958
a4de8552
JH
3959bool ramblock_is_pmem(RAMBlock *rb)
3960{
3961 return rb->flags & RAM_PMEM;
3962}
3963
ec3f8c99 3964#endif
a0be0c58
YZ
3965
3966void page_size_init(void)
3967{
3968 /* NOTE: we can always suppose that qemu_host_page_size >=
3969 TARGET_PAGE_SIZE */
a0be0c58
YZ
3970 if (qemu_host_page_size == 0) {
3971 qemu_host_page_size = qemu_real_host_page_size;
3972 }
3973 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3974 qemu_host_page_size = TARGET_PAGE_SIZE;
3975 }
3976 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3977}
5e8fd947
AK
3978
3979#if !defined(CONFIG_USER_ONLY)
3980
b6b71cb5 3981static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3982{
3983 if (start == end - 1) {
b6b71cb5 3984 qemu_printf("\t%3d ", start);
5e8fd947 3985 } else {
b6b71cb5 3986 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3987 }
b6b71cb5 3988 qemu_printf(" skip=%d ", skip);
5e8fd947 3989 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3990 qemu_printf(" ptr=NIL");
5e8fd947 3991 } else if (!skip) {
b6b71cb5 3992 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3993 } else {
b6b71cb5 3994 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3995 }
b6b71cb5 3996 qemu_printf("\n");
5e8fd947
AK
3997}
3998
3999#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4000 int128_sub((size), int128_one())) : 0)
4001
b6b71cb5 4002void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4003{
4004 int i;
4005
b6b71cb5
MA
4006 qemu_printf(" Dispatch\n");
4007 qemu_printf(" Physical sections\n");
5e8fd947
AK
4008
4009 for (i = 0; i < d->map.sections_nb; ++i) {
4010 MemoryRegionSection *s = d->map.sections + i;
4011 const char *names[] = { " [unassigned]", " [not dirty]",
4012 " [ROM]", " [watch]" };
4013
b6b71cb5
MA
4014 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4015 " %s%s%s%s%s",
5e8fd947
AK
4016 i,
4017 s->offset_within_address_space,
4018 s->offset_within_address_space + MR_SIZE(s->mr->size),
4019 s->mr->name ? s->mr->name : "(noname)",
4020 i < ARRAY_SIZE(names) ? names[i] : "",
4021 s->mr == root ? " [ROOT]" : "",
4022 s == d->mru_section ? " [MRU]" : "",
4023 s->mr->is_iommu ? " [iommu]" : "");
4024
4025 if (s->mr->alias) {
b6b71cb5 4026 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4027 s->mr->alias->name : "noname");
4028 }
b6b71cb5 4029 qemu_printf("\n");
5e8fd947
AK
4030 }
4031
b6b71cb5 4032 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4033 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4034 for (i = 0; i < d->map.nodes_nb; ++i) {
4035 int j, jprev;
4036 PhysPageEntry prev;
4037 Node *n = d->map.nodes + i;
4038
b6b71cb5 4039 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4040
4041 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4042 PhysPageEntry *pe = *n + j;
4043
4044 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4045 continue;
4046 }
4047
b6b71cb5 4048 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4049
4050 jprev = j;
4051 prev = *pe;
4052 }
4053
4054 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4055 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4056 }
4057 }
4058}
4059
4060#endif