]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
user: fix compilation without -fpie
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
1e8b27ca
JR
195#ifdef WIN32
196static const char *logfilename = "qemu.log";
197#else
d9b630fd 198static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 199#endif
34865134
FB
200FILE *logfile;
201int loglevel;
e735b91c 202static int log_append = 0;
34865134 203
e3db7226
FB
204/* statistics */
205static int tlb_flush_count;
206static int tb_flush_count;
207static int tb_phys_invalidate_count;
208
db7b5426 209#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
210typedef struct subpage_t {
211 target_phys_addr_t base;
d60efc6b
BS
212 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
213 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 214 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
215 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
216} subpage_t;
db7b5426 217
7cb69cae
FB
218#ifdef _WIN32
219static void map_exec(void *addr, long size)
220{
221 DWORD old_protect;
222 VirtualProtect(addr, size,
223 PAGE_EXECUTE_READWRITE, &old_protect);
224
225}
226#else
227static void map_exec(void *addr, long size)
228{
4369415f 229 unsigned long start, end, page_size;
7cb69cae 230
4369415f 231 page_size = getpagesize();
7cb69cae 232 start = (unsigned long)addr;
4369415f 233 start &= ~(page_size - 1);
7cb69cae
FB
234
235 end = (unsigned long)addr + size;
4369415f
FB
236 end += page_size - 1;
237 end &= ~(page_size - 1);
7cb69cae
FB
238
239 mprotect((void *)start, end - start,
240 PROT_READ | PROT_WRITE | PROT_EXEC);
241}
242#endif
243
b346ff46 244static void page_init(void)
54936004 245{
83fb7adf 246 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 247 TARGET_PAGE_SIZE */
c2b48b69
AL
248#ifdef _WIN32
249 {
250 SYSTEM_INFO system_info;
251
252 GetSystemInfo(&system_info);
253 qemu_real_host_page_size = system_info.dwPageSize;
254 }
255#else
256 qemu_real_host_page_size = getpagesize();
257#endif
83fb7adf
FB
258 if (qemu_host_page_size == 0)
259 qemu_host_page_size = qemu_real_host_page_size;
260 if (qemu_host_page_size < TARGET_PAGE_SIZE)
261 qemu_host_page_size = TARGET_PAGE_SIZE;
262 qemu_host_page_bits = 0;
263 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
264 qemu_host_page_bits++;
265 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
266 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
267 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
268
269#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
271 long long startaddr, endaddr;
272 FILE *f;
273 int n;
274
c8a706fe 275 mmap_lock();
0776590d 276 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
277 f = fopen("/proc/self/maps", "r");
278 if (f) {
279 do {
280 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
281 if (n == 2) {
e0b8d65a
BS
282 startaddr = MIN(startaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
284 endaddr = MIN(endaddr,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 286 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
287 TARGET_PAGE_ALIGN(endaddr),
288 PAGE_RESERVED);
289 }
290 } while (!feof(f));
291 fclose(f);
292 }
c8a706fe 293 mmap_unlock();
50a9569b
AZ
294 }
295#endif
54936004
FB
296}
297
434929bf 298static inline PageDesc **page_l1_map(target_ulong index)
54936004 299{
17e2377a
PB
300#if TARGET_LONG_BITS > 32
301 /* Host memory outside guest VM. For 32-bit targets we have already
302 excluded high addresses. */
d8173e0f 303 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
304 return NULL;
305#endif
434929bf
AL
306 return &l1_map[index >> L2_BITS];
307}
308
309static inline PageDesc *page_find_alloc(target_ulong index)
310{
311 PageDesc **lp, *p;
312 lp = page_l1_map(index);
313 if (!lp)
314 return NULL;
315
54936004
FB
316 p = *lp;
317 if (!p) {
318 /* allocate if not found */
17e2377a 319#if defined(CONFIG_USER_ONLY)
17e2377a
PB
320 size_t len = sizeof(PageDesc) * L2_SIZE;
321 /* Don't use qemu_malloc because it may recurse. */
660f11be 322 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 323 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 324 *lp = p;
fb1c2cd7
AJ
325 if (h2g_valid(p)) {
326 unsigned long addr = h2g(p);
17e2377a
PB
327 page_set_flags(addr & TARGET_PAGE_MASK,
328 TARGET_PAGE_ALIGN(addr + len),
329 PAGE_RESERVED);
330 }
331#else
332 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
333 *lp = p;
334#endif
54936004
FB
335 }
336 return p + (index & (L2_SIZE - 1));
337}
338
00f82b8a 339static inline PageDesc *page_find(target_ulong index)
54936004 340{
434929bf
AL
341 PageDesc **lp, *p;
342 lp = page_l1_map(index);
343 if (!lp)
344 return NULL;
54936004 345
434929bf 346 p = *lp;
660f11be
BS
347 if (!p) {
348 return NULL;
349 }
fd6ce8f6
FB
350 return p + (index & (L2_SIZE - 1));
351}
352
c227f099 353static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 354{
108c49b8 355 void **lp, **p;
e3f4e2a4 356 PhysPageDesc *pd;
92e873b9 357
108c49b8
FB
358 p = (void **)l1_phys_map;
359#if TARGET_PHYS_ADDR_SPACE_BITS > 32
360
361#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
362#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
363#endif
364 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
365 p = *lp;
366 if (!p) {
367 /* allocate if not found */
108c49b8
FB
368 if (!alloc)
369 return NULL;
370 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
371 memset(p, 0, sizeof(void *) * L1_SIZE);
372 *lp = p;
373 }
374#endif
375 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
376 pd = *lp;
377 if (!pd) {
378 int i;
108c49b8
FB
379 /* allocate if not found */
380 if (!alloc)
381 return NULL;
e3f4e2a4
PB
382 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
383 *lp = pd;
67c4d23c 384 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 385 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
386 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
387 }
92e873b9 388 }
e3f4e2a4 389 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
390}
391
c227f099 392static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 393{
108c49b8 394 return phys_page_find_alloc(index, 0);
92e873b9
FB
395}
396
9fa3e853 397#if !defined(CONFIG_USER_ONLY)
c227f099
AL
398static void tlb_protect_code(ram_addr_t ram_addr);
399static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 400 target_ulong vaddr);
c8a706fe
PB
401#define mmap_lock() do { } while(0)
402#define mmap_unlock() do { } while(0)
9fa3e853 403#endif
fd6ce8f6 404
4369415f
FB
405#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
406
407#if defined(CONFIG_USER_ONLY)
ccbb4d44 408/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
409 user mode. It will change when a dedicated libc will be used */
410#define USE_STATIC_CODE_GEN_BUFFER
411#endif
412
413#ifdef USE_STATIC_CODE_GEN_BUFFER
414static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
415#endif
416
8fcd3692 417static void code_gen_alloc(unsigned long tb_size)
26a5f13b 418{
4369415f
FB
419#ifdef USE_STATIC_CODE_GEN_BUFFER
420 code_gen_buffer = static_code_gen_buffer;
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 map_exec(code_gen_buffer, code_gen_buffer_size);
423#else
26a5f13b
FB
424 code_gen_buffer_size = tb_size;
425 if (code_gen_buffer_size == 0) {
4369415f
FB
426#if defined(CONFIG_USER_ONLY)
427 /* in user mode, phys_ram_size is not meaningful */
428 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
429#else
ccbb4d44 430 /* XXX: needs adjustments */
94a6b54f 431 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 432#endif
26a5f13b
FB
433 }
434 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
435 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
436 /* The code gen buffer location may have constraints depending on
437 the host cpu and OS */
438#if defined(__linux__)
439 {
440 int flags;
141ac468
BS
441 void *start = NULL;
442
26a5f13b
FB
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444#if defined(__x86_64__)
445 flags |= MAP_32BIT;
446 /* Cannot map more than that */
447 if (code_gen_buffer_size > (800 * 1024 * 1024))
448 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
449#elif defined(__sparc_v9__)
450 // Map the buffer below 2G, so we can use direct calls and branches
451 flags |= MAP_FIXED;
452 start = (void *) 0x60000000UL;
453 if (code_gen_buffer_size > (512 * 1024 * 1024))
454 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 455#elif defined(__arm__)
63d41246 456 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
457 flags |= MAP_FIXED;
458 start = (void *) 0x01000000UL;
459 if (code_gen_buffer_size > 16 * 1024 * 1024)
460 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 461#endif
141ac468
BS
462 code_gen_buffer = mmap(start, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
a167ba50 470#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
471 {
472 int flags;
473 void *addr = NULL;
474 flags = MAP_PRIVATE | MAP_ANONYMOUS;
475#if defined(__x86_64__)
476 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
477 * 0x40000000 is free */
478 flags |= MAP_FIXED;
479 addr = (void *)0x40000000;
480 /* Cannot map more than that */
481 if (code_gen_buffer_size > (800 * 1024 * 1024))
482 code_gen_buffer_size = (800 * 1024 * 1024);
483#endif
484 code_gen_buffer = mmap(addr, code_gen_buffer_size,
485 PROT_WRITE | PROT_READ | PROT_EXEC,
486 flags, -1, 0);
487 if (code_gen_buffer == MAP_FAILED) {
488 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
489 exit(1);
490 }
491 }
26a5f13b
FB
492#else
493 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
494 map_exec(code_gen_buffer, code_gen_buffer_size);
495#endif
4369415f 496#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
497 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
498 code_gen_buffer_max_size = code_gen_buffer_size -
499 code_gen_max_block_size();
500 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
501 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
502}
503
504/* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
506 size. */
507void cpu_exec_init_all(unsigned long tb_size)
508{
26a5f13b
FB
509 cpu_gen_init();
510 code_gen_alloc(tb_size);
511 code_gen_ptr = code_gen_buffer;
4369415f 512 page_init();
e2eef170 513#if !defined(CONFIG_USER_ONLY)
26a5f13b 514 io_mem_init();
e2eef170 515#endif
26a5f13b
FB
516}
517
9656f324
PB
518#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
519
d4bfa4d7 520static void cpu_common_pre_save(void *opaque)
9656f324 521{
d4bfa4d7 522 CPUState *env = opaque;
9656f324 523
4c0960c0 524 cpu_synchronize_state(env);
9656f324
PB
525}
526
e7f4eff7 527static int cpu_common_pre_load(void *opaque)
9656f324
PB
528{
529 CPUState *env = opaque;
530
4c0960c0 531 cpu_synchronize_state(env);
e7f4eff7
JQ
532 return 0;
533}
534
e59fb374 535static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
536{
537 CPUState *env = opaque;
9656f324 538
3098dba0
AJ
539 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
540 version_id is increased. */
541 env->interrupt_request &= ~0x01;
9656f324
PB
542 tlb_flush(env, 1);
543
544 return 0;
545}
e7f4eff7
JQ
546
547static const VMStateDescription vmstate_cpu_common = {
548 .name = "cpu_common",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .minimum_version_id_old = 1,
552 .pre_save = cpu_common_pre_save,
553 .pre_load = cpu_common_pre_load,
554 .post_load = cpu_common_post_load,
555 .fields = (VMStateField []) {
556 VMSTATE_UINT32(halted, CPUState),
557 VMSTATE_UINT32(interrupt_request, CPUState),
558 VMSTATE_END_OF_LIST()
559 }
560};
9656f324
PB
561#endif
562
950f1472
GC
563CPUState *qemu_get_cpu(int cpu)
564{
565 CPUState *env = first_cpu;
566
567 while (env) {
568 if (env->cpu_index == cpu)
569 break;
570 env = env->next_cpu;
571 }
572
573 return env;
574}
575
6a00d601 576void cpu_exec_init(CPUState *env)
fd6ce8f6 577{
6a00d601
FB
578 CPUState **penv;
579 int cpu_index;
580
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_lock();
583#endif
6a00d601
FB
584 env->next_cpu = NULL;
585 penv = &first_cpu;
586 cpu_index = 0;
587 while (*penv != NULL) {
1e9fa730 588 penv = &(*penv)->next_cpu;
6a00d601
FB
589 cpu_index++;
590 }
591 env->cpu_index = cpu_index;
268a362c 592 env->numa_node = 0;
72cf2d4f
BS
593 QTAILQ_INIT(&env->breakpoints);
594 QTAILQ_INIT(&env->watchpoints);
6a00d601 595 *penv = env;
c2764719
PB
596#if defined(CONFIG_USER_ONLY)
597 cpu_list_unlock();
598#endif
b3c7724c 599#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 600 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
601 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
602 cpu_save, cpu_load, env);
603#endif
fd6ce8f6
FB
604}
605
9fa3e853
FB
606static inline void invalidate_page_bitmap(PageDesc *p)
607{
608 if (p->code_bitmap) {
59817ccb 609 qemu_free(p->code_bitmap);
9fa3e853
FB
610 p->code_bitmap = NULL;
611 }
612 p->code_write_count = 0;
613}
614
fd6ce8f6
FB
615/* set to NULL all the 'first_tb' fields in all PageDescs */
616static void page_flush_tb(void)
617{
618 int i, j;
619 PageDesc *p;
620
621 for(i = 0; i < L1_SIZE; i++) {
622 p = l1_map[i];
623 if (p) {
9fa3e853
FB
624 for(j = 0; j < L2_SIZE; j++) {
625 p->first_tb = NULL;
626 invalidate_page_bitmap(p);
627 p++;
628 }
fd6ce8f6
FB
629 }
630 }
631}
632
633/* flush all the translation blocks */
d4e8164f 634/* XXX: tb_flush is currently not thread safe */
6a00d601 635void tb_flush(CPUState *env1)
fd6ce8f6 636{
6a00d601 637 CPUState *env;
0124311e 638#if defined(DEBUG_FLUSH)
ab3d1727
BS
639 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
640 (unsigned long)(code_gen_ptr - code_gen_buffer),
641 nb_tbs, nb_tbs > 0 ?
642 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 643#endif
26a5f13b 644 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
645 cpu_abort(env1, "Internal error: code buffer overflow\n");
646
fd6ce8f6 647 nb_tbs = 0;
3b46e624 648
6a00d601
FB
649 for(env = first_cpu; env != NULL; env = env->next_cpu) {
650 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
651 }
9fa3e853 652
8a8a608f 653 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 654 page_flush_tb();
9fa3e853 655
fd6ce8f6 656 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
657 /* XXX: flush processor icache at this point if cache flush is
658 expensive */
e3db7226 659 tb_flush_count++;
fd6ce8f6
FB
660}
661
662#ifdef DEBUG_TB_CHECK
663
bc98a7ef 664static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
665{
666 TranslationBlock *tb;
667 int i;
668 address &= TARGET_PAGE_MASK;
99773bd4
PB
669 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
670 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
671 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
672 address >= tb->pc + tb->size)) {
0bf9e31a
BS
673 printf("ERROR invalidate: address=" TARGET_FMT_lx
674 " PC=%08lx size=%04x\n",
99773bd4 675 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
676 }
677 }
678 }
679}
680
681/* verify that all the pages have correct rights for code */
682static void tb_page_check(void)
683{
684 TranslationBlock *tb;
685 int i, flags1, flags2;
3b46e624 686
99773bd4
PB
687 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
688 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
689 flags1 = page_get_flags(tb->pc);
690 flags2 = page_get_flags(tb->pc + tb->size - 1);
691 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
692 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 693 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
694 }
695 }
696 }
697}
698
699#endif
700
701/* invalidate one TB */
702static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
703 int next_offset)
704{
705 TranslationBlock *tb1;
706 for(;;) {
707 tb1 = *ptb;
708 if (tb1 == tb) {
709 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
710 break;
711 }
712 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
713 }
714}
715
9fa3e853
FB
716static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
717{
718 TranslationBlock *tb1;
719 unsigned int n1;
720
721 for(;;) {
722 tb1 = *ptb;
723 n1 = (long)tb1 & 3;
724 tb1 = (TranslationBlock *)((long)tb1 & ~3);
725 if (tb1 == tb) {
726 *ptb = tb1->page_next[n1];
727 break;
728 }
729 ptb = &tb1->page_next[n1];
730 }
731}
732
d4e8164f
FB
733static inline void tb_jmp_remove(TranslationBlock *tb, int n)
734{
735 TranslationBlock *tb1, **ptb;
736 unsigned int n1;
737
738 ptb = &tb->jmp_next[n];
739 tb1 = *ptb;
740 if (tb1) {
741 /* find tb(n) in circular list */
742 for(;;) {
743 tb1 = *ptb;
744 n1 = (long)tb1 & 3;
745 tb1 = (TranslationBlock *)((long)tb1 & ~3);
746 if (n1 == n && tb1 == tb)
747 break;
748 if (n1 == 2) {
749 ptb = &tb1->jmp_first;
750 } else {
751 ptb = &tb1->jmp_next[n1];
752 }
753 }
754 /* now we can suppress tb(n) from the list */
755 *ptb = tb->jmp_next[n];
756
757 tb->jmp_next[n] = NULL;
758 }
759}
760
761/* reset the jump entry 'n' of a TB so that it is not chained to
762 another TB */
763static inline void tb_reset_jump(TranslationBlock *tb, int n)
764{
765 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
766}
767
2e70f6ef 768void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 769{
6a00d601 770 CPUState *env;
8a40a180 771 PageDesc *p;
d4e8164f 772 unsigned int h, n1;
c227f099 773 target_phys_addr_t phys_pc;
8a40a180 774 TranslationBlock *tb1, *tb2;
3b46e624 775
8a40a180
FB
776 /* remove the TB from the hash list */
777 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
778 h = tb_phys_hash_func(phys_pc);
5fafdf24 779 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
780 offsetof(TranslationBlock, phys_hash_next));
781
782 /* remove the TB from the page list */
783 if (tb->page_addr[0] != page_addr) {
784 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
789 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
792 }
793
36bdbe54 794 tb_invalidated_flag = 1;
59817ccb 795
fd6ce8f6 796 /* remove the TB from the hash list */
8a40a180 797 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
799 if (env->tb_jmp_cache[h] == tb)
800 env->tb_jmp_cache[h] = NULL;
801 }
d4e8164f
FB
802
803 /* suppress this TB from the two jump lists */
804 tb_jmp_remove(tb, 0);
805 tb_jmp_remove(tb, 1);
806
807 /* suppress any remaining jumps to this TB */
808 tb1 = tb->jmp_first;
809 for(;;) {
810 n1 = (long)tb1 & 3;
811 if (n1 == 2)
812 break;
813 tb1 = (TranslationBlock *)((long)tb1 & ~3);
814 tb2 = tb1->jmp_next[n1];
815 tb_reset_jump(tb1, n1);
816 tb1->jmp_next[n1] = NULL;
817 tb1 = tb2;
818 }
819 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 820
e3db7226 821 tb_phys_invalidate_count++;
9fa3e853
FB
822}
823
824static inline void set_bits(uint8_t *tab, int start, int len)
825{
826 int end, mask, end1;
827
828 end = start + len;
829 tab += start >> 3;
830 mask = 0xff << (start & 7);
831 if ((start & ~7) == (end & ~7)) {
832 if (start < end) {
833 mask &= ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 } else {
837 *tab++ |= mask;
838 start = (start + 8) & ~7;
839 end1 = end & ~7;
840 while (start < end1) {
841 *tab++ = 0xff;
842 start += 8;
843 }
844 if (start < end) {
845 mask = ~(0xff << (end & 7));
846 *tab |= mask;
847 }
848 }
849}
850
851static void build_page_bitmap(PageDesc *p)
852{
853 int n, tb_start, tb_end;
854 TranslationBlock *tb;
3b46e624 855
b2a7081a 856 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
857
858 tb = p->first_tb;
859 while (tb != NULL) {
860 n = (long)tb & 3;
861 tb = (TranslationBlock *)((long)tb & ~3);
862 /* NOTE: this is subtle as a TB may span two physical pages */
863 if (n == 0) {
864 /* NOTE: tb_end may be after the end of the page, but
865 it is not a problem */
866 tb_start = tb->pc & ~TARGET_PAGE_MASK;
867 tb_end = tb_start + tb->size;
868 if (tb_end > TARGET_PAGE_SIZE)
869 tb_end = TARGET_PAGE_SIZE;
870 } else {
871 tb_start = 0;
872 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
873 }
874 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
875 tb = tb->page_next[n];
876 }
877}
878
2e70f6ef
PB
879TranslationBlock *tb_gen_code(CPUState *env,
880 target_ulong pc, target_ulong cs_base,
881 int flags, int cflags)
d720b93d
FB
882{
883 TranslationBlock *tb;
884 uint8_t *tc_ptr;
885 target_ulong phys_pc, phys_page2, virt_page2;
886 int code_gen_size;
887
c27004ec
FB
888 phys_pc = get_phys_addr_code(env, pc);
889 tb = tb_alloc(pc);
d720b93d
FB
890 if (!tb) {
891 /* flush must be done */
892 tb_flush(env);
893 /* cannot fail at this point */
c27004ec 894 tb = tb_alloc(pc);
2e70f6ef
PB
895 /* Don't forget to invalidate previous TB info. */
896 tb_invalidated_flag = 1;
d720b93d
FB
897 }
898 tc_ptr = code_gen_ptr;
899 tb->tc_ptr = tc_ptr;
900 tb->cs_base = cs_base;
901 tb->flags = flags;
902 tb->cflags = cflags;
d07bde88 903 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 904 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 905
d720b93d 906 /* check next page if needed */
c27004ec 907 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 908 phys_page2 = -1;
c27004ec 909 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
910 phys_page2 = get_phys_addr_code(env, virt_page2);
911 }
912 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 913 return tb;
d720b93d 914}
3b46e624 915
9fa3e853
FB
916/* invalidate all TBs which intersect with the target physical page
917 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
918 the same physical page. 'is_cpu_write_access' should be true if called
919 from a real cpu write access: the virtual CPU will exit the current
920 TB if code is modified inside this TB. */
c227f099 921void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
922 int is_cpu_write_access)
923{
6b917547 924 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 925 CPUState *env = cpu_single_env;
9fa3e853 926 target_ulong tb_start, tb_end;
6b917547
AL
927 PageDesc *p;
928 int n;
929#ifdef TARGET_HAS_PRECISE_SMC
930 int current_tb_not_found = is_cpu_write_access;
931 TranslationBlock *current_tb = NULL;
932 int current_tb_modified = 0;
933 target_ulong current_pc = 0;
934 target_ulong current_cs_base = 0;
935 int current_flags = 0;
936#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
937
938 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 939 if (!p)
9fa3e853 940 return;
5fafdf24 941 if (!p->code_bitmap &&
d720b93d
FB
942 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
943 is_cpu_write_access) {
9fa3e853
FB
944 /* build code bitmap */
945 build_page_bitmap(p);
946 }
947
948 /* we remove all the TBs in the range [start, end[ */
949 /* XXX: see if in some cases it could be faster to invalidate all the code */
950 tb = p->first_tb;
951 while (tb != NULL) {
952 n = (long)tb & 3;
953 tb = (TranslationBlock *)((long)tb & ~3);
954 tb_next = tb->page_next[n];
955 /* NOTE: this is subtle as a TB may span two physical pages */
956 if (n == 0) {
957 /* NOTE: tb_end may be after the end of the page, but
958 it is not a problem */
959 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
960 tb_end = tb_start + tb->size;
961 } else {
962 tb_start = tb->page_addr[1];
963 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
964 }
965 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
966#ifdef TARGET_HAS_PRECISE_SMC
967 if (current_tb_not_found) {
968 current_tb_not_found = 0;
969 current_tb = NULL;
2e70f6ef 970 if (env->mem_io_pc) {
d720b93d 971 /* now we have a real cpu fault */
2e70f6ef 972 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
973 }
974 }
975 if (current_tb == tb &&
2e70f6ef 976 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
977 /* If we are modifying the current TB, we must stop
978 its execution. We could be more precise by checking
979 that the modification is after the current PC, but it
980 would require a specialized function to partially
981 restore the CPU state */
3b46e624 982
d720b93d 983 current_tb_modified = 1;
5fafdf24 984 cpu_restore_state(current_tb, env,
2e70f6ef 985 env->mem_io_pc, NULL);
6b917547
AL
986 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
987 &current_flags);
d720b93d
FB
988 }
989#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
990 /* we need to do that to handle the case where a signal
991 occurs while doing tb_phys_invalidate() */
992 saved_tb = NULL;
993 if (env) {
994 saved_tb = env->current_tb;
995 env->current_tb = NULL;
996 }
9fa3e853 997 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
998 if (env) {
999 env->current_tb = saved_tb;
1000 if (env->interrupt_request && env->current_tb)
1001 cpu_interrupt(env, env->interrupt_request);
1002 }
9fa3e853
FB
1003 }
1004 tb = tb_next;
1005 }
1006#if !defined(CONFIG_USER_ONLY)
1007 /* if no code remaining, no need to continue to use slow writes */
1008 if (!p->first_tb) {
1009 invalidate_page_bitmap(p);
d720b93d 1010 if (is_cpu_write_access) {
2e70f6ef 1011 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1012 }
1013 }
1014#endif
1015#ifdef TARGET_HAS_PRECISE_SMC
1016 if (current_tb_modified) {
1017 /* we generate a block containing just the instruction
1018 modifying the memory. It will ensure that it cannot modify
1019 itself */
ea1c1802 1020 env->current_tb = NULL;
2e70f6ef 1021 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1022 cpu_resume_from_signal(env, NULL);
9fa3e853 1023 }
fd6ce8f6 1024#endif
9fa3e853 1025}
fd6ce8f6 1026
9fa3e853 1027/* len must be <= 8 and start must be a multiple of len */
c227f099 1028static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1029{
1030 PageDesc *p;
1031 int offset, b;
59817ccb 1032#if 0
a4193c8a 1033 if (1) {
93fcfe39
AL
1034 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1035 cpu_single_env->mem_io_vaddr, len,
1036 cpu_single_env->eip,
1037 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1038 }
1039#endif
9fa3e853 1040 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1041 if (!p)
9fa3e853
FB
1042 return;
1043 if (p->code_bitmap) {
1044 offset = start & ~TARGET_PAGE_MASK;
1045 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1046 if (b & ((1 << len) - 1))
1047 goto do_invalidate;
1048 } else {
1049 do_invalidate:
d720b93d 1050 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1051 }
1052}
1053
9fa3e853 1054#if !defined(CONFIG_SOFTMMU)
c227f099 1055static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1056 unsigned long pc, void *puc)
9fa3e853 1057{
6b917547 1058 TranslationBlock *tb;
9fa3e853 1059 PageDesc *p;
6b917547 1060 int n;
d720b93d 1061#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1062 TranslationBlock *current_tb = NULL;
d720b93d 1063 CPUState *env = cpu_single_env;
6b917547
AL
1064 int current_tb_modified = 0;
1065 target_ulong current_pc = 0;
1066 target_ulong current_cs_base = 0;
1067 int current_flags = 0;
d720b93d 1068#endif
9fa3e853
FB
1069
1070 addr &= TARGET_PAGE_MASK;
1071 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1072 if (!p)
9fa3e853
FB
1073 return;
1074 tb = p->first_tb;
d720b93d
FB
1075#ifdef TARGET_HAS_PRECISE_SMC
1076 if (tb && pc != 0) {
1077 current_tb = tb_find_pc(pc);
1078 }
1079#endif
9fa3e853
FB
1080 while (tb != NULL) {
1081 n = (long)tb & 3;
1082 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1083#ifdef TARGET_HAS_PRECISE_SMC
1084 if (current_tb == tb &&
2e70f6ef 1085 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1086 /* If we are modifying the current TB, we must stop
1087 its execution. We could be more precise by checking
1088 that the modification is after the current PC, but it
1089 would require a specialized function to partially
1090 restore the CPU state */
3b46e624 1091
d720b93d
FB
1092 current_tb_modified = 1;
1093 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1094 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1095 &current_flags);
d720b93d
FB
1096 }
1097#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1098 tb_phys_invalidate(tb, addr);
1099 tb = tb->page_next[n];
1100 }
fd6ce8f6 1101 p->first_tb = NULL;
d720b93d
FB
1102#ifdef TARGET_HAS_PRECISE_SMC
1103 if (current_tb_modified) {
1104 /* we generate a block containing just the instruction
1105 modifying the memory. It will ensure that it cannot modify
1106 itself */
ea1c1802 1107 env->current_tb = NULL;
2e70f6ef 1108 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1109 cpu_resume_from_signal(env, puc);
1110 }
1111#endif
fd6ce8f6 1112}
9fa3e853 1113#endif
fd6ce8f6
FB
1114
1115/* add the tb in the target page and protect it if necessary */
5fafdf24 1116static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1117 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1118{
1119 PageDesc *p;
9fa3e853
FB
1120 TranslationBlock *last_first_tb;
1121
1122 tb->page_addr[n] = page_addr;
3a7d929e 1123 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1124 tb->page_next[n] = p->first_tb;
1125 last_first_tb = p->first_tb;
1126 p->first_tb = (TranslationBlock *)((long)tb | n);
1127 invalidate_page_bitmap(p);
fd6ce8f6 1128
107db443 1129#if defined(TARGET_HAS_SMC) || 1
d720b93d 1130
9fa3e853 1131#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1132 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1133 target_ulong addr;
1134 PageDesc *p2;
9fa3e853
FB
1135 int prot;
1136
fd6ce8f6
FB
1137 /* force the host page as non writable (writes will have a
1138 page fault + mprotect overhead) */
53a5960a 1139 page_addr &= qemu_host_page_mask;
fd6ce8f6 1140 prot = 0;
53a5960a
PB
1141 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1142 addr += TARGET_PAGE_SIZE) {
1143
1144 p2 = page_find (addr >> TARGET_PAGE_BITS);
1145 if (!p2)
1146 continue;
1147 prot |= p2->flags;
1148 p2->flags &= ~PAGE_WRITE;
1149 page_get_flags(addr);
1150 }
5fafdf24 1151 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1152 (prot & PAGE_BITS) & ~PAGE_WRITE);
1153#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1154 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1155 page_addr);
fd6ce8f6 1156#endif
fd6ce8f6 1157 }
9fa3e853
FB
1158#else
1159 /* if some code is already present, then the pages are already
1160 protected. So we handle the case where only the first TB is
1161 allocated in a physical page */
1162 if (!last_first_tb) {
6a00d601 1163 tlb_protect_code(page_addr);
9fa3e853
FB
1164 }
1165#endif
d720b93d
FB
1166
1167#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1168}
1169
1170/* Allocate a new translation block. Flush the translation buffer if
1171 too many translation blocks or too much generated code. */
c27004ec 1172TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1173{
1174 TranslationBlock *tb;
fd6ce8f6 1175
26a5f13b
FB
1176 if (nb_tbs >= code_gen_max_blocks ||
1177 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1178 return NULL;
fd6ce8f6
FB
1179 tb = &tbs[nb_tbs++];
1180 tb->pc = pc;
b448f2f3 1181 tb->cflags = 0;
d4e8164f
FB
1182 return tb;
1183}
1184
2e70f6ef
PB
1185void tb_free(TranslationBlock *tb)
1186{
bf20dc07 1187 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1188 Ignore the hard cases and just back up if this TB happens to
1189 be the last one generated. */
1190 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1191 code_gen_ptr = tb->tc_ptr;
1192 nb_tbs--;
1193 }
1194}
1195
9fa3e853
FB
1196/* add a new TB and link it to the physical page tables. phys_page2 is
1197 (-1) to indicate that only one page contains the TB. */
5fafdf24 1198void tb_link_phys(TranslationBlock *tb,
9fa3e853 1199 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1200{
9fa3e853
FB
1201 unsigned int h;
1202 TranslationBlock **ptb;
1203
c8a706fe
PB
1204 /* Grab the mmap lock to stop another thread invalidating this TB
1205 before we are done. */
1206 mmap_lock();
9fa3e853
FB
1207 /* add in the physical hash table */
1208 h = tb_phys_hash_func(phys_pc);
1209 ptb = &tb_phys_hash[h];
1210 tb->phys_hash_next = *ptb;
1211 *ptb = tb;
fd6ce8f6
FB
1212
1213 /* add in the page list */
9fa3e853
FB
1214 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1215 if (phys_page2 != -1)
1216 tb_alloc_page(tb, 1, phys_page2);
1217 else
1218 tb->page_addr[1] = -1;
9fa3e853 1219
d4e8164f
FB
1220 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1221 tb->jmp_next[0] = NULL;
1222 tb->jmp_next[1] = NULL;
1223
1224 /* init original jump addresses */
1225 if (tb->tb_next_offset[0] != 0xffff)
1226 tb_reset_jump(tb, 0);
1227 if (tb->tb_next_offset[1] != 0xffff)
1228 tb_reset_jump(tb, 1);
8a40a180
FB
1229
1230#ifdef DEBUG_TB_CHECK
1231 tb_page_check();
1232#endif
c8a706fe 1233 mmap_unlock();
fd6ce8f6
FB
1234}
1235
9fa3e853
FB
1236/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1237 tb[1].tc_ptr. Return NULL if not found */
1238TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1239{
9fa3e853
FB
1240 int m_min, m_max, m;
1241 unsigned long v;
1242 TranslationBlock *tb;
a513fe19
FB
1243
1244 if (nb_tbs <= 0)
1245 return NULL;
1246 if (tc_ptr < (unsigned long)code_gen_buffer ||
1247 tc_ptr >= (unsigned long)code_gen_ptr)
1248 return NULL;
1249 /* binary search (cf Knuth) */
1250 m_min = 0;
1251 m_max = nb_tbs - 1;
1252 while (m_min <= m_max) {
1253 m = (m_min + m_max) >> 1;
1254 tb = &tbs[m];
1255 v = (unsigned long)tb->tc_ptr;
1256 if (v == tc_ptr)
1257 return tb;
1258 else if (tc_ptr < v) {
1259 m_max = m - 1;
1260 } else {
1261 m_min = m + 1;
1262 }
5fafdf24 1263 }
a513fe19
FB
1264 return &tbs[m_max];
1265}
7501267e 1266
ea041c0e
FB
1267static void tb_reset_jump_recursive(TranslationBlock *tb);
1268
1269static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1270{
1271 TranslationBlock *tb1, *tb_next, **ptb;
1272 unsigned int n1;
1273
1274 tb1 = tb->jmp_next[n];
1275 if (tb1 != NULL) {
1276 /* find head of list */
1277 for(;;) {
1278 n1 = (long)tb1 & 3;
1279 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1280 if (n1 == 2)
1281 break;
1282 tb1 = tb1->jmp_next[n1];
1283 }
1284 /* we are now sure now that tb jumps to tb1 */
1285 tb_next = tb1;
1286
1287 /* remove tb from the jmp_first list */
1288 ptb = &tb_next->jmp_first;
1289 for(;;) {
1290 tb1 = *ptb;
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == n && tb1 == tb)
1294 break;
1295 ptb = &tb1->jmp_next[n1];
1296 }
1297 *ptb = tb->jmp_next[n];
1298 tb->jmp_next[n] = NULL;
3b46e624 1299
ea041c0e
FB
1300 /* suppress the jump to next tb in generated code */
1301 tb_reset_jump(tb, n);
1302
0124311e 1303 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1304 tb_reset_jump_recursive(tb_next);
1305 }
1306}
1307
1308static void tb_reset_jump_recursive(TranslationBlock *tb)
1309{
1310 tb_reset_jump_recursive2(tb, 0);
1311 tb_reset_jump_recursive2(tb, 1);
1312}
1313
1fddef4b 1314#if defined(TARGET_HAS_ICE)
d720b93d
FB
1315static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1316{
c227f099 1317 target_phys_addr_t addr;
9b3c35e0 1318 target_ulong pd;
c227f099 1319 ram_addr_t ram_addr;
c2f07f81 1320 PhysPageDesc *p;
d720b93d 1321
c2f07f81
PB
1322 addr = cpu_get_phys_page_debug(env, pc);
1323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 pd = IO_MEM_UNASSIGNED;
1326 } else {
1327 pd = p->phys_offset;
1328 }
1329 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1330 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1331}
c27004ec 1332#endif
d720b93d 1333
6658ffb8 1334/* Add a watchpoint. */
a1d1bb31
AL
1335int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1337{
b4051334 1338 target_ulong len_mask = ~(len - 1);
c0ce998e 1339 CPUWatchpoint *wp;
6658ffb8 1340
b4051334
AL
1341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1342 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1343 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1344 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1345 return -EINVAL;
1346 }
a1d1bb31 1347 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1348
1349 wp->vaddr = addr;
b4051334 1350 wp->len_mask = len_mask;
a1d1bb31
AL
1351 wp->flags = flags;
1352
2dc9f411 1353 /* keep all GDB-injected watchpoints in front */
c0ce998e 1354 if (flags & BP_GDB)
72cf2d4f 1355 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1356 else
72cf2d4f 1357 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1358
6658ffb8 1359 tlb_flush_page(env, addr);
a1d1bb31
AL
1360
1361 if (watchpoint)
1362 *watchpoint = wp;
1363 return 0;
6658ffb8
PB
1364}
1365
a1d1bb31
AL
1366/* Remove a specific watchpoint. */
1367int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1368 int flags)
6658ffb8 1369{
b4051334 1370 target_ulong len_mask = ~(len - 1);
a1d1bb31 1371 CPUWatchpoint *wp;
6658ffb8 1372
72cf2d4f 1373 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1374 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1375 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1376 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1377 return 0;
1378 }
1379 }
a1d1bb31 1380 return -ENOENT;
6658ffb8
PB
1381}
1382
a1d1bb31
AL
1383/* Remove a specific watchpoint by reference. */
1384void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1385{
72cf2d4f 1386 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1387
a1d1bb31
AL
1388 tlb_flush_page(env, watchpoint->vaddr);
1389
1390 qemu_free(watchpoint);
1391}
1392
1393/* Remove all matching watchpoints. */
1394void cpu_watchpoint_remove_all(CPUState *env, int mask)
1395{
c0ce998e 1396 CPUWatchpoint *wp, *next;
a1d1bb31 1397
72cf2d4f 1398 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1399 if (wp->flags & mask)
1400 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1401 }
7d03f82f
EI
1402}
1403
a1d1bb31
AL
1404/* Add a breakpoint. */
1405int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1406 CPUBreakpoint **breakpoint)
4c3a88a2 1407{
1fddef4b 1408#if defined(TARGET_HAS_ICE)
c0ce998e 1409 CPUBreakpoint *bp;
3b46e624 1410
a1d1bb31 1411 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1412
a1d1bb31
AL
1413 bp->pc = pc;
1414 bp->flags = flags;
1415
2dc9f411 1416 /* keep all GDB-injected breakpoints in front */
c0ce998e 1417 if (flags & BP_GDB)
72cf2d4f 1418 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1419 else
72cf2d4f 1420 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1421
d720b93d 1422 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1423
1424 if (breakpoint)
1425 *breakpoint = bp;
4c3a88a2
FB
1426 return 0;
1427#else
a1d1bb31 1428 return -ENOSYS;
4c3a88a2
FB
1429#endif
1430}
1431
a1d1bb31
AL
1432/* Remove a specific breakpoint. */
1433int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1434{
7d03f82f 1435#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1436 CPUBreakpoint *bp;
1437
72cf2d4f 1438 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1439 if (bp->pc == pc && bp->flags == flags) {
1440 cpu_breakpoint_remove_by_ref(env, bp);
1441 return 0;
1442 }
7d03f82f 1443 }
a1d1bb31
AL
1444 return -ENOENT;
1445#else
1446 return -ENOSYS;
7d03f82f
EI
1447#endif
1448}
1449
a1d1bb31
AL
1450/* Remove a specific breakpoint by reference. */
1451void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1452{
1fddef4b 1453#if defined(TARGET_HAS_ICE)
72cf2d4f 1454 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1455
a1d1bb31
AL
1456 breakpoint_invalidate(env, breakpoint->pc);
1457
1458 qemu_free(breakpoint);
1459#endif
1460}
1461
1462/* Remove all matching breakpoints. */
1463void cpu_breakpoint_remove_all(CPUState *env, int mask)
1464{
1465#if defined(TARGET_HAS_ICE)
c0ce998e 1466 CPUBreakpoint *bp, *next;
a1d1bb31 1467
72cf2d4f 1468 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1469 if (bp->flags & mask)
1470 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1471 }
4c3a88a2
FB
1472#endif
1473}
1474
c33a346e
FB
1475/* enable or disable single step mode. EXCP_DEBUG is returned by the
1476 CPU loop after each instruction */
1477void cpu_single_step(CPUState *env, int enabled)
1478{
1fddef4b 1479#if defined(TARGET_HAS_ICE)
c33a346e
FB
1480 if (env->singlestep_enabled != enabled) {
1481 env->singlestep_enabled = enabled;
e22a25c9
AL
1482 if (kvm_enabled())
1483 kvm_update_guest_debug(env, 0);
1484 else {
ccbb4d44 1485 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1486 /* XXX: only flush what is necessary */
1487 tb_flush(env);
1488 }
c33a346e
FB
1489 }
1490#endif
1491}
1492
34865134
FB
1493/* enable or disable low levels log */
1494void cpu_set_log(int log_flags)
1495{
1496 loglevel = log_flags;
1497 if (loglevel && !logfile) {
11fcfab4 1498 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1499 if (!logfile) {
1500 perror(logfilename);
1501 _exit(1);
1502 }
9fa3e853
FB
1503#if !defined(CONFIG_SOFTMMU)
1504 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1505 {
b55266b5 1506 static char logfile_buf[4096];
9fa3e853
FB
1507 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1508 }
bf65f53f
FN
1509#elif !defined(_WIN32)
1510 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1511 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1512#endif
e735b91c
PB
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
34865134
FB
1518 }
1519}
1520
1521void cpu_set_log_filename(const char *filename)
1522{
1523 logfilename = strdup(filename);
e735b91c
PB
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
34865134 1529}
c33a346e 1530
3098dba0 1531static void cpu_unlink_tb(CPUState *env)
ea041c0e 1532{
2f7bb878 1533#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538#else
ea041c0e 1539 TranslationBlock *tb;
c227f099 1540 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1541
3098dba0
AJ
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb && !testandset(&interrupt_lock)) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1548 resetlock(&interrupt_lock);
be214e6c 1549 }
3098dba0
AJ
1550#endif
1551}
1552
1553/* mask must never be zero, except for A20 change call */
1554void cpu_interrupt(CPUState *env, int mask)
1555{
1556 int old_mask;
be214e6c 1557
2e70f6ef 1558 old_mask = env->interrupt_request;
68a79315 1559 env->interrupt_request |= mask;
3098dba0 1560
8edac960
AL
1561#ifndef CONFIG_USER_ONLY
1562 /*
1563 * If called from iothread context, wake the target cpu in
1564 * case its halted.
1565 */
1566 if (!qemu_cpu_self(env)) {
1567 qemu_cpu_kick(env);
1568 return;
1569 }
1570#endif
1571
2e70f6ef 1572 if (use_icount) {
266910c4 1573 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1574#ifndef CONFIG_USER_ONLY
2e70f6ef 1575 if (!can_do_io(env)
be214e6c 1576 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1577 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 }
1579#endif
1580 } else {
3098dba0 1581 cpu_unlink_tb(env);
ea041c0e
FB
1582 }
1583}
1584
b54ad049
FB
1585void cpu_reset_interrupt(CPUState *env, int mask)
1586{
1587 env->interrupt_request &= ~mask;
1588}
1589
3098dba0
AJ
1590void cpu_exit(CPUState *env)
1591{
1592 env->exit_request = 1;
1593 cpu_unlink_tb(env);
1594}
1595
c7cd6a37 1596const CPULogItem cpu_log_items[] = {
5fafdf24 1597 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1598 "show generated host assembly code for each compiled TB" },
1599 { CPU_LOG_TB_IN_ASM, "in_asm",
1600 "show target assembly code for each compiled TB" },
5fafdf24 1601 { CPU_LOG_TB_OP, "op",
57fec1fe 1602 "show micro ops for each compiled TB" },
f193c797 1603 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1604 "show micro ops "
1605#ifdef TARGET_I386
1606 "before eflags optimization and "
f193c797 1607#endif
e01a1157 1608 "after liveness analysis" },
f193c797
FB
1609 { CPU_LOG_INT, "int",
1610 "show interrupts/exceptions in short format" },
1611 { CPU_LOG_EXEC, "exec",
1612 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1613 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1614 "show CPU state before block translation" },
f193c797
FB
1615#ifdef TARGET_I386
1616 { CPU_LOG_PCALL, "pcall",
1617 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1618 { CPU_LOG_RESET, "cpu_reset",
1619 "show CPU state before CPU resets" },
f193c797 1620#endif
8e3a9fd2 1621#ifdef DEBUG_IOPORT
fd872598
FB
1622 { CPU_LOG_IOPORT, "ioport",
1623 "show all i/o ports accesses" },
8e3a9fd2 1624#endif
f193c797
FB
1625 { 0, NULL, NULL },
1626};
1627
1628static int cmp1(const char *s1, int n, const char *s2)
1629{
1630 if (strlen(s2) != n)
1631 return 0;
1632 return memcmp(s1, s2, n) == 0;
1633}
3b46e624 1634
f193c797
FB
1635/* takes a comma separated list of log masks. Return 0 if error. */
1636int cpu_str_to_log_mask(const char *str)
1637{
c7cd6a37 1638 const CPULogItem *item;
f193c797
FB
1639 int mask;
1640 const char *p, *p1;
1641
1642 p = str;
1643 mask = 0;
1644 for(;;) {
1645 p1 = strchr(p, ',');
1646 if (!p1)
1647 p1 = p + strlen(p);
8e3a9fd2
FB
1648 if(cmp1(p,p1-p,"all")) {
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 mask |= item->mask;
1651 }
1652 } else {
f193c797
FB
1653 for(item = cpu_log_items; item->mask != 0; item++) {
1654 if (cmp1(p, p1 - p, item->name))
1655 goto found;
1656 }
1657 return 0;
8e3a9fd2 1658 }
f193c797
FB
1659 found:
1660 mask |= item->mask;
1661 if (*p1 != ',')
1662 break;
1663 p = p1 + 1;
1664 }
1665 return mask;
1666}
ea041c0e 1667
7501267e
FB
1668void cpu_abort(CPUState *env, const char *fmt, ...)
1669{
1670 va_list ap;
493ae1f0 1671 va_list ap2;
7501267e
FB
1672
1673 va_start(ap, fmt);
493ae1f0 1674 va_copy(ap2, ap);
7501267e
FB
1675 fprintf(stderr, "qemu: fatal: ");
1676 vfprintf(stderr, fmt, ap);
1677 fprintf(stderr, "\n");
1678#ifdef TARGET_I386
7fe48483
FB
1679 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1680#else
1681 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1682#endif
93fcfe39
AL
1683 if (qemu_log_enabled()) {
1684 qemu_log("qemu: fatal: ");
1685 qemu_log_vprintf(fmt, ap2);
1686 qemu_log("\n");
f9373291 1687#ifdef TARGET_I386
93fcfe39 1688 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1689#else
93fcfe39 1690 log_cpu_state(env, 0);
f9373291 1691#endif
31b1a7b4 1692 qemu_log_flush();
93fcfe39 1693 qemu_log_close();
924edcae 1694 }
493ae1f0 1695 va_end(ap2);
f9373291 1696 va_end(ap);
7501267e
FB
1697 abort();
1698}
1699
c5be9f08
TS
1700CPUState *cpu_copy(CPUState *env)
1701{
01ba9816 1702 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1703 CPUState *next_cpu = new_env->next_cpu;
1704 int cpu_index = new_env->cpu_index;
5a38f081
AL
1705#if defined(TARGET_HAS_ICE)
1706 CPUBreakpoint *bp;
1707 CPUWatchpoint *wp;
1708#endif
1709
c5be9f08 1710 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1711
1712 /* Preserve chaining and index. */
c5be9f08
TS
1713 new_env->next_cpu = next_cpu;
1714 new_env->cpu_index = cpu_index;
5a38f081
AL
1715
1716 /* Clone all break/watchpoints.
1717 Note: Once we support ptrace with hw-debug register access, make sure
1718 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1719 QTAILQ_INIT(&env->breakpoints);
1720 QTAILQ_INIT(&env->watchpoints);
5a38f081 1721#if defined(TARGET_HAS_ICE)
72cf2d4f 1722 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1723 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1724 }
72cf2d4f 1725 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1726 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1727 wp->flags, NULL);
1728 }
1729#endif
1730
c5be9f08
TS
1731 return new_env;
1732}
1733
0124311e
FB
1734#if !defined(CONFIG_USER_ONLY)
1735
5c751e99
EI
1736static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1737{
1738 unsigned int i;
1739
1740 /* Discard jump cache entries for any tb which might potentially
1741 overlap the flushed page. */
1742 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745
1746 i = tb_jmp_cache_hash_page(addr);
1747 memset (&env->tb_jmp_cache[i], 0,
1748 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749}
1750
08738984
IK
1751static CPUTLBEntry s_cputlb_empty_entry = {
1752 .addr_read = -1,
1753 .addr_write = -1,
1754 .addr_code = -1,
1755 .addend = -1,
1756};
1757
ee8b7021
FB
1758/* NOTE: if flush_global is true, also flush global entries (not
1759 implemented yet) */
1760void tlb_flush(CPUState *env, int flush_global)
33417e70 1761{
33417e70 1762 int i;
0124311e 1763
9fa3e853
FB
1764#if defined(DEBUG_TLB)
1765 printf("tlb_flush:\n");
1766#endif
0124311e
FB
1767 /* must reset current TB so that interrupts cannot modify the
1768 links while we are modifying them */
1769 env->current_tb = NULL;
1770
33417e70 1771 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1772 int mmu_idx;
1773 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1774 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1775 }
33417e70 1776 }
9fa3e853 1777
8a40a180 1778 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1779
e3db7226 1780 tlb_flush_count++;
33417e70
FB
1781}
1782
274da6b2 1783static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1784{
5fafdf24 1785 if (addr == (tlb_entry->addr_read &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1787 addr == (tlb_entry->addr_write &
84b7b8e7 1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1789 addr == (tlb_entry->addr_code &
84b7b8e7 1790 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1791 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1792 }
61382a50
FB
1793}
1794
2e12669a 1795void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1796{
8a40a180 1797 int i;
cfde4bd9 1798 int mmu_idx;
0124311e 1799
9fa3e853 1800#if defined(DEBUG_TLB)
108c49b8 1801 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1802#endif
0124311e
FB
1803 /* must reset current TB so that interrupts cannot modify the
1804 links while we are modifying them */
1805 env->current_tb = NULL;
61382a50
FB
1806
1807 addr &= TARGET_PAGE_MASK;
1808 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1809 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1810 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1811
5c751e99 1812 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1813}
1814
9fa3e853
FB
1815/* update the TLBs so that writes to code in the virtual page 'addr'
1816 can be detected */
c227f099 1817static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1818{
5fafdf24 1819 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1820 ram_addr + TARGET_PAGE_SIZE,
1821 CODE_DIRTY_FLAG);
9fa3e853
FB
1822}
1823
9fa3e853 1824/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1825 tested for self modifying code */
c227f099 1826static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1827 target_ulong vaddr)
9fa3e853 1828{
3a7d929e 1829 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1830}
1831
5fafdf24 1832static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1833 unsigned long start, unsigned long length)
1834{
1835 unsigned long addr;
84b7b8e7
FB
1836 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1837 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1838 if ((addr - start) < length) {
0f459d16 1839 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1840 }
1841 }
1842}
1843
5579c7f3 1844/* Note: start and end must be within the same ram block. */
c227f099 1845void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1846 int dirty_flags)
1ccde1cb
FB
1847{
1848 CPUState *env;
4f2ac237 1849 unsigned long length, start1;
0a962c02
FB
1850 int i, mask, len;
1851 uint8_t *p;
1ccde1cb
FB
1852
1853 start &= TARGET_PAGE_MASK;
1854 end = TARGET_PAGE_ALIGN(end);
1855
1856 length = end - start;
1857 if (length == 0)
1858 return;
0a962c02 1859 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1860 mask = ~dirty_flags;
1861 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1862 for(i = 0; i < len; i++)
1863 p[i] &= mask;
1864
1ccde1cb
FB
1865 /* we modify the TLB cache so that the dirty bit will be set again
1866 when accessing the range */
5579c7f3
PB
1867 start1 = (unsigned long)qemu_get_ram_ptr(start);
1868 /* Chek that we don't span multiple blocks - this breaks the
1869 address comparisons below. */
1870 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1871 != (end - 1) - start) {
1872 abort();
1873 }
1874
6a00d601 1875 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1876 int mmu_idx;
1877 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1878 for(i = 0; i < CPU_TLB_SIZE; i++)
1879 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1880 start1, length);
1881 }
6a00d601 1882 }
1ccde1cb
FB
1883}
1884
74576198
AL
1885int cpu_physical_memory_set_dirty_tracking(int enable)
1886{
1887 in_migration = enable;
b0a46a33
JK
1888 if (kvm_enabled()) {
1889 return kvm_set_migration_log(enable);
1890 }
74576198
AL
1891 return 0;
1892}
1893
1894int cpu_physical_memory_get_dirty_tracking(void)
1895{
1896 return in_migration;
1897}
1898
c227f099
AL
1899int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1900 target_phys_addr_t end_addr)
2bec46dc 1901{
151f7749
JK
1902 int ret = 0;
1903
2bec46dc 1904 if (kvm_enabled())
151f7749
JK
1905 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1906 return ret;
2bec46dc
AL
1907}
1908
3a7d929e
FB
1909static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1910{
c227f099 1911 ram_addr_t ram_addr;
5579c7f3 1912 void *p;
3a7d929e 1913
84b7b8e7 1914 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1915 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1916 + tlb_entry->addend);
1917 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1918 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1919 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1920 }
1921 }
1922}
1923
1924/* update the TLB according to the current state of the dirty bits */
1925void cpu_tlb_update_dirty(CPUState *env)
1926{
1927 int i;
cfde4bd9
IY
1928 int mmu_idx;
1929 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1930 for(i = 0; i < CPU_TLB_SIZE; i++)
1931 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1932 }
3a7d929e
FB
1933}
1934
0f459d16 1935static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1936{
0f459d16
PB
1937 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1938 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1939}
1940
0f459d16
PB
1941/* update the TLB corresponding to virtual page vaddr
1942 so that it is no longer dirty */
1943static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1944{
1ccde1cb 1945 int i;
cfde4bd9 1946 int mmu_idx;
1ccde1cb 1947
0f459d16 1948 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1949 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1951 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1952}
1953
59817ccb
FB
1954/* add a new TLB entry. At most one entry for a given virtual address
1955 is permitted. Return 0 if OK or 2 if the page could not be mapped
1956 (can only happen in non SOFTMMU mode for I/O pages or pages
1957 conflicting with the host address space). */
5fafdf24 1958int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 1959 target_phys_addr_t paddr, int prot,
6ebbf390 1960 int mmu_idx, int is_softmmu)
9fa3e853 1961{
92e873b9 1962 PhysPageDesc *p;
4f2ac237 1963 unsigned long pd;
9fa3e853 1964 unsigned int index;
4f2ac237 1965 target_ulong address;
0f459d16 1966 target_ulong code_address;
c227f099 1967 target_phys_addr_t addend;
9fa3e853 1968 int ret;
84b7b8e7 1969 CPUTLBEntry *te;
a1d1bb31 1970 CPUWatchpoint *wp;
c227f099 1971 target_phys_addr_t iotlb;
9fa3e853 1972
92e873b9 1973 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1974 if (!p) {
1975 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1976 } else {
1977 pd = p->phys_offset;
9fa3e853
FB
1978 }
1979#if defined(DEBUG_TLB)
6ebbf390
JM
1980 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1981 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1982#endif
1983
1984 ret = 0;
0f459d16
PB
1985 address = vaddr;
1986 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1987 /* IO memory case (romd handled later) */
1988 address |= TLB_MMIO;
1989 }
5579c7f3 1990 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1991 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1992 /* Normal RAM. */
1993 iotlb = pd & TARGET_PAGE_MASK;
1994 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1995 iotlb |= IO_MEM_NOTDIRTY;
1996 else
1997 iotlb |= IO_MEM_ROM;
1998 } else {
ccbb4d44 1999 /* IO handlers are currently passed a physical address.
0f459d16
PB
2000 It would be nice to pass an offset from the base address
2001 of that region. This would avoid having to special case RAM,
2002 and avoid full address decoding in every device.
2003 We can't use the high bits of pd for this because
2004 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2005 iotlb = (pd & ~TARGET_PAGE_MASK);
2006 if (p) {
8da3ff18
PB
2007 iotlb += p->region_offset;
2008 } else {
2009 iotlb += paddr;
2010 }
0f459d16
PB
2011 }
2012
2013 code_address = address;
2014 /* Make accesses to pages with watchpoints go via the
2015 watchpoint trap routines. */
72cf2d4f 2016 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2017 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2018 iotlb = io_mem_watch + paddr;
2019 /* TODO: The memory case can be optimized by not trapping
2020 reads of pages with a write breakpoint. */
2021 address |= TLB_MMIO;
6658ffb8 2022 }
0f459d16 2023 }
d79acba4 2024
0f459d16
PB
2025 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2026 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2027 te = &env->tlb_table[mmu_idx][index];
2028 te->addend = addend - vaddr;
2029 if (prot & PAGE_READ) {
2030 te->addr_read = address;
2031 } else {
2032 te->addr_read = -1;
2033 }
5c751e99 2034
0f459d16
PB
2035 if (prot & PAGE_EXEC) {
2036 te->addr_code = code_address;
2037 } else {
2038 te->addr_code = -1;
2039 }
2040 if (prot & PAGE_WRITE) {
2041 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2042 (pd & IO_MEM_ROMD)) {
2043 /* Write access calls the I/O callback. */
2044 te->addr_write = address | TLB_MMIO;
2045 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2046 !cpu_physical_memory_is_dirty(pd)) {
2047 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2048 } else {
0f459d16 2049 te->addr_write = address;
9fa3e853 2050 }
0f459d16
PB
2051 } else {
2052 te->addr_write = -1;
9fa3e853 2053 }
9fa3e853
FB
2054 return ret;
2055}
2056
0124311e
FB
2057#else
2058
ee8b7021 2059void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2060{
2061}
2062
2e12669a 2063void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2064{
2065}
2066
5fafdf24 2067int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2068 target_phys_addr_t paddr, int prot,
6ebbf390 2069 int mmu_idx, int is_softmmu)
9fa3e853
FB
2070{
2071 return 0;
2072}
0124311e 2073
edf8e2af
MW
2074/*
2075 * Walks guest process memory "regions" one by one
2076 * and calls callback function 'fn' for each region.
2077 */
2078int walk_memory_regions(void *priv,
2079 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2080{
9fa3e853 2081 unsigned long start, end;
edf8e2af 2082 PageDesc *p = NULL;
9fa3e853 2083 int i, j, prot, prot1;
edf8e2af 2084 int rc = 0;
33417e70 2085
edf8e2af 2086 start = end = -1;
9fa3e853 2087 prot = 0;
edf8e2af
MW
2088
2089 for (i = 0; i <= L1_SIZE; i++) {
2090 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2091 for (j = 0; j < L2_SIZE; j++) {
2092 prot1 = (p == NULL) ? 0 : p[j].flags;
2093 /*
2094 * "region" is one continuous chunk of memory
2095 * that has same protection flags set.
2096 */
9fa3e853
FB
2097 if (prot1 != prot) {
2098 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2099 if (start != -1) {
edf8e2af
MW
2100 rc = (*fn)(priv, start, end, prot);
2101 /* callback can stop iteration by returning != 0 */
2102 if (rc != 0)
2103 return (rc);
9fa3e853
FB
2104 }
2105 if (prot1 != 0)
2106 start = end;
2107 else
2108 start = -1;
2109 prot = prot1;
2110 }
edf8e2af 2111 if (p == NULL)
9fa3e853
FB
2112 break;
2113 }
33417e70 2114 }
edf8e2af
MW
2115 return (rc);
2116}
2117
2118static int dump_region(void *priv, unsigned long start,
2119 unsigned long end, unsigned long prot)
2120{
2121 FILE *f = (FILE *)priv;
2122
2123 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2124 start, end, end - start,
2125 ((prot & PAGE_READ) ? 'r' : '-'),
2126 ((prot & PAGE_WRITE) ? 'w' : '-'),
2127 ((prot & PAGE_EXEC) ? 'x' : '-'));
2128
2129 return (0);
2130}
2131
2132/* dump memory mappings */
2133void page_dump(FILE *f)
2134{
2135 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2136 "start", "end", "size", "prot");
2137 walk_memory_regions(f, dump_region);
33417e70
FB
2138}
2139
53a5960a 2140int page_get_flags(target_ulong address)
33417e70 2141{
9fa3e853
FB
2142 PageDesc *p;
2143
2144 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2145 if (!p)
9fa3e853
FB
2146 return 0;
2147 return p->flags;
2148}
2149
2150/* modify the flags of a page and invalidate the code if
ccbb4d44 2151 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2152 depending on PAGE_WRITE */
53a5960a 2153void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2154{
2155 PageDesc *p;
53a5960a 2156 target_ulong addr;
9fa3e853 2157
c8a706fe 2158 /* mmap_lock should already be held. */
9fa3e853
FB
2159 start = start & TARGET_PAGE_MASK;
2160 end = TARGET_PAGE_ALIGN(end);
2161 if (flags & PAGE_WRITE)
2162 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2163 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2164 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2165 /* We may be called for host regions that are outside guest
2166 address space. */
2167 if (!p)
2168 return;
9fa3e853
FB
2169 /* if the write protection is set, then we invalidate the code
2170 inside */
5fafdf24 2171 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2172 (flags & PAGE_WRITE) &&
2173 p->first_tb) {
d720b93d 2174 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2175 }
2176 p->flags = flags;
2177 }
33417e70
FB
2178}
2179
3d97b40b
TS
2180int page_check_range(target_ulong start, target_ulong len, int flags)
2181{
2182 PageDesc *p;
2183 target_ulong end;
2184 target_ulong addr;
2185
55f280c9
AZ
2186 if (start + len < start)
2187 /* we've wrapped around */
2188 return -1;
2189
3d97b40b
TS
2190 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2191 start = start & TARGET_PAGE_MASK;
2192
3d97b40b
TS
2193 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2194 p = page_find(addr >> TARGET_PAGE_BITS);
2195 if( !p )
2196 return -1;
2197 if( !(p->flags & PAGE_VALID) )
2198 return -1;
2199
dae3270c 2200 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2201 return -1;
dae3270c
FB
2202 if (flags & PAGE_WRITE) {
2203 if (!(p->flags & PAGE_WRITE_ORG))
2204 return -1;
2205 /* unprotect the page if it was put read-only because it
2206 contains translated code */
2207 if (!(p->flags & PAGE_WRITE)) {
2208 if (!page_unprotect(addr, 0, NULL))
2209 return -1;
2210 }
2211 return 0;
2212 }
3d97b40b
TS
2213 }
2214 return 0;
2215}
2216
9fa3e853 2217/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2218 page. Return TRUE if the fault was successfully handled. */
53a5960a 2219int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2220{
2221 unsigned int page_index, prot, pindex;
2222 PageDesc *p, *p1;
53a5960a 2223 target_ulong host_start, host_end, addr;
9fa3e853 2224
c8a706fe
PB
2225 /* Technically this isn't safe inside a signal handler. However we
2226 know this only ever happens in a synchronous SEGV handler, so in
2227 practice it seems to be ok. */
2228 mmap_lock();
2229
83fb7adf 2230 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2231 page_index = host_start >> TARGET_PAGE_BITS;
2232 p1 = page_find(page_index);
c8a706fe
PB
2233 if (!p1) {
2234 mmap_unlock();
9fa3e853 2235 return 0;
c8a706fe 2236 }
83fb7adf 2237 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2238 p = p1;
2239 prot = 0;
2240 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2241 prot |= p->flags;
2242 p++;
2243 }
2244 /* if the page was really writable, then we change its
2245 protection back to writable */
2246 if (prot & PAGE_WRITE_ORG) {
2247 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2248 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2249 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2250 (prot & PAGE_BITS) | PAGE_WRITE);
2251 p1[pindex].flags |= PAGE_WRITE;
2252 /* and since the content will be modified, we must invalidate
2253 the corresponding translated code. */
d720b93d 2254 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2255#ifdef DEBUG_TB_CHECK
2256 tb_invalidate_check(address);
2257#endif
c8a706fe 2258 mmap_unlock();
9fa3e853
FB
2259 return 1;
2260 }
2261 }
c8a706fe 2262 mmap_unlock();
9fa3e853
FB
2263 return 0;
2264}
2265
6a00d601
FB
2266static inline void tlb_set_dirty(CPUState *env,
2267 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2268{
2269}
9fa3e853
FB
2270#endif /* defined(CONFIG_USER_ONLY) */
2271
e2eef170 2272#if !defined(CONFIG_USER_ONLY)
8da3ff18 2273
c227f099
AL
2274static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2275 ram_addr_t memory, ram_addr_t region_offset);
2276static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2277 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2278#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2279 need_subpage) \
2280 do { \
2281 if (addr > start_addr) \
2282 start_addr2 = 0; \
2283 else { \
2284 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2285 if (start_addr2 > 0) \
2286 need_subpage = 1; \
2287 } \
2288 \
49e9fba2 2289 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2290 end_addr2 = TARGET_PAGE_SIZE - 1; \
2291 else { \
2292 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2293 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2294 need_subpage = 1; \
2295 } \
2296 } while (0)
2297
8f2498f9
MT
2298/* register physical memory.
2299 For RAM, 'size' must be a multiple of the target page size.
2300 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2301 io memory page. The address used when calling the IO function is
2302 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2303 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2304 before calculating this offset. This should not be a problem unless
2305 the low bits of start_addr and region_offset differ. */
c227f099
AL
2306void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2307 ram_addr_t size,
2308 ram_addr_t phys_offset,
2309 ram_addr_t region_offset)
33417e70 2310{
c227f099 2311 target_phys_addr_t addr, end_addr;
92e873b9 2312 PhysPageDesc *p;
9d42037b 2313 CPUState *env;
c227f099 2314 ram_addr_t orig_size = size;
db7b5426 2315 void *subpage;
33417e70 2316
7ba1e619
AL
2317 if (kvm_enabled())
2318 kvm_set_phys_mem(start_addr, size, phys_offset);
2319
67c4d23c
PB
2320 if (phys_offset == IO_MEM_UNASSIGNED) {
2321 region_offset = start_addr;
2322 }
8da3ff18 2323 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2324 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2325 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2326 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2327 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2328 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2329 ram_addr_t orig_memory = p->phys_offset;
2330 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2331 int need_subpage = 0;
2332
2333 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2334 need_subpage);
4254fab8 2335 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2336 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2337 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2338 &p->phys_offset, orig_memory,
2339 p->region_offset);
db7b5426
BS
2340 } else {
2341 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2342 >> IO_MEM_SHIFT];
2343 }
8da3ff18
PB
2344 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2345 region_offset);
2346 p->region_offset = 0;
db7b5426
BS
2347 } else {
2348 p->phys_offset = phys_offset;
2349 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2350 (phys_offset & IO_MEM_ROMD))
2351 phys_offset += TARGET_PAGE_SIZE;
2352 }
2353 } else {
2354 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2355 p->phys_offset = phys_offset;
8da3ff18 2356 p->region_offset = region_offset;
db7b5426 2357 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2358 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2359 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2360 } else {
c227f099 2361 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2362 int need_subpage = 0;
2363
2364 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2365 end_addr2, need_subpage);
2366
4254fab8 2367 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2368 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2369 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2370 addr & TARGET_PAGE_MASK);
db7b5426 2371 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2372 phys_offset, region_offset);
2373 p->region_offset = 0;
db7b5426
BS
2374 }
2375 }
2376 }
8da3ff18 2377 region_offset += TARGET_PAGE_SIZE;
33417e70 2378 }
3b46e624 2379
9d42037b
FB
2380 /* since each CPU stores ram addresses in its TLB cache, we must
2381 reset the modified entries */
2382 /* XXX: slow ! */
2383 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2384 tlb_flush(env, 1);
2385 }
33417e70
FB
2386}
2387
ba863458 2388/* XXX: temporary until new memory mapping API */
c227f099 2389ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2390{
2391 PhysPageDesc *p;
2392
2393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2394 if (!p)
2395 return IO_MEM_UNASSIGNED;
2396 return p->phys_offset;
2397}
2398
c227f099 2399void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2400{
2401 if (kvm_enabled())
2402 kvm_coalesce_mmio_region(addr, size);
2403}
2404
c227f099 2405void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2406{
2407 if (kvm_enabled())
2408 kvm_uncoalesce_mmio_region(addr, size);
2409}
2410
c227f099 2411ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2412{
2413 RAMBlock *new_block;
2414
94a6b54f
PB
2415 size = TARGET_PAGE_ALIGN(size);
2416 new_block = qemu_malloc(sizeof(*new_block));
2417
6b02494d
AG
2418#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2419 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2420 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2421 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2422#else
94a6b54f 2423 new_block->host = qemu_vmalloc(size);
6b02494d 2424#endif
ccb167e9
IE
2425#ifdef MADV_MERGEABLE
2426 madvise(new_block->host, size, MADV_MERGEABLE);
2427#endif
94a6b54f
PB
2428 new_block->offset = last_ram_offset;
2429 new_block->length = size;
2430
2431 new_block->next = ram_blocks;
2432 ram_blocks = new_block;
2433
2434 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2435 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2436 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2437 0xff, size >> TARGET_PAGE_BITS);
2438
2439 last_ram_offset += size;
2440
6f0437e8
JK
2441 if (kvm_enabled())
2442 kvm_setup_guest_memory(new_block->host, size);
2443
94a6b54f
PB
2444 return new_block->offset;
2445}
e9a1ab19 2446
c227f099 2447void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2448{
94a6b54f 2449 /* TODO: implement this. */
e9a1ab19
FB
2450}
2451
dc828ca1 2452/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2453 With the exception of the softmmu code in this file, this should
2454 only be used for local memory (e.g. video ram) that the device owns,
2455 and knows it isn't going to access beyond the end of the block.
2456
2457 It should not be used for general purpose DMA.
2458 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2459 */
c227f099 2460void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2461{
94a6b54f
PB
2462 RAMBlock *prev;
2463 RAMBlock **prevp;
2464 RAMBlock *block;
2465
94a6b54f
PB
2466 prev = NULL;
2467 prevp = &ram_blocks;
2468 block = ram_blocks;
2469 while (block && (block->offset > addr
2470 || block->offset + block->length <= addr)) {
2471 if (prev)
2472 prevp = &prev->next;
2473 prev = block;
2474 block = block->next;
2475 }
2476 if (!block) {
2477 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2478 abort();
2479 }
2480 /* Move this entry to to start of the list. */
2481 if (prev) {
2482 prev->next = block->next;
2483 block->next = *prevp;
2484 *prevp = block;
2485 }
2486 return block->host + (addr - block->offset);
dc828ca1
PB
2487}
2488
5579c7f3
PB
2489/* Some of the softmmu routines need to translate from a host pointer
2490 (typically a TLB entry) back to a ram offset. */
c227f099 2491ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2492{
94a6b54f
PB
2493 RAMBlock *prev;
2494 RAMBlock **prevp;
2495 RAMBlock *block;
2496 uint8_t *host = ptr;
2497
94a6b54f
PB
2498 prev = NULL;
2499 prevp = &ram_blocks;
2500 block = ram_blocks;
2501 while (block && (block->host > host
2502 || block->host + block->length <= host)) {
2503 if (prev)
2504 prevp = &prev->next;
2505 prev = block;
2506 block = block->next;
2507 }
2508 if (!block) {
2509 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2510 abort();
2511 }
2512 return block->offset + (host - block->host);
5579c7f3
PB
2513}
2514
c227f099 2515static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2516{
67d3b957 2517#ifdef DEBUG_UNASSIGNED
ab3d1727 2518 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2519#endif
faed1c2a 2520#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2521 do_unassigned_access(addr, 0, 0, 0, 1);
2522#endif
2523 return 0;
2524}
2525
c227f099 2526static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2527{
2528#ifdef DEBUG_UNASSIGNED
2529 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2530#endif
faed1c2a 2531#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2532 do_unassigned_access(addr, 0, 0, 0, 2);
2533#endif
2534 return 0;
2535}
2536
c227f099 2537static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2538{
2539#ifdef DEBUG_UNASSIGNED
2540 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2541#endif
faed1c2a 2542#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2543 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2544#endif
33417e70
FB
2545 return 0;
2546}
2547
c227f099 2548static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2549{
67d3b957 2550#ifdef DEBUG_UNASSIGNED
ab3d1727 2551 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2552#endif
faed1c2a 2553#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2554 do_unassigned_access(addr, 1, 0, 0, 1);
2555#endif
2556}
2557
c227f099 2558static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2559{
2560#ifdef DEBUG_UNASSIGNED
2561 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2562#endif
faed1c2a 2563#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2564 do_unassigned_access(addr, 1, 0, 0, 2);
2565#endif
2566}
2567
c227f099 2568static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2569{
2570#ifdef DEBUG_UNASSIGNED
2571 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2572#endif
faed1c2a 2573#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2574 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2575#endif
33417e70
FB
2576}
2577
d60efc6b 2578static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2579 unassigned_mem_readb,
e18231a3
BS
2580 unassigned_mem_readw,
2581 unassigned_mem_readl,
33417e70
FB
2582};
2583
d60efc6b 2584static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2585 unassigned_mem_writeb,
e18231a3
BS
2586 unassigned_mem_writew,
2587 unassigned_mem_writel,
33417e70
FB
2588};
2589
c227f099 2590static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2591 uint32_t val)
9fa3e853 2592{
3a7d929e 2593 int dirty_flags;
3a7d929e
FB
2594 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2595 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2596#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2597 tb_invalidate_phys_page_fast(ram_addr, 1);
2598 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2599#endif
3a7d929e 2600 }
5579c7f3 2601 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2602 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2603 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2604 /* we remove the notdirty callback only if the code has been
2605 flushed */
2606 if (dirty_flags == 0xff)
2e70f6ef 2607 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2608}
2609
c227f099 2610static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2611 uint32_t val)
9fa3e853 2612{
3a7d929e 2613 int dirty_flags;
3a7d929e
FB
2614 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2615 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2616#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2617 tb_invalidate_phys_page_fast(ram_addr, 2);
2618 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2619#endif
3a7d929e 2620 }
5579c7f3 2621 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2622 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2623 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2624 /* we remove the notdirty callback only if the code has been
2625 flushed */
2626 if (dirty_flags == 0xff)
2e70f6ef 2627 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2628}
2629
c227f099 2630static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2631 uint32_t val)
9fa3e853 2632{
3a7d929e 2633 int dirty_flags;
3a7d929e
FB
2634 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2635 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2636#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2637 tb_invalidate_phys_page_fast(ram_addr, 4);
2638 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2639#endif
3a7d929e 2640 }
5579c7f3 2641 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2642 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2643 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2644 /* we remove the notdirty callback only if the code has been
2645 flushed */
2646 if (dirty_flags == 0xff)
2e70f6ef 2647 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2648}
2649
d60efc6b 2650static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2651 NULL, /* never used */
2652 NULL, /* never used */
2653 NULL, /* never used */
2654};
2655
d60efc6b 2656static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2657 notdirty_mem_writeb,
2658 notdirty_mem_writew,
2659 notdirty_mem_writel,
2660};
2661
0f459d16 2662/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2663static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2664{
2665 CPUState *env = cpu_single_env;
06d55cc1
AL
2666 target_ulong pc, cs_base;
2667 TranslationBlock *tb;
0f459d16 2668 target_ulong vaddr;
a1d1bb31 2669 CPUWatchpoint *wp;
06d55cc1 2670 int cpu_flags;
0f459d16 2671
06d55cc1
AL
2672 if (env->watchpoint_hit) {
2673 /* We re-entered the check after replacing the TB. Now raise
2674 * the debug interrupt so that is will trigger after the
2675 * current instruction. */
2676 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2677 return;
2678 }
2e70f6ef 2679 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2680 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2681 if ((vaddr == (wp->vaddr & len_mask) ||
2682 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2683 wp->flags |= BP_WATCHPOINT_HIT;
2684 if (!env->watchpoint_hit) {
2685 env->watchpoint_hit = wp;
2686 tb = tb_find_pc(env->mem_io_pc);
2687 if (!tb) {
2688 cpu_abort(env, "check_watchpoint: could not find TB for "
2689 "pc=%p", (void *)env->mem_io_pc);
2690 }
2691 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2692 tb_phys_invalidate(tb, -1);
2693 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2694 env->exception_index = EXCP_DEBUG;
2695 } else {
2696 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2697 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2698 }
2699 cpu_resume_from_signal(env, NULL);
06d55cc1 2700 }
6e140f28
AL
2701 } else {
2702 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2703 }
2704 }
2705}
2706
6658ffb8
PB
2707/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2708 so these check for a hit then pass through to the normal out-of-line
2709 phys routines. */
c227f099 2710static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2711{
b4051334 2712 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2713 return ldub_phys(addr);
2714}
2715
c227f099 2716static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2717{
b4051334 2718 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2719 return lduw_phys(addr);
2720}
2721
c227f099 2722static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2723{
b4051334 2724 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2725 return ldl_phys(addr);
2726}
2727
c227f099 2728static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2729 uint32_t val)
2730{
b4051334 2731 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2732 stb_phys(addr, val);
2733}
2734
c227f099 2735static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2736 uint32_t val)
2737{
b4051334 2738 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2739 stw_phys(addr, val);
2740}
2741
c227f099 2742static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2743 uint32_t val)
2744{
b4051334 2745 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2746 stl_phys(addr, val);
2747}
2748
d60efc6b 2749static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2750 watch_mem_readb,
2751 watch_mem_readw,
2752 watch_mem_readl,
2753};
2754
d60efc6b 2755static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2756 watch_mem_writeb,
2757 watch_mem_writew,
2758 watch_mem_writel,
2759};
6658ffb8 2760
c227f099 2761static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2762 unsigned int len)
2763{
db7b5426
BS
2764 uint32_t ret;
2765 unsigned int idx;
2766
8da3ff18 2767 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2768#if defined(DEBUG_SUBPAGE)
2769 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2770 mmio, len, addr, idx);
2771#endif
8da3ff18
PB
2772 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2773 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2774
2775 return ret;
2776}
2777
c227f099 2778static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2779 uint32_t value, unsigned int len)
2780{
db7b5426
BS
2781 unsigned int idx;
2782
8da3ff18 2783 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2784#if defined(DEBUG_SUBPAGE)
2785 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2786 mmio, len, addr, idx, value);
2787#endif
8da3ff18
PB
2788 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2789 addr + mmio->region_offset[idx][1][len],
2790 value);
db7b5426
BS
2791}
2792
c227f099 2793static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2794{
2795#if defined(DEBUG_SUBPAGE)
2796 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2797#endif
2798
2799 return subpage_readlen(opaque, addr, 0);
2800}
2801
c227f099 2802static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2803 uint32_t value)
2804{
2805#if defined(DEBUG_SUBPAGE)
2806 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2807#endif
2808 subpage_writelen(opaque, addr, value, 0);
2809}
2810
c227f099 2811static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2812{
2813#if defined(DEBUG_SUBPAGE)
2814 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2815#endif
2816
2817 return subpage_readlen(opaque, addr, 1);
2818}
2819
c227f099 2820static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2821 uint32_t value)
2822{
2823#if defined(DEBUG_SUBPAGE)
2824 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2825#endif
2826 subpage_writelen(opaque, addr, value, 1);
2827}
2828
c227f099 2829static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2830{
2831#if defined(DEBUG_SUBPAGE)
2832 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2833#endif
2834
2835 return subpage_readlen(opaque, addr, 2);
2836}
2837
2838static void subpage_writel (void *opaque,
c227f099 2839 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2840{
2841#if defined(DEBUG_SUBPAGE)
2842 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2843#endif
2844 subpage_writelen(opaque, addr, value, 2);
2845}
2846
d60efc6b 2847static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2848 &subpage_readb,
2849 &subpage_readw,
2850 &subpage_readl,
2851};
2852
d60efc6b 2853static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2854 &subpage_writeb,
2855 &subpage_writew,
2856 &subpage_writel,
2857};
2858
c227f099
AL
2859static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2860 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2861{
2862 int idx, eidx;
4254fab8 2863 unsigned int i;
db7b5426
BS
2864
2865 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2866 return -1;
2867 idx = SUBPAGE_IDX(start);
2868 eidx = SUBPAGE_IDX(end);
2869#if defined(DEBUG_SUBPAGE)
0bf9e31a 2870 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2871 mmio, start, end, idx, eidx, memory);
2872#endif
2873 memory >>= IO_MEM_SHIFT;
2874 for (; idx <= eidx; idx++) {
4254fab8 2875 for (i = 0; i < 4; i++) {
3ee89922
BS
2876 if (io_mem_read[memory][i]) {
2877 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2878 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2879 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2880 }
2881 if (io_mem_write[memory][i]) {
2882 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2883 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2884 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2885 }
4254fab8 2886 }
db7b5426
BS
2887 }
2888
2889 return 0;
2890}
2891
c227f099
AL
2892static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2893 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 2894{
c227f099 2895 subpage_t *mmio;
db7b5426
BS
2896 int subpage_memory;
2897
c227f099 2898 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2899
2900 mmio->base = base;
1eed09cb 2901 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2902#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2903 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2904 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2905#endif
1eec614b
AL
2906 *phys = subpage_memory | IO_MEM_SUBPAGE;
2907 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2908 region_offset);
db7b5426
BS
2909
2910 return mmio;
2911}
2912
88715657
AL
2913static int get_free_io_mem_idx(void)
2914{
2915 int i;
2916
2917 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2918 if (!io_mem_used[i]) {
2919 io_mem_used[i] = 1;
2920 return i;
2921 }
c6703b47 2922 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
2923 return -1;
2924}
2925
33417e70
FB
2926/* mem_read and mem_write are arrays of functions containing the
2927 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2928 2). Functions can be omitted with a NULL function pointer.
3ee89922 2929 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2930 modified. If it is zero, a new io zone is allocated. The return
2931 value can be used with cpu_register_physical_memory(). (-1) is
2932 returned if error. */
1eed09cb 2933static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2934 CPUReadMemoryFunc * const *mem_read,
2935 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2936 void *opaque)
33417e70 2937{
4254fab8 2938 int i, subwidth = 0;
33417e70
FB
2939
2940 if (io_index <= 0) {
88715657
AL
2941 io_index = get_free_io_mem_idx();
2942 if (io_index == -1)
2943 return io_index;
33417e70 2944 } else {
1eed09cb 2945 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2946 if (io_index >= IO_MEM_NB_ENTRIES)
2947 return -1;
2948 }
b5ff1b31 2949
33417e70 2950 for(i = 0;i < 3; i++) {
4254fab8
BS
2951 if (!mem_read[i] || !mem_write[i])
2952 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2953 io_mem_read[io_index][i] = mem_read[i];
2954 io_mem_write[io_index][i] = mem_write[i];
2955 }
a4193c8a 2956 io_mem_opaque[io_index] = opaque;
4254fab8 2957 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2958}
61382a50 2959
d60efc6b
BS
2960int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2961 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2962 void *opaque)
2963{
2964 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2965}
2966
88715657
AL
2967void cpu_unregister_io_memory(int io_table_address)
2968{
2969 int i;
2970 int io_index = io_table_address >> IO_MEM_SHIFT;
2971
2972 for (i=0;i < 3; i++) {
2973 io_mem_read[io_index][i] = unassigned_mem_read[i];
2974 io_mem_write[io_index][i] = unassigned_mem_write[i];
2975 }
2976 io_mem_opaque[io_index] = NULL;
2977 io_mem_used[io_index] = 0;
2978}
2979
e9179ce1
AK
2980static void io_mem_init(void)
2981{
2982 int i;
2983
2984 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2985 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2986 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2987 for (i=0; i<5; i++)
2988 io_mem_used[i] = 1;
2989
2990 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2991 watch_mem_write, NULL);
e9179ce1
AK
2992}
2993
e2eef170
PB
2994#endif /* !defined(CONFIG_USER_ONLY) */
2995
13eb76e0
FB
2996/* physical memory access (slow version, mainly for debug) */
2997#if defined(CONFIG_USER_ONLY)
c227f099 2998void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2999 int len, int is_write)
3000{
3001 int l, flags;
3002 target_ulong page;
53a5960a 3003 void * p;
13eb76e0
FB
3004
3005 while (len > 0) {
3006 page = addr & TARGET_PAGE_MASK;
3007 l = (page + TARGET_PAGE_SIZE) - addr;
3008 if (l > len)
3009 l = len;
3010 flags = page_get_flags(page);
3011 if (!(flags & PAGE_VALID))
3012 return;
3013 if (is_write) {
3014 if (!(flags & PAGE_WRITE))
3015 return;
579a97f7 3016 /* XXX: this code should not depend on lock_user */
72fb7daa 3017 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3018 /* FIXME - should this return an error rather than just fail? */
3019 return;
72fb7daa
AJ
3020 memcpy(p, buf, l);
3021 unlock_user(p, addr, l);
13eb76e0
FB
3022 } else {
3023 if (!(flags & PAGE_READ))
3024 return;
579a97f7 3025 /* XXX: this code should not depend on lock_user */
72fb7daa 3026 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3027 /* FIXME - should this return an error rather than just fail? */
3028 return;
72fb7daa 3029 memcpy(buf, p, l);
5b257578 3030 unlock_user(p, addr, 0);
13eb76e0
FB
3031 }
3032 len -= l;
3033 buf += l;
3034 addr += l;
3035 }
3036}
8df1cd07 3037
13eb76e0 3038#else
c227f099 3039void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3040 int len, int is_write)
3041{
3042 int l, io_index;
3043 uint8_t *ptr;
3044 uint32_t val;
c227f099 3045 target_phys_addr_t page;
2e12669a 3046 unsigned long pd;
92e873b9 3047 PhysPageDesc *p;
3b46e624 3048
13eb76e0
FB
3049 while (len > 0) {
3050 page = addr & TARGET_PAGE_MASK;
3051 l = (page + TARGET_PAGE_SIZE) - addr;
3052 if (l > len)
3053 l = len;
92e873b9 3054 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3055 if (!p) {
3056 pd = IO_MEM_UNASSIGNED;
3057 } else {
3058 pd = p->phys_offset;
3059 }
3b46e624 3060
13eb76e0 3061 if (is_write) {
3a7d929e 3062 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3063 target_phys_addr_t addr1 = addr;
13eb76e0 3064 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3065 if (p)
6c2934db 3066 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3067 /* XXX: could force cpu_single_env to NULL to avoid
3068 potential bugs */
6c2934db 3069 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3070 /* 32 bit write access */
c27004ec 3071 val = ldl_p(buf);
6c2934db 3072 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3073 l = 4;
6c2934db 3074 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3075 /* 16 bit write access */
c27004ec 3076 val = lduw_p(buf);
6c2934db 3077 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3078 l = 2;
3079 } else {
1c213d19 3080 /* 8 bit write access */
c27004ec 3081 val = ldub_p(buf);
6c2934db 3082 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3083 l = 1;
3084 }
3085 } else {
b448f2f3
FB
3086 unsigned long addr1;
3087 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3088 /* RAM case */
5579c7f3 3089 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3090 memcpy(ptr, buf, l);
3a7d929e
FB
3091 if (!cpu_physical_memory_is_dirty(addr1)) {
3092 /* invalidate code */
3093 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3094 /* set dirty bit */
5fafdf24 3095 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3096 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3097 }
13eb76e0
FB
3098 }
3099 } else {
5fafdf24 3100 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3101 !(pd & IO_MEM_ROMD)) {
c227f099 3102 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3103 /* I/O case */
3104 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3105 if (p)
6c2934db
AJ
3106 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3107 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3108 /* 32 bit read access */
6c2934db 3109 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3110 stl_p(buf, val);
13eb76e0 3111 l = 4;
6c2934db 3112 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3113 /* 16 bit read access */
6c2934db 3114 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3115 stw_p(buf, val);
13eb76e0
FB
3116 l = 2;
3117 } else {
1c213d19 3118 /* 8 bit read access */
6c2934db 3119 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3120 stb_p(buf, val);
13eb76e0
FB
3121 l = 1;
3122 }
3123 } else {
3124 /* RAM case */
5579c7f3 3125 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3126 (addr & ~TARGET_PAGE_MASK);
3127 memcpy(buf, ptr, l);
3128 }
3129 }
3130 len -= l;
3131 buf += l;
3132 addr += l;
3133 }
3134}
8df1cd07 3135
d0ecd2aa 3136/* used for ROM loading : can write in RAM and ROM */
c227f099 3137void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3138 const uint8_t *buf, int len)
3139{
3140 int l;
3141 uint8_t *ptr;
c227f099 3142 target_phys_addr_t page;
d0ecd2aa
FB
3143 unsigned long pd;
3144 PhysPageDesc *p;
3b46e624 3145
d0ecd2aa
FB
3146 while (len > 0) {
3147 page = addr & TARGET_PAGE_MASK;
3148 l = (page + TARGET_PAGE_SIZE) - addr;
3149 if (l > len)
3150 l = len;
3151 p = phys_page_find(page >> TARGET_PAGE_BITS);
3152 if (!p) {
3153 pd = IO_MEM_UNASSIGNED;
3154 } else {
3155 pd = p->phys_offset;
3156 }
3b46e624 3157
d0ecd2aa 3158 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3159 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3160 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3161 /* do nothing */
3162 } else {
3163 unsigned long addr1;
3164 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3165 /* ROM/RAM case */
5579c7f3 3166 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3167 memcpy(ptr, buf, l);
3168 }
3169 len -= l;
3170 buf += l;
3171 addr += l;
3172 }
3173}
3174
6d16c2f8
AL
3175typedef struct {
3176 void *buffer;
c227f099
AL
3177 target_phys_addr_t addr;
3178 target_phys_addr_t len;
6d16c2f8
AL
3179} BounceBuffer;
3180
3181static BounceBuffer bounce;
3182
ba223c29
AL
3183typedef struct MapClient {
3184 void *opaque;
3185 void (*callback)(void *opaque);
72cf2d4f 3186 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3187} MapClient;
3188
72cf2d4f
BS
3189static QLIST_HEAD(map_client_list, MapClient) map_client_list
3190 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3191
3192void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3193{
3194 MapClient *client = qemu_malloc(sizeof(*client));
3195
3196 client->opaque = opaque;
3197 client->callback = callback;
72cf2d4f 3198 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3199 return client;
3200}
3201
3202void cpu_unregister_map_client(void *_client)
3203{
3204 MapClient *client = (MapClient *)_client;
3205
72cf2d4f 3206 QLIST_REMOVE(client, link);
34d5e948 3207 qemu_free(client);
ba223c29
AL
3208}
3209
3210static void cpu_notify_map_clients(void)
3211{
3212 MapClient *client;
3213
72cf2d4f
BS
3214 while (!QLIST_EMPTY(&map_client_list)) {
3215 client = QLIST_FIRST(&map_client_list);
ba223c29 3216 client->callback(client->opaque);
34d5e948 3217 cpu_unregister_map_client(client);
ba223c29
AL
3218 }
3219}
3220
6d16c2f8
AL
3221/* Map a physical memory region into a host virtual address.
3222 * May map a subset of the requested range, given by and returned in *plen.
3223 * May return NULL if resources needed to perform the mapping are exhausted.
3224 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3225 * Use cpu_register_map_client() to know when retrying the map operation is
3226 * likely to succeed.
6d16c2f8 3227 */
c227f099
AL
3228void *cpu_physical_memory_map(target_phys_addr_t addr,
3229 target_phys_addr_t *plen,
6d16c2f8
AL
3230 int is_write)
3231{
c227f099
AL
3232 target_phys_addr_t len = *plen;
3233 target_phys_addr_t done = 0;
6d16c2f8
AL
3234 int l;
3235 uint8_t *ret = NULL;
3236 uint8_t *ptr;
c227f099 3237 target_phys_addr_t page;
6d16c2f8
AL
3238 unsigned long pd;
3239 PhysPageDesc *p;
3240 unsigned long addr1;
3241
3242 while (len > 0) {
3243 page = addr & TARGET_PAGE_MASK;
3244 l = (page + TARGET_PAGE_SIZE) - addr;
3245 if (l > len)
3246 l = len;
3247 p = phys_page_find(page >> TARGET_PAGE_BITS);
3248 if (!p) {
3249 pd = IO_MEM_UNASSIGNED;
3250 } else {
3251 pd = p->phys_offset;
3252 }
3253
3254 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3255 if (done || bounce.buffer) {
3256 break;
3257 }
3258 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3259 bounce.addr = addr;
3260 bounce.len = l;
3261 if (!is_write) {
3262 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3263 }
3264 ptr = bounce.buffer;
3265 } else {
3266 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3267 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3268 }
3269 if (!done) {
3270 ret = ptr;
3271 } else if (ret + done != ptr) {
3272 break;
3273 }
3274
3275 len -= l;
3276 addr += l;
3277 done += l;
3278 }
3279 *plen = done;
3280 return ret;
3281}
3282
3283/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3284 * Will also mark the memory as dirty if is_write == 1. access_len gives
3285 * the amount of memory that was actually read or written by the caller.
3286 */
c227f099
AL
3287void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3288 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3289{
3290 if (buffer != bounce.buffer) {
3291 if (is_write) {
c227f099 3292 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3293 while (access_len) {
3294 unsigned l;
3295 l = TARGET_PAGE_SIZE;
3296 if (l > access_len)
3297 l = access_len;
3298 if (!cpu_physical_memory_is_dirty(addr1)) {
3299 /* invalidate code */
3300 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3301 /* set dirty bit */
3302 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3303 (0xff & ~CODE_DIRTY_FLAG);
3304 }
3305 addr1 += l;
3306 access_len -= l;
3307 }
3308 }
3309 return;
3310 }
3311 if (is_write) {
3312 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3313 }
3314 qemu_free(bounce.buffer);
3315 bounce.buffer = NULL;
ba223c29 3316 cpu_notify_map_clients();
6d16c2f8 3317}
d0ecd2aa 3318
8df1cd07 3319/* warning: addr must be aligned */
c227f099 3320uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3321{
3322 int io_index;
3323 uint8_t *ptr;
3324 uint32_t val;
3325 unsigned long pd;
3326 PhysPageDesc *p;
3327
3328 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3329 if (!p) {
3330 pd = IO_MEM_UNASSIGNED;
3331 } else {
3332 pd = p->phys_offset;
3333 }
3b46e624 3334
5fafdf24 3335 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3336 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3337 /* I/O case */
3338 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3339 if (p)
3340 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3341 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3342 } else {
3343 /* RAM case */
5579c7f3 3344 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3345 (addr & ~TARGET_PAGE_MASK);
3346 val = ldl_p(ptr);
3347 }
3348 return val;
3349}
3350
84b7b8e7 3351/* warning: addr must be aligned */
c227f099 3352uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3353{
3354 int io_index;
3355 uint8_t *ptr;
3356 uint64_t val;
3357 unsigned long pd;
3358 PhysPageDesc *p;
3359
3360 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3361 if (!p) {
3362 pd = IO_MEM_UNASSIGNED;
3363 } else {
3364 pd = p->phys_offset;
3365 }
3b46e624 3366
2a4188a3
FB
3367 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3368 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3369 /* I/O case */
3370 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3371 if (p)
3372 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3373#ifdef TARGET_WORDS_BIGENDIAN
3374 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3375 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3376#else
3377 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3378 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3379#endif
3380 } else {
3381 /* RAM case */
5579c7f3 3382 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3383 (addr & ~TARGET_PAGE_MASK);
3384 val = ldq_p(ptr);
3385 }
3386 return val;
3387}
3388
aab33094 3389/* XXX: optimize */
c227f099 3390uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3391{
3392 uint8_t val;
3393 cpu_physical_memory_read(addr, &val, 1);
3394 return val;
3395}
3396
3397/* XXX: optimize */
c227f099 3398uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3399{
3400 uint16_t val;
3401 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3402 return tswap16(val);
3403}
3404
8df1cd07
FB
3405/* warning: addr must be aligned. The ram page is not masked as dirty
3406 and the code inside is not invalidated. It is useful if the dirty
3407 bits are used to track modified PTEs */
c227f099 3408void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3409{
3410 int io_index;
3411 uint8_t *ptr;
3412 unsigned long pd;
3413 PhysPageDesc *p;
3414
3415 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3416 if (!p) {
3417 pd = IO_MEM_UNASSIGNED;
3418 } else {
3419 pd = p->phys_offset;
3420 }
3b46e624 3421
3a7d929e 3422 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3423 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3424 if (p)
3425 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3426 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3427 } else {
74576198 3428 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3429 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3430 stl_p(ptr, val);
74576198
AL
3431
3432 if (unlikely(in_migration)) {
3433 if (!cpu_physical_memory_is_dirty(addr1)) {
3434 /* invalidate code */
3435 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3436 /* set dirty bit */
3437 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3438 (0xff & ~CODE_DIRTY_FLAG);
3439 }
3440 }
8df1cd07
FB
3441 }
3442}
3443
c227f099 3444void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3445{
3446 int io_index;
3447 uint8_t *ptr;
3448 unsigned long pd;
3449 PhysPageDesc *p;
3450
3451 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3452 if (!p) {
3453 pd = IO_MEM_UNASSIGNED;
3454 } else {
3455 pd = p->phys_offset;
3456 }
3b46e624 3457
bc98a7ef
JM
3458 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3459 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3460 if (p)
3461 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3462#ifdef TARGET_WORDS_BIGENDIAN
3463 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3464 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3465#else
3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3467 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3468#endif
3469 } else {
5579c7f3 3470 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3471 (addr & ~TARGET_PAGE_MASK);
3472 stq_p(ptr, val);
3473 }
3474}
3475
8df1cd07 3476/* warning: addr must be aligned */
c227f099 3477void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3478{
3479 int io_index;
3480 uint8_t *ptr;
3481 unsigned long pd;
3482 PhysPageDesc *p;
3483
3484 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3485 if (!p) {
3486 pd = IO_MEM_UNASSIGNED;
3487 } else {
3488 pd = p->phys_offset;
3489 }
3b46e624 3490
3a7d929e 3491 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3492 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3493 if (p)
3494 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3495 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3496 } else {
3497 unsigned long addr1;
3498 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3499 /* RAM case */
5579c7f3 3500 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3501 stl_p(ptr, val);
3a7d929e
FB
3502 if (!cpu_physical_memory_is_dirty(addr1)) {
3503 /* invalidate code */
3504 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3505 /* set dirty bit */
f23db169
FB
3506 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3507 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3508 }
8df1cd07
FB
3509 }
3510}
3511
aab33094 3512/* XXX: optimize */
c227f099 3513void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3514{
3515 uint8_t v = val;
3516 cpu_physical_memory_write(addr, &v, 1);
3517}
3518
3519/* XXX: optimize */
c227f099 3520void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3521{
3522 uint16_t v = tswap16(val);
3523 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3524}
3525
3526/* XXX: optimize */
c227f099 3527void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3528{
3529 val = tswap64(val);
3530 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3531}
3532
13eb76e0
FB
3533#endif
3534
5e2972fd 3535/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3536int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3537 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3538{
3539 int l;
c227f099 3540 target_phys_addr_t phys_addr;
9b3c35e0 3541 target_ulong page;
13eb76e0
FB
3542
3543 while (len > 0) {
3544 page = addr & TARGET_PAGE_MASK;
3545 phys_addr = cpu_get_phys_page_debug(env, page);
3546 /* if no physical page mapped, return an error */
3547 if (phys_addr == -1)
3548 return -1;
3549 l = (page + TARGET_PAGE_SIZE) - addr;
3550 if (l > len)
3551 l = len;
5e2972fd
AL
3552 phys_addr += (addr & ~TARGET_PAGE_MASK);
3553#if !defined(CONFIG_USER_ONLY)
3554 if (is_write)
3555 cpu_physical_memory_write_rom(phys_addr, buf, l);
3556 else
3557#endif
3558 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3559 len -= l;
3560 buf += l;
3561 addr += l;
3562 }
3563 return 0;
3564}
3565
2e70f6ef
PB
3566/* in deterministic execution mode, instructions doing device I/Os
3567 must be at the end of the TB */
3568void cpu_io_recompile(CPUState *env, void *retaddr)
3569{
3570 TranslationBlock *tb;
3571 uint32_t n, cflags;
3572 target_ulong pc, cs_base;
3573 uint64_t flags;
3574
3575 tb = tb_find_pc((unsigned long)retaddr);
3576 if (!tb) {
3577 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3578 retaddr);
3579 }
3580 n = env->icount_decr.u16.low + tb->icount;
3581 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3582 /* Calculate how many instructions had been executed before the fault
bf20dc07 3583 occurred. */
2e70f6ef
PB
3584 n = n - env->icount_decr.u16.low;
3585 /* Generate a new TB ending on the I/O insn. */
3586 n++;
3587 /* On MIPS and SH, delay slot instructions can only be restarted if
3588 they were already the first instruction in the TB. If this is not
bf20dc07 3589 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3590 branch. */
3591#if defined(TARGET_MIPS)
3592 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3593 env->active_tc.PC -= 4;
3594 env->icount_decr.u16.low++;
3595 env->hflags &= ~MIPS_HFLAG_BMASK;
3596 }
3597#elif defined(TARGET_SH4)
3598 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3599 && n > 1) {
3600 env->pc -= 2;
3601 env->icount_decr.u16.low++;
3602 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3603 }
3604#endif
3605 /* This should never happen. */
3606 if (n > CF_COUNT_MASK)
3607 cpu_abort(env, "TB too big during recompile");
3608
3609 cflags = n | CF_LAST_IO;
3610 pc = tb->pc;
3611 cs_base = tb->cs_base;
3612 flags = tb->flags;
3613 tb_phys_invalidate(tb, -1);
3614 /* FIXME: In theory this could raise an exception. In practice
3615 we have already translated the block once so it's probably ok. */
3616 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3617 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3618 the first in the TB) then we end up generating a whole new TB and
3619 repeating the fault, which is horribly inefficient.
3620 Better would be to execute just this insn uncached, or generate a
3621 second new TB. */
3622 cpu_resume_from_signal(env, NULL);
3623}
3624
e3db7226
FB
3625void dump_exec_info(FILE *f,
3626 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3627{
3628 int i, target_code_size, max_target_code_size;
3629 int direct_jmp_count, direct_jmp2_count, cross_page;
3630 TranslationBlock *tb;
3b46e624 3631
e3db7226
FB
3632 target_code_size = 0;
3633 max_target_code_size = 0;
3634 cross_page = 0;
3635 direct_jmp_count = 0;
3636 direct_jmp2_count = 0;
3637 for(i = 0; i < nb_tbs; i++) {
3638 tb = &tbs[i];
3639 target_code_size += tb->size;
3640 if (tb->size > max_target_code_size)
3641 max_target_code_size = tb->size;
3642 if (tb->page_addr[1] != -1)
3643 cross_page++;
3644 if (tb->tb_next_offset[0] != 0xffff) {
3645 direct_jmp_count++;
3646 if (tb->tb_next_offset[1] != 0xffff) {
3647 direct_jmp2_count++;
3648 }
3649 }
3650 }
3651 /* XXX: avoid using doubles ? */
57fec1fe 3652 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3653 cpu_fprintf(f, "gen code size %ld/%ld\n",
3654 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3655 cpu_fprintf(f, "TB count %d/%d\n",
3656 nb_tbs, code_gen_max_blocks);
5fafdf24 3657 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3658 nb_tbs ? target_code_size / nb_tbs : 0,
3659 max_target_code_size);
5fafdf24 3660 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3661 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3662 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3663 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3664 cross_page,
e3db7226
FB
3665 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3666 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3667 direct_jmp_count,
e3db7226
FB
3668 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3669 direct_jmp2_count,
3670 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3671 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3672 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3673 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3674 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3675 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3676}
3677
5fafdf24 3678#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3679
3680#define MMUSUFFIX _cmmu
3681#define GETPC() NULL
3682#define env cpu_single_env
b769d8fe 3683#define SOFTMMU_CODE_ACCESS
61382a50
FB
3684
3685#define SHIFT 0
3686#include "softmmu_template.h"
3687
3688#define SHIFT 1
3689#include "softmmu_template.h"
3690
3691#define SHIFT 2
3692#include "softmmu_template.h"
3693
3694#define SHIFT 3
3695#include "softmmu_template.h"
3696
3697#undef env
3698
3699#endif