]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2016-03-18' into staging
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
777872e5 20#ifndef _WIN32
d5a8f07c
FB
21#include <sys/mman.h>
22#endif
54936004 23
055403b2 24#include "qemu-common.h"
6180a181 25#include "cpu.h"
b67d9a52 26#include "tcg.h"
b3c7724c 27#include "hw/hw.h"
4485bd26 28#if !defined(CONFIG_USER_ONLY)
47c8ca53 29#include "hw/boards.h"
4485bd26 30#endif
cc9e98cb 31#include "hw/qdev.h"
9c17d615 32#include "sysemu/kvm.h"
2ff3de68 33#include "sysemu/sysemu.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
0dc3f44a 48#include "qemu/rcu_queue.h"
4840f10e 49#include "qemu/main-loop.h"
5b6dd868 50#include "translate-all.h"
7615936e 51#include "sysemu/replay.h"
0cac1b66 52
022c62cb 53#include "exec/memory-internal.h"
220c3ebd 54#include "exec/ram_addr.h"
508127e2 55#include "exec/log.h"
67d95c15 56
b35ba30f 57#include "qemu/range.h"
794e8f30
MT
58#ifndef _WIN32
59#include "qemu/mmap-alloc.h"
60#endif
b35ba30f 61
db7b5426 62//#define DEBUG_SUBPAGE
1196be37 63
e2eef170 64#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
65/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
0d53d9fe 68RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
69
70static MemoryRegion *system_memory;
309cb471 71static MemoryRegion *system_io;
62152b8a 72
f6790af6
AK
73AddressSpace address_space_io;
74AddressSpace address_space_memory;
2673a5da 75
0844e007 76MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 77static MemoryRegion io_mem_unassigned;
0e0df1e2 78
7bd4f430
PB
79/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80#define RAM_PREALLOC (1 << 0)
81
dbcb8981
PB
82/* RAM is mmap-ed with MAP_SHARED */
83#define RAM_SHARED (1 << 1)
84
62be4e3a
MT
85/* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88#define RAM_RESIZEABLE (1 << 2)
89
e2eef170 90#endif
9fa3e853 91
bdc44640 92struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
93/* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
f240eb6f 95__thread CPUState *current_cpu;
2e70f6ef 96/* 0 = Do not count executed instructions.
bf20dc07 97 1 = Precise instruction counting.
2e70f6ef 98 2 = Adaptive rate instruction counting. */
5708fc66 99int use_icount;
6a00d601 100
e2eef170 101#if !defined(CONFIG_USER_ONLY)
4346ae3e 102
1db8abb1
PB
103typedef struct PhysPageEntry PhysPageEntry;
104
105struct PhysPageEntry {
9736e55b 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 107 uint32_t skip : 6;
9736e55b 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 109 uint32_t ptr : 26;
1db8abb1
PB
110};
111
8b795765
MT
112#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
03f49957 114/* Size of the L2 (and L3, etc) page tables. */
57271d63 115#define ADDR_SPACE_BITS 64
03f49957 116
026736ce 117#define P_L2_BITS 9
03f49957
PB
118#define P_L2_SIZE (1 << P_L2_BITS)
119
120#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 123
53cb28cb 124typedef struct PhysPageMap {
79e2b9ae
PB
125 struct rcu_head rcu;
126
53cb28cb
MA
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133} PhysPageMap;
134
1db8abb1 135struct AddressSpaceDispatch {
79e2b9ae
PB
136 struct rcu_head rcu;
137
729633c2 138 MemoryRegionSection *mru_section;
1db8abb1
PB
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
53cb28cb 143 PhysPageMap map;
acc9d80b 144 AddressSpace *as;
1db8abb1
PB
145};
146
90260c6c
JK
147#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148typedef struct subpage_t {
149 MemoryRegion iomem;
acc9d80b 150 AddressSpace *as;
90260c6c
JK
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153} subpage_t;
154
b41aac4f
LPF
155#define PHYS_SECTION_UNASSIGNED 0
156#define PHYS_SECTION_NOTDIRTY 1
157#define PHYS_SECTION_ROM 2
158#define PHYS_SECTION_WATCH 3
5312bd8b 159
e2eef170 160static void io_mem_init(void);
62152b8a 161static void memory_map_init(void);
09daed84 162static void tcg_commit(MemoryListener *listener);
e2eef170 163
1ec9b909 164static MemoryRegion io_mem_watch;
32857f4d
PM
165
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
6658ffb8 180#endif
fd6ce8f6 181
6d9a1304 182#if !defined(CONFIG_USER_ONLY)
d6f2ea22 183
53cb28cb 184static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 185{
53cb28cb
MA
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 190 }
f7bf5461
AK
191}
192
db94604b 193static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
194{
195 unsigned i;
8b795765 196 uint32_t ret;
db94604b
PB
197 PhysPageEntry e;
198 PhysPageEntry *p;
f7bf5461 199
53cb28cb 200 ret = map->nodes_nb++;
db94604b 201 p = map->nodes[ret];
f7bf5461 202 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 203 assert(ret != map->nodes_nb_alloc);
db94604b
PB
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 207 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 208 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 209 }
f7bf5461 210 return ret;
d6f2ea22
AK
211}
212
53cb28cb
MA
213static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 215 int level)
f7bf5461
AK
216{
217 PhysPageEntry *p;
03f49957 218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 219
9736e55b 220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 221 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 222 }
db94604b 223 p = map->nodes[lp->ptr];
03f49957 224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 225
03f49957 226 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 227 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 228 lp->skip = 0;
c19e8800 229 lp->ptr = leaf;
07f07b31
AK
230 *index += step;
231 *nb -= step;
2999097b 232 } else {
53cb28cb 233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
234 }
235 ++lp;
f7bf5461
AK
236 }
237}
238
ac1970fb 239static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 240 hwaddr index, hwaddr nb,
2999097b 241 uint16_t leaf)
f7bf5461 242{
2999097b 243 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 245
53cb28cb 246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
247}
248
b35ba30f
MT
249/* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253{
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300}
301
302static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303{
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
53cb28cb 307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
308 }
309}
310
29cb533d
FZ
311static inline bool section_covers_addr(const MemoryRegionSection *section,
312 hwaddr addr)
313{
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
316 */
317 return section->size.hi ||
318 range_covers_byte(section->offset_within_address_space,
319 section->size.lo, addr);
320}
321
97115a8d 322static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 323 Node *nodes, MemoryRegionSection *sections)
92e873b9 324{
31ab2b4a 325 PhysPageEntry *p;
97115a8d 326 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 327 int i;
f1f6e3b8 328
9736e55b 329 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 330 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 331 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 332 }
9affd6fc 333 p = nodes[lp.ptr];
03f49957 334 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 335 }
b35ba30f 336
29cb533d 337 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
338 return &sections[lp.ptr];
339 } else {
340 return &sections[PHYS_SECTION_UNASSIGNED];
341 }
f3705d53
AK
342}
343
e5548617
BS
344bool memory_region_is_unassigned(MemoryRegion *mr)
345{
2a8e7499 346 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 347 && mr != &io_mem_watch;
fd6ce8f6 348}
149f54b5 349
79e2b9ae 350/* Called from RCU critical section */
c7086b4a 351static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
352 hwaddr addr,
353 bool resolve_subpage)
9f029603 354{
729633c2 355 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 356 subpage_t *subpage;
729633c2 357 bool update;
90260c6c 358
729633c2
FZ
359 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
360 section_covers_addr(section, addr)) {
361 update = false;
362 } else {
363 section = phys_page_find(d->phys_map, addr, d->map.nodes,
364 d->map.sections);
365 update = true;
366 }
90260c6c
JK
367 if (resolve_subpage && section->mr->subpage) {
368 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 369 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 370 }
729633c2
FZ
371 if (update) {
372 atomic_set(&d->mru_section, section);
373 }
90260c6c 374 return section;
9f029603
JK
375}
376
79e2b9ae 377/* Called from RCU critical section */
90260c6c 378static MemoryRegionSection *
c7086b4a 379address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 380 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
381{
382 MemoryRegionSection *section;
965eb2fc 383 MemoryRegion *mr;
a87f3954 384 Int128 diff;
149f54b5 385
c7086b4a 386 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
387 /* Compute offset within MemoryRegionSection */
388 addr -= section->offset_within_address_space;
389
390 /* Compute offset within MemoryRegion */
391 *xlat = addr + section->offset_within_region;
392
965eb2fc 393 mr = section->mr;
b242e0e0
PB
394
395 /* MMIO registers can be expected to perform full-width accesses based only
396 * on their address, without considering adjacent registers that could
397 * decode to completely different MemoryRegions. When such registers
398 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
399 * regions overlap wildly. For this reason we cannot clamp the accesses
400 * here.
401 *
402 * If the length is small (as is the case for address_space_ldl/stl),
403 * everything works fine. If the incoming length is large, however,
404 * the caller really has to do the clamping through memory_access_size.
405 */
965eb2fc 406 if (memory_region_is_ram(mr)) {
e4a511f8 407 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
408 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
409 }
149f54b5
PB
410 return section;
411}
90260c6c 412
41063e1e 413/* Called from RCU critical section */
5c8a00ce
PB
414MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
415 hwaddr *xlat, hwaddr *plen,
416 bool is_write)
90260c6c 417{
30951157
AK
418 IOMMUTLBEntry iotlb;
419 MemoryRegionSection *section;
420 MemoryRegion *mr;
30951157
AK
421
422 for (;;) {
79e2b9ae
PB
423 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
424 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
425 mr = section->mr;
426
427 if (!mr->iommu_ops) {
428 break;
429 }
430
8d7b8cb9 431 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
432 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
433 | (addr & iotlb.addr_mask));
23820dbf 434 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
435 if (!(iotlb.perm & (1 << is_write))) {
436 mr = &io_mem_unassigned;
437 break;
438 }
439
440 as = iotlb.target_as;
441 }
442
fe680d0d 443 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 444 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 445 *plen = MIN(page, *plen);
a87f3954
PB
446 }
447
30951157
AK
448 *xlat = addr;
449 return mr;
90260c6c
JK
450}
451
79e2b9ae 452/* Called from RCU critical section */
90260c6c 453MemoryRegionSection *
d7898cda 454address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 455 hwaddr *xlat, hwaddr *plen)
90260c6c 456{
30951157 457 MemoryRegionSection *section;
d7898cda
PM
458 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
459
460 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
461
462 assert(!section->mr->iommu_ops);
463 return section;
90260c6c 464}
5b6dd868 465#endif
fd6ce8f6 466
b170fce3 467#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
468
469static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 470{
259186a7 471 CPUState *cpu = opaque;
a513fe19 472
5b6dd868
BS
473 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
474 version_id is increased. */
259186a7 475 cpu->interrupt_request &= ~0x01;
c01a71c1 476 tlb_flush(cpu, 1);
5b6dd868
BS
477
478 return 0;
a513fe19 479}
7501267e 480
6c3bff0e
PD
481static int cpu_common_pre_load(void *opaque)
482{
483 CPUState *cpu = opaque;
484
adee6424 485 cpu->exception_index = -1;
6c3bff0e
PD
486
487 return 0;
488}
489
490static bool cpu_common_exception_index_needed(void *opaque)
491{
492 CPUState *cpu = opaque;
493
adee6424 494 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
495}
496
497static const VMStateDescription vmstate_cpu_common_exception_index = {
498 .name = "cpu_common/exception_index",
499 .version_id = 1,
500 .minimum_version_id = 1,
5cd8cada 501 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
502 .fields = (VMStateField[]) {
503 VMSTATE_INT32(exception_index, CPUState),
504 VMSTATE_END_OF_LIST()
505 }
506};
507
bac05aa9
AS
508static bool cpu_common_crash_occurred_needed(void *opaque)
509{
510 CPUState *cpu = opaque;
511
512 return cpu->crash_occurred;
513}
514
515static const VMStateDescription vmstate_cpu_common_crash_occurred = {
516 .name = "cpu_common/crash_occurred",
517 .version_id = 1,
518 .minimum_version_id = 1,
519 .needed = cpu_common_crash_occurred_needed,
520 .fields = (VMStateField[]) {
521 VMSTATE_BOOL(crash_occurred, CPUState),
522 VMSTATE_END_OF_LIST()
523 }
524};
525
1a1562f5 526const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
527 .name = "cpu_common",
528 .version_id = 1,
529 .minimum_version_id = 1,
6c3bff0e 530 .pre_load = cpu_common_pre_load,
5b6dd868 531 .post_load = cpu_common_post_load,
35d08458 532 .fields = (VMStateField[]) {
259186a7
AF
533 VMSTATE_UINT32(halted, CPUState),
534 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 535 VMSTATE_END_OF_LIST()
6c3bff0e 536 },
5cd8cada
JQ
537 .subsections = (const VMStateDescription*[]) {
538 &vmstate_cpu_common_exception_index,
bac05aa9 539 &vmstate_cpu_common_crash_occurred,
5cd8cada 540 NULL
5b6dd868
BS
541 }
542};
1a1562f5 543
5b6dd868 544#endif
ea041c0e 545
38d8f5c8 546CPUState *qemu_get_cpu(int index)
ea041c0e 547{
bdc44640 548 CPUState *cpu;
ea041c0e 549
bdc44640 550 CPU_FOREACH(cpu) {
55e5c285 551 if (cpu->cpu_index == index) {
bdc44640 552 return cpu;
55e5c285 553 }
ea041c0e 554 }
5b6dd868 555
bdc44640 556 return NULL;
ea041c0e
FB
557}
558
09daed84 559#if !defined(CONFIG_USER_ONLY)
56943e8c 560void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 561{
12ebc9a7
PM
562 CPUAddressSpace *newas;
563
564 /* Target code should have set num_ases before calling us */
565 assert(asidx < cpu->num_ases);
566
56943e8c
PM
567 if (asidx == 0) {
568 /* address space 0 gets the convenience alias */
569 cpu->as = as;
570 }
571
12ebc9a7
PM
572 /* KVM cannot currently support multiple address spaces. */
573 assert(asidx == 0 || !kvm_enabled());
09daed84 574
12ebc9a7
PM
575 if (!cpu->cpu_ases) {
576 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 577 }
32857f4d 578
12ebc9a7
PM
579 newas = &cpu->cpu_ases[asidx];
580 newas->cpu = cpu;
581 newas->as = as;
56943e8c 582 if (tcg_enabled()) {
12ebc9a7
PM
583 newas->tcg_as_listener.commit = tcg_commit;
584 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 585 }
09daed84 586}
651a5bc0
PM
587
588AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
589{
590 /* Return the AddressSpace corresponding to the specified index */
591 return cpu->cpu_ases[asidx].as;
592}
09daed84
EI
593#endif
594
b7bca733
BR
595#ifndef CONFIG_USER_ONLY
596static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
597
598static int cpu_get_free_index(Error **errp)
599{
600 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
601
602 if (cpu >= MAX_CPUMASK_BITS) {
603 error_setg(errp, "Trying to use more CPUs than max of %d",
604 MAX_CPUMASK_BITS);
605 return -1;
606 }
607
608 bitmap_set(cpu_index_map, cpu, 1);
609 return cpu;
610}
611
612void cpu_exec_exit(CPUState *cpu)
613{
614 if (cpu->cpu_index == -1) {
615 /* cpu_index was never allocated by this @cpu or was already freed. */
616 return;
617 }
618
619 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
620 cpu->cpu_index = -1;
621}
622#else
623
624static int cpu_get_free_index(Error **errp)
625{
626 CPUState *some_cpu;
627 int cpu_index = 0;
628
629 CPU_FOREACH(some_cpu) {
630 cpu_index++;
631 }
632 return cpu_index;
633}
634
635void cpu_exec_exit(CPUState *cpu)
636{
637}
638#endif
639
4bad9e39 640void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 641{
b170fce3 642 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 643 int cpu_index;
b7bca733 644 Error *local_err = NULL;
5b6dd868 645
56943e8c 646 cpu->as = NULL;
12ebc9a7 647 cpu->num_ases = 0;
56943e8c 648
291135b5 649#ifndef CONFIG_USER_ONLY
291135b5 650 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
651
652 /* This is a softmmu CPU object, so create a property for it
653 * so users can wire up its memory. (This can't go in qom/cpu.c
654 * because that file is compiled only once for both user-mode
655 * and system builds.) The default if no link is set up is to use
656 * the system address space.
657 */
658 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
659 (Object **)&cpu->memory,
660 qdev_prop_allow_set_link_before_realize,
661 OBJ_PROP_LINK_UNREF_ON_RELEASE,
662 &error_abort);
663 cpu->memory = system_memory;
664 object_ref(OBJECT(cpu->memory));
291135b5
EH
665#endif
666
5b6dd868
BS
667#if defined(CONFIG_USER_ONLY)
668 cpu_list_lock();
669#endif
b7bca733
BR
670 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
671 if (local_err) {
672 error_propagate(errp, local_err);
673#if defined(CONFIG_USER_ONLY)
674 cpu_list_unlock();
675#endif
676 return;
5b6dd868 677 }
bdc44640 678 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
679#if defined(CONFIG_USER_ONLY)
680 cpu_list_unlock();
681#endif
e0d47944
AF
682 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
683 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
684 }
b170fce3
AF
685 if (cc->vmsd != NULL) {
686 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
687 }
ea041c0e
FB
688}
689
94df27fd 690#if defined(CONFIG_USER_ONLY)
00b941e5 691static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
692{
693 tb_invalidate_phys_page_range(pc, pc + 1, 0);
694}
695#else
00b941e5 696static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 697{
5232e4c7
PM
698 MemTxAttrs attrs;
699 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
700 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 701 if (phys != -1) {
5232e4c7 702 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 703 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 704 }
1e7855a5 705}
c27004ec 706#endif
d720b93d 707
c527ee8f 708#if defined(CONFIG_USER_ONLY)
75a34036 709void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
710
711{
712}
713
3ee887e8
PM
714int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
715 int flags)
716{
717 return -ENOSYS;
718}
719
720void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
721{
722}
723
75a34036 724int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
725 int flags, CPUWatchpoint **watchpoint)
726{
727 return -ENOSYS;
728}
729#else
6658ffb8 730/* Add a watchpoint. */
75a34036 731int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 732 int flags, CPUWatchpoint **watchpoint)
6658ffb8 733{
c0ce998e 734 CPUWatchpoint *wp;
6658ffb8 735
05068c0d 736 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 737 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
738 error_report("tried to set invalid watchpoint at %"
739 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
740 return -EINVAL;
741 }
7267c094 742 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
743
744 wp->vaddr = addr;
05068c0d 745 wp->len = len;
a1d1bb31
AL
746 wp->flags = flags;
747
2dc9f411 748 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
749 if (flags & BP_GDB) {
750 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
751 } else {
752 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
753 }
6658ffb8 754
31b030d4 755 tlb_flush_page(cpu, addr);
a1d1bb31
AL
756
757 if (watchpoint)
758 *watchpoint = wp;
759 return 0;
6658ffb8
PB
760}
761
a1d1bb31 762/* Remove a specific watchpoint. */
75a34036 763int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 764 int flags)
6658ffb8 765{
a1d1bb31 766 CPUWatchpoint *wp;
6658ffb8 767
ff4700b0 768 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 769 if (addr == wp->vaddr && len == wp->len
6e140f28 770 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 771 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
772 return 0;
773 }
774 }
a1d1bb31 775 return -ENOENT;
6658ffb8
PB
776}
777
a1d1bb31 778/* Remove a specific watchpoint by reference. */
75a34036 779void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 780{
ff4700b0 781 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 782
31b030d4 783 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 784
7267c094 785 g_free(watchpoint);
a1d1bb31
AL
786}
787
788/* Remove all matching watchpoints. */
75a34036 789void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 790{
c0ce998e 791 CPUWatchpoint *wp, *next;
a1d1bb31 792
ff4700b0 793 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
794 if (wp->flags & mask) {
795 cpu_watchpoint_remove_by_ref(cpu, wp);
796 }
c0ce998e 797 }
7d03f82f 798}
05068c0d
PM
799
800/* Return true if this watchpoint address matches the specified
801 * access (ie the address range covered by the watchpoint overlaps
802 * partially or completely with the address range covered by the
803 * access).
804 */
805static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
806 vaddr addr,
807 vaddr len)
808{
809 /* We know the lengths are non-zero, but a little caution is
810 * required to avoid errors in the case where the range ends
811 * exactly at the top of the address space and so addr + len
812 * wraps round to zero.
813 */
814 vaddr wpend = wp->vaddr + wp->len - 1;
815 vaddr addrend = addr + len - 1;
816
817 return !(addr > wpend || wp->vaddr > addrend);
818}
819
c527ee8f 820#endif
7d03f82f 821
a1d1bb31 822/* Add a breakpoint. */
b3310ab3 823int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 824 CPUBreakpoint **breakpoint)
4c3a88a2 825{
c0ce998e 826 CPUBreakpoint *bp;
3b46e624 827
7267c094 828 bp = g_malloc(sizeof(*bp));
4c3a88a2 829
a1d1bb31
AL
830 bp->pc = pc;
831 bp->flags = flags;
832
2dc9f411 833 /* keep all GDB-injected breakpoints in front */
00b941e5 834 if (flags & BP_GDB) {
f0c3c505 835 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 836 } else {
f0c3c505 837 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 838 }
3b46e624 839
f0c3c505 840 breakpoint_invalidate(cpu, pc);
a1d1bb31 841
00b941e5 842 if (breakpoint) {
a1d1bb31 843 *breakpoint = bp;
00b941e5 844 }
4c3a88a2 845 return 0;
4c3a88a2
FB
846}
847
a1d1bb31 848/* Remove a specific breakpoint. */
b3310ab3 849int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 850{
a1d1bb31
AL
851 CPUBreakpoint *bp;
852
f0c3c505 853 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 854 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 855 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
856 return 0;
857 }
7d03f82f 858 }
a1d1bb31 859 return -ENOENT;
7d03f82f
EI
860}
861
a1d1bb31 862/* Remove a specific breakpoint by reference. */
b3310ab3 863void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 864{
f0c3c505
AF
865 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
866
867 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 868
7267c094 869 g_free(breakpoint);
a1d1bb31
AL
870}
871
872/* Remove all matching breakpoints. */
b3310ab3 873void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 874{
c0ce998e 875 CPUBreakpoint *bp, *next;
a1d1bb31 876
f0c3c505 877 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
878 if (bp->flags & mask) {
879 cpu_breakpoint_remove_by_ref(cpu, bp);
880 }
c0ce998e 881 }
4c3a88a2
FB
882}
883
c33a346e
FB
884/* enable or disable single step mode. EXCP_DEBUG is returned by the
885 CPU loop after each instruction */
3825b28f 886void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 887{
ed2803da
AF
888 if (cpu->singlestep_enabled != enabled) {
889 cpu->singlestep_enabled = enabled;
890 if (kvm_enabled()) {
38e478ec 891 kvm_update_guest_debug(cpu, 0);
ed2803da 892 } else {
ccbb4d44 893 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 894 /* XXX: only flush what is necessary */
bbd77c18 895 tb_flush(cpu);
e22a25c9 896 }
c33a346e 897 }
c33a346e
FB
898}
899
a47dddd7 900void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
901{
902 va_list ap;
493ae1f0 903 va_list ap2;
7501267e
FB
904
905 va_start(ap, fmt);
493ae1f0 906 va_copy(ap2, ap);
7501267e
FB
907 fprintf(stderr, "qemu: fatal: ");
908 vfprintf(stderr, fmt, ap);
909 fprintf(stderr, "\n");
878096ee 910 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 911 if (qemu_log_separate()) {
93fcfe39
AL
912 qemu_log("qemu: fatal: ");
913 qemu_log_vprintf(fmt, ap2);
914 qemu_log("\n");
a0762859 915 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 916 qemu_log_flush();
93fcfe39 917 qemu_log_close();
924edcae 918 }
493ae1f0 919 va_end(ap2);
f9373291 920 va_end(ap);
7615936e 921 replay_finish();
fd052bf6
RV
922#if defined(CONFIG_USER_ONLY)
923 {
924 struct sigaction act;
925 sigfillset(&act.sa_mask);
926 act.sa_handler = SIG_DFL;
927 sigaction(SIGABRT, &act, NULL);
928 }
929#endif
7501267e
FB
930 abort();
931}
932
0124311e 933#if !defined(CONFIG_USER_ONLY)
0dc3f44a 934/* Called from RCU critical section */
041603fe
PB
935static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
936{
937 RAMBlock *block;
938
43771539 939 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 940 if (block && addr - block->offset < block->max_length) {
68851b98 941 return block;
041603fe 942 }
0dc3f44a 943 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 944 if (addr - block->offset < block->max_length) {
041603fe
PB
945 goto found;
946 }
947 }
948
949 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
950 abort();
951
952found:
43771539
PB
953 /* It is safe to write mru_block outside the iothread lock. This
954 * is what happens:
955 *
956 * mru_block = xxx
957 * rcu_read_unlock()
958 * xxx removed from list
959 * rcu_read_lock()
960 * read mru_block
961 * mru_block = NULL;
962 * call_rcu(reclaim_ramblock, xxx);
963 * rcu_read_unlock()
964 *
965 * atomic_rcu_set is not needed here. The block was already published
966 * when it was placed into the list. Here we're just making an extra
967 * copy of the pointer.
968 */
041603fe
PB
969 ram_list.mru_block = block;
970 return block;
971}
972
a2f4d5be 973static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 974{
9a13565d 975 CPUState *cpu;
041603fe 976 ram_addr_t start1;
a2f4d5be
JQ
977 RAMBlock *block;
978 ram_addr_t end;
979
980 end = TARGET_PAGE_ALIGN(start + length);
981 start &= TARGET_PAGE_MASK;
d24981d3 982
0dc3f44a 983 rcu_read_lock();
041603fe
PB
984 block = qemu_get_ram_block(start);
985 assert(block == qemu_get_ram_block(end - 1));
1240be24 986 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
987 CPU_FOREACH(cpu) {
988 tlb_reset_dirty(cpu, start1, length);
989 }
0dc3f44a 990 rcu_read_unlock();
d24981d3
JQ
991}
992
5579c7f3 993/* Note: start and end must be within the same ram block. */
03eebc9e
SH
994bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
995 ram_addr_t length,
996 unsigned client)
1ccde1cb 997{
5b82b703 998 DirtyMemoryBlocks *blocks;
03eebc9e 999 unsigned long end, page;
5b82b703 1000 bool dirty = false;
03eebc9e
SH
1001
1002 if (length == 0) {
1003 return false;
1004 }
f23db169 1005
03eebc9e
SH
1006 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1007 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1008
1009 rcu_read_lock();
1010
1011 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1012
1013 while (page < end) {
1014 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1015 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1016 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1017
1018 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1019 offset, num);
1020 page += num;
1021 }
1022
1023 rcu_read_unlock();
03eebc9e
SH
1024
1025 if (dirty && tcg_enabled()) {
a2f4d5be 1026 tlb_reset_dirty_range_all(start, length);
5579c7f3 1027 }
03eebc9e
SH
1028
1029 return dirty;
1ccde1cb
FB
1030}
1031
79e2b9ae 1032/* Called from RCU critical section */
bb0e627a 1033hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1034 MemoryRegionSection *section,
1035 target_ulong vaddr,
1036 hwaddr paddr, hwaddr xlat,
1037 int prot,
1038 target_ulong *address)
e5548617 1039{
a8170e5e 1040 hwaddr iotlb;
e5548617
BS
1041 CPUWatchpoint *wp;
1042
cc5bea60 1043 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1044 /* Normal RAM. */
1045 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1046 + xlat;
e5548617 1047 if (!section->readonly) {
b41aac4f 1048 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1049 } else {
b41aac4f 1050 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1051 }
1052 } else {
0b8e2c10
PM
1053 AddressSpaceDispatch *d;
1054
1055 d = atomic_rcu_read(&section->address_space->dispatch);
1056 iotlb = section - d->map.sections;
149f54b5 1057 iotlb += xlat;
e5548617
BS
1058 }
1059
1060 /* Make accesses to pages with watchpoints go via the
1061 watchpoint trap routines. */
ff4700b0 1062 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1063 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1064 /* Avoid trapping reads of pages with a write breakpoint. */
1065 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1066 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1067 *address |= TLB_MMIO;
1068 break;
1069 }
1070 }
1071 }
1072
1073 return iotlb;
1074}
9fa3e853
FB
1075#endif /* defined(CONFIG_USER_ONLY) */
1076
e2eef170 1077#if !defined(CONFIG_USER_ONLY)
8da3ff18 1078
c227f099 1079static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1080 uint16_t section);
acc9d80b 1081static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1082
a2b257d6
IM
1083static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1084 qemu_anon_ram_alloc;
91138037
MA
1085
1086/*
1087 * Set a custom physical guest memory alloator.
1088 * Accelerators with unusual needs may need this. Hopefully, we can
1089 * get rid of it eventually.
1090 */
a2b257d6 1091void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1092{
1093 phys_mem_alloc = alloc;
1094}
1095
53cb28cb
MA
1096static uint16_t phys_section_add(PhysPageMap *map,
1097 MemoryRegionSection *section)
5312bd8b 1098{
68f3f65b
PB
1099 /* The physical section number is ORed with a page-aligned
1100 * pointer to produce the iotlb entries. Thus it should
1101 * never overflow into the page-aligned value.
1102 */
53cb28cb 1103 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1104
53cb28cb
MA
1105 if (map->sections_nb == map->sections_nb_alloc) {
1106 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1107 map->sections = g_renew(MemoryRegionSection, map->sections,
1108 map->sections_nb_alloc);
5312bd8b 1109 }
53cb28cb 1110 map->sections[map->sections_nb] = *section;
dfde4e6e 1111 memory_region_ref(section->mr);
53cb28cb 1112 return map->sections_nb++;
5312bd8b
AK
1113}
1114
058bc4b5
PB
1115static void phys_section_destroy(MemoryRegion *mr)
1116{
55b4e80b
DS
1117 bool have_sub_page = mr->subpage;
1118
dfde4e6e
PB
1119 memory_region_unref(mr);
1120
55b4e80b 1121 if (have_sub_page) {
058bc4b5 1122 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1123 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1124 g_free(subpage);
1125 }
1126}
1127
6092666e 1128static void phys_sections_free(PhysPageMap *map)
5312bd8b 1129{
9affd6fc
PB
1130 while (map->sections_nb > 0) {
1131 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1132 phys_section_destroy(section->mr);
1133 }
9affd6fc
PB
1134 g_free(map->sections);
1135 g_free(map->nodes);
5312bd8b
AK
1136}
1137
ac1970fb 1138static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1139{
1140 subpage_t *subpage;
a8170e5e 1141 hwaddr base = section->offset_within_address_space
0f0cb164 1142 & TARGET_PAGE_MASK;
97115a8d 1143 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1144 d->map.nodes, d->map.sections);
0f0cb164
AK
1145 MemoryRegionSection subsection = {
1146 .offset_within_address_space = base,
052e87b0 1147 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1148 };
a8170e5e 1149 hwaddr start, end;
0f0cb164 1150
f3705d53 1151 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1152
f3705d53 1153 if (!(existing->mr->subpage)) {
acc9d80b 1154 subpage = subpage_init(d->as, base);
3be91e86 1155 subsection.address_space = d->as;
0f0cb164 1156 subsection.mr = &subpage->iomem;
ac1970fb 1157 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1158 phys_section_add(&d->map, &subsection));
0f0cb164 1159 } else {
f3705d53 1160 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1161 }
1162 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1163 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1164 subpage_register(subpage, start, end,
1165 phys_section_add(&d->map, section));
0f0cb164
AK
1166}
1167
1168
052e87b0
PB
1169static void register_multipage(AddressSpaceDispatch *d,
1170 MemoryRegionSection *section)
33417e70 1171{
a8170e5e 1172 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1173 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1174 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1175 TARGET_PAGE_BITS));
dd81124b 1176
733d5ef5
PB
1177 assert(num_pages);
1178 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1179}
1180
ac1970fb 1181static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1182{
89ae337a 1183 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1184 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1185 MemoryRegionSection now = *section, remain = *section;
052e87b0 1186 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1187
733d5ef5
PB
1188 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1189 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1190 - now.offset_within_address_space;
1191
052e87b0 1192 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1193 register_subpage(d, &now);
733d5ef5 1194 } else {
052e87b0 1195 now.size = int128_zero();
733d5ef5 1196 }
052e87b0
PB
1197 while (int128_ne(remain.size, now.size)) {
1198 remain.size = int128_sub(remain.size, now.size);
1199 remain.offset_within_address_space += int128_get64(now.size);
1200 remain.offset_within_region += int128_get64(now.size);
69b67646 1201 now = remain;
052e87b0 1202 if (int128_lt(remain.size, page_size)) {
733d5ef5 1203 register_subpage(d, &now);
88266249 1204 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1205 now.size = page_size;
ac1970fb 1206 register_subpage(d, &now);
69b67646 1207 } else {
052e87b0 1208 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1209 register_multipage(d, &now);
69b67646 1210 }
0f0cb164
AK
1211 }
1212}
1213
62a2744c
SY
1214void qemu_flush_coalesced_mmio_buffer(void)
1215{
1216 if (kvm_enabled())
1217 kvm_flush_coalesced_mmio_buffer();
1218}
1219
b2a8658e
UD
1220void qemu_mutex_lock_ramlist(void)
1221{
1222 qemu_mutex_lock(&ram_list.mutex);
1223}
1224
1225void qemu_mutex_unlock_ramlist(void)
1226{
1227 qemu_mutex_unlock(&ram_list.mutex);
1228}
1229
e1e84ba0 1230#ifdef __linux__
04b16653
AW
1231static void *file_ram_alloc(RAMBlock *block,
1232 ram_addr_t memory,
7f56e740
PB
1233 const char *path,
1234 Error **errp)
c902760f 1235{
fd97fd44 1236 bool unlink_on_error = false;
c902760f 1237 char *filename;
8ca761f6
PF
1238 char *sanitized_name;
1239 char *c;
794e8f30 1240 void *area;
c902760f 1241 int fd;
e1fb6471 1242 int64_t page_size;
c902760f
MT
1243
1244 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1245 error_setg(errp,
1246 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1247 return NULL;
c902760f
MT
1248 }
1249
fd97fd44
MA
1250 for (;;) {
1251 fd = open(path, O_RDWR);
1252 if (fd >= 0) {
1253 /* @path names an existing file, use it */
1254 break;
8d31d6b6 1255 }
fd97fd44
MA
1256 if (errno == ENOENT) {
1257 /* @path names a file that doesn't exist, create it */
1258 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1259 if (fd >= 0) {
1260 unlink_on_error = true;
1261 break;
1262 }
1263 } else if (errno == EISDIR) {
1264 /* @path names a directory, create a file there */
1265 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1266 sanitized_name = g_strdup(memory_region_name(block->mr));
1267 for (c = sanitized_name; *c != '\0'; c++) {
1268 if (*c == '/') {
1269 *c = '_';
1270 }
1271 }
8ca761f6 1272
fd97fd44
MA
1273 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1274 sanitized_name);
1275 g_free(sanitized_name);
8d31d6b6 1276
fd97fd44
MA
1277 fd = mkstemp(filename);
1278 if (fd >= 0) {
1279 unlink(filename);
1280 g_free(filename);
1281 break;
1282 }
1283 g_free(filename);
8d31d6b6 1284 }
fd97fd44
MA
1285 if (errno != EEXIST && errno != EINTR) {
1286 error_setg_errno(errp, errno,
1287 "can't open backing store %s for guest RAM",
1288 path);
1289 goto error;
1290 }
1291 /*
1292 * Try again on EINTR and EEXIST. The latter happens when
1293 * something else creates the file between our two open().
1294 */
8d31d6b6 1295 }
c902760f 1296
e1fb6471
MA
1297 page_size = qemu_fd_getpagesize(fd);
1298 block->mr->align = page_size;
fd97fd44 1299
e1fb6471 1300 if (memory < page_size) {
fd97fd44
MA
1301 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1302 "or larger than page size 0x%" PRIx64,
e1fb6471 1303 memory, page_size);
f9a49dfa 1304 goto error;
c902760f 1305 }
c902760f 1306
e1fb6471 1307 memory = ROUND_UP(memory, page_size);
c902760f
MT
1308
1309 /*
1310 * ftruncate is not supported by hugetlbfs in older
1311 * hosts, so don't bother bailing out on errors.
1312 * If anything goes wrong with it under other filesystems,
1313 * mmap will fail.
1314 */
7f56e740 1315 if (ftruncate(fd, memory)) {
9742bf26 1316 perror("ftruncate");
7f56e740 1317 }
c902760f 1318
e1fb6471 1319 area = qemu_ram_mmap(fd, memory, page_size, block->flags & RAM_SHARED);
c902760f 1320 if (area == MAP_FAILED) {
7f56e740 1321 error_setg_errno(errp, errno,
fd97fd44 1322 "unable to map backing store for guest RAM");
9742bf26 1323 close(fd);
f9a49dfa 1324 goto error;
c902760f 1325 }
ef36fa14
MT
1326
1327 if (mem_prealloc) {
38183310 1328 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1329 }
1330
04b16653 1331 block->fd = fd;
c902760f 1332 return area;
f9a49dfa
MT
1333
1334error:
fd97fd44
MA
1335 if (unlink_on_error) {
1336 unlink(path);
1337 }
1338 close(fd);
f9a49dfa 1339 return NULL;
c902760f
MT
1340}
1341#endif
1342
0dc3f44a 1343/* Called with the ramlist lock held. */
d17b5288 1344static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1345{
1346 RAMBlock *block, *next_block;
3e837b2c 1347 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1348
49cd9ac6
SH
1349 assert(size != 0); /* it would hand out same offset multiple times */
1350
0dc3f44a 1351 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1352 return 0;
0d53d9fe 1353 }
04b16653 1354
0dc3f44a 1355 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1356 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1357
62be4e3a 1358 end = block->offset + block->max_length;
04b16653 1359
0dc3f44a 1360 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1361 if (next_block->offset >= end) {
1362 next = MIN(next, next_block->offset);
1363 }
1364 }
1365 if (next - end >= size && next - end < mingap) {
3e837b2c 1366 offset = end;
04b16653
AW
1367 mingap = next - end;
1368 }
1369 }
3e837b2c
AW
1370
1371 if (offset == RAM_ADDR_MAX) {
1372 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1373 (uint64_t)size);
1374 abort();
1375 }
1376
04b16653
AW
1377 return offset;
1378}
1379
652d7ec2 1380ram_addr_t last_ram_offset(void)
d17b5288
AW
1381{
1382 RAMBlock *block;
1383 ram_addr_t last = 0;
1384
0dc3f44a
MD
1385 rcu_read_lock();
1386 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1387 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1388 }
0dc3f44a 1389 rcu_read_unlock();
d17b5288
AW
1390 return last;
1391}
1392
ddb97f1d
JB
1393static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1394{
1395 int ret;
ddb97f1d
JB
1396
1397 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1398 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1399 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1400 if (ret) {
1401 perror("qemu_madvise");
1402 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1403 "but dump_guest_core=off specified\n");
1404 }
1405 }
1406}
1407
0dc3f44a
MD
1408/* Called within an RCU critical section, or while the ramlist lock
1409 * is held.
1410 */
20cfe881 1411static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1412{
20cfe881 1413 RAMBlock *block;
84b89d78 1414
0dc3f44a 1415 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1416 if (block->offset == addr) {
20cfe881 1417 return block;
c5705a77
AK
1418 }
1419 }
20cfe881
HT
1420
1421 return NULL;
1422}
1423
422148d3
DDAG
1424const char *qemu_ram_get_idstr(RAMBlock *rb)
1425{
1426 return rb->idstr;
1427}
1428
ae3a7047 1429/* Called with iothread lock held. */
20cfe881
HT
1430void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1431{
ae3a7047 1432 RAMBlock *new_block, *block;
20cfe881 1433
0dc3f44a 1434 rcu_read_lock();
ae3a7047 1435 new_block = find_ram_block(addr);
c5705a77
AK
1436 assert(new_block);
1437 assert(!new_block->idstr[0]);
84b89d78 1438
09e5ab63
AL
1439 if (dev) {
1440 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1441 if (id) {
1442 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1443 g_free(id);
84b89d78
CM
1444 }
1445 }
1446 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1447
0dc3f44a 1448 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1449 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1450 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1451 new_block->idstr);
1452 abort();
1453 }
1454 }
0dc3f44a 1455 rcu_read_unlock();
c5705a77
AK
1456}
1457
ae3a7047 1458/* Called with iothread lock held. */
20cfe881
HT
1459void qemu_ram_unset_idstr(ram_addr_t addr)
1460{
ae3a7047 1461 RAMBlock *block;
20cfe881 1462
ae3a7047
MD
1463 /* FIXME: arch_init.c assumes that this is not called throughout
1464 * migration. Ignore the problem since hot-unplug during migration
1465 * does not work anyway.
1466 */
1467
0dc3f44a 1468 rcu_read_lock();
ae3a7047 1469 block = find_ram_block(addr);
20cfe881
HT
1470 if (block) {
1471 memset(block->idstr, 0, sizeof(block->idstr));
1472 }
0dc3f44a 1473 rcu_read_unlock();
20cfe881
HT
1474}
1475
8490fc78
LC
1476static int memory_try_enable_merging(void *addr, size_t len)
1477{
75cc7f01 1478 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1479 /* disabled by the user */
1480 return 0;
1481 }
1482
1483 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1484}
1485
62be4e3a
MT
1486/* Only legal before guest might have detected the memory size: e.g. on
1487 * incoming migration, or right after reset.
1488 *
1489 * As memory core doesn't know how is memory accessed, it is up to
1490 * resize callback to update device state and/or add assertions to detect
1491 * misuse, if necessary.
1492 */
1493int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1494{
1495 RAMBlock *block = find_ram_block(base);
1496
1497 assert(block);
1498
4ed023ce 1499 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1500
62be4e3a
MT
1501 if (block->used_length == newsize) {
1502 return 0;
1503 }
1504
1505 if (!(block->flags & RAM_RESIZEABLE)) {
1506 error_setg_errno(errp, EINVAL,
1507 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1508 " in != 0x" RAM_ADDR_FMT, block->idstr,
1509 newsize, block->used_length);
1510 return -EINVAL;
1511 }
1512
1513 if (block->max_length < newsize) {
1514 error_setg_errno(errp, EINVAL,
1515 "Length too large: %s: 0x" RAM_ADDR_FMT
1516 " > 0x" RAM_ADDR_FMT, block->idstr,
1517 newsize, block->max_length);
1518 return -EINVAL;
1519 }
1520
1521 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1522 block->used_length = newsize;
58d2707e
PB
1523 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1524 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1525 memory_region_set_size(block->mr, newsize);
1526 if (block->resized) {
1527 block->resized(block->idstr, newsize, block->host);
1528 }
1529 return 0;
1530}
1531
5b82b703
SH
1532/* Called with ram_list.mutex held */
1533static void dirty_memory_extend(ram_addr_t old_ram_size,
1534 ram_addr_t new_ram_size)
1535{
1536 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1537 DIRTY_MEMORY_BLOCK_SIZE);
1538 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1539 DIRTY_MEMORY_BLOCK_SIZE);
1540 int i;
1541
1542 /* Only need to extend if block count increased */
1543 if (new_num_blocks <= old_num_blocks) {
1544 return;
1545 }
1546
1547 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1548 DirtyMemoryBlocks *old_blocks;
1549 DirtyMemoryBlocks *new_blocks;
1550 int j;
1551
1552 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1553 new_blocks = g_malloc(sizeof(*new_blocks) +
1554 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1555
1556 if (old_num_blocks) {
1557 memcpy(new_blocks->blocks, old_blocks->blocks,
1558 old_num_blocks * sizeof(old_blocks->blocks[0]));
1559 }
1560
1561 for (j = old_num_blocks; j < new_num_blocks; j++) {
1562 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1563 }
1564
1565 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1566
1567 if (old_blocks) {
1568 g_free_rcu(old_blocks, rcu);
1569 }
1570 }
1571}
1572
528f46af 1573static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1574{
e1c57ab8 1575 RAMBlock *block;
0d53d9fe 1576 RAMBlock *last_block = NULL;
2152f5ca 1577 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1578 Error *err = NULL;
2152f5ca
JQ
1579
1580 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1581
b2a8658e 1582 qemu_mutex_lock_ramlist();
9b8424d5 1583 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1584
1585 if (!new_block->host) {
1586 if (xen_enabled()) {
9b8424d5 1587 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1588 new_block->mr, &err);
1589 if (err) {
1590 error_propagate(errp, err);
1591 qemu_mutex_unlock_ramlist();
39c350ee 1592 return;
37aa7a0e 1593 }
e1c57ab8 1594 } else {
9b8424d5 1595 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1596 &new_block->mr->align);
39228250 1597 if (!new_block->host) {
ef701d7b
HT
1598 error_setg_errno(errp, errno,
1599 "cannot set up guest memory '%s'",
1600 memory_region_name(new_block->mr));
1601 qemu_mutex_unlock_ramlist();
39c350ee 1602 return;
39228250 1603 }
9b8424d5 1604 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1605 }
c902760f 1606 }
94a6b54f 1607
dd631697
LZ
1608 new_ram_size = MAX(old_ram_size,
1609 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1610 if (new_ram_size > old_ram_size) {
1611 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1612 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1613 }
0d53d9fe
MD
1614 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1615 * QLIST (which has an RCU-friendly variant) does not have insertion at
1616 * tail, so save the last element in last_block.
1617 */
0dc3f44a 1618 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1619 last_block = block;
9b8424d5 1620 if (block->max_length < new_block->max_length) {
abb26d63
PB
1621 break;
1622 }
1623 }
1624 if (block) {
0dc3f44a 1625 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1626 } else if (last_block) {
0dc3f44a 1627 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1628 } else { /* list is empty */
0dc3f44a 1629 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1630 }
0d6d3c87 1631 ram_list.mru_block = NULL;
94a6b54f 1632
0dc3f44a
MD
1633 /* Write list before version */
1634 smp_wmb();
f798b07f 1635 ram_list.version++;
b2a8658e 1636 qemu_mutex_unlock_ramlist();
f798b07f 1637
9b8424d5 1638 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1639 new_block->used_length,
1640 DIRTY_CLIENTS_ALL);
94a6b54f 1641
a904c911
PB
1642 if (new_block->host) {
1643 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1644 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1645 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1646 if (kvm_enabled()) {
1647 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1648 }
e1c57ab8 1649 }
94a6b54f 1650}
e9a1ab19 1651
0b183fc8 1652#ifdef __linux__
528f46af
FZ
1653RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1654 bool share, const char *mem_path,
1655 Error **errp)
e1c57ab8
PB
1656{
1657 RAMBlock *new_block;
ef701d7b 1658 Error *local_err = NULL;
e1c57ab8
PB
1659
1660 if (xen_enabled()) {
7f56e740 1661 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1662 return NULL;
e1c57ab8
PB
1663 }
1664
1665 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1666 /*
1667 * file_ram_alloc() needs to allocate just like
1668 * phys_mem_alloc, but we haven't bothered to provide
1669 * a hook there.
1670 */
7f56e740
PB
1671 error_setg(errp,
1672 "-mem-path not supported with this accelerator");
528f46af 1673 return NULL;
e1c57ab8
PB
1674 }
1675
4ed023ce 1676 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1677 new_block = g_malloc0(sizeof(*new_block));
1678 new_block->mr = mr;
9b8424d5
MT
1679 new_block->used_length = size;
1680 new_block->max_length = size;
dbcb8981 1681 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1682 new_block->host = file_ram_alloc(new_block, size,
1683 mem_path, errp);
1684 if (!new_block->host) {
1685 g_free(new_block);
528f46af 1686 return NULL;
7f56e740
PB
1687 }
1688
528f46af 1689 ram_block_add(new_block, &local_err);
ef701d7b
HT
1690 if (local_err) {
1691 g_free(new_block);
1692 error_propagate(errp, local_err);
528f46af 1693 return NULL;
ef701d7b 1694 }
528f46af 1695 return new_block;
e1c57ab8 1696}
0b183fc8 1697#endif
e1c57ab8 1698
62be4e3a 1699static
528f46af
FZ
1700RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1701 void (*resized)(const char*,
1702 uint64_t length,
1703 void *host),
1704 void *host, bool resizeable,
1705 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1706{
1707 RAMBlock *new_block;
ef701d7b 1708 Error *local_err = NULL;
e1c57ab8 1709
4ed023ce
DDAG
1710 size = HOST_PAGE_ALIGN(size);
1711 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1712 new_block = g_malloc0(sizeof(*new_block));
1713 new_block->mr = mr;
62be4e3a 1714 new_block->resized = resized;
9b8424d5
MT
1715 new_block->used_length = size;
1716 new_block->max_length = max_size;
62be4e3a 1717 assert(max_size >= size);
e1c57ab8
PB
1718 new_block->fd = -1;
1719 new_block->host = host;
1720 if (host) {
7bd4f430 1721 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1722 }
62be4e3a
MT
1723 if (resizeable) {
1724 new_block->flags |= RAM_RESIZEABLE;
1725 }
528f46af 1726 ram_block_add(new_block, &local_err);
ef701d7b
HT
1727 if (local_err) {
1728 g_free(new_block);
1729 error_propagate(errp, local_err);
528f46af 1730 return NULL;
ef701d7b 1731 }
528f46af 1732 return new_block;
e1c57ab8
PB
1733}
1734
528f46af 1735RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1736 MemoryRegion *mr, Error **errp)
1737{
1738 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1739}
1740
528f46af 1741RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1742{
62be4e3a
MT
1743 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1744}
1745
528f46af 1746RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1747 void (*resized)(const char*,
1748 uint64_t length,
1749 void *host),
1750 MemoryRegion *mr, Error **errp)
1751{
1752 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1753}
1754
43771539
PB
1755static void reclaim_ramblock(RAMBlock *block)
1756{
1757 if (block->flags & RAM_PREALLOC) {
1758 ;
1759 } else if (xen_enabled()) {
1760 xen_invalidate_map_cache_entry(block->host);
1761#ifndef _WIN32
1762 } else if (block->fd >= 0) {
2f3a2bb1 1763 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1764 close(block->fd);
1765#endif
1766 } else {
1767 qemu_anon_ram_free(block->host, block->max_length);
1768 }
1769 g_free(block);
1770}
1771
f1060c55 1772void qemu_ram_free(RAMBlock *block)
e9a1ab19 1773{
b2a8658e 1774 qemu_mutex_lock_ramlist();
f1060c55
FZ
1775 QLIST_REMOVE_RCU(block, next);
1776 ram_list.mru_block = NULL;
1777 /* Write list before version */
1778 smp_wmb();
1779 ram_list.version++;
1780 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1781 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1782}
1783
cd19cfa2
HY
1784#ifndef _WIN32
1785void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1786{
1787 RAMBlock *block;
1788 ram_addr_t offset;
1789 int flags;
1790 void *area, *vaddr;
1791
0dc3f44a 1792 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1793 offset = addr - block->offset;
9b8424d5 1794 if (offset < block->max_length) {
1240be24 1795 vaddr = ramblock_ptr(block, offset);
7bd4f430 1796 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1797 ;
dfeaf2ab
MA
1798 } else if (xen_enabled()) {
1799 abort();
cd19cfa2
HY
1800 } else {
1801 flags = MAP_FIXED;
3435f395 1802 if (block->fd >= 0) {
dbcb8981
PB
1803 flags |= (block->flags & RAM_SHARED ?
1804 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1805 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1806 flags, block->fd, offset);
cd19cfa2 1807 } else {
2eb9fbaa
MA
1808 /*
1809 * Remap needs to match alloc. Accelerators that
1810 * set phys_mem_alloc never remap. If they did,
1811 * we'd need a remap hook here.
1812 */
1813 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1814
cd19cfa2
HY
1815 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1816 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1817 flags, -1, 0);
cd19cfa2
HY
1818 }
1819 if (area != vaddr) {
f15fbc4b
AP
1820 fprintf(stderr, "Could not remap addr: "
1821 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1822 length, addr);
1823 exit(1);
1824 }
8490fc78 1825 memory_try_enable_merging(vaddr, length);
ddb97f1d 1826 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1827 }
cd19cfa2
HY
1828 }
1829 }
1830}
1831#endif /* !_WIN32 */
1832
a35ba7be
PB
1833int qemu_get_ram_fd(ram_addr_t addr)
1834{
ae3a7047
MD
1835 RAMBlock *block;
1836 int fd;
a35ba7be 1837
0dc3f44a 1838 rcu_read_lock();
ae3a7047
MD
1839 block = qemu_get_ram_block(addr);
1840 fd = block->fd;
0dc3f44a 1841 rcu_read_unlock();
ae3a7047 1842 return fd;
a35ba7be
PB
1843}
1844
56a571d9
TM
1845void qemu_set_ram_fd(ram_addr_t addr, int fd)
1846{
1847 RAMBlock *block;
1848
1849 rcu_read_lock();
1850 block = qemu_get_ram_block(addr);
1851 block->fd = fd;
1852 rcu_read_unlock();
1853}
1854
3fd74b84
DM
1855void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1856{
ae3a7047
MD
1857 RAMBlock *block;
1858 void *ptr;
3fd74b84 1859
0dc3f44a 1860 rcu_read_lock();
ae3a7047
MD
1861 block = qemu_get_ram_block(addr);
1862 ptr = ramblock_ptr(block, 0);
0dc3f44a 1863 rcu_read_unlock();
ae3a7047 1864 return ptr;
3fd74b84
DM
1865}
1866
1b5ec234 1867/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1868 * This should not be used for general purpose DMA. Use address_space_map
1869 * or address_space_rw instead. For local memory (e.g. video ram) that the
1870 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1871 *
49b24afc 1872 * Called within RCU critical section.
1b5ec234 1873 */
3655cb9c 1874void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1875{
3655cb9c
GA
1876 RAMBlock *block = ram_block;
1877
1878 if (block == NULL) {
1879 block = qemu_get_ram_block(addr);
1880 }
ae3a7047
MD
1881
1882 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1883 /* We need to check if the requested address is in the RAM
1884 * because we don't want to map the entire memory in QEMU.
1885 * In that case just map until the end of the page.
1886 */
1887 if (block->offset == 0) {
49b24afc 1888 return xen_map_cache(addr, 0, 0);
0d6d3c87 1889 }
ae3a7047
MD
1890
1891 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1892 }
49b24afc 1893 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1894}
1895
38bee5dc 1896/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1897 * but takes a size argument.
0dc3f44a 1898 *
e81bcda5 1899 * Called within RCU critical section.
ae3a7047 1900 */
3655cb9c
GA
1901static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1902 hwaddr *size)
38bee5dc 1903{
3655cb9c 1904 RAMBlock *block = ram_block;
e81bcda5 1905 ram_addr_t offset_inside_block;
8ab934f9
SS
1906 if (*size == 0) {
1907 return NULL;
1908 }
e81bcda5 1909
3655cb9c
GA
1910 if (block == NULL) {
1911 block = qemu_get_ram_block(addr);
1912 }
e81bcda5
PB
1913 offset_inside_block = addr - block->offset;
1914 *size = MIN(*size, block->max_length - offset_inside_block);
1915
1916 if (xen_enabled() && block->host == NULL) {
1917 /* We need to check if the requested address is in the RAM
1918 * because we don't want to map the entire memory in QEMU.
1919 * In that case just map the requested area.
1920 */
1921 if (block->offset == 0) {
1922 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1923 }
1924
e81bcda5 1925 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1926 }
e81bcda5
PB
1927
1928 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1929}
1930
422148d3
DDAG
1931/*
1932 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1933 * in that RAMBlock.
1934 *
1935 * ptr: Host pointer to look up
1936 * round_offset: If true round the result offset down to a page boundary
1937 * *ram_addr: set to result ram_addr
1938 * *offset: set to result offset within the RAMBlock
1939 *
1940 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1941 *
1942 * By the time this function returns, the returned pointer is not protected
1943 * by RCU anymore. If the caller is not within an RCU critical section and
1944 * does not hold the iothread lock, it must have other means of protecting the
1945 * pointer, such as a reference to the region that includes the incoming
1946 * ram_addr_t.
1947 */
422148d3
DDAG
1948RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1949 ram_addr_t *ram_addr,
1950 ram_addr_t *offset)
5579c7f3 1951{
94a6b54f
PB
1952 RAMBlock *block;
1953 uint8_t *host = ptr;
1954
868bb33f 1955 if (xen_enabled()) {
0dc3f44a 1956 rcu_read_lock();
e41d7c69 1957 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1958 block = qemu_get_ram_block(*ram_addr);
1959 if (block) {
1960 *offset = (host - block->host);
1961 }
0dc3f44a 1962 rcu_read_unlock();
422148d3 1963 return block;
712c2b41
SS
1964 }
1965
0dc3f44a
MD
1966 rcu_read_lock();
1967 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1968 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1969 goto found;
1970 }
1971
0dc3f44a 1972 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1973 /* This case append when the block is not mapped. */
1974 if (block->host == NULL) {
1975 continue;
1976 }
9b8424d5 1977 if (host - block->host < block->max_length) {
23887b79 1978 goto found;
f471a17e 1979 }
94a6b54f 1980 }
432d268c 1981
0dc3f44a 1982 rcu_read_unlock();
1b5ec234 1983 return NULL;
23887b79
PB
1984
1985found:
422148d3
DDAG
1986 *offset = (host - block->host);
1987 if (round_offset) {
1988 *offset &= TARGET_PAGE_MASK;
1989 }
1990 *ram_addr = block->offset + *offset;
0dc3f44a 1991 rcu_read_unlock();
422148d3
DDAG
1992 return block;
1993}
1994
e3dd7493
DDAG
1995/*
1996 * Finds the named RAMBlock
1997 *
1998 * name: The name of RAMBlock to find
1999 *
2000 * Returns: RAMBlock (or NULL if not found)
2001 */
2002RAMBlock *qemu_ram_block_by_name(const char *name)
2003{
2004 RAMBlock *block;
2005
2006 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2007 if (!strcmp(name, block->idstr)) {
2008 return block;
2009 }
2010 }
2011
2012 return NULL;
2013}
2014
422148d3
DDAG
2015/* Some of the softmmu routines need to translate from a host pointer
2016 (typically a TLB entry) back to a ram offset. */
2017MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2018{
2019 RAMBlock *block;
2020 ram_addr_t offset; /* Not used */
2021
2022 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2023
2024 if (!block) {
2025 return NULL;
2026 }
2027
2028 return block->mr;
e890261f 2029}
f471a17e 2030
49b24afc 2031/* Called within RCU critical section. */
a8170e5e 2032static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2033 uint64_t val, unsigned size)
9fa3e853 2034{
52159192 2035 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2036 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2037 }
0e0df1e2
AK
2038 switch (size) {
2039 case 1:
3655cb9c 2040 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2041 break;
2042 case 2:
3655cb9c 2043 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2044 break;
2045 case 4:
3655cb9c 2046 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2047 break;
2048 default:
2049 abort();
3a7d929e 2050 }
58d2707e
PB
2051 /* Set both VGA and migration bits for simplicity and to remove
2052 * the notdirty callback faster.
2053 */
2054 cpu_physical_memory_set_dirty_range(ram_addr, size,
2055 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2056 /* we remove the notdirty callback only if the code has been
2057 flushed */
a2cd8c85 2058 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2059 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2060 }
9fa3e853
FB
2061}
2062
b018ddf6
PB
2063static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2064 unsigned size, bool is_write)
2065{
2066 return is_write;
2067}
2068
0e0df1e2 2069static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2070 .write = notdirty_mem_write,
b018ddf6 2071 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2072 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2073};
2074
0f459d16 2075/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2076static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2077{
93afeade 2078 CPUState *cpu = current_cpu;
568496c0 2079 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2080 CPUArchState *env = cpu->env_ptr;
06d55cc1 2081 target_ulong pc, cs_base;
0f459d16 2082 target_ulong vaddr;
a1d1bb31 2083 CPUWatchpoint *wp;
06d55cc1 2084 int cpu_flags;
0f459d16 2085
ff4700b0 2086 if (cpu->watchpoint_hit) {
06d55cc1
AL
2087 /* We re-entered the check after replacing the TB. Now raise
2088 * the debug interrupt so that is will trigger after the
2089 * current instruction. */
93afeade 2090 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2091 return;
2092 }
93afeade 2093 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2094 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2095 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2096 && (wp->flags & flags)) {
08225676
PM
2097 if (flags == BP_MEM_READ) {
2098 wp->flags |= BP_WATCHPOINT_HIT_READ;
2099 } else {
2100 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2101 }
2102 wp->hitaddr = vaddr;
66b9b43c 2103 wp->hitattrs = attrs;
ff4700b0 2104 if (!cpu->watchpoint_hit) {
568496c0
SF
2105 if (wp->flags & BP_CPU &&
2106 !cc->debug_check_watchpoint(cpu, wp)) {
2107 wp->flags &= ~BP_WATCHPOINT_HIT;
2108 continue;
2109 }
ff4700b0 2110 cpu->watchpoint_hit = wp;
239c51a5 2111 tb_check_watchpoint(cpu);
6e140f28 2112 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2113 cpu->exception_index = EXCP_DEBUG;
5638d180 2114 cpu_loop_exit(cpu);
6e140f28
AL
2115 } else {
2116 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2117 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2118 cpu_resume_from_signal(cpu, NULL);
6e140f28 2119 }
06d55cc1 2120 }
6e140f28
AL
2121 } else {
2122 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2123 }
2124 }
2125}
2126
6658ffb8
PB
2127/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2128 so these check for a hit then pass through to the normal out-of-line
2129 phys routines. */
66b9b43c
PM
2130static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2131 unsigned size, MemTxAttrs attrs)
6658ffb8 2132{
66b9b43c
PM
2133 MemTxResult res;
2134 uint64_t data;
79ed0416
PM
2135 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2136 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2137
2138 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2139 switch (size) {
66b9b43c 2140 case 1:
79ed0416 2141 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2142 break;
2143 case 2:
79ed0416 2144 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2145 break;
2146 case 4:
79ed0416 2147 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2148 break;
1ec9b909
AK
2149 default: abort();
2150 }
66b9b43c
PM
2151 *pdata = data;
2152 return res;
6658ffb8
PB
2153}
2154
66b9b43c
PM
2155static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2156 uint64_t val, unsigned size,
2157 MemTxAttrs attrs)
6658ffb8 2158{
66b9b43c 2159 MemTxResult res;
79ed0416
PM
2160 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2161 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2162
2163 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2164 switch (size) {
67364150 2165 case 1:
79ed0416 2166 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2167 break;
2168 case 2:
79ed0416 2169 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2170 break;
2171 case 4:
79ed0416 2172 address_space_stl(as, addr, val, attrs, &res);
67364150 2173 break;
1ec9b909
AK
2174 default: abort();
2175 }
66b9b43c 2176 return res;
6658ffb8
PB
2177}
2178
1ec9b909 2179static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2180 .read_with_attrs = watch_mem_read,
2181 .write_with_attrs = watch_mem_write,
1ec9b909 2182 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2183};
6658ffb8 2184
f25a49e0
PM
2185static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2186 unsigned len, MemTxAttrs attrs)
db7b5426 2187{
acc9d80b 2188 subpage_t *subpage = opaque;
ff6cff75 2189 uint8_t buf[8];
5c9eb028 2190 MemTxResult res;
791af8c8 2191
db7b5426 2192#if defined(DEBUG_SUBPAGE)
016e9d62 2193 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2194 subpage, len, addr);
db7b5426 2195#endif
5c9eb028
PM
2196 res = address_space_read(subpage->as, addr + subpage->base,
2197 attrs, buf, len);
2198 if (res) {
2199 return res;
f25a49e0 2200 }
acc9d80b
JK
2201 switch (len) {
2202 case 1:
f25a49e0
PM
2203 *data = ldub_p(buf);
2204 return MEMTX_OK;
acc9d80b 2205 case 2:
f25a49e0
PM
2206 *data = lduw_p(buf);
2207 return MEMTX_OK;
acc9d80b 2208 case 4:
f25a49e0
PM
2209 *data = ldl_p(buf);
2210 return MEMTX_OK;
ff6cff75 2211 case 8:
f25a49e0
PM
2212 *data = ldq_p(buf);
2213 return MEMTX_OK;
acc9d80b
JK
2214 default:
2215 abort();
2216 }
db7b5426
BS
2217}
2218
f25a49e0
PM
2219static MemTxResult subpage_write(void *opaque, hwaddr addr,
2220 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2221{
acc9d80b 2222 subpage_t *subpage = opaque;
ff6cff75 2223 uint8_t buf[8];
acc9d80b 2224
db7b5426 2225#if defined(DEBUG_SUBPAGE)
016e9d62 2226 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2227 " value %"PRIx64"\n",
2228 __func__, subpage, len, addr, value);
db7b5426 2229#endif
acc9d80b
JK
2230 switch (len) {
2231 case 1:
2232 stb_p(buf, value);
2233 break;
2234 case 2:
2235 stw_p(buf, value);
2236 break;
2237 case 4:
2238 stl_p(buf, value);
2239 break;
ff6cff75
PB
2240 case 8:
2241 stq_p(buf, value);
2242 break;
acc9d80b
JK
2243 default:
2244 abort();
2245 }
5c9eb028
PM
2246 return address_space_write(subpage->as, addr + subpage->base,
2247 attrs, buf, len);
db7b5426
BS
2248}
2249
c353e4cc 2250static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2251 unsigned len, bool is_write)
c353e4cc 2252{
acc9d80b 2253 subpage_t *subpage = opaque;
c353e4cc 2254#if defined(DEBUG_SUBPAGE)
016e9d62 2255 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2256 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2257#endif
2258
acc9d80b 2259 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2260 len, is_write);
c353e4cc
PB
2261}
2262
70c68e44 2263static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2264 .read_with_attrs = subpage_read,
2265 .write_with_attrs = subpage_write,
ff6cff75
PB
2266 .impl.min_access_size = 1,
2267 .impl.max_access_size = 8,
2268 .valid.min_access_size = 1,
2269 .valid.max_access_size = 8,
c353e4cc 2270 .valid.accepts = subpage_accepts,
70c68e44 2271 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2272};
2273
c227f099 2274static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2275 uint16_t section)
db7b5426
BS
2276{
2277 int idx, eidx;
2278
2279 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2280 return -1;
2281 idx = SUBPAGE_IDX(start);
2282 eidx = SUBPAGE_IDX(end);
2283#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2284 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2285 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2286#endif
db7b5426 2287 for (; idx <= eidx; idx++) {
5312bd8b 2288 mmio->sub_section[idx] = section;
db7b5426
BS
2289 }
2290
2291 return 0;
2292}
2293
acc9d80b 2294static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2295{
c227f099 2296 subpage_t *mmio;
db7b5426 2297
7267c094 2298 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2299
acc9d80b 2300 mmio->as = as;
1eec614b 2301 mmio->base = base;
2c9b15ca 2302 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2303 NULL, TARGET_PAGE_SIZE);
b3b00c78 2304 mmio->iomem.subpage = true;
db7b5426 2305#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2306 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2307 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2308#endif
b41aac4f 2309 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2310
2311 return mmio;
2312}
2313
a656e22f
PC
2314static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2315 MemoryRegion *mr)
5312bd8b 2316{
a656e22f 2317 assert(as);
5312bd8b 2318 MemoryRegionSection section = {
a656e22f 2319 .address_space = as,
5312bd8b
AK
2320 .mr = mr,
2321 .offset_within_address_space = 0,
2322 .offset_within_region = 0,
052e87b0 2323 .size = int128_2_64(),
5312bd8b
AK
2324 };
2325
53cb28cb 2326 return phys_section_add(map, &section);
5312bd8b
AK
2327}
2328
a54c87b6 2329MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2330{
a54c87b6
PM
2331 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2332 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2333 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2334 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2335
2336 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2337}
2338
e9179ce1
AK
2339static void io_mem_init(void)
2340{
1f6245e5 2341 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2342 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2343 NULL, UINT64_MAX);
2c9b15ca 2344 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2345 NULL, UINT64_MAX);
2c9b15ca 2346 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2347 NULL, UINT64_MAX);
e9179ce1
AK
2348}
2349
ac1970fb 2350static void mem_begin(MemoryListener *listener)
00752703
PB
2351{
2352 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2353 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2354 uint16_t n;
2355
a656e22f 2356 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2357 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2358 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2359 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2360 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2361 assert(n == PHYS_SECTION_ROM);
a656e22f 2362 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2363 assert(n == PHYS_SECTION_WATCH);
00752703 2364
9736e55b 2365 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2366 d->as = as;
2367 as->next_dispatch = d;
2368}
2369
79e2b9ae
PB
2370static void address_space_dispatch_free(AddressSpaceDispatch *d)
2371{
2372 phys_sections_free(&d->map);
2373 g_free(d);
2374}
2375
00752703 2376static void mem_commit(MemoryListener *listener)
ac1970fb 2377{
89ae337a 2378 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2379 AddressSpaceDispatch *cur = as->dispatch;
2380 AddressSpaceDispatch *next = as->next_dispatch;
2381
53cb28cb 2382 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2383
79e2b9ae 2384 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2385 if (cur) {
79e2b9ae 2386 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2387 }
9affd6fc
PB
2388}
2389
1d71148e 2390static void tcg_commit(MemoryListener *listener)
50c1e149 2391{
32857f4d
PM
2392 CPUAddressSpace *cpuas;
2393 AddressSpaceDispatch *d;
117712c3
AK
2394
2395 /* since each CPU stores ram addresses in its TLB cache, we must
2396 reset the modified entries */
32857f4d
PM
2397 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2398 cpu_reloading_memory_map();
2399 /* The CPU and TLB are protected by the iothread lock.
2400 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2401 * may have split the RCU critical section.
2402 */
2403 d = atomic_rcu_read(&cpuas->as->dispatch);
2404 cpuas->memory_dispatch = d;
2405 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2406}
2407
ac1970fb
AK
2408void address_space_init_dispatch(AddressSpace *as)
2409{
00752703 2410 as->dispatch = NULL;
89ae337a 2411 as->dispatch_listener = (MemoryListener) {
ac1970fb 2412 .begin = mem_begin,
00752703 2413 .commit = mem_commit,
ac1970fb
AK
2414 .region_add = mem_add,
2415 .region_nop = mem_add,
2416 .priority = 0,
2417 };
89ae337a 2418 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2419}
2420
6e48e8f9
PB
2421void address_space_unregister(AddressSpace *as)
2422{
2423 memory_listener_unregister(&as->dispatch_listener);
2424}
2425
83f3c251
AK
2426void address_space_destroy_dispatch(AddressSpace *as)
2427{
2428 AddressSpaceDispatch *d = as->dispatch;
2429
79e2b9ae
PB
2430 atomic_rcu_set(&as->dispatch, NULL);
2431 if (d) {
2432 call_rcu(d, address_space_dispatch_free, rcu);
2433 }
83f3c251
AK
2434}
2435
62152b8a
AK
2436static void memory_map_init(void)
2437{
7267c094 2438 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2439
57271d63 2440 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2441 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2442
7267c094 2443 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2444 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2445 65536);
7dca8043 2446 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2447}
2448
2449MemoryRegion *get_system_memory(void)
2450{
2451 return system_memory;
2452}
2453
309cb471
AK
2454MemoryRegion *get_system_io(void)
2455{
2456 return system_io;
2457}
2458
e2eef170
PB
2459#endif /* !defined(CONFIG_USER_ONLY) */
2460
13eb76e0
FB
2461/* physical memory access (slow version, mainly for debug) */
2462#if defined(CONFIG_USER_ONLY)
f17ec444 2463int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2464 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2465{
2466 int l, flags;
2467 target_ulong page;
53a5960a 2468 void * p;
13eb76e0
FB
2469
2470 while (len > 0) {
2471 page = addr & TARGET_PAGE_MASK;
2472 l = (page + TARGET_PAGE_SIZE) - addr;
2473 if (l > len)
2474 l = len;
2475 flags = page_get_flags(page);
2476 if (!(flags & PAGE_VALID))
a68fe89c 2477 return -1;
13eb76e0
FB
2478 if (is_write) {
2479 if (!(flags & PAGE_WRITE))
a68fe89c 2480 return -1;
579a97f7 2481 /* XXX: this code should not depend on lock_user */
72fb7daa 2482 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2483 return -1;
72fb7daa
AJ
2484 memcpy(p, buf, l);
2485 unlock_user(p, addr, l);
13eb76e0
FB
2486 } else {
2487 if (!(flags & PAGE_READ))
a68fe89c 2488 return -1;
579a97f7 2489 /* XXX: this code should not depend on lock_user */
72fb7daa 2490 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2491 return -1;
72fb7daa 2492 memcpy(buf, p, l);
5b257578 2493 unlock_user(p, addr, 0);
13eb76e0
FB
2494 }
2495 len -= l;
2496 buf += l;
2497 addr += l;
2498 }
a68fe89c 2499 return 0;
13eb76e0 2500}
8df1cd07 2501
13eb76e0 2502#else
51d7a9eb 2503
845b6214 2504static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2505 hwaddr length)
51d7a9eb 2506{
e87f7778
PB
2507 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2508 /* No early return if dirty_log_mask is or becomes 0, because
2509 * cpu_physical_memory_set_dirty_range will still call
2510 * xen_modified_memory.
2511 */
2512 if (dirty_log_mask) {
2513 dirty_log_mask =
2514 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2515 }
2516 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2517 tb_invalidate_phys_range(addr, addr + length);
2518 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2519 }
e87f7778 2520 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2521}
2522
23326164 2523static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2524{
e1622f4b 2525 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2526
2527 /* Regions are assumed to support 1-4 byte accesses unless
2528 otherwise specified. */
23326164
RH
2529 if (access_size_max == 0) {
2530 access_size_max = 4;
2531 }
2532
2533 /* Bound the maximum access by the alignment of the address. */
2534 if (!mr->ops->impl.unaligned) {
2535 unsigned align_size_max = addr & -addr;
2536 if (align_size_max != 0 && align_size_max < access_size_max) {
2537 access_size_max = align_size_max;
2538 }
82f2563f 2539 }
23326164
RH
2540
2541 /* Don't attempt accesses larger than the maximum. */
2542 if (l > access_size_max) {
2543 l = access_size_max;
82f2563f 2544 }
6554f5c0 2545 l = pow2floor(l);
23326164
RH
2546
2547 return l;
82f2563f
PB
2548}
2549
4840f10e 2550static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2551{
4840f10e
JK
2552 bool unlocked = !qemu_mutex_iothread_locked();
2553 bool release_lock = false;
2554
2555 if (unlocked && mr->global_locking) {
2556 qemu_mutex_lock_iothread();
2557 unlocked = false;
2558 release_lock = true;
2559 }
125b3806 2560 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2561 if (unlocked) {
2562 qemu_mutex_lock_iothread();
2563 }
125b3806 2564 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2565 if (unlocked) {
2566 qemu_mutex_unlock_iothread();
2567 }
125b3806 2568 }
4840f10e
JK
2569
2570 return release_lock;
125b3806
PB
2571}
2572
a203ac70
PB
2573/* Called within RCU critical section. */
2574static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2575 MemTxAttrs attrs,
2576 const uint8_t *buf,
2577 int len, hwaddr addr1,
2578 hwaddr l, MemoryRegion *mr)
13eb76e0 2579{
13eb76e0 2580 uint8_t *ptr;
791af8c8 2581 uint64_t val;
3b643495 2582 MemTxResult result = MEMTX_OK;
4840f10e 2583 bool release_lock = false;
3b46e624 2584
a203ac70 2585 for (;;) {
eb7eeb88
PB
2586 if (!memory_access_is_direct(mr, true)) {
2587 release_lock |= prepare_mmio_access(mr);
2588 l = memory_access_size(mr, l, addr1);
2589 /* XXX: could force current_cpu to NULL to avoid
2590 potential bugs */
2591 switch (l) {
2592 case 8:
2593 /* 64 bit write access */
2594 val = ldq_p(buf);
2595 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2596 attrs);
2597 break;
2598 case 4:
2599 /* 32 bit write access */
2600 val = ldl_p(buf);
2601 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2602 attrs);
2603 break;
2604 case 2:
2605 /* 16 bit write access */
2606 val = lduw_p(buf);
2607 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2608 attrs);
2609 break;
2610 case 1:
2611 /* 8 bit write access */
2612 val = ldub_p(buf);
2613 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2614 attrs);
2615 break;
2616 default:
2617 abort();
13eb76e0
FB
2618 }
2619 } else {
eb7eeb88
PB
2620 addr1 += memory_region_get_ram_addr(mr);
2621 /* RAM case */
3655cb9c 2622 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2623 memcpy(ptr, buf, l);
2624 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2625 }
4840f10e
JK
2626
2627 if (release_lock) {
2628 qemu_mutex_unlock_iothread();
2629 release_lock = false;
2630 }
2631
13eb76e0
FB
2632 len -= l;
2633 buf += l;
2634 addr += l;
a203ac70
PB
2635
2636 if (!len) {
2637 break;
2638 }
2639
2640 l = len;
2641 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2642 }
fd8aaa76 2643
3b643495 2644 return result;
13eb76e0 2645}
8df1cd07 2646
a203ac70
PB
2647MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2648 const uint8_t *buf, int len)
ac1970fb 2649{
eb7eeb88 2650 hwaddr l;
eb7eeb88
PB
2651 hwaddr addr1;
2652 MemoryRegion *mr;
2653 MemTxResult result = MEMTX_OK;
eb7eeb88 2654
a203ac70
PB
2655 if (len > 0) {
2656 rcu_read_lock();
eb7eeb88 2657 l = len;
a203ac70
PB
2658 mr = address_space_translate(as, addr, &addr1, &l, true);
2659 result = address_space_write_continue(as, addr, attrs, buf, len,
2660 addr1, l, mr);
2661 rcu_read_unlock();
2662 }
2663
2664 return result;
2665}
2666
2667/* Called within RCU critical section. */
2668MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2669 MemTxAttrs attrs, uint8_t *buf,
2670 int len, hwaddr addr1, hwaddr l,
2671 MemoryRegion *mr)
2672{
2673 uint8_t *ptr;
2674 uint64_t val;
2675 MemTxResult result = MEMTX_OK;
2676 bool release_lock = false;
eb7eeb88 2677
a203ac70 2678 for (;;) {
eb7eeb88
PB
2679 if (!memory_access_is_direct(mr, false)) {
2680 /* I/O case */
2681 release_lock |= prepare_mmio_access(mr);
2682 l = memory_access_size(mr, l, addr1);
2683 switch (l) {
2684 case 8:
2685 /* 64 bit read access */
2686 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2687 attrs);
2688 stq_p(buf, val);
2689 break;
2690 case 4:
2691 /* 32 bit read access */
2692 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2693 attrs);
2694 stl_p(buf, val);
2695 break;
2696 case 2:
2697 /* 16 bit read access */
2698 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2699 attrs);
2700 stw_p(buf, val);
2701 break;
2702 case 1:
2703 /* 8 bit read access */
2704 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2705 attrs);
2706 stb_p(buf, val);
2707 break;
2708 default:
2709 abort();
2710 }
2711 } else {
2712 /* RAM case */
8e41fb63
FZ
2713 ptr = qemu_get_ram_ptr(mr->ram_block,
2714 memory_region_get_ram_addr(mr) + addr1);
eb7eeb88
PB
2715 memcpy(buf, ptr, l);
2716 }
2717
2718 if (release_lock) {
2719 qemu_mutex_unlock_iothread();
2720 release_lock = false;
2721 }
2722
2723 len -= l;
2724 buf += l;
2725 addr += l;
a203ac70
PB
2726
2727 if (!len) {
2728 break;
2729 }
2730
2731 l = len;
2732 mr = address_space_translate(as, addr, &addr1, &l, false);
2733 }
2734
2735 return result;
2736}
2737
3cc8f884
PB
2738MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2739 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2740{
2741 hwaddr l;
2742 hwaddr addr1;
2743 MemoryRegion *mr;
2744 MemTxResult result = MEMTX_OK;
2745
2746 if (len > 0) {
2747 rcu_read_lock();
2748 l = len;
2749 mr = address_space_translate(as, addr, &addr1, &l, false);
2750 result = address_space_read_continue(as, addr, attrs, buf, len,
2751 addr1, l, mr);
2752 rcu_read_unlock();
eb7eeb88 2753 }
eb7eeb88
PB
2754
2755 return result;
ac1970fb
AK
2756}
2757
eb7eeb88
PB
2758MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2759 uint8_t *buf, int len, bool is_write)
2760{
2761 if (is_write) {
2762 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2763 } else {
2764 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2765 }
2766}
ac1970fb 2767
a8170e5e 2768void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2769 int len, int is_write)
2770{
5c9eb028
PM
2771 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2772 buf, len, is_write);
ac1970fb
AK
2773}
2774
582b55a9
AG
2775enum write_rom_type {
2776 WRITE_DATA,
2777 FLUSH_CACHE,
2778};
2779
2a221651 2780static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2781 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2782{
149f54b5 2783 hwaddr l;
d0ecd2aa 2784 uint8_t *ptr;
149f54b5 2785 hwaddr addr1;
5c8a00ce 2786 MemoryRegion *mr;
3b46e624 2787
41063e1e 2788 rcu_read_lock();
d0ecd2aa 2789 while (len > 0) {
149f54b5 2790 l = len;
2a221651 2791 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2792
5c8a00ce
PB
2793 if (!(memory_region_is_ram(mr) ||
2794 memory_region_is_romd(mr))) {
b242e0e0 2795 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2796 } else {
5c8a00ce 2797 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2798 /* ROM/RAM case */
3655cb9c 2799 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2800 switch (type) {
2801 case WRITE_DATA:
2802 memcpy(ptr, buf, l);
845b6214 2803 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2804 break;
2805 case FLUSH_CACHE:
2806 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2807 break;
2808 }
d0ecd2aa
FB
2809 }
2810 len -= l;
2811 buf += l;
2812 addr += l;
2813 }
41063e1e 2814 rcu_read_unlock();
d0ecd2aa
FB
2815}
2816
582b55a9 2817/* used for ROM loading : can write in RAM and ROM */
2a221651 2818void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2819 const uint8_t *buf, int len)
2820{
2a221651 2821 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2822}
2823
2824void cpu_flush_icache_range(hwaddr start, int len)
2825{
2826 /*
2827 * This function should do the same thing as an icache flush that was
2828 * triggered from within the guest. For TCG we are always cache coherent,
2829 * so there is no need to flush anything. For KVM / Xen we need to flush
2830 * the host's instruction cache at least.
2831 */
2832 if (tcg_enabled()) {
2833 return;
2834 }
2835
2a221651
EI
2836 cpu_physical_memory_write_rom_internal(&address_space_memory,
2837 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2838}
2839
6d16c2f8 2840typedef struct {
d3e71559 2841 MemoryRegion *mr;
6d16c2f8 2842 void *buffer;
a8170e5e
AK
2843 hwaddr addr;
2844 hwaddr len;
c2cba0ff 2845 bool in_use;
6d16c2f8
AL
2846} BounceBuffer;
2847
2848static BounceBuffer bounce;
2849
ba223c29 2850typedef struct MapClient {
e95205e1 2851 QEMUBH *bh;
72cf2d4f 2852 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2853} MapClient;
2854
38e047b5 2855QemuMutex map_client_list_lock;
72cf2d4f
BS
2856static QLIST_HEAD(map_client_list, MapClient) map_client_list
2857 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2858
e95205e1
FZ
2859static void cpu_unregister_map_client_do(MapClient *client)
2860{
2861 QLIST_REMOVE(client, link);
2862 g_free(client);
2863}
2864
33b6c2ed
FZ
2865static void cpu_notify_map_clients_locked(void)
2866{
2867 MapClient *client;
2868
2869 while (!QLIST_EMPTY(&map_client_list)) {
2870 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2871 qemu_bh_schedule(client->bh);
2872 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2873 }
2874}
2875
e95205e1 2876void cpu_register_map_client(QEMUBH *bh)
ba223c29 2877{
7267c094 2878 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2879
38e047b5 2880 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2881 client->bh = bh;
72cf2d4f 2882 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2883 if (!atomic_read(&bounce.in_use)) {
2884 cpu_notify_map_clients_locked();
2885 }
38e047b5 2886 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2887}
2888
38e047b5 2889void cpu_exec_init_all(void)
ba223c29 2890{
38e047b5 2891 qemu_mutex_init(&ram_list.mutex);
38e047b5 2892 io_mem_init();
680a4783 2893 memory_map_init();
38e047b5 2894 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2895}
2896
e95205e1 2897void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2898{
2899 MapClient *client;
2900
e95205e1
FZ
2901 qemu_mutex_lock(&map_client_list_lock);
2902 QLIST_FOREACH(client, &map_client_list, link) {
2903 if (client->bh == bh) {
2904 cpu_unregister_map_client_do(client);
2905 break;
2906 }
ba223c29 2907 }
e95205e1 2908 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2909}
2910
2911static void cpu_notify_map_clients(void)
2912{
38e047b5 2913 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2914 cpu_notify_map_clients_locked();
38e047b5 2915 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2916}
2917
51644ab7
PB
2918bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2919{
5c8a00ce 2920 MemoryRegion *mr;
51644ab7
PB
2921 hwaddr l, xlat;
2922
41063e1e 2923 rcu_read_lock();
51644ab7
PB
2924 while (len > 0) {
2925 l = len;
5c8a00ce
PB
2926 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2927 if (!memory_access_is_direct(mr, is_write)) {
2928 l = memory_access_size(mr, l, addr);
2929 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2930 return false;
2931 }
2932 }
2933
2934 len -= l;
2935 addr += l;
2936 }
41063e1e 2937 rcu_read_unlock();
51644ab7
PB
2938 return true;
2939}
2940
6d16c2f8
AL
2941/* Map a physical memory region into a host virtual address.
2942 * May map a subset of the requested range, given by and returned in *plen.
2943 * May return NULL if resources needed to perform the mapping are exhausted.
2944 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2945 * Use cpu_register_map_client() to know when retrying the map operation is
2946 * likely to succeed.
6d16c2f8 2947 */
ac1970fb 2948void *address_space_map(AddressSpace *as,
a8170e5e
AK
2949 hwaddr addr,
2950 hwaddr *plen,
ac1970fb 2951 bool is_write)
6d16c2f8 2952{
a8170e5e 2953 hwaddr len = *plen;
e3127ae0
PB
2954 hwaddr done = 0;
2955 hwaddr l, xlat, base;
2956 MemoryRegion *mr, *this_mr;
2957 ram_addr_t raddr;
e81bcda5 2958 void *ptr;
6d16c2f8 2959
e3127ae0
PB
2960 if (len == 0) {
2961 return NULL;
2962 }
38bee5dc 2963
e3127ae0 2964 l = len;
41063e1e 2965 rcu_read_lock();
e3127ae0 2966 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2967
e3127ae0 2968 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2969 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2970 rcu_read_unlock();
e3127ae0 2971 return NULL;
6d16c2f8 2972 }
e85d9db5
KW
2973 /* Avoid unbounded allocations */
2974 l = MIN(l, TARGET_PAGE_SIZE);
2975 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2976 bounce.addr = addr;
2977 bounce.len = l;
d3e71559
PB
2978
2979 memory_region_ref(mr);
2980 bounce.mr = mr;
e3127ae0 2981 if (!is_write) {
5c9eb028
PM
2982 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2983 bounce.buffer, l);
8ab934f9 2984 }
6d16c2f8 2985
41063e1e 2986 rcu_read_unlock();
e3127ae0
PB
2987 *plen = l;
2988 return bounce.buffer;
2989 }
2990
2991 base = xlat;
2992 raddr = memory_region_get_ram_addr(mr);
2993
2994 for (;;) {
6d16c2f8
AL
2995 len -= l;
2996 addr += l;
e3127ae0
PB
2997 done += l;
2998 if (len == 0) {
2999 break;
3000 }
3001
3002 l = len;
3003 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
3004 if (this_mr != mr || xlat != base + done) {
3005 break;
3006 }
6d16c2f8 3007 }
e3127ae0 3008
d3e71559 3009 memory_region_ref(mr);
e3127ae0 3010 *plen = done;
3655cb9c 3011 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
e81bcda5
PB
3012 rcu_read_unlock();
3013
3014 return ptr;
6d16c2f8
AL
3015}
3016
ac1970fb 3017/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3018 * Will also mark the memory as dirty if is_write == 1. access_len gives
3019 * the amount of memory that was actually read or written by the caller.
3020 */
a8170e5e
AK
3021void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3022 int is_write, hwaddr access_len)
6d16c2f8
AL
3023{
3024 if (buffer != bounce.buffer) {
d3e71559
PB
3025 MemoryRegion *mr;
3026 ram_addr_t addr1;
3027
3028 mr = qemu_ram_addr_from_host(buffer, &addr1);
3029 assert(mr != NULL);
6d16c2f8 3030 if (is_write) {
845b6214 3031 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3032 }
868bb33f 3033 if (xen_enabled()) {
e41d7c69 3034 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3035 }
d3e71559 3036 memory_region_unref(mr);
6d16c2f8
AL
3037 return;
3038 }
3039 if (is_write) {
5c9eb028
PM
3040 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3041 bounce.buffer, access_len);
6d16c2f8 3042 }
f8a83245 3043 qemu_vfree(bounce.buffer);
6d16c2f8 3044 bounce.buffer = NULL;
d3e71559 3045 memory_region_unref(bounce.mr);
c2cba0ff 3046 atomic_mb_set(&bounce.in_use, false);
ba223c29 3047 cpu_notify_map_clients();
6d16c2f8 3048}
d0ecd2aa 3049
a8170e5e
AK
3050void *cpu_physical_memory_map(hwaddr addr,
3051 hwaddr *plen,
ac1970fb
AK
3052 int is_write)
3053{
3054 return address_space_map(&address_space_memory, addr, plen, is_write);
3055}
3056
a8170e5e
AK
3057void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3058 int is_write, hwaddr access_len)
ac1970fb
AK
3059{
3060 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3061}
3062
8df1cd07 3063/* warning: addr must be aligned */
50013115
PM
3064static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3065 MemTxAttrs attrs,
3066 MemTxResult *result,
3067 enum device_endian endian)
8df1cd07 3068{
8df1cd07 3069 uint8_t *ptr;
791af8c8 3070 uint64_t val;
5c8a00ce 3071 MemoryRegion *mr;
149f54b5
PB
3072 hwaddr l = 4;
3073 hwaddr addr1;
50013115 3074 MemTxResult r;
4840f10e 3075 bool release_lock = false;
8df1cd07 3076
41063e1e 3077 rcu_read_lock();
fdfba1a2 3078 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3079 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3080 release_lock |= prepare_mmio_access(mr);
125b3806 3081
8df1cd07 3082 /* I/O case */
50013115 3083 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3084#if defined(TARGET_WORDS_BIGENDIAN)
3085 if (endian == DEVICE_LITTLE_ENDIAN) {
3086 val = bswap32(val);
3087 }
3088#else
3089 if (endian == DEVICE_BIG_ENDIAN) {
3090 val = bswap32(val);
3091 }
3092#endif
8df1cd07
FB
3093 } else {
3094 /* RAM case */
3655cb9c
GA
3095 ptr = qemu_get_ram_ptr(mr->ram_block,
3096 (memory_region_get_ram_addr(mr)
06ef3525 3097 & TARGET_PAGE_MASK)
149f54b5 3098 + addr1);
1e78bcc1
AG
3099 switch (endian) {
3100 case DEVICE_LITTLE_ENDIAN:
3101 val = ldl_le_p(ptr);
3102 break;
3103 case DEVICE_BIG_ENDIAN:
3104 val = ldl_be_p(ptr);
3105 break;
3106 default:
3107 val = ldl_p(ptr);
3108 break;
3109 }
50013115
PM
3110 r = MEMTX_OK;
3111 }
3112 if (result) {
3113 *result = r;
8df1cd07 3114 }
4840f10e
JK
3115 if (release_lock) {
3116 qemu_mutex_unlock_iothread();
3117 }
41063e1e 3118 rcu_read_unlock();
8df1cd07
FB
3119 return val;
3120}
3121
50013115
PM
3122uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3123 MemTxAttrs attrs, MemTxResult *result)
3124{
3125 return address_space_ldl_internal(as, addr, attrs, result,
3126 DEVICE_NATIVE_ENDIAN);
3127}
3128
3129uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3130 MemTxAttrs attrs, MemTxResult *result)
3131{
3132 return address_space_ldl_internal(as, addr, attrs, result,
3133 DEVICE_LITTLE_ENDIAN);
3134}
3135
3136uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3137 MemTxAttrs attrs, MemTxResult *result)
3138{
3139 return address_space_ldl_internal(as, addr, attrs, result,
3140 DEVICE_BIG_ENDIAN);
3141}
3142
fdfba1a2 3143uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3144{
50013115 3145 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3146}
3147
fdfba1a2 3148uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3149{
50013115 3150 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3151}
3152
fdfba1a2 3153uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3154{
50013115 3155 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3156}
3157
84b7b8e7 3158/* warning: addr must be aligned */
50013115
PM
3159static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3160 MemTxAttrs attrs,
3161 MemTxResult *result,
3162 enum device_endian endian)
84b7b8e7 3163{
84b7b8e7
FB
3164 uint8_t *ptr;
3165 uint64_t val;
5c8a00ce 3166 MemoryRegion *mr;
149f54b5
PB
3167 hwaddr l = 8;
3168 hwaddr addr1;
50013115 3169 MemTxResult r;
4840f10e 3170 bool release_lock = false;
84b7b8e7 3171
41063e1e 3172 rcu_read_lock();
2c17449b 3173 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3174 false);
3175 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3176 release_lock |= prepare_mmio_access(mr);
125b3806 3177
84b7b8e7 3178 /* I/O case */
50013115 3179 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3180#if defined(TARGET_WORDS_BIGENDIAN)
3181 if (endian == DEVICE_LITTLE_ENDIAN) {
3182 val = bswap64(val);
3183 }
3184#else
3185 if (endian == DEVICE_BIG_ENDIAN) {
3186 val = bswap64(val);
3187 }
84b7b8e7
FB
3188#endif
3189 } else {
3190 /* RAM case */
3655cb9c
GA
3191 ptr = qemu_get_ram_ptr(mr->ram_block,
3192 (memory_region_get_ram_addr(mr)
06ef3525 3193 & TARGET_PAGE_MASK)
149f54b5 3194 + addr1);
1e78bcc1
AG
3195 switch (endian) {
3196 case DEVICE_LITTLE_ENDIAN:
3197 val = ldq_le_p(ptr);
3198 break;
3199 case DEVICE_BIG_ENDIAN:
3200 val = ldq_be_p(ptr);
3201 break;
3202 default:
3203 val = ldq_p(ptr);
3204 break;
3205 }
50013115
PM
3206 r = MEMTX_OK;
3207 }
3208 if (result) {
3209 *result = r;
84b7b8e7 3210 }
4840f10e
JK
3211 if (release_lock) {
3212 qemu_mutex_unlock_iothread();
3213 }
41063e1e 3214 rcu_read_unlock();
84b7b8e7
FB
3215 return val;
3216}
3217
50013115
PM
3218uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3219 MemTxAttrs attrs, MemTxResult *result)
3220{
3221 return address_space_ldq_internal(as, addr, attrs, result,
3222 DEVICE_NATIVE_ENDIAN);
3223}
3224
3225uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3226 MemTxAttrs attrs, MemTxResult *result)
3227{
3228 return address_space_ldq_internal(as, addr, attrs, result,
3229 DEVICE_LITTLE_ENDIAN);
3230}
3231
3232uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3233 MemTxAttrs attrs, MemTxResult *result)
3234{
3235 return address_space_ldq_internal(as, addr, attrs, result,
3236 DEVICE_BIG_ENDIAN);
3237}
3238
2c17449b 3239uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3240{
50013115 3241 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3242}
3243
2c17449b 3244uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3245{
50013115 3246 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3247}
3248
2c17449b 3249uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3250{
50013115 3251 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3252}
3253
aab33094 3254/* XXX: optimize */
50013115
PM
3255uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3256 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3257{
3258 uint8_t val;
50013115
PM
3259 MemTxResult r;
3260
3261 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3262 if (result) {
3263 *result = r;
3264 }
aab33094
FB
3265 return val;
3266}
3267
50013115
PM
3268uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3269{
3270 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3271}
3272
733f0b02 3273/* warning: addr must be aligned */
50013115
PM
3274static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3275 hwaddr addr,
3276 MemTxAttrs attrs,
3277 MemTxResult *result,
3278 enum device_endian endian)
aab33094 3279{
733f0b02
MT
3280 uint8_t *ptr;
3281 uint64_t val;
5c8a00ce 3282 MemoryRegion *mr;
149f54b5
PB
3283 hwaddr l = 2;
3284 hwaddr addr1;
50013115 3285 MemTxResult r;
4840f10e 3286 bool release_lock = false;
733f0b02 3287
41063e1e 3288 rcu_read_lock();
41701aa4 3289 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3290 false);
3291 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3292 release_lock |= prepare_mmio_access(mr);
125b3806 3293
733f0b02 3294 /* I/O case */
50013115 3295 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3296#if defined(TARGET_WORDS_BIGENDIAN)
3297 if (endian == DEVICE_LITTLE_ENDIAN) {
3298 val = bswap16(val);
3299 }
3300#else
3301 if (endian == DEVICE_BIG_ENDIAN) {
3302 val = bswap16(val);
3303 }
3304#endif
733f0b02
MT
3305 } else {
3306 /* RAM case */
3655cb9c
GA
3307 ptr = qemu_get_ram_ptr(mr->ram_block,
3308 (memory_region_get_ram_addr(mr)
06ef3525 3309 & TARGET_PAGE_MASK)
149f54b5 3310 + addr1);
1e78bcc1
AG
3311 switch (endian) {
3312 case DEVICE_LITTLE_ENDIAN:
3313 val = lduw_le_p(ptr);
3314 break;
3315 case DEVICE_BIG_ENDIAN:
3316 val = lduw_be_p(ptr);
3317 break;
3318 default:
3319 val = lduw_p(ptr);
3320 break;
3321 }
50013115
PM
3322 r = MEMTX_OK;
3323 }
3324 if (result) {
3325 *result = r;
733f0b02 3326 }
4840f10e
JK
3327 if (release_lock) {
3328 qemu_mutex_unlock_iothread();
3329 }
41063e1e 3330 rcu_read_unlock();
733f0b02 3331 return val;
aab33094
FB
3332}
3333
50013115
PM
3334uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3335 MemTxAttrs attrs, MemTxResult *result)
3336{
3337 return address_space_lduw_internal(as, addr, attrs, result,
3338 DEVICE_NATIVE_ENDIAN);
3339}
3340
3341uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3342 MemTxAttrs attrs, MemTxResult *result)
3343{
3344 return address_space_lduw_internal(as, addr, attrs, result,
3345 DEVICE_LITTLE_ENDIAN);
3346}
3347
3348uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3349 MemTxAttrs attrs, MemTxResult *result)
3350{
3351 return address_space_lduw_internal(as, addr, attrs, result,
3352 DEVICE_BIG_ENDIAN);
3353}
3354
41701aa4 3355uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3356{
50013115 3357 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3358}
3359
41701aa4 3360uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3361{
50013115 3362 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3363}
3364
41701aa4 3365uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3366{
50013115 3367 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3368}
3369
8df1cd07
FB
3370/* warning: addr must be aligned. The ram page is not masked as dirty
3371 and the code inside is not invalidated. It is useful if the dirty
3372 bits are used to track modified PTEs */
50013115
PM
3373void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3374 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3375{
8df1cd07 3376 uint8_t *ptr;
5c8a00ce 3377 MemoryRegion *mr;
149f54b5
PB
3378 hwaddr l = 4;
3379 hwaddr addr1;
50013115 3380 MemTxResult r;
845b6214 3381 uint8_t dirty_log_mask;
4840f10e 3382 bool release_lock = false;
8df1cd07 3383
41063e1e 3384 rcu_read_lock();
2198a121 3385 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3386 true);
3387 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3388 release_lock |= prepare_mmio_access(mr);
125b3806 3389
50013115 3390 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3391 } else {
5c8a00ce 3392 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3393 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
8df1cd07 3394 stl_p(ptr, val);
74576198 3395
845b6214
PB
3396 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3397 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3398 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3399 r = MEMTX_OK;
3400 }
3401 if (result) {
3402 *result = r;
8df1cd07 3403 }
4840f10e
JK
3404 if (release_lock) {
3405 qemu_mutex_unlock_iothread();
3406 }
41063e1e 3407 rcu_read_unlock();
8df1cd07
FB
3408}
3409
50013115
PM
3410void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3411{
3412 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3413}
3414
8df1cd07 3415/* warning: addr must be aligned */
50013115
PM
3416static inline void address_space_stl_internal(AddressSpace *as,
3417 hwaddr addr, uint32_t val,
3418 MemTxAttrs attrs,
3419 MemTxResult *result,
3420 enum device_endian endian)
8df1cd07 3421{
8df1cd07 3422 uint8_t *ptr;
5c8a00ce 3423 MemoryRegion *mr;
149f54b5
PB
3424 hwaddr l = 4;
3425 hwaddr addr1;
50013115 3426 MemTxResult r;
4840f10e 3427 bool release_lock = false;
8df1cd07 3428
41063e1e 3429 rcu_read_lock();
ab1da857 3430 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3431 true);
3432 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3433 release_lock |= prepare_mmio_access(mr);
125b3806 3434
1e78bcc1
AG
3435#if defined(TARGET_WORDS_BIGENDIAN)
3436 if (endian == DEVICE_LITTLE_ENDIAN) {
3437 val = bswap32(val);
3438 }
3439#else
3440 if (endian == DEVICE_BIG_ENDIAN) {
3441 val = bswap32(val);
3442 }
3443#endif
50013115 3444 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3445 } else {
8df1cd07 3446 /* RAM case */
5c8a00ce 3447 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3448 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3449 switch (endian) {
3450 case DEVICE_LITTLE_ENDIAN:
3451 stl_le_p(ptr, val);
3452 break;
3453 case DEVICE_BIG_ENDIAN:
3454 stl_be_p(ptr, val);
3455 break;
3456 default:
3457 stl_p(ptr, val);
3458 break;
3459 }
845b6214 3460 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3461 r = MEMTX_OK;
3462 }
3463 if (result) {
3464 *result = r;
8df1cd07 3465 }
4840f10e
JK
3466 if (release_lock) {
3467 qemu_mutex_unlock_iothread();
3468 }
41063e1e 3469 rcu_read_unlock();
8df1cd07
FB
3470}
3471
50013115
PM
3472void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3473 MemTxAttrs attrs, MemTxResult *result)
3474{
3475 address_space_stl_internal(as, addr, val, attrs, result,
3476 DEVICE_NATIVE_ENDIAN);
3477}
3478
3479void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3480 MemTxAttrs attrs, MemTxResult *result)
3481{
3482 address_space_stl_internal(as, addr, val, attrs, result,
3483 DEVICE_LITTLE_ENDIAN);
3484}
3485
3486void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3487 MemTxAttrs attrs, MemTxResult *result)
3488{
3489 address_space_stl_internal(as, addr, val, attrs, result,
3490 DEVICE_BIG_ENDIAN);
3491}
3492
ab1da857 3493void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3494{
50013115 3495 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3496}
3497
ab1da857 3498void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3499{
50013115 3500 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3501}
3502
ab1da857 3503void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3504{
50013115 3505 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3506}
3507
aab33094 3508/* XXX: optimize */
50013115
PM
3509void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3510 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3511{
3512 uint8_t v = val;
50013115
PM
3513 MemTxResult r;
3514
3515 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3516 if (result) {
3517 *result = r;
3518 }
3519}
3520
3521void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3522{
3523 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3524}
3525
733f0b02 3526/* warning: addr must be aligned */
50013115
PM
3527static inline void address_space_stw_internal(AddressSpace *as,
3528 hwaddr addr, uint32_t val,
3529 MemTxAttrs attrs,
3530 MemTxResult *result,
3531 enum device_endian endian)
aab33094 3532{
733f0b02 3533 uint8_t *ptr;
5c8a00ce 3534 MemoryRegion *mr;
149f54b5
PB
3535 hwaddr l = 2;
3536 hwaddr addr1;
50013115 3537 MemTxResult r;
4840f10e 3538 bool release_lock = false;
733f0b02 3539
41063e1e 3540 rcu_read_lock();
5ce5944d 3541 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3542 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3543 release_lock |= prepare_mmio_access(mr);
125b3806 3544
1e78bcc1
AG
3545#if defined(TARGET_WORDS_BIGENDIAN)
3546 if (endian == DEVICE_LITTLE_ENDIAN) {
3547 val = bswap16(val);
3548 }
3549#else
3550 if (endian == DEVICE_BIG_ENDIAN) {
3551 val = bswap16(val);
3552 }
3553#endif
50013115 3554 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3555 } else {
733f0b02 3556 /* RAM case */
5c8a00ce 3557 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3558 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3559 switch (endian) {
3560 case DEVICE_LITTLE_ENDIAN:
3561 stw_le_p(ptr, val);
3562 break;
3563 case DEVICE_BIG_ENDIAN:
3564 stw_be_p(ptr, val);
3565 break;
3566 default:
3567 stw_p(ptr, val);
3568 break;
3569 }
845b6214 3570 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3571 r = MEMTX_OK;
3572 }
3573 if (result) {
3574 *result = r;
733f0b02 3575 }
4840f10e
JK
3576 if (release_lock) {
3577 qemu_mutex_unlock_iothread();
3578 }
41063e1e 3579 rcu_read_unlock();
aab33094
FB
3580}
3581
50013115
PM
3582void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3583 MemTxAttrs attrs, MemTxResult *result)
3584{
3585 address_space_stw_internal(as, addr, val, attrs, result,
3586 DEVICE_NATIVE_ENDIAN);
3587}
3588
3589void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3590 MemTxAttrs attrs, MemTxResult *result)
3591{
3592 address_space_stw_internal(as, addr, val, attrs, result,
3593 DEVICE_LITTLE_ENDIAN);
3594}
3595
3596void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3597 MemTxAttrs attrs, MemTxResult *result)
3598{
3599 address_space_stw_internal(as, addr, val, attrs, result,
3600 DEVICE_BIG_ENDIAN);
3601}
3602
5ce5944d 3603void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3604{
50013115 3605 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3606}
3607
5ce5944d 3608void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3609{
50013115 3610 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3611}
3612
5ce5944d 3613void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3614{
50013115 3615 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3616}
3617
aab33094 3618/* XXX: optimize */
50013115
PM
3619void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3620 MemTxAttrs attrs, MemTxResult *result)
aab33094 3621{
50013115 3622 MemTxResult r;
aab33094 3623 val = tswap64(val);
50013115
PM
3624 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3625 if (result) {
3626 *result = r;
3627 }
aab33094
FB
3628}
3629
50013115
PM
3630void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3631 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3632{
50013115 3633 MemTxResult r;
1e78bcc1 3634 val = cpu_to_le64(val);
50013115
PM
3635 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3636 if (result) {
3637 *result = r;
3638 }
3639}
3640void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3641 MemTxAttrs attrs, MemTxResult *result)
3642{
3643 MemTxResult r;
3644 val = cpu_to_be64(val);
3645 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3646 if (result) {
3647 *result = r;
3648 }
3649}
3650
3651void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3652{
3653 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3654}
3655
3656void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3657{
3658 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3659}
3660
f606604f 3661void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3662{
50013115 3663 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3664}
3665
5e2972fd 3666/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3667int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3668 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3669{
3670 int l;
a8170e5e 3671 hwaddr phys_addr;
9b3c35e0 3672 target_ulong page;
13eb76e0
FB
3673
3674 while (len > 0) {
5232e4c7
PM
3675 int asidx;
3676 MemTxAttrs attrs;
3677
13eb76e0 3678 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3679 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3680 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3681 /* if no physical page mapped, return an error */
3682 if (phys_addr == -1)
3683 return -1;
3684 l = (page + TARGET_PAGE_SIZE) - addr;
3685 if (l > len)
3686 l = len;
5e2972fd 3687 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3688 if (is_write) {
5232e4c7
PM
3689 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3690 phys_addr, buf, l);
2e38847b 3691 } else {
5232e4c7
PM
3692 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3693 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3694 buf, l, 0);
2e38847b 3695 }
13eb76e0
FB
3696 len -= l;
3697 buf += l;
3698 addr += l;
3699 }
3700 return 0;
3701}
038629a6
DDAG
3702
3703/*
3704 * Allows code that needs to deal with migration bitmaps etc to still be built
3705 * target independent.
3706 */
3707size_t qemu_target_page_bits(void)
3708{
3709 return TARGET_PAGE_BITS;
3710}
3711
a68fe89c 3712#endif
13eb76e0 3713
8e4a424b
BS
3714/*
3715 * A helper function for the _utterly broken_ virtio device model to find out if
3716 * it's running on a big endian machine. Don't do this at home kids!
3717 */
98ed8ecf
GK
3718bool target_words_bigendian(void);
3719bool target_words_bigendian(void)
8e4a424b
BS
3720{
3721#if defined(TARGET_WORDS_BIGENDIAN)
3722 return true;
3723#else
3724 return false;
3725#endif
3726}
3727
76f35538 3728#ifndef CONFIG_USER_ONLY
a8170e5e 3729bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3730{
5c8a00ce 3731 MemoryRegion*mr;
149f54b5 3732 hwaddr l = 1;
41063e1e 3733 bool res;
76f35538 3734
41063e1e 3735 rcu_read_lock();
5c8a00ce
PB
3736 mr = address_space_translate(&address_space_memory,
3737 phys_addr, &phys_addr, &l, false);
76f35538 3738
41063e1e
PB
3739 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3740 rcu_read_unlock();
3741 return res;
76f35538 3742}
bd2fa51f 3743
e3807054 3744int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3745{
3746 RAMBlock *block;
e3807054 3747 int ret = 0;
bd2fa51f 3748
0dc3f44a
MD
3749 rcu_read_lock();
3750 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3751 ret = func(block->idstr, block->host, block->offset,
3752 block->used_length, opaque);
3753 if (ret) {
3754 break;
3755 }
bd2fa51f 3756 }
0dc3f44a 3757 rcu_read_unlock();
e3807054 3758 return ret;
bd2fa51f 3759}
ec3f8c99 3760#endif