]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Merge branch 'lock-contention-on-arcs_mtx-final'
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
5dbd68a3 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
3bec585e 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
bd089c54 107 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
b9541d6b 121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
ca0bf58d 138#include <sys/multilist.h>
34dc7c2f
BB
139#ifdef _KERNEL
140#include <sys/vmsystm.h>
141#include <vm/anon.h>
142#include <sys/fs/swapnode.h>
ab26409d 143#include <sys/zpl.h>
aaed7c40 144#include <linux/mm_compat.h>
34dc7c2f
BB
145#endif
146#include <sys/callb.h>
147#include <sys/kstat.h>
570827e1 148#include <sys/dmu_tx.h>
428870ff 149#include <zfs_fletcher.h>
59ec819a 150#include <sys/arc_impl.h>
49ee64e5 151#include <sys/trace_arc.h>
34dc7c2f 152
498877ba
MA
153#ifndef _KERNEL
154/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
155boolean_t arc_watch = B_FALSE;
156#endif
157
ca0bf58d
PS
158static kmutex_t arc_reclaim_lock;
159static kcondvar_t arc_reclaim_thread_cv;
160static boolean_t arc_reclaim_thread_exit;
161static kcondvar_t arc_reclaim_waiters_cv;
162
163static kmutex_t arc_user_evicts_lock;
164static kcondvar_t arc_user_evicts_cv;
165static boolean_t arc_user_evicts_thread_exit;
34dc7c2f 166
2cbb06b5
BB
167/* number of objects to prune from caches when arc_meta_limit is reached */
168int zfs_arc_meta_prune = 10000;
34dc7c2f 169
f6046738
BB
170/* The preferred strategy to employ when arc_meta_limit is reached */
171int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
172
34dc7c2f
BB
173typedef enum arc_reclaim_strategy {
174 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
175 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
176} arc_reclaim_strategy_t;
177
e8b96c60 178/*
ca0bf58d
PS
179 * The number of headers to evict in arc_evict_state_impl() before
180 * dropping the sublist lock and evicting from another sublist. A lower
181 * value means we're more likely to evict the "correct" header (i.e. the
182 * oldest header in the arc state), but comes with higher overhead
183 * (i.e. more invocations of arc_evict_state_impl()).
184 */
185int zfs_arc_evict_batch_limit = 10;
186
187/*
188 * The number of sublists used for each of the arc state lists. If this
189 * is not set to a suitable value by the user, it will be configured to
190 * the number of CPUs on the system in arc_init().
e8b96c60 191 */
ca0bf58d 192int zfs_arc_num_sublists_per_state = 0;
e8b96c60 193
34dc7c2f 194/* number of seconds before growing cache again */
bce45ec9 195int zfs_arc_grow_retry = 5;
34dc7c2f 196
ca0bf58d
PS
197/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
198int zfs_arc_overflow_shift = 8;
199
89c8cac4
PS
200/* disable anon data aggressively growing arc_p */
201int zfs_arc_p_aggressive_disable = 1;
202
62422785
PS
203/* disable arc_p adapt dampener in arc_adapt */
204int zfs_arc_p_dampener_disable = 1;
205
d164b209 206/* log2(fraction of arc to reclaim) */
bce45ec9 207int zfs_arc_shrink_shift = 5;
d164b209 208
34dc7c2f
BB
209/*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
bce45ec9
BB
213int zfs_arc_min_prefetch_lifespan = HZ;
214
215/* disable arc proactive arc throttle due to low memory */
216int zfs_arc_memory_throttle_disable = 1;
217
218/* disable duplicate buffer eviction */
219int zfs_disable_dup_eviction = 0;
34dc7c2f 220
49ddb315
MA
221/* average block used to size buf_hash_table */
222int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
223
ca0bf58d
PS
224/*
225 * minimum lifespan of a prefetch block in clock ticks
226 * (initialized in arc_init())
227 */
228static int arc_min_prefetch_lifespan;
229
e8b96c60
MA
230/*
231 * If this percent of memory is free, don't throttle.
232 */
233int arc_lotsfree_percent = 10;
234
34dc7c2f
BB
235static int arc_dead;
236
bce45ec9
BB
237/* expiration time for arc_no_grow */
238static clock_t arc_grow_time = 0;
239
b128c09f
BB
240/*
241 * The arc has filled available memory and has now warmed up.
242 */
243static boolean_t arc_warm;
244
34dc7c2f
BB
245/*
246 * These tunables are for performance analysis.
247 */
c28b2279
BB
248unsigned long zfs_arc_max = 0;
249unsigned long zfs_arc_min = 0;
250unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 251unsigned long zfs_arc_meta_min = 0;
34dc7c2f 252
bc888666
BB
253/*
254 * Limit the number of restarts in arc_adjust_meta()
255 */
256unsigned long zfs_arc_meta_adjust_restarts = 4096;
257
34dc7c2f
BB
258/* The 6 states: */
259static arc_state_t ARC_anon;
260static arc_state_t ARC_mru;
261static arc_state_t ARC_mru_ghost;
262static arc_state_t ARC_mfu;
263static arc_state_t ARC_mfu_ghost;
264static arc_state_t ARC_l2c_only;
265
266typedef struct arc_stats {
267 kstat_named_t arcstat_hits;
268 kstat_named_t arcstat_misses;
269 kstat_named_t arcstat_demand_data_hits;
270 kstat_named_t arcstat_demand_data_misses;
271 kstat_named_t arcstat_demand_metadata_hits;
272 kstat_named_t arcstat_demand_metadata_misses;
273 kstat_named_t arcstat_prefetch_data_hits;
274 kstat_named_t arcstat_prefetch_data_misses;
275 kstat_named_t arcstat_prefetch_metadata_hits;
276 kstat_named_t arcstat_prefetch_metadata_misses;
277 kstat_named_t arcstat_mru_hits;
278 kstat_named_t arcstat_mru_ghost_hits;
279 kstat_named_t arcstat_mfu_hits;
280 kstat_named_t arcstat_mfu_ghost_hits;
281 kstat_named_t arcstat_deleted;
e49f1e20
WA
282 /*
283 * Number of buffers that could not be evicted because the hash lock
284 * was held by another thread. The lock may not necessarily be held
285 * by something using the same buffer, since hash locks are shared
286 * by multiple buffers.
287 */
34dc7c2f 288 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
289 /*
290 * Number of buffers skipped because they have I/O in progress, are
291 * indrect prefetch buffers that have not lived long enough, or are
292 * not from the spa we're trying to evict from.
293 */
34dc7c2f 294 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
295 /*
296 * Number of times arc_evict_state() was unable to evict enough
297 * buffers to reach its target amount.
298 */
299 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
300 kstat_named_t arcstat_evict_l2_cached;
301 kstat_named_t arcstat_evict_l2_eligible;
302 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 303 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
304 kstat_named_t arcstat_hash_elements;
305 kstat_named_t arcstat_hash_elements_max;
306 kstat_named_t arcstat_hash_collisions;
307 kstat_named_t arcstat_hash_chains;
308 kstat_named_t arcstat_hash_chain_max;
309 kstat_named_t arcstat_p;
310 kstat_named_t arcstat_c;
311 kstat_named_t arcstat_c_min;
312 kstat_named_t arcstat_c_max;
313 kstat_named_t arcstat_size;
314 kstat_named_t arcstat_hdr_size;
d164b209 315 kstat_named_t arcstat_data_size;
cc7f677c 316 kstat_named_t arcstat_meta_size;
d164b209 317 kstat_named_t arcstat_other_size;
13be560d
BB
318 kstat_named_t arcstat_anon_size;
319 kstat_named_t arcstat_anon_evict_data;
320 kstat_named_t arcstat_anon_evict_metadata;
321 kstat_named_t arcstat_mru_size;
322 kstat_named_t arcstat_mru_evict_data;
323 kstat_named_t arcstat_mru_evict_metadata;
324 kstat_named_t arcstat_mru_ghost_size;
325 kstat_named_t arcstat_mru_ghost_evict_data;
326 kstat_named_t arcstat_mru_ghost_evict_metadata;
327 kstat_named_t arcstat_mfu_size;
328 kstat_named_t arcstat_mfu_evict_data;
329 kstat_named_t arcstat_mfu_evict_metadata;
330 kstat_named_t arcstat_mfu_ghost_size;
331 kstat_named_t arcstat_mfu_ghost_evict_data;
332 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
333 kstat_named_t arcstat_l2_hits;
334 kstat_named_t arcstat_l2_misses;
335 kstat_named_t arcstat_l2_feeds;
336 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
337 kstat_named_t arcstat_l2_read_bytes;
338 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
339 kstat_named_t arcstat_l2_writes_sent;
340 kstat_named_t arcstat_l2_writes_done;
341 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 342 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
343 kstat_named_t arcstat_l2_evict_lock_retry;
344 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 345 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f 346 kstat_named_t arcstat_l2_free_on_write;
ca0bf58d 347 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
348 kstat_named_t arcstat_l2_abort_lowmem;
349 kstat_named_t arcstat_l2_cksum_bad;
350 kstat_named_t arcstat_l2_io_error;
351 kstat_named_t arcstat_l2_size;
3a17a7a9 352 kstat_named_t arcstat_l2_asize;
34dc7c2f 353 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
354 kstat_named_t arcstat_l2_compress_successes;
355 kstat_named_t arcstat_l2_compress_zeros;
356 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 357 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
358 kstat_named_t arcstat_duplicate_buffers;
359 kstat_named_t arcstat_duplicate_buffers_size;
360 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
361 kstat_named_t arcstat_memory_direct_count;
362 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
363 kstat_named_t arcstat_no_grow;
364 kstat_named_t arcstat_tempreserve;
365 kstat_named_t arcstat_loaned_bytes;
ab26409d 366 kstat_named_t arcstat_prune;
1834f2d8
BB
367 kstat_named_t arcstat_meta_used;
368 kstat_named_t arcstat_meta_limit;
369 kstat_named_t arcstat_meta_max;
ca0bf58d 370 kstat_named_t arcstat_meta_min;
34dc7c2f
BB
371} arc_stats_t;
372
373static arc_stats_t arc_stats = {
374 { "hits", KSTAT_DATA_UINT64 },
375 { "misses", KSTAT_DATA_UINT64 },
376 { "demand_data_hits", KSTAT_DATA_UINT64 },
377 { "demand_data_misses", KSTAT_DATA_UINT64 },
378 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
379 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
380 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
381 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
382 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
383 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
384 { "mru_hits", KSTAT_DATA_UINT64 },
385 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
386 { "mfu_hits", KSTAT_DATA_UINT64 },
387 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
388 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
389 { "mutex_miss", KSTAT_DATA_UINT64 },
390 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 391 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
392 { "evict_l2_cached", KSTAT_DATA_UINT64 },
393 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
394 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 395 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
396 { "hash_elements", KSTAT_DATA_UINT64 },
397 { "hash_elements_max", KSTAT_DATA_UINT64 },
398 { "hash_collisions", KSTAT_DATA_UINT64 },
399 { "hash_chains", KSTAT_DATA_UINT64 },
400 { "hash_chain_max", KSTAT_DATA_UINT64 },
401 { "p", KSTAT_DATA_UINT64 },
402 { "c", KSTAT_DATA_UINT64 },
403 { "c_min", KSTAT_DATA_UINT64 },
404 { "c_max", KSTAT_DATA_UINT64 },
405 { "size", KSTAT_DATA_UINT64 },
406 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 407 { "data_size", KSTAT_DATA_UINT64 },
cc7f677c 408 { "meta_size", KSTAT_DATA_UINT64 },
d164b209 409 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
410 { "anon_size", KSTAT_DATA_UINT64 },
411 { "anon_evict_data", KSTAT_DATA_UINT64 },
412 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
413 { "mru_size", KSTAT_DATA_UINT64 },
414 { "mru_evict_data", KSTAT_DATA_UINT64 },
415 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
416 { "mru_ghost_size", KSTAT_DATA_UINT64 },
417 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
418 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
419 { "mfu_size", KSTAT_DATA_UINT64 },
420 { "mfu_evict_data", KSTAT_DATA_UINT64 },
421 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
422 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
423 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
424 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
425 { "l2_hits", KSTAT_DATA_UINT64 },
426 { "l2_misses", KSTAT_DATA_UINT64 },
427 { "l2_feeds", KSTAT_DATA_UINT64 },
428 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
429 { "l2_read_bytes", KSTAT_DATA_UINT64 },
430 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
431 { "l2_writes_sent", KSTAT_DATA_UINT64 },
432 { "l2_writes_done", KSTAT_DATA_UINT64 },
433 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 434 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
435 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
436 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 437 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f 438 { "l2_free_on_write", KSTAT_DATA_UINT64 },
ca0bf58d 439 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
440 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
441 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
442 { "l2_io_error", KSTAT_DATA_UINT64 },
443 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 444 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 445 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
446 { "l2_compress_successes", KSTAT_DATA_UINT64 },
447 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
448 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 449 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
450 { "duplicate_buffers", KSTAT_DATA_UINT64 },
451 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
452 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
453 { "memory_direct_count", KSTAT_DATA_UINT64 },
454 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
455 { "arc_no_grow", KSTAT_DATA_UINT64 },
456 { "arc_tempreserve", KSTAT_DATA_UINT64 },
457 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 458 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
459 { "arc_meta_used", KSTAT_DATA_UINT64 },
460 { "arc_meta_limit", KSTAT_DATA_UINT64 },
461 { "arc_meta_max", KSTAT_DATA_UINT64 },
ca0bf58d 462 { "arc_meta_min", KSTAT_DATA_UINT64 },
34dc7c2f
BB
463};
464
465#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
466
467#define ARCSTAT_INCR(stat, val) \
d3cc8b15 468 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 469
428870ff 470#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
471#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
472
473#define ARCSTAT_MAX(stat, val) { \
474 uint64_t m; \
475 while ((val) > (m = arc_stats.stat.value.ui64) && \
476 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
477 continue; \
478}
479
480#define ARCSTAT_MAXSTAT(stat) \
481 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
482
483/*
484 * We define a macro to allow ARC hits/misses to be easily broken down by
485 * two separate conditions, giving a total of four different subtypes for
486 * each of hits and misses (so eight statistics total).
487 */
488#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
489 if (cond1) { \
490 if (cond2) { \
491 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
492 } else { \
493 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
494 } \
495 } else { \
496 if (cond2) { \
497 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
498 } else { \
499 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
500 } \
501 }
502
503kstat_t *arc_ksp;
428870ff 504static arc_state_t *arc_anon;
34dc7c2f
BB
505static arc_state_t *arc_mru;
506static arc_state_t *arc_mru_ghost;
507static arc_state_t *arc_mfu;
508static arc_state_t *arc_mfu_ghost;
509static arc_state_t *arc_l2c_only;
510
511/*
512 * There are several ARC variables that are critical to export as kstats --
513 * but we don't want to have to grovel around in the kstat whenever we wish to
514 * manipulate them. For these variables, we therefore define them to be in
515 * terms of the statistic variable. This assures that we are not introducing
516 * the possibility of inconsistency by having shadow copies of the variables,
517 * while still allowing the code to be readable.
518 */
519#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
520#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
521#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
522#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
523#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
524#define arc_no_grow ARCSTAT(arcstat_no_grow)
525#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
526#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 527#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
ca0bf58d 528#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
529#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
530#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 531
3a17a7a9
SK
532#define L2ARC_IS_VALID_COMPRESS(_c_) \
533 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
534
ab26409d
BB
535static list_t arc_prune_list;
536static kmutex_t arc_prune_mtx;
f6046738 537static taskq_t *arc_prune_taskq;
34dc7c2f 538static arc_buf_t *arc_eviction_list;
34dc7c2f 539static arc_buf_hdr_t arc_eviction_hdr;
428870ff 540
34dc7c2f
BB
541#define GHOST_STATE(state) \
542 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
543 (state) == arc_l2c_only)
544
2a432414
GW
545#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
546#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
547#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
548#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
549#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
550#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
b9541d6b 551
2a432414 552#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
b9541d6b 553#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
2a432414 554#define HDR_L2_READING(hdr) \
b9541d6b
CW
555 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
556 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
557#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
558#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
559#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
34dc7c2f 560
b9541d6b
CW
561#define HDR_ISTYPE_METADATA(hdr) \
562 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
563#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
564
565#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
566#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
567
568/* For storing compression mode in b_flags */
569#define HDR_COMPRESS_OFFSET 24
570#define HDR_COMPRESS_NBITS 7
571
572#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
573 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
574#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
575 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
576
34dc7c2f
BB
577/*
578 * Other sizes
579 */
580
b9541d6b
CW
581#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
582#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
583
584/*
585 * Hash table routines
586 */
587
00b46022
BB
588#define HT_LOCK_ALIGN 64
589#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
590
591struct ht_lock {
592 kmutex_t ht_lock;
593#ifdef _KERNEL
00b46022 594 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
595#endif
596};
597
b31d8ea7 598#define BUF_LOCKS 8192
34dc7c2f
BB
599typedef struct buf_hash_table {
600 uint64_t ht_mask;
601 arc_buf_hdr_t **ht_table;
602 struct ht_lock ht_locks[BUF_LOCKS];
603} buf_hash_table_t;
604
605static buf_hash_table_t buf_hash_table;
606
607#define BUF_HASH_INDEX(spa, dva, birth) \
608 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
609#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
610#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
611#define HDR_LOCK(hdr) \
612 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
613
614uint64_t zfs_crc64_table[256];
615
616/*
617 * Level 2 ARC
618 */
619
620#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
621#define L2ARC_HEADROOM 2 /* num of writes */
622/*
623 * If we discover during ARC scan any buffers to be compressed, we boost
624 * our headroom for the next scanning cycle by this percentage multiple.
625 */
626#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
627#define L2ARC_FEED_SECS 1 /* caching interval secs */
628#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
629
630#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
631#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
632
d3cc8b15 633/* L2ARC Performance Tunables */
abd8610c
BB
634unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
635unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
636unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 637unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
638unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
639unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
640int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 641int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 642int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 643int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
644
645/*
646 * L2ARC Internals
647 */
34dc7c2f
BB
648static list_t L2ARC_dev_list; /* device list */
649static list_t *l2arc_dev_list; /* device list pointer */
650static kmutex_t l2arc_dev_mtx; /* device list mutex */
651static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
652static list_t L2ARC_free_on_write; /* free after write buf list */
653static list_t *l2arc_free_on_write; /* free after write list ptr */
654static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
655static uint64_t l2arc_ndev; /* number of devices */
656
657typedef struct l2arc_read_callback {
3a17a7a9
SK
658 arc_buf_t *l2rcb_buf; /* read buffer */
659 spa_t *l2rcb_spa; /* spa */
660 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 661 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
662 int l2rcb_flags; /* original flags */
663 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
664} l2arc_read_callback_t;
665
34dc7c2f
BB
666typedef struct l2arc_data_free {
667 /* protected by l2arc_free_on_write_mtx */
668 void *l2df_data;
669 size_t l2df_size;
670 void (*l2df_func)(void *, size_t);
671 list_node_t l2df_list_node;
672} l2arc_data_free_t;
673
674static kmutex_t l2arc_feed_thr_lock;
675static kcondvar_t l2arc_feed_thr_cv;
676static uint8_t l2arc_thread_exit;
677
2a432414
GW
678static void arc_get_data_buf(arc_buf_t *);
679static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 680static boolean_t arc_is_overflowing(void);
2a432414
GW
681static void arc_buf_watch(arc_buf_t *);
682
b9541d6b
CW
683static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
684static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
685
2a432414
GW
686static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
687static void l2arc_read_done(zio_t *);
34dc7c2f 688
b9541d6b 689static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
2a432414
GW
690static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
691static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
3a17a7a9 692
34dc7c2f 693static uint64_t
d164b209 694buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 695{
34dc7c2f
BB
696 uint8_t *vdva = (uint8_t *)dva;
697 uint64_t crc = -1ULL;
698 int i;
699
700 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
701
702 for (i = 0; i < sizeof (dva_t); i++)
703 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
704
d164b209 705 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
706
707 return (crc);
708}
709
710#define BUF_EMPTY(buf) \
711 ((buf)->b_dva.dva_word[0] == 0 && \
b9541d6b 712 (buf)->b_dva.dva_word[1] == 0)
34dc7c2f
BB
713
714#define BUF_EQUAL(spa, dva, birth, buf) \
715 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
716 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
717 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
718
428870ff
BB
719static void
720buf_discard_identity(arc_buf_hdr_t *hdr)
721{
722 hdr->b_dva.dva_word[0] = 0;
723 hdr->b_dva.dva_word[1] = 0;
724 hdr->b_birth = 0;
428870ff
BB
725}
726
34dc7c2f 727static arc_buf_hdr_t *
9b67f605 728buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 729{
9b67f605
MA
730 const dva_t *dva = BP_IDENTITY(bp);
731 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
732 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
733 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 734 arc_buf_hdr_t *hdr;
34dc7c2f
BB
735
736 mutex_enter(hash_lock);
2a432414
GW
737 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
738 hdr = hdr->b_hash_next) {
739 if (BUF_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 740 *lockp = hash_lock;
2a432414 741 return (hdr);
34dc7c2f
BB
742 }
743 }
744 mutex_exit(hash_lock);
745 *lockp = NULL;
746 return (NULL);
747}
748
749/*
750 * Insert an entry into the hash table. If there is already an element
751 * equal to elem in the hash table, then the already existing element
752 * will be returned and the new element will not be inserted.
753 * Otherwise returns NULL.
b9541d6b 754 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
755 */
756static arc_buf_hdr_t *
2a432414 757buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 758{
2a432414 759 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 760 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 761 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
762 uint32_t i;
763
2a432414
GW
764 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
765 ASSERT(hdr->b_birth != 0);
766 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
767
768 if (lockp != NULL) {
769 *lockp = hash_lock;
770 mutex_enter(hash_lock);
771 } else {
772 ASSERT(MUTEX_HELD(hash_lock));
773 }
774
2a432414
GW
775 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
776 fhdr = fhdr->b_hash_next, i++) {
777 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
778 return (fhdr);
34dc7c2f
BB
779 }
780
2a432414
GW
781 hdr->b_hash_next = buf_hash_table.ht_table[idx];
782 buf_hash_table.ht_table[idx] = hdr;
783 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
784
785 /* collect some hash table performance data */
786 if (i > 0) {
787 ARCSTAT_BUMP(arcstat_hash_collisions);
788 if (i == 1)
789 ARCSTAT_BUMP(arcstat_hash_chains);
790
791 ARCSTAT_MAX(arcstat_hash_chain_max, i);
792 }
793
794 ARCSTAT_BUMP(arcstat_hash_elements);
795 ARCSTAT_MAXSTAT(arcstat_hash_elements);
796
797 return (NULL);
798}
799
800static void
2a432414 801buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 802{
2a432414
GW
803 arc_buf_hdr_t *fhdr, **hdrp;
804 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
805
806 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 807 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 808
2a432414
GW
809 hdrp = &buf_hash_table.ht_table[idx];
810 while ((fhdr = *hdrp) != hdr) {
811 ASSERT(fhdr != NULL);
812 hdrp = &fhdr->b_hash_next;
34dc7c2f 813 }
2a432414
GW
814 *hdrp = hdr->b_hash_next;
815 hdr->b_hash_next = NULL;
816 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
817
818 /* collect some hash table performance data */
819 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
820
821 if (buf_hash_table.ht_table[idx] &&
822 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
823 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
824}
825
826/*
827 * Global data structures and functions for the buf kmem cache.
828 */
b9541d6b
CW
829static kmem_cache_t *hdr_full_cache;
830static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
831static kmem_cache_t *buf_cache;
832
833static void
834buf_fini(void)
835{
836 int i;
837
00b46022 838#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
839 /*
840 * Large allocations which do not require contiguous pages
841 * should be using vmem_free() in the linux kernel\
842 */
00b46022
BB
843 vmem_free(buf_hash_table.ht_table,
844 (buf_hash_table.ht_mask + 1) * sizeof (void *));
845#else
34dc7c2f
BB
846 kmem_free(buf_hash_table.ht_table,
847 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 848#endif
34dc7c2f
BB
849 for (i = 0; i < BUF_LOCKS; i++)
850 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
851 kmem_cache_destroy(hdr_full_cache);
852 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
853 kmem_cache_destroy(buf_cache);
854}
855
856/*
857 * Constructor callback - called when the cache is empty
858 * and a new buf is requested.
859 */
860/* ARGSUSED */
861static int
b9541d6b
CW
862hdr_full_cons(void *vbuf, void *unused, int kmflag)
863{
864 arc_buf_hdr_t *hdr = vbuf;
865
866 bzero(hdr, HDR_FULL_SIZE);
867 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
868 refcount_create(&hdr->b_l1hdr.b_refcnt);
869 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
870 list_link_init(&hdr->b_l1hdr.b_arc_node);
871 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 872 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
873 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
874
875 return (0);
876}
877
878/* ARGSUSED */
879static int
880hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 881{
2a432414
GW
882 arc_buf_hdr_t *hdr = vbuf;
883
b9541d6b
CW
884 bzero(hdr, HDR_L2ONLY_SIZE);
885 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 886
34dc7c2f
BB
887 return (0);
888}
889
b128c09f
BB
890/* ARGSUSED */
891static int
892buf_cons(void *vbuf, void *unused, int kmflag)
893{
894 arc_buf_t *buf = vbuf;
895
896 bzero(buf, sizeof (arc_buf_t));
428870ff 897 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
898 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
899
b128c09f
BB
900 return (0);
901}
902
34dc7c2f
BB
903/*
904 * Destructor callback - called when a cached buf is
905 * no longer required.
906 */
907/* ARGSUSED */
908static void
b9541d6b 909hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 910{
2a432414 911 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 912
2a432414 913 ASSERT(BUF_EMPTY(hdr));
b9541d6b
CW
914 cv_destroy(&hdr->b_l1hdr.b_cv);
915 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
916 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 917 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
918 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
919}
920
921/* ARGSUSED */
922static void
923hdr_l2only_dest(void *vbuf, void *unused)
924{
925 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
926
927 ASSERT(BUF_EMPTY(hdr));
928 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
929}
930
b128c09f
BB
931/* ARGSUSED */
932static void
933buf_dest(void *vbuf, void *unused)
934{
935 arc_buf_t *buf = vbuf;
936
428870ff 937 mutex_destroy(&buf->b_evict_lock);
d164b209 938 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
939}
940
34dc7c2f
BB
941static void
942buf_init(void)
943{
944 uint64_t *ct;
945 uint64_t hsize = 1ULL << 12;
946 int i, j;
947
948 /*
949 * The hash table is big enough to fill all of physical memory
49ddb315
MA
950 * with an average block size of zfs_arc_average_blocksize (default 8K).
951 * By default, the table will take up
952 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 953 */
49ddb315 954 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
955 hsize <<= 1;
956retry:
957 buf_hash_table.ht_mask = hsize - 1;
00b46022 958#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
959 /*
960 * Large allocations which do not require contiguous pages
961 * should be using vmem_alloc() in the linux kernel
962 */
00b46022
BB
963 buf_hash_table.ht_table =
964 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
965#else
34dc7c2f
BB
966 buf_hash_table.ht_table =
967 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 968#endif
34dc7c2f
BB
969 if (buf_hash_table.ht_table == NULL) {
970 ASSERT(hsize > (1ULL << 8));
971 hsize >>= 1;
972 goto retry;
973 }
974
b9541d6b
CW
975 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
976 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
977 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
978 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
979 NULL, NULL, 0);
34dc7c2f 980 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 981 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
982
983 for (i = 0; i < 256; i++)
984 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
985 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
986
987 for (i = 0; i < BUF_LOCKS; i++) {
988 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 989 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
990 }
991}
992
b9541d6b
CW
993/*
994 * Transition between the two allocation states for the arc_buf_hdr struct.
995 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
996 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
997 * version is used when a cache buffer is only in the L2ARC in order to reduce
998 * memory usage.
999 */
1000static arc_buf_hdr_t *
1001arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1002{
1003 arc_buf_hdr_t *nhdr;
1004 l2arc_dev_t *dev;
1005
1006 ASSERT(HDR_HAS_L2HDR(hdr));
1007 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1008 (old == hdr_l2only_cache && new == hdr_full_cache));
1009
1010 dev = hdr->b_l2hdr.b_dev;
1011 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1012
1013 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1014 buf_hash_remove(hdr);
1015
1016 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1017 if (new == hdr_full_cache) {
1018 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1019 /*
1020 * arc_access and arc_change_state need to be aware that a
1021 * header has just come out of L2ARC, so we set its state to
1022 * l2c_only even though it's about to change.
1023 */
1024 nhdr->b_l1hdr.b_state = arc_l2c_only;
ca0bf58d
PS
1025
1026 /* Verify previous threads set to NULL before freeing */
1027 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
b9541d6b
CW
1028 } else {
1029 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1030 ASSERT0(hdr->b_l1hdr.b_datacnt);
ca0bf58d
PS
1031
1032 /*
1033 * If we've reached here, We must have been called from
1034 * arc_evict_hdr(), as such we should have already been
1035 * removed from any ghost list we were previously on
1036 * (which protects us from racing with arc_evict_state),
1037 * thus no locking is needed during this check.
1038 */
1039 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1040
b9541d6b 1041 /*
ca0bf58d
PS
1042 * A buffer must not be moved into the arc_l2c_only
1043 * state if it's not finished being written out to the
1044 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1045 * might try to be accessed, even though it was removed.
b9541d6b 1046 */
ca0bf58d
PS
1047 VERIFY(!HDR_L2_WRITING(hdr));
1048 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1049
b9541d6b
CW
1050 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1051 }
1052 /*
1053 * The header has been reallocated so we need to re-insert it into any
1054 * lists it was on.
1055 */
1056 (void) buf_hash_insert(nhdr, NULL);
1057
1058 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1059
1060 mutex_enter(&dev->l2ad_mtx);
1061
1062 /*
1063 * We must place the realloc'ed header back into the list at
1064 * the same spot. Otherwise, if it's placed earlier in the list,
1065 * l2arc_write_buffers() could find it during the function's
1066 * write phase, and try to write it out to the l2arc.
1067 */
1068 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1069 list_remove(&dev->l2ad_buflist, hdr);
1070
1071 mutex_exit(&dev->l2ad_mtx);
1072
1073 buf_discard_identity(hdr);
1074 hdr->b_freeze_cksum = NULL;
1075 kmem_cache_free(old, hdr);
1076
1077 return (nhdr);
1078}
1079
1080
34dc7c2f
BB
1081#define ARC_MINTIME (hz>>4) /* 62 ms */
1082
1083static void
1084arc_cksum_verify(arc_buf_t *buf)
1085{
1086 zio_cksum_t zc;
1087
1088 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1089 return;
1090
b9541d6b
CW
1091 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1092 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1093 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1094 return;
1095 }
1096 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1097 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1098 panic("buffer modified while frozen!");
b9541d6b 1099 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1100}
1101
1102static int
1103arc_cksum_equal(arc_buf_t *buf)
1104{
1105 zio_cksum_t zc;
1106 int equal;
1107
b9541d6b 1108 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1109 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1110 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
b9541d6b 1111 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1112
1113 return (equal);
1114}
1115
1116static void
1117arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1118{
1119 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1120 return;
1121
b9541d6b 1122 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f 1123 if (buf->b_hdr->b_freeze_cksum != NULL) {
b9541d6b 1124 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1125 return;
1126 }
409dc1a5 1127 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
79c76d5b 1128 KM_SLEEP);
34dc7c2f
BB
1129 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1130 buf->b_hdr->b_freeze_cksum);
b9541d6b 1131 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1132 arc_buf_watch(buf);
1133}
1134
1135#ifndef _KERNEL
1136void
1137arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1138{
1139 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1140}
1141#endif
1142
1143/* ARGSUSED */
1144static void
1145arc_buf_unwatch(arc_buf_t *buf)
1146{
1147#ifndef _KERNEL
1148 if (arc_watch) {
1149 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1150 PROT_READ | PROT_WRITE));
1151 }
1152#endif
1153}
1154
1155/* ARGSUSED */
1156static void
1157arc_buf_watch(arc_buf_t *buf)
1158{
1159#ifndef _KERNEL
1160 if (arc_watch)
1161 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1162#endif
34dc7c2f
BB
1163}
1164
b9541d6b
CW
1165static arc_buf_contents_t
1166arc_buf_type(arc_buf_hdr_t *hdr)
1167{
1168 if (HDR_ISTYPE_METADATA(hdr)) {
1169 return (ARC_BUFC_METADATA);
1170 } else {
1171 return (ARC_BUFC_DATA);
1172 }
1173}
1174
1175static uint32_t
1176arc_bufc_to_flags(arc_buf_contents_t type)
1177{
1178 switch (type) {
1179 case ARC_BUFC_DATA:
1180 /* metadata field is 0 if buffer contains normal data */
1181 return (0);
1182 case ARC_BUFC_METADATA:
1183 return (ARC_FLAG_BUFC_METADATA);
1184 default:
1185 break;
1186 }
1187 panic("undefined ARC buffer type!");
1188 return ((uint32_t)-1);
1189}
1190
34dc7c2f
BB
1191void
1192arc_buf_thaw(arc_buf_t *buf)
1193{
1194 if (zfs_flags & ZFS_DEBUG_MODIFY) {
b9541d6b 1195 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f 1196 panic("modifying non-anon buffer!");
b9541d6b 1197 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
34dc7c2f
BB
1198 panic("modifying buffer while i/o in progress!");
1199 arc_cksum_verify(buf);
1200 }
1201
b9541d6b 1202 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1203 if (buf->b_hdr->b_freeze_cksum != NULL) {
1204 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1205 buf->b_hdr->b_freeze_cksum = NULL;
1206 }
428870ff 1207
b9541d6b 1208 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1209
1210 arc_buf_unwatch(buf);
34dc7c2f
BB
1211}
1212
1213void
1214arc_buf_freeze(arc_buf_t *buf)
1215{
428870ff
BB
1216 kmutex_t *hash_lock;
1217
34dc7c2f
BB
1218 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1219 return;
1220
428870ff
BB
1221 hash_lock = HDR_LOCK(buf->b_hdr);
1222 mutex_enter(hash_lock);
1223
34dc7c2f 1224 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
b9541d6b 1225 buf->b_hdr->b_l1hdr.b_state == arc_anon);
34dc7c2f 1226 arc_cksum_compute(buf, B_FALSE);
428870ff 1227 mutex_exit(hash_lock);
498877ba 1228
34dc7c2f
BB
1229}
1230
1231static void
2a432414 1232add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f 1233{
b9541d6b
CW
1234 arc_state_t *state;
1235
1236 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1237 ASSERT(MUTEX_HELD(hash_lock));
1238
b9541d6b
CW
1239 state = hdr->b_l1hdr.b_state;
1240
1241 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1242 (state != arc_anon)) {
1243 /* We don't use the L2-only state list. */
1244 if (state != arc_l2c_only) {
ca0bf58d 1245 arc_buf_contents_t type = arc_buf_type(hdr);
b9541d6b 1246 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
ca0bf58d
PS
1247 multilist_t *list = &state->arcs_list[type];
1248 uint64_t *size = &state->arcs_lsize[type];
1249
1250 multilist_remove(list, hdr);
b9541d6b 1251
b9541d6b
CW
1252 if (GHOST_STATE(state)) {
1253 ASSERT0(hdr->b_l1hdr.b_datacnt);
1254 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1255 delta = hdr->b_size;
1256 }
1257 ASSERT(delta > 0);
1258 ASSERT3U(*size, >=, delta);
1259 atomic_add_64(size, -delta);
34dc7c2f 1260 }
b128c09f 1261 /* remove the prefetch flag if we get a reference */
b9541d6b 1262 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
34dc7c2f
BB
1263 }
1264}
1265
1266static int
2a432414 1267remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1268{
1269 int cnt;
b9541d6b 1270 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1271
b9541d6b 1272 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1273 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1274 ASSERT(!GHOST_STATE(state));
1275
b9541d6b
CW
1276 /*
1277 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1278 * check to prevent usage of the arc_l2c_only list.
1279 */
1280 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1281 (state != arc_anon)) {
ca0bf58d
PS
1282 arc_buf_contents_t type = arc_buf_type(hdr);
1283 multilist_t *list = &state->arcs_list[type];
1284 uint64_t *size = &state->arcs_lsize[type];
1285
1286 multilist_insert(list, hdr);
34dc7c2f 1287
b9541d6b
CW
1288 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1289 atomic_add_64(size, hdr->b_size *
1290 hdr->b_l1hdr.b_datacnt);
34dc7c2f
BB
1291 }
1292 return (cnt);
1293}
1294
e0b0ca98
BB
1295/*
1296 * Returns detailed information about a specific arc buffer. When the
1297 * state_index argument is set the function will calculate the arc header
1298 * list position for its arc state. Since this requires a linear traversal
1299 * callers are strongly encourage not to do this. However, it can be helpful
1300 * for targeted analysis so the functionality is provided.
1301 */
1302void
1303arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1304{
1305 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
1306 l1arc_buf_hdr_t *l1hdr = NULL;
1307 l2arc_buf_hdr_t *l2hdr = NULL;
1308 arc_state_t *state = NULL;
1309
1310 if (HDR_HAS_L1HDR(hdr)) {
1311 l1hdr = &hdr->b_l1hdr;
1312 state = l1hdr->b_state;
1313 }
1314 if (HDR_HAS_L2HDR(hdr))
1315 l2hdr = &hdr->b_l2hdr;
e0b0ca98 1316
d1d7e268 1317 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98 1318 abi->abi_flags = hdr->b_flags;
b9541d6b
CW
1319
1320 if (l1hdr) {
1321 abi->abi_datacnt = l1hdr->b_datacnt;
1322 abi->abi_access = l1hdr->b_arc_access;
1323 abi->abi_mru_hits = l1hdr->b_mru_hits;
1324 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1325 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1326 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1327 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1328 }
1329
1330 if (l2hdr) {
1331 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1332 abi->abi_l2arc_asize = l2hdr->b_asize;
1333 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1334 abi->abi_l2arc_hits = l2hdr->b_hits;
1335 }
1336
e0b0ca98 1337 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 1338 abi->abi_state_contents = arc_buf_type(hdr);
e0b0ca98 1339 abi->abi_size = hdr->b_size;
e0b0ca98
BB
1340}
1341
34dc7c2f 1342/*
ca0bf58d 1343 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
1344 * for the buffer must be held by the caller.
1345 */
1346static void
2a432414
GW
1347arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1348 kmutex_t *hash_lock)
34dc7c2f 1349{
b9541d6b
CW
1350 arc_state_t *old_state;
1351 int64_t refcnt;
1352 uint32_t datacnt;
34dc7c2f 1353 uint64_t from_delta, to_delta;
b9541d6b
CW
1354 arc_buf_contents_t buftype = arc_buf_type(hdr);
1355
1356 /*
1357 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1358 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1359 * L1 hdr doesn't always exist when we change state to arc_anon before
1360 * destroying a header, in which case reallocating to add the L1 hdr is
1361 * pointless.
1362 */
1363 if (HDR_HAS_L1HDR(hdr)) {
1364 old_state = hdr->b_l1hdr.b_state;
1365 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1366 datacnt = hdr->b_l1hdr.b_datacnt;
1367 } else {
1368 old_state = arc_l2c_only;
1369 refcnt = 0;
1370 datacnt = 0;
1371 }
34dc7c2f
BB
1372
1373 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1374 ASSERT3P(new_state, !=, old_state);
b9541d6b
CW
1375 ASSERT(refcnt == 0 || datacnt > 0);
1376 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1377 ASSERT(old_state != arc_anon || datacnt <= 1);
34dc7c2f 1378
b9541d6b 1379 from_delta = to_delta = datacnt * hdr->b_size;
34dc7c2f
BB
1380
1381 /*
1382 * If this buffer is evictable, transfer it from the
1383 * old state list to the new state list.
1384 */
1385 if (refcnt == 0) {
b9541d6b 1386 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 1387 uint64_t *size = &old_state->arcs_lsize[buftype];
34dc7c2f 1388
b9541d6b 1389 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1390 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1391
1392 /*
1393 * If prefetching out of the ghost cache,
428870ff 1394 * we will have a non-zero datacnt.
34dc7c2f 1395 */
b9541d6b 1396 if (GHOST_STATE(old_state) && datacnt == 0) {
34dc7c2f 1397 /* ghost elements have a ghost size */
b9541d6b 1398 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1399 from_delta = hdr->b_size;
34dc7c2f
BB
1400 }
1401 ASSERT3U(*size, >=, from_delta);
1402 atomic_add_64(size, -from_delta);
34dc7c2f 1403 }
b9541d6b 1404 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b 1405 uint64_t *size = &new_state->arcs_lsize[buftype];
34dc7c2f 1406
b9541d6b
CW
1407 /*
1408 * An L1 header always exists here, since if we're
1409 * moving to some L1-cached state (i.e. not l2c_only or
1410 * anonymous), we realloc the header to add an L1hdr
1411 * beforehand.
1412 */
1413 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1414 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1415
1416 /* ghost elements have a ghost size */
1417 if (GHOST_STATE(new_state)) {
b9541d6b
CW
1418 ASSERT0(datacnt);
1419 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1420 to_delta = hdr->b_size;
34dc7c2f
BB
1421 }
1422 atomic_add_64(size, to_delta);
34dc7c2f
BB
1423 }
1424 }
1425
2a432414
GW
1426 ASSERT(!BUF_EMPTY(hdr));
1427 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1428 buf_hash_remove(hdr);
34dc7c2f 1429
b9541d6b
CW
1430 /* adjust state sizes (ignore arc_l2c_only) */
1431 if (to_delta && new_state != arc_l2c_only)
34dc7c2f 1432 atomic_add_64(&new_state->arcs_size, to_delta);
b9541d6b 1433 if (from_delta && old_state != arc_l2c_only) {
34dc7c2f
BB
1434 ASSERT3U(old_state->arcs_size, >=, from_delta);
1435 atomic_add_64(&old_state->arcs_size, -from_delta);
1436 }
b9541d6b
CW
1437 if (HDR_HAS_L1HDR(hdr))
1438 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 1439
b9541d6b
CW
1440 /*
1441 * L2 headers should never be on the L2 state list since they don't
1442 * have L1 headers allocated.
1443 */
ca0bf58d
PS
1444 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1445 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
1446}
1447
1448void
d164b209 1449arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1450{
d164b209
BB
1451 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1452
1453 switch (type) {
e75c13c3
BB
1454 default:
1455 break;
d164b209
BB
1456 case ARC_SPACE_DATA:
1457 ARCSTAT_INCR(arcstat_data_size, space);
1458 break;
cc7f677c
PS
1459 case ARC_SPACE_META:
1460 ARCSTAT_INCR(arcstat_meta_size, space);
1461 break;
d164b209
BB
1462 case ARC_SPACE_OTHER:
1463 ARCSTAT_INCR(arcstat_other_size, space);
1464 break;
1465 case ARC_SPACE_HDRS:
1466 ARCSTAT_INCR(arcstat_hdr_size, space);
1467 break;
1468 case ARC_SPACE_L2HDRS:
1469 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1470 break;
1471 }
1472
596a8935 1473 if (type != ARC_SPACE_DATA) {
cc7f677c 1474 ARCSTAT_INCR(arcstat_meta_used, space);
596a8935
BB
1475 if (arc_meta_max < arc_meta_used)
1476 arc_meta_max = arc_meta_used;
1477 }
cc7f677c 1478
34dc7c2f
BB
1479 atomic_add_64(&arc_size, space);
1480}
1481
1482void
d164b209 1483arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1484{
d164b209
BB
1485 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1486
1487 switch (type) {
e75c13c3
BB
1488 default:
1489 break;
d164b209
BB
1490 case ARC_SPACE_DATA:
1491 ARCSTAT_INCR(arcstat_data_size, -space);
1492 break;
cc7f677c
PS
1493 case ARC_SPACE_META:
1494 ARCSTAT_INCR(arcstat_meta_size, -space);
1495 break;
d164b209
BB
1496 case ARC_SPACE_OTHER:
1497 ARCSTAT_INCR(arcstat_other_size, -space);
1498 break;
1499 case ARC_SPACE_HDRS:
1500 ARCSTAT_INCR(arcstat_hdr_size, -space);
1501 break;
1502 case ARC_SPACE_L2HDRS:
1503 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1504 break;
1505 }
1506
cc7f677c
PS
1507 if (type != ARC_SPACE_DATA) {
1508 ASSERT(arc_meta_used >= space);
cc7f677c
PS
1509 ARCSTAT_INCR(arcstat_meta_used, -space);
1510 }
1511
34dc7c2f
BB
1512 ASSERT(arc_size >= space);
1513 atomic_add_64(&arc_size, -space);
1514}
1515
34dc7c2f 1516arc_buf_t *
5f6d0b6f 1517arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1518{
1519 arc_buf_hdr_t *hdr;
1520 arc_buf_t *buf;
1521
f1512ee6 1522 VERIFY3U(size, <=, spa_maxblocksize(spa));
b9541d6b 1523 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f 1524 ASSERT(BUF_EMPTY(hdr));
b9541d6b 1525 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
34dc7c2f 1526 hdr->b_size = size;
3541dc6d 1527 hdr->b_spa = spa_load_guid(spa);
b9541d6b
CW
1528 hdr->b_l1hdr.b_mru_hits = 0;
1529 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1530 hdr->b_l1hdr.b_mfu_hits = 0;
1531 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1532 hdr->b_l1hdr.b_l2_hits = 0;
1533
34dc7c2f
BB
1534 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1535 buf->b_hdr = hdr;
1536 buf->b_data = NULL;
1537 buf->b_efunc = NULL;
1538 buf->b_private = NULL;
1539 buf->b_next = NULL;
b9541d6b
CW
1540
1541 hdr->b_flags = arc_bufc_to_flags(type);
1542 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1543
1544 hdr->b_l1hdr.b_buf = buf;
1545 hdr->b_l1hdr.b_state = arc_anon;
1546 hdr->b_l1hdr.b_arc_access = 0;
1547 hdr->b_l1hdr.b_datacnt = 1;
ca0bf58d 1548 hdr->b_l1hdr.b_tmp_cdata = NULL;
b9541d6b 1549
34dc7c2f 1550 arc_get_data_buf(buf);
b9541d6b
CW
1551
1552 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1553 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
34dc7c2f
BB
1554
1555 return (buf);
1556}
1557
9babb374
BB
1558static char *arc_onloan_tag = "onloan";
1559
1560/*
1561 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1562 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1563 * buffers must be returned to the arc before they can be used by the DMU or
1564 * freed.
1565 */
1566arc_buf_t *
5f6d0b6f 1567arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1568{
1569 arc_buf_t *buf;
1570
1571 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1572
1573 atomic_add_64(&arc_loaned_bytes, size);
1574 return (buf);
1575}
1576
1577/*
1578 * Return a loaned arc buffer to the arc.
1579 */
1580void
1581arc_return_buf(arc_buf_t *buf, void *tag)
1582{
1583 arc_buf_hdr_t *hdr = buf->b_hdr;
1584
9babb374 1585 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1586 ASSERT(HDR_HAS_L1HDR(hdr));
1587 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1588 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374
BB
1589
1590 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1591}
1592
428870ff
BB
1593/* Detach an arc_buf from a dbuf (tag) */
1594void
1595arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1596{
b9541d6b 1597 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1598
1599 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1600 ASSERT(HDR_HAS_L1HDR(hdr));
1601 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1602 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff
BB
1603 buf->b_efunc = NULL;
1604 buf->b_private = NULL;
1605
1606 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1607}
1608
34dc7c2f
BB
1609static arc_buf_t *
1610arc_buf_clone(arc_buf_t *from)
1611{
1612 arc_buf_t *buf;
1613 arc_buf_hdr_t *hdr = from->b_hdr;
1614 uint64_t size = hdr->b_size;
1615
b9541d6b
CW
1616 ASSERT(HDR_HAS_L1HDR(hdr));
1617 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
428870ff 1618
34dc7c2f
BB
1619 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1620 buf->b_hdr = hdr;
1621 buf->b_data = NULL;
1622 buf->b_efunc = NULL;
1623 buf->b_private = NULL;
b9541d6b
CW
1624 buf->b_next = hdr->b_l1hdr.b_buf;
1625 hdr->b_l1hdr.b_buf = buf;
34dc7c2f
BB
1626 arc_get_data_buf(buf);
1627 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1628
1629 /*
1630 * This buffer already exists in the arc so create a duplicate
1631 * copy for the caller. If the buffer is associated with user data
1632 * then track the size and number of duplicates. These stats will be
1633 * updated as duplicate buffers are created and destroyed.
1634 */
b9541d6b 1635 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
1636 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1637 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1638 }
b9541d6b 1639 hdr->b_l1hdr.b_datacnt += 1;
34dc7c2f
BB
1640 return (buf);
1641}
1642
1643void
1644arc_buf_add_ref(arc_buf_t *buf, void* tag)
1645{
1646 arc_buf_hdr_t *hdr;
1647 kmutex_t *hash_lock;
1648
1649 /*
b128c09f
BB
1650 * Check to see if this buffer is evicted. Callers
1651 * must verify b_data != NULL to know if the add_ref
1652 * was successful.
34dc7c2f 1653 */
428870ff 1654 mutex_enter(&buf->b_evict_lock);
b128c09f 1655 if (buf->b_data == NULL) {
428870ff 1656 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1657 return;
1658 }
428870ff 1659 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1660 mutex_enter(hash_lock);
428870ff 1661 hdr = buf->b_hdr;
b9541d6b 1662 ASSERT(HDR_HAS_L1HDR(hdr));
428870ff
BB
1663 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1664 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1665
b9541d6b
CW
1666 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1667 hdr->b_l1hdr.b_state == arc_mfu);
1668
34dc7c2f 1669 add_reference(hdr, hash_lock, tag);
d164b209 1670 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1671 arc_access(hdr, hash_lock);
1672 mutex_exit(hash_lock);
1673 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
1674 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1675 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
1676 data, metadata, hits);
1677}
1678
ca0bf58d
PS
1679static void
1680arc_buf_free_on_write(void *data, size_t size,
1681 void (*free_func)(void *, size_t))
1682{
1683 l2arc_data_free_t *df;
1684
1685 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1686 df->l2df_data = data;
1687 df->l2df_size = size;
1688 df->l2df_func = free_func;
1689 mutex_enter(&l2arc_free_on_write_mtx);
1690 list_insert_head(l2arc_free_on_write, df);
1691 mutex_exit(&l2arc_free_on_write_mtx);
1692}
1693
34dc7c2f
BB
1694/*
1695 * Free the arc data buffer. If it is an l2arc write in progress,
1696 * the buffer is placed on l2arc_free_on_write to be freed later.
1697 */
1698static void
498877ba 1699arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1700{
498877ba
MA
1701 arc_buf_hdr_t *hdr = buf->b_hdr;
1702
34dc7c2f 1703 if (HDR_L2_WRITING(hdr)) {
ca0bf58d 1704 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1705 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1706 } else {
498877ba 1707 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1708 }
1709}
1710
ca0bf58d
PS
1711static void
1712arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1713{
1714 ASSERT(HDR_HAS_L2HDR(hdr));
1715 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1716
1717 /*
1718 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1719 * that doesn't exist, the header is in the arc_l2c_only state,
1720 * and there isn't anything to free (it's already been freed).
1721 */
1722 if (!HDR_HAS_L1HDR(hdr))
1723 return;
1724
1725 /*
1726 * The header isn't being written to the l2arc device, thus it
1727 * shouldn't have a b_tmp_cdata to free.
1728 */
1729 if (!HDR_L2_WRITING(hdr)) {
1730 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1731 return;
1732 }
1733
1734 /*
1735 * The header does not have compression enabled. This can be due
1736 * to the buffer not being compressible, or because we're
1737 * freeing the buffer before the second phase of
1738 * l2arc_write_buffer() has started (which does the compression
1739 * step). In either case, b_tmp_cdata does not point to a
1740 * separately compressed buffer, so there's nothing to free (it
1741 * points to the same buffer as the arc_buf_t's b_data field).
1742 */
1743 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1744 hdr->b_l1hdr.b_tmp_cdata = NULL;
1745 return;
1746 }
1747
1748 /*
1749 * There's nothing to free since the buffer was all zero's and
1750 * compressed to a zero length buffer.
1751 */
1752 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1753 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1754 return;
1755 }
1756
1757 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1758
1759 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1760 hdr->b_size, zio_data_buf_free);
1761
1762 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1763 hdr->b_l1hdr.b_tmp_cdata = NULL;
1764}
1765
bd089c54
MA
1766/*
1767 * Free up buf->b_data and if 'remove' is set, then pull the
1768 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1769 */
34dc7c2f 1770static void
ca0bf58d 1771arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
34dc7c2f
BB
1772{
1773 arc_buf_t **bufp;
1774
1775 /* free up data associated with the buf */
b9541d6b
CW
1776 if (buf->b_data != NULL) {
1777 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 1778 uint64_t size = buf->b_hdr->b_size;
b9541d6b 1779 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
1780
1781 arc_cksum_verify(buf);
498877ba 1782 arc_buf_unwatch(buf);
428870ff 1783
ca0bf58d
PS
1784 if (type == ARC_BUFC_METADATA) {
1785 arc_buf_data_free(buf, zio_buf_free);
1786 arc_space_return(size, ARC_SPACE_META);
1787 } else {
1788 ASSERT(type == ARC_BUFC_DATA);
1789 arc_buf_data_free(buf, zio_data_buf_free);
1790 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f 1791 }
ca0bf58d
PS
1792
1793 /* protected by hash lock, if in the hash table */
1794 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
34dc7c2f
BB
1795 uint64_t *cnt = &state->arcs_lsize[type];
1796
b9541d6b
CW
1797 ASSERT(refcount_is_zero(
1798 &buf->b_hdr->b_l1hdr.b_refcnt));
1799 ASSERT(state != arc_anon && state != arc_l2c_only);
34dc7c2f
BB
1800
1801 ASSERT3U(*cnt, >=, size);
1802 atomic_add_64(cnt, -size);
1803 }
1804 ASSERT3U(state->arcs_size, >=, size);
1805 atomic_add_64(&state->arcs_size, -size);
1806 buf->b_data = NULL;
1eb5bfa3
GW
1807
1808 /*
1809 * If we're destroying a duplicate buffer make sure
1810 * that the appropriate statistics are updated.
1811 */
b9541d6b
CW
1812 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
1813 HDR_ISTYPE_DATA(buf->b_hdr)) {
1eb5bfa3
GW
1814 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1815 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1816 }
b9541d6b
CW
1817 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
1818 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f
BB
1819 }
1820
1821 /* only remove the buf if requested */
bd089c54 1822 if (!remove)
34dc7c2f
BB
1823 return;
1824
1825 /* remove the buf from the hdr list */
b9541d6b
CW
1826 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
1827 bufp = &(*bufp)->b_next)
34dc7c2f
BB
1828 continue;
1829 *bufp = buf->b_next;
428870ff 1830 buf->b_next = NULL;
34dc7c2f
BB
1831
1832 ASSERT(buf->b_efunc == NULL);
1833
1834 /* clean up the buf */
1835 buf->b_hdr = NULL;
1836 kmem_cache_free(buf_cache, buf);
1837}
1838
1839static void
1840arc_hdr_destroy(arc_buf_hdr_t *hdr)
1841{
b9541d6b
CW
1842 if (HDR_HAS_L1HDR(hdr)) {
1843 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
1844 hdr->b_l1hdr.b_datacnt > 0);
1845 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1846 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1847 }
34dc7c2f 1848 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
1849 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1850
1851 if (HDR_HAS_L2HDR(hdr)) {
1852 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
1853 boolean_t buflist_held = MUTEX_HELD(&l2hdr->b_dev->l2ad_mtx);
34dc7c2f 1854
428870ff 1855 if (!buflist_held) {
b9541d6b
CW
1856 mutex_enter(&l2hdr->b_dev->l2ad_mtx);
1857 l2hdr = &hdr->b_l2hdr;
34dc7c2f 1858 }
428870ff 1859
b9541d6b
CW
1860 list_remove(&l2hdr->b_dev->l2ad_buflist, hdr);
1861
ca0bf58d
PS
1862 /*
1863 * We don't want to leak the b_tmp_cdata buffer that was
1864 * allocated in l2arc_write_buffers()
1865 */
1866 arc_buf_l2_cdata_free(hdr);
1867
b9541d6b
CW
1868 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1869 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1870 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
428870ff
BB
1871
1872 if (!buflist_held)
b9541d6b
CW
1873 mutex_exit(&l2hdr->b_dev->l2ad_mtx);
1874
1875 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
34dc7c2f
BB
1876 }
1877
b9541d6b 1878 if (!BUF_EMPTY(hdr))
428870ff 1879 buf_discard_identity(hdr);
b9541d6b 1880
34dc7c2f
BB
1881 if (hdr->b_freeze_cksum != NULL) {
1882 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1883 hdr->b_freeze_cksum = NULL;
1884 }
1885
b9541d6b
CW
1886 if (HDR_HAS_L1HDR(hdr)) {
1887 while (hdr->b_l1hdr.b_buf) {
1888 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
1889
1890 if (buf->b_efunc != NULL) {
ca0bf58d 1891 mutex_enter(&arc_user_evicts_lock);
b9541d6b
CW
1892 mutex_enter(&buf->b_evict_lock);
1893 ASSERT(buf->b_hdr != NULL);
ca0bf58d 1894 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
b9541d6b
CW
1895 hdr->b_l1hdr.b_buf = buf->b_next;
1896 buf->b_hdr = &arc_eviction_hdr;
1897 buf->b_next = arc_eviction_list;
1898 arc_eviction_list = buf;
1899 mutex_exit(&buf->b_evict_lock);
ca0bf58d
PS
1900 cv_signal(&arc_user_evicts_cv);
1901 mutex_exit(&arc_user_evicts_lock);
b9541d6b 1902 } else {
ca0bf58d 1903 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
b9541d6b
CW
1904 }
1905 }
1906 }
1907
34dc7c2f 1908 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 1909 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 1910 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1911 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
1912 kmem_cache_free(hdr_full_cache, hdr);
1913 } else {
1914 kmem_cache_free(hdr_l2only_cache, hdr);
1915 }
34dc7c2f
BB
1916}
1917
1918void
1919arc_buf_free(arc_buf_t *buf, void *tag)
1920{
1921 arc_buf_hdr_t *hdr = buf->b_hdr;
b9541d6b 1922 int hashed = hdr->b_l1hdr.b_state != arc_anon;
34dc7c2f
BB
1923
1924 ASSERT(buf->b_efunc == NULL);
1925 ASSERT(buf->b_data != NULL);
1926
1927 if (hashed) {
1928 kmutex_t *hash_lock = HDR_LOCK(hdr);
1929
1930 mutex_enter(hash_lock);
428870ff
BB
1931 hdr = buf->b_hdr;
1932 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1933
34dc7c2f 1934 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 1935 if (hdr->b_l1hdr.b_datacnt > 1) {
ca0bf58d 1936 arc_buf_destroy(buf, TRUE);
428870ff 1937 } else {
b9541d6b 1938 ASSERT(buf == hdr->b_l1hdr.b_buf);
428870ff 1939 ASSERT(buf->b_efunc == NULL);
2a432414 1940 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 1941 }
34dc7c2f
BB
1942 mutex_exit(hash_lock);
1943 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1944 int destroy_hdr;
1945 /*
1946 * We are in the middle of an async write. Don't destroy
1947 * this buffer unless the write completes before we finish
1948 * decrementing the reference count.
1949 */
ca0bf58d 1950 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 1951 (void) remove_reference(hdr, NULL, tag);
b9541d6b 1952 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f 1953 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
ca0bf58d 1954 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
1955 if (destroy_hdr)
1956 arc_hdr_destroy(hdr);
1957 } else {
428870ff 1958 if (remove_reference(hdr, NULL, tag) > 0)
ca0bf58d 1959 arc_buf_destroy(buf, TRUE);
428870ff 1960 else
34dc7c2f 1961 arc_hdr_destroy(hdr);
34dc7c2f
BB
1962 }
1963}
1964
13fe0198 1965boolean_t
34dc7c2f
BB
1966arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1967{
1968 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1969 kmutex_t *hash_lock = NULL;
13fe0198 1970 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f 1971
b9541d6b
CW
1972 if (hdr->b_l1hdr.b_state == arc_anon) {
1973 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
34dc7c2f
BB
1974 arc_buf_free(buf, tag);
1975 return (no_callback);
1976 }
1977
b4f7f105 1978 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1979 mutex_enter(hash_lock);
428870ff 1980 hdr = buf->b_hdr;
b9541d6b 1981 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
428870ff 1982 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
b9541d6b 1983 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
34dc7c2f
BB
1984 ASSERT(buf->b_data != NULL);
1985
1986 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 1987 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f 1988 if (no_callback)
ca0bf58d 1989 arc_buf_destroy(buf, TRUE);
34dc7c2f 1990 } else if (no_callback) {
b9541d6b 1991 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
428870ff 1992 ASSERT(buf->b_efunc == NULL);
2a432414 1993 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
34dc7c2f 1994 }
b9541d6b
CW
1995 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
1996 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
1997 mutex_exit(hash_lock);
1998 return (no_callback);
1999}
2000
5f6d0b6f 2001uint64_t
34dc7c2f
BB
2002arc_buf_size(arc_buf_t *buf)
2003{
2004 return (buf->b_hdr->b_size);
2005}
2006
1eb5bfa3
GW
2007/*
2008 * Called from the DMU to determine if the current buffer should be
2009 * evicted. In order to ensure proper locking, the eviction must be initiated
2010 * from the DMU. Return true if the buffer is associated with user data and
2011 * duplicate buffers still exist.
2012 */
2013boolean_t
2014arc_buf_eviction_needed(arc_buf_t *buf)
2015{
2016 arc_buf_hdr_t *hdr;
2017 boolean_t evict_needed = B_FALSE;
2018
2019 if (zfs_disable_dup_eviction)
2020 return (B_FALSE);
2021
2022 mutex_enter(&buf->b_evict_lock);
2023 hdr = buf->b_hdr;
2024 if (hdr == NULL) {
2025 /*
2026 * We are in arc_do_user_evicts(); let that function
2027 * perform the eviction.
2028 */
2029 ASSERT(buf->b_data == NULL);
2030 mutex_exit(&buf->b_evict_lock);
2031 return (B_FALSE);
2032 } else if (buf->b_data == NULL) {
2033 /*
2034 * We have already been added to the arc eviction list;
2035 * recommend eviction.
2036 */
2037 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2038 mutex_exit(&buf->b_evict_lock);
2039 return (B_TRUE);
2040 }
2041
b9541d6b 2042 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
1eb5bfa3
GW
2043 evict_needed = B_TRUE;
2044
2045 mutex_exit(&buf->b_evict_lock);
2046 return (evict_needed);
2047}
2048
34dc7c2f 2049/*
ca0bf58d
PS
2050 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2051 * state of the header is dependent on its state prior to entering this
2052 * function. The following transitions are possible:
34dc7c2f 2053 *
ca0bf58d
PS
2054 * - arc_mru -> arc_mru_ghost
2055 * - arc_mfu -> arc_mfu_ghost
2056 * - arc_mru_ghost -> arc_l2c_only
2057 * - arc_mru_ghost -> deleted
2058 * - arc_mfu_ghost -> arc_l2c_only
2059 * - arc_mfu_ghost -> deleted
34dc7c2f 2060 */
ca0bf58d
PS
2061static int64_t
2062arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 2063{
ca0bf58d
PS
2064 arc_state_t *evicted_state, *state;
2065 int64_t bytes_evicted = 0;
34dc7c2f 2066
ca0bf58d
PS
2067 ASSERT(MUTEX_HELD(hash_lock));
2068 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 2069
ca0bf58d
PS
2070 state = hdr->b_l1hdr.b_state;
2071 if (GHOST_STATE(state)) {
2072 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2073 ASSERT(hdr->b_l1hdr.b_buf == NULL);
e8b96c60
MA
2074
2075 /*
ca0bf58d
PS
2076 * l2arc_write_buffers() relies on a header's L1 portion
2077 * (i.e. its b_tmp_cdata field) during its write phase.
2078 * Thus, we cannot push a header onto the arc_l2c_only
2079 * state (removing its L1 piece) until the header is
2080 * done being written to the l2arc.
e8b96c60 2081 */
ca0bf58d
PS
2082 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2083 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2084 return (bytes_evicted);
e8b96c60
MA
2085 }
2086
ca0bf58d
PS
2087 ARCSTAT_BUMP(arcstat_deleted);
2088 bytes_evicted += hdr->b_size;
428870ff 2089
ca0bf58d 2090 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 2091
ca0bf58d
PS
2092 if (HDR_HAS_L2HDR(hdr)) {
2093 /*
2094 * This buffer is cached on the 2nd Level ARC;
2095 * don't destroy the header.
2096 */
2097 arc_change_state(arc_l2c_only, hdr, hash_lock);
2098 /*
2099 * dropping from L1+L2 cached to L2-only,
2100 * realloc to remove the L1 header.
2101 */
2102 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2103 hdr_l2only_cache);
34dc7c2f 2104 } else {
ca0bf58d
PS
2105 arc_change_state(arc_anon, hdr, hash_lock);
2106 arc_hdr_destroy(hdr);
34dc7c2f 2107 }
ca0bf58d 2108 return (bytes_evicted);
34dc7c2f
BB
2109 }
2110
ca0bf58d
PS
2111 ASSERT(state == arc_mru || state == arc_mfu);
2112 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 2113
ca0bf58d
PS
2114 /* prefetch buffers have a minimum lifespan */
2115 if (HDR_IO_IN_PROGRESS(hdr) ||
2116 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2117 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2118 arc_min_prefetch_lifespan)) {
2119 ARCSTAT_BUMP(arcstat_evict_skip);
2120 return (bytes_evicted);
da8ccd0e
PS
2121 }
2122
ca0bf58d
PS
2123 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2124 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2125 while (hdr->b_l1hdr.b_buf) {
2126 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2127 if (!mutex_tryenter(&buf->b_evict_lock)) {
2128 ARCSTAT_BUMP(arcstat_mutex_miss);
2129 break;
2130 }
2131 if (buf->b_data != NULL)
2132 bytes_evicted += hdr->b_size;
2133 if (buf->b_efunc != NULL) {
2134 mutex_enter(&arc_user_evicts_lock);
2135 arc_buf_destroy(buf, FALSE);
2136 hdr->b_l1hdr.b_buf = buf->b_next;
2137 buf->b_hdr = &arc_eviction_hdr;
2138 buf->b_next = arc_eviction_list;
2139 arc_eviction_list = buf;
2140 cv_signal(&arc_user_evicts_cv);
2141 mutex_exit(&arc_user_evicts_lock);
2142 mutex_exit(&buf->b_evict_lock);
2143 } else {
2144 mutex_exit(&buf->b_evict_lock);
2145 arc_buf_destroy(buf, TRUE);
2146 }
2147 }
34dc7c2f 2148
ca0bf58d
PS
2149 if (HDR_HAS_L2HDR(hdr)) {
2150 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2151 } else {
2152 if (l2arc_write_eligible(hdr->b_spa, hdr))
2153 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2154 else
2155 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2156 }
34dc7c2f 2157
ca0bf58d
PS
2158 if (hdr->b_l1hdr.b_datacnt == 0) {
2159 arc_change_state(evicted_state, hdr, hash_lock);
2160 ASSERT(HDR_IN_HASH_TABLE(hdr));
2161 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2162 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2163 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2164 }
34dc7c2f 2165
ca0bf58d 2166 return (bytes_evicted);
34dc7c2f
BB
2167}
2168
ca0bf58d
PS
2169static uint64_t
2170arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2171 uint64_t spa, int64_t bytes)
34dc7c2f 2172{
ca0bf58d
PS
2173 multilist_sublist_t *mls;
2174 uint64_t bytes_evicted = 0;
2175 arc_buf_hdr_t *hdr;
34dc7c2f 2176 kmutex_t *hash_lock;
ca0bf58d 2177 int evict_count = 0;
34dc7c2f 2178
ca0bf58d
PS
2179 ASSERT3P(marker, !=, NULL);
2180 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2181
2182 mls = multilist_sublist_lock(ml, idx);
572e2857 2183
ca0bf58d
PS
2184 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2185 hdr = multilist_sublist_prev(mls, marker)) {
2186 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2187 (evict_count >= zfs_arc_evict_batch_limit))
2188 break;
2189
2190 /*
2191 * To keep our iteration location, move the marker
2192 * forward. Since we're not holding hdr's hash lock, we
2193 * must be very careful and not remove 'hdr' from the
2194 * sublist. Otherwise, other consumers might mistake the
2195 * 'hdr' as not being on a sublist when they call the
2196 * multilist_link_active() function (they all rely on
2197 * the hash lock protecting concurrent insertions and
2198 * removals). multilist_sublist_move_forward() was
2199 * specifically implemented to ensure this is the case
2200 * (only 'marker' will be removed and re-inserted).
2201 */
2202 multilist_sublist_move_forward(mls, marker);
2203
2204 /*
2205 * The only case where the b_spa field should ever be
2206 * zero, is the marker headers inserted by
2207 * arc_evict_state(). It's possible for multiple threads
2208 * to be calling arc_evict_state() concurrently (e.g.
2209 * dsl_pool_close() and zio_inject_fault()), so we must
2210 * skip any markers we see from these other threads.
2211 */
2a432414 2212 if (hdr->b_spa == 0)
572e2857
BB
2213 continue;
2214
ca0bf58d
PS
2215 /* we're only interested in evicting buffers of a certain spa */
2216 if (spa != 0 && hdr->b_spa != spa) {
2217 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 2218 continue;
ca0bf58d
PS
2219 }
2220
2221 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
2222
2223 /*
ca0bf58d
PS
2224 * We aren't calling this function from any code path
2225 * that would already be holding a hash lock, so we're
2226 * asserting on this assumption to be defensive in case
2227 * this ever changes. Without this check, it would be
2228 * possible to incorrectly increment arcstat_mutex_miss
2229 * below (e.g. if the code changed such that we called
2230 * this function with a hash lock held).
e8b96c60 2231 */
ca0bf58d
PS
2232 ASSERT(!MUTEX_HELD(hash_lock));
2233
34dc7c2f 2234 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
2235 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2236 mutex_exit(hash_lock);
34dc7c2f 2237
ca0bf58d 2238 bytes_evicted += evicted;
34dc7c2f 2239
572e2857 2240 /*
ca0bf58d
PS
2241 * If evicted is zero, arc_evict_hdr() must have
2242 * decided to skip this header, don't increment
2243 * evict_count in this case.
572e2857 2244 */
ca0bf58d
PS
2245 if (evicted != 0)
2246 evict_count++;
2247
2248 /*
2249 * If arc_size isn't overflowing, signal any
2250 * threads that might happen to be waiting.
2251 *
2252 * For each header evicted, we wake up a single
2253 * thread. If we used cv_broadcast, we could
2254 * wake up "too many" threads causing arc_size
2255 * to significantly overflow arc_c; since
2256 * arc_get_data_buf() doesn't check for overflow
2257 * when it's woken up (it doesn't because it's
2258 * possible for the ARC to be overflowing while
2259 * full of un-evictable buffers, and the
2260 * function should proceed in this case).
2261 *
2262 * If threads are left sleeping, due to not
2263 * using cv_broadcast, they will be woken up
2264 * just before arc_reclaim_thread() sleeps.
2265 */
2266 mutex_enter(&arc_reclaim_lock);
2267 if (!arc_is_overflowing())
2268 cv_signal(&arc_reclaim_waiters_cv);
2269 mutex_exit(&arc_reclaim_lock);
e8b96c60 2270 } else {
ca0bf58d 2271 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 2272 }
34dc7c2f 2273 }
34dc7c2f 2274
ca0bf58d 2275 multilist_sublist_unlock(mls);
34dc7c2f 2276
ca0bf58d 2277 return (bytes_evicted);
34dc7c2f
BB
2278}
2279
ca0bf58d
PS
2280/*
2281 * Evict buffers from the given arc state, until we've removed the
2282 * specified number of bytes. Move the removed buffers to the
2283 * appropriate evict state.
2284 *
2285 * This function makes a "best effort". It skips over any buffers
2286 * it can't get a hash_lock on, and so, may not catch all candidates.
2287 * It may also return without evicting as much space as requested.
2288 *
2289 * If bytes is specified using the special value ARC_EVICT_ALL, this
2290 * will evict all available (i.e. unlocked and evictable) buffers from
2291 * the given arc state; which is used by arc_flush().
2292 */
2293static uint64_t
2294arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2295 arc_buf_contents_t type)
34dc7c2f 2296{
ca0bf58d
PS
2297 uint64_t total_evicted = 0;
2298 multilist_t *ml = &state->arcs_list[type];
2299 int num_sublists;
2300 arc_buf_hdr_t **markers;
2301 int i;
2302
2303 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2304
2305 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
2306
2307 /*
ca0bf58d
PS
2308 * If we've tried to evict from each sublist, made some
2309 * progress, but still have not hit the target number of bytes
2310 * to evict, we want to keep trying. The markers allow us to
2311 * pick up where we left off for each individual sublist, rather
2312 * than starting from the tail each time.
d164b209 2313 */
ca0bf58d
PS
2314 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2315 for (i = 0; i < num_sublists; i++) {
2316 multilist_sublist_t *mls;
34dc7c2f 2317
ca0bf58d
PS
2318 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2319
2320 /*
2321 * A b_spa of 0 is used to indicate that this header is
2322 * a marker. This fact is used in arc_adjust_type() and
2323 * arc_evict_state_impl().
2324 */
2325 markers[i]->b_spa = 0;
34dc7c2f 2326
ca0bf58d
PS
2327 mls = multilist_sublist_lock(ml, i);
2328 multilist_sublist_insert_tail(mls, markers[i]);
2329 multilist_sublist_unlock(mls);
34dc7c2f
BB
2330 }
2331
d164b209 2332 /*
ca0bf58d
PS
2333 * While we haven't hit our target number of bytes to evict, or
2334 * we're evicting all available buffers.
d164b209 2335 */
ca0bf58d
PS
2336 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2337 /*
2338 * Start eviction using a randomly selected sublist,
2339 * this is to try and evenly balance eviction across all
2340 * sublists. Always starting at the same sublist
2341 * (e.g. index 0) would cause evictions to favor certain
2342 * sublists over others.
2343 */
2344 int sublist_idx = multilist_get_random_index(ml);
2345 uint64_t scan_evicted = 0;
34dc7c2f 2346
ca0bf58d
PS
2347 for (i = 0; i < num_sublists; i++) {
2348 uint64_t bytes_remaining;
2349 uint64_t bytes_evicted;
d164b209 2350
ca0bf58d
PS
2351 if (bytes == ARC_EVICT_ALL)
2352 bytes_remaining = ARC_EVICT_ALL;
2353 else if (total_evicted < bytes)
2354 bytes_remaining = bytes - total_evicted;
2355 else
2356 break;
34dc7c2f 2357
ca0bf58d
PS
2358 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2359 markers[sublist_idx], spa, bytes_remaining);
2360
2361 scan_evicted += bytes_evicted;
2362 total_evicted += bytes_evicted;
2363
2364 /* we've reached the end, wrap to the beginning */
2365 if (++sublist_idx >= num_sublists)
2366 sublist_idx = 0;
2367 }
2368
2369 /*
2370 * If we didn't evict anything during this scan, we have
2371 * no reason to believe we'll evict more during another
2372 * scan, so break the loop.
2373 */
2374 if (scan_evicted == 0) {
2375 /* This isn't possible, let's make that obvious */
2376 ASSERT3S(bytes, !=, 0);
34dc7c2f 2377
ca0bf58d
PS
2378 /*
2379 * When bytes is ARC_EVICT_ALL, the only way to
2380 * break the loop is when scan_evicted is zero.
2381 * In that case, we actually have evicted enough,
2382 * so we don't want to increment the kstat.
2383 */
2384 if (bytes != ARC_EVICT_ALL) {
2385 ASSERT3S(total_evicted, <, bytes);
2386 ARCSTAT_BUMP(arcstat_evict_not_enough);
2387 }
d164b209 2388
ca0bf58d
PS
2389 break;
2390 }
d164b209 2391 }
34dc7c2f 2392
ca0bf58d
PS
2393 for (i = 0; i < num_sublists; i++) {
2394 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2395 multilist_sublist_remove(mls, markers[i]);
2396 multilist_sublist_unlock(mls);
34dc7c2f 2397
ca0bf58d 2398 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 2399 }
ca0bf58d
PS
2400 kmem_free(markers, sizeof (*markers) * num_sublists);
2401
2402 return (total_evicted);
2403}
2404
2405/*
2406 * Flush all "evictable" data of the given type from the arc state
2407 * specified. This will not evict any "active" buffers (i.e. referenced).
2408 *
2409 * When 'retry' is set to FALSE, the function will make a single pass
2410 * over the state and evict any buffers that it can. Since it doesn't
2411 * continually retry the eviction, it might end up leaving some buffers
2412 * in the ARC due to lock misses.
2413 *
2414 * When 'retry' is set to TRUE, the function will continually retry the
2415 * eviction until *all* evictable buffers have been removed from the
2416 * state. As a result, if concurrent insertions into the state are
2417 * allowed (e.g. if the ARC isn't shutting down), this function might
2418 * wind up in an infinite loop, continually trying to evict buffers.
2419 */
2420static uint64_t
2421arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2422 boolean_t retry)
2423{
2424 uint64_t evicted = 0;
2425
2426 while (state->arcs_lsize[type] != 0) {
2427 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2428
2429 if (!retry)
2430 break;
2431 }
2432
2433 return (evicted);
34dc7c2f
BB
2434}
2435
ab26409d 2436/*
f6046738
BB
2437 * Helper function for arc_prune() it is responsible for safely handling
2438 * the execution of a registered arc_prune_func_t.
ab26409d
BB
2439 */
2440static void
f6046738 2441arc_prune_task(void *ptr)
ab26409d 2442{
f6046738
BB
2443 arc_prune_t *ap = (arc_prune_t *)ptr;
2444 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 2445
f6046738
BB
2446 if (func != NULL)
2447 func(ap->p_adjust, ap->p_private);
ab26409d 2448
f6046738
BB
2449 /* Callback unregistered concurrently with execution */
2450 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2451 ASSERT(!list_link_active(&ap->p_node));
2452 refcount_destroy(&ap->p_refcnt);
2453 kmem_free(ap, sizeof (*ap));
2454 }
2455}
ab26409d 2456
f6046738
BB
2457/*
2458 * Notify registered consumers they must drop holds on a portion of the ARC
2459 * buffered they reference. This provides a mechanism to ensure the ARC can
2460 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2461 * is analogous to dnlc_reduce_cache() but more generic.
2462 *
2463 * This operation is performed asyncronously so it may be safely called
2464 * in the context of the arc_adapt_thread(). A reference is taken here
2465 * for each registered arc_prune_t and the arc_prune_task() is responsible
2466 * for releasing it once the registered arc_prune_func_t has completed.
2467 */
2468static void
2469arc_prune_async(int64_t adjust)
2470{
2471 arc_prune_t *ap;
ab26409d 2472
f6046738
BB
2473 mutex_enter(&arc_prune_mtx);
2474 for (ap = list_head(&arc_prune_list); ap != NULL;
2475 ap = list_next(&arc_prune_list, ap)) {
ab26409d 2476
f6046738
BB
2477 if (refcount_count(&ap->p_refcnt) >= 2)
2478 continue;
ab26409d 2479
f6046738
BB
2480 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2481 ap->p_adjust = adjust;
2482 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2483 ARCSTAT_BUMP(arcstat_prune);
ab26409d 2484 }
ab26409d
BB
2485 mutex_exit(&arc_prune_mtx);
2486}
2487
f6046738
BB
2488static void
2489arc_prune(int64_t adjust)
2490{
2491 arc_prune_async(adjust);
2492 taskq_wait_outstanding(arc_prune_taskq, 0);
2493}
2494
ca0bf58d
PS
2495/*
2496 * Evict the specified number of bytes from the state specified,
2497 * restricting eviction to the spa and type given. This function
2498 * prevents us from trying to evict more from a state's list than
2499 * is "evictable", and to skip evicting altogether when passed a
2500 * negative value for "bytes". In contrast, arc_evict_state() will
2501 * evict everything it can, when passed a negative value for "bytes".
2502 */
2503static uint64_t
2504arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2505 arc_buf_contents_t type)
2506{
2507 int64_t delta;
2508
2509 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2510 delta = MIN(state->arcs_lsize[type], bytes);
2511 return (arc_evict_state(state, spa, delta, type));
2512 }
2513
2514 return (0);
2515}
2516
2517/*
2518 * The goal of this function is to evict enough meta data buffers from the
2519 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2520 * more complicated than it appears because it is common for data buffers
2521 * to have holds on meta data buffers. In addition, dnode meta data buffers
2522 * will be held by the dnodes in the block preventing them from being freed.
2523 * This means we can't simply traverse the ARC and expect to always find
2524 * enough unheld meta data buffer to release.
2525 *
2526 * Therefore, this function has been updated to make alternating passes
2527 * over the ARC releasing data buffers and then newly unheld meta data
2528 * buffers. This ensures forward progress is maintained and arc_meta_used
2529 * will decrease. Normally this is sufficient, but if required the ARC
2530 * will call the registered prune callbacks causing dentry and inodes to
2531 * be dropped from the VFS cache. This will make dnode meta data buffers
2532 * available for reclaim.
2533 */
2534static uint64_t
f6046738 2535arc_adjust_meta_balanced(void)
ca0bf58d
PS
2536{
2537 int64_t adjustmnt, delta, prune = 0;
2538 uint64_t total_evicted = 0;
2539 arc_buf_contents_t type = ARC_BUFC_DATA;
2540 unsigned long restarts = zfs_arc_meta_adjust_restarts;
2541
2542restart:
2543 /*
2544 * This slightly differs than the way we evict from the mru in
2545 * arc_adjust because we don't have a "target" value (i.e. no
2546 * "meta" arc_p). As a result, I think we can completely
2547 * cannibalize the metadata in the MRU before we evict the
2548 * metadata from the MFU. I think we probably need to implement a
2549 * "metadata arc_p" value to do this properly.
2550 */
2551 adjustmnt = arc_meta_used - arc_meta_limit;
2552
2553 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2554 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2555 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2556 adjustmnt -= delta;
2557 }
2558
2559 /*
2560 * We can't afford to recalculate adjustmnt here. If we do,
2561 * new metadata buffers can sneak into the MRU or ANON lists,
2562 * thus penalize the MFU metadata. Although the fudge factor is
2563 * small, it has been empirically shown to be significant for
2564 * certain workloads (e.g. creating many empty directories). As
2565 * such, we use the original calculation for adjustmnt, and
2566 * simply decrement the amount of data evicted from the MRU.
2567 */
2568
2569 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2570 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2571 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2572 }
2573
2574 adjustmnt = arc_meta_used - arc_meta_limit;
2575
2576 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2577 delta = MIN(adjustmnt,
2578 arc_mru_ghost->arcs_lsize[type]);
2579 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2580 adjustmnt -= delta;
2581 }
2582
2583 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2584 delta = MIN(adjustmnt,
2585 arc_mfu_ghost->arcs_lsize[type]);
2586 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2587 }
2588
2589 /*
2590 * If after attempting to make the requested adjustment to the ARC
2591 * the meta limit is still being exceeded then request that the
2592 * higher layers drop some cached objects which have holds on ARC
2593 * meta buffers. Requests to the upper layers will be made with
2594 * increasingly large scan sizes until the ARC is below the limit.
2595 */
2596 if (arc_meta_used > arc_meta_limit) {
2597 if (type == ARC_BUFC_DATA) {
2598 type = ARC_BUFC_METADATA;
2599 } else {
2600 type = ARC_BUFC_DATA;
2601
2602 if (zfs_arc_meta_prune) {
2603 prune += zfs_arc_meta_prune;
f6046738 2604 arc_prune_async(prune);
ca0bf58d
PS
2605 }
2606 }
2607
2608 if (restarts > 0) {
2609 restarts--;
2610 goto restart;
2611 }
2612 }
2613 return (total_evicted);
2614}
2615
f6046738
BB
2616/*
2617 * Evict metadata buffers from the cache, such that arc_meta_used is
2618 * capped by the arc_meta_limit tunable.
2619 */
2620static uint64_t
2621arc_adjust_meta_only(void)
2622{
2623 uint64_t total_evicted = 0;
2624 int64_t target;
2625
2626 /*
2627 * If we're over the meta limit, we want to evict enough
2628 * metadata to get back under the meta limit. We don't want to
2629 * evict so much that we drop the MRU below arc_p, though. If
2630 * we're over the meta limit more than we're over arc_p, we
2631 * evict some from the MRU here, and some from the MFU below.
2632 */
2633 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2634 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
2635
2636 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2637
2638 /*
2639 * Similar to the above, we want to evict enough bytes to get us
2640 * below the meta limit, but not so much as to drop us below the
2641 * space alloted to the MFU (which is defined as arc_c - arc_p).
2642 */
2643 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2644 (int64_t)(arc_mfu->arcs_size - (arc_c - arc_p)));
2645
2646 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2647
2648 return (total_evicted);
2649}
2650
2651static uint64_t
2652arc_adjust_meta(void)
2653{
2654 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2655 return (arc_adjust_meta_only());
2656 else
2657 return (arc_adjust_meta_balanced());
2658}
2659
ca0bf58d
PS
2660/*
2661 * Return the type of the oldest buffer in the given arc state
2662 *
2663 * This function will select a random sublist of type ARC_BUFC_DATA and
2664 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2665 * is compared, and the type which contains the "older" buffer will be
2666 * returned.
2667 */
2668static arc_buf_contents_t
2669arc_adjust_type(arc_state_t *state)
2670{
2671 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2672 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2673 int data_idx = multilist_get_random_index(data_ml);
2674 int meta_idx = multilist_get_random_index(meta_ml);
2675 multilist_sublist_t *data_mls;
2676 multilist_sublist_t *meta_mls;
2677 arc_buf_contents_t type;
2678 arc_buf_hdr_t *data_hdr;
2679 arc_buf_hdr_t *meta_hdr;
2680
2681 /*
2682 * We keep the sublist lock until we're finished, to prevent
2683 * the headers from being destroyed via arc_evict_state().
2684 */
2685 data_mls = multilist_sublist_lock(data_ml, data_idx);
2686 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2687
2688 /*
2689 * These two loops are to ensure we skip any markers that
2690 * might be at the tail of the lists due to arc_evict_state().
2691 */
2692
2693 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2694 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2695 if (data_hdr->b_spa != 0)
2696 break;
2697 }
2698
2699 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2700 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2701 if (meta_hdr->b_spa != 0)
2702 break;
2703 }
2704
2705 if (data_hdr == NULL && meta_hdr == NULL) {
2706 type = ARC_BUFC_DATA;
2707 } else if (data_hdr == NULL) {
2708 ASSERT3P(meta_hdr, !=, NULL);
2709 type = ARC_BUFC_METADATA;
2710 } else if (meta_hdr == NULL) {
2711 ASSERT3P(data_hdr, !=, NULL);
2712 type = ARC_BUFC_DATA;
2713 } else {
2714 ASSERT3P(data_hdr, !=, NULL);
2715 ASSERT3P(meta_hdr, !=, NULL);
2716
2717 /* The headers can't be on the sublist without an L1 header */
2718 ASSERT(HDR_HAS_L1HDR(data_hdr));
2719 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2720
2721 if (data_hdr->b_l1hdr.b_arc_access <
2722 meta_hdr->b_l1hdr.b_arc_access) {
2723 type = ARC_BUFC_DATA;
2724 } else {
2725 type = ARC_BUFC_METADATA;
2726 }
2727 }
2728
2729 multilist_sublist_unlock(meta_mls);
2730 multilist_sublist_unlock(data_mls);
2731
2732 return (type);
2733}
2734
2735/*
2736 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2737 */
2738static uint64_t
2739arc_adjust(void)
2740{
2741 uint64_t total_evicted = 0;
2742 uint64_t bytes;
2743 int64_t target;
2744
2745 /*
2746 * If we're over arc_meta_limit, we want to correct that before
2747 * potentially evicting data buffers below.
2748 */
2749 total_evicted += arc_adjust_meta();
2750
2751 /*
2752 * Adjust MRU size
2753 *
2754 * If we're over the target cache size, we want to evict enough
2755 * from the list to get back to our target size. We don't want
2756 * to evict too much from the MRU, such that it drops below
2757 * arc_p. So, if we're over our target cache size more than
2758 * the MRU is over arc_p, we'll evict enough to get back to
2759 * arc_p here, and then evict more from the MFU below.
2760 */
2761 target = MIN((int64_t)(arc_size - arc_c),
2762 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2763 arc_p));
2764
2765 /*
2766 * If we're below arc_meta_min, always prefer to evict data.
2767 * Otherwise, try to satisfy the requested number of bytes to
2768 * evict from the type which contains older buffers; in an
2769 * effort to keep newer buffers in the cache regardless of their
2770 * type. If we cannot satisfy the number of bytes from this
2771 * type, spill over into the next type.
2772 */
2773 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2774 arc_meta_used > arc_meta_min) {
2775 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2776 total_evicted += bytes;
2777
2778 /*
2779 * If we couldn't evict our target number of bytes from
2780 * metadata, we try to get the rest from data.
2781 */
2782 target -= bytes;
2783
2784 total_evicted +=
2785 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2786 } else {
2787 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2788 total_evicted += bytes;
2789
2790 /*
2791 * If we couldn't evict our target number of bytes from
2792 * data, we try to get the rest from metadata.
2793 */
2794 target -= bytes;
2795
2796 total_evicted +=
2797 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2798 }
2799
2800 /*
2801 * Adjust MFU size
2802 *
2803 * Now that we've tried to evict enough from the MRU to get its
2804 * size back to arc_p, if we're still above the target cache
2805 * size, we evict the rest from the MFU.
2806 */
2807 target = arc_size - arc_c;
2808
2809 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2810 arc_meta_used > arc_meta_min) {
2811 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2812 total_evicted += bytes;
2813
2814 /*
2815 * If we couldn't evict our target number of bytes from
2816 * metadata, we try to get the rest from data.
2817 */
2818 target -= bytes;
2819
2820 total_evicted +=
2821 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2822 } else {
2823 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2824 total_evicted += bytes;
2825
2826 /*
2827 * If we couldn't evict our target number of bytes from
2828 * data, we try to get the rest from data.
2829 */
2830 target -= bytes;
2831
2832 total_evicted +=
2833 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2834 }
2835
2836 /*
2837 * Adjust ghost lists
2838 *
2839 * In addition to the above, the ARC also defines target values
2840 * for the ghost lists. The sum of the mru list and mru ghost
2841 * list should never exceed the target size of the cache, and
2842 * the sum of the mru list, mfu list, mru ghost list, and mfu
2843 * ghost list should never exceed twice the target size of the
2844 * cache. The following logic enforces these limits on the ghost
2845 * caches, and evicts from them as needed.
2846 */
2847 target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2848
2849 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
2850 total_evicted += bytes;
2851
2852 target -= bytes;
2853
2854 total_evicted +=
2855 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
2856
2857 /*
2858 * We assume the sum of the mru list and mfu list is less than
2859 * or equal to arc_c (we enforced this above), which means we
2860 * can use the simpler of the two equations below:
2861 *
2862 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
2863 * mru ghost + mfu ghost <= arc_c
2864 */
2865 target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2866
2867 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
2868 total_evicted += bytes;
2869
2870 target -= bytes;
2871
2872 total_evicted +=
2873 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
2874
2875 return (total_evicted);
2876}
2877
34dc7c2f
BB
2878static void
2879arc_do_user_evicts(void)
2880{
ca0bf58d 2881 mutex_enter(&arc_user_evicts_lock);
34dc7c2f
BB
2882 while (arc_eviction_list != NULL) {
2883 arc_buf_t *buf = arc_eviction_list;
2884 arc_eviction_list = buf->b_next;
428870ff 2885 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2886 buf->b_hdr = NULL;
428870ff 2887 mutex_exit(&buf->b_evict_lock);
ca0bf58d 2888 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2889
2890 if (buf->b_efunc != NULL)
bd089c54 2891 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
2892
2893 buf->b_efunc = NULL;
2894 buf->b_private = NULL;
2895 kmem_cache_free(buf_cache, buf);
ca0bf58d 2896 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2897 }
ca0bf58d 2898 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2899}
2900
ca0bf58d
PS
2901void
2902arc_flush(spa_t *spa, boolean_t retry)
ab26409d 2903{
ca0bf58d 2904 uint64_t guid = 0;
94520ca4 2905
bc888666 2906 /*
ca0bf58d
PS
2907 * If retry is TRUE, a spa must not be specified since we have
2908 * no good way to determine if all of a spa's buffers have been
2909 * evicted from an arc state.
bc888666 2910 */
ca0bf58d 2911 ASSERT(!retry || spa == 0);
d164b209 2912
b9541d6b 2913 if (spa != NULL)
3541dc6d 2914 guid = spa_load_guid(spa);
d164b209 2915
ca0bf58d
PS
2916 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
2917 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
2918
2919 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
2920 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
2921
2922 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
2923 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 2924
ca0bf58d
PS
2925 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
2926 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 2927
34dc7c2f 2928 arc_do_user_evicts();
34dc7c2f
BB
2929 ASSERT(spa || arc_eviction_list == NULL);
2930}
2931
34dc7c2f 2932void
302f753f 2933arc_shrink(uint64_t bytes)
34dc7c2f
BB
2934{
2935 if (arc_c > arc_c_min) {
2936 uint64_t to_free;
2937
bce45ec9 2938 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 2939
34dc7c2f
BB
2940 if (arc_c > arc_c_min + to_free)
2941 atomic_add_64(&arc_c, -to_free);
2942 else
2943 arc_c = arc_c_min;
2944
39e055c4
PS
2945 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2946
f521ce1b 2947 if (arc_p > to_free)
39e055c4
PS
2948 atomic_add_64(&arc_p, -to_free);
2949 else
f521ce1b 2950 arc_p = 0;
39e055c4 2951
34dc7c2f
BB
2952 if (arc_c > arc_size)
2953 arc_c = MAX(arc_size, arc_c_min);
2954 if (arc_p > arc_c)
2955 arc_p = (arc_c >> 1);
2956 ASSERT(arc_c >= arc_c_min);
2957 ASSERT((int64_t)arc_p >= 0);
2958 }
2959
2960 if (arc_size > arc_c)
ca0bf58d 2961 (void) arc_adjust();
34dc7c2f
BB
2962}
2963
34dc7c2f 2964static void
302f753f 2965arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2966{
2967 size_t i;
2968 kmem_cache_t *prev_cache = NULL;
2969 kmem_cache_t *prev_data_cache = NULL;
2970 extern kmem_cache_t *zio_buf_cache[];
2971 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f 2972
f6046738
BB
2973 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
2974 /*
2975 * We are exceeding our meta-data cache limit.
2976 * Prune some entries to release holds on meta-data.
2977 */
2978 arc_prune(zfs_arc_meta_prune);
2979 }
2980
34dc7c2f
BB
2981 /*
2982 * An aggressive reclamation will shrink the cache size as well as
2983 * reap free buffers from the arc kmem caches.
2984 */
2985 if (strat == ARC_RECLAIM_AGGR)
302f753f 2986 arc_shrink(bytes);
34dc7c2f
BB
2987
2988 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2989 if (zio_buf_cache[i] != prev_cache) {
2990 prev_cache = zio_buf_cache[i];
2991 kmem_cache_reap_now(zio_buf_cache[i]);
2992 }
2993 if (zio_data_buf_cache[i] != prev_data_cache) {
2994 prev_data_cache = zio_data_buf_cache[i];
2995 kmem_cache_reap_now(zio_data_buf_cache[i]);
2996 }
2997 }
ab26409d 2998
ca0bf58d 2999 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
3000 kmem_cache_reap_now(hdr_full_cache);
3001 kmem_cache_reap_now(hdr_l2only_cache);
34dc7c2f
BB
3002}
3003
302f753f 3004/*
ca0bf58d
PS
3005 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3006 * enough data and signal them to proceed. When this happens, the threads in
3007 * arc_get_data_buf() are sleeping while holding the hash lock for their
3008 * particular arc header. Thus, we must be careful to never sleep on a
3009 * hash lock in this thread. This is to prevent the following deadlock:
3010 *
3011 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3012 * waiting for the reclaim thread to signal it.
3013 *
3014 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3015 * fails, and goes to sleep forever.
3016 *
3017 * This possible deadlock is avoided by always acquiring a hash lock
3018 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 3019 */
34dc7c2f 3020static void
302f753f 3021arc_adapt_thread(void)
34dc7c2f 3022{
34dc7c2f 3023 callb_cpr_t cpr;
40d06e3c 3024 fstrans_cookie_t cookie;
ca0bf58d 3025 uint64_t arc_evicted;
34dc7c2f 3026
ca0bf58d 3027 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 3028
40d06e3c 3029 cookie = spl_fstrans_mark();
ca0bf58d
PS
3030 mutex_enter(&arc_reclaim_lock);
3031 while (arc_reclaim_thread_exit == 0) {
302f753f
BB
3032#ifndef _KERNEL
3033 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
3034
ca0bf58d 3035 mutex_exit(&arc_reclaim_lock);
302f753f 3036 if (spa_get_random(100) == 0) {
34dc7c2f
BB
3037
3038 if (arc_no_grow) {
3039 if (last_reclaim == ARC_RECLAIM_CONS) {
3040 last_reclaim = ARC_RECLAIM_AGGR;
3041 } else {
3042 last_reclaim = ARC_RECLAIM_CONS;
3043 }
3044 } else {
3045 arc_no_grow = TRUE;
3046 last_reclaim = ARC_RECLAIM_AGGR;
3047 membar_producer();
3048 }
3049
3050 /* reset the growth delay for every reclaim */
d1d7e268
MK
3051 arc_grow_time = ddi_get_lbolt() +
3052 (zfs_arc_grow_retry * hz);
34dc7c2f 3053
302f753f 3054 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 3055 arc_warm = B_TRUE;
302f753f 3056 }
ca0bf58d
PS
3057#else /* _KERNEL */
3058 mutex_exit(&arc_reclaim_lock);
302f753f 3059#endif /* !_KERNEL */
34dc7c2f 3060
302f753f 3061 /* No recent memory pressure allow the ARC to grow. */
0b75bdb3
CC
3062 if (arc_no_grow &&
3063 ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
34dc7c2f 3064 arc_no_grow = FALSE;
34dc7c2f 3065
ca0bf58d 3066 arc_evicted = arc_adjust();
6a8f9b6b 3067
ca0bf58d
PS
3068 /*
3069 * We're either no longer overflowing, or we
3070 * can't evict anything more, so we should wake
3071 * up any threads before we go to sleep.
3072 */
3073 if (arc_size <= arc_c || arc_evicted == 0)
3074 cv_broadcast(&arc_reclaim_waiters_cv);
34dc7c2f 3075
ca0bf58d 3076 mutex_enter(&arc_reclaim_lock);
34dc7c2f
BB
3077
3078 /* block until needed, or one second, whichever is shorter */
3079 CALLB_CPR_SAFE_BEGIN(&cpr);
ca0bf58d
PS
3080 (void) cv_timedwait_interruptible(&arc_reclaim_thread_cv,
3081 &arc_reclaim_lock, (ddi_get_lbolt() + hz));
3082 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
bce45ec9
BB
3083
3084
3085 /* Allow the module options to be changed */
3086 if (zfs_arc_max > 64 << 20 &&
3087 zfs_arc_max < physmem * PAGESIZE &&
3088 zfs_arc_max != arc_c_max)
3089 arc_c_max = zfs_arc_max;
3090
121b3cae
TC
3091 if (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT &&
3092 zfs_arc_min <= arc_c_max &&
bce45ec9
BB
3093 zfs_arc_min != arc_c_min)
3094 arc_c_min = zfs_arc_min;
3095
3096 if (zfs_arc_meta_limit > 0 &&
3097 zfs_arc_meta_limit <= arc_c_max &&
3098 zfs_arc_meta_limit != arc_meta_limit)
3099 arc_meta_limit = zfs_arc_meta_limit;
ca0bf58d 3100 }
bce45ec9 3101
ca0bf58d
PS
3102 arc_reclaim_thread_exit = 0;
3103 cv_broadcast(&arc_reclaim_thread_cv);
3104 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3105 spl_fstrans_unmark(cookie);
3106 thread_exit();
3107}
3108
3109static void
3110arc_user_evicts_thread(void)
3111{
3112 callb_cpr_t cpr;
3113 fstrans_cookie_t cookie;
bce45ec9 3114
ca0bf58d 3115 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
bce45ec9 3116
ca0bf58d
PS
3117 cookie = spl_fstrans_mark();
3118 mutex_enter(&arc_user_evicts_lock);
3119 while (!arc_user_evicts_thread_exit) {
3120 mutex_exit(&arc_user_evicts_lock);
3121
3122 arc_do_user_evicts();
3123
3124 /*
3125 * This is necessary in order for the mdb ::arc dcmd to
3126 * show up to date information. Since the ::arc command
3127 * does not call the kstat's update function, without
3128 * this call, the command may show stale stats for the
3129 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3130 * with this change, the data might be up to 1 second
3131 * out of date; but that should suffice. The arc_state_t
3132 * structures can be queried directly if more accurate
3133 * information is needed.
3134 */
3135 if (arc_ksp != NULL)
3136 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3137
3138 mutex_enter(&arc_user_evicts_lock);
3139
3140 /*
3141 * Block until signaled, or after one second (we need to
3142 * call the arc's kstat update function regularly).
3143 */
3144 CALLB_CPR_SAFE_BEGIN(&cpr);
3145 (void) cv_timedwait_interruptible(&arc_user_evicts_cv,
3146 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3147 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
34dc7c2f
BB
3148 }
3149
ca0bf58d
PS
3150 arc_user_evicts_thread_exit = FALSE;
3151 cv_broadcast(&arc_user_evicts_cv);
3152 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
40d06e3c 3153 spl_fstrans_unmark(cookie);
34dc7c2f
BB
3154 thread_exit();
3155}
3156
7cb67b45
BB
3157#ifdef _KERNEL
3158/*
302f753f
BB
3159 * Determine the amount of memory eligible for eviction contained in the
3160 * ARC. All clean data reported by the ghost lists can always be safely
3161 * evicted. Due to arc_c_min, the same does not hold for all clean data
3162 * contained by the regular mru and mfu lists.
3163 *
3164 * In the case of the regular mru and mfu lists, we need to report as
3165 * much clean data as possible, such that evicting that same reported
3166 * data will not bring arc_size below arc_c_min. Thus, in certain
3167 * circumstances, the total amount of clean data in the mru and mfu
3168 * lists might not actually be evictable.
3169 *
3170 * The following two distinct cases are accounted for:
3171 *
3172 * 1. The sum of the amount of dirty data contained by both the mru and
3173 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3174 * is greater than or equal to arc_c_min.
3175 * (i.e. amount of dirty data >= arc_c_min)
3176 *
3177 * This is the easy case; all clean data contained by the mru and mfu
3178 * lists is evictable. Evicting all clean data can only drop arc_size
3179 * to the amount of dirty data, which is greater than arc_c_min.
3180 *
3181 * 2. The sum of the amount of dirty data contained by both the mru and
3182 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3183 * is less than arc_c_min.
3184 * (i.e. arc_c_min > amount of dirty data)
3185 *
3186 * 2.1. arc_size is greater than or equal arc_c_min.
3187 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3188 *
3189 * In this case, not all clean data from the regular mru and mfu
3190 * lists is actually evictable; we must leave enough clean data
3191 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3192 * evictable data from the two lists combined, is exactly the
3193 * difference between arc_size and arc_c_min.
3194 *
3195 * 2.2. arc_size is less than arc_c_min
3196 * (i.e. arc_c_min > arc_size > amount of dirty data)
3197 *
3198 * In this case, none of the data contained in the mru and mfu
3199 * lists is evictable, even if it's clean. Since arc_size is
3200 * already below arc_c_min, evicting any more would only
3201 * increase this negative difference.
7cb67b45 3202 */
302f753f
BB
3203static uint64_t
3204arc_evictable_memory(void) {
3205 uint64_t arc_clean =
3206 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3207 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3208 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3209 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3210 uint64_t ghost_clean =
3211 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3212 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3213 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3214 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3215 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3216
3217 if (arc_dirty >= arc_c_min)
3218 return (ghost_clean + arc_clean);
3219
3220 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3221}
3222
ed6e9cc2
TC
3223/*
3224 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3225 * number of objects which can potentially be freed. If it is nonzero,
3226 * the request is to free that many objects.
3227 *
3228 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3229 * in struct shrinker and also require the shrinker to return the number
3230 * of objects freed.
3231 *
3232 * Older kernels require the shrinker to return the number of freeable
3233 * objects following the freeing of nr_to_free.
3234 */
3235static spl_shrinker_t
7e7baeca 3236__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 3237{
ed6e9cc2 3238 int64_t pages;
7cb67b45 3239
302f753f
BB
3240 /* The arc is considered warm once reclaim has occurred */
3241 if (unlikely(arc_warm == B_FALSE))
3242 arc_warm = B_TRUE;
7cb67b45 3243
302f753f 3244 /* Return the potential number of reclaimable pages */
ed6e9cc2 3245 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
3246 if (sc->nr_to_scan == 0)
3247 return (pages);
3fd70ee6
BB
3248
3249 /* Not allowed to perform filesystem reclaim */
7e7baeca 3250 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 3251 return (SHRINK_STOP);
3fd70ee6 3252
7cb67b45 3253 /* Reclaim in progress */
ca0bf58d 3254 if (mutex_tryenter(&arc_reclaim_lock) == 0)
ed6e9cc2 3255 return (SHRINK_STOP);
7cb67b45 3256
ca0bf58d
PS
3257 mutex_exit(&arc_reclaim_lock);
3258
302f753f
BB
3259 /*
3260 * Evict the requested number of pages by shrinking arc_c the
3261 * requested amount. If there is nothing left to evict just
3262 * reap whatever we can from the various arc slabs.
3263 */
3264 if (pages > 0) {
3265 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
ed6e9cc2
TC
3266
3267#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3268 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3269#else
1e3cb67b 3270 pages = btop(arc_evictable_memory());
ed6e9cc2 3271#endif
302f753f
BB
3272 } else {
3273 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
ed6e9cc2 3274 pages = SHRINK_STOP;
302f753f
BB
3275 }
3276
ca0bf58d
PS
3277 /*
3278 * We've reaped what we can, wake up threads.
3279 */
3280 cv_broadcast(&arc_reclaim_waiters_cv);
3281
302f753f
BB
3282 /*
3283 * When direct reclaim is observed it usually indicates a rapid
3284 * increase in memory pressure. This occurs because the kswapd
3285 * threads were unable to asynchronously keep enough free memory
3286 * available. In this case set arc_no_grow to briefly pause arc
3287 * growth to avoid compounding the memory pressure.
3288 */
7cb67b45 3289 if (current_is_kswapd()) {
302f753f 3290 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 3291 } else {
302f753f 3292 arc_no_grow = B_TRUE;
bce45ec9 3293 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 3294 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
3295 }
3296
1e3cb67b 3297 return (pages);
7cb67b45 3298}
7e7baeca 3299SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
3300
3301SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3302#endif /* _KERNEL */
3303
34dc7c2f
BB
3304/*
3305 * Adapt arc info given the number of bytes we are trying to add and
3306 * the state that we are comming from. This function is only called
3307 * when we are adding new content to the cache.
3308 */
3309static void
3310arc_adapt(int bytes, arc_state_t *state)
3311{
3312 int mult;
3313
3314 if (state == arc_l2c_only)
3315 return;
3316
3317 ASSERT(bytes > 0);
3318 /*
3319 * Adapt the target size of the MRU list:
3320 * - if we just hit in the MRU ghost list, then increase
3321 * the target size of the MRU list.
3322 * - if we just hit in the MFU ghost list, then increase
3323 * the target size of the MFU list by decreasing the
3324 * target size of the MRU list.
3325 */
3326 if (state == arc_mru_ghost) {
3327 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3328 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
62422785
PS
3329
3330 if (!zfs_arc_p_dampener_disable)
3331 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 3332
f521ce1b 3333 arc_p = MIN(arc_c, arc_p + bytes * mult);
34dc7c2f 3334 } else if (state == arc_mfu_ghost) {
d164b209
BB
3335 uint64_t delta;
3336
34dc7c2f
BB
3337 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3338 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
62422785
PS
3339
3340 if (!zfs_arc_p_dampener_disable)
3341 mult = MIN(mult, 10);
34dc7c2f 3342
d164b209 3343 delta = MIN(bytes * mult, arc_p);
f521ce1b 3344 arc_p = MAX(0, arc_p - delta);
34dc7c2f
BB
3345 }
3346 ASSERT((int64_t)arc_p >= 0);
3347
34dc7c2f
BB
3348 if (arc_no_grow)
3349 return;
3350
3351 if (arc_c >= arc_c_max)
3352 return;
3353
3354 /*
3355 * If we're within (2 * maxblocksize) bytes of the target
3356 * cache size, increment the target cache size
3357 */
121b3cae
TC
3358 VERIFY3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3359 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
3360 atomic_add_64(&arc_c, (int64_t)bytes);
3361 if (arc_c > arc_c_max)
3362 arc_c = arc_c_max;
3363 else if (state == arc_anon)
3364 atomic_add_64(&arc_p, (int64_t)bytes);
3365 if (arc_p > arc_c)
3366 arc_p = arc_c;
3367 }
3368 ASSERT((int64_t)arc_p >= 0);
3369}
3370
3371/*
ca0bf58d
PS
3372 * Check if arc_size has grown past our upper threshold, determined by
3373 * zfs_arc_overflow_shift.
34dc7c2f 3374 */
ca0bf58d
PS
3375static boolean_t
3376arc_is_overflowing(void)
34dc7c2f 3377{
ca0bf58d
PS
3378 /* Always allow at least one block of overflow */
3379 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3380 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 3381
ca0bf58d 3382 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
3383}
3384
3385/*
ca0bf58d
PS
3386 * The buffer, supplied as the first argument, needs a data block. If we
3387 * are hitting the hard limit for the cache size, we must sleep, waiting
3388 * for the eviction thread to catch up. If we're past the target size
3389 * but below the hard limit, we'll only signal the reclaim thread and
3390 * continue on.
34dc7c2f
BB
3391 */
3392static void
3393arc_get_data_buf(arc_buf_t *buf)
3394{
b9541d6b 3395 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 3396 uint64_t size = buf->b_hdr->b_size;
b9541d6b 3397 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
3398
3399 arc_adapt(size, state);
3400
3401 /*
ca0bf58d
PS
3402 * If arc_size is currently overflowing, and has grown past our
3403 * upper limit, we must be adding data faster than the evict
3404 * thread can evict. Thus, to ensure we don't compound the
3405 * problem by adding more data and forcing arc_size to grow even
3406 * further past it's target size, we halt and wait for the
3407 * eviction thread to catch up.
3408 *
3409 * It's also possible that the reclaim thread is unable to evict
3410 * enough buffers to get arc_size below the overflow limit (e.g.
3411 * due to buffers being un-evictable, or hash lock collisions).
3412 * In this case, we want to proceed regardless if we're
3413 * overflowing; thus we don't use a while loop here.
34dc7c2f 3414 */
ca0bf58d
PS
3415 if (arc_is_overflowing()) {
3416 mutex_enter(&arc_reclaim_lock);
3417
3418 /*
3419 * Now that we've acquired the lock, we may no longer be
3420 * over the overflow limit, lets check.
3421 *
3422 * We're ignoring the case of spurious wake ups. If that
3423 * were to happen, it'd let this thread consume an ARC
3424 * buffer before it should have (i.e. before we're under
3425 * the overflow limit and were signalled by the reclaim
3426 * thread). As long as that is a rare occurrence, it
3427 * shouldn't cause any harm.
3428 */
3429 if (arc_is_overflowing()) {
3430 cv_signal(&arc_reclaim_thread_cv);
3431 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 3432 }
34dc7c2f 3433
ca0bf58d 3434 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3435 }
ab26409d 3436
da8ccd0e 3437 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
3438 buf->b_data = zio_buf_alloc(size);
3439 arc_space_consume(size, ARC_SPACE_META);
3440 } else {
3441 ASSERT(type == ARC_BUFC_DATA);
3442 buf->b_data = zio_data_buf_alloc(size);
3443 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
3444 }
3445
34dc7c2f
BB
3446 /*
3447 * Update the state size. Note that ghost states have a
3448 * "ghost size" and so don't need to be updated.
3449 */
b9541d6b 3450 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
34dc7c2f
BB
3451 arc_buf_hdr_t *hdr = buf->b_hdr;
3452
b9541d6b 3453 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
ca0bf58d
PS
3454
3455 /*
3456 * If this is reached via arc_read, the link is
3457 * protected by the hash lock. If reached via
3458 * arc_buf_alloc, the header should not be accessed by
3459 * any other thread. And, if reached via arc_read_done,
3460 * the hash lock will protect it if it's found in the
3461 * hash table; otherwise no other thread should be
3462 * trying to [add|remove]_reference it.
3463 */
3464 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b
CW
3465 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3466 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3467 size);
34dc7c2f
BB
3468 }
3469 /*
3470 * If we are growing the cache, and we are adding anonymous
3471 * data, and we have outgrown arc_p, update arc_p
3472 */
ca0bf58d 3473 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
34dc7c2f
BB
3474 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3475 arc_p = MIN(arc_c, arc_p + size);
3476 }
3477}
3478
3479/*
3480 * This routine is called whenever a buffer is accessed.
3481 * NOTE: the hash lock is dropped in this function.
3482 */
3483static void
2a432414 3484arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3485{
428870ff
BB
3486 clock_t now;
3487
34dc7c2f 3488 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 3489 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 3490
b9541d6b 3491 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
3492 /*
3493 * This buffer is not in the cache, and does not
3494 * appear in our "ghost" list. Add the new buffer
3495 * to the MRU state.
3496 */
3497
b9541d6b
CW
3498 ASSERT0(hdr->b_l1hdr.b_arc_access);
3499 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3500 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3501 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 3502
b9541d6b 3503 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
3504 now = ddi_get_lbolt();
3505
34dc7c2f
BB
3506 /*
3507 * If this buffer is here because of a prefetch, then either:
3508 * - clear the flag if this is a "referencing" read
3509 * (any subsequent access will bump this into the MFU state).
3510 * or
3511 * - move the buffer to the head of the list if this is
3512 * another prefetch (to make it less likely to be evicted).
3513 */
b9541d6b
CW
3514 if (HDR_PREFETCH(hdr)) {
3515 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
3516 /* link protected by hash lock */
3517 ASSERT(multilist_link_active(
b9541d6b 3518 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 3519 } else {
2a432414 3520 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
b9541d6b 3521 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
3522 ARCSTAT_BUMP(arcstat_mru_hits);
3523 }
b9541d6b 3524 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
3525 return;
3526 }
3527
3528 /*
3529 * This buffer has been "accessed" only once so far,
3530 * but it is still in the cache. Move it to the MFU
3531 * state.
3532 */
b9541d6b
CW
3533 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3534 ARC_MINTIME)) {
34dc7c2f
BB
3535 /*
3536 * More than 125ms have passed since we
3537 * instantiated this buffer. Move it to the
3538 * most frequently used state.
3539 */
b9541d6b 3540 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
3541 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3542 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3543 }
b9541d6b 3544 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 3545 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 3546 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
3547 arc_state_t *new_state;
3548 /*
3549 * This buffer has been "accessed" recently, but
3550 * was evicted from the cache. Move it to the
3551 * MFU state.
3552 */
3553
b9541d6b 3554 if (HDR_PREFETCH(hdr)) {
34dc7c2f 3555 new_state = arc_mru;
b9541d6b 3556 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
2a432414
GW
3557 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3558 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3559 } else {
3560 new_state = arc_mfu;
2a432414 3561 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3562 }
3563
b9541d6b 3564 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 3565 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3566
b9541d6b 3567 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 3568 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 3569 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
3570 /*
3571 * This buffer has been accessed more than once and is
3572 * still in the cache. Keep it in the MFU state.
3573 *
3574 * NOTE: an add_reference() that occurred when we did
3575 * the arc_read() will have kicked this off the list.
3576 * If it was a prefetch, we will explicitly move it to
3577 * the head of the list now.
3578 */
b9541d6b
CW
3579 if ((HDR_PREFETCH(hdr)) != 0) {
3580 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3581 /* link protected by hash_lock */
3582 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 3583 }
b9541d6b 3584 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 3585 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
3586 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3587 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
3588 arc_state_t *new_state = arc_mfu;
3589 /*
3590 * This buffer has been accessed more than once but has
3591 * been evicted from the cache. Move it back to the
3592 * MFU state.
3593 */
3594
b9541d6b 3595 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
3596 /*
3597 * This is a prefetch access...
3598 * move this block back to the MRU state.
3599 */
b9541d6b 3600 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
3601 new_state = arc_mru;
3602 }
3603
b9541d6b 3604 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3605 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3606 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3607
b9541d6b 3608 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 3609 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 3610 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
3611 /*
3612 * This buffer is on the 2nd Level ARC.
3613 */
3614
b9541d6b 3615 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3616 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3617 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3618 } else {
b9541d6b
CW
3619 cmn_err(CE_PANIC, "invalid arc state 0x%p",
3620 hdr->b_l1hdr.b_state);
34dc7c2f
BB
3621 }
3622}
3623
3624/* a generic arc_done_func_t which you can use */
3625/* ARGSUSED */
3626void
3627arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3628{
428870ff
BB
3629 if (zio == NULL || zio->io_error == 0)
3630 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 3631 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3632}
3633
3634/* a generic arc_done_func_t */
3635void
3636arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3637{
3638 arc_buf_t **bufp = arg;
3639 if (zio && zio->io_error) {
13fe0198 3640 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3641 *bufp = NULL;
3642 } else {
3643 *bufp = buf;
428870ff 3644 ASSERT(buf->b_data);
34dc7c2f
BB
3645 }
3646}
3647
3648static void
3649arc_read_done(zio_t *zio)
3650{
9b67f605 3651 arc_buf_hdr_t *hdr;
34dc7c2f
BB
3652 arc_buf_t *buf;
3653 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 3654 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
3655 arc_callback_t *callback_list, *acb;
3656 int freeable = FALSE;
3657
3658 buf = zio->io_private;
3659 hdr = buf->b_hdr;
3660
3661 /*
3662 * The hdr was inserted into hash-table and removed from lists
3663 * prior to starting I/O. We should find this header, since
3664 * it's in the hash table, and it should be legit since it's
3665 * not possible to evict it during the I/O. The only possible
3666 * reason for it not to be found is if we were freed during the
3667 * read.
3668 */
9b67f605
MA
3669 if (HDR_IN_HASH_TABLE(hdr)) {
3670 arc_buf_hdr_t *found;
3671
3672 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3673 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3674 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3675 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3676 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3677
3678 found = buf_hash_find(hdr->b_spa, zio->io_bp,
3679 &hash_lock);
3680
3681 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3682 hash_lock == NULL) ||
3683 (found == hdr &&
3684 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3685 (found == hdr && HDR_L2_READING(hdr)));
3686 }
34dc7c2f 3687
2a432414 3688 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
b9541d6b 3689 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
2a432414 3690 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
34dc7c2f
BB
3691
3692 /* byteswap if necessary */
b9541d6b 3693 callback_list = hdr->b_l1hdr.b_acb;
34dc7c2f 3694 ASSERT(callback_list != NULL);
428870ff 3695 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
3696 dmu_object_byteswap_t bswap =
3697 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
3698 if (BP_GET_LEVEL(zio->io_bp) > 0)
3699 byteswap_uint64_array(buf->b_data, hdr->b_size);
3700 else
3701 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 3702 }
34dc7c2f
BB
3703
3704 arc_cksum_compute(buf, B_FALSE);
498877ba 3705 arc_buf_watch(buf);
34dc7c2f 3706
b9541d6b
CW
3707 if (hash_lock && zio->io_error == 0 &&
3708 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
3709 /*
3710 * Only call arc_access on anonymous buffers. This is because
3711 * if we've issued an I/O for an evicted buffer, we've already
3712 * called arc_access (to prevent any simultaneous readers from
3713 * getting confused).
3714 */
3715 arc_access(hdr, hash_lock);
3716 }
3717
34dc7c2f
BB
3718 /* create copies of the data buffer for the callers */
3719 abuf = buf;
3720 for (acb = callback_list; acb; acb = acb->acb_next) {
3721 if (acb->acb_done) {
1eb5bfa3
GW
3722 if (abuf == NULL) {
3723 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 3724 abuf = arc_buf_clone(buf);
1eb5bfa3 3725 }
34dc7c2f
BB
3726 acb->acb_buf = abuf;
3727 abuf = NULL;
3728 }
3729 }
b9541d6b 3730 hdr->b_l1hdr.b_acb = NULL;
2a432414 3731 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 3732 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
3733 if (abuf == buf) {
3734 ASSERT(buf->b_efunc == NULL);
b9541d6b 3735 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2a432414 3736 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 3737 }
34dc7c2f 3738
b9541d6b
CW
3739 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3740 callback_list != NULL);
34dc7c2f
BB
3741
3742 if (zio->io_error != 0) {
2a432414 3743 hdr->b_flags |= ARC_FLAG_IO_ERROR;
b9541d6b 3744 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
3745 arc_change_state(arc_anon, hdr, hash_lock);
3746 if (HDR_IN_HASH_TABLE(hdr))
3747 buf_hash_remove(hdr);
b9541d6b 3748 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
3749 }
3750
3751 /*
3752 * Broadcast before we drop the hash_lock to avoid the possibility
3753 * that the hdr (and hence the cv) might be freed before we get to
3754 * the cv_broadcast().
3755 */
b9541d6b 3756 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 3757
b9541d6b 3758 if (hash_lock != NULL) {
34dc7c2f
BB
3759 mutex_exit(hash_lock);
3760 } else {
3761 /*
3762 * This block was freed while we waited for the read to
3763 * complete. It has been removed from the hash table and
3764 * moved to the anonymous state (so that it won't show up
3765 * in the cache).
3766 */
b9541d6b
CW
3767 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3768 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
3769 }
3770
3771 /* execute each callback and free its structure */
3772 while ((acb = callback_list) != NULL) {
3773 if (acb->acb_done)
3774 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3775
3776 if (acb->acb_zio_dummy != NULL) {
3777 acb->acb_zio_dummy->io_error = zio->io_error;
3778 zio_nowait(acb->acb_zio_dummy);
3779 }
3780
3781 callback_list = acb->acb_next;
3782 kmem_free(acb, sizeof (arc_callback_t));
3783 }
3784
3785 if (freeable)
3786 arc_hdr_destroy(hdr);
3787}
3788
3789/*
5c839890 3790 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
3791 * cache. If the block is found in the cache, invoke the provided
3792 * callback immediately and return. Note that the `zio' parameter
3793 * in the callback will be NULL in this case, since no IO was
3794 * required. If the block is not in the cache pass the read request
3795 * on to the spa with a substitute callback function, so that the
3796 * requested block will be added to the cache.
3797 *
3798 * If a read request arrives for a block that has a read in-progress,
3799 * either wait for the in-progress read to complete (and return the
3800 * results); or, if this is a read with a "done" func, add a record
3801 * to the read to invoke the "done" func when the read completes,
3802 * and return; or just return.
3803 *
3804 * arc_read_done() will invoke all the requested "done" functions
3805 * for readers of this block.
3806 */
3807int
294f6806 3808arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
3809 void *private, zio_priority_t priority, int zio_flags,
3810 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 3811{
9b67f605 3812 arc_buf_hdr_t *hdr = NULL;
d4ed6673 3813 arc_buf_t *buf = NULL;
9b67f605 3814 kmutex_t *hash_lock = NULL;
34dc7c2f 3815 zio_t *rzio;
3541dc6d 3816 uint64_t guid = spa_load_guid(spa);
1421c891 3817 int rc = 0;
34dc7c2f 3818
9b67f605
MA
3819 ASSERT(!BP_IS_EMBEDDED(bp) ||
3820 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3821
34dc7c2f 3822top:
9b67f605
MA
3823 if (!BP_IS_EMBEDDED(bp)) {
3824 /*
3825 * Embedded BP's have no DVA and require no I/O to "read".
3826 * Create an anonymous arc buf to back it.
3827 */
3828 hdr = buf_hash_find(guid, bp, &hash_lock);
3829 }
3830
b9541d6b 3831 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
34dc7c2f 3832
2a432414 3833 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
3834
3835 if (HDR_IO_IN_PROGRESS(hdr)) {
3836
2a432414 3837 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 3838 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
3839 mutex_exit(hash_lock);
3840 goto top;
3841 }
2a432414 3842 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
3843
3844 if (done) {
3845 arc_callback_t *acb = NULL;
3846
3847 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 3848 KM_SLEEP);
34dc7c2f
BB
3849 acb->acb_done = done;
3850 acb->acb_private = private;
34dc7c2f
BB
3851 if (pio != NULL)
3852 acb->acb_zio_dummy = zio_null(pio,
d164b209 3853 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3854
3855 ASSERT(acb->acb_done != NULL);
b9541d6b
CW
3856 acb->acb_next = hdr->b_l1hdr.b_acb;
3857 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
3858 add_reference(hdr, hash_lock, private);
3859 mutex_exit(hash_lock);
1421c891 3860 goto out;
34dc7c2f
BB
3861 }
3862 mutex_exit(hash_lock);
1421c891 3863 goto out;
34dc7c2f
BB
3864 }
3865
b9541d6b
CW
3866 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
3867 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
3868
3869 if (done) {
3870 add_reference(hdr, hash_lock, private);
3871 /*
3872 * If this block is already in use, create a new
3873 * copy of the data so that we will be guaranteed
3874 * that arc_release() will always succeed.
3875 */
b9541d6b 3876 buf = hdr->b_l1hdr.b_buf;
34dc7c2f
BB
3877 ASSERT(buf);
3878 ASSERT(buf->b_data);
3879 if (HDR_BUF_AVAILABLE(hdr)) {
3880 ASSERT(buf->b_efunc == NULL);
2a432414 3881 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
34dc7c2f
BB
3882 } else {
3883 buf = arc_buf_clone(buf);
3884 }
428870ff 3885
2a432414 3886 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 3887 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
2a432414 3888 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
3889 }
3890 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3891 arc_access(hdr, hash_lock);
2a432414
GW
3892 if (*arc_flags & ARC_FLAG_L2CACHE)
3893 hdr->b_flags |= ARC_FLAG_L2CACHE;
3894 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3895 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
3896 mutex_exit(hash_lock);
3897 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
3898 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
3899 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
3900 data, metadata, hits);
3901
3902 if (done)
3903 done(NULL, buf, private);
3904 } else {
3905 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 3906 arc_callback_t *acb;
b128c09f 3907 vdev_t *vd = NULL;
a117a6d6 3908 uint64_t addr = 0;
d164b209 3909 boolean_t devw = B_FALSE;
0ed212dc 3910 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
b9541d6b 3911 int32_t b_asize = 0;
34dc7c2f 3912
5f6d0b6f
BB
3913 /*
3914 * Gracefully handle a damaged logical block size as a
3915 * checksum error by passing a dummy zio to the done callback.
3916 */
f1512ee6 3917 if (size > spa_maxblocksize(spa)) {
5f6d0b6f
BB
3918 if (done) {
3919 rzio = zio_null(pio, spa, NULL,
3920 NULL, NULL, zio_flags);
3921 rzio->io_error = ECKSUM;
3922 done(rzio, buf, private);
3923 zio_nowait(rzio);
3924 }
3925 rc = ECKSUM;
3926 goto out;
3927 }
3928
34dc7c2f
BB
3929 if (hdr == NULL) {
3930 /* this block is not in the cache */
9b67f605 3931 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
3932 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3933 buf = arc_buf_alloc(spa, size, private, type);
3934 hdr = buf->b_hdr;
9b67f605
MA
3935 if (!BP_IS_EMBEDDED(bp)) {
3936 hdr->b_dva = *BP_IDENTITY(bp);
3937 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
3938 exists = buf_hash_insert(hdr, &hash_lock);
3939 }
3940 if (exists != NULL) {
34dc7c2f
BB
3941 /* somebody beat us to the hash insert */
3942 mutex_exit(hash_lock);
428870ff 3943 buf_discard_identity(hdr);
34dc7c2f
BB
3944 (void) arc_buf_remove_ref(buf, private);
3945 goto top; /* restart the IO request */
3946 }
2a432414 3947
34dc7c2f 3948 /* if this is a prefetch, we don't have a reference */
2a432414 3949 if (*arc_flags & ARC_FLAG_PREFETCH) {
34dc7c2f
BB
3950 (void) remove_reference(hdr, hash_lock,
3951 private);
2a432414 3952 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f 3953 }
2a432414
GW
3954 if (*arc_flags & ARC_FLAG_L2CACHE)
3955 hdr->b_flags |= ARC_FLAG_L2CACHE;
3956 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3957 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f 3958 if (BP_GET_LEVEL(bp) > 0)
2a432414 3959 hdr->b_flags |= ARC_FLAG_INDIRECT;
34dc7c2f 3960 } else {
b9541d6b
CW
3961 /*
3962 * This block is in the ghost cache. If it was L2-only
3963 * (and thus didn't have an L1 hdr), we realloc the
3964 * header to add an L1 hdr.
3965 */
3966 if (!HDR_HAS_L1HDR(hdr)) {
3967 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
3968 hdr_full_cache);
3969 }
3970
3971 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 3972 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 3973 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3974 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
34dc7c2f
BB
3975
3976 /* if this is a prefetch, we don't have a reference */
2a432414
GW
3977 if (*arc_flags & ARC_FLAG_PREFETCH)
3978 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
3979 else
3980 add_reference(hdr, hash_lock, private);
2a432414
GW
3981 if (*arc_flags & ARC_FLAG_L2CACHE)
3982 hdr->b_flags |= ARC_FLAG_L2CACHE;
3983 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3984 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
3985 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3986 buf->b_hdr = hdr;
3987 buf->b_data = NULL;
3988 buf->b_efunc = NULL;
3989 buf->b_private = NULL;
3990 buf->b_next = NULL;
b9541d6b
CW
3991 hdr->b_l1hdr.b_buf = buf;
3992 ASSERT0(hdr->b_l1hdr.b_datacnt);
3993 hdr->b_l1hdr.b_datacnt = 1;
428870ff
BB
3994 arc_get_data_buf(buf);
3995 arc_access(hdr, hash_lock);
34dc7c2f
BB
3996 }
3997
b9541d6b 3998 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 3999
79c76d5b 4000 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
4001 acb->acb_done = done;
4002 acb->acb_private = private;
34dc7c2f 4003
b9541d6b
CW
4004 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4005 hdr->b_l1hdr.b_acb = acb;
2a432414 4006 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4007
b9541d6b
CW
4008 if (HDR_HAS_L2HDR(hdr) &&
4009 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4010 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4011 addr = hdr->b_l2hdr.b_daddr;
4012 b_compress = HDR_GET_COMPRESS(hdr);
4013 b_asize = hdr->b_l2hdr.b_asize;
b128c09f
BB
4014 /*
4015 * Lock out device removal.
4016 */
4017 if (vdev_is_dead(vd) ||
4018 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4019 vd = NULL;
4020 }
4021
9b67f605
MA
4022 if (hash_lock != NULL)
4023 mutex_exit(hash_lock);
b128c09f 4024
e49f1e20
WA
4025 /*
4026 * At this point, we have a level 1 cache miss. Try again in
4027 * L2ARC if possible.
4028 */
34dc7c2f 4029 ASSERT3U(hdr->b_size, ==, size);
428870ff 4030 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 4031 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f 4032 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
4033 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4034 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4035 data, metadata, misses);
4036
d164b209 4037 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
4038 /*
4039 * Read from the L2ARC if the following are true:
b128c09f
BB
4040 * 1. The L2ARC vdev was previously cached.
4041 * 2. This buffer still has L2ARC metadata.
4042 * 3. This buffer isn't currently writing to the L2ARC.
4043 * 4. The L2ARC entry wasn't evicted, which may
4044 * also have invalidated the vdev.
d164b209 4045 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 4046 */
b9541d6b 4047 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
4048 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4049 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
4050 l2arc_read_callback_t *cb;
4051
4052 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4053 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 4054 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 4055
34dc7c2f 4056 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 4057 KM_SLEEP);
34dc7c2f
BB
4058 cb->l2rcb_buf = buf;
4059 cb->l2rcb_spa = spa;
4060 cb->l2rcb_bp = *bp;
4061 cb->l2rcb_zb = *zb;
b128c09f 4062 cb->l2rcb_flags = zio_flags;
0ed212dc 4063 cb->l2rcb_compress = b_compress;
34dc7c2f 4064
a117a6d6
GW
4065 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4066 addr + size < vd->vdev_psize -
4067 VDEV_LABEL_END_SIZE);
4068
34dc7c2f 4069 /*
b128c09f
BB
4070 * l2arc read. The SCL_L2ARC lock will be
4071 * released by l2arc_read_done().
3a17a7a9
SK
4072 * Issue a null zio if the underlying buffer
4073 * was squashed to zero size by compression.
34dc7c2f 4074 */
0ed212dc 4075 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
4076 rzio = zio_null(pio, spa, vd,
4077 l2arc_read_done, cb,
4078 zio_flags | ZIO_FLAG_DONT_CACHE |
4079 ZIO_FLAG_CANFAIL |
4080 ZIO_FLAG_DONT_PROPAGATE |
4081 ZIO_FLAG_DONT_RETRY);
4082 } else {
4083 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
4084 b_asize, buf->b_data,
4085 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
4086 l2arc_read_done, cb, priority,
4087 zio_flags | ZIO_FLAG_DONT_CACHE |
4088 ZIO_FLAG_CANFAIL |
4089 ZIO_FLAG_DONT_PROPAGATE |
4090 ZIO_FLAG_DONT_RETRY, B_FALSE);
4091 }
34dc7c2f
BB
4092 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4093 zio_t *, rzio);
0ed212dc 4094 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 4095
2a432414 4096 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 4097 zio_nowait(rzio);
1421c891 4098 goto out;
b128c09f 4099 }
34dc7c2f 4100
2a432414 4101 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 4102 if (zio_wait(rzio) == 0)
1421c891 4103 goto out;
b128c09f
BB
4104
4105 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
4106 } else {
4107 DTRACE_PROBE1(l2arc__miss,
4108 arc_buf_hdr_t *, hdr);
4109 ARCSTAT_BUMP(arcstat_l2_misses);
4110 if (HDR_L2_WRITING(hdr))
4111 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 4112 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 4113 }
d164b209
BB
4114 } else {
4115 if (vd != NULL)
4116 spa_config_exit(spa, SCL_L2ARC, vd);
4117 if (l2arc_ndev != 0) {
4118 DTRACE_PROBE1(l2arc__miss,
4119 arc_buf_hdr_t *, hdr);
4120 ARCSTAT_BUMP(arcstat_l2_misses);
4121 }
34dc7c2f 4122 }
34dc7c2f
BB
4123
4124 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 4125 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 4126
2a432414 4127 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
4128 rc = zio_wait(rzio);
4129 goto out;
4130 }
34dc7c2f 4131
2a432414 4132 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4133 zio_nowait(rzio);
4134 }
1421c891
PS
4135
4136out:
4137 spa_read_history_add(spa, zb, *arc_flags);
4138 return (rc);
34dc7c2f
BB
4139}
4140
ab26409d
BB
4141arc_prune_t *
4142arc_add_prune_callback(arc_prune_func_t *func, void *private)
4143{
4144 arc_prune_t *p;
4145
d1d7e268 4146 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
4147 p->p_pfunc = func;
4148 p->p_private = private;
4149 list_link_init(&p->p_node);
4150 refcount_create(&p->p_refcnt);
4151
4152 mutex_enter(&arc_prune_mtx);
4153 refcount_add(&p->p_refcnt, &arc_prune_list);
4154 list_insert_head(&arc_prune_list, p);
4155 mutex_exit(&arc_prune_mtx);
4156
4157 return (p);
4158}
4159
4160void
4161arc_remove_prune_callback(arc_prune_t *p)
4162{
4163 mutex_enter(&arc_prune_mtx);
4164 list_remove(&arc_prune_list, p);
4165 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4166 refcount_destroy(&p->p_refcnt);
4167 kmem_free(p, sizeof (*p));
4168 }
4169 mutex_exit(&arc_prune_mtx);
4170}
4171
34dc7c2f
BB
4172void
4173arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4174{
4175 ASSERT(buf->b_hdr != NULL);
b9541d6b
CW
4176 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4177 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4178 func == NULL);
428870ff
BB
4179 ASSERT(buf->b_efunc == NULL);
4180 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4181
34dc7c2f
BB
4182 buf->b_efunc = func;
4183 buf->b_private = private;
4184}
4185
df4474f9
MA
4186/*
4187 * Notify the arc that a block was freed, and thus will never be used again.
4188 */
4189void
4190arc_freed(spa_t *spa, const blkptr_t *bp)
4191{
4192 arc_buf_hdr_t *hdr;
4193 kmutex_t *hash_lock;
4194 uint64_t guid = spa_load_guid(spa);
4195
9b67f605
MA
4196 ASSERT(!BP_IS_EMBEDDED(bp));
4197
4198 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
4199 if (hdr == NULL)
4200 return;
4201 if (HDR_BUF_AVAILABLE(hdr)) {
b9541d6b 4202 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
df4474f9 4203 add_reference(hdr, hash_lock, FTAG);
2a432414 4204 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
df4474f9
MA
4205 mutex_exit(hash_lock);
4206
4207 arc_release(buf, FTAG);
4208 (void) arc_buf_remove_ref(buf, FTAG);
4209 } else {
4210 mutex_exit(hash_lock);
4211 }
4212
4213}
4214
34dc7c2f 4215/*
bd089c54
MA
4216 * Clear the user eviction callback set by arc_set_callback(), first calling
4217 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4218 * clearing the callback may result in the arc_buf being destroyed. However,
4219 * it will not result in the *last* arc_buf being destroyed, hence the data
4220 * will remain cached in the ARC. We make a copy of the arc buffer here so
4221 * that we can process the callback without holding any locks.
4222 *
4223 * It's possible that the callback is already in the process of being cleared
4224 * by another thread. In this case we can not clear the callback.
4225 *
4226 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 4227 */
bd089c54
MA
4228boolean_t
4229arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
4230{
4231 arc_buf_hdr_t *hdr;
4232 kmutex_t *hash_lock;
bd089c54
MA
4233 arc_evict_func_t *efunc = buf->b_efunc;
4234 void *private = buf->b_private;
34dc7c2f 4235
428870ff 4236 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
4237 hdr = buf->b_hdr;
4238 if (hdr == NULL) {
4239 /*
4240 * We are in arc_do_user_evicts().
4241 */
4242 ASSERT(buf->b_data == NULL);
428870ff 4243 mutex_exit(&buf->b_evict_lock);
bd089c54 4244 return (B_FALSE);
b128c09f 4245 } else if (buf->b_data == NULL) {
34dc7c2f 4246 /*
b128c09f
BB
4247 * We are on the eviction list; process this buffer now
4248 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 4249 */
b128c09f 4250 buf->b_efunc = NULL;
428870ff 4251 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
4252 VERIFY0(efunc(private));
4253 return (B_TRUE);
34dc7c2f 4254 }
b128c09f
BB
4255 hash_lock = HDR_LOCK(hdr);
4256 mutex_enter(hash_lock);
428870ff
BB
4257 hdr = buf->b_hdr;
4258 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4259
b9541d6b
CW
4260 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4261 hdr->b_l1hdr.b_datacnt);
4262 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4263 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 4264
bd089c54
MA
4265 buf->b_efunc = NULL;
4266 buf->b_private = NULL;
34dc7c2f 4267
b9541d6b 4268 if (hdr->b_l1hdr.b_datacnt > 1) {
bd089c54 4269 mutex_exit(&buf->b_evict_lock);
ca0bf58d 4270 arc_buf_destroy(buf, TRUE);
bd089c54 4271 } else {
b9541d6b 4272 ASSERT(buf == hdr->b_l1hdr.b_buf);
2a432414 4273 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
bd089c54 4274 mutex_exit(&buf->b_evict_lock);
34dc7c2f 4275 }
34dc7c2f 4276
bd089c54
MA
4277 mutex_exit(hash_lock);
4278 VERIFY0(efunc(private));
4279 return (B_TRUE);
34dc7c2f
BB
4280}
4281
4282/*
e49f1e20
WA
4283 * Release this buffer from the cache, making it an anonymous buffer. This
4284 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 4285 * If the buffer has more than one reference, we must make
b128c09f 4286 * a new hdr for the buffer.
34dc7c2f
BB
4287 */
4288void
4289arc_release(arc_buf_t *buf, void *tag)
4290{
b9541d6b
CW
4291 kmutex_t *hash_lock;
4292 arc_state_t *state;
4293 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 4294
428870ff 4295 /*
ca0bf58d 4296 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
4297 * 0 || it's the dnode file), then it must be syncing context.
4298 * But we don't know that information at this level.
4299 */
4300
4301 mutex_enter(&buf->b_evict_lock);
b128c09f 4302
ca0bf58d
PS
4303 ASSERT(HDR_HAS_L1HDR(hdr));
4304
b9541d6b
CW
4305 /*
4306 * We don't grab the hash lock prior to this check, because if
4307 * the buffer's header is in the arc_anon state, it won't be
4308 * linked into the hash table.
4309 */
4310 if (hdr->b_l1hdr.b_state == arc_anon) {
4311 mutex_exit(&buf->b_evict_lock);
4312 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4313 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4314 ASSERT(!HDR_HAS_L2HDR(hdr));
4315 ASSERT(BUF_EMPTY(hdr));
34dc7c2f 4316
b9541d6b
CW
4317 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4318 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4319 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4320
4321 ASSERT3P(buf->b_efunc, ==, NULL);
4322 ASSERT3P(buf->b_private, ==, NULL);
4323
4324 hdr->b_l1hdr.b_arc_access = 0;
4325 arc_buf_thaw(buf);
4326
4327 return;
34dc7c2f
BB
4328 }
4329
b9541d6b
CW
4330 hash_lock = HDR_LOCK(hdr);
4331 mutex_enter(hash_lock);
4332
4333 /*
4334 * This assignment is only valid as long as the hash_lock is
4335 * held, we must be careful not to reference state or the
4336 * b_state field after dropping the lock.
4337 */
4338 state = hdr->b_l1hdr.b_state;
4339 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4340 ASSERT3P(state, !=, arc_anon);
4341
4342 /* this buffer is not on any list */
4343 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4344
4345 if (HDR_HAS_L2HDR(hdr)) {
4346 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
4347 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
4348
4349 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4350 list_remove(&hdr->b_l2hdr.b_dev->l2ad_buflist, hdr);
ca0bf58d
PS
4351
4352 /*
4353 * We don't want to leak the b_tmp_cdata buffer that was
4354 * allocated in l2arc_write_buffers()
4355 */
4356 arc_buf_l2_cdata_free(hdr);
4357
b9541d6b
CW
4358 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4359
4360 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
b128c09f
BB
4361 }
4362
34dc7c2f
BB
4363 /*
4364 * Do we have more than one buf?
4365 */
b9541d6b 4366 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f
BB
4367 arc_buf_hdr_t *nhdr;
4368 arc_buf_t **bufp;
4369 uint64_t blksz = hdr->b_size;
d164b209 4370 uint64_t spa = hdr->b_spa;
b9541d6b 4371 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4372 uint32_t flags = hdr->b_flags;
4373
b9541d6b 4374 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
34dc7c2f 4375 /*
428870ff
BB
4376 * Pull the data off of this hdr and attach it to
4377 * a new anonymous hdr.
34dc7c2f
BB
4378 */
4379 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 4380 bufp = &hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4381 while (*bufp != buf)
4382 bufp = &(*bufp)->b_next;
428870ff 4383 *bufp = buf->b_next;
34dc7c2f
BB
4384 buf->b_next = NULL;
4385
b9541d6b
CW
4386 ASSERT3P(state, !=, arc_l2c_only);
4387 ASSERT3U(state->arcs_size, >=, hdr->b_size);
4388 atomic_add_64(&state->arcs_size, -hdr->b_size);
4389 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4390 uint64_t *size;
4391
4392 ASSERT3P(state, !=, arc_l2c_only);
4393 size = &state->arcs_lsize[type];
34dc7c2f
BB
4394 ASSERT3U(*size, >=, hdr->b_size);
4395 atomic_add_64(size, -hdr->b_size);
4396 }
1eb5bfa3
GW
4397
4398 /*
4399 * We're releasing a duplicate user data buffer, update
4400 * our statistics accordingly.
4401 */
b9541d6b 4402 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
4403 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4404 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4405 -hdr->b_size);
4406 }
b9541d6b 4407 hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f 4408 arc_cksum_verify(buf);
498877ba 4409 arc_buf_unwatch(buf);
34dc7c2f
BB
4410
4411 mutex_exit(hash_lock);
4412
b9541d6b 4413 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f
BB
4414 nhdr->b_size = blksz;
4415 nhdr->b_spa = spa;
b9541d6b
CW
4416
4417 nhdr->b_l1hdr.b_mru_hits = 0;
4418 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4419 nhdr->b_l1hdr.b_mfu_hits = 0;
4420 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4421 nhdr->b_l1hdr.b_l2_hits = 0;
2a432414 4422 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
b9541d6b
CW
4423 nhdr->b_flags |= arc_bufc_to_flags(type);
4424 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4425
4426 nhdr->b_l1hdr.b_buf = buf;
4427 nhdr->b_l1hdr.b_datacnt = 1;
4428 nhdr->b_l1hdr.b_state = arc_anon;
4429 nhdr->b_l1hdr.b_arc_access = 0;
ca0bf58d 4430 nhdr->b_l1hdr.b_tmp_cdata = NULL;
34dc7c2f 4431 nhdr->b_freeze_cksum = NULL;
b9541d6b
CW
4432
4433 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 4434 buf->b_hdr = nhdr;
428870ff 4435 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
4436 atomic_add_64(&arc_anon->arcs_size, blksz);
4437 } else {
428870ff 4438 mutex_exit(&buf->b_evict_lock);
b9541d6b 4439 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
4440 /* protected by hash lock, or hdr is on arc_anon */
4441 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4442 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
4443 hdr->b_l1hdr.b_mru_hits = 0;
4444 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4445 hdr->b_l1hdr.b_mfu_hits = 0;
4446 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4447 hdr->b_l1hdr.b_l2_hits = 0;
4448 arc_change_state(arc_anon, hdr, hash_lock);
4449 hdr->b_l1hdr.b_arc_access = 0;
4450 mutex_exit(hash_lock);
34dc7c2f 4451
428870ff 4452 buf_discard_identity(hdr);
34dc7c2f
BB
4453 arc_buf_thaw(buf);
4454 }
4455 buf->b_efunc = NULL;
4456 buf->b_private = NULL;
34dc7c2f
BB
4457}
4458
4459int
4460arc_released(arc_buf_t *buf)
4461{
b128c09f
BB
4462 int released;
4463
428870ff 4464 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
4465 released = (buf->b_data != NULL &&
4466 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 4467 mutex_exit(&buf->b_evict_lock);
b128c09f 4468 return (released);
34dc7c2f
BB
4469}
4470
34dc7c2f
BB
4471#ifdef ZFS_DEBUG
4472int
4473arc_referenced(arc_buf_t *buf)
4474{
b128c09f
BB
4475 int referenced;
4476
428870ff 4477 mutex_enter(&buf->b_evict_lock);
b9541d6b 4478 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 4479 mutex_exit(&buf->b_evict_lock);
b128c09f 4480 return (referenced);
34dc7c2f
BB
4481}
4482#endif
4483
4484static void
4485arc_write_ready(zio_t *zio)
4486{
4487 arc_write_callback_t *callback = zio->io_private;
4488 arc_buf_t *buf = callback->awcb_buf;
4489 arc_buf_hdr_t *hdr = buf->b_hdr;
4490
b9541d6b
CW
4491 ASSERT(HDR_HAS_L1HDR(hdr));
4492 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4493 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f
BB
4494 callback->awcb_ready(zio, buf, callback->awcb_private);
4495
34dc7c2f
BB
4496 /*
4497 * If the IO is already in progress, then this is a re-write
b128c09f
BB
4498 * attempt, so we need to thaw and re-compute the cksum.
4499 * It is the responsibility of the callback to handle the
4500 * accounting for any re-write attempt.
34dc7c2f
BB
4501 */
4502 if (HDR_IO_IN_PROGRESS(hdr)) {
b9541d6b 4503 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4504 if (hdr->b_freeze_cksum != NULL) {
4505 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4506 hdr->b_freeze_cksum = NULL;
4507 }
b9541d6b 4508 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4509 }
4510 arc_cksum_compute(buf, B_FALSE);
2a432414 4511 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4512}
4513
e8b96c60
MA
4514/*
4515 * The SPA calls this callback for each physical write that happens on behalf
4516 * of a logical write. See the comment in dbuf_write_physdone() for details.
4517 */
4518static void
4519arc_write_physdone(zio_t *zio)
4520{
4521 arc_write_callback_t *cb = zio->io_private;
4522 if (cb->awcb_physdone != NULL)
4523 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4524}
4525
34dc7c2f
BB
4526static void
4527arc_write_done(zio_t *zio)
4528{
4529 arc_write_callback_t *callback = zio->io_private;
4530 arc_buf_t *buf = callback->awcb_buf;
4531 arc_buf_hdr_t *hdr = buf->b_hdr;
4532
b9541d6b 4533 ASSERT(hdr->b_l1hdr.b_acb == NULL);
428870ff
BB
4534
4535 if (zio->io_error == 0) {
9b67f605 4536 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
4537 buf_discard_identity(hdr);
4538 } else {
4539 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4540 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 4541 }
428870ff
BB
4542 } else {
4543 ASSERT(BUF_EMPTY(hdr));
4544 }
34dc7c2f 4545
34dc7c2f 4546 /*
9b67f605
MA
4547 * If the block to be written was all-zero or compressed enough to be
4548 * embedded in the BP, no write was performed so there will be no
4549 * dva/birth/checksum. The buffer must therefore remain anonymous
4550 * (and uncached).
34dc7c2f
BB
4551 */
4552 if (!BUF_EMPTY(hdr)) {
4553 arc_buf_hdr_t *exists;
4554 kmutex_t *hash_lock;
4555
428870ff
BB
4556 ASSERT(zio->io_error == 0);
4557
34dc7c2f
BB
4558 arc_cksum_verify(buf);
4559
4560 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 4561 if (exists != NULL) {
34dc7c2f
BB
4562 /*
4563 * This can only happen if we overwrite for
4564 * sync-to-convergence, because we remove
4565 * buffers from the hash table when we arc_free().
4566 */
428870ff
BB
4567 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4568 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4569 panic("bad overwrite, hdr=%p exists=%p",
4570 (void *)hdr, (void *)exists);
b9541d6b
CW
4571 ASSERT(refcount_is_zero(
4572 &exists->b_l1hdr.b_refcnt));
428870ff
BB
4573 arc_change_state(arc_anon, exists, hash_lock);
4574 mutex_exit(hash_lock);
4575 arc_hdr_destroy(exists);
4576 exists = buf_hash_insert(hdr, &hash_lock);
4577 ASSERT3P(exists, ==, NULL);
03c6040b
GW
4578 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4579 /* nopwrite */
4580 ASSERT(zio->io_prop.zp_nopwrite);
4581 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4582 panic("bad nopwrite, hdr=%p exists=%p",
4583 (void *)hdr, (void *)exists);
428870ff
BB
4584 } else {
4585 /* Dedup */
b9541d6b
CW
4586 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4587 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
4588 ASSERT(BP_GET_DEDUP(zio->io_bp));
4589 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4590 }
34dc7c2f 4591 }
2a432414 4592 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
b128c09f 4593 /* if it's not anon, we are doing a scrub */
b9541d6b 4594 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 4595 arc_access(hdr, hash_lock);
34dc7c2f 4596 mutex_exit(hash_lock);
34dc7c2f 4597 } else {
2a432414 4598 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4599 }
4600
b9541d6b 4601 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 4602 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
4603
4604 kmem_free(callback, sizeof (arc_write_callback_t));
4605}
4606
4607zio_t *
428870ff 4608arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 4609 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
4610 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4611 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 4612 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
4613{
4614 arc_buf_hdr_t *hdr = buf->b_hdr;
4615 arc_write_callback_t *callback;
b128c09f 4616 zio_t *zio;
34dc7c2f 4617
b128c09f 4618 ASSERT(ready != NULL);
428870ff 4619 ASSERT(done != NULL);
34dc7c2f 4620 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b
CW
4621 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4622 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4623 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f 4624 if (l2arc)
2a432414 4625 hdr->b_flags |= ARC_FLAG_L2CACHE;
3a17a7a9 4626 if (l2arc_compress)
2a432414 4627 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
79c76d5b 4628 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 4629 callback->awcb_ready = ready;
e8b96c60 4630 callback->awcb_physdone = physdone;
34dc7c2f
BB
4631 callback->awcb_done = done;
4632 callback->awcb_private = private;
4633 callback->awcb_buf = buf;
b128c09f 4634
428870ff 4635 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
4636 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4637 priority, zio_flags, zb);
34dc7c2f
BB
4638
4639 return (zio);
4640}
4641
34dc7c2f 4642static int
e8b96c60 4643arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
4644{
4645#ifdef _KERNEL
0c5493d4
BB
4646 if (zfs_arc_memory_throttle_disable)
4647 return (0);
4648
e8b96c60 4649 if (freemem <= physmem * arc_lotsfree_percent / 100) {
34dc7c2f 4650 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 4651 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 4652 return (SET_ERROR(EAGAIN));
34dc7c2f 4653 }
34dc7c2f
BB
4654#endif
4655 return (0);
4656}
4657
4658void
4659arc_tempreserve_clear(uint64_t reserve)
4660{
4661 atomic_add_64(&arc_tempreserve, -reserve);
4662 ASSERT((int64_t)arc_tempreserve >= 0);
4663}
4664
4665int
4666arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4667{
4668 int error;
9babb374 4669 uint64_t anon_size;
34dc7c2f 4670
34dc7c2f
BB
4671 if (reserve > arc_c/4 && !arc_no_grow)
4672 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
4673
4674 /*
4675 * Throttle when the calculated memory footprint for the TXG
4676 * exceeds the target ARC size.
4677 */
570827e1
BB
4678 if (reserve > arc_c) {
4679 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 4680 return (SET_ERROR(ERESTART));
570827e1 4681 }
34dc7c2f 4682
9babb374
BB
4683 /*
4684 * Don't count loaned bufs as in flight dirty data to prevent long
4685 * network delays from blocking transactions that are ready to be
4686 * assigned to a txg.
4687 */
4688 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4689
34dc7c2f
BB
4690 /*
4691 * Writes will, almost always, require additional memory allocations
d3cc8b15 4692 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
4693 * make sure that there is sufficient available memory for this.
4694 */
e8b96c60
MA
4695 error = arc_memory_throttle(reserve, txg);
4696 if (error != 0)
34dc7c2f
BB
4697 return (error);
4698
4699 /*
4700 * Throttle writes when the amount of dirty data in the cache
4701 * gets too large. We try to keep the cache less than half full
4702 * of dirty blocks so that our sync times don't grow too large.
4703 * Note: if two requests come in concurrently, we might let them
4704 * both succeed, when one of them should fail. Not a huge deal.
4705 */
9babb374
BB
4706
4707 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4708 anon_size > arc_c / 4) {
34dc7c2f
BB
4709 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4710 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4711 arc_tempreserve>>10,
4712 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4713 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4714 reserve>>10, arc_c>>10);
570827e1 4715 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 4716 return (SET_ERROR(ERESTART));
34dc7c2f
BB
4717 }
4718 atomic_add_64(&arc_tempreserve, reserve);
4719 return (0);
4720}
4721
13be560d
BB
4722static void
4723arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4724 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4725{
4726 size->value.ui64 = state->arcs_size;
4727 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4728 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4729}
4730
4731static int
4732arc_kstat_update(kstat_t *ksp, int rw)
4733{
4734 arc_stats_t *as = ksp->ks_data;
4735
4736 if (rw == KSTAT_WRITE) {
2e528b49 4737 return (SET_ERROR(EACCES));
13be560d
BB
4738 } else {
4739 arc_kstat_update_state(arc_anon,
4740 &as->arcstat_anon_size,
4741 &as->arcstat_anon_evict_data,
4742 &as->arcstat_anon_evict_metadata);
4743 arc_kstat_update_state(arc_mru,
4744 &as->arcstat_mru_size,
4745 &as->arcstat_mru_evict_data,
4746 &as->arcstat_mru_evict_metadata);
4747 arc_kstat_update_state(arc_mru_ghost,
4748 &as->arcstat_mru_ghost_size,
4749 &as->arcstat_mru_ghost_evict_data,
4750 &as->arcstat_mru_ghost_evict_metadata);
4751 arc_kstat_update_state(arc_mfu,
4752 &as->arcstat_mfu_size,
4753 &as->arcstat_mfu_evict_data,
4754 &as->arcstat_mfu_evict_metadata);
fc41c640 4755 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
4756 &as->arcstat_mfu_ghost_size,
4757 &as->arcstat_mfu_ghost_evict_data,
4758 &as->arcstat_mfu_ghost_evict_metadata);
4759 }
4760
4761 return (0);
4762}
4763
ca0bf58d
PS
4764/*
4765 * This function *must* return indices evenly distributed between all
4766 * sublists of the multilist. This is needed due to how the ARC eviction
4767 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4768 * distributed between all sublists and uses this assumption when
4769 * deciding which sublist to evict from and how much to evict from it.
4770 */
4771unsigned int
4772arc_state_multilist_index_func(multilist_t *ml, void *obj)
4773{
4774 arc_buf_hdr_t *hdr = obj;
4775
4776 /*
4777 * We rely on b_dva to generate evenly distributed index
4778 * numbers using buf_hash below. So, as an added precaution,
4779 * let's make sure we never add empty buffers to the arc lists.
4780 */
4781 ASSERT(!BUF_EMPTY(hdr));
4782
4783 /*
4784 * The assumption here, is the hash value for a given
4785 * arc_buf_hdr_t will remain constant throughout its lifetime
4786 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
4787 * Thus, we don't need to store the header's sublist index
4788 * on insertion, as this index can be recalculated on removal.
4789 *
4790 * Also, the low order bits of the hash value are thought to be
4791 * distributed evenly. Otherwise, in the case that the multilist
4792 * has a power of two number of sublists, each sublists' usage
4793 * would not be evenly distributed.
4794 */
4795 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4796 multilist_get_num_sublists(ml));
4797}
4798
34dc7c2f
BB
4799void
4800arc_init(void)
4801{
ca0bf58d
PS
4802 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4803 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
4804 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
4805
4806 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
4807 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f
BB
4808
4809 /* Convert seconds to clock ticks */
bce45ec9 4810 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
4811
4812 /* Start out with 1/8 of all memory */
4813 arc_c = physmem * PAGESIZE / 8;
4814
4815#ifdef _KERNEL
4816 /*
4817 * On architectures where the physical memory can be larger
4818 * than the addressable space (intel in 32-bit mode), we may
4819 * need to limit the cache to 1/8 of VM size.
4820 */
4821 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
4822 /*
4823 * Register a shrinker to support synchronous (direct) memory
4824 * reclaim from the arc. This is done to prevent kswapd from
4825 * swapping out pages when it is preferable to shrink the arc.
4826 */
4827 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
4828#endif
4829
121b3cae
TC
4830 /* set min cache to allow safe operation of arc_adapt() */
4831 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
518b4876 4832 /* set max to 1/2 of all memory */
be5db977 4833 arc_c_max = arc_c * 4;
34dc7c2f
BB
4834
4835 /*
4836 * Allow the tunables to override our calculations if they are
4837 * reasonable (ie. over 64MB)
4838 */
4839 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4840 arc_c_max = zfs_arc_max;
121b3cae
TC
4841 if (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT &&
4842 zfs_arc_min <= arc_c_max)
34dc7c2f
BB
4843 arc_c_min = zfs_arc_min;
4844
4845 arc_c = arc_c_max;
4846 arc_p = (arc_c >> 1);
4847
2b13331d
PS
4848 /* limit meta-data to 3/4 of the arc capacity */
4849 arc_meta_limit = (3 * arc_c_max) / 4;
1834f2d8 4850 arc_meta_max = 0;
34dc7c2f
BB
4851
4852 /* Allow the tunable to override if it is reasonable */
4853 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4854 arc_meta_limit = zfs_arc_meta_limit;
4855
ca0bf58d
PS
4856 if (zfs_arc_num_sublists_per_state < 1)
4857 zfs_arc_num_sublists_per_state = num_online_cpus();
4858
34dc7c2f
BB
4859 /* if kmem_flags are set, lets try to use less memory */
4860 if (kmem_debugging())
4861 arc_c = arc_c / 2;
4862 if (arc_c < arc_c_min)
4863 arc_c = arc_c_min;
4864
4865 arc_anon = &ARC_anon;
4866 arc_mru = &ARC_mru;
4867 arc_mru_ghost = &ARC_mru_ghost;
4868 arc_mfu = &ARC_mfu;
4869 arc_mfu_ghost = &ARC_mfu_ghost;
4870 arc_l2c_only = &ARC_l2c_only;
4871 arc_size = 0;
4872
ca0bf58d 4873 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4874 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4875 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4876 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4877 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
b9541d6b 4878 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4879 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4880 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4881 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4882 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4883 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4884 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4885 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 4886 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4887 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4888 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4889 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4890 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4891 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4892 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4893 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
b9541d6b 4894 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4895 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4896 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4897 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4898 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4899 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4900 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4901 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 4902 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4903 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4904 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4905 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4906 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4907 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4908 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4909 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
b9541d6b 4910 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4911 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4912 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
34dc7c2f 4913
e0b0ca98
BB
4914 arc_anon->arcs_state = ARC_STATE_ANON;
4915 arc_mru->arcs_state = ARC_STATE_MRU;
4916 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4917 arc_mfu->arcs_state = ARC_STATE_MFU;
4918 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4919 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4920
34dc7c2f
BB
4921 buf_init();
4922
ca0bf58d
PS
4923 arc_reclaim_thread_exit = FALSE;
4924 arc_user_evicts_thread_exit = FALSE;
ab26409d
BB
4925 list_create(&arc_prune_list, sizeof (arc_prune_t),
4926 offsetof(arc_prune_t, p_node));
34dc7c2f 4927 arc_eviction_list = NULL;
ab26409d 4928 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4929 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4930
f6046738
BB
4931 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
4932 max_ncpus, INT_MAX, TASKQ_PREPOPULATE);
4933
34dc7c2f
BB
4934 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4935 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4936
4937 if (arc_ksp != NULL) {
4938 arc_ksp->ks_data = &arc_stats;
13be560d 4939 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
4940 kstat_install(arc_ksp);
4941 }
4942
302f753f 4943 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
4944 TS_RUN, minclsyspri);
4945
ca0bf58d
PS
4946 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
4947 TS_RUN, minclsyspri);
4948
34dc7c2f 4949 arc_dead = FALSE;
b128c09f 4950 arc_warm = B_FALSE;
34dc7c2f 4951
e8b96c60
MA
4952 /*
4953 * Calculate maximum amount of dirty data per pool.
4954 *
4955 * If it has been set by a module parameter, take that.
4956 * Otherwise, use a percentage of physical memory defined by
4957 * zfs_dirty_data_max_percent (default 10%) with a cap at
4958 * zfs_dirty_data_max_max (default 25% of physical memory).
4959 */
4960 if (zfs_dirty_data_max_max == 0)
4961 zfs_dirty_data_max_max = physmem * PAGESIZE *
4962 zfs_dirty_data_max_max_percent / 100;
4963
4964 if (zfs_dirty_data_max == 0) {
4965 zfs_dirty_data_max = physmem * PAGESIZE *
4966 zfs_dirty_data_max_percent / 100;
4967 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4968 zfs_dirty_data_max_max);
4969 }
34dc7c2f
BB
4970}
4971
4972void
4973arc_fini(void)
4974{
ab26409d
BB
4975 arc_prune_t *p;
4976
7cb67b45
BB
4977#ifdef _KERNEL
4978 spl_unregister_shrinker(&arc_shrinker);
4979#endif /* _KERNEL */
4980
ca0bf58d
PS
4981 mutex_enter(&arc_reclaim_lock);
4982 arc_reclaim_thread_exit = TRUE;
4983 /*
4984 * The reclaim thread will set arc_reclaim_thread_exit back to
4985 * FALSE when it is finished exiting; we're waiting for that.
4986 */
4987 while (arc_reclaim_thread_exit) {
4988 cv_signal(&arc_reclaim_thread_cv);
4989 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
4990 }
4991 mutex_exit(&arc_reclaim_lock);
4992
4993 mutex_enter(&arc_user_evicts_lock);
4994 arc_user_evicts_thread_exit = TRUE;
4995 /*
4996 * The user evicts thread will set arc_user_evicts_thread_exit
4997 * to FALSE when it is finished exiting; we're waiting for that.
4998 */
4999 while (arc_user_evicts_thread_exit) {
5000 cv_signal(&arc_user_evicts_cv);
5001 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5002 }
5003 mutex_exit(&arc_user_evicts_lock);
34dc7c2f 5004
ca0bf58d
PS
5005 /* Use TRUE to ensure *all* buffers are evicted */
5006 arc_flush(NULL, TRUE);
34dc7c2f
BB
5007
5008 arc_dead = TRUE;
5009
5010 if (arc_ksp != NULL) {
5011 kstat_delete(arc_ksp);
5012 arc_ksp = NULL;
5013 }
5014
f6046738
BB
5015 taskq_wait(arc_prune_taskq);
5016 taskq_destroy(arc_prune_taskq);
5017
ab26409d
BB
5018 mutex_enter(&arc_prune_mtx);
5019 while ((p = list_head(&arc_prune_list)) != NULL) {
5020 list_remove(&arc_prune_list, p);
5021 refcount_remove(&p->p_refcnt, &arc_prune_list);
5022 refcount_destroy(&p->p_refcnt);
5023 kmem_free(p, sizeof (*p));
5024 }
5025 mutex_exit(&arc_prune_mtx);
5026
5027 list_destroy(&arc_prune_list);
5028 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
5029 mutex_destroy(&arc_reclaim_lock);
5030 cv_destroy(&arc_reclaim_thread_cv);
5031 cv_destroy(&arc_reclaim_waiters_cv);
5032
5033 mutex_destroy(&arc_user_evicts_lock);
5034 cv_destroy(&arc_user_evicts_cv);
5035
5036 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5037 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5038 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5039 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5040 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5041 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5042 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5043 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5044 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5045 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
34dc7c2f
BB
5046
5047 buf_fini();
9babb374 5048
b9541d6b 5049 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
5050}
5051
5052/*
5053 * Level 2 ARC
5054 *
5055 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5056 * It uses dedicated storage devices to hold cached data, which are populated
5057 * using large infrequent writes. The main role of this cache is to boost
5058 * the performance of random read workloads. The intended L2ARC devices
5059 * include short-stroked disks, solid state disks, and other media with
5060 * substantially faster read latency than disk.
5061 *
5062 * +-----------------------+
5063 * | ARC |
5064 * +-----------------------+
5065 * | ^ ^
5066 * | | |
5067 * l2arc_feed_thread() arc_read()
5068 * | | |
5069 * | l2arc read |
5070 * V | |
5071 * +---------------+ |
5072 * | L2ARC | |
5073 * +---------------+ |
5074 * | ^ |
5075 * l2arc_write() | |
5076 * | | |
5077 * V | |
5078 * +-------+ +-------+
5079 * | vdev | | vdev |
5080 * | cache | | cache |
5081 * +-------+ +-------+
5082 * +=========+ .-----.
5083 * : L2ARC : |-_____-|
5084 * : devices : | Disks |
5085 * +=========+ `-_____-'
5086 *
5087 * Read requests are satisfied from the following sources, in order:
5088 *
5089 * 1) ARC
5090 * 2) vdev cache of L2ARC devices
5091 * 3) L2ARC devices
5092 * 4) vdev cache of disks
5093 * 5) disks
5094 *
5095 * Some L2ARC device types exhibit extremely slow write performance.
5096 * To accommodate for this there are some significant differences between
5097 * the L2ARC and traditional cache design:
5098 *
5099 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5100 * the ARC behave as usual, freeing buffers and placing headers on ghost
5101 * lists. The ARC does not send buffers to the L2ARC during eviction as
5102 * this would add inflated write latencies for all ARC memory pressure.
5103 *
5104 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5105 * It does this by periodically scanning buffers from the eviction-end of
5106 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
5107 * not already there. It scans until a headroom of buffers is satisfied,
5108 * which itself is a buffer for ARC eviction. If a compressible buffer is
5109 * found during scanning and selected for writing to an L2ARC device, we
5110 * temporarily boost scanning headroom during the next scan cycle to make
5111 * sure we adapt to compression effects (which might significantly reduce
5112 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
5113 * l2arc_feed_thread(), illustrated below; example sizes are included to
5114 * provide a better sense of ratio than this diagram:
5115 *
5116 * head --> tail
5117 * +---------------------+----------+
5118 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5119 * +---------------------+----------+ | o L2ARC eligible
5120 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5121 * +---------------------+----------+ |
5122 * 15.9 Gbytes ^ 32 Mbytes |
5123 * headroom |
5124 * l2arc_feed_thread()
5125 * |
5126 * l2arc write hand <--[oooo]--'
5127 * | 8 Mbyte
5128 * | write max
5129 * V
5130 * +==============================+
5131 * L2ARC dev |####|#|###|###| |####| ... |
5132 * +==============================+
5133 * 32 Gbytes
5134 *
5135 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5136 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5137 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5138 * safe to say that this is an uncommon case, since buffers at the end of
5139 * the ARC lists have moved there due to inactivity.
5140 *
5141 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5142 * then the L2ARC simply misses copying some buffers. This serves as a
5143 * pressure valve to prevent heavy read workloads from both stalling the ARC
5144 * with waits and clogging the L2ARC with writes. This also helps prevent
5145 * the potential for the L2ARC to churn if it attempts to cache content too
5146 * quickly, such as during backups of the entire pool.
5147 *
b128c09f
BB
5148 * 5. After system boot and before the ARC has filled main memory, there are
5149 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5150 * lists can remain mostly static. Instead of searching from tail of these
5151 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5152 * for eligible buffers, greatly increasing its chance of finding them.
5153 *
5154 * The L2ARC device write speed is also boosted during this time so that
5155 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5156 * there are no L2ARC reads, and no fear of degrading read performance
5157 * through increased writes.
5158 *
5159 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
5160 * the vdev queue can aggregate them into larger and fewer writes. Each
5161 * device is written to in a rotor fashion, sweeping writes through
5162 * available space then repeating.
5163 *
b128c09f 5164 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
5165 * write buffers back to disk based storage.
5166 *
b128c09f 5167 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
5168 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5169 *
5170 * The performance of the L2ARC can be tweaked by a number of tunables, which
5171 * may be necessary for different workloads:
5172 *
5173 * l2arc_write_max max write bytes per interval
b128c09f 5174 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 5175 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 5176 * l2arc_nocompress skip compressing buffers
34dc7c2f 5177 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
5178 * l2arc_headroom_boost when we find compressed buffers during ARC
5179 * scanning, we multiply headroom by this
5180 * percentage factor for the next scan cycle,
5181 * since more compressed buffers are likely to
5182 * be present
34dc7c2f
BB
5183 * l2arc_feed_secs seconds between L2ARC writing
5184 *
5185 * Tunables may be removed or added as future performance improvements are
5186 * integrated, and also may become zpool properties.
d164b209
BB
5187 *
5188 * There are three key functions that control how the L2ARC warms up:
5189 *
5190 * l2arc_write_eligible() check if a buffer is eligible to cache
5191 * l2arc_write_size() calculate how much to write
5192 * l2arc_write_interval() calculate sleep delay between writes
5193 *
5194 * These three functions determine what to write, how much, and how quickly
5195 * to send writes.
34dc7c2f
BB
5196 */
5197
d164b209 5198static boolean_t
2a432414 5199l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
5200{
5201 /*
5202 * A buffer is *not* eligible for the L2ARC if it:
5203 * 1. belongs to a different spa.
428870ff
BB
5204 * 2. is already cached on the L2ARC.
5205 * 3. has an I/O in progress (it may be an incomplete read).
5206 * 4. is flagged not eligible (zfs property).
d164b209 5207 */
b9541d6b 5208 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 5209 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
5210 return (B_FALSE);
5211
5212 return (B_TRUE);
5213}
5214
5215static uint64_t
3a17a7a9 5216l2arc_write_size(void)
d164b209
BB
5217{
5218 uint64_t size;
5219
3a17a7a9
SK
5220 /*
5221 * Make sure our globals have meaningful values in case the user
5222 * altered them.
5223 */
5224 size = l2arc_write_max;
5225 if (size == 0) {
5226 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5227 "be greater than zero, resetting it to the default (%d)",
5228 L2ARC_WRITE_SIZE);
5229 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5230 }
d164b209
BB
5231
5232 if (arc_warm == B_FALSE)
3a17a7a9 5233 size += l2arc_write_boost;
d164b209
BB
5234
5235 return (size);
5236
5237}
5238
5239static clock_t
5240l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5241{
428870ff 5242 clock_t interval, next, now;
d164b209
BB
5243
5244 /*
5245 * If the ARC lists are busy, increase our write rate; if the
5246 * lists are stale, idle back. This is achieved by checking
5247 * how much we previously wrote - if it was more than half of
5248 * what we wanted, schedule the next write much sooner.
5249 */
5250 if (l2arc_feed_again && wrote > (wanted / 2))
5251 interval = (hz * l2arc_feed_min_ms) / 1000;
5252 else
5253 interval = hz * l2arc_feed_secs;
5254
428870ff
BB
5255 now = ddi_get_lbolt();
5256 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
5257
5258 return (next);
5259}
5260
34dc7c2f
BB
5261/*
5262 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 5263 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
5264 */
5265static l2arc_dev_t *
5266l2arc_dev_get_next(void)
5267{
b128c09f 5268 l2arc_dev_t *first, *next = NULL;
34dc7c2f 5269
b128c09f
BB
5270 /*
5271 * Lock out the removal of spas (spa_namespace_lock), then removal
5272 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5273 * both locks will be dropped and a spa config lock held instead.
5274 */
5275 mutex_enter(&spa_namespace_lock);
5276 mutex_enter(&l2arc_dev_mtx);
5277
5278 /* if there are no vdevs, there is nothing to do */
5279 if (l2arc_ndev == 0)
5280 goto out;
5281
5282 first = NULL;
5283 next = l2arc_dev_last;
5284 do {
5285 /* loop around the list looking for a non-faulted vdev */
5286 if (next == NULL) {
34dc7c2f 5287 next = list_head(l2arc_dev_list);
b128c09f
BB
5288 } else {
5289 next = list_next(l2arc_dev_list, next);
5290 if (next == NULL)
5291 next = list_head(l2arc_dev_list);
5292 }
5293
5294 /* if we have come back to the start, bail out */
5295 if (first == NULL)
5296 first = next;
5297 else if (next == first)
5298 break;
5299
5300 } while (vdev_is_dead(next->l2ad_vdev));
5301
5302 /* if we were unable to find any usable vdevs, return NULL */
5303 if (vdev_is_dead(next->l2ad_vdev))
5304 next = NULL;
34dc7c2f
BB
5305
5306 l2arc_dev_last = next;
5307
b128c09f
BB
5308out:
5309 mutex_exit(&l2arc_dev_mtx);
5310
5311 /*
5312 * Grab the config lock to prevent the 'next' device from being
5313 * removed while we are writing to it.
5314 */
5315 if (next != NULL)
5316 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5317 mutex_exit(&spa_namespace_lock);
5318
34dc7c2f
BB
5319 return (next);
5320}
5321
b128c09f
BB
5322/*
5323 * Free buffers that were tagged for destruction.
5324 */
5325static void
0bc8fd78 5326l2arc_do_free_on_write(void)
b128c09f
BB
5327{
5328 list_t *buflist;
5329 l2arc_data_free_t *df, *df_prev;
5330
5331 mutex_enter(&l2arc_free_on_write_mtx);
5332 buflist = l2arc_free_on_write;
5333
5334 for (df = list_tail(buflist); df; df = df_prev) {
5335 df_prev = list_prev(buflist, df);
5336 ASSERT(df->l2df_data != NULL);
5337 ASSERT(df->l2df_func != NULL);
5338 df->l2df_func(df->l2df_data, df->l2df_size);
5339 list_remove(buflist, df);
5340 kmem_free(df, sizeof (l2arc_data_free_t));
5341 }
5342
5343 mutex_exit(&l2arc_free_on_write_mtx);
5344}
5345
34dc7c2f
BB
5346/*
5347 * A write to a cache device has completed. Update all headers to allow
5348 * reads from these buffers to begin.
5349 */
5350static void
5351l2arc_write_done(zio_t *zio)
5352{
5353 l2arc_write_callback_t *cb;
5354 l2arc_dev_t *dev;
5355 list_t *buflist;
2a432414 5356 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 5357 kmutex_t *hash_lock;
3bec585e 5358 int64_t bytes_dropped = 0;
34dc7c2f
BB
5359
5360 cb = zio->io_private;
5361 ASSERT(cb != NULL);
5362 dev = cb->l2wcb_dev;
5363 ASSERT(dev != NULL);
5364 head = cb->l2wcb_head;
5365 ASSERT(head != NULL);
b9541d6b 5366 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5367 ASSERT(buflist != NULL);
5368 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5369 l2arc_write_callback_t *, cb);
5370
5371 if (zio->io_error != 0)
5372 ARCSTAT_BUMP(arcstat_l2_writes_error);
5373
34dc7c2f
BB
5374 /*
5375 * All writes completed, or an error was hit.
5376 */
ca0bf58d
PS
5377top:
5378 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5379 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5380 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5381
2a432414 5382 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5383
5384 /*
5385 * We cannot use mutex_enter or else we can deadlock
5386 * with l2arc_write_buffers (due to swapping the order
5387 * the hash lock and l2ad_mtx are taken).
5388 */
34dc7c2f
BB
5389 if (!mutex_tryenter(hash_lock)) {
5390 /*
ca0bf58d
PS
5391 * Missed the hash lock. We must retry so we
5392 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 5393 */
ca0bf58d
PS
5394 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5395
5396 /*
5397 * We don't want to rescan the headers we've
5398 * already marked as having been written out, so
5399 * we reinsert the head node so we can pick up
5400 * where we left off.
5401 */
5402 list_remove(buflist, head);
5403 list_insert_after(buflist, hdr, head);
5404
5405 mutex_exit(&dev->l2ad_mtx);
5406
5407 /*
5408 * We wait for the hash lock to become available
5409 * to try and prevent busy waiting, and increase
5410 * the chance we'll be able to acquire the lock
5411 * the next time around.
5412 */
5413 mutex_enter(hash_lock);
5414 mutex_exit(hash_lock);
5415 goto top;
34dc7c2f
BB
5416 }
5417
b9541d6b 5418 /*
ca0bf58d
PS
5419 * We could not have been moved into the arc_l2c_only
5420 * state while in-flight due to our ARC_FLAG_L2_WRITING
5421 * bit being set. Let's just ensure that's being enforced.
5422 */
5423 ASSERT(HDR_HAS_L1HDR(hdr));
5424
5425 /*
5426 * We may have allocated a buffer for L2ARC compression,
5427 * we must release it to avoid leaking this data.
b9541d6b 5428 */
ca0bf58d 5429 l2arc_release_cdata_buf(hdr);
b9541d6b 5430
34dc7c2f
BB
5431 if (zio->io_error != 0) {
5432 /*
b128c09f 5433 * Error - drop L2ARC entry.
34dc7c2f 5434 */
2a432414 5435 list_remove(buflist, hdr);
b9541d6b
CW
5436 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5437
5438 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
2a432414 5439 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
34dc7c2f
BB
5440 }
5441
5442 /*
ca0bf58d
PS
5443 * Allow ARC to begin reads and ghost list evictions to
5444 * this L2ARC entry.
34dc7c2f 5445 */
2a432414 5446 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
34dc7c2f
BB
5447
5448 mutex_exit(hash_lock);
5449 }
5450
5451 atomic_inc_64(&l2arc_writes_done);
5452 list_remove(buflist, head);
b9541d6b
CW
5453 ASSERT(!HDR_HAS_L1HDR(head));
5454 kmem_cache_free(hdr_l2only_cache, head);
5455 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5456
3bec585e
SK
5457 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5458
b128c09f 5459 l2arc_do_free_on_write();
34dc7c2f
BB
5460
5461 kmem_free(cb, sizeof (l2arc_write_callback_t));
5462}
5463
5464/*
5465 * A read to a cache device completed. Validate buffer contents before
5466 * handing over to the regular ARC routines.
5467 */
5468static void
5469l2arc_read_done(zio_t *zio)
5470{
5471 l2arc_read_callback_t *cb;
5472 arc_buf_hdr_t *hdr;
5473 arc_buf_t *buf;
34dc7c2f 5474 kmutex_t *hash_lock;
b128c09f
BB
5475 int equal;
5476
5477 ASSERT(zio->io_vd != NULL);
5478 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5479
5480 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
5481
5482 cb = zio->io_private;
5483 ASSERT(cb != NULL);
5484 buf = cb->l2rcb_buf;
5485 ASSERT(buf != NULL);
34dc7c2f 5486
428870ff 5487 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 5488 mutex_enter(hash_lock);
428870ff
BB
5489 hdr = buf->b_hdr;
5490 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 5491
3a17a7a9
SK
5492 /*
5493 * If the buffer was compressed, decompress it first.
5494 */
5495 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5496 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5497 ASSERT(zio->io_data != NULL);
5498
34dc7c2f
BB
5499 /*
5500 * Check this survived the L2ARC journey.
5501 */
5502 equal = arc_cksum_equal(buf);
5503 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5504 mutex_exit(hash_lock);
5505 zio->io_private = buf;
b128c09f
BB
5506 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5507 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
5508 arc_read_done(zio);
5509 } else {
5510 mutex_exit(hash_lock);
5511 /*
5512 * Buffer didn't survive caching. Increment stats and
5513 * reissue to the original storage device.
5514 */
b128c09f 5515 if (zio->io_error != 0) {
34dc7c2f 5516 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 5517 } else {
2e528b49 5518 zio->io_error = SET_ERROR(EIO);
b128c09f 5519 }
34dc7c2f
BB
5520 if (!equal)
5521 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5522
34dc7c2f 5523 /*
b128c09f
BB
5524 * If there's no waiter, issue an async i/o to the primary
5525 * storage now. If there *is* a waiter, the caller must
5526 * issue the i/o in a context where it's OK to block.
34dc7c2f 5527 */
d164b209
BB
5528 if (zio->io_waiter == NULL) {
5529 zio_t *pio = zio_unique_parent(zio);
5530
5531 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5532
5533 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
5534 buf->b_data, zio->io_size, arc_read_done, buf,
5535 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 5536 }
34dc7c2f
BB
5537 }
5538
5539 kmem_free(cb, sizeof (l2arc_read_callback_t));
5540}
5541
5542/*
5543 * This is the list priority from which the L2ARC will search for pages to
5544 * cache. This is used within loops (0..3) to cycle through lists in the
5545 * desired order. This order can have a significant effect on cache
5546 * performance.
5547 *
5548 * Currently the metadata lists are hit first, MFU then MRU, followed by
5549 * the data lists. This function returns a locked list, and also returns
5550 * the lock pointer.
5551 */
ca0bf58d
PS
5552static multilist_sublist_t *
5553l2arc_sublist_lock(int list_num)
34dc7c2f 5554{
ca0bf58d
PS
5555 multilist_t *ml = NULL;
5556 unsigned int idx;
34dc7c2f
BB
5557
5558 ASSERT(list_num >= 0 && list_num <= 3);
5559
5560 switch (list_num) {
5561 case 0:
ca0bf58d 5562 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5563 break;
5564 case 1:
ca0bf58d 5565 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5566 break;
5567 case 2:
ca0bf58d 5568 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5569 break;
5570 case 3:
ca0bf58d 5571 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5572 break;
5573 }
5574
ca0bf58d
PS
5575 /*
5576 * Return a randomly-selected sublist. This is acceptable
5577 * because the caller feeds only a little bit of data for each
5578 * call (8MB). Subsequent calls will result in different
5579 * sublists being selected.
5580 */
5581 idx = multilist_get_random_index(ml);
5582 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
5583}
5584
5585/*
5586 * Evict buffers from the device write hand to the distance specified in
5587 * bytes. This distance may span populated buffers, it may span nothing.
5588 * This is clearing a region on the L2ARC device ready for writing.
5589 * If the 'all' boolean is set, every buffer is evicted.
5590 */
5591static void
5592l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5593{
5594 list_t *buflist;
2a432414 5595 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
5596 kmutex_t *hash_lock;
5597 uint64_t taddr;
3bec585e 5598 int64_t bytes_evicted = 0;
34dc7c2f 5599
b9541d6b 5600 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5601
5602 if (!all && dev->l2ad_first) {
5603 /*
5604 * This is the first sweep through the device. There is
5605 * nothing to evict.
5606 */
5607 return;
5608 }
5609
b128c09f 5610 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
5611 /*
5612 * When nearing the end of the device, evict to the end
5613 * before the device write hand jumps to the start.
5614 */
5615 taddr = dev->l2ad_end;
5616 } else {
5617 taddr = dev->l2ad_hand + distance;
5618 }
5619 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5620 uint64_t, taddr, boolean_t, all);
5621
5622top:
b9541d6b 5623 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5624 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5625 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5626
2a432414 5627 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5628
5629 /*
5630 * We cannot use mutex_enter or else we can deadlock
5631 * with l2arc_write_buffers (due to swapping the order
5632 * the hash lock and l2ad_mtx are taken).
5633 */
34dc7c2f
BB
5634 if (!mutex_tryenter(hash_lock)) {
5635 /*
5636 * Missed the hash lock. Retry.
5637 */
5638 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 5639 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
5640 mutex_enter(hash_lock);
5641 mutex_exit(hash_lock);
5642 goto top;
5643 }
5644
2a432414 5645 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
5646 /*
5647 * We hit a write head node. Leave it for
5648 * l2arc_write_done().
5649 */
2a432414 5650 list_remove(buflist, hdr);
34dc7c2f
BB
5651 mutex_exit(hash_lock);
5652 continue;
5653 }
5654
b9541d6b
CW
5655 if (!all && HDR_HAS_L2HDR(hdr) &&
5656 (hdr->b_l2hdr.b_daddr > taddr ||
5657 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
5658 /*
5659 * We've evicted to the target address,
5660 * or the end of the device.
5661 */
5662 mutex_exit(hash_lock);
5663 break;
5664 }
5665
b9541d6b
CW
5666 ASSERT(HDR_HAS_L2HDR(hdr));
5667 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 5668 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
5669 /*
5670 * This doesn't exist in the ARC. Destroy.
5671 * arc_hdr_destroy() will call list_remove()
5672 * and decrement arcstat_l2_size.
5673 */
2a432414
GW
5674 arc_change_state(arc_anon, hdr, hash_lock);
5675 arc_hdr_destroy(hdr);
34dc7c2f 5676 } else {
b9541d6b
CW
5677 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5678 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
5679 /*
5680 * Invalidate issued or about to be issued
5681 * reads, since we may be about to write
5682 * over this location.
5683 */
2a432414 5684 if (HDR_L2_READING(hdr)) {
b128c09f 5685 ARCSTAT_BUMP(arcstat_l2_evict_reading);
2a432414 5686 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
b128c09f
BB
5687 }
5688
34dc7c2f
BB
5689 /*
5690 * Tell ARC this no longer exists in L2ARC.
5691 */
b9541d6b
CW
5692 /* Tell ARC this no longer exists in L2ARC. */
5693 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5694 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5695 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2a432414 5696 list_remove(buflist, hdr);
34dc7c2f 5697
ca0bf58d
PS
5698 /* Ensure this header has finished being written */
5699 ASSERT(!HDR_L2_WRITING(hdr));
5700 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
34dc7c2f
BB
5701 }
5702 mutex_exit(hash_lock);
5703 }
b9541d6b 5704 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5705
3bec585e 5706 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
34dc7c2f
BB
5707 dev->l2ad_evict = taddr;
5708}
5709
5710/*
5711 * Find and write ARC buffers to the L2ARC device.
5712 *
2a432414 5713 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 5714 * for reading until they have completed writing.
3a17a7a9
SK
5715 * The headroom_boost is an in-out parameter used to maintain headroom boost
5716 * state between calls to this function.
5717 *
5718 * Returns the number of bytes actually written (which may be smaller than
5719 * the delta by which the device hand has changed due to alignment).
34dc7c2f 5720 */
d164b209 5721static uint64_t
3a17a7a9
SK
5722l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5723 boolean_t *headroom_boost)
34dc7c2f 5724{
2a432414 5725 arc_buf_hdr_t *hdr, *hdr_prev, *head;
3a17a7a9
SK
5726 uint64_t write_asize, write_psize, write_sz, headroom,
5727 buf_compress_minsz;
34dc7c2f 5728 void *buf_data;
3a17a7a9 5729 boolean_t full;
34dc7c2f
BB
5730 l2arc_write_callback_t *cb;
5731 zio_t *pio, *wzio;
3541dc6d 5732 uint64_t guid = spa_load_guid(spa);
d6320ddb 5733 int try;
3a17a7a9 5734 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 5735
34dc7c2f
BB
5736 ASSERT(dev->l2ad_vdev != NULL);
5737
3a17a7a9
SK
5738 /* Lower the flag now, we might want to raise it again later. */
5739 *headroom_boost = B_FALSE;
5740
34dc7c2f 5741 pio = NULL;
3a17a7a9 5742 write_sz = write_asize = write_psize = 0;
34dc7c2f 5743 full = B_FALSE;
b9541d6b 5744 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2a432414 5745 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
b9541d6b 5746 head->b_flags |= ARC_FLAG_HAS_L2HDR;
34dc7c2f 5747
3a17a7a9
SK
5748 /*
5749 * We will want to try to compress buffers that are at least 2x the
5750 * device sector size.
5751 */
5752 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5753
34dc7c2f
BB
5754 /*
5755 * Copy buffers for L2ARC writing.
5756 */
d6320ddb 5757 for (try = 0; try <= 3; try++) {
ca0bf58d 5758 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
5759 uint64_t passed_sz = 0;
5760
b128c09f
BB
5761 /*
5762 * L2ARC fast warmup.
5763 *
5764 * Until the ARC is warm and starts to evict, read from the
5765 * head of the ARC lists rather than the tail.
5766 */
b128c09f 5767 if (arc_warm == B_FALSE)
ca0bf58d 5768 hdr = multilist_sublist_head(mls);
b128c09f 5769 else
ca0bf58d 5770 hdr = multilist_sublist_tail(mls);
b128c09f 5771
3a17a7a9
SK
5772 headroom = target_sz * l2arc_headroom;
5773 if (do_headroom_boost)
5774 headroom = (headroom * l2arc_headroom_boost) / 100;
5775
2a432414 5776 for (; hdr; hdr = hdr_prev) {
3a17a7a9
SK
5777 kmutex_t *hash_lock;
5778 uint64_t buf_sz;
5779
b128c09f 5780 if (arc_warm == B_FALSE)
ca0bf58d 5781 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 5782 else
ca0bf58d 5783 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 5784
2a432414 5785 hash_lock = HDR_LOCK(hdr);
3a17a7a9 5786 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
5787 /*
5788 * Skip this buffer rather than waiting.
5789 */
5790 continue;
5791 }
5792
2a432414 5793 passed_sz += hdr->b_size;
34dc7c2f
BB
5794 if (passed_sz > headroom) {
5795 /*
5796 * Searched too far.
5797 */
5798 mutex_exit(hash_lock);
5799 break;
5800 }
5801
2a432414 5802 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
5803 mutex_exit(hash_lock);
5804 continue;
5805 }
5806
2a432414 5807 if ((write_sz + hdr->b_size) > target_sz) {
34dc7c2f
BB
5808 full = B_TRUE;
5809 mutex_exit(hash_lock);
5810 break;
5811 }
5812
34dc7c2f
BB
5813 if (pio == NULL) {
5814 /*
5815 * Insert a dummy header on the buflist so
5816 * l2arc_write_done() can find where the
5817 * write buffers begin without searching.
5818 */
ca0bf58d 5819 mutex_enter(&dev->l2ad_mtx);
b9541d6b 5820 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 5821 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5822
409dc1a5 5823 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
79c76d5b 5824 KM_SLEEP);
34dc7c2f
BB
5825 cb->l2wcb_dev = dev;
5826 cb->l2wcb_head = head;
5827 pio = zio_root(spa, l2arc_write_done, cb,
5828 ZIO_FLAG_CANFAIL);
5829 }
5830
5831 /*
5832 * Create and add a new L2ARC header.
5833 */
b9541d6b
CW
5834 hdr->b_l2hdr.b_dev = dev;
5835 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
2a432414 5836 hdr->b_flags |= ARC_FLAG_L2_WRITING;
3a17a7a9
SK
5837 /*
5838 * Temporarily stash the data buffer in b_tmp_cdata.
5839 * The subsequent write step will pick it up from
b9541d6b 5840 * there. This is because can't access b_l1hdr.b_buf
3a17a7a9
SK
5841 * without holding the hash_lock, which we in turn
5842 * can't access without holding the ARC list locks
5843 * (which we want to avoid during compression/writing)
5844 */
b9541d6b
CW
5845 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
5846 hdr->b_l2hdr.b_asize = hdr->b_size;
5847 hdr->b_l2hdr.b_hits = 0;
5848 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9 5849
2a432414 5850 buf_sz = hdr->b_size;
b9541d6b 5851 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
3a17a7a9 5852
ca0bf58d 5853 mutex_enter(&dev->l2ad_mtx);
b9541d6b 5854 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 5855 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
5856
5857 /*
5858 * Compute and store the buffer cksum before
5859 * writing. On debug the cksum is verified first.
5860 */
b9541d6b
CW
5861 arc_cksum_verify(hdr->b_l1hdr.b_buf);
5862 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
34dc7c2f
BB
5863
5864 mutex_exit(hash_lock);
5865
3a17a7a9
SK
5866 write_sz += buf_sz;
5867 }
5868
ca0bf58d 5869 multilist_sublist_unlock(mls);
3a17a7a9
SK
5870
5871 if (full == B_TRUE)
5872 break;
5873 }
5874
5875 /* No buffers selected for writing? */
5876 if (pio == NULL) {
5877 ASSERT0(write_sz);
b9541d6b
CW
5878 ASSERT(!HDR_HAS_L1HDR(head));
5879 kmem_cache_free(hdr_l2only_cache, head);
3a17a7a9
SK
5880 return (0);
5881 }
5882
ca0bf58d
PS
5883 mutex_enter(&dev->l2ad_mtx);
5884
3a17a7a9
SK
5885 /*
5886 * Now start writing the buffers. We're starting at the write head
5887 * and work backwards, retracing the course of the buffer selector
5888 * loop above.
5889 */
b9541d6b
CW
5890 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
5891 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
3a17a7a9
SK
5892 uint64_t buf_sz;
5893
ca0bf58d
PS
5894 /*
5895 * We rely on the L1 portion of the header below, so
5896 * it's invalid for this header to have been evicted out
5897 * of the ghost cache, prior to being written out. The
5898 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
5899 */
5900 ASSERT(HDR_HAS_L1HDR(hdr));
5901
3a17a7a9
SK
5902 /*
5903 * We shouldn't need to lock the buffer here, since we flagged
2a432414
GW
5904 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5905 * take care to only access its L2 cache parameters. In
b9541d6b 5906 * particular, hdr->l1hdr.b_buf may be invalid by now due to
2a432414 5907 * ARC eviction.
3a17a7a9 5908 */
b9541d6b 5909 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
3a17a7a9 5910
b9541d6b
CW
5911 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
5912 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
5913 if (l2arc_compress_buf(hdr)) {
3a17a7a9
SK
5914 /*
5915 * If compression succeeded, enable headroom
5916 * boost on the next scan cycle.
5917 */
5918 *headroom_boost = B_TRUE;
5919 }
5920 }
5921
5922 /*
5923 * Pick up the buffer data we had previously stashed away
5924 * (and now potentially also compressed).
5925 */
b9541d6b
CW
5926 buf_data = hdr->b_l1hdr.b_tmp_cdata;
5927 buf_sz = hdr->b_l2hdr.b_asize;
3a17a7a9
SK
5928
5929 /* Compression may have squashed the buffer to zero length. */
5930 if (buf_sz != 0) {
5931 uint64_t buf_p_sz;
5932
34dc7c2f
BB
5933 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5934 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5935 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5936 ZIO_FLAG_CANFAIL, B_FALSE);
5937
5938 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5939 zio_t *, wzio);
5940 (void) zio_nowait(wzio);
5941
3a17a7a9 5942 write_asize += buf_sz;
b128c09f
BB
5943 /*
5944 * Keep the clock hand suitably device-aligned.
5945 */
3a17a7a9
SK
5946 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5947 write_psize += buf_p_sz;
5948 dev->l2ad_hand += buf_p_sz;
34dc7c2f 5949 }
34dc7c2f 5950 }
34dc7c2f 5951
b9541d6b 5952 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5953
3a17a7a9 5954 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 5955 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 5956 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 5957 ARCSTAT_INCR(arcstat_l2_size, write_sz);
3a17a7a9 5958 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
3bec585e 5959 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
34dc7c2f
BB
5960
5961 /*
5962 * Bump device hand to the device start if it is approaching the end.
5963 * l2arc_evict() will already have evicted ahead for this case.
5964 */
b128c09f 5965 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f
BB
5966 dev->l2ad_hand = dev->l2ad_start;
5967 dev->l2ad_evict = dev->l2ad_start;
5968 dev->l2ad_first = B_FALSE;
5969 }
5970
d164b209 5971 dev->l2ad_writing = B_TRUE;
34dc7c2f 5972 (void) zio_wait(pio);
d164b209
BB
5973 dev->l2ad_writing = B_FALSE;
5974
3a17a7a9
SK
5975 return (write_asize);
5976}
5977
5978/*
5979 * Compresses an L2ARC buffer.
b9541d6b 5980 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
3a17a7a9
SK
5981 * size in l2hdr->b_asize. This routine tries to compress the data and
5982 * depending on the compression result there are three possible outcomes:
5983 * *) The buffer was incompressible. The original l2hdr contents were left
5984 * untouched and are ready for writing to an L2 device.
5985 * *) The buffer was all-zeros, so there is no need to write it to an L2
5986 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5987 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5988 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5989 * data buffer which holds the compressed data to be written, and b_asize
5990 * tells us how much data there is. b_compress is set to the appropriate
5991 * compression algorithm. Once writing is done, invoke
5992 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5993 *
5994 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5995 * buffer was incompressible).
5996 */
5997static boolean_t
b9541d6b 5998l2arc_compress_buf(arc_buf_hdr_t *hdr)
3a17a7a9
SK
5999{
6000 void *cdata;
9b67f605 6001 size_t csize, len, rounded;
b9541d6b 6002 l2arc_buf_hdr_t *l2hdr;
3a17a7a9 6003
b9541d6b
CW
6004 ASSERT(HDR_HAS_L2HDR(hdr));
6005
6006 l2hdr = &hdr->b_l2hdr;
6007
6008 ASSERT(HDR_HAS_L1HDR(hdr));
6009 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6010 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
3a17a7a9
SK
6011
6012 len = l2hdr->b_asize;
6013 cdata = zio_data_buf_alloc(len);
b9541d6b
CW
6014 ASSERT3P(cdata, !=, NULL);
6015 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
3a17a7a9
SK
6016 cdata, l2hdr->b_asize);
6017
9b67f605
MA
6018 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6019 if (rounded > csize) {
6020 bzero((char *)cdata + csize, rounded - csize);
6021 csize = rounded;
6022 }
6023
3a17a7a9
SK
6024 if (csize == 0) {
6025 /* zero block, indicate that there's nothing to write */
6026 zio_data_buf_free(cdata, len);
b9541d6b 6027 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
3a17a7a9 6028 l2hdr->b_asize = 0;
b9541d6b 6029 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9
SK
6030 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6031 return (B_TRUE);
6032 } else if (csize > 0 && csize < len) {
6033 /*
6034 * Compression succeeded, we'll keep the cdata around for
6035 * writing and release it afterwards.
6036 */
b9541d6b 6037 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
3a17a7a9 6038 l2hdr->b_asize = csize;
b9541d6b 6039 hdr->b_l1hdr.b_tmp_cdata = cdata;
3a17a7a9
SK
6040 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6041 return (B_TRUE);
6042 } else {
6043 /*
6044 * Compression failed, release the compressed buffer.
6045 * l2hdr will be left unmodified.
6046 */
6047 zio_data_buf_free(cdata, len);
6048 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6049 return (B_FALSE);
6050 }
6051}
6052
6053/*
6054 * Decompresses a zio read back from an l2arc device. On success, the
6055 * underlying zio's io_data buffer is overwritten by the uncompressed
6056 * version. On decompression error (corrupt compressed stream), the
6057 * zio->io_error value is set to signal an I/O error.
6058 *
6059 * Please note that the compressed data stream is not checksummed, so
6060 * if the underlying device is experiencing data corruption, we may feed
6061 * corrupt data to the decompressor, so the decompressor needs to be
6062 * able to handle this situation (LZ4 does).
6063 */
6064static void
6065l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6066{
6067 uint64_t csize;
6068 void *cdata;
6069
6070 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6071
6072 if (zio->io_error != 0) {
6073 /*
6074 * An io error has occured, just restore the original io
6075 * size in preparation for a main pool read.
6076 */
6077 zio->io_orig_size = zio->io_size = hdr->b_size;
6078 return;
6079 }
6080
6081 if (c == ZIO_COMPRESS_EMPTY) {
6082 /*
6083 * An empty buffer results in a null zio, which means we
6084 * need to fill its io_data after we're done restoring the
6085 * buffer's contents.
6086 */
b9541d6b
CW
6087 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6088 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6089 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9
SK
6090 } else {
6091 ASSERT(zio->io_data != NULL);
6092 /*
6093 * We copy the compressed data from the start of the arc buffer
6094 * (the zio_read will have pulled in only what we need, the
6095 * rest is garbage which we will overwrite at decompression)
6096 * and then decompress back to the ARC data buffer. This way we
6097 * can minimize copying by simply decompressing back over the
6098 * original compressed data (rather than decompressing to an
6099 * aux buffer and then copying back the uncompressed buffer,
6100 * which is likely to be much larger).
6101 */
6102 csize = zio->io_size;
6103 cdata = zio_data_buf_alloc(csize);
6104 bcopy(zio->io_data, cdata, csize);
6105 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6106 hdr->b_size) != 0)
2e528b49 6107 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
6108 zio_data_buf_free(cdata, csize);
6109 }
6110
6111 /* Restore the expected uncompressed IO size. */
6112 zio->io_orig_size = zio->io_size = hdr->b_size;
6113}
6114
6115/*
6116 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6117 * This buffer serves as a temporary holder of compressed data while
6118 * the buffer entry is being written to an l2arc device. Once that is
6119 * done, we can dispose of it.
6120 */
6121static void
2a432414 6122l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
3a17a7a9 6123{
ca0bf58d
PS
6124 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6125
b9541d6b 6126 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d
PS
6127 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6128
6129 if (comp == ZIO_COMPRESS_OFF) {
6130 /*
6131 * In this case, b_tmp_cdata points to the same buffer
6132 * as the arc_buf_t's b_data field. We don't want to
6133 * free it, since the arc_buf_t will handle that.
6134 */
6135 hdr->b_l1hdr.b_tmp_cdata = NULL;
6136 } else if (comp == ZIO_COMPRESS_EMPTY) {
6137 /*
6138 * In this case, b_tmp_cdata was compressed to an empty
6139 * buffer, thus there's nothing to free and b_tmp_cdata
6140 * should have been set to NULL in l2arc_write_buffers().
6141 */
6142 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6143 } else {
3a17a7a9
SK
6144 /*
6145 * If the data was compressed, then we've allocated a
6146 * temporary buffer for it, so now we need to release it.
6147 */
b9541d6b
CW
6148 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6149 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6150 hdr->b_size);
ca0bf58d 6151 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9 6152 }
ca0bf58d 6153
34dc7c2f
BB
6154}
6155
6156/*
6157 * This thread feeds the L2ARC at regular intervals. This is the beating
6158 * heart of the L2ARC.
6159 */
6160static void
6161l2arc_feed_thread(void)
6162{
6163 callb_cpr_t cpr;
6164 l2arc_dev_t *dev;
6165 spa_t *spa;
d164b209 6166 uint64_t size, wrote;
428870ff 6167 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 6168 boolean_t headroom_boost = B_FALSE;
40d06e3c 6169 fstrans_cookie_t cookie;
34dc7c2f
BB
6170
6171 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6172
6173 mutex_enter(&l2arc_feed_thr_lock);
6174
40d06e3c 6175 cookie = spl_fstrans_mark();
34dc7c2f 6176 while (l2arc_thread_exit == 0) {
34dc7c2f 6177 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
6178 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
6179 &l2arc_feed_thr_lock, next);
34dc7c2f 6180 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 6181 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
6182
6183 /*
b128c09f 6184 * Quick check for L2ARC devices.
34dc7c2f
BB
6185 */
6186 mutex_enter(&l2arc_dev_mtx);
6187 if (l2arc_ndev == 0) {
6188 mutex_exit(&l2arc_dev_mtx);
6189 continue;
6190 }
b128c09f 6191 mutex_exit(&l2arc_dev_mtx);
428870ff 6192 begin = ddi_get_lbolt();
34dc7c2f
BB
6193
6194 /*
b128c09f
BB
6195 * This selects the next l2arc device to write to, and in
6196 * doing so the next spa to feed from: dev->l2ad_spa. This
6197 * will return NULL if there are now no l2arc devices or if
6198 * they are all faulted.
6199 *
6200 * If a device is returned, its spa's config lock is also
6201 * held to prevent device removal. l2arc_dev_get_next()
6202 * will grab and release l2arc_dev_mtx.
34dc7c2f 6203 */
b128c09f 6204 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 6205 continue;
b128c09f
BB
6206
6207 spa = dev->l2ad_spa;
6208 ASSERT(spa != NULL);
34dc7c2f 6209
572e2857
BB
6210 /*
6211 * If the pool is read-only then force the feed thread to
6212 * sleep a little longer.
6213 */
6214 if (!spa_writeable(spa)) {
6215 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6216 spa_config_exit(spa, SCL_L2ARC, dev);
6217 continue;
6218 }
6219
34dc7c2f 6220 /*
b128c09f 6221 * Avoid contributing to memory pressure.
34dc7c2f 6222 */
302f753f 6223 if (arc_no_grow) {
b128c09f
BB
6224 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6225 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
6226 continue;
6227 }
b128c09f 6228
34dc7c2f
BB
6229 ARCSTAT_BUMP(arcstat_l2_feeds);
6230
3a17a7a9 6231 size = l2arc_write_size();
b128c09f 6232
34dc7c2f
BB
6233 /*
6234 * Evict L2ARC buffers that will be overwritten.
6235 */
b128c09f 6236 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
6237
6238 /*
6239 * Write ARC buffers.
6240 */
3a17a7a9 6241 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
6242
6243 /*
6244 * Calculate interval between writes.
6245 */
6246 next = l2arc_write_interval(begin, size, wrote);
b128c09f 6247 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 6248 }
40d06e3c 6249 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6250
6251 l2arc_thread_exit = 0;
6252 cv_broadcast(&l2arc_feed_thr_cv);
6253 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6254 thread_exit();
6255}
6256
b128c09f
BB
6257boolean_t
6258l2arc_vdev_present(vdev_t *vd)
6259{
6260 l2arc_dev_t *dev;
6261
6262 mutex_enter(&l2arc_dev_mtx);
6263 for (dev = list_head(l2arc_dev_list); dev != NULL;
6264 dev = list_next(l2arc_dev_list, dev)) {
6265 if (dev->l2ad_vdev == vd)
6266 break;
6267 }
6268 mutex_exit(&l2arc_dev_mtx);
6269
6270 return (dev != NULL);
6271}
6272
34dc7c2f
BB
6273/*
6274 * Add a vdev for use by the L2ARC. By this point the spa has already
6275 * validated the vdev and opened it.
6276 */
6277void
9babb374 6278l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
6279{
6280 l2arc_dev_t *adddev;
6281
b128c09f
BB
6282 ASSERT(!l2arc_vdev_present(vd));
6283
34dc7c2f
BB
6284 /*
6285 * Create a new l2arc device entry.
6286 */
6287 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6288 adddev->l2ad_spa = spa;
6289 adddev->l2ad_vdev = vd;
9babb374
BB
6290 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6291 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
6292 adddev->l2ad_hand = adddev->l2ad_start;
6293 adddev->l2ad_evict = adddev->l2ad_start;
6294 adddev->l2ad_first = B_TRUE;
d164b209 6295 adddev->l2ad_writing = B_FALSE;
98f72a53 6296 list_link_init(&adddev->l2ad_node);
34dc7c2f 6297
b9541d6b 6298 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6299 /*
6300 * This is a list of all ARC buffers that are still valid on the
6301 * device.
6302 */
b9541d6b
CW
6303 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6304 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 6305
428870ff 6306 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
6307
6308 /*
6309 * Add device to global list
6310 */
6311 mutex_enter(&l2arc_dev_mtx);
6312 list_insert_head(l2arc_dev_list, adddev);
6313 atomic_inc_64(&l2arc_ndev);
6314 mutex_exit(&l2arc_dev_mtx);
6315}
6316
6317/*
6318 * Remove a vdev from the L2ARC.
6319 */
6320void
6321l2arc_remove_vdev(vdev_t *vd)
6322{
6323 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6324
34dc7c2f
BB
6325 /*
6326 * Find the device by vdev
6327 */
6328 mutex_enter(&l2arc_dev_mtx);
6329 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6330 nextdev = list_next(l2arc_dev_list, dev);
6331 if (vd == dev->l2ad_vdev) {
6332 remdev = dev;
6333 break;
6334 }
6335 }
6336 ASSERT(remdev != NULL);
6337
6338 /*
6339 * Remove device from global list
6340 */
6341 list_remove(l2arc_dev_list, remdev);
6342 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
6343 atomic_dec_64(&l2arc_ndev);
6344 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
6345
6346 /*
6347 * Clear all buflists and ARC references. L2ARC device flush.
6348 */
6349 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
6350 list_destroy(&remdev->l2ad_buflist);
6351 mutex_destroy(&remdev->l2ad_mtx);
34dc7c2f 6352 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
6353}
6354
6355void
b128c09f 6356l2arc_init(void)
34dc7c2f
BB
6357{
6358 l2arc_thread_exit = 0;
6359 l2arc_ndev = 0;
6360 l2arc_writes_sent = 0;
6361 l2arc_writes_done = 0;
6362
6363 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6364 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6365 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6366 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6367
6368 l2arc_dev_list = &L2ARC_dev_list;
6369 l2arc_free_on_write = &L2ARC_free_on_write;
6370 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6371 offsetof(l2arc_dev_t, l2ad_node));
6372 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6373 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
6374}
6375
6376void
b128c09f 6377l2arc_fini(void)
34dc7c2f 6378{
b128c09f
BB
6379 /*
6380 * This is called from dmu_fini(), which is called from spa_fini();
6381 * Because of this, we can assume that all l2arc devices have
6382 * already been removed when the pools themselves were removed.
6383 */
6384
6385 l2arc_do_free_on_write();
34dc7c2f
BB
6386
6387 mutex_destroy(&l2arc_feed_thr_lock);
6388 cv_destroy(&l2arc_feed_thr_cv);
6389 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
6390 mutex_destroy(&l2arc_free_on_write_mtx);
6391
6392 list_destroy(l2arc_dev_list);
6393 list_destroy(l2arc_free_on_write);
6394}
b128c09f
BB
6395
6396void
6397l2arc_start(void)
6398{
fb5f0bc8 6399 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6400 return;
6401
6402 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6403 TS_RUN, minclsyspri);
6404}
6405
6406void
6407l2arc_stop(void)
6408{
fb5f0bc8 6409 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6410 return;
6411
6412 mutex_enter(&l2arc_feed_thr_lock);
6413 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6414 l2arc_thread_exit = 1;
6415 while (l2arc_thread_exit != 0)
6416 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6417 mutex_exit(&l2arc_feed_thr_lock);
6418}
c28b2279
BB
6419
6420#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
6421EXPORT_SYMBOL(arc_buf_size);
6422EXPORT_SYMBOL(arc_write);
c28b2279
BB
6423EXPORT_SYMBOL(arc_read);
6424EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 6425EXPORT_SYMBOL(arc_buf_info);
c28b2279 6426EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
6427EXPORT_SYMBOL(arc_add_prune_callback);
6428EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 6429
bce45ec9 6430module_param(zfs_arc_min, ulong, 0644);
c409e464 6431MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 6432
bce45ec9 6433module_param(zfs_arc_max, ulong, 0644);
c409e464 6434MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 6435
bce45ec9 6436module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 6437MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 6438
ca0bf58d
PS
6439module_param(zfs_arc_meta_min, ulong, 0644);
6440MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
6441
bce45ec9 6442module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 6443MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 6444
bc888666
BB
6445module_param(zfs_arc_meta_adjust_restarts, ulong, 0644);
6446MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
6447 "Limit number of restarts in arc_adjust_meta");
6448
f6046738
BB
6449module_param(zfs_arc_meta_strategy, int, 0644);
6450MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
6451
bce45ec9 6452module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
6453MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
6454
89c8cac4
PS
6455module_param(zfs_arc_p_aggressive_disable, int, 0644);
6456MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
6457
62422785
PS
6458module_param(zfs_arc_p_dampener_disable, int, 0644);
6459MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
6460
bce45ec9 6461module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
6462MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
6463
1f7c30df
BB
6464module_param(zfs_disable_dup_eviction, int, 0644);
6465MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
6466
49ddb315
MA
6467module_param(zfs_arc_average_blocksize, int, 0444);
6468MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
6469
0c5493d4
BB
6470module_param(zfs_arc_memory_throttle_disable, int, 0644);
6471MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
6472
bce45ec9
BB
6473module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
6474MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
6475
ca0bf58d
PS
6476module_param(zfs_arc_num_sublists_per_state, int, 0644);
6477MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
6478 "Number of sublists used in each of the ARC state lists");
6479
bce45ec9 6480module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
6481MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
6482
bce45ec9 6483module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
6484MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
6485
bce45ec9 6486module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
6487MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
6488
3a17a7a9
SK
6489module_param(l2arc_headroom_boost, ulong, 0644);
6490MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
6491
bce45ec9 6492module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
6493MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
6494
bce45ec9 6495module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
6496MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
6497
bce45ec9 6498module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
6499MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
6500
3a17a7a9
SK
6501module_param(l2arc_nocompress, int, 0644);
6502MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
6503
bce45ec9 6504module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
6505MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
6506
bce45ec9 6507module_param(l2arc_norw, int, 0644);
abd8610c
BB
6508MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
6509
c28b2279 6510#endif