]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
util: move declarations out of qemu-common.h
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
f348b6d1 25#include "qemu/cutils.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
75a34036 38#include "qemu/error-report.h"
022c62cb 39#include "exec/memory.h"
9c17d615 40#include "sysemu/dma.h"
022c62cb 41#include "exec/address-spaces.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
432d268c 44#else /* !CONFIG_USER_ONLY */
9c17d615 45#include "sysemu/xen-mapcache.h"
6506e4f9 46#include "trace.h"
53a5960a 47#endif
0d6d3c87 48#include "exec/cpu-all.h"
0dc3f44a 49#include "qemu/rcu_queue.h"
4840f10e 50#include "qemu/main-loop.h"
5b6dd868 51#include "translate-all.h"
7615936e 52#include "sysemu/replay.h"
0cac1b66 53
022c62cb 54#include "exec/memory-internal.h"
220c3ebd 55#include "exec/ram_addr.h"
508127e2 56#include "exec/log.h"
67d95c15 57
b35ba30f 58#include "qemu/range.h"
794e8f30
MT
59#ifndef _WIN32
60#include "qemu/mmap-alloc.h"
61#endif
b35ba30f 62
db7b5426 63//#define DEBUG_SUBPAGE
1196be37 64
e2eef170 65#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
66/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
0d53d9fe 69RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
70
71static MemoryRegion *system_memory;
309cb471 72static MemoryRegion *system_io;
62152b8a 73
f6790af6
AK
74AddressSpace address_space_io;
75AddressSpace address_space_memory;
2673a5da 76
0844e007 77MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 78static MemoryRegion io_mem_unassigned;
0e0df1e2 79
7bd4f430
PB
80/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81#define RAM_PREALLOC (1 << 0)
82
dbcb8981
PB
83/* RAM is mmap-ed with MAP_SHARED */
84#define RAM_SHARED (1 << 1)
85
62be4e3a
MT
86/* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89#define RAM_RESIZEABLE (1 << 2)
90
e2eef170 91#endif
9fa3e853 92
bdc44640 93struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
94/* current CPU in the current thread. It is only valid inside
95 cpu_exec() */
f240eb6f 96__thread CPUState *current_cpu;
2e70f6ef 97/* 0 = Do not count executed instructions.
bf20dc07 98 1 = Precise instruction counting.
2e70f6ef 99 2 = Adaptive rate instruction counting. */
5708fc66 100int use_icount;
6a00d601 101
e2eef170 102#if !defined(CONFIG_USER_ONLY)
4346ae3e 103
1db8abb1
PB
104typedef struct PhysPageEntry PhysPageEntry;
105
106struct PhysPageEntry {
9736e55b 107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 108 uint32_t skip : 6;
9736e55b 109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 110 uint32_t ptr : 26;
1db8abb1
PB
111};
112
8b795765
MT
113#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114
03f49957 115/* Size of the L2 (and L3, etc) page tables. */
57271d63 116#define ADDR_SPACE_BITS 64
03f49957 117
026736ce 118#define P_L2_BITS 9
03f49957
PB
119#define P_L2_SIZE (1 << P_L2_BITS)
120
121#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122
123typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 124
53cb28cb 125typedef struct PhysPageMap {
79e2b9ae
PB
126 struct rcu_head rcu;
127
53cb28cb
MA
128 unsigned sections_nb;
129 unsigned sections_nb_alloc;
130 unsigned nodes_nb;
131 unsigned nodes_nb_alloc;
132 Node *nodes;
133 MemoryRegionSection *sections;
134} PhysPageMap;
135
1db8abb1 136struct AddressSpaceDispatch {
79e2b9ae
PB
137 struct rcu_head rcu;
138
729633c2 139 MemoryRegionSection *mru_section;
1db8abb1
PB
140 /* This is a multi-level map on the physical address space.
141 * The bottom level has pointers to MemoryRegionSections.
142 */
143 PhysPageEntry phys_map;
53cb28cb 144 PhysPageMap map;
acc9d80b 145 AddressSpace *as;
1db8abb1
PB
146};
147
90260c6c
JK
148#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149typedef struct subpage_t {
150 MemoryRegion iomem;
acc9d80b 151 AddressSpace *as;
90260c6c
JK
152 hwaddr base;
153 uint16_t sub_section[TARGET_PAGE_SIZE];
154} subpage_t;
155
b41aac4f
LPF
156#define PHYS_SECTION_UNASSIGNED 0
157#define PHYS_SECTION_NOTDIRTY 1
158#define PHYS_SECTION_ROM 2
159#define PHYS_SECTION_WATCH 3
5312bd8b 160
e2eef170 161static void io_mem_init(void);
62152b8a 162static void memory_map_init(void);
09daed84 163static void tcg_commit(MemoryListener *listener);
e2eef170 164
1ec9b909 165static MemoryRegion io_mem_watch;
32857f4d
PM
166
167/**
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
173 */
174struct CPUAddressSpace {
175 CPUState *cpu;
176 AddressSpace *as;
177 struct AddressSpaceDispatch *memory_dispatch;
178 MemoryListener tcg_as_listener;
179};
180
6658ffb8 181#endif
fd6ce8f6 182
6d9a1304 183#if !defined(CONFIG_USER_ONLY)
d6f2ea22 184
53cb28cb 185static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 186{
53cb28cb
MA
187 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
189 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
190 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 191 }
f7bf5461
AK
192}
193
db94604b 194static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
195{
196 unsigned i;
8b795765 197 uint32_t ret;
db94604b
PB
198 PhysPageEntry e;
199 PhysPageEntry *p;
f7bf5461 200
53cb28cb 201 ret = map->nodes_nb++;
db94604b 202 p = map->nodes[ret];
f7bf5461 203 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 204 assert(ret != map->nodes_nb_alloc);
db94604b
PB
205
206 e.skip = leaf ? 0 : 1;
207 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 208 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 209 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 210 }
f7bf5461 211 return ret;
d6f2ea22
AK
212}
213
53cb28cb
MA
214static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
215 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 216 int level)
f7bf5461
AK
217{
218 PhysPageEntry *p;
03f49957 219 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 220
9736e55b 221 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 222 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 223 }
db94604b 224 p = map->nodes[lp->ptr];
03f49957 225 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 226
03f49957 227 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 228 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 229 lp->skip = 0;
c19e8800 230 lp->ptr = leaf;
07f07b31
AK
231 *index += step;
232 *nb -= step;
2999097b 233 } else {
53cb28cb 234 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
235 }
236 ++lp;
f7bf5461
AK
237 }
238}
239
ac1970fb 240static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 241 hwaddr index, hwaddr nb,
2999097b 242 uint16_t leaf)
f7bf5461 243{
2999097b 244 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 245 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 246
53cb28cb 247 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
248}
249
b35ba30f
MT
250/* Compact a non leaf page entry. Simply detect that the entry has a single child,
251 * and update our entry so we can skip it and go directly to the destination.
252 */
253static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
254{
255 unsigned valid_ptr = P_L2_SIZE;
256 int valid = 0;
257 PhysPageEntry *p;
258 int i;
259
260 if (lp->ptr == PHYS_MAP_NODE_NIL) {
261 return;
262 }
263
264 p = nodes[lp->ptr];
265 for (i = 0; i < P_L2_SIZE; i++) {
266 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
267 continue;
268 }
269
270 valid_ptr = i;
271 valid++;
272 if (p[i].skip) {
273 phys_page_compact(&p[i], nodes, compacted);
274 }
275 }
276
277 /* We can only compress if there's only one child. */
278 if (valid != 1) {
279 return;
280 }
281
282 assert(valid_ptr < P_L2_SIZE);
283
284 /* Don't compress if it won't fit in the # of bits we have. */
285 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
286 return;
287 }
288
289 lp->ptr = p[valid_ptr].ptr;
290 if (!p[valid_ptr].skip) {
291 /* If our only child is a leaf, make this a leaf. */
292 /* By design, we should have made this node a leaf to begin with so we
293 * should never reach here.
294 * But since it's so simple to handle this, let's do it just in case we
295 * change this rule.
296 */
297 lp->skip = 0;
298 } else {
299 lp->skip += p[valid_ptr].skip;
300 }
301}
302
303static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
304{
305 DECLARE_BITMAP(compacted, nodes_nb);
306
307 if (d->phys_map.skip) {
53cb28cb 308 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
309 }
310}
311
29cb533d
FZ
312static inline bool section_covers_addr(const MemoryRegionSection *section,
313 hwaddr addr)
314{
315 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
316 * the section must cover the entire address space.
317 */
318 return section->size.hi ||
319 range_covers_byte(section->offset_within_address_space,
320 section->size.lo, addr);
321}
322
97115a8d 323static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 324 Node *nodes, MemoryRegionSection *sections)
92e873b9 325{
31ab2b4a 326 PhysPageEntry *p;
97115a8d 327 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 328 int i;
f1f6e3b8 329
9736e55b 330 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 331 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 332 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 333 }
9affd6fc 334 p = nodes[lp.ptr];
03f49957 335 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 336 }
b35ba30f 337
29cb533d 338 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
339 return &sections[lp.ptr];
340 } else {
341 return &sections[PHYS_SECTION_UNASSIGNED];
342 }
f3705d53
AK
343}
344
e5548617
BS
345bool memory_region_is_unassigned(MemoryRegion *mr)
346{
2a8e7499 347 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 348 && mr != &io_mem_watch;
fd6ce8f6 349}
149f54b5 350
79e2b9ae 351/* Called from RCU critical section */
c7086b4a 352static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
353 hwaddr addr,
354 bool resolve_subpage)
9f029603 355{
729633c2 356 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 357 subpage_t *subpage;
729633c2 358 bool update;
90260c6c 359
729633c2
FZ
360 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
361 section_covers_addr(section, addr)) {
362 update = false;
363 } else {
364 section = phys_page_find(d->phys_map, addr, d->map.nodes,
365 d->map.sections);
366 update = true;
367 }
90260c6c
JK
368 if (resolve_subpage && section->mr->subpage) {
369 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 370 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 371 }
729633c2
FZ
372 if (update) {
373 atomic_set(&d->mru_section, section);
374 }
90260c6c 375 return section;
9f029603
JK
376}
377
79e2b9ae 378/* Called from RCU critical section */
90260c6c 379static MemoryRegionSection *
c7086b4a 380address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 381 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
382{
383 MemoryRegionSection *section;
965eb2fc 384 MemoryRegion *mr;
a87f3954 385 Int128 diff;
149f54b5 386
c7086b4a 387 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
388 /* Compute offset within MemoryRegionSection */
389 addr -= section->offset_within_address_space;
390
391 /* Compute offset within MemoryRegion */
392 *xlat = addr + section->offset_within_region;
393
965eb2fc 394 mr = section->mr;
b242e0e0
PB
395
396 /* MMIO registers can be expected to perform full-width accesses based only
397 * on their address, without considering adjacent registers that could
398 * decode to completely different MemoryRegions. When such registers
399 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
400 * regions overlap wildly. For this reason we cannot clamp the accesses
401 * here.
402 *
403 * If the length is small (as is the case for address_space_ldl/stl),
404 * everything works fine. If the incoming length is large, however,
405 * the caller really has to do the clamping through memory_access_size.
406 */
965eb2fc 407 if (memory_region_is_ram(mr)) {
e4a511f8 408 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
409 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
410 }
149f54b5
PB
411 return section;
412}
90260c6c 413
41063e1e 414/* Called from RCU critical section */
5c8a00ce
PB
415MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
416 hwaddr *xlat, hwaddr *plen,
417 bool is_write)
90260c6c 418{
30951157
AK
419 IOMMUTLBEntry iotlb;
420 MemoryRegionSection *section;
421 MemoryRegion *mr;
30951157
AK
422
423 for (;;) {
79e2b9ae
PB
424 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
425 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
426 mr = section->mr;
427
428 if (!mr->iommu_ops) {
429 break;
430 }
431
8d7b8cb9 432 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
433 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
434 | (addr & iotlb.addr_mask));
23820dbf 435 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
436 if (!(iotlb.perm & (1 << is_write))) {
437 mr = &io_mem_unassigned;
438 break;
439 }
440
441 as = iotlb.target_as;
442 }
443
fe680d0d 444 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 445 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 446 *plen = MIN(page, *plen);
a87f3954
PB
447 }
448
30951157
AK
449 *xlat = addr;
450 return mr;
90260c6c
JK
451}
452
79e2b9ae 453/* Called from RCU critical section */
90260c6c 454MemoryRegionSection *
d7898cda 455address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 456 hwaddr *xlat, hwaddr *plen)
90260c6c 457{
30951157 458 MemoryRegionSection *section;
d7898cda
PM
459 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
460
461 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
462
463 assert(!section->mr->iommu_ops);
464 return section;
90260c6c 465}
5b6dd868 466#endif
fd6ce8f6 467
b170fce3 468#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
469
470static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 471{
259186a7 472 CPUState *cpu = opaque;
a513fe19 473
5b6dd868
BS
474 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
475 version_id is increased. */
259186a7 476 cpu->interrupt_request &= ~0x01;
c01a71c1 477 tlb_flush(cpu, 1);
5b6dd868
BS
478
479 return 0;
a513fe19 480}
7501267e 481
6c3bff0e
PD
482static int cpu_common_pre_load(void *opaque)
483{
484 CPUState *cpu = opaque;
485
adee6424 486 cpu->exception_index = -1;
6c3bff0e
PD
487
488 return 0;
489}
490
491static bool cpu_common_exception_index_needed(void *opaque)
492{
493 CPUState *cpu = opaque;
494
adee6424 495 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
496}
497
498static const VMStateDescription vmstate_cpu_common_exception_index = {
499 .name = "cpu_common/exception_index",
500 .version_id = 1,
501 .minimum_version_id = 1,
5cd8cada 502 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
503 .fields = (VMStateField[]) {
504 VMSTATE_INT32(exception_index, CPUState),
505 VMSTATE_END_OF_LIST()
506 }
507};
508
bac05aa9
AS
509static bool cpu_common_crash_occurred_needed(void *opaque)
510{
511 CPUState *cpu = opaque;
512
513 return cpu->crash_occurred;
514}
515
516static const VMStateDescription vmstate_cpu_common_crash_occurred = {
517 .name = "cpu_common/crash_occurred",
518 .version_id = 1,
519 .minimum_version_id = 1,
520 .needed = cpu_common_crash_occurred_needed,
521 .fields = (VMStateField[]) {
522 VMSTATE_BOOL(crash_occurred, CPUState),
523 VMSTATE_END_OF_LIST()
524 }
525};
526
1a1562f5 527const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
528 .name = "cpu_common",
529 .version_id = 1,
530 .minimum_version_id = 1,
6c3bff0e 531 .pre_load = cpu_common_pre_load,
5b6dd868 532 .post_load = cpu_common_post_load,
35d08458 533 .fields = (VMStateField[]) {
259186a7
AF
534 VMSTATE_UINT32(halted, CPUState),
535 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 536 VMSTATE_END_OF_LIST()
6c3bff0e 537 },
5cd8cada
JQ
538 .subsections = (const VMStateDescription*[]) {
539 &vmstate_cpu_common_exception_index,
bac05aa9 540 &vmstate_cpu_common_crash_occurred,
5cd8cada 541 NULL
5b6dd868
BS
542 }
543};
1a1562f5 544
5b6dd868 545#endif
ea041c0e 546
38d8f5c8 547CPUState *qemu_get_cpu(int index)
ea041c0e 548{
bdc44640 549 CPUState *cpu;
ea041c0e 550
bdc44640 551 CPU_FOREACH(cpu) {
55e5c285 552 if (cpu->cpu_index == index) {
bdc44640 553 return cpu;
55e5c285 554 }
ea041c0e 555 }
5b6dd868 556
bdc44640 557 return NULL;
ea041c0e
FB
558}
559
09daed84 560#if !defined(CONFIG_USER_ONLY)
56943e8c 561void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 562{
12ebc9a7
PM
563 CPUAddressSpace *newas;
564
565 /* Target code should have set num_ases before calling us */
566 assert(asidx < cpu->num_ases);
567
56943e8c
PM
568 if (asidx == 0) {
569 /* address space 0 gets the convenience alias */
570 cpu->as = as;
571 }
572
12ebc9a7
PM
573 /* KVM cannot currently support multiple address spaces. */
574 assert(asidx == 0 || !kvm_enabled());
09daed84 575
12ebc9a7
PM
576 if (!cpu->cpu_ases) {
577 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 578 }
32857f4d 579
12ebc9a7
PM
580 newas = &cpu->cpu_ases[asidx];
581 newas->cpu = cpu;
582 newas->as = as;
56943e8c 583 if (tcg_enabled()) {
12ebc9a7
PM
584 newas->tcg_as_listener.commit = tcg_commit;
585 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 586 }
09daed84 587}
651a5bc0
PM
588
589AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
590{
591 /* Return the AddressSpace corresponding to the specified index */
592 return cpu->cpu_ases[asidx].as;
593}
09daed84
EI
594#endif
595
b7bca733
BR
596#ifndef CONFIG_USER_ONLY
597static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
598
599static int cpu_get_free_index(Error **errp)
600{
601 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
602
603 if (cpu >= MAX_CPUMASK_BITS) {
604 error_setg(errp, "Trying to use more CPUs than max of %d",
605 MAX_CPUMASK_BITS);
606 return -1;
607 }
608
609 bitmap_set(cpu_index_map, cpu, 1);
610 return cpu;
611}
612
613void cpu_exec_exit(CPUState *cpu)
614{
615 if (cpu->cpu_index == -1) {
616 /* cpu_index was never allocated by this @cpu or was already freed. */
617 return;
618 }
619
620 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
621 cpu->cpu_index = -1;
622}
623#else
624
625static int cpu_get_free_index(Error **errp)
626{
627 CPUState *some_cpu;
628 int cpu_index = 0;
629
630 CPU_FOREACH(some_cpu) {
631 cpu_index++;
632 }
633 return cpu_index;
634}
635
636void cpu_exec_exit(CPUState *cpu)
637{
638}
639#endif
640
4bad9e39 641void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 642{
b170fce3 643 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 644 int cpu_index;
b7bca733 645 Error *local_err = NULL;
5b6dd868 646
56943e8c 647 cpu->as = NULL;
12ebc9a7 648 cpu->num_ases = 0;
56943e8c 649
291135b5 650#ifndef CONFIG_USER_ONLY
291135b5 651 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
652
653 /* This is a softmmu CPU object, so create a property for it
654 * so users can wire up its memory. (This can't go in qom/cpu.c
655 * because that file is compiled only once for both user-mode
656 * and system builds.) The default if no link is set up is to use
657 * the system address space.
658 */
659 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
660 (Object **)&cpu->memory,
661 qdev_prop_allow_set_link_before_realize,
662 OBJ_PROP_LINK_UNREF_ON_RELEASE,
663 &error_abort);
664 cpu->memory = system_memory;
665 object_ref(OBJECT(cpu->memory));
291135b5
EH
666#endif
667
5b6dd868
BS
668#if defined(CONFIG_USER_ONLY)
669 cpu_list_lock();
670#endif
b7bca733
BR
671 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
672 if (local_err) {
673 error_propagate(errp, local_err);
674#if defined(CONFIG_USER_ONLY)
675 cpu_list_unlock();
676#endif
677 return;
5b6dd868 678 }
bdc44640 679 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
680#if defined(CONFIG_USER_ONLY)
681 cpu_list_unlock();
682#endif
e0d47944
AF
683 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
684 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
685 }
b170fce3
AF
686 if (cc->vmsd != NULL) {
687 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
688 }
ea041c0e
FB
689}
690
94df27fd 691#if defined(CONFIG_USER_ONLY)
00b941e5 692static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
693{
694 tb_invalidate_phys_page_range(pc, pc + 1, 0);
695}
696#else
00b941e5 697static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 698{
5232e4c7
PM
699 MemTxAttrs attrs;
700 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
701 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 702 if (phys != -1) {
5232e4c7 703 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 704 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 705 }
1e7855a5 706}
c27004ec 707#endif
d720b93d 708
c527ee8f 709#if defined(CONFIG_USER_ONLY)
75a34036 710void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
711
712{
713}
714
3ee887e8
PM
715int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
716 int flags)
717{
718 return -ENOSYS;
719}
720
721void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
722{
723}
724
75a34036 725int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
726 int flags, CPUWatchpoint **watchpoint)
727{
728 return -ENOSYS;
729}
730#else
6658ffb8 731/* Add a watchpoint. */
75a34036 732int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 733 int flags, CPUWatchpoint **watchpoint)
6658ffb8 734{
c0ce998e 735 CPUWatchpoint *wp;
6658ffb8 736
05068c0d 737 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 738 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
739 error_report("tried to set invalid watchpoint at %"
740 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
741 return -EINVAL;
742 }
7267c094 743 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
744
745 wp->vaddr = addr;
05068c0d 746 wp->len = len;
a1d1bb31
AL
747 wp->flags = flags;
748
2dc9f411 749 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
750 if (flags & BP_GDB) {
751 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
752 } else {
753 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
754 }
6658ffb8 755
31b030d4 756 tlb_flush_page(cpu, addr);
a1d1bb31
AL
757
758 if (watchpoint)
759 *watchpoint = wp;
760 return 0;
6658ffb8
PB
761}
762
a1d1bb31 763/* Remove a specific watchpoint. */
75a34036 764int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 765 int flags)
6658ffb8 766{
a1d1bb31 767 CPUWatchpoint *wp;
6658ffb8 768
ff4700b0 769 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 770 if (addr == wp->vaddr && len == wp->len
6e140f28 771 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 772 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
773 return 0;
774 }
775 }
a1d1bb31 776 return -ENOENT;
6658ffb8
PB
777}
778
a1d1bb31 779/* Remove a specific watchpoint by reference. */
75a34036 780void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 781{
ff4700b0 782 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 783
31b030d4 784 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 785
7267c094 786 g_free(watchpoint);
a1d1bb31
AL
787}
788
789/* Remove all matching watchpoints. */
75a34036 790void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 791{
c0ce998e 792 CPUWatchpoint *wp, *next;
a1d1bb31 793
ff4700b0 794 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
795 if (wp->flags & mask) {
796 cpu_watchpoint_remove_by_ref(cpu, wp);
797 }
c0ce998e 798 }
7d03f82f 799}
05068c0d
PM
800
801/* Return true if this watchpoint address matches the specified
802 * access (ie the address range covered by the watchpoint overlaps
803 * partially or completely with the address range covered by the
804 * access).
805 */
806static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
807 vaddr addr,
808 vaddr len)
809{
810 /* We know the lengths are non-zero, but a little caution is
811 * required to avoid errors in the case where the range ends
812 * exactly at the top of the address space and so addr + len
813 * wraps round to zero.
814 */
815 vaddr wpend = wp->vaddr + wp->len - 1;
816 vaddr addrend = addr + len - 1;
817
818 return !(addr > wpend || wp->vaddr > addrend);
819}
820
c527ee8f 821#endif
7d03f82f 822
a1d1bb31 823/* Add a breakpoint. */
b3310ab3 824int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 825 CPUBreakpoint **breakpoint)
4c3a88a2 826{
c0ce998e 827 CPUBreakpoint *bp;
3b46e624 828
7267c094 829 bp = g_malloc(sizeof(*bp));
4c3a88a2 830
a1d1bb31
AL
831 bp->pc = pc;
832 bp->flags = flags;
833
2dc9f411 834 /* keep all GDB-injected breakpoints in front */
00b941e5 835 if (flags & BP_GDB) {
f0c3c505 836 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 837 } else {
f0c3c505 838 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 839 }
3b46e624 840
f0c3c505 841 breakpoint_invalidate(cpu, pc);
a1d1bb31 842
00b941e5 843 if (breakpoint) {
a1d1bb31 844 *breakpoint = bp;
00b941e5 845 }
4c3a88a2 846 return 0;
4c3a88a2
FB
847}
848
a1d1bb31 849/* Remove a specific breakpoint. */
b3310ab3 850int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 851{
a1d1bb31
AL
852 CPUBreakpoint *bp;
853
f0c3c505 854 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 855 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 856 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
857 return 0;
858 }
7d03f82f 859 }
a1d1bb31 860 return -ENOENT;
7d03f82f
EI
861}
862
a1d1bb31 863/* Remove a specific breakpoint by reference. */
b3310ab3 864void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 865{
f0c3c505
AF
866 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
867
868 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 869
7267c094 870 g_free(breakpoint);
a1d1bb31
AL
871}
872
873/* Remove all matching breakpoints. */
b3310ab3 874void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 875{
c0ce998e 876 CPUBreakpoint *bp, *next;
a1d1bb31 877
f0c3c505 878 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
879 if (bp->flags & mask) {
880 cpu_breakpoint_remove_by_ref(cpu, bp);
881 }
c0ce998e 882 }
4c3a88a2
FB
883}
884
c33a346e
FB
885/* enable or disable single step mode. EXCP_DEBUG is returned by the
886 CPU loop after each instruction */
3825b28f 887void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 888{
ed2803da
AF
889 if (cpu->singlestep_enabled != enabled) {
890 cpu->singlestep_enabled = enabled;
891 if (kvm_enabled()) {
38e478ec 892 kvm_update_guest_debug(cpu, 0);
ed2803da 893 } else {
ccbb4d44 894 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 895 /* XXX: only flush what is necessary */
bbd77c18 896 tb_flush(cpu);
e22a25c9 897 }
c33a346e 898 }
c33a346e
FB
899}
900
a47dddd7 901void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
902{
903 va_list ap;
493ae1f0 904 va_list ap2;
7501267e
FB
905
906 va_start(ap, fmt);
493ae1f0 907 va_copy(ap2, ap);
7501267e
FB
908 fprintf(stderr, "qemu: fatal: ");
909 vfprintf(stderr, fmt, ap);
910 fprintf(stderr, "\n");
878096ee 911 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 912 if (qemu_log_separate()) {
93fcfe39
AL
913 qemu_log("qemu: fatal: ");
914 qemu_log_vprintf(fmt, ap2);
915 qemu_log("\n");
a0762859 916 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 917 qemu_log_flush();
93fcfe39 918 qemu_log_close();
924edcae 919 }
493ae1f0 920 va_end(ap2);
f9373291 921 va_end(ap);
7615936e 922 replay_finish();
fd052bf6
RV
923#if defined(CONFIG_USER_ONLY)
924 {
925 struct sigaction act;
926 sigfillset(&act.sa_mask);
927 act.sa_handler = SIG_DFL;
928 sigaction(SIGABRT, &act, NULL);
929 }
930#endif
7501267e
FB
931 abort();
932}
933
0124311e 934#if !defined(CONFIG_USER_ONLY)
0dc3f44a 935/* Called from RCU critical section */
041603fe
PB
936static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
937{
938 RAMBlock *block;
939
43771539 940 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 941 if (block && addr - block->offset < block->max_length) {
68851b98 942 return block;
041603fe 943 }
0dc3f44a 944 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 945 if (addr - block->offset < block->max_length) {
041603fe
PB
946 goto found;
947 }
948 }
949
950 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
951 abort();
952
953found:
43771539
PB
954 /* It is safe to write mru_block outside the iothread lock. This
955 * is what happens:
956 *
957 * mru_block = xxx
958 * rcu_read_unlock()
959 * xxx removed from list
960 * rcu_read_lock()
961 * read mru_block
962 * mru_block = NULL;
963 * call_rcu(reclaim_ramblock, xxx);
964 * rcu_read_unlock()
965 *
966 * atomic_rcu_set is not needed here. The block was already published
967 * when it was placed into the list. Here we're just making an extra
968 * copy of the pointer.
969 */
041603fe
PB
970 ram_list.mru_block = block;
971 return block;
972}
973
a2f4d5be 974static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 975{
9a13565d 976 CPUState *cpu;
041603fe 977 ram_addr_t start1;
a2f4d5be
JQ
978 RAMBlock *block;
979 ram_addr_t end;
980
981 end = TARGET_PAGE_ALIGN(start + length);
982 start &= TARGET_PAGE_MASK;
d24981d3 983
0dc3f44a 984 rcu_read_lock();
041603fe
PB
985 block = qemu_get_ram_block(start);
986 assert(block == qemu_get_ram_block(end - 1));
1240be24 987 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
988 CPU_FOREACH(cpu) {
989 tlb_reset_dirty(cpu, start1, length);
990 }
0dc3f44a 991 rcu_read_unlock();
d24981d3
JQ
992}
993
5579c7f3 994/* Note: start and end must be within the same ram block. */
03eebc9e
SH
995bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
996 ram_addr_t length,
997 unsigned client)
1ccde1cb 998{
5b82b703 999 DirtyMemoryBlocks *blocks;
03eebc9e 1000 unsigned long end, page;
5b82b703 1001 bool dirty = false;
03eebc9e
SH
1002
1003 if (length == 0) {
1004 return false;
1005 }
f23db169 1006
03eebc9e
SH
1007 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1008 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1009
1010 rcu_read_lock();
1011
1012 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1013
1014 while (page < end) {
1015 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1016 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1017 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1018
1019 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1020 offset, num);
1021 page += num;
1022 }
1023
1024 rcu_read_unlock();
03eebc9e
SH
1025
1026 if (dirty && tcg_enabled()) {
a2f4d5be 1027 tlb_reset_dirty_range_all(start, length);
5579c7f3 1028 }
03eebc9e
SH
1029
1030 return dirty;
1ccde1cb
FB
1031}
1032
79e2b9ae 1033/* Called from RCU critical section */
bb0e627a 1034hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1035 MemoryRegionSection *section,
1036 target_ulong vaddr,
1037 hwaddr paddr, hwaddr xlat,
1038 int prot,
1039 target_ulong *address)
e5548617 1040{
a8170e5e 1041 hwaddr iotlb;
e5548617
BS
1042 CPUWatchpoint *wp;
1043
cc5bea60 1044 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1045 /* Normal RAM. */
1046 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1047 + xlat;
e5548617 1048 if (!section->readonly) {
b41aac4f 1049 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1050 } else {
b41aac4f 1051 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1052 }
1053 } else {
0b8e2c10
PM
1054 AddressSpaceDispatch *d;
1055
1056 d = atomic_rcu_read(&section->address_space->dispatch);
1057 iotlb = section - d->map.sections;
149f54b5 1058 iotlb += xlat;
e5548617
BS
1059 }
1060
1061 /* Make accesses to pages with watchpoints go via the
1062 watchpoint trap routines. */
ff4700b0 1063 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1064 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1065 /* Avoid trapping reads of pages with a write breakpoint. */
1066 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1067 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1068 *address |= TLB_MMIO;
1069 break;
1070 }
1071 }
1072 }
1073
1074 return iotlb;
1075}
9fa3e853
FB
1076#endif /* defined(CONFIG_USER_ONLY) */
1077
e2eef170 1078#if !defined(CONFIG_USER_ONLY)
8da3ff18 1079
c227f099 1080static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1081 uint16_t section);
acc9d80b 1082static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1083
a2b257d6
IM
1084static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1085 qemu_anon_ram_alloc;
91138037
MA
1086
1087/*
1088 * Set a custom physical guest memory alloator.
1089 * Accelerators with unusual needs may need this. Hopefully, we can
1090 * get rid of it eventually.
1091 */
a2b257d6 1092void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1093{
1094 phys_mem_alloc = alloc;
1095}
1096
53cb28cb
MA
1097static uint16_t phys_section_add(PhysPageMap *map,
1098 MemoryRegionSection *section)
5312bd8b 1099{
68f3f65b
PB
1100 /* The physical section number is ORed with a page-aligned
1101 * pointer to produce the iotlb entries. Thus it should
1102 * never overflow into the page-aligned value.
1103 */
53cb28cb 1104 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1105
53cb28cb
MA
1106 if (map->sections_nb == map->sections_nb_alloc) {
1107 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1108 map->sections = g_renew(MemoryRegionSection, map->sections,
1109 map->sections_nb_alloc);
5312bd8b 1110 }
53cb28cb 1111 map->sections[map->sections_nb] = *section;
dfde4e6e 1112 memory_region_ref(section->mr);
53cb28cb 1113 return map->sections_nb++;
5312bd8b
AK
1114}
1115
058bc4b5
PB
1116static void phys_section_destroy(MemoryRegion *mr)
1117{
55b4e80b
DS
1118 bool have_sub_page = mr->subpage;
1119
dfde4e6e
PB
1120 memory_region_unref(mr);
1121
55b4e80b 1122 if (have_sub_page) {
058bc4b5 1123 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1124 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1125 g_free(subpage);
1126 }
1127}
1128
6092666e 1129static void phys_sections_free(PhysPageMap *map)
5312bd8b 1130{
9affd6fc
PB
1131 while (map->sections_nb > 0) {
1132 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1133 phys_section_destroy(section->mr);
1134 }
9affd6fc
PB
1135 g_free(map->sections);
1136 g_free(map->nodes);
5312bd8b
AK
1137}
1138
ac1970fb 1139static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1140{
1141 subpage_t *subpage;
a8170e5e 1142 hwaddr base = section->offset_within_address_space
0f0cb164 1143 & TARGET_PAGE_MASK;
97115a8d 1144 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1145 d->map.nodes, d->map.sections);
0f0cb164
AK
1146 MemoryRegionSection subsection = {
1147 .offset_within_address_space = base,
052e87b0 1148 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1149 };
a8170e5e 1150 hwaddr start, end;
0f0cb164 1151
f3705d53 1152 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1153
f3705d53 1154 if (!(existing->mr->subpage)) {
acc9d80b 1155 subpage = subpage_init(d->as, base);
3be91e86 1156 subsection.address_space = d->as;
0f0cb164 1157 subsection.mr = &subpage->iomem;
ac1970fb 1158 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1159 phys_section_add(&d->map, &subsection));
0f0cb164 1160 } else {
f3705d53 1161 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1162 }
1163 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1164 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1165 subpage_register(subpage, start, end,
1166 phys_section_add(&d->map, section));
0f0cb164
AK
1167}
1168
1169
052e87b0
PB
1170static void register_multipage(AddressSpaceDispatch *d,
1171 MemoryRegionSection *section)
33417e70 1172{
a8170e5e 1173 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1174 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1175 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1176 TARGET_PAGE_BITS));
dd81124b 1177
733d5ef5
PB
1178 assert(num_pages);
1179 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1180}
1181
ac1970fb 1182static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1183{
89ae337a 1184 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1185 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1186 MemoryRegionSection now = *section, remain = *section;
052e87b0 1187 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1188
733d5ef5
PB
1189 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1190 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1191 - now.offset_within_address_space;
1192
052e87b0 1193 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1194 register_subpage(d, &now);
733d5ef5 1195 } else {
052e87b0 1196 now.size = int128_zero();
733d5ef5 1197 }
052e87b0
PB
1198 while (int128_ne(remain.size, now.size)) {
1199 remain.size = int128_sub(remain.size, now.size);
1200 remain.offset_within_address_space += int128_get64(now.size);
1201 remain.offset_within_region += int128_get64(now.size);
69b67646 1202 now = remain;
052e87b0 1203 if (int128_lt(remain.size, page_size)) {
733d5ef5 1204 register_subpage(d, &now);
88266249 1205 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1206 now.size = page_size;
ac1970fb 1207 register_subpage(d, &now);
69b67646 1208 } else {
052e87b0 1209 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1210 register_multipage(d, &now);
69b67646 1211 }
0f0cb164
AK
1212 }
1213}
1214
62a2744c
SY
1215void qemu_flush_coalesced_mmio_buffer(void)
1216{
1217 if (kvm_enabled())
1218 kvm_flush_coalesced_mmio_buffer();
1219}
1220
b2a8658e
UD
1221void qemu_mutex_lock_ramlist(void)
1222{
1223 qemu_mutex_lock(&ram_list.mutex);
1224}
1225
1226void qemu_mutex_unlock_ramlist(void)
1227{
1228 qemu_mutex_unlock(&ram_list.mutex);
1229}
1230
e1e84ba0 1231#ifdef __linux__
04b16653
AW
1232static void *file_ram_alloc(RAMBlock *block,
1233 ram_addr_t memory,
7f56e740
PB
1234 const char *path,
1235 Error **errp)
c902760f 1236{
fd97fd44 1237 bool unlink_on_error = false;
c902760f 1238 char *filename;
8ca761f6
PF
1239 char *sanitized_name;
1240 char *c;
794e8f30 1241 void *area;
c902760f 1242 int fd;
e1fb6471 1243 int64_t page_size;
c902760f
MT
1244
1245 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1246 error_setg(errp,
1247 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1248 return NULL;
c902760f
MT
1249 }
1250
fd97fd44
MA
1251 for (;;) {
1252 fd = open(path, O_RDWR);
1253 if (fd >= 0) {
1254 /* @path names an existing file, use it */
1255 break;
8d31d6b6 1256 }
fd97fd44
MA
1257 if (errno == ENOENT) {
1258 /* @path names a file that doesn't exist, create it */
1259 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1260 if (fd >= 0) {
1261 unlink_on_error = true;
1262 break;
1263 }
1264 } else if (errno == EISDIR) {
1265 /* @path names a directory, create a file there */
1266 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1267 sanitized_name = g_strdup(memory_region_name(block->mr));
1268 for (c = sanitized_name; *c != '\0'; c++) {
1269 if (*c == '/') {
1270 *c = '_';
1271 }
1272 }
8ca761f6 1273
fd97fd44
MA
1274 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1275 sanitized_name);
1276 g_free(sanitized_name);
8d31d6b6 1277
fd97fd44
MA
1278 fd = mkstemp(filename);
1279 if (fd >= 0) {
1280 unlink(filename);
1281 g_free(filename);
1282 break;
1283 }
1284 g_free(filename);
8d31d6b6 1285 }
fd97fd44
MA
1286 if (errno != EEXIST && errno != EINTR) {
1287 error_setg_errno(errp, errno,
1288 "can't open backing store %s for guest RAM",
1289 path);
1290 goto error;
1291 }
1292 /*
1293 * Try again on EINTR and EEXIST. The latter happens when
1294 * something else creates the file between our two open().
1295 */
8d31d6b6 1296 }
c902760f 1297
e1fb6471
MA
1298 page_size = qemu_fd_getpagesize(fd);
1299 block->mr->align = page_size;
fd97fd44 1300
e1fb6471 1301 if (memory < page_size) {
fd97fd44
MA
1302 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1303 "or larger than page size 0x%" PRIx64,
e1fb6471 1304 memory, page_size);
f9a49dfa 1305 goto error;
c902760f 1306 }
c902760f 1307
e1fb6471 1308 memory = ROUND_UP(memory, page_size);
c902760f
MT
1309
1310 /*
1311 * ftruncate is not supported by hugetlbfs in older
1312 * hosts, so don't bother bailing out on errors.
1313 * If anything goes wrong with it under other filesystems,
1314 * mmap will fail.
1315 */
7f56e740 1316 if (ftruncate(fd, memory)) {
9742bf26 1317 perror("ftruncate");
7f56e740 1318 }
c902760f 1319
e1fb6471 1320 area = qemu_ram_mmap(fd, memory, page_size, block->flags & RAM_SHARED);
c902760f 1321 if (area == MAP_FAILED) {
7f56e740 1322 error_setg_errno(errp, errno,
fd97fd44 1323 "unable to map backing store for guest RAM");
9742bf26 1324 close(fd);
f9a49dfa 1325 goto error;
c902760f 1326 }
ef36fa14
MT
1327
1328 if (mem_prealloc) {
38183310 1329 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1330 }
1331
04b16653 1332 block->fd = fd;
c902760f 1333 return area;
f9a49dfa
MT
1334
1335error:
fd97fd44
MA
1336 if (unlink_on_error) {
1337 unlink(path);
1338 }
1339 close(fd);
f9a49dfa 1340 return NULL;
c902760f
MT
1341}
1342#endif
1343
0dc3f44a 1344/* Called with the ramlist lock held. */
d17b5288 1345static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1346{
1347 RAMBlock *block, *next_block;
3e837b2c 1348 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1349
49cd9ac6
SH
1350 assert(size != 0); /* it would hand out same offset multiple times */
1351
0dc3f44a 1352 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1353 return 0;
0d53d9fe 1354 }
04b16653 1355
0dc3f44a 1356 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1357 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1358
62be4e3a 1359 end = block->offset + block->max_length;
04b16653 1360
0dc3f44a 1361 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1362 if (next_block->offset >= end) {
1363 next = MIN(next, next_block->offset);
1364 }
1365 }
1366 if (next - end >= size && next - end < mingap) {
3e837b2c 1367 offset = end;
04b16653
AW
1368 mingap = next - end;
1369 }
1370 }
3e837b2c
AW
1371
1372 if (offset == RAM_ADDR_MAX) {
1373 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1374 (uint64_t)size);
1375 abort();
1376 }
1377
04b16653
AW
1378 return offset;
1379}
1380
652d7ec2 1381ram_addr_t last_ram_offset(void)
d17b5288
AW
1382{
1383 RAMBlock *block;
1384 ram_addr_t last = 0;
1385
0dc3f44a
MD
1386 rcu_read_lock();
1387 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1388 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1389 }
0dc3f44a 1390 rcu_read_unlock();
d17b5288
AW
1391 return last;
1392}
1393
ddb97f1d
JB
1394static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1395{
1396 int ret;
ddb97f1d
JB
1397
1398 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1399 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1400 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1401 if (ret) {
1402 perror("qemu_madvise");
1403 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1404 "but dump_guest_core=off specified\n");
1405 }
1406 }
1407}
1408
0dc3f44a
MD
1409/* Called within an RCU critical section, or while the ramlist lock
1410 * is held.
1411 */
20cfe881 1412static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1413{
20cfe881 1414 RAMBlock *block;
84b89d78 1415
0dc3f44a 1416 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1417 if (block->offset == addr) {
20cfe881 1418 return block;
c5705a77
AK
1419 }
1420 }
20cfe881
HT
1421
1422 return NULL;
1423}
1424
422148d3
DDAG
1425const char *qemu_ram_get_idstr(RAMBlock *rb)
1426{
1427 return rb->idstr;
1428}
1429
ae3a7047 1430/* Called with iothread lock held. */
20cfe881
HT
1431void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1432{
ae3a7047 1433 RAMBlock *new_block, *block;
20cfe881 1434
0dc3f44a 1435 rcu_read_lock();
ae3a7047 1436 new_block = find_ram_block(addr);
c5705a77
AK
1437 assert(new_block);
1438 assert(!new_block->idstr[0]);
84b89d78 1439
09e5ab63
AL
1440 if (dev) {
1441 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1442 if (id) {
1443 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1444 g_free(id);
84b89d78
CM
1445 }
1446 }
1447 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1448
0dc3f44a 1449 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1450 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1451 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1452 new_block->idstr);
1453 abort();
1454 }
1455 }
0dc3f44a 1456 rcu_read_unlock();
c5705a77
AK
1457}
1458
ae3a7047 1459/* Called with iothread lock held. */
20cfe881
HT
1460void qemu_ram_unset_idstr(ram_addr_t addr)
1461{
ae3a7047 1462 RAMBlock *block;
20cfe881 1463
ae3a7047
MD
1464 /* FIXME: arch_init.c assumes that this is not called throughout
1465 * migration. Ignore the problem since hot-unplug during migration
1466 * does not work anyway.
1467 */
1468
0dc3f44a 1469 rcu_read_lock();
ae3a7047 1470 block = find_ram_block(addr);
20cfe881
HT
1471 if (block) {
1472 memset(block->idstr, 0, sizeof(block->idstr));
1473 }
0dc3f44a 1474 rcu_read_unlock();
20cfe881
HT
1475}
1476
8490fc78
LC
1477static int memory_try_enable_merging(void *addr, size_t len)
1478{
75cc7f01 1479 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1480 /* disabled by the user */
1481 return 0;
1482 }
1483
1484 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1485}
1486
62be4e3a
MT
1487/* Only legal before guest might have detected the memory size: e.g. on
1488 * incoming migration, or right after reset.
1489 *
1490 * As memory core doesn't know how is memory accessed, it is up to
1491 * resize callback to update device state and/or add assertions to detect
1492 * misuse, if necessary.
1493 */
1494int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1495{
1496 RAMBlock *block = find_ram_block(base);
1497
1498 assert(block);
1499
4ed023ce 1500 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1501
62be4e3a
MT
1502 if (block->used_length == newsize) {
1503 return 0;
1504 }
1505
1506 if (!(block->flags & RAM_RESIZEABLE)) {
1507 error_setg_errno(errp, EINVAL,
1508 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1509 " in != 0x" RAM_ADDR_FMT, block->idstr,
1510 newsize, block->used_length);
1511 return -EINVAL;
1512 }
1513
1514 if (block->max_length < newsize) {
1515 error_setg_errno(errp, EINVAL,
1516 "Length too large: %s: 0x" RAM_ADDR_FMT
1517 " > 0x" RAM_ADDR_FMT, block->idstr,
1518 newsize, block->max_length);
1519 return -EINVAL;
1520 }
1521
1522 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1523 block->used_length = newsize;
58d2707e
PB
1524 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1525 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1526 memory_region_set_size(block->mr, newsize);
1527 if (block->resized) {
1528 block->resized(block->idstr, newsize, block->host);
1529 }
1530 return 0;
1531}
1532
5b82b703
SH
1533/* Called with ram_list.mutex held */
1534static void dirty_memory_extend(ram_addr_t old_ram_size,
1535 ram_addr_t new_ram_size)
1536{
1537 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1538 DIRTY_MEMORY_BLOCK_SIZE);
1539 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1540 DIRTY_MEMORY_BLOCK_SIZE);
1541 int i;
1542
1543 /* Only need to extend if block count increased */
1544 if (new_num_blocks <= old_num_blocks) {
1545 return;
1546 }
1547
1548 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1549 DirtyMemoryBlocks *old_blocks;
1550 DirtyMemoryBlocks *new_blocks;
1551 int j;
1552
1553 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1554 new_blocks = g_malloc(sizeof(*new_blocks) +
1555 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1556
1557 if (old_num_blocks) {
1558 memcpy(new_blocks->blocks, old_blocks->blocks,
1559 old_num_blocks * sizeof(old_blocks->blocks[0]));
1560 }
1561
1562 for (j = old_num_blocks; j < new_num_blocks; j++) {
1563 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1564 }
1565
1566 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1567
1568 if (old_blocks) {
1569 g_free_rcu(old_blocks, rcu);
1570 }
1571 }
1572}
1573
528f46af 1574static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1575{
e1c57ab8 1576 RAMBlock *block;
0d53d9fe 1577 RAMBlock *last_block = NULL;
2152f5ca 1578 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1579 Error *err = NULL;
2152f5ca
JQ
1580
1581 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1582
b2a8658e 1583 qemu_mutex_lock_ramlist();
9b8424d5 1584 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1585
1586 if (!new_block->host) {
1587 if (xen_enabled()) {
9b8424d5 1588 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1589 new_block->mr, &err);
1590 if (err) {
1591 error_propagate(errp, err);
1592 qemu_mutex_unlock_ramlist();
39c350ee 1593 return;
37aa7a0e 1594 }
e1c57ab8 1595 } else {
9b8424d5 1596 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1597 &new_block->mr->align);
39228250 1598 if (!new_block->host) {
ef701d7b
HT
1599 error_setg_errno(errp, errno,
1600 "cannot set up guest memory '%s'",
1601 memory_region_name(new_block->mr));
1602 qemu_mutex_unlock_ramlist();
39c350ee 1603 return;
39228250 1604 }
9b8424d5 1605 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1606 }
c902760f 1607 }
94a6b54f 1608
dd631697
LZ
1609 new_ram_size = MAX(old_ram_size,
1610 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1611 if (new_ram_size > old_ram_size) {
1612 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1613 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1614 }
0d53d9fe
MD
1615 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1616 * QLIST (which has an RCU-friendly variant) does not have insertion at
1617 * tail, so save the last element in last_block.
1618 */
0dc3f44a 1619 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1620 last_block = block;
9b8424d5 1621 if (block->max_length < new_block->max_length) {
abb26d63
PB
1622 break;
1623 }
1624 }
1625 if (block) {
0dc3f44a 1626 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1627 } else if (last_block) {
0dc3f44a 1628 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1629 } else { /* list is empty */
0dc3f44a 1630 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1631 }
0d6d3c87 1632 ram_list.mru_block = NULL;
94a6b54f 1633
0dc3f44a
MD
1634 /* Write list before version */
1635 smp_wmb();
f798b07f 1636 ram_list.version++;
b2a8658e 1637 qemu_mutex_unlock_ramlist();
f798b07f 1638
9b8424d5 1639 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1640 new_block->used_length,
1641 DIRTY_CLIENTS_ALL);
94a6b54f 1642
a904c911
PB
1643 if (new_block->host) {
1644 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1645 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1646 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1647 if (kvm_enabled()) {
1648 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1649 }
e1c57ab8 1650 }
94a6b54f 1651}
e9a1ab19 1652
0b183fc8 1653#ifdef __linux__
528f46af
FZ
1654RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1655 bool share, const char *mem_path,
1656 Error **errp)
e1c57ab8
PB
1657{
1658 RAMBlock *new_block;
ef701d7b 1659 Error *local_err = NULL;
e1c57ab8
PB
1660
1661 if (xen_enabled()) {
7f56e740 1662 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1663 return NULL;
e1c57ab8
PB
1664 }
1665
1666 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1667 /*
1668 * file_ram_alloc() needs to allocate just like
1669 * phys_mem_alloc, but we haven't bothered to provide
1670 * a hook there.
1671 */
7f56e740
PB
1672 error_setg(errp,
1673 "-mem-path not supported with this accelerator");
528f46af 1674 return NULL;
e1c57ab8
PB
1675 }
1676
4ed023ce 1677 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1678 new_block = g_malloc0(sizeof(*new_block));
1679 new_block->mr = mr;
9b8424d5
MT
1680 new_block->used_length = size;
1681 new_block->max_length = size;
dbcb8981 1682 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1683 new_block->host = file_ram_alloc(new_block, size,
1684 mem_path, errp);
1685 if (!new_block->host) {
1686 g_free(new_block);
528f46af 1687 return NULL;
7f56e740
PB
1688 }
1689
528f46af 1690 ram_block_add(new_block, &local_err);
ef701d7b
HT
1691 if (local_err) {
1692 g_free(new_block);
1693 error_propagate(errp, local_err);
528f46af 1694 return NULL;
ef701d7b 1695 }
528f46af 1696 return new_block;
e1c57ab8 1697}
0b183fc8 1698#endif
e1c57ab8 1699
62be4e3a 1700static
528f46af
FZ
1701RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1702 void (*resized)(const char*,
1703 uint64_t length,
1704 void *host),
1705 void *host, bool resizeable,
1706 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1707{
1708 RAMBlock *new_block;
ef701d7b 1709 Error *local_err = NULL;
e1c57ab8 1710
4ed023ce
DDAG
1711 size = HOST_PAGE_ALIGN(size);
1712 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1713 new_block = g_malloc0(sizeof(*new_block));
1714 new_block->mr = mr;
62be4e3a 1715 new_block->resized = resized;
9b8424d5
MT
1716 new_block->used_length = size;
1717 new_block->max_length = max_size;
62be4e3a 1718 assert(max_size >= size);
e1c57ab8
PB
1719 new_block->fd = -1;
1720 new_block->host = host;
1721 if (host) {
7bd4f430 1722 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1723 }
62be4e3a
MT
1724 if (resizeable) {
1725 new_block->flags |= RAM_RESIZEABLE;
1726 }
528f46af 1727 ram_block_add(new_block, &local_err);
ef701d7b
HT
1728 if (local_err) {
1729 g_free(new_block);
1730 error_propagate(errp, local_err);
528f46af 1731 return NULL;
ef701d7b 1732 }
528f46af 1733 return new_block;
e1c57ab8
PB
1734}
1735
528f46af 1736RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1737 MemoryRegion *mr, Error **errp)
1738{
1739 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1740}
1741
528f46af 1742RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1743{
62be4e3a
MT
1744 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1745}
1746
528f46af 1747RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1748 void (*resized)(const char*,
1749 uint64_t length,
1750 void *host),
1751 MemoryRegion *mr, Error **errp)
1752{
1753 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1754}
1755
43771539
PB
1756static void reclaim_ramblock(RAMBlock *block)
1757{
1758 if (block->flags & RAM_PREALLOC) {
1759 ;
1760 } else if (xen_enabled()) {
1761 xen_invalidate_map_cache_entry(block->host);
1762#ifndef _WIN32
1763 } else if (block->fd >= 0) {
2f3a2bb1 1764 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1765 close(block->fd);
1766#endif
1767 } else {
1768 qemu_anon_ram_free(block->host, block->max_length);
1769 }
1770 g_free(block);
1771}
1772
f1060c55 1773void qemu_ram_free(RAMBlock *block)
e9a1ab19 1774{
b2a8658e 1775 qemu_mutex_lock_ramlist();
f1060c55
FZ
1776 QLIST_REMOVE_RCU(block, next);
1777 ram_list.mru_block = NULL;
1778 /* Write list before version */
1779 smp_wmb();
1780 ram_list.version++;
1781 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1782 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1783}
1784
cd19cfa2
HY
1785#ifndef _WIN32
1786void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1787{
1788 RAMBlock *block;
1789 ram_addr_t offset;
1790 int flags;
1791 void *area, *vaddr;
1792
0dc3f44a 1793 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1794 offset = addr - block->offset;
9b8424d5 1795 if (offset < block->max_length) {
1240be24 1796 vaddr = ramblock_ptr(block, offset);
7bd4f430 1797 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1798 ;
dfeaf2ab
MA
1799 } else if (xen_enabled()) {
1800 abort();
cd19cfa2
HY
1801 } else {
1802 flags = MAP_FIXED;
3435f395 1803 if (block->fd >= 0) {
dbcb8981
PB
1804 flags |= (block->flags & RAM_SHARED ?
1805 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1806 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1807 flags, block->fd, offset);
cd19cfa2 1808 } else {
2eb9fbaa
MA
1809 /*
1810 * Remap needs to match alloc. Accelerators that
1811 * set phys_mem_alloc never remap. If they did,
1812 * we'd need a remap hook here.
1813 */
1814 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1815
cd19cfa2
HY
1816 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1817 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1818 flags, -1, 0);
cd19cfa2
HY
1819 }
1820 if (area != vaddr) {
f15fbc4b
AP
1821 fprintf(stderr, "Could not remap addr: "
1822 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1823 length, addr);
1824 exit(1);
1825 }
8490fc78 1826 memory_try_enable_merging(vaddr, length);
ddb97f1d 1827 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1828 }
cd19cfa2
HY
1829 }
1830 }
1831}
1832#endif /* !_WIN32 */
1833
a35ba7be
PB
1834int qemu_get_ram_fd(ram_addr_t addr)
1835{
ae3a7047
MD
1836 RAMBlock *block;
1837 int fd;
a35ba7be 1838
0dc3f44a 1839 rcu_read_lock();
ae3a7047
MD
1840 block = qemu_get_ram_block(addr);
1841 fd = block->fd;
0dc3f44a 1842 rcu_read_unlock();
ae3a7047 1843 return fd;
a35ba7be
PB
1844}
1845
56a571d9
TM
1846void qemu_set_ram_fd(ram_addr_t addr, int fd)
1847{
1848 RAMBlock *block;
1849
1850 rcu_read_lock();
1851 block = qemu_get_ram_block(addr);
1852 block->fd = fd;
1853 rcu_read_unlock();
1854}
1855
3fd74b84
DM
1856void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1857{
ae3a7047
MD
1858 RAMBlock *block;
1859 void *ptr;
3fd74b84 1860
0dc3f44a 1861 rcu_read_lock();
ae3a7047
MD
1862 block = qemu_get_ram_block(addr);
1863 ptr = ramblock_ptr(block, 0);
0dc3f44a 1864 rcu_read_unlock();
ae3a7047 1865 return ptr;
3fd74b84
DM
1866}
1867
1b5ec234 1868/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1869 * This should not be used for general purpose DMA. Use address_space_map
1870 * or address_space_rw instead. For local memory (e.g. video ram) that the
1871 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1872 *
49b24afc 1873 * Called within RCU critical section.
1b5ec234 1874 */
3655cb9c 1875void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1876{
3655cb9c
GA
1877 RAMBlock *block = ram_block;
1878
1879 if (block == NULL) {
1880 block = qemu_get_ram_block(addr);
1881 }
ae3a7047
MD
1882
1883 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1884 /* We need to check if the requested address is in the RAM
1885 * because we don't want to map the entire memory in QEMU.
1886 * In that case just map until the end of the page.
1887 */
1888 if (block->offset == 0) {
49b24afc 1889 return xen_map_cache(addr, 0, 0);
0d6d3c87 1890 }
ae3a7047
MD
1891
1892 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1893 }
49b24afc 1894 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1895}
1896
38bee5dc 1897/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1898 * but takes a size argument.
0dc3f44a 1899 *
e81bcda5 1900 * Called within RCU critical section.
ae3a7047 1901 */
3655cb9c
GA
1902static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1903 hwaddr *size)
38bee5dc 1904{
3655cb9c 1905 RAMBlock *block = ram_block;
e81bcda5 1906 ram_addr_t offset_inside_block;
8ab934f9
SS
1907 if (*size == 0) {
1908 return NULL;
1909 }
e81bcda5 1910
3655cb9c
GA
1911 if (block == NULL) {
1912 block = qemu_get_ram_block(addr);
1913 }
e81bcda5
PB
1914 offset_inside_block = addr - block->offset;
1915 *size = MIN(*size, block->max_length - offset_inside_block);
1916
1917 if (xen_enabled() && block->host == NULL) {
1918 /* We need to check if the requested address is in the RAM
1919 * because we don't want to map the entire memory in QEMU.
1920 * In that case just map the requested area.
1921 */
1922 if (block->offset == 0) {
1923 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1924 }
1925
e81bcda5 1926 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1927 }
e81bcda5
PB
1928
1929 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1930}
1931
422148d3
DDAG
1932/*
1933 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1934 * in that RAMBlock.
1935 *
1936 * ptr: Host pointer to look up
1937 * round_offset: If true round the result offset down to a page boundary
1938 * *ram_addr: set to result ram_addr
1939 * *offset: set to result offset within the RAMBlock
1940 *
1941 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1942 *
1943 * By the time this function returns, the returned pointer is not protected
1944 * by RCU anymore. If the caller is not within an RCU critical section and
1945 * does not hold the iothread lock, it must have other means of protecting the
1946 * pointer, such as a reference to the region that includes the incoming
1947 * ram_addr_t.
1948 */
422148d3
DDAG
1949RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1950 ram_addr_t *ram_addr,
1951 ram_addr_t *offset)
5579c7f3 1952{
94a6b54f
PB
1953 RAMBlock *block;
1954 uint8_t *host = ptr;
1955
868bb33f 1956 if (xen_enabled()) {
0dc3f44a 1957 rcu_read_lock();
e41d7c69 1958 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1959 block = qemu_get_ram_block(*ram_addr);
1960 if (block) {
1961 *offset = (host - block->host);
1962 }
0dc3f44a 1963 rcu_read_unlock();
422148d3 1964 return block;
712c2b41
SS
1965 }
1966
0dc3f44a
MD
1967 rcu_read_lock();
1968 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1969 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1970 goto found;
1971 }
1972
0dc3f44a 1973 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1974 /* This case append when the block is not mapped. */
1975 if (block->host == NULL) {
1976 continue;
1977 }
9b8424d5 1978 if (host - block->host < block->max_length) {
23887b79 1979 goto found;
f471a17e 1980 }
94a6b54f 1981 }
432d268c 1982
0dc3f44a 1983 rcu_read_unlock();
1b5ec234 1984 return NULL;
23887b79
PB
1985
1986found:
422148d3
DDAG
1987 *offset = (host - block->host);
1988 if (round_offset) {
1989 *offset &= TARGET_PAGE_MASK;
1990 }
1991 *ram_addr = block->offset + *offset;
0dc3f44a 1992 rcu_read_unlock();
422148d3
DDAG
1993 return block;
1994}
1995
e3dd7493
DDAG
1996/*
1997 * Finds the named RAMBlock
1998 *
1999 * name: The name of RAMBlock to find
2000 *
2001 * Returns: RAMBlock (or NULL if not found)
2002 */
2003RAMBlock *qemu_ram_block_by_name(const char *name)
2004{
2005 RAMBlock *block;
2006
2007 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2008 if (!strcmp(name, block->idstr)) {
2009 return block;
2010 }
2011 }
2012
2013 return NULL;
2014}
2015
422148d3
DDAG
2016/* Some of the softmmu routines need to translate from a host pointer
2017 (typically a TLB entry) back to a ram offset. */
2018MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2019{
2020 RAMBlock *block;
2021 ram_addr_t offset; /* Not used */
2022
2023 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2024
2025 if (!block) {
2026 return NULL;
2027 }
2028
2029 return block->mr;
e890261f 2030}
f471a17e 2031
49b24afc 2032/* Called within RCU critical section. */
a8170e5e 2033static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2034 uint64_t val, unsigned size)
9fa3e853 2035{
52159192 2036 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2037 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2038 }
0e0df1e2
AK
2039 switch (size) {
2040 case 1:
3655cb9c 2041 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2042 break;
2043 case 2:
3655cb9c 2044 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2045 break;
2046 case 4:
3655cb9c 2047 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2048 break;
2049 default:
2050 abort();
3a7d929e 2051 }
58d2707e
PB
2052 /* Set both VGA and migration bits for simplicity and to remove
2053 * the notdirty callback faster.
2054 */
2055 cpu_physical_memory_set_dirty_range(ram_addr, size,
2056 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2057 /* we remove the notdirty callback only if the code has been
2058 flushed */
a2cd8c85 2059 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2060 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2061 }
9fa3e853
FB
2062}
2063
b018ddf6
PB
2064static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2065 unsigned size, bool is_write)
2066{
2067 return is_write;
2068}
2069
0e0df1e2 2070static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2071 .write = notdirty_mem_write,
b018ddf6 2072 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2073 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2074};
2075
0f459d16 2076/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2077static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2078{
93afeade 2079 CPUState *cpu = current_cpu;
568496c0 2080 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2081 CPUArchState *env = cpu->env_ptr;
06d55cc1 2082 target_ulong pc, cs_base;
0f459d16 2083 target_ulong vaddr;
a1d1bb31 2084 CPUWatchpoint *wp;
06d55cc1 2085 int cpu_flags;
0f459d16 2086
ff4700b0 2087 if (cpu->watchpoint_hit) {
06d55cc1
AL
2088 /* We re-entered the check after replacing the TB. Now raise
2089 * the debug interrupt so that is will trigger after the
2090 * current instruction. */
93afeade 2091 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2092 return;
2093 }
93afeade 2094 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2095 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2096 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2097 && (wp->flags & flags)) {
08225676
PM
2098 if (flags == BP_MEM_READ) {
2099 wp->flags |= BP_WATCHPOINT_HIT_READ;
2100 } else {
2101 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2102 }
2103 wp->hitaddr = vaddr;
66b9b43c 2104 wp->hitattrs = attrs;
ff4700b0 2105 if (!cpu->watchpoint_hit) {
568496c0
SF
2106 if (wp->flags & BP_CPU &&
2107 !cc->debug_check_watchpoint(cpu, wp)) {
2108 wp->flags &= ~BP_WATCHPOINT_HIT;
2109 continue;
2110 }
ff4700b0 2111 cpu->watchpoint_hit = wp;
239c51a5 2112 tb_check_watchpoint(cpu);
6e140f28 2113 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2114 cpu->exception_index = EXCP_DEBUG;
5638d180 2115 cpu_loop_exit(cpu);
6e140f28
AL
2116 } else {
2117 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2118 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2119 cpu_resume_from_signal(cpu, NULL);
6e140f28 2120 }
06d55cc1 2121 }
6e140f28
AL
2122 } else {
2123 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2124 }
2125 }
2126}
2127
6658ffb8
PB
2128/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2129 so these check for a hit then pass through to the normal out-of-line
2130 phys routines. */
66b9b43c
PM
2131static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2132 unsigned size, MemTxAttrs attrs)
6658ffb8 2133{
66b9b43c
PM
2134 MemTxResult res;
2135 uint64_t data;
79ed0416
PM
2136 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2137 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2138
2139 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2140 switch (size) {
66b9b43c 2141 case 1:
79ed0416 2142 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2143 break;
2144 case 2:
79ed0416 2145 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2146 break;
2147 case 4:
79ed0416 2148 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2149 break;
1ec9b909
AK
2150 default: abort();
2151 }
66b9b43c
PM
2152 *pdata = data;
2153 return res;
6658ffb8
PB
2154}
2155
66b9b43c
PM
2156static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2157 uint64_t val, unsigned size,
2158 MemTxAttrs attrs)
6658ffb8 2159{
66b9b43c 2160 MemTxResult res;
79ed0416
PM
2161 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2162 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2163
2164 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2165 switch (size) {
67364150 2166 case 1:
79ed0416 2167 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2168 break;
2169 case 2:
79ed0416 2170 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2171 break;
2172 case 4:
79ed0416 2173 address_space_stl(as, addr, val, attrs, &res);
67364150 2174 break;
1ec9b909
AK
2175 default: abort();
2176 }
66b9b43c 2177 return res;
6658ffb8
PB
2178}
2179
1ec9b909 2180static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2181 .read_with_attrs = watch_mem_read,
2182 .write_with_attrs = watch_mem_write,
1ec9b909 2183 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2184};
6658ffb8 2185
f25a49e0
PM
2186static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2187 unsigned len, MemTxAttrs attrs)
db7b5426 2188{
acc9d80b 2189 subpage_t *subpage = opaque;
ff6cff75 2190 uint8_t buf[8];
5c9eb028 2191 MemTxResult res;
791af8c8 2192
db7b5426 2193#if defined(DEBUG_SUBPAGE)
016e9d62 2194 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2195 subpage, len, addr);
db7b5426 2196#endif
5c9eb028
PM
2197 res = address_space_read(subpage->as, addr + subpage->base,
2198 attrs, buf, len);
2199 if (res) {
2200 return res;
f25a49e0 2201 }
acc9d80b
JK
2202 switch (len) {
2203 case 1:
f25a49e0
PM
2204 *data = ldub_p(buf);
2205 return MEMTX_OK;
acc9d80b 2206 case 2:
f25a49e0
PM
2207 *data = lduw_p(buf);
2208 return MEMTX_OK;
acc9d80b 2209 case 4:
f25a49e0
PM
2210 *data = ldl_p(buf);
2211 return MEMTX_OK;
ff6cff75 2212 case 8:
f25a49e0
PM
2213 *data = ldq_p(buf);
2214 return MEMTX_OK;
acc9d80b
JK
2215 default:
2216 abort();
2217 }
db7b5426
BS
2218}
2219
f25a49e0
PM
2220static MemTxResult subpage_write(void *opaque, hwaddr addr,
2221 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2222{
acc9d80b 2223 subpage_t *subpage = opaque;
ff6cff75 2224 uint8_t buf[8];
acc9d80b 2225
db7b5426 2226#if defined(DEBUG_SUBPAGE)
016e9d62 2227 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2228 " value %"PRIx64"\n",
2229 __func__, subpage, len, addr, value);
db7b5426 2230#endif
acc9d80b
JK
2231 switch (len) {
2232 case 1:
2233 stb_p(buf, value);
2234 break;
2235 case 2:
2236 stw_p(buf, value);
2237 break;
2238 case 4:
2239 stl_p(buf, value);
2240 break;
ff6cff75
PB
2241 case 8:
2242 stq_p(buf, value);
2243 break;
acc9d80b
JK
2244 default:
2245 abort();
2246 }
5c9eb028
PM
2247 return address_space_write(subpage->as, addr + subpage->base,
2248 attrs, buf, len);
db7b5426
BS
2249}
2250
c353e4cc 2251static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2252 unsigned len, bool is_write)
c353e4cc 2253{
acc9d80b 2254 subpage_t *subpage = opaque;
c353e4cc 2255#if defined(DEBUG_SUBPAGE)
016e9d62 2256 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2257 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2258#endif
2259
acc9d80b 2260 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2261 len, is_write);
c353e4cc
PB
2262}
2263
70c68e44 2264static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2265 .read_with_attrs = subpage_read,
2266 .write_with_attrs = subpage_write,
ff6cff75
PB
2267 .impl.min_access_size = 1,
2268 .impl.max_access_size = 8,
2269 .valid.min_access_size = 1,
2270 .valid.max_access_size = 8,
c353e4cc 2271 .valid.accepts = subpage_accepts,
70c68e44 2272 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2273};
2274
c227f099 2275static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2276 uint16_t section)
db7b5426
BS
2277{
2278 int idx, eidx;
2279
2280 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2281 return -1;
2282 idx = SUBPAGE_IDX(start);
2283 eidx = SUBPAGE_IDX(end);
2284#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2285 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2286 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2287#endif
db7b5426 2288 for (; idx <= eidx; idx++) {
5312bd8b 2289 mmio->sub_section[idx] = section;
db7b5426
BS
2290 }
2291
2292 return 0;
2293}
2294
acc9d80b 2295static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2296{
c227f099 2297 subpage_t *mmio;
db7b5426 2298
7267c094 2299 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2300
acc9d80b 2301 mmio->as = as;
1eec614b 2302 mmio->base = base;
2c9b15ca 2303 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2304 NULL, TARGET_PAGE_SIZE);
b3b00c78 2305 mmio->iomem.subpage = true;
db7b5426 2306#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2307 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2308 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2309#endif
b41aac4f 2310 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2311
2312 return mmio;
2313}
2314
a656e22f
PC
2315static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2316 MemoryRegion *mr)
5312bd8b 2317{
a656e22f 2318 assert(as);
5312bd8b 2319 MemoryRegionSection section = {
a656e22f 2320 .address_space = as,
5312bd8b
AK
2321 .mr = mr,
2322 .offset_within_address_space = 0,
2323 .offset_within_region = 0,
052e87b0 2324 .size = int128_2_64(),
5312bd8b
AK
2325 };
2326
53cb28cb 2327 return phys_section_add(map, &section);
5312bd8b
AK
2328}
2329
a54c87b6 2330MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2331{
a54c87b6
PM
2332 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2333 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2334 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2335 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2336
2337 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2338}
2339
e9179ce1
AK
2340static void io_mem_init(void)
2341{
1f6245e5 2342 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2343 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2344 NULL, UINT64_MAX);
2c9b15ca 2345 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2346 NULL, UINT64_MAX);
2c9b15ca 2347 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2348 NULL, UINT64_MAX);
e9179ce1
AK
2349}
2350
ac1970fb 2351static void mem_begin(MemoryListener *listener)
00752703
PB
2352{
2353 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2354 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2355 uint16_t n;
2356
a656e22f 2357 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2358 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2359 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2360 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2361 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2362 assert(n == PHYS_SECTION_ROM);
a656e22f 2363 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2364 assert(n == PHYS_SECTION_WATCH);
00752703 2365
9736e55b 2366 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2367 d->as = as;
2368 as->next_dispatch = d;
2369}
2370
79e2b9ae
PB
2371static void address_space_dispatch_free(AddressSpaceDispatch *d)
2372{
2373 phys_sections_free(&d->map);
2374 g_free(d);
2375}
2376
00752703 2377static void mem_commit(MemoryListener *listener)
ac1970fb 2378{
89ae337a 2379 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2380 AddressSpaceDispatch *cur = as->dispatch;
2381 AddressSpaceDispatch *next = as->next_dispatch;
2382
53cb28cb 2383 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2384
79e2b9ae 2385 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2386 if (cur) {
79e2b9ae 2387 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2388 }
9affd6fc
PB
2389}
2390
1d71148e 2391static void tcg_commit(MemoryListener *listener)
50c1e149 2392{
32857f4d
PM
2393 CPUAddressSpace *cpuas;
2394 AddressSpaceDispatch *d;
117712c3
AK
2395
2396 /* since each CPU stores ram addresses in its TLB cache, we must
2397 reset the modified entries */
32857f4d
PM
2398 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2399 cpu_reloading_memory_map();
2400 /* The CPU and TLB are protected by the iothread lock.
2401 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2402 * may have split the RCU critical section.
2403 */
2404 d = atomic_rcu_read(&cpuas->as->dispatch);
2405 cpuas->memory_dispatch = d;
2406 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2407}
2408
ac1970fb
AK
2409void address_space_init_dispatch(AddressSpace *as)
2410{
00752703 2411 as->dispatch = NULL;
89ae337a 2412 as->dispatch_listener = (MemoryListener) {
ac1970fb 2413 .begin = mem_begin,
00752703 2414 .commit = mem_commit,
ac1970fb
AK
2415 .region_add = mem_add,
2416 .region_nop = mem_add,
2417 .priority = 0,
2418 };
89ae337a 2419 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2420}
2421
6e48e8f9
PB
2422void address_space_unregister(AddressSpace *as)
2423{
2424 memory_listener_unregister(&as->dispatch_listener);
2425}
2426
83f3c251
AK
2427void address_space_destroy_dispatch(AddressSpace *as)
2428{
2429 AddressSpaceDispatch *d = as->dispatch;
2430
79e2b9ae
PB
2431 atomic_rcu_set(&as->dispatch, NULL);
2432 if (d) {
2433 call_rcu(d, address_space_dispatch_free, rcu);
2434 }
83f3c251
AK
2435}
2436
62152b8a
AK
2437static void memory_map_init(void)
2438{
7267c094 2439 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2440
57271d63 2441 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2442 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2443
7267c094 2444 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2445 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2446 65536);
7dca8043 2447 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2448}
2449
2450MemoryRegion *get_system_memory(void)
2451{
2452 return system_memory;
2453}
2454
309cb471
AK
2455MemoryRegion *get_system_io(void)
2456{
2457 return system_io;
2458}
2459
e2eef170
PB
2460#endif /* !defined(CONFIG_USER_ONLY) */
2461
13eb76e0
FB
2462/* physical memory access (slow version, mainly for debug) */
2463#if defined(CONFIG_USER_ONLY)
f17ec444 2464int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2465 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2466{
2467 int l, flags;
2468 target_ulong page;
53a5960a 2469 void * p;
13eb76e0
FB
2470
2471 while (len > 0) {
2472 page = addr & TARGET_PAGE_MASK;
2473 l = (page + TARGET_PAGE_SIZE) - addr;
2474 if (l > len)
2475 l = len;
2476 flags = page_get_flags(page);
2477 if (!(flags & PAGE_VALID))
a68fe89c 2478 return -1;
13eb76e0
FB
2479 if (is_write) {
2480 if (!(flags & PAGE_WRITE))
a68fe89c 2481 return -1;
579a97f7 2482 /* XXX: this code should not depend on lock_user */
72fb7daa 2483 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2484 return -1;
72fb7daa
AJ
2485 memcpy(p, buf, l);
2486 unlock_user(p, addr, l);
13eb76e0
FB
2487 } else {
2488 if (!(flags & PAGE_READ))
a68fe89c 2489 return -1;
579a97f7 2490 /* XXX: this code should not depend on lock_user */
72fb7daa 2491 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2492 return -1;
72fb7daa 2493 memcpy(buf, p, l);
5b257578 2494 unlock_user(p, addr, 0);
13eb76e0
FB
2495 }
2496 len -= l;
2497 buf += l;
2498 addr += l;
2499 }
a68fe89c 2500 return 0;
13eb76e0 2501}
8df1cd07 2502
13eb76e0 2503#else
51d7a9eb 2504
845b6214 2505static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2506 hwaddr length)
51d7a9eb 2507{
e87f7778
PB
2508 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2509 /* No early return if dirty_log_mask is or becomes 0, because
2510 * cpu_physical_memory_set_dirty_range will still call
2511 * xen_modified_memory.
2512 */
2513 if (dirty_log_mask) {
2514 dirty_log_mask =
2515 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2516 }
2517 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2518 tb_invalidate_phys_range(addr, addr + length);
2519 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2520 }
e87f7778 2521 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2522}
2523
23326164 2524static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2525{
e1622f4b 2526 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2527
2528 /* Regions are assumed to support 1-4 byte accesses unless
2529 otherwise specified. */
23326164
RH
2530 if (access_size_max == 0) {
2531 access_size_max = 4;
2532 }
2533
2534 /* Bound the maximum access by the alignment of the address. */
2535 if (!mr->ops->impl.unaligned) {
2536 unsigned align_size_max = addr & -addr;
2537 if (align_size_max != 0 && align_size_max < access_size_max) {
2538 access_size_max = align_size_max;
2539 }
82f2563f 2540 }
23326164
RH
2541
2542 /* Don't attempt accesses larger than the maximum. */
2543 if (l > access_size_max) {
2544 l = access_size_max;
82f2563f 2545 }
6554f5c0 2546 l = pow2floor(l);
23326164
RH
2547
2548 return l;
82f2563f
PB
2549}
2550
4840f10e 2551static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2552{
4840f10e
JK
2553 bool unlocked = !qemu_mutex_iothread_locked();
2554 bool release_lock = false;
2555
2556 if (unlocked && mr->global_locking) {
2557 qemu_mutex_lock_iothread();
2558 unlocked = false;
2559 release_lock = true;
2560 }
125b3806 2561 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2562 if (unlocked) {
2563 qemu_mutex_lock_iothread();
2564 }
125b3806 2565 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2566 if (unlocked) {
2567 qemu_mutex_unlock_iothread();
2568 }
125b3806 2569 }
4840f10e
JK
2570
2571 return release_lock;
125b3806
PB
2572}
2573
a203ac70
PB
2574/* Called within RCU critical section. */
2575static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2576 MemTxAttrs attrs,
2577 const uint8_t *buf,
2578 int len, hwaddr addr1,
2579 hwaddr l, MemoryRegion *mr)
13eb76e0 2580{
13eb76e0 2581 uint8_t *ptr;
791af8c8 2582 uint64_t val;
3b643495 2583 MemTxResult result = MEMTX_OK;
4840f10e 2584 bool release_lock = false;
3b46e624 2585
a203ac70 2586 for (;;) {
eb7eeb88
PB
2587 if (!memory_access_is_direct(mr, true)) {
2588 release_lock |= prepare_mmio_access(mr);
2589 l = memory_access_size(mr, l, addr1);
2590 /* XXX: could force current_cpu to NULL to avoid
2591 potential bugs */
2592 switch (l) {
2593 case 8:
2594 /* 64 bit write access */
2595 val = ldq_p(buf);
2596 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2597 attrs);
2598 break;
2599 case 4:
2600 /* 32 bit write access */
2601 val = ldl_p(buf);
2602 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2603 attrs);
2604 break;
2605 case 2:
2606 /* 16 bit write access */
2607 val = lduw_p(buf);
2608 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2609 attrs);
2610 break;
2611 case 1:
2612 /* 8 bit write access */
2613 val = ldub_p(buf);
2614 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2615 attrs);
2616 break;
2617 default:
2618 abort();
13eb76e0
FB
2619 }
2620 } else {
eb7eeb88
PB
2621 addr1 += memory_region_get_ram_addr(mr);
2622 /* RAM case */
3655cb9c 2623 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2624 memcpy(ptr, buf, l);
2625 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2626 }
4840f10e
JK
2627
2628 if (release_lock) {
2629 qemu_mutex_unlock_iothread();
2630 release_lock = false;
2631 }
2632
13eb76e0
FB
2633 len -= l;
2634 buf += l;
2635 addr += l;
a203ac70
PB
2636
2637 if (!len) {
2638 break;
2639 }
2640
2641 l = len;
2642 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2643 }
fd8aaa76 2644
3b643495 2645 return result;
13eb76e0 2646}
8df1cd07 2647
a203ac70
PB
2648MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2649 const uint8_t *buf, int len)
ac1970fb 2650{
eb7eeb88 2651 hwaddr l;
eb7eeb88
PB
2652 hwaddr addr1;
2653 MemoryRegion *mr;
2654 MemTxResult result = MEMTX_OK;
eb7eeb88 2655
a203ac70
PB
2656 if (len > 0) {
2657 rcu_read_lock();
eb7eeb88 2658 l = len;
a203ac70
PB
2659 mr = address_space_translate(as, addr, &addr1, &l, true);
2660 result = address_space_write_continue(as, addr, attrs, buf, len,
2661 addr1, l, mr);
2662 rcu_read_unlock();
2663 }
2664
2665 return result;
2666}
2667
2668/* Called within RCU critical section. */
2669MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2670 MemTxAttrs attrs, uint8_t *buf,
2671 int len, hwaddr addr1, hwaddr l,
2672 MemoryRegion *mr)
2673{
2674 uint8_t *ptr;
2675 uint64_t val;
2676 MemTxResult result = MEMTX_OK;
2677 bool release_lock = false;
eb7eeb88 2678
a203ac70 2679 for (;;) {
eb7eeb88
PB
2680 if (!memory_access_is_direct(mr, false)) {
2681 /* I/O case */
2682 release_lock |= prepare_mmio_access(mr);
2683 l = memory_access_size(mr, l, addr1);
2684 switch (l) {
2685 case 8:
2686 /* 64 bit read access */
2687 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2688 attrs);
2689 stq_p(buf, val);
2690 break;
2691 case 4:
2692 /* 32 bit read access */
2693 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2694 attrs);
2695 stl_p(buf, val);
2696 break;
2697 case 2:
2698 /* 16 bit read access */
2699 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2700 attrs);
2701 stw_p(buf, val);
2702 break;
2703 case 1:
2704 /* 8 bit read access */
2705 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2706 attrs);
2707 stb_p(buf, val);
2708 break;
2709 default:
2710 abort();
2711 }
2712 } else {
2713 /* RAM case */
8e41fb63
FZ
2714 ptr = qemu_get_ram_ptr(mr->ram_block,
2715 memory_region_get_ram_addr(mr) + addr1);
eb7eeb88
PB
2716 memcpy(buf, ptr, l);
2717 }
2718
2719 if (release_lock) {
2720 qemu_mutex_unlock_iothread();
2721 release_lock = false;
2722 }
2723
2724 len -= l;
2725 buf += l;
2726 addr += l;
a203ac70
PB
2727
2728 if (!len) {
2729 break;
2730 }
2731
2732 l = len;
2733 mr = address_space_translate(as, addr, &addr1, &l, false);
2734 }
2735
2736 return result;
2737}
2738
3cc8f884
PB
2739MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2740 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2741{
2742 hwaddr l;
2743 hwaddr addr1;
2744 MemoryRegion *mr;
2745 MemTxResult result = MEMTX_OK;
2746
2747 if (len > 0) {
2748 rcu_read_lock();
2749 l = len;
2750 mr = address_space_translate(as, addr, &addr1, &l, false);
2751 result = address_space_read_continue(as, addr, attrs, buf, len,
2752 addr1, l, mr);
2753 rcu_read_unlock();
eb7eeb88 2754 }
eb7eeb88
PB
2755
2756 return result;
ac1970fb
AK
2757}
2758
eb7eeb88
PB
2759MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2760 uint8_t *buf, int len, bool is_write)
2761{
2762 if (is_write) {
2763 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2764 } else {
2765 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2766 }
2767}
ac1970fb 2768
a8170e5e 2769void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2770 int len, int is_write)
2771{
5c9eb028
PM
2772 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2773 buf, len, is_write);
ac1970fb
AK
2774}
2775
582b55a9
AG
2776enum write_rom_type {
2777 WRITE_DATA,
2778 FLUSH_CACHE,
2779};
2780
2a221651 2781static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2782 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2783{
149f54b5 2784 hwaddr l;
d0ecd2aa 2785 uint8_t *ptr;
149f54b5 2786 hwaddr addr1;
5c8a00ce 2787 MemoryRegion *mr;
3b46e624 2788
41063e1e 2789 rcu_read_lock();
d0ecd2aa 2790 while (len > 0) {
149f54b5 2791 l = len;
2a221651 2792 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2793
5c8a00ce
PB
2794 if (!(memory_region_is_ram(mr) ||
2795 memory_region_is_romd(mr))) {
b242e0e0 2796 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2797 } else {
5c8a00ce 2798 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2799 /* ROM/RAM case */
3655cb9c 2800 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2801 switch (type) {
2802 case WRITE_DATA:
2803 memcpy(ptr, buf, l);
845b6214 2804 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2805 break;
2806 case FLUSH_CACHE:
2807 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2808 break;
2809 }
d0ecd2aa
FB
2810 }
2811 len -= l;
2812 buf += l;
2813 addr += l;
2814 }
41063e1e 2815 rcu_read_unlock();
d0ecd2aa
FB
2816}
2817
582b55a9 2818/* used for ROM loading : can write in RAM and ROM */
2a221651 2819void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2820 const uint8_t *buf, int len)
2821{
2a221651 2822 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2823}
2824
2825void cpu_flush_icache_range(hwaddr start, int len)
2826{
2827 /*
2828 * This function should do the same thing as an icache flush that was
2829 * triggered from within the guest. For TCG we are always cache coherent,
2830 * so there is no need to flush anything. For KVM / Xen we need to flush
2831 * the host's instruction cache at least.
2832 */
2833 if (tcg_enabled()) {
2834 return;
2835 }
2836
2a221651
EI
2837 cpu_physical_memory_write_rom_internal(&address_space_memory,
2838 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2839}
2840
6d16c2f8 2841typedef struct {
d3e71559 2842 MemoryRegion *mr;
6d16c2f8 2843 void *buffer;
a8170e5e
AK
2844 hwaddr addr;
2845 hwaddr len;
c2cba0ff 2846 bool in_use;
6d16c2f8
AL
2847} BounceBuffer;
2848
2849static BounceBuffer bounce;
2850
ba223c29 2851typedef struct MapClient {
e95205e1 2852 QEMUBH *bh;
72cf2d4f 2853 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2854} MapClient;
2855
38e047b5 2856QemuMutex map_client_list_lock;
72cf2d4f
BS
2857static QLIST_HEAD(map_client_list, MapClient) map_client_list
2858 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2859
e95205e1
FZ
2860static void cpu_unregister_map_client_do(MapClient *client)
2861{
2862 QLIST_REMOVE(client, link);
2863 g_free(client);
2864}
2865
33b6c2ed
FZ
2866static void cpu_notify_map_clients_locked(void)
2867{
2868 MapClient *client;
2869
2870 while (!QLIST_EMPTY(&map_client_list)) {
2871 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2872 qemu_bh_schedule(client->bh);
2873 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2874 }
2875}
2876
e95205e1 2877void cpu_register_map_client(QEMUBH *bh)
ba223c29 2878{
7267c094 2879 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2880
38e047b5 2881 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2882 client->bh = bh;
72cf2d4f 2883 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2884 if (!atomic_read(&bounce.in_use)) {
2885 cpu_notify_map_clients_locked();
2886 }
38e047b5 2887 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2888}
2889
38e047b5 2890void cpu_exec_init_all(void)
ba223c29 2891{
38e047b5 2892 qemu_mutex_init(&ram_list.mutex);
38e047b5 2893 io_mem_init();
680a4783 2894 memory_map_init();
38e047b5 2895 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2896}
2897
e95205e1 2898void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2899{
2900 MapClient *client;
2901
e95205e1
FZ
2902 qemu_mutex_lock(&map_client_list_lock);
2903 QLIST_FOREACH(client, &map_client_list, link) {
2904 if (client->bh == bh) {
2905 cpu_unregister_map_client_do(client);
2906 break;
2907 }
ba223c29 2908 }
e95205e1 2909 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2910}
2911
2912static void cpu_notify_map_clients(void)
2913{
38e047b5 2914 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2915 cpu_notify_map_clients_locked();
38e047b5 2916 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2917}
2918
51644ab7
PB
2919bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2920{
5c8a00ce 2921 MemoryRegion *mr;
51644ab7
PB
2922 hwaddr l, xlat;
2923
41063e1e 2924 rcu_read_lock();
51644ab7
PB
2925 while (len > 0) {
2926 l = len;
5c8a00ce
PB
2927 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2928 if (!memory_access_is_direct(mr, is_write)) {
2929 l = memory_access_size(mr, l, addr);
2930 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2931 return false;
2932 }
2933 }
2934
2935 len -= l;
2936 addr += l;
2937 }
41063e1e 2938 rcu_read_unlock();
51644ab7
PB
2939 return true;
2940}
2941
6d16c2f8
AL
2942/* Map a physical memory region into a host virtual address.
2943 * May map a subset of the requested range, given by and returned in *plen.
2944 * May return NULL if resources needed to perform the mapping are exhausted.
2945 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2946 * Use cpu_register_map_client() to know when retrying the map operation is
2947 * likely to succeed.
6d16c2f8 2948 */
ac1970fb 2949void *address_space_map(AddressSpace *as,
a8170e5e
AK
2950 hwaddr addr,
2951 hwaddr *plen,
ac1970fb 2952 bool is_write)
6d16c2f8 2953{
a8170e5e 2954 hwaddr len = *plen;
e3127ae0
PB
2955 hwaddr done = 0;
2956 hwaddr l, xlat, base;
2957 MemoryRegion *mr, *this_mr;
2958 ram_addr_t raddr;
e81bcda5 2959 void *ptr;
6d16c2f8 2960
e3127ae0
PB
2961 if (len == 0) {
2962 return NULL;
2963 }
38bee5dc 2964
e3127ae0 2965 l = len;
41063e1e 2966 rcu_read_lock();
e3127ae0 2967 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2968
e3127ae0 2969 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2970 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2971 rcu_read_unlock();
e3127ae0 2972 return NULL;
6d16c2f8 2973 }
e85d9db5
KW
2974 /* Avoid unbounded allocations */
2975 l = MIN(l, TARGET_PAGE_SIZE);
2976 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2977 bounce.addr = addr;
2978 bounce.len = l;
d3e71559
PB
2979
2980 memory_region_ref(mr);
2981 bounce.mr = mr;
e3127ae0 2982 if (!is_write) {
5c9eb028
PM
2983 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2984 bounce.buffer, l);
8ab934f9 2985 }
6d16c2f8 2986
41063e1e 2987 rcu_read_unlock();
e3127ae0
PB
2988 *plen = l;
2989 return bounce.buffer;
2990 }
2991
2992 base = xlat;
2993 raddr = memory_region_get_ram_addr(mr);
2994
2995 for (;;) {
6d16c2f8
AL
2996 len -= l;
2997 addr += l;
e3127ae0
PB
2998 done += l;
2999 if (len == 0) {
3000 break;
3001 }
3002
3003 l = len;
3004 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
3005 if (this_mr != mr || xlat != base + done) {
3006 break;
3007 }
6d16c2f8 3008 }
e3127ae0 3009
d3e71559 3010 memory_region_ref(mr);
e3127ae0 3011 *plen = done;
3655cb9c 3012 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
e81bcda5
PB
3013 rcu_read_unlock();
3014
3015 return ptr;
6d16c2f8
AL
3016}
3017
ac1970fb 3018/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3019 * Will also mark the memory as dirty if is_write == 1. access_len gives
3020 * the amount of memory that was actually read or written by the caller.
3021 */
a8170e5e
AK
3022void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3023 int is_write, hwaddr access_len)
6d16c2f8
AL
3024{
3025 if (buffer != bounce.buffer) {
d3e71559
PB
3026 MemoryRegion *mr;
3027 ram_addr_t addr1;
3028
3029 mr = qemu_ram_addr_from_host(buffer, &addr1);
3030 assert(mr != NULL);
6d16c2f8 3031 if (is_write) {
845b6214 3032 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3033 }
868bb33f 3034 if (xen_enabled()) {
e41d7c69 3035 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3036 }
d3e71559 3037 memory_region_unref(mr);
6d16c2f8
AL
3038 return;
3039 }
3040 if (is_write) {
5c9eb028
PM
3041 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3042 bounce.buffer, access_len);
6d16c2f8 3043 }
f8a83245 3044 qemu_vfree(bounce.buffer);
6d16c2f8 3045 bounce.buffer = NULL;
d3e71559 3046 memory_region_unref(bounce.mr);
c2cba0ff 3047 atomic_mb_set(&bounce.in_use, false);
ba223c29 3048 cpu_notify_map_clients();
6d16c2f8 3049}
d0ecd2aa 3050
a8170e5e
AK
3051void *cpu_physical_memory_map(hwaddr addr,
3052 hwaddr *plen,
ac1970fb
AK
3053 int is_write)
3054{
3055 return address_space_map(&address_space_memory, addr, plen, is_write);
3056}
3057
a8170e5e
AK
3058void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3059 int is_write, hwaddr access_len)
ac1970fb
AK
3060{
3061 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3062}
3063
8df1cd07 3064/* warning: addr must be aligned */
50013115
PM
3065static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3066 MemTxAttrs attrs,
3067 MemTxResult *result,
3068 enum device_endian endian)
8df1cd07 3069{
8df1cd07 3070 uint8_t *ptr;
791af8c8 3071 uint64_t val;
5c8a00ce 3072 MemoryRegion *mr;
149f54b5
PB
3073 hwaddr l = 4;
3074 hwaddr addr1;
50013115 3075 MemTxResult r;
4840f10e 3076 bool release_lock = false;
8df1cd07 3077
41063e1e 3078 rcu_read_lock();
fdfba1a2 3079 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3080 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3081 release_lock |= prepare_mmio_access(mr);
125b3806 3082
8df1cd07 3083 /* I/O case */
50013115 3084 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3085#if defined(TARGET_WORDS_BIGENDIAN)
3086 if (endian == DEVICE_LITTLE_ENDIAN) {
3087 val = bswap32(val);
3088 }
3089#else
3090 if (endian == DEVICE_BIG_ENDIAN) {
3091 val = bswap32(val);
3092 }
3093#endif
8df1cd07
FB
3094 } else {
3095 /* RAM case */
3655cb9c
GA
3096 ptr = qemu_get_ram_ptr(mr->ram_block,
3097 (memory_region_get_ram_addr(mr)
06ef3525 3098 & TARGET_PAGE_MASK)
149f54b5 3099 + addr1);
1e78bcc1
AG
3100 switch (endian) {
3101 case DEVICE_LITTLE_ENDIAN:
3102 val = ldl_le_p(ptr);
3103 break;
3104 case DEVICE_BIG_ENDIAN:
3105 val = ldl_be_p(ptr);
3106 break;
3107 default:
3108 val = ldl_p(ptr);
3109 break;
3110 }
50013115
PM
3111 r = MEMTX_OK;
3112 }
3113 if (result) {
3114 *result = r;
8df1cd07 3115 }
4840f10e
JK
3116 if (release_lock) {
3117 qemu_mutex_unlock_iothread();
3118 }
41063e1e 3119 rcu_read_unlock();
8df1cd07
FB
3120 return val;
3121}
3122
50013115
PM
3123uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3124 MemTxAttrs attrs, MemTxResult *result)
3125{
3126 return address_space_ldl_internal(as, addr, attrs, result,
3127 DEVICE_NATIVE_ENDIAN);
3128}
3129
3130uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3131 MemTxAttrs attrs, MemTxResult *result)
3132{
3133 return address_space_ldl_internal(as, addr, attrs, result,
3134 DEVICE_LITTLE_ENDIAN);
3135}
3136
3137uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3138 MemTxAttrs attrs, MemTxResult *result)
3139{
3140 return address_space_ldl_internal(as, addr, attrs, result,
3141 DEVICE_BIG_ENDIAN);
3142}
3143
fdfba1a2 3144uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3145{
50013115 3146 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3147}
3148
fdfba1a2 3149uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3150{
50013115 3151 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3152}
3153
fdfba1a2 3154uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3155{
50013115 3156 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3157}
3158
84b7b8e7 3159/* warning: addr must be aligned */
50013115
PM
3160static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3161 MemTxAttrs attrs,
3162 MemTxResult *result,
3163 enum device_endian endian)
84b7b8e7 3164{
84b7b8e7
FB
3165 uint8_t *ptr;
3166 uint64_t val;
5c8a00ce 3167 MemoryRegion *mr;
149f54b5
PB
3168 hwaddr l = 8;
3169 hwaddr addr1;
50013115 3170 MemTxResult r;
4840f10e 3171 bool release_lock = false;
84b7b8e7 3172
41063e1e 3173 rcu_read_lock();
2c17449b 3174 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3175 false);
3176 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3177 release_lock |= prepare_mmio_access(mr);
125b3806 3178
84b7b8e7 3179 /* I/O case */
50013115 3180 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3181#if defined(TARGET_WORDS_BIGENDIAN)
3182 if (endian == DEVICE_LITTLE_ENDIAN) {
3183 val = bswap64(val);
3184 }
3185#else
3186 if (endian == DEVICE_BIG_ENDIAN) {
3187 val = bswap64(val);
3188 }
84b7b8e7
FB
3189#endif
3190 } else {
3191 /* RAM case */
3655cb9c
GA
3192 ptr = qemu_get_ram_ptr(mr->ram_block,
3193 (memory_region_get_ram_addr(mr)
06ef3525 3194 & TARGET_PAGE_MASK)
149f54b5 3195 + addr1);
1e78bcc1
AG
3196 switch (endian) {
3197 case DEVICE_LITTLE_ENDIAN:
3198 val = ldq_le_p(ptr);
3199 break;
3200 case DEVICE_BIG_ENDIAN:
3201 val = ldq_be_p(ptr);
3202 break;
3203 default:
3204 val = ldq_p(ptr);
3205 break;
3206 }
50013115
PM
3207 r = MEMTX_OK;
3208 }
3209 if (result) {
3210 *result = r;
84b7b8e7 3211 }
4840f10e
JK
3212 if (release_lock) {
3213 qemu_mutex_unlock_iothread();
3214 }
41063e1e 3215 rcu_read_unlock();
84b7b8e7
FB
3216 return val;
3217}
3218
50013115
PM
3219uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3220 MemTxAttrs attrs, MemTxResult *result)
3221{
3222 return address_space_ldq_internal(as, addr, attrs, result,
3223 DEVICE_NATIVE_ENDIAN);
3224}
3225
3226uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3227 MemTxAttrs attrs, MemTxResult *result)
3228{
3229 return address_space_ldq_internal(as, addr, attrs, result,
3230 DEVICE_LITTLE_ENDIAN);
3231}
3232
3233uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3234 MemTxAttrs attrs, MemTxResult *result)
3235{
3236 return address_space_ldq_internal(as, addr, attrs, result,
3237 DEVICE_BIG_ENDIAN);
3238}
3239
2c17449b 3240uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3241{
50013115 3242 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3243}
3244
2c17449b 3245uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3246{
50013115 3247 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3248}
3249
2c17449b 3250uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3251{
50013115 3252 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3253}
3254
aab33094 3255/* XXX: optimize */
50013115
PM
3256uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3257 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3258{
3259 uint8_t val;
50013115
PM
3260 MemTxResult r;
3261
3262 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3263 if (result) {
3264 *result = r;
3265 }
aab33094
FB
3266 return val;
3267}
3268
50013115
PM
3269uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3270{
3271 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3272}
3273
733f0b02 3274/* warning: addr must be aligned */
50013115
PM
3275static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3276 hwaddr addr,
3277 MemTxAttrs attrs,
3278 MemTxResult *result,
3279 enum device_endian endian)
aab33094 3280{
733f0b02
MT
3281 uint8_t *ptr;
3282 uint64_t val;
5c8a00ce 3283 MemoryRegion *mr;
149f54b5
PB
3284 hwaddr l = 2;
3285 hwaddr addr1;
50013115 3286 MemTxResult r;
4840f10e 3287 bool release_lock = false;
733f0b02 3288
41063e1e 3289 rcu_read_lock();
41701aa4 3290 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3291 false);
3292 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3293 release_lock |= prepare_mmio_access(mr);
125b3806 3294
733f0b02 3295 /* I/O case */
50013115 3296 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3297#if defined(TARGET_WORDS_BIGENDIAN)
3298 if (endian == DEVICE_LITTLE_ENDIAN) {
3299 val = bswap16(val);
3300 }
3301#else
3302 if (endian == DEVICE_BIG_ENDIAN) {
3303 val = bswap16(val);
3304 }
3305#endif
733f0b02
MT
3306 } else {
3307 /* RAM case */
3655cb9c
GA
3308 ptr = qemu_get_ram_ptr(mr->ram_block,
3309 (memory_region_get_ram_addr(mr)
06ef3525 3310 & TARGET_PAGE_MASK)
149f54b5 3311 + addr1);
1e78bcc1
AG
3312 switch (endian) {
3313 case DEVICE_LITTLE_ENDIAN:
3314 val = lduw_le_p(ptr);
3315 break;
3316 case DEVICE_BIG_ENDIAN:
3317 val = lduw_be_p(ptr);
3318 break;
3319 default:
3320 val = lduw_p(ptr);
3321 break;
3322 }
50013115
PM
3323 r = MEMTX_OK;
3324 }
3325 if (result) {
3326 *result = r;
733f0b02 3327 }
4840f10e
JK
3328 if (release_lock) {
3329 qemu_mutex_unlock_iothread();
3330 }
41063e1e 3331 rcu_read_unlock();
733f0b02 3332 return val;
aab33094
FB
3333}
3334
50013115
PM
3335uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3336 MemTxAttrs attrs, MemTxResult *result)
3337{
3338 return address_space_lduw_internal(as, addr, attrs, result,
3339 DEVICE_NATIVE_ENDIAN);
3340}
3341
3342uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3343 MemTxAttrs attrs, MemTxResult *result)
3344{
3345 return address_space_lduw_internal(as, addr, attrs, result,
3346 DEVICE_LITTLE_ENDIAN);
3347}
3348
3349uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3350 MemTxAttrs attrs, MemTxResult *result)
3351{
3352 return address_space_lduw_internal(as, addr, attrs, result,
3353 DEVICE_BIG_ENDIAN);
3354}
3355
41701aa4 3356uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3357{
50013115 3358 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3359}
3360
41701aa4 3361uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3362{
50013115 3363 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3364}
3365
41701aa4 3366uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3367{
50013115 3368 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3369}
3370
8df1cd07
FB
3371/* warning: addr must be aligned. The ram page is not masked as dirty
3372 and the code inside is not invalidated. It is useful if the dirty
3373 bits are used to track modified PTEs */
50013115
PM
3374void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3375 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3376{
8df1cd07 3377 uint8_t *ptr;
5c8a00ce 3378 MemoryRegion *mr;
149f54b5
PB
3379 hwaddr l = 4;
3380 hwaddr addr1;
50013115 3381 MemTxResult r;
845b6214 3382 uint8_t dirty_log_mask;
4840f10e 3383 bool release_lock = false;
8df1cd07 3384
41063e1e 3385 rcu_read_lock();
2198a121 3386 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3387 true);
3388 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3389 release_lock |= prepare_mmio_access(mr);
125b3806 3390
50013115 3391 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3392 } else {
5c8a00ce 3393 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3394 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
8df1cd07 3395 stl_p(ptr, val);
74576198 3396
845b6214
PB
3397 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3398 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3399 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3400 r = MEMTX_OK;
3401 }
3402 if (result) {
3403 *result = r;
8df1cd07 3404 }
4840f10e
JK
3405 if (release_lock) {
3406 qemu_mutex_unlock_iothread();
3407 }
41063e1e 3408 rcu_read_unlock();
8df1cd07
FB
3409}
3410
50013115
PM
3411void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3412{
3413 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3414}
3415
8df1cd07 3416/* warning: addr must be aligned */
50013115
PM
3417static inline void address_space_stl_internal(AddressSpace *as,
3418 hwaddr addr, uint32_t val,
3419 MemTxAttrs attrs,
3420 MemTxResult *result,
3421 enum device_endian endian)
8df1cd07 3422{
8df1cd07 3423 uint8_t *ptr;
5c8a00ce 3424 MemoryRegion *mr;
149f54b5
PB
3425 hwaddr l = 4;
3426 hwaddr addr1;
50013115 3427 MemTxResult r;
4840f10e 3428 bool release_lock = false;
8df1cd07 3429
41063e1e 3430 rcu_read_lock();
ab1da857 3431 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3432 true);
3433 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3434 release_lock |= prepare_mmio_access(mr);
125b3806 3435
1e78bcc1
AG
3436#if defined(TARGET_WORDS_BIGENDIAN)
3437 if (endian == DEVICE_LITTLE_ENDIAN) {
3438 val = bswap32(val);
3439 }
3440#else
3441 if (endian == DEVICE_BIG_ENDIAN) {
3442 val = bswap32(val);
3443 }
3444#endif
50013115 3445 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3446 } else {
8df1cd07 3447 /* RAM case */
5c8a00ce 3448 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3449 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3450 switch (endian) {
3451 case DEVICE_LITTLE_ENDIAN:
3452 stl_le_p(ptr, val);
3453 break;
3454 case DEVICE_BIG_ENDIAN:
3455 stl_be_p(ptr, val);
3456 break;
3457 default:
3458 stl_p(ptr, val);
3459 break;
3460 }
845b6214 3461 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3462 r = MEMTX_OK;
3463 }
3464 if (result) {
3465 *result = r;
8df1cd07 3466 }
4840f10e
JK
3467 if (release_lock) {
3468 qemu_mutex_unlock_iothread();
3469 }
41063e1e 3470 rcu_read_unlock();
8df1cd07
FB
3471}
3472
50013115
PM
3473void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3474 MemTxAttrs attrs, MemTxResult *result)
3475{
3476 address_space_stl_internal(as, addr, val, attrs, result,
3477 DEVICE_NATIVE_ENDIAN);
3478}
3479
3480void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3481 MemTxAttrs attrs, MemTxResult *result)
3482{
3483 address_space_stl_internal(as, addr, val, attrs, result,
3484 DEVICE_LITTLE_ENDIAN);
3485}
3486
3487void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3488 MemTxAttrs attrs, MemTxResult *result)
3489{
3490 address_space_stl_internal(as, addr, val, attrs, result,
3491 DEVICE_BIG_ENDIAN);
3492}
3493
ab1da857 3494void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3495{
50013115 3496 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3497}
3498
ab1da857 3499void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3500{
50013115 3501 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3502}
3503
ab1da857 3504void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3505{
50013115 3506 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3507}
3508
aab33094 3509/* XXX: optimize */
50013115
PM
3510void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3511 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3512{
3513 uint8_t v = val;
50013115
PM
3514 MemTxResult r;
3515
3516 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3517 if (result) {
3518 *result = r;
3519 }
3520}
3521
3522void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3523{
3524 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3525}
3526
733f0b02 3527/* warning: addr must be aligned */
50013115
PM
3528static inline void address_space_stw_internal(AddressSpace *as,
3529 hwaddr addr, uint32_t val,
3530 MemTxAttrs attrs,
3531 MemTxResult *result,
3532 enum device_endian endian)
aab33094 3533{
733f0b02 3534 uint8_t *ptr;
5c8a00ce 3535 MemoryRegion *mr;
149f54b5
PB
3536 hwaddr l = 2;
3537 hwaddr addr1;
50013115 3538 MemTxResult r;
4840f10e 3539 bool release_lock = false;
733f0b02 3540
41063e1e 3541 rcu_read_lock();
5ce5944d 3542 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3543 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3544 release_lock |= prepare_mmio_access(mr);
125b3806 3545
1e78bcc1
AG
3546#if defined(TARGET_WORDS_BIGENDIAN)
3547 if (endian == DEVICE_LITTLE_ENDIAN) {
3548 val = bswap16(val);
3549 }
3550#else
3551 if (endian == DEVICE_BIG_ENDIAN) {
3552 val = bswap16(val);
3553 }
3554#endif
50013115 3555 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3556 } else {
733f0b02 3557 /* RAM case */
5c8a00ce 3558 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3559 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3560 switch (endian) {
3561 case DEVICE_LITTLE_ENDIAN:
3562 stw_le_p(ptr, val);
3563 break;
3564 case DEVICE_BIG_ENDIAN:
3565 stw_be_p(ptr, val);
3566 break;
3567 default:
3568 stw_p(ptr, val);
3569 break;
3570 }
845b6214 3571 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3572 r = MEMTX_OK;
3573 }
3574 if (result) {
3575 *result = r;
733f0b02 3576 }
4840f10e
JK
3577 if (release_lock) {
3578 qemu_mutex_unlock_iothread();
3579 }
41063e1e 3580 rcu_read_unlock();
aab33094
FB
3581}
3582
50013115
PM
3583void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3584 MemTxAttrs attrs, MemTxResult *result)
3585{
3586 address_space_stw_internal(as, addr, val, attrs, result,
3587 DEVICE_NATIVE_ENDIAN);
3588}
3589
3590void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3591 MemTxAttrs attrs, MemTxResult *result)
3592{
3593 address_space_stw_internal(as, addr, val, attrs, result,
3594 DEVICE_LITTLE_ENDIAN);
3595}
3596
3597void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3598 MemTxAttrs attrs, MemTxResult *result)
3599{
3600 address_space_stw_internal(as, addr, val, attrs, result,
3601 DEVICE_BIG_ENDIAN);
3602}
3603
5ce5944d 3604void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3605{
50013115 3606 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3607}
3608
5ce5944d 3609void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3610{
50013115 3611 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3612}
3613
5ce5944d 3614void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3615{
50013115 3616 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3617}
3618
aab33094 3619/* XXX: optimize */
50013115
PM
3620void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3621 MemTxAttrs attrs, MemTxResult *result)
aab33094 3622{
50013115 3623 MemTxResult r;
aab33094 3624 val = tswap64(val);
50013115
PM
3625 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3626 if (result) {
3627 *result = r;
3628 }
aab33094
FB
3629}
3630
50013115
PM
3631void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3632 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3633{
50013115 3634 MemTxResult r;
1e78bcc1 3635 val = cpu_to_le64(val);
50013115
PM
3636 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3637 if (result) {
3638 *result = r;
3639 }
3640}
3641void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3642 MemTxAttrs attrs, MemTxResult *result)
3643{
3644 MemTxResult r;
3645 val = cpu_to_be64(val);
3646 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3647 if (result) {
3648 *result = r;
3649 }
3650}
3651
3652void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3653{
3654 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3655}
3656
3657void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3658{
3659 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3660}
3661
f606604f 3662void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3663{
50013115 3664 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3665}
3666
5e2972fd 3667/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3668int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3669 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3670{
3671 int l;
a8170e5e 3672 hwaddr phys_addr;
9b3c35e0 3673 target_ulong page;
13eb76e0
FB
3674
3675 while (len > 0) {
5232e4c7
PM
3676 int asidx;
3677 MemTxAttrs attrs;
3678
13eb76e0 3679 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3680 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3681 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3682 /* if no physical page mapped, return an error */
3683 if (phys_addr == -1)
3684 return -1;
3685 l = (page + TARGET_PAGE_SIZE) - addr;
3686 if (l > len)
3687 l = len;
5e2972fd 3688 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3689 if (is_write) {
5232e4c7
PM
3690 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3691 phys_addr, buf, l);
2e38847b 3692 } else {
5232e4c7
PM
3693 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3694 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3695 buf, l, 0);
2e38847b 3696 }
13eb76e0
FB
3697 len -= l;
3698 buf += l;
3699 addr += l;
3700 }
3701 return 0;
3702}
038629a6
DDAG
3703
3704/*
3705 * Allows code that needs to deal with migration bitmaps etc to still be built
3706 * target independent.
3707 */
3708size_t qemu_target_page_bits(void)
3709{
3710 return TARGET_PAGE_BITS;
3711}
3712
a68fe89c 3713#endif
13eb76e0 3714
8e4a424b
BS
3715/*
3716 * A helper function for the _utterly broken_ virtio device model to find out if
3717 * it's running on a big endian machine. Don't do this at home kids!
3718 */
98ed8ecf
GK
3719bool target_words_bigendian(void);
3720bool target_words_bigendian(void)
8e4a424b
BS
3721{
3722#if defined(TARGET_WORDS_BIGENDIAN)
3723 return true;
3724#else
3725 return false;
3726#endif
3727}
3728
76f35538 3729#ifndef CONFIG_USER_ONLY
a8170e5e 3730bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3731{
5c8a00ce 3732 MemoryRegion*mr;
149f54b5 3733 hwaddr l = 1;
41063e1e 3734 bool res;
76f35538 3735
41063e1e 3736 rcu_read_lock();
5c8a00ce
PB
3737 mr = address_space_translate(&address_space_memory,
3738 phys_addr, &phys_addr, &l, false);
76f35538 3739
41063e1e
PB
3740 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3741 rcu_read_unlock();
3742 return res;
76f35538 3743}
bd2fa51f 3744
e3807054 3745int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3746{
3747 RAMBlock *block;
e3807054 3748 int ret = 0;
bd2fa51f 3749
0dc3f44a
MD
3750 rcu_read_lock();
3751 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3752 ret = func(block->idstr, block->host, block->offset,
3753 block->used_length, opaque);
3754 if (ret) {
3755 break;
3756 }
bd2fa51f 3757 }
0dc3f44a 3758 rcu_read_unlock();
e3807054 3759 return ret;
bd2fa51f 3760}
ec3f8c99 3761#endif