]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Fix type mismatch on 32-bit systems
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
5dbd68a3 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
3bec585e 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
bd089c54 107 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
34dc7c2f
BB
138#ifdef _KERNEL
139#include <sys/vmsystm.h>
140#include <vm/anon.h>
141#include <sys/fs/swapnode.h>
ab26409d 142#include <sys/zpl.h>
aaed7c40 143#include <linux/mm_compat.h>
34dc7c2f
BB
144#endif
145#include <sys/callb.h>
146#include <sys/kstat.h>
570827e1 147#include <sys/dmu_tx.h>
428870ff 148#include <zfs_fletcher.h>
59ec819a 149#include <sys/arc_impl.h>
49ee64e5 150#include <sys/trace_arc.h>
34dc7c2f 151
498877ba
MA
152#ifndef _KERNEL
153/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
154boolean_t arc_watch = B_FALSE;
155#endif
156
34dc7c2f
BB
157static kmutex_t arc_reclaim_thr_lock;
158static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
159static uint8_t arc_thread_exit;
160
2cbb06b5
BB
161/* number of objects to prune from caches when arc_meta_limit is reached */
162int zfs_arc_meta_prune = 10000;
34dc7c2f
BB
163
164typedef enum arc_reclaim_strategy {
165 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
166 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
167} arc_reclaim_strategy_t;
168
e8b96c60
MA
169/*
170 * The number of iterations through arc_evict_*() before we
171 * drop & reacquire the lock.
172 */
173int arc_evict_iterations = 100;
174
34dc7c2f 175/* number of seconds before growing cache again */
bce45ec9 176int zfs_arc_grow_retry = 5;
34dc7c2f 177
89c8cac4
PS
178/* disable anon data aggressively growing arc_p */
179int zfs_arc_p_aggressive_disable = 1;
180
62422785
PS
181/* disable arc_p adapt dampener in arc_adapt */
182int zfs_arc_p_dampener_disable = 1;
183
d164b209 184/* log2(fraction of arc to reclaim) */
bce45ec9 185int zfs_arc_shrink_shift = 5;
d164b209 186
34dc7c2f
BB
187/*
188 * minimum lifespan of a prefetch block in clock ticks
189 * (initialized in arc_init())
190 */
bce45ec9
BB
191int zfs_arc_min_prefetch_lifespan = HZ;
192
193/* disable arc proactive arc throttle due to low memory */
194int zfs_arc_memory_throttle_disable = 1;
195
196/* disable duplicate buffer eviction */
197int zfs_disable_dup_eviction = 0;
34dc7c2f 198
49ddb315
MA
199/* average block used to size buf_hash_table */
200int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
201
e8b96c60
MA
202/*
203 * If this percent of memory is free, don't throttle.
204 */
205int arc_lotsfree_percent = 10;
206
34dc7c2f
BB
207static int arc_dead;
208
bce45ec9
BB
209/* expiration time for arc_no_grow */
210static clock_t arc_grow_time = 0;
211
b128c09f
BB
212/*
213 * The arc has filled available memory and has now warmed up.
214 */
215static boolean_t arc_warm;
216
34dc7c2f
BB
217/*
218 * These tunables are for performance analysis.
219 */
c28b2279
BB
220unsigned long zfs_arc_max = 0;
221unsigned long zfs_arc_min = 0;
222unsigned long zfs_arc_meta_limit = 0;
34dc7c2f 223
bc888666
BB
224/*
225 * Limit the number of restarts in arc_adjust_meta()
226 */
227unsigned long zfs_arc_meta_adjust_restarts = 4096;
228
34dc7c2f
BB
229/* The 6 states: */
230static arc_state_t ARC_anon;
231static arc_state_t ARC_mru;
232static arc_state_t ARC_mru_ghost;
233static arc_state_t ARC_mfu;
234static arc_state_t ARC_mfu_ghost;
235static arc_state_t ARC_l2c_only;
236
237typedef struct arc_stats {
238 kstat_named_t arcstat_hits;
239 kstat_named_t arcstat_misses;
240 kstat_named_t arcstat_demand_data_hits;
241 kstat_named_t arcstat_demand_data_misses;
242 kstat_named_t arcstat_demand_metadata_hits;
243 kstat_named_t arcstat_demand_metadata_misses;
244 kstat_named_t arcstat_prefetch_data_hits;
245 kstat_named_t arcstat_prefetch_data_misses;
246 kstat_named_t arcstat_prefetch_metadata_hits;
247 kstat_named_t arcstat_prefetch_metadata_misses;
248 kstat_named_t arcstat_mru_hits;
249 kstat_named_t arcstat_mru_ghost_hits;
250 kstat_named_t arcstat_mfu_hits;
251 kstat_named_t arcstat_mfu_ghost_hits;
252 kstat_named_t arcstat_deleted;
253 kstat_named_t arcstat_recycle_miss;
e49f1e20
WA
254 /*
255 * Number of buffers that could not be evicted because the hash lock
256 * was held by another thread. The lock may not necessarily be held
257 * by something using the same buffer, since hash locks are shared
258 * by multiple buffers.
259 */
34dc7c2f 260 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
261 /*
262 * Number of buffers skipped because they have I/O in progress, are
263 * indrect prefetch buffers that have not lived long enough, or are
264 * not from the spa we're trying to evict from.
265 */
34dc7c2f 266 kstat_named_t arcstat_evict_skip;
428870ff
BB
267 kstat_named_t arcstat_evict_l2_cached;
268 kstat_named_t arcstat_evict_l2_eligible;
269 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
270 kstat_named_t arcstat_hash_elements;
271 kstat_named_t arcstat_hash_elements_max;
272 kstat_named_t arcstat_hash_collisions;
273 kstat_named_t arcstat_hash_chains;
274 kstat_named_t arcstat_hash_chain_max;
275 kstat_named_t arcstat_p;
276 kstat_named_t arcstat_c;
277 kstat_named_t arcstat_c_min;
278 kstat_named_t arcstat_c_max;
279 kstat_named_t arcstat_size;
280 kstat_named_t arcstat_hdr_size;
d164b209 281 kstat_named_t arcstat_data_size;
cc7f677c 282 kstat_named_t arcstat_meta_size;
d164b209 283 kstat_named_t arcstat_other_size;
13be560d
BB
284 kstat_named_t arcstat_anon_size;
285 kstat_named_t arcstat_anon_evict_data;
286 kstat_named_t arcstat_anon_evict_metadata;
287 kstat_named_t arcstat_mru_size;
288 kstat_named_t arcstat_mru_evict_data;
289 kstat_named_t arcstat_mru_evict_metadata;
290 kstat_named_t arcstat_mru_ghost_size;
291 kstat_named_t arcstat_mru_ghost_evict_data;
292 kstat_named_t arcstat_mru_ghost_evict_metadata;
293 kstat_named_t arcstat_mfu_size;
294 kstat_named_t arcstat_mfu_evict_data;
295 kstat_named_t arcstat_mfu_evict_metadata;
296 kstat_named_t arcstat_mfu_ghost_size;
297 kstat_named_t arcstat_mfu_ghost_evict_data;
298 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
299 kstat_named_t arcstat_l2_hits;
300 kstat_named_t arcstat_l2_misses;
301 kstat_named_t arcstat_l2_feeds;
302 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
303 kstat_named_t arcstat_l2_read_bytes;
304 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
305 kstat_named_t arcstat_l2_writes_sent;
306 kstat_named_t arcstat_l2_writes_done;
307 kstat_named_t arcstat_l2_writes_error;
308 kstat_named_t arcstat_l2_writes_hdr_miss;
309 kstat_named_t arcstat_l2_evict_lock_retry;
310 kstat_named_t arcstat_l2_evict_reading;
311 kstat_named_t arcstat_l2_free_on_write;
037763e4 312 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
313 kstat_named_t arcstat_l2_abort_lowmem;
314 kstat_named_t arcstat_l2_cksum_bad;
315 kstat_named_t arcstat_l2_io_error;
316 kstat_named_t arcstat_l2_size;
3a17a7a9 317 kstat_named_t arcstat_l2_asize;
34dc7c2f 318 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
319 kstat_named_t arcstat_l2_compress_successes;
320 kstat_named_t arcstat_l2_compress_zeros;
321 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 322 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
323 kstat_named_t arcstat_duplicate_buffers;
324 kstat_named_t arcstat_duplicate_buffers_size;
325 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
326 kstat_named_t arcstat_memory_direct_count;
327 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
328 kstat_named_t arcstat_no_grow;
329 kstat_named_t arcstat_tempreserve;
330 kstat_named_t arcstat_loaned_bytes;
ab26409d 331 kstat_named_t arcstat_prune;
1834f2d8
BB
332 kstat_named_t arcstat_meta_used;
333 kstat_named_t arcstat_meta_limit;
334 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
335} arc_stats_t;
336
337static arc_stats_t arc_stats = {
338 { "hits", KSTAT_DATA_UINT64 },
339 { "misses", KSTAT_DATA_UINT64 },
340 { "demand_data_hits", KSTAT_DATA_UINT64 },
341 { "demand_data_misses", KSTAT_DATA_UINT64 },
342 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
343 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
344 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
345 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
346 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
347 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
348 { "mru_hits", KSTAT_DATA_UINT64 },
349 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
350 { "mfu_hits", KSTAT_DATA_UINT64 },
351 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
352 { "deleted", KSTAT_DATA_UINT64 },
353 { "recycle_miss", KSTAT_DATA_UINT64 },
354 { "mutex_miss", KSTAT_DATA_UINT64 },
355 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
356 { "evict_l2_cached", KSTAT_DATA_UINT64 },
357 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
358 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
359 { "hash_elements", KSTAT_DATA_UINT64 },
360 { "hash_elements_max", KSTAT_DATA_UINT64 },
361 { "hash_collisions", KSTAT_DATA_UINT64 },
362 { "hash_chains", KSTAT_DATA_UINT64 },
363 { "hash_chain_max", KSTAT_DATA_UINT64 },
364 { "p", KSTAT_DATA_UINT64 },
365 { "c", KSTAT_DATA_UINT64 },
366 { "c_min", KSTAT_DATA_UINT64 },
367 { "c_max", KSTAT_DATA_UINT64 },
368 { "size", KSTAT_DATA_UINT64 },
369 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 370 { "data_size", KSTAT_DATA_UINT64 },
cc7f677c 371 { "meta_size", KSTAT_DATA_UINT64 },
d164b209 372 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
373 { "anon_size", KSTAT_DATA_UINT64 },
374 { "anon_evict_data", KSTAT_DATA_UINT64 },
375 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
376 { "mru_size", KSTAT_DATA_UINT64 },
377 { "mru_evict_data", KSTAT_DATA_UINT64 },
378 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
379 { "mru_ghost_size", KSTAT_DATA_UINT64 },
380 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
381 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
382 { "mfu_size", KSTAT_DATA_UINT64 },
383 { "mfu_evict_data", KSTAT_DATA_UINT64 },
384 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
385 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
386 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
387 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
388 { "l2_hits", KSTAT_DATA_UINT64 },
389 { "l2_misses", KSTAT_DATA_UINT64 },
390 { "l2_feeds", KSTAT_DATA_UINT64 },
391 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
392 { "l2_read_bytes", KSTAT_DATA_UINT64 },
393 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
394 { "l2_writes_sent", KSTAT_DATA_UINT64 },
395 { "l2_writes_done", KSTAT_DATA_UINT64 },
396 { "l2_writes_error", KSTAT_DATA_UINT64 },
397 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
398 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
399 { "l2_evict_reading", KSTAT_DATA_UINT64 },
400 { "l2_free_on_write", KSTAT_DATA_UINT64 },
037763e4 401 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
402 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
403 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
404 { "l2_io_error", KSTAT_DATA_UINT64 },
405 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 406 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 407 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
408 { "l2_compress_successes", KSTAT_DATA_UINT64 },
409 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
410 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 411 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
412 { "duplicate_buffers", KSTAT_DATA_UINT64 },
413 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
414 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
415 { "memory_direct_count", KSTAT_DATA_UINT64 },
416 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
417 { "arc_no_grow", KSTAT_DATA_UINT64 },
418 { "arc_tempreserve", KSTAT_DATA_UINT64 },
419 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 420 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
421 { "arc_meta_used", KSTAT_DATA_UINT64 },
422 { "arc_meta_limit", KSTAT_DATA_UINT64 },
423 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
424};
425
426#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
427
428#define ARCSTAT_INCR(stat, val) \
d3cc8b15 429 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 430
428870ff 431#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
432#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
433
434#define ARCSTAT_MAX(stat, val) { \
435 uint64_t m; \
436 while ((val) > (m = arc_stats.stat.value.ui64) && \
437 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
438 continue; \
439}
440
441#define ARCSTAT_MAXSTAT(stat) \
442 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
443
444/*
445 * We define a macro to allow ARC hits/misses to be easily broken down by
446 * two separate conditions, giving a total of four different subtypes for
447 * each of hits and misses (so eight statistics total).
448 */
449#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
450 if (cond1) { \
451 if (cond2) { \
452 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
453 } else { \
454 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
455 } \
456 } else { \
457 if (cond2) { \
458 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
459 } else { \
460 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
461 } \
462 }
463
464kstat_t *arc_ksp;
428870ff 465static arc_state_t *arc_anon;
34dc7c2f
BB
466static arc_state_t *arc_mru;
467static arc_state_t *arc_mru_ghost;
468static arc_state_t *arc_mfu;
469static arc_state_t *arc_mfu_ghost;
470static arc_state_t *arc_l2c_only;
471
472/*
473 * There are several ARC variables that are critical to export as kstats --
474 * but we don't want to have to grovel around in the kstat whenever we wish to
475 * manipulate them. For these variables, we therefore define them to be in
476 * terms of the statistic variable. This assures that we are not introducing
477 * the possibility of inconsistency by having shadow copies of the variables,
478 * while still allowing the code to be readable.
479 */
480#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
481#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
482#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
483#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
484#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
485#define arc_no_grow ARCSTAT(arcstat_no_grow)
486#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
487#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133
GW
488#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
489#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
490#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 491
3a17a7a9
SK
492#define L2ARC_IS_VALID_COMPRESS(_c_) \
493 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
494
ab26409d
BB
495static list_t arc_prune_list;
496static kmutex_t arc_prune_mtx;
34dc7c2f
BB
497static arc_buf_t *arc_eviction_list;
498static kmutex_t arc_eviction_mtx;
499static arc_buf_hdr_t arc_eviction_hdr;
500static void arc_get_data_buf(arc_buf_t *buf);
501static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
502static int arc_evict_needed(arc_buf_contents_t type);
68121a03
BB
503static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
504 arc_buf_contents_t type);
498877ba 505static void arc_buf_watch(arc_buf_t *buf);
34dc7c2f 506
428870ff
BB
507static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
508
34dc7c2f
BB
509#define GHOST_STATE(state) \
510 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
511 (state) == arc_l2c_only)
512
513/*
514 * Private ARC flags. These flags are private ARC only flags that will show up
515 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
516 * be passed in as arc_flags in things like arc_read. However, these flags
517 * should never be passed and should only be set by ARC code. When adding new
518 * public flags, make sure not to smash the private ones.
519 */
520
521#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
522#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
523#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
524#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
525#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
526#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
527#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
528#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
529#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
530#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
531
532#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
533#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
534#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 535#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
536#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
537#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
538#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
539#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
540#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
541 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
542#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
543#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
544#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
545
546/*
547 * Other sizes
548 */
549
550#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
551#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
552
553/*
554 * Hash table routines
555 */
556
00b46022
BB
557#define HT_LOCK_ALIGN 64
558#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
559
560struct ht_lock {
561 kmutex_t ht_lock;
562#ifdef _KERNEL
00b46022 563 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
564#endif
565};
566
b31d8ea7 567#define BUF_LOCKS 8192
34dc7c2f
BB
568typedef struct buf_hash_table {
569 uint64_t ht_mask;
570 arc_buf_hdr_t **ht_table;
571 struct ht_lock ht_locks[BUF_LOCKS];
572} buf_hash_table_t;
573
574static buf_hash_table_t buf_hash_table;
575
576#define BUF_HASH_INDEX(spa, dva, birth) \
577 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
578#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
579#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
580#define HDR_LOCK(hdr) \
581 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
582
583uint64_t zfs_crc64_table[256];
584
585/*
586 * Level 2 ARC
587 */
588
589#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
590#define L2ARC_HEADROOM 2 /* num of writes */
591/*
592 * If we discover during ARC scan any buffers to be compressed, we boost
593 * our headroom for the next scanning cycle by this percentage multiple.
594 */
595#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
596#define L2ARC_FEED_SECS 1 /* caching interval secs */
597#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
598
599#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
600#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
601
d3cc8b15 602/* L2ARC Performance Tunables */
abd8610c
BB
603unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
604unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
605unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 606unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
607unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
608unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
609int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 610int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 611int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 612int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
613
614/*
615 * L2ARC Internals
616 */
34dc7c2f
BB
617static list_t L2ARC_dev_list; /* device list */
618static list_t *l2arc_dev_list; /* device list pointer */
619static kmutex_t l2arc_dev_mtx; /* device list mutex */
620static l2arc_dev_t *l2arc_dev_last; /* last device used */
621static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
622static list_t L2ARC_free_on_write; /* free after write buf list */
623static list_t *l2arc_free_on_write; /* free after write list ptr */
624static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
625static uint64_t l2arc_ndev; /* number of devices */
626
627typedef struct l2arc_read_callback {
3a17a7a9
SK
628 arc_buf_t *l2rcb_buf; /* read buffer */
629 spa_t *l2rcb_spa; /* spa */
630 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 631 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
632 int l2rcb_flags; /* original flags */
633 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
634} l2arc_read_callback_t;
635
34dc7c2f
BB
636struct l2arc_buf_hdr {
637 /* protected by arc_buf_hdr mutex */
3a17a7a9
SK
638 l2arc_dev_t *b_dev; /* L2ARC device */
639 uint64_t b_daddr; /* disk address, offset byte */
640 /* compression applied to buffer data */
641 enum zio_compress b_compress;
642 /* real alloc'd buffer size depending on b_compress applied */
e0b0ca98 643 uint32_t b_hits;
c5cb66ad 644 uint64_t b_asize;
3a17a7a9
SK
645 /* temporary buffer holder for in-flight compressed data */
646 void *b_tmp_cdata;
34dc7c2f
BB
647};
648
649typedef struct l2arc_data_free {
650 /* protected by l2arc_free_on_write_mtx */
651 void *l2df_data;
652 size_t l2df_size;
653 void (*l2df_func)(void *, size_t);
654 list_node_t l2df_list_node;
655} l2arc_data_free_t;
656
657static kmutex_t l2arc_feed_thr_lock;
658static kcondvar_t l2arc_feed_thr_cv;
659static uint8_t l2arc_thread_exit;
660
661static void l2arc_read_done(zio_t *zio);
662static void l2arc_hdr_stat_add(void);
663static void l2arc_hdr_stat_remove(void);
664
3a17a7a9
SK
665static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
666static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
667 enum zio_compress c);
668static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
669
34dc7c2f 670static uint64_t
d164b209 671buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 672{
34dc7c2f
BB
673 uint8_t *vdva = (uint8_t *)dva;
674 uint64_t crc = -1ULL;
675 int i;
676
677 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
678
679 for (i = 0; i < sizeof (dva_t); i++)
680 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
681
d164b209 682 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
683
684 return (crc);
685}
686
687#define BUF_EMPTY(buf) \
688 ((buf)->b_dva.dva_word[0] == 0 && \
689 (buf)->b_dva.dva_word[1] == 0 && \
b0bc7a84 690 (buf)->b_cksum0 == 0)
34dc7c2f
BB
691
692#define BUF_EQUAL(spa, dva, birth, buf) \
693 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
694 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
695 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
696
428870ff
BB
697static void
698buf_discard_identity(arc_buf_hdr_t *hdr)
699{
700 hdr->b_dva.dva_word[0] = 0;
701 hdr->b_dva.dva_word[1] = 0;
702 hdr->b_birth = 0;
703 hdr->b_cksum0 = 0;
704}
705
34dc7c2f 706static arc_buf_hdr_t *
9b67f605 707buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 708{
9b67f605
MA
709 const dva_t *dva = BP_IDENTITY(bp);
710 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
711 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
712 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
713 arc_buf_hdr_t *buf;
714
715 mutex_enter(hash_lock);
716 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
717 buf = buf->b_hash_next) {
718 if (BUF_EQUAL(spa, dva, birth, buf)) {
719 *lockp = hash_lock;
720 return (buf);
721 }
722 }
723 mutex_exit(hash_lock);
724 *lockp = NULL;
725 return (NULL);
726}
727
728/*
729 * Insert an entry into the hash table. If there is already an element
730 * equal to elem in the hash table, then the already existing element
731 * will be returned and the new element will not be inserted.
732 * Otherwise returns NULL.
733 */
734static arc_buf_hdr_t *
735buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
736{
737 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
738 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
739 arc_buf_hdr_t *fbuf;
740 uint32_t i;
741
9b67f605
MA
742 ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
743 ASSERT(buf->b_birth != 0);
34dc7c2f
BB
744 ASSERT(!HDR_IN_HASH_TABLE(buf));
745 *lockp = hash_lock;
746 mutex_enter(hash_lock);
747 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
748 fbuf = fbuf->b_hash_next, i++) {
749 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
750 return (fbuf);
751 }
752
753 buf->b_hash_next = buf_hash_table.ht_table[idx];
754 buf_hash_table.ht_table[idx] = buf;
755 buf->b_flags |= ARC_IN_HASH_TABLE;
756
757 /* collect some hash table performance data */
758 if (i > 0) {
759 ARCSTAT_BUMP(arcstat_hash_collisions);
760 if (i == 1)
761 ARCSTAT_BUMP(arcstat_hash_chains);
762
763 ARCSTAT_MAX(arcstat_hash_chain_max, i);
764 }
765
766 ARCSTAT_BUMP(arcstat_hash_elements);
767 ARCSTAT_MAXSTAT(arcstat_hash_elements);
768
769 return (NULL);
770}
771
772static void
773buf_hash_remove(arc_buf_hdr_t *buf)
774{
775 arc_buf_hdr_t *fbuf, **bufp;
776 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
777
778 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
779 ASSERT(HDR_IN_HASH_TABLE(buf));
780
781 bufp = &buf_hash_table.ht_table[idx];
782 while ((fbuf = *bufp) != buf) {
783 ASSERT(fbuf != NULL);
784 bufp = &fbuf->b_hash_next;
785 }
786 *bufp = buf->b_hash_next;
787 buf->b_hash_next = NULL;
788 buf->b_flags &= ~ARC_IN_HASH_TABLE;
789
790 /* collect some hash table performance data */
791 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
792
793 if (buf_hash_table.ht_table[idx] &&
794 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
795 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
796}
797
798/*
799 * Global data structures and functions for the buf kmem cache.
800 */
801static kmem_cache_t *hdr_cache;
802static kmem_cache_t *buf_cache;
ecf3d9b8 803static kmem_cache_t *l2arc_hdr_cache;
34dc7c2f
BB
804
805static void
806buf_fini(void)
807{
808 int i;
809
00b46022 810#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
811 /*
812 * Large allocations which do not require contiguous pages
813 * should be using vmem_free() in the linux kernel\
814 */
00b46022
BB
815 vmem_free(buf_hash_table.ht_table,
816 (buf_hash_table.ht_mask + 1) * sizeof (void *));
817#else
34dc7c2f
BB
818 kmem_free(buf_hash_table.ht_table,
819 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 820#endif
34dc7c2f
BB
821 for (i = 0; i < BUF_LOCKS; i++)
822 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
823 kmem_cache_destroy(hdr_cache);
824 kmem_cache_destroy(buf_cache);
ecf3d9b8 825 kmem_cache_destroy(l2arc_hdr_cache);
34dc7c2f
BB
826}
827
828/*
829 * Constructor callback - called when the cache is empty
830 * and a new buf is requested.
831 */
832/* ARGSUSED */
833static int
834hdr_cons(void *vbuf, void *unused, int kmflag)
835{
836 arc_buf_hdr_t *buf = vbuf;
837
838 bzero(buf, sizeof (arc_buf_hdr_t));
839 refcount_create(&buf->b_refcnt);
840 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
841 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
842 list_link_init(&buf->b_arc_node);
843 list_link_init(&buf->b_l2node);
d164b209 844 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 845
34dc7c2f
BB
846 return (0);
847}
848
b128c09f
BB
849/* ARGSUSED */
850static int
851buf_cons(void *vbuf, void *unused, int kmflag)
852{
853 arc_buf_t *buf = vbuf;
854
855 bzero(buf, sizeof (arc_buf_t));
428870ff 856 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
857 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
858
b128c09f
BB
859 return (0);
860}
861
34dc7c2f
BB
862/*
863 * Destructor callback - called when a cached buf is
864 * no longer required.
865 */
866/* ARGSUSED */
867static void
868hdr_dest(void *vbuf, void *unused)
869{
870 arc_buf_hdr_t *buf = vbuf;
871
428870ff 872 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
873 refcount_destroy(&buf->b_refcnt);
874 cv_destroy(&buf->b_cv);
875 mutex_destroy(&buf->b_freeze_lock);
d164b209 876 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
877}
878
b128c09f
BB
879/* ARGSUSED */
880static void
881buf_dest(void *vbuf, void *unused)
882{
883 arc_buf_t *buf = vbuf;
884
428870ff 885 mutex_destroy(&buf->b_evict_lock);
d164b209 886 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
887}
888
34dc7c2f
BB
889static void
890buf_init(void)
891{
892 uint64_t *ct;
893 uint64_t hsize = 1ULL << 12;
894 int i, j;
895
896 /*
897 * The hash table is big enough to fill all of physical memory
49ddb315
MA
898 * with an average block size of zfs_arc_average_blocksize (default 8K).
899 * By default, the table will take up
900 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 901 */
49ddb315 902 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
903 hsize <<= 1;
904retry:
905 buf_hash_table.ht_mask = hsize - 1;
00b46022 906#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
907 /*
908 * Large allocations which do not require contiguous pages
909 * should be using vmem_alloc() in the linux kernel
910 */
00b46022
BB
911 buf_hash_table.ht_table =
912 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
913#else
34dc7c2f
BB
914 buf_hash_table.ht_table =
915 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 916#endif
34dc7c2f
BB
917 if (buf_hash_table.ht_table == NULL) {
918 ASSERT(hsize > (1ULL << 8));
919 hsize >>= 1;
920 goto retry;
921 }
922
923 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
302f753f 924 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
34dc7c2f 925 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 926 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
ecf3d9b8
JL
927 l2arc_hdr_cache = kmem_cache_create("l2arc_buf_hdr_t", L2HDR_SIZE,
928 0, NULL, NULL, NULL, NULL, NULL, 0);
34dc7c2f
BB
929
930 for (i = 0; i < 256; i++)
931 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
932 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
933
934 for (i = 0; i < BUF_LOCKS; i++) {
935 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 936 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
937 }
938}
939
940#define ARC_MINTIME (hz>>4) /* 62 ms */
941
942static void
943arc_cksum_verify(arc_buf_t *buf)
944{
945 zio_cksum_t zc;
946
947 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
948 return;
949
950 mutex_enter(&buf->b_hdr->b_freeze_lock);
951 if (buf->b_hdr->b_freeze_cksum == NULL ||
952 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
953 mutex_exit(&buf->b_hdr->b_freeze_lock);
954 return;
955 }
956 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
957 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
958 panic("buffer modified while frozen!");
959 mutex_exit(&buf->b_hdr->b_freeze_lock);
960}
961
962static int
963arc_cksum_equal(arc_buf_t *buf)
964{
965 zio_cksum_t zc;
966 int equal;
967
968 mutex_enter(&buf->b_hdr->b_freeze_lock);
969 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
970 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
971 mutex_exit(&buf->b_hdr->b_freeze_lock);
972
973 return (equal);
974}
975
976static void
977arc_cksum_compute(arc_buf_t *buf, boolean_t force)
978{
979 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
980 return;
981
982 mutex_enter(&buf->b_hdr->b_freeze_lock);
983 if (buf->b_hdr->b_freeze_cksum != NULL) {
984 mutex_exit(&buf->b_hdr->b_freeze_lock);
985 return;
986 }
409dc1a5 987 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
79c76d5b 988 KM_SLEEP);
34dc7c2f
BB
989 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
990 buf->b_hdr->b_freeze_cksum);
991 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
992 arc_buf_watch(buf);
993}
994
995#ifndef _KERNEL
996void
997arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
998{
999 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1000}
1001#endif
1002
1003/* ARGSUSED */
1004static void
1005arc_buf_unwatch(arc_buf_t *buf)
1006{
1007#ifndef _KERNEL
1008 if (arc_watch) {
1009 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1010 PROT_READ | PROT_WRITE));
1011 }
1012#endif
1013}
1014
1015/* ARGSUSED */
1016static void
1017arc_buf_watch(arc_buf_t *buf)
1018{
1019#ifndef _KERNEL
1020 if (arc_watch)
1021 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1022#endif
34dc7c2f
BB
1023}
1024
1025void
1026arc_buf_thaw(arc_buf_t *buf)
1027{
1028 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1029 if (buf->b_hdr->b_state != arc_anon)
1030 panic("modifying non-anon buffer!");
1031 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1032 panic("modifying buffer while i/o in progress!");
1033 arc_cksum_verify(buf);
1034 }
1035
1036 mutex_enter(&buf->b_hdr->b_freeze_lock);
1037 if (buf->b_hdr->b_freeze_cksum != NULL) {
1038 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1039 buf->b_hdr->b_freeze_cksum = NULL;
1040 }
428870ff 1041
34dc7c2f 1042 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
1043
1044 arc_buf_unwatch(buf);
34dc7c2f
BB
1045}
1046
1047void
1048arc_buf_freeze(arc_buf_t *buf)
1049{
428870ff
BB
1050 kmutex_t *hash_lock;
1051
34dc7c2f
BB
1052 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1053 return;
1054
428870ff
BB
1055 hash_lock = HDR_LOCK(buf->b_hdr);
1056 mutex_enter(hash_lock);
1057
34dc7c2f
BB
1058 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1059 buf->b_hdr->b_state == arc_anon);
1060 arc_cksum_compute(buf, B_FALSE);
428870ff 1061 mutex_exit(hash_lock);
498877ba 1062
34dc7c2f
BB
1063}
1064
1065static void
1066add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1067{
1068 ASSERT(MUTEX_HELD(hash_lock));
1069
1070 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1071 (ab->b_state != arc_anon)) {
1072 uint64_t delta = ab->b_size * ab->b_datacnt;
1073 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1074 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1075
1076 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1077 mutex_enter(&ab->b_state->arcs_mtx);
1078 ASSERT(list_link_active(&ab->b_arc_node));
1079 list_remove(list, ab);
1080 if (GHOST_STATE(ab->b_state)) {
c99c9001 1081 ASSERT0(ab->b_datacnt);
34dc7c2f
BB
1082 ASSERT3P(ab->b_buf, ==, NULL);
1083 delta = ab->b_size;
1084 }
1085 ASSERT(delta > 0);
1086 ASSERT3U(*size, >=, delta);
1087 atomic_add_64(size, -delta);
1088 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1089 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1090 if (ab->b_flags & ARC_PREFETCH)
1091 ab->b_flags &= ~ARC_PREFETCH;
1092 }
1093}
1094
1095static int
1096remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1097{
1098 int cnt;
1099 arc_state_t *state = ab->b_state;
1100
1101 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1102 ASSERT(!GHOST_STATE(state));
1103
1104 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1105 (state != arc_anon)) {
1106 uint64_t *size = &state->arcs_lsize[ab->b_type];
1107
1108 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1109 mutex_enter(&state->arcs_mtx);
1110 ASSERT(!list_link_active(&ab->b_arc_node));
1111 list_insert_head(&state->arcs_list[ab->b_type], ab);
1112 ASSERT(ab->b_datacnt > 0);
1113 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1114 mutex_exit(&state->arcs_mtx);
1115 }
1116 return (cnt);
1117}
1118
e0b0ca98
BB
1119/*
1120 * Returns detailed information about a specific arc buffer. When the
1121 * state_index argument is set the function will calculate the arc header
1122 * list position for its arc state. Since this requires a linear traversal
1123 * callers are strongly encourage not to do this. However, it can be helpful
1124 * for targeted analysis so the functionality is provided.
1125 */
1126void
1127arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1128{
1129 arc_buf_hdr_t *hdr = ab->b_hdr;
1130 arc_state_t *state = hdr->b_state;
1131
d1d7e268 1132 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98
BB
1133 abi->abi_flags = hdr->b_flags;
1134 abi->abi_datacnt = hdr->b_datacnt;
1135 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1136 abi->abi_state_contents = hdr->b_type;
1137 abi->abi_state_index = -1;
1138 abi->abi_size = hdr->b_size;
1139 abi->abi_access = hdr->b_arc_access;
1140 abi->abi_mru_hits = hdr->b_mru_hits;
1141 abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits;
1142 abi->abi_mfu_hits = hdr->b_mfu_hits;
1143 abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits;
1144 abi->abi_holds = refcount_count(&hdr->b_refcnt);
1145
1146 if (hdr->b_l2hdr) {
1147 abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr;
1148 abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize;
1149 abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress;
1150 abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits;
1151 }
1152
1153 if (state && state_index && list_link_active(&hdr->b_arc_node)) {
1154 list_t *list = &state->arcs_list[hdr->b_type];
1155 arc_buf_hdr_t *h;
1156
1157 mutex_enter(&state->arcs_mtx);
1158 for (h = list_head(list); h != NULL; h = list_next(list, h)) {
1159 abi->abi_state_index++;
1160 if (h == hdr)
1161 break;
1162 }
1163 mutex_exit(&state->arcs_mtx);
1164 }
1165}
1166
34dc7c2f
BB
1167/*
1168 * Move the supplied buffer to the indicated state. The mutex
1169 * for the buffer must be held by the caller.
1170 */
1171static void
1172arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1173{
1174 arc_state_t *old_state = ab->b_state;
1175 int64_t refcnt = refcount_count(&ab->b_refcnt);
1176 uint64_t from_delta, to_delta;
1177
1178 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1179 ASSERT3P(new_state, !=, old_state);
34dc7c2f
BB
1180 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1181 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1182 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1183
1184 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1185
1186 /*
1187 * If this buffer is evictable, transfer it from the
1188 * old state list to the new state list.
1189 */
1190 if (refcnt == 0) {
1191 if (old_state != arc_anon) {
1192 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1193 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1194
1195 if (use_mutex)
1196 mutex_enter(&old_state->arcs_mtx);
1197
1198 ASSERT(list_link_active(&ab->b_arc_node));
1199 list_remove(&old_state->arcs_list[ab->b_type], ab);
1200
1201 /*
1202 * If prefetching out of the ghost cache,
428870ff 1203 * we will have a non-zero datacnt.
34dc7c2f
BB
1204 */
1205 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1206 /* ghost elements have a ghost size */
1207 ASSERT(ab->b_buf == NULL);
1208 from_delta = ab->b_size;
1209 }
1210 ASSERT3U(*size, >=, from_delta);
1211 atomic_add_64(size, -from_delta);
1212
1213 if (use_mutex)
1214 mutex_exit(&old_state->arcs_mtx);
1215 }
1216 if (new_state != arc_anon) {
1217 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1218 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1219
1220 if (use_mutex)
1221 mutex_enter(&new_state->arcs_mtx);
1222
1223 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1224
1225 /* ghost elements have a ghost size */
1226 if (GHOST_STATE(new_state)) {
1227 ASSERT(ab->b_datacnt == 0);
1228 ASSERT(ab->b_buf == NULL);
1229 to_delta = ab->b_size;
1230 }
1231 atomic_add_64(size, to_delta);
1232
1233 if (use_mutex)
1234 mutex_exit(&new_state->arcs_mtx);
1235 }
1236 }
1237
1238 ASSERT(!BUF_EMPTY(ab));
428870ff 1239 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1240 buf_hash_remove(ab);
34dc7c2f
BB
1241
1242 /* adjust state sizes */
1243 if (to_delta)
1244 atomic_add_64(&new_state->arcs_size, to_delta);
1245 if (from_delta) {
1246 ASSERT3U(old_state->arcs_size, >=, from_delta);
1247 atomic_add_64(&old_state->arcs_size, -from_delta);
1248 }
1249 ab->b_state = new_state;
1250
1251 /* adjust l2arc hdr stats */
1252 if (new_state == arc_l2c_only)
1253 l2arc_hdr_stat_add();
1254 else if (old_state == arc_l2c_only)
1255 l2arc_hdr_stat_remove();
1256}
1257
1258void
d164b209 1259arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1260{
d164b209
BB
1261 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1262
1263 switch (type) {
e75c13c3
BB
1264 default:
1265 break;
d164b209
BB
1266 case ARC_SPACE_DATA:
1267 ARCSTAT_INCR(arcstat_data_size, space);
1268 break;
cc7f677c
PS
1269 case ARC_SPACE_META:
1270 ARCSTAT_INCR(arcstat_meta_size, space);
1271 break;
d164b209
BB
1272 case ARC_SPACE_OTHER:
1273 ARCSTAT_INCR(arcstat_other_size, space);
1274 break;
1275 case ARC_SPACE_HDRS:
1276 ARCSTAT_INCR(arcstat_hdr_size, space);
1277 break;
1278 case ARC_SPACE_L2HDRS:
1279 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1280 break;
1281 }
1282
596a8935 1283 if (type != ARC_SPACE_DATA) {
cc7f677c 1284 ARCSTAT_INCR(arcstat_meta_used, space);
596a8935
BB
1285 if (arc_meta_max < arc_meta_used)
1286 arc_meta_max = arc_meta_used;
1287 }
cc7f677c 1288
34dc7c2f
BB
1289 atomic_add_64(&arc_size, space);
1290}
1291
1292void
d164b209 1293arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1294{
d164b209
BB
1295 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1296
1297 switch (type) {
e75c13c3
BB
1298 default:
1299 break;
d164b209
BB
1300 case ARC_SPACE_DATA:
1301 ARCSTAT_INCR(arcstat_data_size, -space);
1302 break;
cc7f677c
PS
1303 case ARC_SPACE_META:
1304 ARCSTAT_INCR(arcstat_meta_size, -space);
1305 break;
d164b209
BB
1306 case ARC_SPACE_OTHER:
1307 ARCSTAT_INCR(arcstat_other_size, -space);
1308 break;
1309 case ARC_SPACE_HDRS:
1310 ARCSTAT_INCR(arcstat_hdr_size, -space);
1311 break;
1312 case ARC_SPACE_L2HDRS:
1313 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1314 break;
1315 }
1316
cc7f677c
PS
1317 if (type != ARC_SPACE_DATA) {
1318 ASSERT(arc_meta_used >= space);
cc7f677c
PS
1319 ARCSTAT_INCR(arcstat_meta_used, -space);
1320 }
1321
34dc7c2f
BB
1322 ASSERT(arc_size >= space);
1323 atomic_add_64(&arc_size, -space);
1324}
1325
34dc7c2f 1326arc_buf_t *
5f6d0b6f 1327arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1328{
1329 arc_buf_hdr_t *hdr;
1330 arc_buf_t *buf;
1331
5f6d0b6f 1332 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
34dc7c2f
BB
1333 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1334 ASSERT(BUF_EMPTY(hdr));
1335 hdr->b_size = size;
1336 hdr->b_type = type;
3541dc6d 1337 hdr->b_spa = spa_load_guid(spa);
34dc7c2f
BB
1338 hdr->b_state = arc_anon;
1339 hdr->b_arc_access = 0;
e0b0ca98
BB
1340 hdr->b_mru_hits = 0;
1341 hdr->b_mru_ghost_hits = 0;
1342 hdr->b_mfu_hits = 0;
1343 hdr->b_mfu_ghost_hits = 0;
1344 hdr->b_l2_hits = 0;
34dc7c2f
BB
1345 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1346 buf->b_hdr = hdr;
1347 buf->b_data = NULL;
1348 buf->b_efunc = NULL;
1349 buf->b_private = NULL;
1350 buf->b_next = NULL;
1351 hdr->b_buf = buf;
1352 arc_get_data_buf(buf);
1353 hdr->b_datacnt = 1;
1354 hdr->b_flags = 0;
1355 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1356 (void) refcount_add(&hdr->b_refcnt, tag);
1357
1358 return (buf);
1359}
1360
9babb374
BB
1361static char *arc_onloan_tag = "onloan";
1362
1363/*
1364 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1365 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1366 * buffers must be returned to the arc before they can be used by the DMU or
1367 * freed.
1368 */
1369arc_buf_t *
5f6d0b6f 1370arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1371{
1372 arc_buf_t *buf;
1373
1374 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1375
1376 atomic_add_64(&arc_loaned_bytes, size);
1377 return (buf);
1378}
1379
1380/*
1381 * Return a loaned arc buffer to the arc.
1382 */
1383void
1384arc_return_buf(arc_buf_t *buf, void *tag)
1385{
1386 arc_buf_hdr_t *hdr = buf->b_hdr;
1387
9babb374 1388 ASSERT(buf->b_data != NULL);
428870ff
BB
1389 (void) refcount_add(&hdr->b_refcnt, tag);
1390 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1391
1392 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1393}
1394
428870ff
BB
1395/* Detach an arc_buf from a dbuf (tag) */
1396void
1397arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1398{
1399 arc_buf_hdr_t *hdr;
1400
1401 ASSERT(buf->b_data != NULL);
1402 hdr = buf->b_hdr;
1403 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1404 (void) refcount_remove(&hdr->b_refcnt, tag);
1405 buf->b_efunc = NULL;
1406 buf->b_private = NULL;
1407
1408 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1409}
1410
34dc7c2f
BB
1411static arc_buf_t *
1412arc_buf_clone(arc_buf_t *from)
1413{
1414 arc_buf_t *buf;
1415 arc_buf_hdr_t *hdr = from->b_hdr;
1416 uint64_t size = hdr->b_size;
1417
428870ff
BB
1418 ASSERT(hdr->b_state != arc_anon);
1419
34dc7c2f
BB
1420 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1421 buf->b_hdr = hdr;
1422 buf->b_data = NULL;
1423 buf->b_efunc = NULL;
1424 buf->b_private = NULL;
1425 buf->b_next = hdr->b_buf;
1426 hdr->b_buf = buf;
1427 arc_get_data_buf(buf);
1428 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1429
1430 /*
1431 * This buffer already exists in the arc so create a duplicate
1432 * copy for the caller. If the buffer is associated with user data
1433 * then track the size and number of duplicates. These stats will be
1434 * updated as duplicate buffers are created and destroyed.
1435 */
1436 if (hdr->b_type == ARC_BUFC_DATA) {
1437 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1438 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1439 }
34dc7c2f
BB
1440 hdr->b_datacnt += 1;
1441 return (buf);
1442}
1443
1444void
1445arc_buf_add_ref(arc_buf_t *buf, void* tag)
1446{
1447 arc_buf_hdr_t *hdr;
1448 kmutex_t *hash_lock;
1449
1450 /*
b128c09f
BB
1451 * Check to see if this buffer is evicted. Callers
1452 * must verify b_data != NULL to know if the add_ref
1453 * was successful.
34dc7c2f 1454 */
428870ff 1455 mutex_enter(&buf->b_evict_lock);
b128c09f 1456 if (buf->b_data == NULL) {
428870ff 1457 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1458 return;
1459 }
428870ff 1460 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1461 mutex_enter(hash_lock);
428870ff
BB
1462 hdr = buf->b_hdr;
1463 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1464 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1465
34dc7c2f
BB
1466 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1467 add_reference(hdr, hash_lock, tag);
d164b209 1468 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1469 arc_access(hdr, hash_lock);
1470 mutex_exit(hash_lock);
1471 ARCSTAT_BUMP(arcstat_hits);
1472 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1473 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1474 data, metadata, hits);
1475}
1476
037763e4 1477static void
1478arc_buf_free_on_write(void *data, size_t size,
1479 void (*free_func)(void *, size_t))
1480{
1481 l2arc_data_free_t *df;
1482
1483 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1484 df->l2df_data = data;
1485 df->l2df_size = size;
1486 df->l2df_func = free_func;
1487 mutex_enter(&l2arc_free_on_write_mtx);
1488 list_insert_head(l2arc_free_on_write, df);
1489 mutex_exit(&l2arc_free_on_write_mtx);
1490}
1491
34dc7c2f
BB
1492/*
1493 * Free the arc data buffer. If it is an l2arc write in progress,
1494 * the buffer is placed on l2arc_free_on_write to be freed later.
1495 */
1496static void
498877ba 1497arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1498{
498877ba
MA
1499 arc_buf_hdr_t *hdr = buf->b_hdr;
1500
34dc7c2f 1501 if (HDR_L2_WRITING(hdr)) {
037763e4 1502 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1503 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1504 } else {
498877ba 1505 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1506 }
1507}
1508
bd089c54
MA
1509/*
1510 * Free up buf->b_data and if 'remove' is set, then pull the
1511 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1512 */
037763e4 1513static void
1514arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1515{
1516 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1517
1518 ASSERT(MUTEX_HELD(&l2arc_buflist_mtx));
1519
1520 if (l2hdr->b_tmp_cdata == NULL)
1521 return;
1522
1523 ASSERT(HDR_L2_WRITING(hdr));
1524 arc_buf_free_on_write(l2hdr->b_tmp_cdata, hdr->b_size,
1525 zio_data_buf_free);
1526 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1527 l2hdr->b_tmp_cdata = NULL;
1528}
1529
34dc7c2f 1530static void
bd089c54 1531arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
34dc7c2f
BB
1532{
1533 arc_buf_t **bufp;
1534
1535 /* free up data associated with the buf */
1536 if (buf->b_data) {
1537 arc_state_t *state = buf->b_hdr->b_state;
1538 uint64_t size = buf->b_hdr->b_size;
1539 arc_buf_contents_t type = buf->b_hdr->b_type;
1540
1541 arc_cksum_verify(buf);
498877ba 1542 arc_buf_unwatch(buf);
428870ff 1543
34dc7c2f
BB
1544 if (!recycle) {
1545 if (type == ARC_BUFC_METADATA) {
498877ba 1546 arc_buf_data_free(buf, zio_buf_free);
cc7f677c 1547 arc_space_return(size, ARC_SPACE_META);
34dc7c2f
BB
1548 } else {
1549 ASSERT(type == ARC_BUFC_DATA);
498877ba 1550 arc_buf_data_free(buf, zio_data_buf_free);
cc7f677c 1551 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1552 }
1553 }
1554 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1555 uint64_t *cnt = &state->arcs_lsize[type];
1556
1557 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1558 ASSERT(state != arc_anon);
1559
1560 ASSERT3U(*cnt, >=, size);
1561 atomic_add_64(cnt, -size);
1562 }
1563 ASSERT3U(state->arcs_size, >=, size);
1564 atomic_add_64(&state->arcs_size, -size);
1565 buf->b_data = NULL;
1eb5bfa3
GW
1566
1567 /*
1568 * If we're destroying a duplicate buffer make sure
1569 * that the appropriate statistics are updated.
1570 */
1571 if (buf->b_hdr->b_datacnt > 1 &&
1572 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1573 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1574 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1575 }
34dc7c2f
BB
1576 ASSERT(buf->b_hdr->b_datacnt > 0);
1577 buf->b_hdr->b_datacnt -= 1;
1578 }
1579
1580 /* only remove the buf if requested */
bd089c54 1581 if (!remove)
34dc7c2f
BB
1582 return;
1583
1584 /* remove the buf from the hdr list */
1585 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1586 continue;
1587 *bufp = buf->b_next;
428870ff 1588 buf->b_next = NULL;
34dc7c2f
BB
1589
1590 ASSERT(buf->b_efunc == NULL);
1591
1592 /* clean up the buf */
1593 buf->b_hdr = NULL;
1594 kmem_cache_free(buf_cache, buf);
1595}
1596
1597static void
1598arc_hdr_destroy(arc_buf_hdr_t *hdr)
1599{
d6320ddb
BB
1600 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1601
34dc7c2f
BB
1602 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1603 ASSERT3P(hdr->b_state, ==, arc_anon);
1604 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1605
428870ff
BB
1606 if (l2hdr != NULL) {
1607 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1608 /*
1609 * To prevent arc_free() and l2arc_evict() from
1610 * attempting to free the same buffer at the same time,
1611 * a FREE_IN_PROGRESS flag is given to arc_free() to
1612 * give it priority. l2arc_evict() can't destroy this
1613 * header while we are waiting on l2arc_buflist_mtx.
1614 *
1615 * The hdr may be removed from l2ad_buflist before we
1616 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1617 */
1618 if (!buflist_held) {
34dc7c2f 1619 mutex_enter(&l2arc_buflist_mtx);
428870ff 1620 l2hdr = hdr->b_l2hdr;
34dc7c2f 1621 }
428870ff
BB
1622
1623 if (l2hdr != NULL) {
1624 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
037763e4 1625 arc_buf_l2_cdata_free(hdr);
428870ff 1626 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
3a17a7a9 1627 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3bec585e
SK
1628 vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1629 -l2hdr->b_asize, 0, 0);
ecf3d9b8 1630 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 1631 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
428870ff
BB
1632 if (hdr->b_state == arc_l2c_only)
1633 l2arc_hdr_stat_remove();
1634 hdr->b_l2hdr = NULL;
1635 }
1636
1637 if (!buflist_held)
1638 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1639 }
1640
1641 if (!BUF_EMPTY(hdr)) {
1642 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1643 buf_discard_identity(hdr);
34dc7c2f
BB
1644 }
1645 while (hdr->b_buf) {
1646 arc_buf_t *buf = hdr->b_buf;
1647
1648 if (buf->b_efunc) {
1649 mutex_enter(&arc_eviction_mtx);
428870ff 1650 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1651 ASSERT(buf->b_hdr != NULL);
1652 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1653 hdr->b_buf = buf->b_next;
1654 buf->b_hdr = &arc_eviction_hdr;
1655 buf->b_next = arc_eviction_list;
1656 arc_eviction_list = buf;
428870ff 1657 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1658 mutex_exit(&arc_eviction_mtx);
1659 } else {
1660 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1661 }
1662 }
1663 if (hdr->b_freeze_cksum != NULL) {
1664 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1665 hdr->b_freeze_cksum = NULL;
1666 }
1667
1668 ASSERT(!list_link_active(&hdr->b_arc_node));
1669 ASSERT3P(hdr->b_hash_next, ==, NULL);
1670 ASSERT3P(hdr->b_acb, ==, NULL);
1671 kmem_cache_free(hdr_cache, hdr);
1672}
1673
1674void
1675arc_buf_free(arc_buf_t *buf, void *tag)
1676{
1677 arc_buf_hdr_t *hdr = buf->b_hdr;
1678 int hashed = hdr->b_state != arc_anon;
1679
1680 ASSERT(buf->b_efunc == NULL);
1681 ASSERT(buf->b_data != NULL);
1682
1683 if (hashed) {
1684 kmutex_t *hash_lock = HDR_LOCK(hdr);
1685
1686 mutex_enter(hash_lock);
428870ff
BB
1687 hdr = buf->b_hdr;
1688 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1689
34dc7c2f 1690 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1691 if (hdr->b_datacnt > 1) {
34dc7c2f 1692 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1693 } else {
1694 ASSERT(buf == hdr->b_buf);
1695 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1696 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1697 }
34dc7c2f
BB
1698 mutex_exit(hash_lock);
1699 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1700 int destroy_hdr;
1701 /*
1702 * We are in the middle of an async write. Don't destroy
1703 * this buffer unless the write completes before we finish
1704 * decrementing the reference count.
1705 */
1706 mutex_enter(&arc_eviction_mtx);
1707 (void) remove_reference(hdr, NULL, tag);
1708 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1709 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1710 mutex_exit(&arc_eviction_mtx);
1711 if (destroy_hdr)
1712 arc_hdr_destroy(hdr);
1713 } else {
428870ff 1714 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1715 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1716 else
34dc7c2f 1717 arc_hdr_destroy(hdr);
34dc7c2f
BB
1718 }
1719}
1720
13fe0198 1721boolean_t
34dc7c2f
BB
1722arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1723{
1724 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1725 kmutex_t *hash_lock = NULL;
13fe0198 1726 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f
BB
1727
1728 if (hdr->b_state == arc_anon) {
428870ff 1729 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1730 arc_buf_free(buf, tag);
1731 return (no_callback);
1732 }
1733
b4f7f105 1734 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1735 mutex_enter(hash_lock);
428870ff
BB
1736 hdr = buf->b_hdr;
1737 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1738 ASSERT(hdr->b_state != arc_anon);
1739 ASSERT(buf->b_data != NULL);
1740
1741 (void) remove_reference(hdr, hash_lock, tag);
1742 if (hdr->b_datacnt > 1) {
1743 if (no_callback)
1744 arc_buf_destroy(buf, FALSE, TRUE);
1745 } else if (no_callback) {
1746 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1747 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1748 hdr->b_flags |= ARC_BUF_AVAILABLE;
1749 }
1750 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1751 refcount_is_zero(&hdr->b_refcnt));
1752 mutex_exit(hash_lock);
1753 return (no_callback);
1754}
1755
5f6d0b6f 1756uint64_t
34dc7c2f
BB
1757arc_buf_size(arc_buf_t *buf)
1758{
1759 return (buf->b_hdr->b_size);
1760}
1761
1eb5bfa3
GW
1762/*
1763 * Called from the DMU to determine if the current buffer should be
1764 * evicted. In order to ensure proper locking, the eviction must be initiated
1765 * from the DMU. Return true if the buffer is associated with user data and
1766 * duplicate buffers still exist.
1767 */
1768boolean_t
1769arc_buf_eviction_needed(arc_buf_t *buf)
1770{
1771 arc_buf_hdr_t *hdr;
1772 boolean_t evict_needed = B_FALSE;
1773
1774 if (zfs_disable_dup_eviction)
1775 return (B_FALSE);
1776
1777 mutex_enter(&buf->b_evict_lock);
1778 hdr = buf->b_hdr;
1779 if (hdr == NULL) {
1780 /*
1781 * We are in arc_do_user_evicts(); let that function
1782 * perform the eviction.
1783 */
1784 ASSERT(buf->b_data == NULL);
1785 mutex_exit(&buf->b_evict_lock);
1786 return (B_FALSE);
1787 } else if (buf->b_data == NULL) {
1788 /*
1789 * We have already been added to the arc eviction list;
1790 * recommend eviction.
1791 */
1792 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1793 mutex_exit(&buf->b_evict_lock);
1794 return (B_TRUE);
1795 }
1796
1797 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1798 evict_needed = B_TRUE;
1799
1800 mutex_exit(&buf->b_evict_lock);
1801 return (evict_needed);
1802}
1803
34dc7c2f
BB
1804/*
1805 * Evict buffers from list until we've removed the specified number of
1806 * bytes. Move the removed buffers to the appropriate evict state.
1807 * If the recycle flag is set, then attempt to "recycle" a buffer:
1808 * - look for a buffer to evict that is `bytes' long.
1809 * - return the data block from this buffer rather than freeing it.
1810 * This flag is used by callers that are trying to make space for a
1811 * new buffer in a full arc cache.
1812 *
1813 * This function makes a "best effort". It skips over any buffers
1814 * it can't get a hash_lock on, and so may not catch all candidates.
1815 * It may also return without evicting as much space as requested.
1816 */
1817static void *
d164b209 1818arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1819 arc_buf_contents_t type)
1820{
1821 arc_state_t *evicted_state;
1822 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1823 arc_buf_hdr_t *ab, *ab_prev = NULL;
1824 list_t *list = &state->arcs_list[type];
1825 kmutex_t *hash_lock;
1826 boolean_t have_lock;
1827 void *stolen = NULL;
16fcdea3 1828 arc_buf_hdr_t *marker;
e8b96c60 1829 int count = 0;
34dc7c2f
BB
1830
1831 ASSERT(state == arc_mru || state == arc_mfu);
1832
1833 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1834
16fcdea3
CD
1835 marker = kmem_zalloc(sizeof (arc_buf_hdr_t), KM_SLEEP);
1836
da8ccd0e 1837top:
34dc7c2f
BB
1838 mutex_enter(&state->arcs_mtx);
1839 mutex_enter(&evicted_state->arcs_mtx);
1840
1841 for (ab = list_tail(list); ab; ab = ab_prev) {
1842 ab_prev = list_prev(list, ab);
1843 /* prefetch buffers have a minimum lifespan */
1844 if (HDR_IO_IN_PROGRESS(ab) ||
1845 (spa && ab->b_spa != spa) ||
1846 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff 1847 ddi_get_lbolt() - ab->b_arc_access <
bce45ec9 1848 zfs_arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1849 skipped++;
1850 continue;
1851 }
1852 /* "lookahead" for better eviction candidate */
1853 if (recycle && ab->b_size != bytes &&
1854 ab_prev && ab_prev->b_size == bytes)
1855 continue;
e8b96c60
MA
1856
1857 /* ignore markers */
1858 if (ab->b_spa == 0)
1859 continue;
1860
1861 /*
1862 * It may take a long time to evict all the bufs requested.
1863 * To avoid blocking all arc activity, periodically drop
1864 * the arcs_mtx and give other threads a chance to run
1865 * before reacquiring the lock.
1866 *
1867 * If we are looking for a buffer to recycle, we are in
1868 * the hot code path, so don't sleep.
1869 */
1870 if (!recycle && count++ > arc_evict_iterations) {
16fcdea3 1871 list_insert_after(list, ab, marker);
e8b96c60
MA
1872 mutex_exit(&evicted_state->arcs_mtx);
1873 mutex_exit(&state->arcs_mtx);
1874 kpreempt(KPREEMPT_SYNC);
1875 mutex_enter(&state->arcs_mtx);
1876 mutex_enter(&evicted_state->arcs_mtx);
16fcdea3
CD
1877 ab_prev = list_prev(list, marker);
1878 list_remove(list, marker);
e8b96c60
MA
1879 count = 0;
1880 continue;
1881 }
1882
34dc7c2f
BB
1883 hash_lock = HDR_LOCK(ab);
1884 have_lock = MUTEX_HELD(hash_lock);
1885 if (have_lock || mutex_tryenter(hash_lock)) {
c99c9001 1886 ASSERT0(refcount_count(&ab->b_refcnt));
34dc7c2f
BB
1887 ASSERT(ab->b_datacnt > 0);
1888 while (ab->b_buf) {
1889 arc_buf_t *buf = ab->b_buf;
428870ff 1890 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1891 missed += 1;
1892 break;
1893 }
34dc7c2f
BB
1894 if (buf->b_data) {
1895 bytes_evicted += ab->b_size;
1896 if (recycle && ab->b_type == type &&
1897 ab->b_size == bytes &&
1898 !HDR_L2_WRITING(ab)) {
1899 stolen = buf->b_data;
1900 recycle = FALSE;
1901 }
1902 }
1903 if (buf->b_efunc) {
1904 mutex_enter(&arc_eviction_mtx);
1905 arc_buf_destroy(buf,
1906 buf->b_data == stolen, FALSE);
1907 ab->b_buf = buf->b_next;
1908 buf->b_hdr = &arc_eviction_hdr;
1909 buf->b_next = arc_eviction_list;
1910 arc_eviction_list = buf;
1911 mutex_exit(&arc_eviction_mtx);
428870ff 1912 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1913 } else {
428870ff 1914 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1915 arc_buf_destroy(buf,
1916 buf->b_data == stolen, TRUE);
1917 }
1918 }
428870ff
BB
1919
1920 if (ab->b_l2hdr) {
1921 ARCSTAT_INCR(arcstat_evict_l2_cached,
1922 ab->b_size);
1923 } else {
1924 if (l2arc_write_eligible(ab->b_spa, ab)) {
1925 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1926 ab->b_size);
1927 } else {
1928 ARCSTAT_INCR(
1929 arcstat_evict_l2_ineligible,
1930 ab->b_size);
1931 }
1932 }
1933
b128c09f
BB
1934 if (ab->b_datacnt == 0) {
1935 arc_change_state(evicted_state, ab, hash_lock);
1936 ASSERT(HDR_IN_HASH_TABLE(ab));
1937 ab->b_flags |= ARC_IN_HASH_TABLE;
1938 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1939 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1940 }
34dc7c2f
BB
1941 if (!have_lock)
1942 mutex_exit(hash_lock);
1943 if (bytes >= 0 && bytes_evicted >= bytes)
1944 break;
1945 } else {
1946 missed += 1;
1947 }
1948 }
1949
1950 mutex_exit(&evicted_state->arcs_mtx);
1951 mutex_exit(&state->arcs_mtx);
1952
da8ccd0e
PS
1953 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1954 (bytes < 0 || bytes_evicted < bytes)) {
1955 /* Prevent second pass from recycling metadata into data */
1956 recycle = FALSE;
1957 type = ARC_BUFC_METADATA;
1958 list = &state->arcs_list[type];
1959 goto top;
1960 }
1961
16fcdea3
CD
1962 kmem_free(marker, sizeof (arc_buf_hdr_t));
1963
34dc7c2f 1964 if (bytes_evicted < bytes)
3f504482 1965 dprintf("only evicted %lld bytes from %x\n",
29e57d15 1966 (longlong_t)bytes_evicted, state->arcs_state);
34dc7c2f
BB
1967
1968 if (skipped)
1969 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1970
1971 if (missed)
1972 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1973
1974 /*
e8b96c60
MA
1975 * Note: we have just evicted some data into the ghost state,
1976 * potentially putting the ghost size over the desired size. Rather
1977 * that evicting from the ghost list in this hot code path, leave
1978 * this chore to the arc_reclaim_thread().
34dc7c2f 1979 */
34dc7c2f
BB
1980
1981 return (stolen);
1982}
1983
1984/*
1985 * Remove buffers from list until we've removed the specified number of
1986 * bytes. Destroy the buffers that are removed.
1987 */
1988static void
68121a03
BB
1989arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
1990 arc_buf_contents_t type)
34dc7c2f
BB
1991{
1992 arc_buf_hdr_t *ab, *ab_prev;
16fcdea3 1993 arc_buf_hdr_t *marker;
68121a03 1994 list_t *list = &state->arcs_list[type];
34dc7c2f
BB
1995 kmutex_t *hash_lock;
1996 uint64_t bytes_deleted = 0;
1997 uint64_t bufs_skipped = 0;
e8b96c60 1998 int count = 0;
34dc7c2f
BB
1999
2000 ASSERT(GHOST_STATE(state));
16fcdea3
CD
2001
2002 marker = kmem_zalloc(sizeof (arc_buf_hdr_t), KM_SLEEP);
2003
34dc7c2f
BB
2004top:
2005 mutex_enter(&state->arcs_mtx);
2006 for (ab = list_tail(list); ab; ab = ab_prev) {
2007 ab_prev = list_prev(list, ab);
e8b96c60
MA
2008 if (ab->b_type > ARC_BUFC_NUMTYPES)
2009 panic("invalid ab=%p", (void *)ab);
34dc7c2f
BB
2010 if (spa && ab->b_spa != spa)
2011 continue;
572e2857
BB
2012
2013 /* ignore markers */
2014 if (ab->b_spa == 0)
2015 continue;
2016
34dc7c2f 2017 hash_lock = HDR_LOCK(ab);
428870ff
BB
2018 /* caller may be trying to modify this buffer, skip it */
2019 if (MUTEX_HELD(hash_lock))
2020 continue;
e8b96c60
MA
2021
2022 /*
2023 * It may take a long time to evict all the bufs requested.
2024 * To avoid blocking all arc activity, periodically drop
2025 * the arcs_mtx and give other threads a chance to run
2026 * before reacquiring the lock.
2027 */
2028 if (count++ > arc_evict_iterations) {
16fcdea3 2029 list_insert_after(list, ab, marker);
e8b96c60
MA
2030 mutex_exit(&state->arcs_mtx);
2031 kpreempt(KPREEMPT_SYNC);
2032 mutex_enter(&state->arcs_mtx);
16fcdea3
CD
2033 ab_prev = list_prev(list, marker);
2034 list_remove(list, marker);
e8b96c60
MA
2035 count = 0;
2036 continue;
2037 }
34dc7c2f
BB
2038 if (mutex_tryenter(hash_lock)) {
2039 ASSERT(!HDR_IO_IN_PROGRESS(ab));
2040 ASSERT(ab->b_buf == NULL);
2041 ARCSTAT_BUMP(arcstat_deleted);
2042 bytes_deleted += ab->b_size;
2043
2044 if (ab->b_l2hdr != NULL) {
2045 /*
2046 * This buffer is cached on the 2nd Level ARC;
2047 * don't destroy the header.
2048 */
2049 arc_change_state(arc_l2c_only, ab, hash_lock);
2050 mutex_exit(hash_lock);
2051 } else {
2052 arc_change_state(arc_anon, ab, hash_lock);
2053 mutex_exit(hash_lock);
2054 arc_hdr_destroy(ab);
2055 }
2056
2057 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2058 if (bytes >= 0 && bytes_deleted >= bytes)
2059 break;
572e2857
BB
2060 } else if (bytes < 0) {
2061 /*
2062 * Insert a list marker and then wait for the
2063 * hash lock to become available. Once its
2064 * available, restart from where we left off.
2065 */
16fcdea3 2066 list_insert_after(list, ab, marker);
572e2857
BB
2067 mutex_exit(&state->arcs_mtx);
2068 mutex_enter(hash_lock);
2069 mutex_exit(hash_lock);
2070 mutex_enter(&state->arcs_mtx);
16fcdea3
CD
2071 ab_prev = list_prev(list, marker);
2072 list_remove(list, marker);
e8b96c60 2073 } else {
34dc7c2f 2074 bufs_skipped += 1;
e8b96c60 2075 }
34dc7c2f
BB
2076 }
2077 mutex_exit(&state->arcs_mtx);
2078
2079 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2080 (bytes < 0 || bytes_deleted < bytes)) {
2081 list = &state->arcs_list[ARC_BUFC_METADATA];
2082 goto top;
2083 }
2084
16fcdea3
CD
2085 kmem_free(marker, sizeof (arc_buf_hdr_t));
2086
34dc7c2f
BB
2087 if (bufs_skipped) {
2088 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2089 ASSERT(bytes >= 0);
2090 }
2091
2092 if (bytes_deleted < bytes)
3f504482 2093 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
2094 (longlong_t)bytes_deleted, state);
2095}
2096
2097static void
2098arc_adjust(void)
2099{
d164b209
BB
2100 int64_t adjustment, delta;
2101
2102 /*
2103 * Adjust MRU size
2104 */
34dc7c2f 2105
572e2857 2106 adjustment = MIN((int64_t)(arc_size - arc_c),
77765b54 2107 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
34dc7c2f 2108
da8ccd0e
PS
2109 if (adjustment > 0 && arc_mru->arcs_size > 0) {
2110 delta = MIN(arc_mru->arcs_size, adjustment);
b8864a23 2111 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2112 }
2113
d164b209
BB
2114 /*
2115 * Adjust MFU size
2116 */
34dc7c2f 2117
d164b209
BB
2118 adjustment = arc_size - arc_c;
2119
da8ccd0e
PS
2120 if (adjustment > 0 && arc_mfu->arcs_size > 0) {
2121 delta = MIN(arc_mfu->arcs_size, adjustment);
b8864a23 2122 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2123 }
34dc7c2f 2124
d164b209
BB
2125 /*
2126 * Adjust ghost lists
2127 */
34dc7c2f 2128
d164b209
BB
2129 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2130
2131 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2132 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
68121a03 2133 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA);
d164b209 2134 }
34dc7c2f 2135
d164b209
BB
2136 adjustment =
2137 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 2138
d164b209
BB
2139 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2140 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
68121a03 2141 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA);
34dc7c2f
BB
2142 }
2143}
2144
ab26409d
BB
2145/*
2146 * Request that arc user drop references so that N bytes can be released
2147 * from the cache. This provides a mechanism to ensure the arc can honor
2148 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2149 * by higher layers. (i.e. the zpl)
2150 */
2151static void
2152arc_do_user_prune(int64_t adjustment)
2153{
2154 arc_prune_func_t *func;
2155 void *private;
2156 arc_prune_t *cp, *np;
2157
2158 mutex_enter(&arc_prune_mtx);
2159
2160 cp = list_head(&arc_prune_list);
2161 while (cp != NULL) {
2162 func = cp->p_pfunc;
2163 private = cp->p_private;
2164 np = list_next(&arc_prune_list, cp);
2165 refcount_add(&cp->p_refcnt, func);
2166 mutex_exit(&arc_prune_mtx);
2167
2168 if (func != NULL)
2169 func(adjustment, private);
2170
2171 mutex_enter(&arc_prune_mtx);
2172
2173 /* User removed prune callback concurrently with execution */
2174 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2175 ASSERT(!list_link_active(&cp->p_node));
2176 refcount_destroy(&cp->p_refcnt);
2177 kmem_free(cp, sizeof (*cp));
2178 }
2179
2180 cp = np;
2181 }
2182
2183 ARCSTAT_BUMP(arcstat_prune);
2184 mutex_exit(&arc_prune_mtx);
2185}
2186
34dc7c2f
BB
2187static void
2188arc_do_user_evicts(void)
2189{
2190 mutex_enter(&arc_eviction_mtx);
2191 while (arc_eviction_list != NULL) {
2192 arc_buf_t *buf = arc_eviction_list;
2193 arc_eviction_list = buf->b_next;
428870ff 2194 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2195 buf->b_hdr = NULL;
428870ff 2196 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2197 mutex_exit(&arc_eviction_mtx);
2198
2199 if (buf->b_efunc != NULL)
bd089c54 2200 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
2201
2202 buf->b_efunc = NULL;
2203 buf->b_private = NULL;
2204 kmem_cache_free(buf_cache, buf);
2205 mutex_enter(&arc_eviction_mtx);
2206 }
2207 mutex_exit(&arc_eviction_mtx);
2208}
2209
ab26409d 2210/*
bc888666
BB
2211 * The goal of this function is to evict enough meta data buffers from the
2212 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2213 * more complicated than it appears because it is common for data buffers
2214 * to have holds on meta data buffers. In addition, dnode meta data buffers
2215 * will be held by the dnodes in the block preventing them from being freed.
2216 * This means we can't simply traverse the ARC and expect to always find
2217 * enough unheld meta data buffer to release.
2218 *
2219 * Therefore, this function has been updated to make alternating passes
2220 * over the ARC releasing data buffers and then newly unheld meta data
2221 * buffers. This ensures forward progress is maintained and arc_meta_used
2222 * will decrease. Normally this is sufficient, but if required the ARC
2223 * will call the registered prune callbacks causing dentry and inodes to
2224 * be dropped from the VFS cache. This will make dnode meta data buffers
2225 * available for reclaim.
ab26409d 2226 */
94520ca4
PS
2227static void
2228arc_adjust_meta(void)
ab26409d 2229{
bc888666
BB
2230 int64_t adjustmnt, delta, prune = 0;
2231 arc_buf_contents_t type = ARC_BUFC_DATA;
2232 unsigned long restarts = zfs_arc_meta_adjust_restarts;
ab26409d 2233
bc888666 2234restart:
94520ca4
PS
2235 /*
2236 * This slightly differs than the way we evict from the mru in
2237 * arc_adjust because we don't have a "target" value (i.e. no
2238 * "meta" arc_p). As a result, I think we can completely
2239 * cannibalize the metadata in the MRU before we evict the
2240 * metadata from the MFU. I think we probably need to implement a
2241 * "metadata arc_p" value to do this properly.
2242 */
2243 adjustmnt = arc_meta_used - arc_meta_limit;
2244
bc888666
BB
2245 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2246 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2247 arc_evict(arc_mru, 0, delta, FALSE, type);
94520ca4 2248 adjustmnt -= delta;
ab26409d
BB
2249 }
2250
94520ca4
PS
2251 /*
2252 * We can't afford to recalculate adjustmnt here. If we do,
2253 * new metadata buffers can sneak into the MRU or ANON lists,
2254 * thus penalize the MFU metadata. Although the fudge factor is
2255 * small, it has been empirically shown to be significant for
2256 * certain workloads (e.g. creating many empty directories). As
2257 * such, we use the original calculation for adjustmnt, and
2258 * simply decrement the amount of data evicted from the MRU.
2259 */
2260
bc888666
BB
2261 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2262 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2263 arc_evict(arc_mfu, 0, delta, FALSE, type);
ab26409d
BB
2264 }
2265
bc888666 2266 adjustmnt = arc_meta_used - arc_meta_limit;
94520ca4 2267
bc888666 2268 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
94520ca4 2269 delta = MIN(adjustmnt,
bc888666
BB
2270 arc_mru_ghost->arcs_lsize[type]);
2271 arc_evict_ghost(arc_mru_ghost, 0, delta, type);
2272 adjustmnt -= delta;
94520ca4
PS
2273 }
2274
bc888666 2275 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
94520ca4 2276 delta = MIN(adjustmnt,
bc888666
BB
2277 arc_mfu_ghost->arcs_lsize[type]);
2278 arc_evict_ghost(arc_mfu_ghost, 0, delta, type);
94520ca4
PS
2279 }
2280
bc888666
BB
2281 /*
2282 * If after attempting to make the requested adjustment to the ARC
2283 * the meta limit is still being exceeded then request that the
2284 * higher layers drop some cached objects which have holds on ARC
2285 * meta buffers. Requests to the upper layers will be made with
2286 * increasingly large scan sizes until the ARC is below the limit.
2287 */
2288 if (arc_meta_used > arc_meta_limit) {
2289 if (type == ARC_BUFC_DATA) {
2290 type = ARC_BUFC_METADATA;
2291 } else {
2292 type = ARC_BUFC_DATA;
2293
2294 if (zfs_arc_meta_prune) {
2295 prune += zfs_arc_meta_prune;
2296 arc_do_user_prune(prune);
2297 }
2298 }
2299
2300 if (restarts > 0) {
2301 restarts--;
2302 goto restart;
2303 }
2304 }
ab26409d
BB
2305}
2306
34dc7c2f
BB
2307/*
2308 * Flush all *evictable* data from the cache for the given spa.
2309 * NOTE: this will not touch "active" (i.e. referenced) data.
2310 */
2311void
2312arc_flush(spa_t *spa)
2313{
d164b209
BB
2314 uint64_t guid = 0;
2315
2316 if (spa)
3541dc6d 2317 guid = spa_load_guid(spa);
d164b209 2318
34dc7c2f 2319 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2320 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2321 if (spa)
2322 break;
2323 }
2324 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2325 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2326 if (spa)
2327 break;
2328 }
2329 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2330 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2331 if (spa)
2332 break;
2333 }
2334 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2335 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2336 if (spa)
2337 break;
2338 }
2339
68121a03
BB
2340 arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA);
2341 arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA);
34dc7c2f
BB
2342
2343 mutex_enter(&arc_reclaim_thr_lock);
2344 arc_do_user_evicts();
2345 mutex_exit(&arc_reclaim_thr_lock);
2346 ASSERT(spa || arc_eviction_list == NULL);
2347}
2348
34dc7c2f 2349void
302f753f 2350arc_shrink(uint64_t bytes)
34dc7c2f
BB
2351{
2352 if (arc_c > arc_c_min) {
2353 uint64_t to_free;
2354
bce45ec9 2355 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 2356
34dc7c2f
BB
2357 if (arc_c > arc_c_min + to_free)
2358 atomic_add_64(&arc_c, -to_free);
2359 else
2360 arc_c = arc_c_min;
2361
39e055c4
PS
2362 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2363
f521ce1b 2364 if (arc_p > to_free)
39e055c4
PS
2365 atomic_add_64(&arc_p, -to_free);
2366 else
f521ce1b 2367 arc_p = 0;
39e055c4 2368
34dc7c2f
BB
2369 if (arc_c > arc_size)
2370 arc_c = MAX(arc_size, arc_c_min);
2371 if (arc_p > arc_c)
2372 arc_p = (arc_c >> 1);
2373 ASSERT(arc_c >= arc_c_min);
2374 ASSERT((int64_t)arc_p >= 0);
2375 }
2376
2377 if (arc_size > arc_c)
2378 arc_adjust();
2379}
2380
34dc7c2f 2381static void
302f753f 2382arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2383{
2384 size_t i;
2385 kmem_cache_t *prev_cache = NULL;
2386 kmem_cache_t *prev_data_cache = NULL;
2387 extern kmem_cache_t *zio_buf_cache[];
2388 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2389
2390 /*
2391 * An aggressive reclamation will shrink the cache size as well as
2392 * reap free buffers from the arc kmem caches.
2393 */
2394 if (strat == ARC_RECLAIM_AGGR)
302f753f 2395 arc_shrink(bytes);
34dc7c2f
BB
2396
2397 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2398 if (zio_buf_cache[i] != prev_cache) {
2399 prev_cache = zio_buf_cache[i];
2400 kmem_cache_reap_now(zio_buf_cache[i]);
2401 }
2402 if (zio_data_buf_cache[i] != prev_data_cache) {
2403 prev_data_cache = zio_data_buf_cache[i];
2404 kmem_cache_reap_now(zio_data_buf_cache[i]);
2405 }
2406 }
ab26409d 2407
34dc7c2f
BB
2408 kmem_cache_reap_now(buf_cache);
2409 kmem_cache_reap_now(hdr_cache);
2410}
2411
302f753f
BB
2412/*
2413 * Unlike other ZFS implementations this thread is only responsible for
2414 * adapting the target ARC size on Linux. The responsibility for memory
2415 * reclamation has been entirely delegated to the arc_shrinker_func()
2416 * which is registered with the VM. To reflect this change in behavior
2417 * the arc_reclaim thread has been renamed to arc_adapt.
2418 */
34dc7c2f 2419static void
302f753f 2420arc_adapt_thread(void)
34dc7c2f 2421{
34dc7c2f 2422 callb_cpr_t cpr;
40d06e3c 2423 fstrans_cookie_t cookie;
34dc7c2f
BB
2424
2425 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2426
40d06e3c 2427 cookie = spl_fstrans_mark();
34dc7c2f
BB
2428 mutex_enter(&arc_reclaim_thr_lock);
2429 while (arc_thread_exit == 0) {
302f753f
BB
2430#ifndef _KERNEL
2431 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2432
2433 if (spa_get_random(100) == 0) {
34dc7c2f
BB
2434
2435 if (arc_no_grow) {
2436 if (last_reclaim == ARC_RECLAIM_CONS) {
2437 last_reclaim = ARC_RECLAIM_AGGR;
2438 } else {
2439 last_reclaim = ARC_RECLAIM_CONS;
2440 }
2441 } else {
2442 arc_no_grow = TRUE;
2443 last_reclaim = ARC_RECLAIM_AGGR;
2444 membar_producer();
2445 }
2446
2447 /* reset the growth delay for every reclaim */
d1d7e268
MK
2448 arc_grow_time = ddi_get_lbolt() +
2449 (zfs_arc_grow_retry * hz);
34dc7c2f 2450
302f753f 2451 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 2452 arc_warm = B_TRUE;
302f753f
BB
2453 }
2454#endif /* !_KERNEL */
34dc7c2f 2455
302f753f 2456 /* No recent memory pressure allow the ARC to grow. */
0b75bdb3
CC
2457 if (arc_no_grow &&
2458 ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
34dc7c2f 2459 arc_no_grow = FALSE;
34dc7c2f 2460
94520ca4 2461 arc_adjust_meta();
6a8f9b6b 2462
572e2857 2463 arc_adjust();
34dc7c2f
BB
2464
2465 if (arc_eviction_list != NULL)
2466 arc_do_user_evicts();
2467
2468 /* block until needed, or one second, whichever is shorter */
2469 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2470 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2471 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f 2472 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
bce45ec9
BB
2473
2474
2475 /* Allow the module options to be changed */
2476 if (zfs_arc_max > 64 << 20 &&
2477 zfs_arc_max < physmem * PAGESIZE &&
2478 zfs_arc_max != arc_c_max)
2479 arc_c_max = zfs_arc_max;
2480
2481 if (zfs_arc_min > 0 &&
2482 zfs_arc_min < arc_c_max &&
2483 zfs_arc_min != arc_c_min)
2484 arc_c_min = zfs_arc_min;
2485
2486 if (zfs_arc_meta_limit > 0 &&
2487 zfs_arc_meta_limit <= arc_c_max &&
2488 zfs_arc_meta_limit != arc_meta_limit)
2489 arc_meta_limit = zfs_arc_meta_limit;
2490
2491
2492
34dc7c2f
BB
2493 }
2494
2495 arc_thread_exit = 0;
2496 cv_broadcast(&arc_reclaim_thr_cv);
2497 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
40d06e3c 2498 spl_fstrans_unmark(cookie);
34dc7c2f
BB
2499 thread_exit();
2500}
2501
7cb67b45
BB
2502#ifdef _KERNEL
2503/*
302f753f
BB
2504 * Determine the amount of memory eligible for eviction contained in the
2505 * ARC. All clean data reported by the ghost lists can always be safely
2506 * evicted. Due to arc_c_min, the same does not hold for all clean data
2507 * contained by the regular mru and mfu lists.
2508 *
2509 * In the case of the regular mru and mfu lists, we need to report as
2510 * much clean data as possible, such that evicting that same reported
2511 * data will not bring arc_size below arc_c_min. Thus, in certain
2512 * circumstances, the total amount of clean data in the mru and mfu
2513 * lists might not actually be evictable.
2514 *
2515 * The following two distinct cases are accounted for:
2516 *
2517 * 1. The sum of the amount of dirty data contained by both the mru and
2518 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2519 * is greater than or equal to arc_c_min.
2520 * (i.e. amount of dirty data >= arc_c_min)
2521 *
2522 * This is the easy case; all clean data contained by the mru and mfu
2523 * lists is evictable. Evicting all clean data can only drop arc_size
2524 * to the amount of dirty data, which is greater than arc_c_min.
2525 *
2526 * 2. The sum of the amount of dirty data contained by both the mru and
2527 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2528 * is less than arc_c_min.
2529 * (i.e. arc_c_min > amount of dirty data)
2530 *
2531 * 2.1. arc_size is greater than or equal arc_c_min.
2532 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2533 *
2534 * In this case, not all clean data from the regular mru and mfu
2535 * lists is actually evictable; we must leave enough clean data
2536 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2537 * evictable data from the two lists combined, is exactly the
2538 * difference between arc_size and arc_c_min.
2539 *
2540 * 2.2. arc_size is less than arc_c_min
2541 * (i.e. arc_c_min > arc_size > amount of dirty data)
2542 *
2543 * In this case, none of the data contained in the mru and mfu
2544 * lists is evictable, even if it's clean. Since arc_size is
2545 * already below arc_c_min, evicting any more would only
2546 * increase this negative difference.
7cb67b45 2547 */
302f753f
BB
2548static uint64_t
2549arc_evictable_memory(void) {
2550 uint64_t arc_clean =
2551 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2552 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2553 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2554 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2555 uint64_t ghost_clean =
2556 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2557 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2558 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2559 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2560 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2561
2562 if (arc_dirty >= arc_c_min)
2563 return (ghost_clean + arc_clean);
2564
2565 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2566}
2567
ed6e9cc2
TC
2568/*
2569 * If sc->nr_to_scan is zero, the caller is requesting a query of the
2570 * number of objects which can potentially be freed. If it is nonzero,
2571 * the request is to free that many objects.
2572 *
2573 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
2574 * in struct shrinker and also require the shrinker to return the number
2575 * of objects freed.
2576 *
2577 * Older kernels require the shrinker to return the number of freeable
2578 * objects following the freeing of nr_to_free.
2579 */
2580static spl_shrinker_t
7e7baeca 2581__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 2582{
ed6e9cc2 2583 int64_t pages;
7cb67b45 2584
302f753f
BB
2585 /* The arc is considered warm once reclaim has occurred */
2586 if (unlikely(arc_warm == B_FALSE))
2587 arc_warm = B_TRUE;
7cb67b45 2588
302f753f 2589 /* Return the potential number of reclaimable pages */
ed6e9cc2 2590 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
2591 if (sc->nr_to_scan == 0)
2592 return (pages);
3fd70ee6
BB
2593
2594 /* Not allowed to perform filesystem reclaim */
7e7baeca 2595 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 2596 return (SHRINK_STOP);
3fd70ee6 2597
7cb67b45
BB
2598 /* Reclaim in progress */
2599 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
ed6e9cc2 2600 return (SHRINK_STOP);
7cb67b45 2601
302f753f
BB
2602 /*
2603 * Evict the requested number of pages by shrinking arc_c the
2604 * requested amount. If there is nothing left to evict just
2605 * reap whatever we can from the various arc slabs.
2606 */
2607 if (pages > 0) {
2608 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
ed6e9cc2
TC
2609
2610#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
2611 pages = MAX(pages - btop(arc_evictable_memory()), 0);
2612#else
1e3cb67b 2613 pages = btop(arc_evictable_memory());
ed6e9cc2 2614#endif
302f753f
BB
2615 } else {
2616 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
ed6e9cc2 2617 pages = SHRINK_STOP;
302f753f
BB
2618 }
2619
2620 /*
2621 * When direct reclaim is observed it usually indicates a rapid
2622 * increase in memory pressure. This occurs because the kswapd
2623 * threads were unable to asynchronously keep enough free memory
2624 * available. In this case set arc_no_grow to briefly pause arc
2625 * growth to avoid compounding the memory pressure.
2626 */
7cb67b45 2627 if (current_is_kswapd()) {
302f753f 2628 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 2629 } else {
302f753f 2630 arc_no_grow = B_TRUE;
bce45ec9 2631 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 2632 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
2633 }
2634
7cb67b45
BB
2635 mutex_exit(&arc_reclaim_thr_lock);
2636
1e3cb67b 2637 return (pages);
7cb67b45 2638}
7e7baeca 2639SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2640
2641SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2642#endif /* _KERNEL */
2643
34dc7c2f
BB
2644/*
2645 * Adapt arc info given the number of bytes we are trying to add and
2646 * the state that we are comming from. This function is only called
2647 * when we are adding new content to the cache.
2648 */
2649static void
2650arc_adapt(int bytes, arc_state_t *state)
2651{
2652 int mult;
2653
2654 if (state == arc_l2c_only)
2655 return;
2656
2657 ASSERT(bytes > 0);
2658 /*
2659 * Adapt the target size of the MRU list:
2660 * - if we just hit in the MRU ghost list, then increase
2661 * the target size of the MRU list.
2662 * - if we just hit in the MFU ghost list, then increase
2663 * the target size of the MFU list by decreasing the
2664 * target size of the MRU list.
2665 */
2666 if (state == arc_mru_ghost) {
2667 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2668 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
62422785
PS
2669
2670 if (!zfs_arc_p_dampener_disable)
2671 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2672
f521ce1b 2673 arc_p = MIN(arc_c, arc_p + bytes * mult);
34dc7c2f 2674 } else if (state == arc_mfu_ghost) {
d164b209
BB
2675 uint64_t delta;
2676
34dc7c2f
BB
2677 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2678 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
62422785
PS
2679
2680 if (!zfs_arc_p_dampener_disable)
2681 mult = MIN(mult, 10);
34dc7c2f 2682
d164b209 2683 delta = MIN(bytes * mult, arc_p);
f521ce1b 2684 arc_p = MAX(0, arc_p - delta);
34dc7c2f
BB
2685 }
2686 ASSERT((int64_t)arc_p >= 0);
2687
34dc7c2f
BB
2688 if (arc_no_grow)
2689 return;
2690
2691 if (arc_c >= arc_c_max)
2692 return;
2693
2694 /*
2695 * If we're within (2 * maxblocksize) bytes of the target
2696 * cache size, increment the target cache size
2697 */
2698 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2699 atomic_add_64(&arc_c, (int64_t)bytes);
2700 if (arc_c > arc_c_max)
2701 arc_c = arc_c_max;
2702 else if (state == arc_anon)
2703 atomic_add_64(&arc_p, (int64_t)bytes);
2704 if (arc_p > arc_c)
2705 arc_p = arc_c;
2706 }
2707 ASSERT((int64_t)arc_p >= 0);
2708}
2709
2710/*
2711 * Check if the cache has reached its limits and eviction is required
2712 * prior to insert.
2713 */
2714static int
2715arc_evict_needed(arc_buf_contents_t type)
2716{
2717 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2718 return (1);
2719
302f753f 2720 if (arc_no_grow)
34dc7c2f
BB
2721 return (1);
2722
2723 return (arc_size > arc_c);
2724}
2725
2726/*
2727 * The buffer, supplied as the first argument, needs a data block.
2728 * So, if we are at cache max, determine which cache should be victimized.
2729 * We have the following cases:
2730 *
2731 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2732 * In this situation if we're out of space, but the resident size of the MFU is
2733 * under the limit, victimize the MFU cache to satisfy this insertion request.
2734 *
2735 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2736 * Here, we've used up all of the available space for the MRU, so we need to
2737 * evict from our own cache instead. Evict from the set of resident MRU
2738 * entries.
2739 *
2740 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2741 * c minus p represents the MFU space in the cache, since p is the size of the
2742 * cache that is dedicated to the MRU. In this situation there's still space on
2743 * the MFU side, so the MRU side needs to be victimized.
2744 *
2745 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2746 * MFU's resident set is consuming more space than it has been allotted. In
2747 * this situation, we must victimize our own cache, the MFU, for this insertion.
2748 */
2749static void
2750arc_get_data_buf(arc_buf_t *buf)
2751{
2752 arc_state_t *state = buf->b_hdr->b_state;
2753 uint64_t size = buf->b_hdr->b_size;
2754 arc_buf_contents_t type = buf->b_hdr->b_type;
da8ccd0e
PS
2755 arc_buf_contents_t evict = ARC_BUFC_DATA;
2756 boolean_t recycle = TRUE;
34dc7c2f
BB
2757
2758 arc_adapt(size, state);
2759
2760 /*
2761 * We have not yet reached cache maximum size,
2762 * just allocate a new buffer.
2763 */
2764 if (!arc_evict_needed(type)) {
2765 if (type == ARC_BUFC_METADATA) {
2766 buf->b_data = zio_buf_alloc(size);
cc7f677c 2767 arc_space_consume(size, ARC_SPACE_META);
34dc7c2f
BB
2768 } else {
2769 ASSERT(type == ARC_BUFC_DATA);
2770 buf->b_data = zio_data_buf_alloc(size);
cc7f677c 2771 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2772 }
2773 goto out;
2774 }
2775
2776 /*
2777 * If we are prefetching from the mfu ghost list, this buffer
2778 * will end up on the mru list; so steal space from there.
2779 */
2780 if (state == arc_mfu_ghost)
2781 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2782 else if (state == arc_mru_ghost)
2783 state = arc_mru;
2784
2785 if (state == arc_mru || state == arc_anon) {
2786 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2787 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2788 arc_p > mru_used) ? arc_mfu : arc_mru;
2789 } else {
2790 /* MFU cases */
2791 uint64_t mfu_space = arc_c - arc_p;
d164b209 2792 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2793 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2794 }
ab26409d 2795
da8ccd0e
PS
2796 /*
2797 * Evict data buffers prior to metadata buffers, unless we're
2798 * over the metadata limit and adding a metadata buffer.
2799 */
2800 if (type == ARC_BUFC_METADATA) {
2801 if (arc_meta_used >= arc_meta_limit)
2802 evict = ARC_BUFC_METADATA;
2803 else
2804 /*
2805 * In this case, we're evicting data while
2806 * adding metadata. Thus, to prevent recycling a
2807 * data buffer into a metadata buffer, recycling
2808 * is disabled in the following arc_evict call.
2809 */
2810 recycle = FALSE;
2811 }
2812
2813 if ((buf->b_data = arc_evict(state, 0, size, recycle, evict)) == NULL) {
34dc7c2f
BB
2814 if (type == ARC_BUFC_METADATA) {
2815 buf->b_data = zio_buf_alloc(size);
cc7f677c 2816 arc_space_consume(size, ARC_SPACE_META);
ab26409d
BB
2817
2818 /*
2819 * If we are unable to recycle an existing meta buffer
2820 * signal the reclaim thread. It will notify users
2821 * via the prune callback to drop references. The
2822 * prune callback in run in the context of the reclaim
2823 * thread to avoid deadlocking on the hash_lock.
da8ccd0e 2824 * Of course, only do this when recycle is true.
ab26409d 2825 */
da8ccd0e
PS
2826 if (recycle)
2827 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2828 } else {
2829 ASSERT(type == ARC_BUFC_DATA);
2830 buf->b_data = zio_data_buf_alloc(size);
cc7f677c 2831 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f 2832 }
ab26409d 2833
da8ccd0e
PS
2834 /* Only bump this if we tried to recycle and failed */
2835 if (recycle)
2836 ARCSTAT_BUMP(arcstat_recycle_miss);
34dc7c2f
BB
2837 }
2838 ASSERT(buf->b_data != NULL);
2839out:
2840 /*
2841 * Update the state size. Note that ghost states have a
2842 * "ghost size" and so don't need to be updated.
2843 */
2844 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2845 arc_buf_hdr_t *hdr = buf->b_hdr;
2846
2847 atomic_add_64(&hdr->b_state->arcs_size, size);
2848 if (list_link_active(&hdr->b_arc_node)) {
2849 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2850 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2851 }
2852 /*
2853 * If we are growing the cache, and we are adding anonymous
2854 * data, and we have outgrown arc_p, update arc_p
2855 */
89c8cac4
PS
2856 if (!zfs_arc_p_aggressive_disable &&
2857 arc_size < arc_c && hdr->b_state == arc_anon &&
34dc7c2f
BB
2858 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2859 arc_p = MIN(arc_c, arc_p + size);
2860 }
2861}
2862
2863/*
2864 * This routine is called whenever a buffer is accessed.
2865 * NOTE: the hash lock is dropped in this function.
2866 */
2867static void
2868arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2869{
428870ff
BB
2870 clock_t now;
2871
34dc7c2f
BB
2872 ASSERT(MUTEX_HELD(hash_lock));
2873
2874 if (buf->b_state == arc_anon) {
2875 /*
2876 * This buffer is not in the cache, and does not
2877 * appear in our "ghost" list. Add the new buffer
2878 * to the MRU state.
2879 */
2880
2881 ASSERT(buf->b_arc_access == 0);
428870ff 2882 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2883 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2884 arc_change_state(arc_mru, buf, hash_lock);
2885
2886 } else if (buf->b_state == arc_mru) {
428870ff
BB
2887 now = ddi_get_lbolt();
2888
34dc7c2f
BB
2889 /*
2890 * If this buffer is here because of a prefetch, then either:
2891 * - clear the flag if this is a "referencing" read
2892 * (any subsequent access will bump this into the MFU state).
2893 * or
2894 * - move the buffer to the head of the list if this is
2895 * another prefetch (to make it less likely to be evicted).
2896 */
2897 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2898 if (refcount_count(&buf->b_refcnt) == 0) {
2899 ASSERT(list_link_active(&buf->b_arc_node));
2900 } else {
2901 buf->b_flags &= ~ARC_PREFETCH;
e0b0ca98 2902 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2903 ARCSTAT_BUMP(arcstat_mru_hits);
2904 }
428870ff 2905 buf->b_arc_access = now;
34dc7c2f
BB
2906 return;
2907 }
2908
2909 /*
2910 * This buffer has been "accessed" only once so far,
2911 * but it is still in the cache. Move it to the MFU
2912 * state.
2913 */
0b75bdb3 2914 if (ddi_time_after(now, buf->b_arc_access + ARC_MINTIME)) {
34dc7c2f
BB
2915 /*
2916 * More than 125ms have passed since we
2917 * instantiated this buffer. Move it to the
2918 * most frequently used state.
2919 */
428870ff 2920 buf->b_arc_access = now;
34dc7c2f
BB
2921 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2922 arc_change_state(arc_mfu, buf, hash_lock);
2923 }
e0b0ca98 2924 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2925 ARCSTAT_BUMP(arcstat_mru_hits);
2926 } else if (buf->b_state == arc_mru_ghost) {
2927 arc_state_t *new_state;
2928 /*
2929 * This buffer has been "accessed" recently, but
2930 * was evicted from the cache. Move it to the
2931 * MFU state.
2932 */
2933
2934 if (buf->b_flags & ARC_PREFETCH) {
2935 new_state = arc_mru;
2936 if (refcount_count(&buf->b_refcnt) > 0)
2937 buf->b_flags &= ~ARC_PREFETCH;
2938 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2939 } else {
2940 new_state = arc_mfu;
2941 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2942 }
2943
428870ff 2944 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2945 arc_change_state(new_state, buf, hash_lock);
2946
e0b0ca98 2947 atomic_inc_32(&buf->b_mru_ghost_hits);
34dc7c2f
BB
2948 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2949 } else if (buf->b_state == arc_mfu) {
2950 /*
2951 * This buffer has been accessed more than once and is
2952 * still in the cache. Keep it in the MFU state.
2953 *
2954 * NOTE: an add_reference() that occurred when we did
2955 * the arc_read() will have kicked this off the list.
2956 * If it was a prefetch, we will explicitly move it to
2957 * the head of the list now.
2958 */
2959 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2960 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2961 ASSERT(list_link_active(&buf->b_arc_node));
2962 }
e0b0ca98 2963 atomic_inc_32(&buf->b_mfu_hits);
34dc7c2f 2964 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2965 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2966 } else if (buf->b_state == arc_mfu_ghost) {
2967 arc_state_t *new_state = arc_mfu;
2968 /*
2969 * This buffer has been accessed more than once but has
2970 * been evicted from the cache. Move it back to the
2971 * MFU state.
2972 */
2973
2974 if (buf->b_flags & ARC_PREFETCH) {
2975 /*
2976 * This is a prefetch access...
2977 * move this block back to the MRU state.
2978 */
c99c9001 2979 ASSERT0(refcount_count(&buf->b_refcnt));
34dc7c2f
BB
2980 new_state = arc_mru;
2981 }
2982
428870ff 2983 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2984 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2985 arc_change_state(new_state, buf, hash_lock);
2986
e0b0ca98 2987 atomic_inc_32(&buf->b_mfu_ghost_hits);
34dc7c2f
BB
2988 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2989 } else if (buf->b_state == arc_l2c_only) {
2990 /*
2991 * This buffer is on the 2nd Level ARC.
2992 */
2993
428870ff 2994 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2995 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2996 arc_change_state(arc_mfu, buf, hash_lock);
2997 } else {
989fd514 2998 cmn_err(CE_PANIC, "invalid arc state 0x%p", buf->b_state);
34dc7c2f
BB
2999 }
3000}
3001
3002/* a generic arc_done_func_t which you can use */
3003/* ARGSUSED */
3004void
3005arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3006{
428870ff
BB
3007 if (zio == NULL || zio->io_error == 0)
3008 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 3009 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3010}
3011
3012/* a generic arc_done_func_t */
3013void
3014arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3015{
3016 arc_buf_t **bufp = arg;
3017 if (zio && zio->io_error) {
13fe0198 3018 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3019 *bufp = NULL;
3020 } else {
3021 *bufp = buf;
428870ff 3022 ASSERT(buf->b_data);
34dc7c2f
BB
3023 }
3024}
3025
3026static void
3027arc_read_done(zio_t *zio)
3028{
9b67f605 3029 arc_buf_hdr_t *hdr;
34dc7c2f
BB
3030 arc_buf_t *buf;
3031 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 3032 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
3033 arc_callback_t *callback_list, *acb;
3034 int freeable = FALSE;
3035
3036 buf = zio->io_private;
3037 hdr = buf->b_hdr;
3038
3039 /*
3040 * The hdr was inserted into hash-table and removed from lists
3041 * prior to starting I/O. We should find this header, since
3042 * it's in the hash table, and it should be legit since it's
3043 * not possible to evict it during the I/O. The only possible
3044 * reason for it not to be found is if we were freed during the
3045 * read.
3046 */
9b67f605
MA
3047 if (HDR_IN_HASH_TABLE(hdr)) {
3048 arc_buf_hdr_t *found;
3049
3050 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3051 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3052 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3053 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3054 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3055
3056 found = buf_hash_find(hdr->b_spa, zio->io_bp,
3057 &hash_lock);
3058
3059 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3060 hash_lock == NULL) ||
3061 (found == hdr &&
3062 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3063 (found == hdr && HDR_L2_READING(hdr)));
3064 }
34dc7c2f 3065
b128c09f 3066 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 3067 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 3068 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
3069
3070 /* byteswap if necessary */
3071 callback_list = hdr->b_acb;
3072 ASSERT(callback_list != NULL);
428870ff 3073 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
3074 dmu_object_byteswap_t bswap =
3075 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
3076 if (BP_GET_LEVEL(zio->io_bp) > 0)
3077 byteswap_uint64_array(buf->b_data, hdr->b_size);
3078 else
3079 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 3080 }
34dc7c2f
BB
3081
3082 arc_cksum_compute(buf, B_FALSE);
498877ba 3083 arc_buf_watch(buf);
34dc7c2f 3084
428870ff
BB
3085 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3086 /*
3087 * Only call arc_access on anonymous buffers. This is because
3088 * if we've issued an I/O for an evicted buffer, we've already
3089 * called arc_access (to prevent any simultaneous readers from
3090 * getting confused).
3091 */
3092 arc_access(hdr, hash_lock);
3093 }
3094
34dc7c2f
BB
3095 /* create copies of the data buffer for the callers */
3096 abuf = buf;
3097 for (acb = callback_list; acb; acb = acb->acb_next) {
3098 if (acb->acb_done) {
1eb5bfa3
GW
3099 if (abuf == NULL) {
3100 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 3101 abuf = arc_buf_clone(buf);
1eb5bfa3 3102 }
34dc7c2f
BB
3103 acb->acb_buf = abuf;
3104 abuf = NULL;
3105 }
3106 }
3107 hdr->b_acb = NULL;
3108 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3109 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
3110 if (abuf == buf) {
3111 ASSERT(buf->b_efunc == NULL);
3112 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 3113 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 3114 }
34dc7c2f
BB
3115
3116 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3117
3118 if (zio->io_error != 0) {
3119 hdr->b_flags |= ARC_IO_ERROR;
3120 if (hdr->b_state != arc_anon)
3121 arc_change_state(arc_anon, hdr, hash_lock);
3122 if (HDR_IN_HASH_TABLE(hdr))
3123 buf_hash_remove(hdr);
3124 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
3125 }
3126
3127 /*
3128 * Broadcast before we drop the hash_lock to avoid the possibility
3129 * that the hdr (and hence the cv) might be freed before we get to
3130 * the cv_broadcast().
3131 */
3132 cv_broadcast(&hdr->b_cv);
3133
3134 if (hash_lock) {
34dc7c2f
BB
3135 mutex_exit(hash_lock);
3136 } else {
3137 /*
3138 * This block was freed while we waited for the read to
3139 * complete. It has been removed from the hash table and
3140 * moved to the anonymous state (so that it won't show up
3141 * in the cache).
3142 */
3143 ASSERT3P(hdr->b_state, ==, arc_anon);
3144 freeable = refcount_is_zero(&hdr->b_refcnt);
3145 }
3146
3147 /* execute each callback and free its structure */
3148 while ((acb = callback_list) != NULL) {
3149 if (acb->acb_done)
3150 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3151
3152 if (acb->acb_zio_dummy != NULL) {
3153 acb->acb_zio_dummy->io_error = zio->io_error;
3154 zio_nowait(acb->acb_zio_dummy);
3155 }
3156
3157 callback_list = acb->acb_next;
3158 kmem_free(acb, sizeof (arc_callback_t));
3159 }
3160
3161 if (freeable)
3162 arc_hdr_destroy(hdr);
3163}
3164
3165/*
5c839890 3166 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
3167 * cache. If the block is found in the cache, invoke the provided
3168 * callback immediately and return. Note that the `zio' parameter
3169 * in the callback will be NULL in this case, since no IO was
3170 * required. If the block is not in the cache pass the read request
3171 * on to the spa with a substitute callback function, so that the
3172 * requested block will be added to the cache.
3173 *
3174 * If a read request arrives for a block that has a read in-progress,
3175 * either wait for the in-progress read to complete (and return the
3176 * results); or, if this is a read with a "done" func, add a record
3177 * to the read to invoke the "done" func when the read completes,
3178 * and return; or just return.
3179 *
3180 * arc_read_done() will invoke all the requested "done" functions
3181 * for readers of this block.
3182 */
3183int
294f6806 3184arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
e8b96c60 3185 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
5dbd68a3 3186 const zbookmark_phys_t *zb)
34dc7c2f 3187{
9b67f605 3188 arc_buf_hdr_t *hdr = NULL;
d4ed6673 3189 arc_buf_t *buf = NULL;
9b67f605 3190 kmutex_t *hash_lock = NULL;
34dc7c2f 3191 zio_t *rzio;
3541dc6d 3192 uint64_t guid = spa_load_guid(spa);
1421c891 3193 int rc = 0;
34dc7c2f 3194
9b67f605
MA
3195 ASSERT(!BP_IS_EMBEDDED(bp) ||
3196 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3197
34dc7c2f 3198top:
9b67f605
MA
3199 if (!BP_IS_EMBEDDED(bp)) {
3200 /*
3201 * Embedded BP's have no DVA and require no I/O to "read".
3202 * Create an anonymous arc buf to back it.
3203 */
3204 hdr = buf_hash_find(guid, bp, &hash_lock);
3205 }
3206
3207 if (hdr != NULL && hdr->b_datacnt > 0) {
34dc7c2f
BB
3208
3209 *arc_flags |= ARC_CACHED;
3210
3211 if (HDR_IO_IN_PROGRESS(hdr)) {
3212
3213 if (*arc_flags & ARC_WAIT) {
3214 cv_wait(&hdr->b_cv, hash_lock);
3215 mutex_exit(hash_lock);
3216 goto top;
3217 }
3218 ASSERT(*arc_flags & ARC_NOWAIT);
3219
3220 if (done) {
3221 arc_callback_t *acb = NULL;
3222
3223 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 3224 KM_SLEEP);
34dc7c2f
BB
3225 acb->acb_done = done;
3226 acb->acb_private = private;
34dc7c2f
BB
3227 if (pio != NULL)
3228 acb->acb_zio_dummy = zio_null(pio,
d164b209 3229 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3230
3231 ASSERT(acb->acb_done != NULL);
3232 acb->acb_next = hdr->b_acb;
3233 hdr->b_acb = acb;
3234 add_reference(hdr, hash_lock, private);
3235 mutex_exit(hash_lock);
1421c891 3236 goto out;
34dc7c2f
BB
3237 }
3238 mutex_exit(hash_lock);
1421c891 3239 goto out;
34dc7c2f
BB
3240 }
3241
3242 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3243
3244 if (done) {
3245 add_reference(hdr, hash_lock, private);
3246 /*
3247 * If this block is already in use, create a new
3248 * copy of the data so that we will be guaranteed
3249 * that arc_release() will always succeed.
3250 */
3251 buf = hdr->b_buf;
3252 ASSERT(buf);
3253 ASSERT(buf->b_data);
3254 if (HDR_BUF_AVAILABLE(hdr)) {
3255 ASSERT(buf->b_efunc == NULL);
3256 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3257 } else {
3258 buf = arc_buf_clone(buf);
3259 }
428870ff 3260
34dc7c2f
BB
3261 } else if (*arc_flags & ARC_PREFETCH &&
3262 refcount_count(&hdr->b_refcnt) == 0) {
3263 hdr->b_flags |= ARC_PREFETCH;
3264 }
3265 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3266 arc_access(hdr, hash_lock);
b128c09f
BB
3267 if (*arc_flags & ARC_L2CACHE)
3268 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3269 if (*arc_flags & ARC_L2COMPRESS)
3270 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3271 mutex_exit(hash_lock);
3272 ARCSTAT_BUMP(arcstat_hits);
3273 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3274 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3275 data, metadata, hits);
3276
3277 if (done)
3278 done(NULL, buf, private);
3279 } else {
3280 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 3281 arc_callback_t *acb;
b128c09f 3282 vdev_t *vd = NULL;
a117a6d6 3283 uint64_t addr = 0;
d164b209 3284 boolean_t devw = B_FALSE;
0ed212dc
BP
3285 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3286 uint64_t b_asize = 0;
34dc7c2f 3287
5f6d0b6f
BB
3288 /*
3289 * Gracefully handle a damaged logical block size as a
3290 * checksum error by passing a dummy zio to the done callback.
3291 */
3292 if (size > SPA_MAXBLOCKSIZE) {
3293 if (done) {
3294 rzio = zio_null(pio, spa, NULL,
3295 NULL, NULL, zio_flags);
3296 rzio->io_error = ECKSUM;
3297 done(rzio, buf, private);
3298 zio_nowait(rzio);
3299 }
3300 rc = ECKSUM;
3301 goto out;
3302 }
3303
34dc7c2f
BB
3304 if (hdr == NULL) {
3305 /* this block is not in the cache */
9b67f605 3306 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
3307 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3308 buf = arc_buf_alloc(spa, size, private, type);
3309 hdr = buf->b_hdr;
9b67f605
MA
3310 if (!BP_IS_EMBEDDED(bp)) {
3311 hdr->b_dva = *BP_IDENTITY(bp);
3312 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3313 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3314 exists = buf_hash_insert(hdr, &hash_lock);
3315 }
3316 if (exists != NULL) {
34dc7c2f
BB
3317 /* somebody beat us to the hash insert */
3318 mutex_exit(hash_lock);
428870ff 3319 buf_discard_identity(hdr);
34dc7c2f
BB
3320 (void) arc_buf_remove_ref(buf, private);
3321 goto top; /* restart the IO request */
3322 }
3323 /* if this is a prefetch, we don't have a reference */
3324 if (*arc_flags & ARC_PREFETCH) {
3325 (void) remove_reference(hdr, hash_lock,
3326 private);
3327 hdr->b_flags |= ARC_PREFETCH;
3328 }
b128c09f
BB
3329 if (*arc_flags & ARC_L2CACHE)
3330 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3331 if (*arc_flags & ARC_L2COMPRESS)
3332 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3333 if (BP_GET_LEVEL(bp) > 0)
3334 hdr->b_flags |= ARC_INDIRECT;
3335 } else {
3336 /* this block is in the ghost cache */
3337 ASSERT(GHOST_STATE(hdr->b_state));
3338 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
c99c9001 3339 ASSERT0(refcount_count(&hdr->b_refcnt));
34dc7c2f
BB
3340 ASSERT(hdr->b_buf == NULL);
3341
3342 /* if this is a prefetch, we don't have a reference */
3343 if (*arc_flags & ARC_PREFETCH)
3344 hdr->b_flags |= ARC_PREFETCH;
3345 else
3346 add_reference(hdr, hash_lock, private);
b128c09f
BB
3347 if (*arc_flags & ARC_L2CACHE)
3348 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3349 if (*arc_flags & ARC_L2COMPRESS)
3350 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3351 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3352 buf->b_hdr = hdr;
3353 buf->b_data = NULL;
3354 buf->b_efunc = NULL;
3355 buf->b_private = NULL;
3356 buf->b_next = NULL;
3357 hdr->b_buf = buf;
34dc7c2f
BB
3358 ASSERT(hdr->b_datacnt == 0);
3359 hdr->b_datacnt = 1;
428870ff
BB
3360 arc_get_data_buf(buf);
3361 arc_access(hdr, hash_lock);
34dc7c2f
BB
3362 }
3363
428870ff
BB
3364 ASSERT(!GHOST_STATE(hdr->b_state));
3365
79c76d5b 3366 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
3367 acb->acb_done = done;
3368 acb->acb_private = private;
34dc7c2f
BB
3369
3370 ASSERT(hdr->b_acb == NULL);
3371 hdr->b_acb = acb;
3372 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3373
0ed212dc 3374 if (hdr->b_l2hdr != NULL &&
b128c09f 3375 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3376 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f 3377 addr = hdr->b_l2hdr->b_daddr;
0ed212dc
BP
3378 b_compress = hdr->b_l2hdr->b_compress;
3379 b_asize = hdr->b_l2hdr->b_asize;
b128c09f
BB
3380 /*
3381 * Lock out device removal.
3382 */
3383 if (vdev_is_dead(vd) ||
3384 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3385 vd = NULL;
3386 }
3387
9b67f605
MA
3388 if (hash_lock != NULL)
3389 mutex_exit(hash_lock);
b128c09f 3390
e49f1e20
WA
3391 /*
3392 * At this point, we have a level 1 cache miss. Try again in
3393 * L2ARC if possible.
3394 */
34dc7c2f 3395 ASSERT3U(hdr->b_size, ==, size);
428870ff 3396 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 3397 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f
BB
3398 ARCSTAT_BUMP(arcstat_misses);
3399 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3400 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3401 data, metadata, misses);
3402
d164b209 3403 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3404 /*
3405 * Read from the L2ARC if the following are true:
b128c09f
BB
3406 * 1. The L2ARC vdev was previously cached.
3407 * 2. This buffer still has L2ARC metadata.
3408 * 3. This buffer isn't currently writing to the L2ARC.
3409 * 4. The L2ARC entry wasn't evicted, which may
3410 * also have invalidated the vdev.
d164b209 3411 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3412 */
b128c09f 3413 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3414 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3415 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3416 l2arc_read_callback_t *cb;
3417
3418 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3419 ARCSTAT_BUMP(arcstat_l2_hits);
e0b0ca98 3420 atomic_inc_32(&hdr->b_l2hdr->b_hits);
34dc7c2f 3421
34dc7c2f 3422 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 3423 KM_SLEEP);
34dc7c2f
BB
3424 cb->l2rcb_buf = buf;
3425 cb->l2rcb_spa = spa;
3426 cb->l2rcb_bp = *bp;
3427 cb->l2rcb_zb = *zb;
b128c09f 3428 cb->l2rcb_flags = zio_flags;
0ed212dc 3429 cb->l2rcb_compress = b_compress;
34dc7c2f 3430
a117a6d6
GW
3431 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3432 addr + size < vd->vdev_psize -
3433 VDEV_LABEL_END_SIZE);
3434
34dc7c2f 3435 /*
b128c09f
BB
3436 * l2arc read. The SCL_L2ARC lock will be
3437 * released by l2arc_read_done().
3a17a7a9
SK
3438 * Issue a null zio if the underlying buffer
3439 * was squashed to zero size by compression.
34dc7c2f 3440 */
0ed212dc 3441 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
3442 rzio = zio_null(pio, spa, vd,
3443 l2arc_read_done, cb,
3444 zio_flags | ZIO_FLAG_DONT_CACHE |
3445 ZIO_FLAG_CANFAIL |
3446 ZIO_FLAG_DONT_PROPAGATE |
3447 ZIO_FLAG_DONT_RETRY);
3448 } else {
3449 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
3450 b_asize, buf->b_data,
3451 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
3452 l2arc_read_done, cb, priority,
3453 zio_flags | ZIO_FLAG_DONT_CACHE |
3454 ZIO_FLAG_CANFAIL |
3455 ZIO_FLAG_DONT_PROPAGATE |
3456 ZIO_FLAG_DONT_RETRY, B_FALSE);
3457 }
34dc7c2f
BB
3458 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3459 zio_t *, rzio);
0ed212dc 3460 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 3461
b128c09f
BB
3462 if (*arc_flags & ARC_NOWAIT) {
3463 zio_nowait(rzio);
1421c891 3464 goto out;
b128c09f 3465 }
34dc7c2f 3466
b128c09f
BB
3467 ASSERT(*arc_flags & ARC_WAIT);
3468 if (zio_wait(rzio) == 0)
1421c891 3469 goto out;
b128c09f
BB
3470
3471 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3472 } else {
3473 DTRACE_PROBE1(l2arc__miss,
3474 arc_buf_hdr_t *, hdr);
3475 ARCSTAT_BUMP(arcstat_l2_misses);
3476 if (HDR_L2_WRITING(hdr))
3477 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3478 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3479 }
d164b209
BB
3480 } else {
3481 if (vd != NULL)
3482 spa_config_exit(spa, SCL_L2ARC, vd);
3483 if (l2arc_ndev != 0) {
3484 DTRACE_PROBE1(l2arc__miss,
3485 arc_buf_hdr_t *, hdr);
3486 ARCSTAT_BUMP(arcstat_l2_misses);
3487 }
34dc7c2f 3488 }
34dc7c2f
BB
3489
3490 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3491 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 3492
1421c891
PS
3493 if (*arc_flags & ARC_WAIT) {
3494 rc = zio_wait(rzio);
3495 goto out;
3496 }
34dc7c2f
BB
3497
3498 ASSERT(*arc_flags & ARC_NOWAIT);
3499 zio_nowait(rzio);
3500 }
1421c891
PS
3501
3502out:
3503 spa_read_history_add(spa, zb, *arc_flags);
3504 return (rc);
34dc7c2f
BB
3505}
3506
ab26409d
BB
3507arc_prune_t *
3508arc_add_prune_callback(arc_prune_func_t *func, void *private)
3509{
3510 arc_prune_t *p;
3511
d1d7e268 3512 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
3513 p->p_pfunc = func;
3514 p->p_private = private;
3515 list_link_init(&p->p_node);
3516 refcount_create(&p->p_refcnt);
3517
3518 mutex_enter(&arc_prune_mtx);
3519 refcount_add(&p->p_refcnt, &arc_prune_list);
3520 list_insert_head(&arc_prune_list, p);
3521 mutex_exit(&arc_prune_mtx);
3522
3523 return (p);
3524}
3525
3526void
3527arc_remove_prune_callback(arc_prune_t *p)
3528{
3529 mutex_enter(&arc_prune_mtx);
3530 list_remove(&arc_prune_list, p);
3531 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3532 refcount_destroy(&p->p_refcnt);
3533 kmem_free(p, sizeof (*p));
3534 }
3535 mutex_exit(&arc_prune_mtx);
3536}
3537
34dc7c2f
BB
3538void
3539arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3540{
3541 ASSERT(buf->b_hdr != NULL);
3542 ASSERT(buf->b_hdr->b_state != arc_anon);
3543 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3544 ASSERT(buf->b_efunc == NULL);
3545 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3546
34dc7c2f
BB
3547 buf->b_efunc = func;
3548 buf->b_private = private;
3549}
3550
df4474f9
MA
3551/*
3552 * Notify the arc that a block was freed, and thus will never be used again.
3553 */
3554void
3555arc_freed(spa_t *spa, const blkptr_t *bp)
3556{
3557 arc_buf_hdr_t *hdr;
3558 kmutex_t *hash_lock;
3559 uint64_t guid = spa_load_guid(spa);
3560
9b67f605
MA
3561 ASSERT(!BP_IS_EMBEDDED(bp));
3562
3563 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
3564 if (hdr == NULL)
3565 return;
3566 if (HDR_BUF_AVAILABLE(hdr)) {
3567 arc_buf_t *buf = hdr->b_buf;
3568 add_reference(hdr, hash_lock, FTAG);
3569 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3570 mutex_exit(hash_lock);
3571
3572 arc_release(buf, FTAG);
3573 (void) arc_buf_remove_ref(buf, FTAG);
3574 } else {
3575 mutex_exit(hash_lock);
3576 }
3577
3578}
3579
34dc7c2f 3580/*
bd089c54
MA
3581 * Clear the user eviction callback set by arc_set_callback(), first calling
3582 * it if it exists. Because the presence of a callback keeps an arc_buf cached
3583 * clearing the callback may result in the arc_buf being destroyed. However,
3584 * it will not result in the *last* arc_buf being destroyed, hence the data
3585 * will remain cached in the ARC. We make a copy of the arc buffer here so
3586 * that we can process the callback without holding any locks.
3587 *
3588 * It's possible that the callback is already in the process of being cleared
3589 * by another thread. In this case we can not clear the callback.
3590 *
3591 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 3592 */
bd089c54
MA
3593boolean_t
3594arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
3595{
3596 arc_buf_hdr_t *hdr;
3597 kmutex_t *hash_lock;
bd089c54
MA
3598 arc_evict_func_t *efunc = buf->b_efunc;
3599 void *private = buf->b_private;
34dc7c2f 3600
428870ff 3601 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3602 hdr = buf->b_hdr;
3603 if (hdr == NULL) {
3604 /*
3605 * We are in arc_do_user_evicts().
3606 */
3607 ASSERT(buf->b_data == NULL);
428870ff 3608 mutex_exit(&buf->b_evict_lock);
bd089c54 3609 return (B_FALSE);
b128c09f 3610 } else if (buf->b_data == NULL) {
34dc7c2f 3611 /*
b128c09f
BB
3612 * We are on the eviction list; process this buffer now
3613 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3614 */
b128c09f 3615 buf->b_efunc = NULL;
428870ff 3616 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
3617 VERIFY0(efunc(private));
3618 return (B_TRUE);
34dc7c2f 3619 }
b128c09f
BB
3620 hash_lock = HDR_LOCK(hdr);
3621 mutex_enter(hash_lock);
428870ff
BB
3622 hdr = buf->b_hdr;
3623 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3624
34dc7c2f
BB
3625 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3626 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3627
bd089c54
MA
3628 buf->b_efunc = NULL;
3629 buf->b_private = NULL;
34dc7c2f 3630
bd089c54
MA
3631 if (hdr->b_datacnt > 1) {
3632 mutex_exit(&buf->b_evict_lock);
3633 arc_buf_destroy(buf, FALSE, TRUE);
3634 } else {
3635 ASSERT(buf == hdr->b_buf);
3636 hdr->b_flags |= ARC_BUF_AVAILABLE;
3637 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3638 }
34dc7c2f 3639
bd089c54
MA
3640 mutex_exit(hash_lock);
3641 VERIFY0(efunc(private));
3642 return (B_TRUE);
34dc7c2f
BB
3643}
3644
3645/*
e49f1e20
WA
3646 * Release this buffer from the cache, making it an anonymous buffer. This
3647 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 3648 * If the buffer has more than one reference, we must make
b128c09f 3649 * a new hdr for the buffer.
34dc7c2f
BB
3650 */
3651void
3652arc_release(arc_buf_t *buf, void *tag)
3653{
b128c09f 3654 arc_buf_hdr_t *hdr;
428870ff 3655 kmutex_t *hash_lock = NULL;
b128c09f 3656 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3657 uint64_t buf_size = 0;
34dc7c2f 3658
428870ff
BB
3659 /*
3660 * It would be nice to assert that if it's DMU metadata (level >
3661 * 0 || it's the dnode file), then it must be syncing context.
3662 * But we don't know that information at this level.
3663 */
3664
3665 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3666 hdr = buf->b_hdr;
3667
34dc7c2f
BB
3668 /* this buffer is not on any list */
3669 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3670
3671 if (hdr->b_state == arc_anon) {
3672 /* this buffer is already released */
34dc7c2f 3673 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3674 } else {
3675 hash_lock = HDR_LOCK(hdr);
3676 mutex_enter(hash_lock);
428870ff
BB
3677 hdr = buf->b_hdr;
3678 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3679 }
3680
b128c09f
BB
3681 l2hdr = hdr->b_l2hdr;
3682 if (l2hdr) {
3683 mutex_enter(&l2arc_buflist_mtx);
037763e4 3684 arc_buf_l2_cdata_free(hdr);
b128c09f 3685 hdr->b_l2hdr = NULL;
47fe91b5 3686 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
b128c09f 3687 }
a117a6d6 3688 buf_size = hdr->b_size;
b128c09f 3689
34dc7c2f
BB
3690 /*
3691 * Do we have more than one buf?
3692 */
b128c09f 3693 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3694 arc_buf_hdr_t *nhdr;
3695 arc_buf_t **bufp;
3696 uint64_t blksz = hdr->b_size;
d164b209 3697 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3698 arc_buf_contents_t type = hdr->b_type;
3699 uint32_t flags = hdr->b_flags;
3700
b128c09f 3701 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3702 /*
428870ff
BB
3703 * Pull the data off of this hdr and attach it to
3704 * a new anonymous hdr.
34dc7c2f
BB
3705 */
3706 (void) remove_reference(hdr, hash_lock, tag);
3707 bufp = &hdr->b_buf;
3708 while (*bufp != buf)
3709 bufp = &(*bufp)->b_next;
428870ff 3710 *bufp = buf->b_next;
34dc7c2f
BB
3711 buf->b_next = NULL;
3712
3713 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3714 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3715 if (refcount_is_zero(&hdr->b_refcnt)) {
3716 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3717 ASSERT3U(*size, >=, hdr->b_size);
3718 atomic_add_64(size, -hdr->b_size);
3719 }
1eb5bfa3
GW
3720
3721 /*
3722 * We're releasing a duplicate user data buffer, update
3723 * our statistics accordingly.
3724 */
3725 if (hdr->b_type == ARC_BUFC_DATA) {
3726 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3727 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3728 -hdr->b_size);
3729 }
34dc7c2f 3730 hdr->b_datacnt -= 1;
34dc7c2f 3731 arc_cksum_verify(buf);
498877ba 3732 arc_buf_unwatch(buf);
34dc7c2f
BB
3733
3734 mutex_exit(hash_lock);
3735
3736 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3737 nhdr->b_size = blksz;
3738 nhdr->b_spa = spa;
3739 nhdr->b_type = type;
3740 nhdr->b_buf = buf;
3741 nhdr->b_state = arc_anon;
3742 nhdr->b_arc_access = 0;
e0b0ca98
BB
3743 nhdr->b_mru_hits = 0;
3744 nhdr->b_mru_ghost_hits = 0;
3745 nhdr->b_mfu_hits = 0;
3746 nhdr->b_mfu_ghost_hits = 0;
3747 nhdr->b_l2_hits = 0;
34dc7c2f
BB
3748 nhdr->b_flags = flags & ARC_L2_WRITING;
3749 nhdr->b_l2hdr = NULL;
3750 nhdr->b_datacnt = 1;
3751 nhdr->b_freeze_cksum = NULL;
3752 (void) refcount_add(&nhdr->b_refcnt, tag);
3753 buf->b_hdr = nhdr;
428870ff 3754 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3755 atomic_add_64(&arc_anon->arcs_size, blksz);
3756 } else {
428870ff 3757 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3758 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3759 ASSERT(!list_link_active(&hdr->b_arc_node));
3760 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3761 if (hdr->b_state != arc_anon)
3762 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3763 hdr->b_arc_access = 0;
e0b0ca98
BB
3764 hdr->b_mru_hits = 0;
3765 hdr->b_mru_ghost_hits = 0;
3766 hdr->b_mfu_hits = 0;
3767 hdr->b_mfu_ghost_hits = 0;
3768 hdr->b_l2_hits = 0;
428870ff
BB
3769 if (hash_lock)
3770 mutex_exit(hash_lock);
34dc7c2f 3771
428870ff 3772 buf_discard_identity(hdr);
34dc7c2f
BB
3773 arc_buf_thaw(buf);
3774 }
3775 buf->b_efunc = NULL;
3776 buf->b_private = NULL;
3777
3778 if (l2hdr) {
3a17a7a9 3779 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3bec585e
SK
3780 vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3781 -l2hdr->b_asize, 0, 0);
ecf3d9b8 3782 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 3783 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 3784 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3785 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3786 }
34dc7c2f
BB
3787}
3788
3789int
3790arc_released(arc_buf_t *buf)
3791{
b128c09f
BB
3792 int released;
3793
428870ff 3794 mutex_enter(&buf->b_evict_lock);
b128c09f 3795 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3796 mutex_exit(&buf->b_evict_lock);
b128c09f 3797 return (released);
34dc7c2f
BB
3798}
3799
34dc7c2f
BB
3800#ifdef ZFS_DEBUG
3801int
3802arc_referenced(arc_buf_t *buf)
3803{
b128c09f
BB
3804 int referenced;
3805
428870ff 3806 mutex_enter(&buf->b_evict_lock);
b128c09f 3807 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3808 mutex_exit(&buf->b_evict_lock);
b128c09f 3809 return (referenced);
34dc7c2f
BB
3810}
3811#endif
3812
3813static void
3814arc_write_ready(zio_t *zio)
3815{
3816 arc_write_callback_t *callback = zio->io_private;
3817 arc_buf_t *buf = callback->awcb_buf;
3818 arc_buf_hdr_t *hdr = buf->b_hdr;
3819
b128c09f
BB
3820 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3821 callback->awcb_ready(zio, buf, callback->awcb_private);
3822
34dc7c2f
BB
3823 /*
3824 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3825 * attempt, so we need to thaw and re-compute the cksum.
3826 * It is the responsibility of the callback to handle the
3827 * accounting for any re-write attempt.
34dc7c2f
BB
3828 */
3829 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3830 mutex_enter(&hdr->b_freeze_lock);
3831 if (hdr->b_freeze_cksum != NULL) {
3832 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3833 hdr->b_freeze_cksum = NULL;
3834 }
3835 mutex_exit(&hdr->b_freeze_lock);
3836 }
3837 arc_cksum_compute(buf, B_FALSE);
3838 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3839}
3840
e8b96c60
MA
3841/*
3842 * The SPA calls this callback for each physical write that happens on behalf
3843 * of a logical write. See the comment in dbuf_write_physdone() for details.
3844 */
3845static void
3846arc_write_physdone(zio_t *zio)
3847{
3848 arc_write_callback_t *cb = zio->io_private;
3849 if (cb->awcb_physdone != NULL)
3850 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3851}
3852
34dc7c2f
BB
3853static void
3854arc_write_done(zio_t *zio)
3855{
3856 arc_write_callback_t *callback = zio->io_private;
3857 arc_buf_t *buf = callback->awcb_buf;
3858 arc_buf_hdr_t *hdr = buf->b_hdr;
3859
428870ff
BB
3860 ASSERT(hdr->b_acb == NULL);
3861
3862 if (zio->io_error == 0) {
9b67f605 3863 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
3864 buf_discard_identity(hdr);
3865 } else {
3866 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3867 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3868 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3869 }
428870ff
BB
3870 } else {
3871 ASSERT(BUF_EMPTY(hdr));
3872 }
34dc7c2f 3873
34dc7c2f 3874 /*
9b67f605
MA
3875 * If the block to be written was all-zero or compressed enough to be
3876 * embedded in the BP, no write was performed so there will be no
3877 * dva/birth/checksum. The buffer must therefore remain anonymous
3878 * (and uncached).
34dc7c2f
BB
3879 */
3880 if (!BUF_EMPTY(hdr)) {
3881 arc_buf_hdr_t *exists;
3882 kmutex_t *hash_lock;
3883
428870ff
BB
3884 ASSERT(zio->io_error == 0);
3885
34dc7c2f
BB
3886 arc_cksum_verify(buf);
3887
3888 exists = buf_hash_insert(hdr, &hash_lock);
3889 if (exists) {
3890 /*
3891 * This can only happen if we overwrite for
3892 * sync-to-convergence, because we remove
3893 * buffers from the hash table when we arc_free().
3894 */
428870ff
BB
3895 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3896 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3897 panic("bad overwrite, hdr=%p exists=%p",
3898 (void *)hdr, (void *)exists);
3899 ASSERT(refcount_is_zero(&exists->b_refcnt));
3900 arc_change_state(arc_anon, exists, hash_lock);
3901 mutex_exit(hash_lock);
3902 arc_hdr_destroy(exists);
3903 exists = buf_hash_insert(hdr, &hash_lock);
3904 ASSERT3P(exists, ==, NULL);
03c6040b
GW
3905 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3906 /* nopwrite */
3907 ASSERT(zio->io_prop.zp_nopwrite);
3908 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3909 panic("bad nopwrite, hdr=%p exists=%p",
3910 (void *)hdr, (void *)exists);
428870ff
BB
3911 } else {
3912 /* Dedup */
3913 ASSERT(hdr->b_datacnt == 1);
3914 ASSERT(hdr->b_state == arc_anon);
3915 ASSERT(BP_GET_DEDUP(zio->io_bp));
3916 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3917 }
34dc7c2f
BB
3918 }
3919 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3920 /* if it's not anon, we are doing a scrub */
428870ff 3921 if (!exists && hdr->b_state == arc_anon)
b128c09f 3922 arc_access(hdr, hash_lock);
34dc7c2f 3923 mutex_exit(hash_lock);
34dc7c2f
BB
3924 } else {
3925 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3926 }
3927
428870ff
BB
3928 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3929 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3930
3931 kmem_free(callback, sizeof (arc_write_callback_t));
3932}
3933
3934zio_t *
428870ff 3935arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 3936 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
3937 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3938 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 3939 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
3940{
3941 arc_buf_hdr_t *hdr = buf->b_hdr;
3942 arc_write_callback_t *callback;
b128c09f 3943 zio_t *zio;
34dc7c2f 3944
b128c09f 3945 ASSERT(ready != NULL);
428870ff 3946 ASSERT(done != NULL);
34dc7c2f
BB
3947 ASSERT(!HDR_IO_ERROR(hdr));
3948 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3949 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3950 if (l2arc)
3951 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3952 if (l2arc_compress)
3953 hdr->b_flags |= ARC_L2COMPRESS;
79c76d5b 3954 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 3955 callback->awcb_ready = ready;
e8b96c60 3956 callback->awcb_physdone = physdone;
34dc7c2f
BB
3957 callback->awcb_done = done;
3958 callback->awcb_private = private;
3959 callback->awcb_buf = buf;
b128c09f 3960
428870ff 3961 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
3962 arc_write_ready, arc_write_physdone, arc_write_done, callback,
3963 priority, zio_flags, zb);
34dc7c2f
BB
3964
3965 return (zio);
3966}
3967
34dc7c2f 3968static int
e8b96c60 3969arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
3970{
3971#ifdef _KERNEL
0c5493d4
BB
3972 if (zfs_arc_memory_throttle_disable)
3973 return (0);
3974
e8b96c60 3975 if (freemem <= physmem * arc_lotsfree_percent / 100) {
34dc7c2f 3976 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3977 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 3978 return (SET_ERROR(EAGAIN));
34dc7c2f 3979 }
34dc7c2f
BB
3980#endif
3981 return (0);
3982}
3983
3984void
3985arc_tempreserve_clear(uint64_t reserve)
3986{
3987 atomic_add_64(&arc_tempreserve, -reserve);
3988 ASSERT((int64_t)arc_tempreserve >= 0);
3989}
3990
3991int
3992arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3993{
3994 int error;
9babb374 3995 uint64_t anon_size;
34dc7c2f 3996
34dc7c2f
BB
3997 if (reserve > arc_c/4 && !arc_no_grow)
3998 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
3999
4000 /*
4001 * Throttle when the calculated memory footprint for the TXG
4002 * exceeds the target ARC size.
4003 */
570827e1
BB
4004 if (reserve > arc_c) {
4005 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 4006 return (SET_ERROR(ERESTART));
570827e1 4007 }
34dc7c2f 4008
9babb374
BB
4009 /*
4010 * Don't count loaned bufs as in flight dirty data to prevent long
4011 * network delays from blocking transactions that are ready to be
4012 * assigned to a txg.
4013 */
4014 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4015
34dc7c2f
BB
4016 /*
4017 * Writes will, almost always, require additional memory allocations
d3cc8b15 4018 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
4019 * make sure that there is sufficient available memory for this.
4020 */
e8b96c60
MA
4021 error = arc_memory_throttle(reserve, txg);
4022 if (error != 0)
34dc7c2f
BB
4023 return (error);
4024
4025 /*
4026 * Throttle writes when the amount of dirty data in the cache
4027 * gets too large. We try to keep the cache less than half full
4028 * of dirty blocks so that our sync times don't grow too large.
4029 * Note: if two requests come in concurrently, we might let them
4030 * both succeed, when one of them should fail. Not a huge deal.
4031 */
9babb374
BB
4032
4033 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4034 anon_size > arc_c / 4) {
34dc7c2f
BB
4035 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4036 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4037 arc_tempreserve>>10,
4038 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4039 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4040 reserve>>10, arc_c>>10);
570827e1 4041 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 4042 return (SET_ERROR(ERESTART));
34dc7c2f
BB
4043 }
4044 atomic_add_64(&arc_tempreserve, reserve);
4045 return (0);
4046}
4047
13be560d
BB
4048static void
4049arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4050 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4051{
4052 size->value.ui64 = state->arcs_size;
4053 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4054 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4055}
4056
4057static int
4058arc_kstat_update(kstat_t *ksp, int rw)
4059{
4060 arc_stats_t *as = ksp->ks_data;
4061
4062 if (rw == KSTAT_WRITE) {
2e528b49 4063 return (SET_ERROR(EACCES));
13be560d
BB
4064 } else {
4065 arc_kstat_update_state(arc_anon,
4066 &as->arcstat_anon_size,
4067 &as->arcstat_anon_evict_data,
4068 &as->arcstat_anon_evict_metadata);
4069 arc_kstat_update_state(arc_mru,
4070 &as->arcstat_mru_size,
4071 &as->arcstat_mru_evict_data,
4072 &as->arcstat_mru_evict_metadata);
4073 arc_kstat_update_state(arc_mru_ghost,
4074 &as->arcstat_mru_ghost_size,
4075 &as->arcstat_mru_ghost_evict_data,
4076 &as->arcstat_mru_ghost_evict_metadata);
4077 arc_kstat_update_state(arc_mfu,
4078 &as->arcstat_mfu_size,
4079 &as->arcstat_mfu_evict_data,
4080 &as->arcstat_mfu_evict_metadata);
fc41c640 4081 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
4082 &as->arcstat_mfu_ghost_size,
4083 &as->arcstat_mfu_ghost_evict_data,
4084 &as->arcstat_mfu_ghost_evict_metadata);
4085 }
4086
4087 return (0);
4088}
4089
34dc7c2f
BB
4090void
4091arc_init(void)
4092{
4093 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4094 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4095
4096 /* Convert seconds to clock ticks */
bce45ec9 4097 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
4098
4099 /* Start out with 1/8 of all memory */
4100 arc_c = physmem * PAGESIZE / 8;
4101
4102#ifdef _KERNEL
4103 /*
4104 * On architectures where the physical memory can be larger
4105 * than the addressable space (intel in 32-bit mode), we may
4106 * need to limit the cache to 1/8 of VM size.
4107 */
4108 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
4109 /*
4110 * Register a shrinker to support synchronous (direct) memory
4111 * reclaim from the arc. This is done to prevent kswapd from
4112 * swapping out pages when it is preferable to shrink the arc.
4113 */
4114 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
4115#endif
4116
91415825
BB
4117 /* set min cache to zero */
4118 arc_c_min = 4<<20;
518b4876 4119 /* set max to 1/2 of all memory */
be5db977 4120 arc_c_max = arc_c * 4;
34dc7c2f
BB
4121
4122 /*
4123 * Allow the tunables to override our calculations if they are
4124 * reasonable (ie. over 64MB)
4125 */
4126 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4127 arc_c_max = zfs_arc_max;
91415825 4128 if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max)
34dc7c2f
BB
4129 arc_c_min = zfs_arc_min;
4130
4131 arc_c = arc_c_max;
4132 arc_p = (arc_c >> 1);
4133
2b13331d
PS
4134 /* limit meta-data to 3/4 of the arc capacity */
4135 arc_meta_limit = (3 * arc_c_max) / 4;
1834f2d8 4136 arc_meta_max = 0;
34dc7c2f
BB
4137
4138 /* Allow the tunable to override if it is reasonable */
4139 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4140 arc_meta_limit = zfs_arc_meta_limit;
4141
34dc7c2f
BB
4142 /* if kmem_flags are set, lets try to use less memory */
4143 if (kmem_debugging())
4144 arc_c = arc_c / 2;
4145 if (arc_c < arc_c_min)
4146 arc_c = arc_c_min;
4147
4148 arc_anon = &ARC_anon;
4149 arc_mru = &ARC_mru;
4150 arc_mru_ghost = &ARC_mru_ghost;
4151 arc_mfu = &ARC_mfu;
4152 arc_mfu_ghost = &ARC_mfu_ghost;
4153 arc_l2c_only = &ARC_l2c_only;
4154 arc_size = 0;
4155
4156 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4157 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4158 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4159 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4160 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4161 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4162
4163 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
4164 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4165 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
4166 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4167 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
4168 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4169 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
4170 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4171 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
4172 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4173 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
4174 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4175 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
4176 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4177 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
4178 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4179 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
4180 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4181 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
4182 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4183
e0b0ca98
BB
4184 arc_anon->arcs_state = ARC_STATE_ANON;
4185 arc_mru->arcs_state = ARC_STATE_MRU;
4186 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4187 arc_mfu->arcs_state = ARC_STATE_MFU;
4188 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4189 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4190
34dc7c2f
BB
4191 buf_init();
4192
4193 arc_thread_exit = 0;
ab26409d
BB
4194 list_create(&arc_prune_list, sizeof (arc_prune_t),
4195 offsetof(arc_prune_t, p_node));
34dc7c2f 4196 arc_eviction_list = NULL;
ab26409d 4197 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4198 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4199 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4200
4201 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4202 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4203
4204 if (arc_ksp != NULL) {
4205 arc_ksp->ks_data = &arc_stats;
13be560d 4206 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
4207 kstat_install(arc_ksp);
4208 }
4209
302f753f 4210 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
4211 TS_RUN, minclsyspri);
4212
4213 arc_dead = FALSE;
b128c09f 4214 arc_warm = B_FALSE;
34dc7c2f 4215
e8b96c60
MA
4216 /*
4217 * Calculate maximum amount of dirty data per pool.
4218 *
4219 * If it has been set by a module parameter, take that.
4220 * Otherwise, use a percentage of physical memory defined by
4221 * zfs_dirty_data_max_percent (default 10%) with a cap at
4222 * zfs_dirty_data_max_max (default 25% of physical memory).
4223 */
4224 if (zfs_dirty_data_max_max == 0)
4225 zfs_dirty_data_max_max = physmem * PAGESIZE *
4226 zfs_dirty_data_max_max_percent / 100;
4227
4228 if (zfs_dirty_data_max == 0) {
4229 zfs_dirty_data_max = physmem * PAGESIZE *
4230 zfs_dirty_data_max_percent / 100;
4231 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4232 zfs_dirty_data_max_max);
4233 }
34dc7c2f
BB
4234}
4235
4236void
4237arc_fini(void)
4238{
ab26409d
BB
4239 arc_prune_t *p;
4240
34dc7c2f 4241 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
4242#ifdef _KERNEL
4243 spl_unregister_shrinker(&arc_shrinker);
4244#endif /* _KERNEL */
4245
34dc7c2f
BB
4246 arc_thread_exit = 1;
4247 while (arc_thread_exit != 0)
4248 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4249 mutex_exit(&arc_reclaim_thr_lock);
4250
4251 arc_flush(NULL);
4252
4253 arc_dead = TRUE;
4254
4255 if (arc_ksp != NULL) {
4256 kstat_delete(arc_ksp);
4257 arc_ksp = NULL;
4258 }
4259
ab26409d
BB
4260 mutex_enter(&arc_prune_mtx);
4261 while ((p = list_head(&arc_prune_list)) != NULL) {
4262 list_remove(&arc_prune_list, p);
4263 refcount_remove(&p->p_refcnt, &arc_prune_list);
4264 refcount_destroy(&p->p_refcnt);
4265 kmem_free(p, sizeof (*p));
4266 }
4267 mutex_exit(&arc_prune_mtx);
4268
4269 list_destroy(&arc_prune_list);
4270 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
4271 mutex_destroy(&arc_eviction_mtx);
4272 mutex_destroy(&arc_reclaim_thr_lock);
4273 cv_destroy(&arc_reclaim_thr_cv);
4274
4275 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
4276 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
4277 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
4278 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
4279 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
4280 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
4281 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
4282 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
4283
4284 mutex_destroy(&arc_anon->arcs_mtx);
4285 mutex_destroy(&arc_mru->arcs_mtx);
4286 mutex_destroy(&arc_mru_ghost->arcs_mtx);
4287 mutex_destroy(&arc_mfu->arcs_mtx);
4288 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 4289 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f
BB
4290
4291 buf_fini();
9babb374
BB
4292
4293 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
4294}
4295
4296/*
4297 * Level 2 ARC
4298 *
4299 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4300 * It uses dedicated storage devices to hold cached data, which are populated
4301 * using large infrequent writes. The main role of this cache is to boost
4302 * the performance of random read workloads. The intended L2ARC devices
4303 * include short-stroked disks, solid state disks, and other media with
4304 * substantially faster read latency than disk.
4305 *
4306 * +-----------------------+
4307 * | ARC |
4308 * +-----------------------+
4309 * | ^ ^
4310 * | | |
4311 * l2arc_feed_thread() arc_read()
4312 * | | |
4313 * | l2arc read |
4314 * V | |
4315 * +---------------+ |
4316 * | L2ARC | |
4317 * +---------------+ |
4318 * | ^ |
4319 * l2arc_write() | |
4320 * | | |
4321 * V | |
4322 * +-------+ +-------+
4323 * | vdev | | vdev |
4324 * | cache | | cache |
4325 * +-------+ +-------+
4326 * +=========+ .-----.
4327 * : L2ARC : |-_____-|
4328 * : devices : | Disks |
4329 * +=========+ `-_____-'
4330 *
4331 * Read requests are satisfied from the following sources, in order:
4332 *
4333 * 1) ARC
4334 * 2) vdev cache of L2ARC devices
4335 * 3) L2ARC devices
4336 * 4) vdev cache of disks
4337 * 5) disks
4338 *
4339 * Some L2ARC device types exhibit extremely slow write performance.
4340 * To accommodate for this there are some significant differences between
4341 * the L2ARC and traditional cache design:
4342 *
4343 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4344 * the ARC behave as usual, freeing buffers and placing headers on ghost
4345 * lists. The ARC does not send buffers to the L2ARC during eviction as
4346 * this would add inflated write latencies for all ARC memory pressure.
4347 *
4348 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4349 * It does this by periodically scanning buffers from the eviction-end of
4350 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
4351 * not already there. It scans until a headroom of buffers is satisfied,
4352 * which itself is a buffer for ARC eviction. If a compressible buffer is
4353 * found during scanning and selected for writing to an L2ARC device, we
4354 * temporarily boost scanning headroom during the next scan cycle to make
4355 * sure we adapt to compression effects (which might significantly reduce
4356 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
4357 * l2arc_feed_thread(), illustrated below; example sizes are included to
4358 * provide a better sense of ratio than this diagram:
4359 *
4360 * head --> tail
4361 * +---------------------+----------+
4362 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4363 * +---------------------+----------+ | o L2ARC eligible
4364 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4365 * +---------------------+----------+ |
4366 * 15.9 Gbytes ^ 32 Mbytes |
4367 * headroom |
4368 * l2arc_feed_thread()
4369 * |
4370 * l2arc write hand <--[oooo]--'
4371 * | 8 Mbyte
4372 * | write max
4373 * V
4374 * +==============================+
4375 * L2ARC dev |####|#|###|###| |####| ... |
4376 * +==============================+
4377 * 32 Gbytes
4378 *
4379 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4380 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4381 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4382 * safe to say that this is an uncommon case, since buffers at the end of
4383 * the ARC lists have moved there due to inactivity.
4384 *
4385 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4386 * then the L2ARC simply misses copying some buffers. This serves as a
4387 * pressure valve to prevent heavy read workloads from both stalling the ARC
4388 * with waits and clogging the L2ARC with writes. This also helps prevent
4389 * the potential for the L2ARC to churn if it attempts to cache content too
4390 * quickly, such as during backups of the entire pool.
4391 *
b128c09f
BB
4392 * 5. After system boot and before the ARC has filled main memory, there are
4393 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4394 * lists can remain mostly static. Instead of searching from tail of these
4395 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4396 * for eligible buffers, greatly increasing its chance of finding them.
4397 *
4398 * The L2ARC device write speed is also boosted during this time so that
4399 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4400 * there are no L2ARC reads, and no fear of degrading read performance
4401 * through increased writes.
4402 *
4403 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4404 * the vdev queue can aggregate them into larger and fewer writes. Each
4405 * device is written to in a rotor fashion, sweeping writes through
4406 * available space then repeating.
4407 *
b128c09f 4408 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4409 * write buffers back to disk based storage.
4410 *
b128c09f 4411 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4412 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4413 *
4414 * The performance of the L2ARC can be tweaked by a number of tunables, which
4415 * may be necessary for different workloads:
4416 *
4417 * l2arc_write_max max write bytes per interval
b128c09f 4418 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 4419 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 4420 * l2arc_nocompress skip compressing buffers
34dc7c2f 4421 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
4422 * l2arc_headroom_boost when we find compressed buffers during ARC
4423 * scanning, we multiply headroom by this
4424 * percentage factor for the next scan cycle,
4425 * since more compressed buffers are likely to
4426 * be present
34dc7c2f
BB
4427 * l2arc_feed_secs seconds between L2ARC writing
4428 *
4429 * Tunables may be removed or added as future performance improvements are
4430 * integrated, and also may become zpool properties.
d164b209
BB
4431 *
4432 * There are three key functions that control how the L2ARC warms up:
4433 *
4434 * l2arc_write_eligible() check if a buffer is eligible to cache
4435 * l2arc_write_size() calculate how much to write
4436 * l2arc_write_interval() calculate sleep delay between writes
4437 *
4438 * These three functions determine what to write, how much, and how quickly
4439 * to send writes.
34dc7c2f
BB
4440 */
4441
d164b209
BB
4442static boolean_t
4443l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4444{
4445 /*
4446 * A buffer is *not* eligible for the L2ARC if it:
4447 * 1. belongs to a different spa.
428870ff
BB
4448 * 2. is already cached on the L2ARC.
4449 * 3. has an I/O in progress (it may be an incomplete read).
4450 * 4. is flagged not eligible (zfs property).
d164b209 4451 */
428870ff 4452 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4453 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4454 return (B_FALSE);
4455
4456 return (B_TRUE);
4457}
4458
4459static uint64_t
3a17a7a9 4460l2arc_write_size(void)
d164b209
BB
4461{
4462 uint64_t size;
4463
3a17a7a9
SK
4464 /*
4465 * Make sure our globals have meaningful values in case the user
4466 * altered them.
4467 */
4468 size = l2arc_write_max;
4469 if (size == 0) {
4470 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4471 "be greater than zero, resetting it to the default (%d)",
4472 L2ARC_WRITE_SIZE);
4473 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4474 }
d164b209
BB
4475
4476 if (arc_warm == B_FALSE)
3a17a7a9 4477 size += l2arc_write_boost;
d164b209
BB
4478
4479 return (size);
4480
4481}
4482
4483static clock_t
4484l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4485{
428870ff 4486 clock_t interval, next, now;
d164b209
BB
4487
4488 /*
4489 * If the ARC lists are busy, increase our write rate; if the
4490 * lists are stale, idle back. This is achieved by checking
4491 * how much we previously wrote - if it was more than half of
4492 * what we wanted, schedule the next write much sooner.
4493 */
4494 if (l2arc_feed_again && wrote > (wanted / 2))
4495 interval = (hz * l2arc_feed_min_ms) / 1000;
4496 else
4497 interval = hz * l2arc_feed_secs;
4498
428870ff
BB
4499 now = ddi_get_lbolt();
4500 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4501
4502 return (next);
4503}
4504
34dc7c2f
BB
4505static void
4506l2arc_hdr_stat_add(void)
4507{
6e1d7276 4508 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
34dc7c2f
BB
4509 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4510}
4511
4512static void
4513l2arc_hdr_stat_remove(void)
4514{
6e1d7276 4515 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
34dc7c2f
BB
4516 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4517}
4518
4519/*
4520 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4521 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4522 */
4523static l2arc_dev_t *
4524l2arc_dev_get_next(void)
4525{
b128c09f 4526 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4527
b128c09f
BB
4528 /*
4529 * Lock out the removal of spas (spa_namespace_lock), then removal
4530 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4531 * both locks will be dropped and a spa config lock held instead.
4532 */
4533 mutex_enter(&spa_namespace_lock);
4534 mutex_enter(&l2arc_dev_mtx);
4535
4536 /* if there are no vdevs, there is nothing to do */
4537 if (l2arc_ndev == 0)
4538 goto out;
4539
4540 first = NULL;
4541 next = l2arc_dev_last;
4542 do {
4543 /* loop around the list looking for a non-faulted vdev */
4544 if (next == NULL) {
34dc7c2f 4545 next = list_head(l2arc_dev_list);
b128c09f
BB
4546 } else {
4547 next = list_next(l2arc_dev_list, next);
4548 if (next == NULL)
4549 next = list_head(l2arc_dev_list);
4550 }
4551
4552 /* if we have come back to the start, bail out */
4553 if (first == NULL)
4554 first = next;
4555 else if (next == first)
4556 break;
4557
4558 } while (vdev_is_dead(next->l2ad_vdev));
4559
4560 /* if we were unable to find any usable vdevs, return NULL */
4561 if (vdev_is_dead(next->l2ad_vdev))
4562 next = NULL;
34dc7c2f
BB
4563
4564 l2arc_dev_last = next;
4565
b128c09f
BB
4566out:
4567 mutex_exit(&l2arc_dev_mtx);
4568
4569 /*
4570 * Grab the config lock to prevent the 'next' device from being
4571 * removed while we are writing to it.
4572 */
4573 if (next != NULL)
4574 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4575 mutex_exit(&spa_namespace_lock);
4576
34dc7c2f
BB
4577 return (next);
4578}
4579
b128c09f
BB
4580/*
4581 * Free buffers that were tagged for destruction.
4582 */
4583static void
0bc8fd78 4584l2arc_do_free_on_write(void)
b128c09f
BB
4585{
4586 list_t *buflist;
4587 l2arc_data_free_t *df, *df_prev;
4588
4589 mutex_enter(&l2arc_free_on_write_mtx);
4590 buflist = l2arc_free_on_write;
4591
4592 for (df = list_tail(buflist); df; df = df_prev) {
4593 df_prev = list_prev(buflist, df);
4594 ASSERT(df->l2df_data != NULL);
4595 ASSERT(df->l2df_func != NULL);
4596 df->l2df_func(df->l2df_data, df->l2df_size);
4597 list_remove(buflist, df);
4598 kmem_free(df, sizeof (l2arc_data_free_t));
4599 }
4600
4601 mutex_exit(&l2arc_free_on_write_mtx);
4602}
4603
34dc7c2f
BB
4604/*
4605 * A write to a cache device has completed. Update all headers to allow
4606 * reads from these buffers to begin.
4607 */
4608static void
4609l2arc_write_done(zio_t *zio)
4610{
4611 l2arc_write_callback_t *cb;
4612 l2arc_dev_t *dev;
4613 list_t *buflist;
34dc7c2f 4614 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4615 l2arc_buf_hdr_t *abl2;
34dc7c2f 4616 kmutex_t *hash_lock;
3bec585e 4617 int64_t bytes_dropped = 0;
34dc7c2f
BB
4618
4619 cb = zio->io_private;
4620 ASSERT(cb != NULL);
4621 dev = cb->l2wcb_dev;
4622 ASSERT(dev != NULL);
4623 head = cb->l2wcb_head;
4624 ASSERT(head != NULL);
4625 buflist = dev->l2ad_buflist;
4626 ASSERT(buflist != NULL);
4627 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4628 l2arc_write_callback_t *, cb);
4629
4630 if (zio->io_error != 0)
4631 ARCSTAT_BUMP(arcstat_l2_writes_error);
4632
4633 mutex_enter(&l2arc_buflist_mtx);
4634
4635 /*
4636 * All writes completed, or an error was hit.
4637 */
4638 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4639 ab_prev = list_prev(buflist, ab);
1ca546b3
SK
4640 abl2 = ab->b_l2hdr;
4641
4642 /*
4643 * Release the temporary compressed buffer as soon as possible.
4644 */
4645 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4646 l2arc_release_cdata_buf(ab);
34dc7c2f
BB
4647
4648 hash_lock = HDR_LOCK(ab);
4649 if (!mutex_tryenter(hash_lock)) {
4650 /*
4651 * This buffer misses out. It may be in a stage
4652 * of eviction. Its ARC_L2_WRITING flag will be
4653 * left set, denying reads to this buffer.
4654 */
4655 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4656 continue;
4657 }
4658
4659 if (zio->io_error != 0) {
4660 /*
b128c09f 4661 * Error - drop L2ARC entry.
34dc7c2f 4662 */
b128c09f 4663 list_remove(buflist, ab);
3a17a7a9 4664 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
3bec585e 4665 bytes_dropped += abl2->b_asize;
34dc7c2f 4666 ab->b_l2hdr = NULL;
ecf3d9b8 4667 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4668 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
b128c09f 4669 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4670 }
4671
4672 /*
4673 * Allow ARC to begin reads to this L2ARC entry.
4674 */
4675 ab->b_flags &= ~ARC_L2_WRITING;
4676
4677 mutex_exit(hash_lock);
4678 }
4679
4680 atomic_inc_64(&l2arc_writes_done);
4681 list_remove(buflist, head);
4682 kmem_cache_free(hdr_cache, head);
4683 mutex_exit(&l2arc_buflist_mtx);
4684
3bec585e
SK
4685 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4686
b128c09f 4687 l2arc_do_free_on_write();
34dc7c2f
BB
4688
4689 kmem_free(cb, sizeof (l2arc_write_callback_t));
4690}
4691
4692/*
4693 * A read to a cache device completed. Validate buffer contents before
4694 * handing over to the regular ARC routines.
4695 */
4696static void
4697l2arc_read_done(zio_t *zio)
4698{
4699 l2arc_read_callback_t *cb;
4700 arc_buf_hdr_t *hdr;
4701 arc_buf_t *buf;
34dc7c2f 4702 kmutex_t *hash_lock;
b128c09f
BB
4703 int equal;
4704
4705 ASSERT(zio->io_vd != NULL);
4706 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4707
4708 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4709
4710 cb = zio->io_private;
4711 ASSERT(cb != NULL);
4712 buf = cb->l2rcb_buf;
4713 ASSERT(buf != NULL);
34dc7c2f 4714
428870ff 4715 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4716 mutex_enter(hash_lock);
428870ff
BB
4717 hdr = buf->b_hdr;
4718 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4719
3a17a7a9
SK
4720 /*
4721 * If the buffer was compressed, decompress it first.
4722 */
4723 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4724 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4725 ASSERT(zio->io_data != NULL);
4726
34dc7c2f
BB
4727 /*
4728 * Check this survived the L2ARC journey.
4729 */
4730 equal = arc_cksum_equal(buf);
4731 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4732 mutex_exit(hash_lock);
4733 zio->io_private = buf;
b128c09f
BB
4734 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4735 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4736 arc_read_done(zio);
4737 } else {
4738 mutex_exit(hash_lock);
4739 /*
4740 * Buffer didn't survive caching. Increment stats and
4741 * reissue to the original storage device.
4742 */
b128c09f 4743 if (zio->io_error != 0) {
34dc7c2f 4744 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 4745 } else {
2e528b49 4746 zio->io_error = SET_ERROR(EIO);
b128c09f 4747 }
34dc7c2f
BB
4748 if (!equal)
4749 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4750
34dc7c2f 4751 /*
b128c09f
BB
4752 * If there's no waiter, issue an async i/o to the primary
4753 * storage now. If there *is* a waiter, the caller must
4754 * issue the i/o in a context where it's OK to block.
34dc7c2f 4755 */
d164b209
BB
4756 if (zio->io_waiter == NULL) {
4757 zio_t *pio = zio_unique_parent(zio);
4758
4759 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4760
4761 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4762 buf->b_data, zio->io_size, arc_read_done, buf,
4763 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4764 }
34dc7c2f
BB
4765 }
4766
4767 kmem_free(cb, sizeof (l2arc_read_callback_t));
4768}
4769
4770/*
4771 * This is the list priority from which the L2ARC will search for pages to
4772 * cache. This is used within loops (0..3) to cycle through lists in the
4773 * desired order. This order can have a significant effect on cache
4774 * performance.
4775 *
4776 * Currently the metadata lists are hit first, MFU then MRU, followed by
4777 * the data lists. This function returns a locked list, and also returns
4778 * the lock pointer.
4779 */
4780static list_t *
4781l2arc_list_locked(int list_num, kmutex_t **lock)
4782{
d4ed6673 4783 list_t *list = NULL;
34dc7c2f
BB
4784
4785 ASSERT(list_num >= 0 && list_num <= 3);
4786
4787 switch (list_num) {
4788 case 0:
4789 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4790 *lock = &arc_mfu->arcs_mtx;
4791 break;
4792 case 1:
4793 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4794 *lock = &arc_mru->arcs_mtx;
4795 break;
4796 case 2:
4797 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4798 *lock = &arc_mfu->arcs_mtx;
4799 break;
4800 case 3:
4801 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4802 *lock = &arc_mru->arcs_mtx;
4803 break;
4804 }
4805
4806 ASSERT(!(MUTEX_HELD(*lock)));
4807 mutex_enter(*lock);
4808 return (list);
4809}
4810
4811/*
4812 * Evict buffers from the device write hand to the distance specified in
4813 * bytes. This distance may span populated buffers, it may span nothing.
4814 * This is clearing a region on the L2ARC device ready for writing.
4815 * If the 'all' boolean is set, every buffer is evicted.
4816 */
4817static void
4818l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4819{
4820 list_t *buflist;
4821 l2arc_buf_hdr_t *abl2;
4822 arc_buf_hdr_t *ab, *ab_prev;
4823 kmutex_t *hash_lock;
4824 uint64_t taddr;
3bec585e 4825 int64_t bytes_evicted = 0;
34dc7c2f 4826
34dc7c2f
BB
4827 buflist = dev->l2ad_buflist;
4828
4829 if (buflist == NULL)
4830 return;
4831
4832 if (!all && dev->l2ad_first) {
4833 /*
4834 * This is the first sweep through the device. There is
4835 * nothing to evict.
4836 */
4837 return;
4838 }
4839
b128c09f 4840 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4841 /*
4842 * When nearing the end of the device, evict to the end
4843 * before the device write hand jumps to the start.
4844 */
4845 taddr = dev->l2ad_end;
4846 } else {
4847 taddr = dev->l2ad_hand + distance;
4848 }
4849 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4850 uint64_t, taddr, boolean_t, all);
4851
4852top:
4853 mutex_enter(&l2arc_buflist_mtx);
4854 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4855 ab_prev = list_prev(buflist, ab);
4856
4857 hash_lock = HDR_LOCK(ab);
4858 if (!mutex_tryenter(hash_lock)) {
4859 /*
4860 * Missed the hash lock. Retry.
4861 */
4862 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4863 mutex_exit(&l2arc_buflist_mtx);
4864 mutex_enter(hash_lock);
4865 mutex_exit(hash_lock);
4866 goto top;
4867 }
4868
4869 if (HDR_L2_WRITE_HEAD(ab)) {
4870 /*
4871 * We hit a write head node. Leave it for
4872 * l2arc_write_done().
4873 */
4874 list_remove(buflist, ab);
4875 mutex_exit(hash_lock);
4876 continue;
4877 }
4878
4879 if (!all && ab->b_l2hdr != NULL &&
4880 (ab->b_l2hdr->b_daddr > taddr ||
4881 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4882 /*
4883 * We've evicted to the target address,
4884 * or the end of the device.
4885 */
4886 mutex_exit(hash_lock);
4887 break;
4888 }
4889
4890 if (HDR_FREE_IN_PROGRESS(ab)) {
4891 /*
4892 * Already on the path to destruction.
4893 */
4894 mutex_exit(hash_lock);
4895 continue;
4896 }
4897
4898 if (ab->b_state == arc_l2c_only) {
4899 ASSERT(!HDR_L2_READING(ab));
4900 /*
4901 * This doesn't exist in the ARC. Destroy.
4902 * arc_hdr_destroy() will call list_remove()
4903 * and decrement arcstat_l2_size.
4904 */
4905 arc_change_state(arc_anon, ab, hash_lock);
4906 arc_hdr_destroy(ab);
4907 } else {
b128c09f
BB
4908 /*
4909 * Invalidate issued or about to be issued
4910 * reads, since we may be about to write
4911 * over this location.
4912 */
4913 if (HDR_L2_READING(ab)) {
4914 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4915 ab->b_flags |= ARC_L2_EVICTED;
4916 }
4917
34dc7c2f
BB
4918 /*
4919 * Tell ARC this no longer exists in L2ARC.
4920 */
4921 if (ab->b_l2hdr != NULL) {
4922 abl2 = ab->b_l2hdr;
3a17a7a9 4923 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
3bec585e 4924 bytes_evicted += abl2->b_asize;
34dc7c2f 4925 ab->b_l2hdr = NULL;
037763e4 4926 /*
4927 * We are destroying l2hdr, so ensure that
4928 * its compressed buffer, if any, is not leaked.
4929 */
4930 ASSERT(abl2->b_tmp_cdata == NULL);
ecf3d9b8 4931 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4932 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4933 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4934 }
4935 list_remove(buflist, ab);
4936
4937 /*
4938 * This may have been leftover after a
4939 * failed write.
4940 */
4941 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4942 }
4943 mutex_exit(hash_lock);
4944 }
4945 mutex_exit(&l2arc_buflist_mtx);
4946
3bec585e 4947 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
34dc7c2f
BB
4948 dev->l2ad_evict = taddr;
4949}
4950
4951/*
4952 * Find and write ARC buffers to the L2ARC device.
4953 *
4954 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4955 * for reading until they have completed writing.
3a17a7a9
SK
4956 * The headroom_boost is an in-out parameter used to maintain headroom boost
4957 * state between calls to this function.
4958 *
4959 * Returns the number of bytes actually written (which may be smaller than
4960 * the delta by which the device hand has changed due to alignment).
34dc7c2f 4961 */
d164b209 4962static uint64_t
3a17a7a9
SK
4963l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4964 boolean_t *headroom_boost)
34dc7c2f
BB
4965{
4966 arc_buf_hdr_t *ab, *ab_prev, *head;
34dc7c2f 4967 list_t *list;
3a17a7a9
SK
4968 uint64_t write_asize, write_psize, write_sz, headroom,
4969 buf_compress_minsz;
34dc7c2f 4970 void *buf_data;
3a17a7a9
SK
4971 kmutex_t *list_lock = NULL;
4972 boolean_t full;
34dc7c2f
BB
4973 l2arc_write_callback_t *cb;
4974 zio_t *pio, *wzio;
3541dc6d 4975 uint64_t guid = spa_load_guid(spa);
d6320ddb 4976 int try;
3a17a7a9 4977 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 4978
34dc7c2f
BB
4979 ASSERT(dev->l2ad_vdev != NULL);
4980
3a17a7a9
SK
4981 /* Lower the flag now, we might want to raise it again later. */
4982 *headroom_boost = B_FALSE;
4983
34dc7c2f 4984 pio = NULL;
3a17a7a9 4985 write_sz = write_asize = write_psize = 0;
34dc7c2f
BB
4986 full = B_FALSE;
4987 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4988 head->b_flags |= ARC_L2_WRITE_HEAD;
4989
3a17a7a9
SK
4990 /*
4991 * We will want to try to compress buffers that are at least 2x the
4992 * device sector size.
4993 */
4994 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4995
34dc7c2f
BB
4996 /*
4997 * Copy buffers for L2ARC writing.
4998 */
4999 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 5000 for (try = 0; try <= 3; try++) {
3a17a7a9
SK
5001 uint64_t passed_sz = 0;
5002
34dc7c2f 5003 list = l2arc_list_locked(try, &list_lock);
34dc7c2f 5004
b128c09f
BB
5005 /*
5006 * L2ARC fast warmup.
5007 *
5008 * Until the ARC is warm and starts to evict, read from the
5009 * head of the ARC lists rather than the tail.
5010 */
b128c09f
BB
5011 if (arc_warm == B_FALSE)
5012 ab = list_head(list);
5013 else
5014 ab = list_tail(list);
5015
3a17a7a9
SK
5016 headroom = target_sz * l2arc_headroom;
5017 if (do_headroom_boost)
5018 headroom = (headroom * l2arc_headroom_boost) / 100;
5019
b128c09f 5020 for (; ab; ab = ab_prev) {
3a17a7a9
SK
5021 l2arc_buf_hdr_t *l2hdr;
5022 kmutex_t *hash_lock;
5023 uint64_t buf_sz;
5024
b128c09f
BB
5025 if (arc_warm == B_FALSE)
5026 ab_prev = list_next(list, ab);
5027 else
5028 ab_prev = list_prev(list, ab);
34dc7c2f
BB
5029
5030 hash_lock = HDR_LOCK(ab);
3a17a7a9 5031 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
5032 /*
5033 * Skip this buffer rather than waiting.
5034 */
5035 continue;
5036 }
5037
5038 passed_sz += ab->b_size;
5039 if (passed_sz > headroom) {
5040 /*
5041 * Searched too far.
5042 */
5043 mutex_exit(hash_lock);
5044 break;
5045 }
5046
d164b209 5047 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
5048 mutex_exit(hash_lock);
5049 continue;
5050 }
5051
5052 if ((write_sz + ab->b_size) > target_sz) {
5053 full = B_TRUE;
5054 mutex_exit(hash_lock);
5055 break;
5056 }
5057
34dc7c2f
BB
5058 if (pio == NULL) {
5059 /*
5060 * Insert a dummy header on the buflist so
5061 * l2arc_write_done() can find where the
5062 * write buffers begin without searching.
5063 */
5064 list_insert_head(dev->l2ad_buflist, head);
5065
409dc1a5 5066 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
79c76d5b 5067 KM_SLEEP);
34dc7c2f
BB
5068 cb->l2wcb_dev = dev;
5069 cb->l2wcb_head = head;
5070 pio = zio_root(spa, l2arc_write_done, cb,
5071 ZIO_FLAG_CANFAIL);
5072 }
5073
5074 /*
5075 * Create and add a new L2ARC header.
5076 */
79c76d5b 5077 l2hdr = kmem_cache_alloc(l2arc_hdr_cache, KM_SLEEP);
3a17a7a9 5078 l2hdr->b_dev = dev;
ecf3d9b8 5079 l2hdr->b_daddr = 0;
6e1d7276 5080 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
5081
5082 ab->b_flags |= ARC_L2_WRITING;
3a17a7a9
SK
5083
5084 /*
5085 * Temporarily stash the data buffer in b_tmp_cdata.
5086 * The subsequent write step will pick it up from
5087 * there. This is because can't access ab->b_buf
5088 * without holding the hash_lock, which we in turn
5089 * can't access without holding the ARC list locks
5090 * (which we want to avoid during compression/writing)
5091 */
5092 l2hdr->b_compress = ZIO_COMPRESS_OFF;
5093 l2hdr->b_asize = ab->b_size;
5094 l2hdr->b_tmp_cdata = ab->b_buf->b_data;
e0b0ca98 5095 l2hdr->b_hits = 0;
3a17a7a9 5096
34dc7c2f 5097 buf_sz = ab->b_size;
3a17a7a9
SK
5098 ab->b_l2hdr = l2hdr;
5099
5100 list_insert_head(dev->l2ad_buflist, ab);
34dc7c2f
BB
5101
5102 /*
5103 * Compute and store the buffer cksum before
5104 * writing. On debug the cksum is verified first.
5105 */
5106 arc_cksum_verify(ab->b_buf);
5107 arc_cksum_compute(ab->b_buf, B_TRUE);
5108
5109 mutex_exit(hash_lock);
5110
3a17a7a9
SK
5111 write_sz += buf_sz;
5112 }
5113
5114 mutex_exit(list_lock);
5115
5116 if (full == B_TRUE)
5117 break;
5118 }
5119
5120 /* No buffers selected for writing? */
5121 if (pio == NULL) {
5122 ASSERT0(write_sz);
5123 mutex_exit(&l2arc_buflist_mtx);
5124 kmem_cache_free(hdr_cache, head);
5125 return (0);
5126 }
5127
5128 /*
5129 * Now start writing the buffers. We're starting at the write head
5130 * and work backwards, retracing the course of the buffer selector
5131 * loop above.
5132 */
5133 for (ab = list_prev(dev->l2ad_buflist, head); ab;
5134 ab = list_prev(dev->l2ad_buflist, ab)) {
5135 l2arc_buf_hdr_t *l2hdr;
5136 uint64_t buf_sz;
5137
5138 /*
5139 * We shouldn't need to lock the buffer here, since we flagged
5140 * it as ARC_L2_WRITING in the previous step, but we must take
5141 * care to only access its L2 cache parameters. In particular,
5142 * ab->b_buf may be invalid by now due to ARC eviction.
5143 */
5144 l2hdr = ab->b_l2hdr;
5145 l2hdr->b_daddr = dev->l2ad_hand;
5146
5147 if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) &&
5148 l2hdr->b_asize >= buf_compress_minsz) {
5149 if (l2arc_compress_buf(l2hdr)) {
5150 /*
5151 * If compression succeeded, enable headroom
5152 * boost on the next scan cycle.
5153 */
5154 *headroom_boost = B_TRUE;
5155 }
5156 }
5157
5158 /*
5159 * Pick up the buffer data we had previously stashed away
5160 * (and now potentially also compressed).
5161 */
5162 buf_data = l2hdr->b_tmp_cdata;
5163 buf_sz = l2hdr->b_asize;
5164
037763e4 5165 /*
5166 * If the data has not been compressed, then clear b_tmp_cdata
5167 * to make sure that it points only to a temporary compression
5168 * buffer.
5169 */
5170 if (!L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress))
5171 l2hdr->b_tmp_cdata = NULL;
5172
3a17a7a9
SK
5173 /* Compression may have squashed the buffer to zero length. */
5174 if (buf_sz != 0) {
5175 uint64_t buf_p_sz;
5176
34dc7c2f
BB
5177 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5178 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5179 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5180 ZIO_FLAG_CANFAIL, B_FALSE);
5181
5182 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5183 zio_t *, wzio);
5184 (void) zio_nowait(wzio);
5185
3a17a7a9 5186 write_asize += buf_sz;
b128c09f
BB
5187 /*
5188 * Keep the clock hand suitably device-aligned.
5189 */
3a17a7a9
SK
5190 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5191 write_psize += buf_p_sz;
5192 dev->l2ad_hand += buf_p_sz;
34dc7c2f 5193 }
34dc7c2f 5194 }
34dc7c2f 5195
3a17a7a9 5196 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f 5197
3a17a7a9 5198 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 5199 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 5200 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 5201 ARCSTAT_INCR(arcstat_l2_size, write_sz);
3a17a7a9 5202 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
3bec585e 5203 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
34dc7c2f
BB
5204
5205 /*
5206 * Bump device hand to the device start if it is approaching the end.
5207 * l2arc_evict() will already have evicted ahead for this case.
5208 */
b128c09f 5209 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f
BB
5210 dev->l2ad_hand = dev->l2ad_start;
5211 dev->l2ad_evict = dev->l2ad_start;
5212 dev->l2ad_first = B_FALSE;
5213 }
5214
d164b209 5215 dev->l2ad_writing = B_TRUE;
34dc7c2f 5216 (void) zio_wait(pio);
d164b209
BB
5217 dev->l2ad_writing = B_FALSE;
5218
3a17a7a9
SK
5219 return (write_asize);
5220}
5221
5222/*
5223 * Compresses an L2ARC buffer.
5224 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5225 * size in l2hdr->b_asize. This routine tries to compress the data and
5226 * depending on the compression result there are three possible outcomes:
5227 * *) The buffer was incompressible. The original l2hdr contents were left
5228 * untouched and are ready for writing to an L2 device.
5229 * *) The buffer was all-zeros, so there is no need to write it to an L2
5230 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5231 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5232 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5233 * data buffer which holds the compressed data to be written, and b_asize
5234 * tells us how much data there is. b_compress is set to the appropriate
5235 * compression algorithm. Once writing is done, invoke
5236 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5237 *
5238 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5239 * buffer was incompressible).
5240 */
5241static boolean_t
5242l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5243{
5244 void *cdata;
9b67f605 5245 size_t csize, len, rounded;
3a17a7a9
SK
5246
5247 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5248 ASSERT(l2hdr->b_tmp_cdata != NULL);
5249
5250 len = l2hdr->b_asize;
5251 cdata = zio_data_buf_alloc(len);
5252 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5253 cdata, l2hdr->b_asize);
5254
9b67f605
MA
5255 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
5256 if (rounded > csize) {
5257 bzero((char *)cdata + csize, rounded - csize);
5258 csize = rounded;
5259 }
5260
3a17a7a9
SK
5261 if (csize == 0) {
5262 /* zero block, indicate that there's nothing to write */
5263 zio_data_buf_free(cdata, len);
5264 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5265 l2hdr->b_asize = 0;
5266 l2hdr->b_tmp_cdata = NULL;
5267 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5268 return (B_TRUE);
5269 } else if (csize > 0 && csize < len) {
5270 /*
5271 * Compression succeeded, we'll keep the cdata around for
5272 * writing and release it afterwards.
5273 */
5274 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5275 l2hdr->b_asize = csize;
5276 l2hdr->b_tmp_cdata = cdata;
5277 ARCSTAT_BUMP(arcstat_l2_compress_successes);
5278 return (B_TRUE);
5279 } else {
5280 /*
5281 * Compression failed, release the compressed buffer.
5282 * l2hdr will be left unmodified.
5283 */
5284 zio_data_buf_free(cdata, len);
5285 ARCSTAT_BUMP(arcstat_l2_compress_failures);
5286 return (B_FALSE);
5287 }
5288}
5289
5290/*
5291 * Decompresses a zio read back from an l2arc device. On success, the
5292 * underlying zio's io_data buffer is overwritten by the uncompressed
5293 * version. On decompression error (corrupt compressed stream), the
5294 * zio->io_error value is set to signal an I/O error.
5295 *
5296 * Please note that the compressed data stream is not checksummed, so
5297 * if the underlying device is experiencing data corruption, we may feed
5298 * corrupt data to the decompressor, so the decompressor needs to be
5299 * able to handle this situation (LZ4 does).
5300 */
5301static void
5302l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5303{
5304 uint64_t csize;
5305 void *cdata;
5306
5307 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5308
5309 if (zio->io_error != 0) {
5310 /*
5311 * An io error has occured, just restore the original io
5312 * size in preparation for a main pool read.
5313 */
5314 zio->io_orig_size = zio->io_size = hdr->b_size;
5315 return;
5316 }
5317
5318 if (c == ZIO_COMPRESS_EMPTY) {
5319 /*
5320 * An empty buffer results in a null zio, which means we
5321 * need to fill its io_data after we're done restoring the
5322 * buffer's contents.
5323 */
5324 ASSERT(hdr->b_buf != NULL);
5325 bzero(hdr->b_buf->b_data, hdr->b_size);
5326 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5327 } else {
5328 ASSERT(zio->io_data != NULL);
5329 /*
5330 * We copy the compressed data from the start of the arc buffer
5331 * (the zio_read will have pulled in only what we need, the
5332 * rest is garbage which we will overwrite at decompression)
5333 * and then decompress back to the ARC data buffer. This way we
5334 * can minimize copying by simply decompressing back over the
5335 * original compressed data (rather than decompressing to an
5336 * aux buffer and then copying back the uncompressed buffer,
5337 * which is likely to be much larger).
5338 */
5339 csize = zio->io_size;
5340 cdata = zio_data_buf_alloc(csize);
5341 bcopy(zio->io_data, cdata, csize);
5342 if (zio_decompress_data(c, cdata, zio->io_data, csize,
5343 hdr->b_size) != 0)
2e528b49 5344 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
5345 zio_data_buf_free(cdata, csize);
5346 }
5347
5348 /* Restore the expected uncompressed IO size. */
5349 zio->io_orig_size = zio->io_size = hdr->b_size;
5350}
5351
5352/*
5353 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5354 * This buffer serves as a temporary holder of compressed data while
5355 * the buffer entry is being written to an l2arc device. Once that is
5356 * done, we can dispose of it.
5357 */
5358static void
5359l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5360{
5361 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5362
037763e4 5363 ASSERT(L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress));
5364 if (l2hdr->b_compress != ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
5365 /*
5366 * If the data was compressed, then we've allocated a
5367 * temporary buffer for it, so now we need to release it.
5368 */
5369 ASSERT(l2hdr->b_tmp_cdata != NULL);
5370 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
037763e4 5371 l2hdr->b_tmp_cdata = NULL;
5372 } else {
5373 ASSERT(l2hdr->b_tmp_cdata == NULL);
3a17a7a9 5374 }
34dc7c2f
BB
5375}
5376
5377/*
5378 * This thread feeds the L2ARC at regular intervals. This is the beating
5379 * heart of the L2ARC.
5380 */
5381static void
5382l2arc_feed_thread(void)
5383{
5384 callb_cpr_t cpr;
5385 l2arc_dev_t *dev;
5386 spa_t *spa;
d164b209 5387 uint64_t size, wrote;
428870ff 5388 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 5389 boolean_t headroom_boost = B_FALSE;
40d06e3c 5390 fstrans_cookie_t cookie;
34dc7c2f
BB
5391
5392 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5393
5394 mutex_enter(&l2arc_feed_thr_lock);
5395
40d06e3c 5396 cookie = spl_fstrans_mark();
34dc7c2f 5397 while (l2arc_thread_exit == 0) {
34dc7c2f 5398 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
5399 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
5400 &l2arc_feed_thr_lock, next);
34dc7c2f 5401 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 5402 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
5403
5404 /*
b128c09f 5405 * Quick check for L2ARC devices.
34dc7c2f
BB
5406 */
5407 mutex_enter(&l2arc_dev_mtx);
5408 if (l2arc_ndev == 0) {
5409 mutex_exit(&l2arc_dev_mtx);
5410 continue;
5411 }
b128c09f 5412 mutex_exit(&l2arc_dev_mtx);
428870ff 5413 begin = ddi_get_lbolt();
34dc7c2f
BB
5414
5415 /*
b128c09f
BB
5416 * This selects the next l2arc device to write to, and in
5417 * doing so the next spa to feed from: dev->l2ad_spa. This
5418 * will return NULL if there are now no l2arc devices or if
5419 * they are all faulted.
5420 *
5421 * If a device is returned, its spa's config lock is also
5422 * held to prevent device removal. l2arc_dev_get_next()
5423 * will grab and release l2arc_dev_mtx.
34dc7c2f 5424 */
b128c09f 5425 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 5426 continue;
b128c09f
BB
5427
5428 spa = dev->l2ad_spa;
5429 ASSERT(spa != NULL);
34dc7c2f 5430
572e2857
BB
5431 /*
5432 * If the pool is read-only then force the feed thread to
5433 * sleep a little longer.
5434 */
5435 if (!spa_writeable(spa)) {
5436 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5437 spa_config_exit(spa, SCL_L2ARC, dev);
5438 continue;
5439 }
5440
34dc7c2f 5441 /*
b128c09f 5442 * Avoid contributing to memory pressure.
34dc7c2f 5443 */
302f753f 5444 if (arc_no_grow) {
b128c09f
BB
5445 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5446 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5447 continue;
5448 }
b128c09f 5449
34dc7c2f
BB
5450 ARCSTAT_BUMP(arcstat_l2_feeds);
5451
3a17a7a9 5452 size = l2arc_write_size();
b128c09f 5453
34dc7c2f
BB
5454 /*
5455 * Evict L2ARC buffers that will be overwritten.
5456 */
b128c09f 5457 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
5458
5459 /*
5460 * Write ARC buffers.
5461 */
3a17a7a9 5462 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
5463
5464 /*
5465 * Calculate interval between writes.
5466 */
5467 next = l2arc_write_interval(begin, size, wrote);
b128c09f 5468 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 5469 }
40d06e3c 5470 spl_fstrans_unmark(cookie);
34dc7c2f
BB
5471
5472 l2arc_thread_exit = 0;
5473 cv_broadcast(&l2arc_feed_thr_cv);
5474 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
5475 thread_exit();
5476}
5477
b128c09f
BB
5478boolean_t
5479l2arc_vdev_present(vdev_t *vd)
5480{
5481 l2arc_dev_t *dev;
5482
5483 mutex_enter(&l2arc_dev_mtx);
5484 for (dev = list_head(l2arc_dev_list); dev != NULL;
5485 dev = list_next(l2arc_dev_list, dev)) {
5486 if (dev->l2ad_vdev == vd)
5487 break;
5488 }
5489 mutex_exit(&l2arc_dev_mtx);
5490
5491 return (dev != NULL);
5492}
5493
34dc7c2f
BB
5494/*
5495 * Add a vdev for use by the L2ARC. By this point the spa has already
5496 * validated the vdev and opened it.
5497 */
5498void
9babb374 5499l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
5500{
5501 l2arc_dev_t *adddev;
5502
b128c09f
BB
5503 ASSERT(!l2arc_vdev_present(vd));
5504
34dc7c2f
BB
5505 /*
5506 * Create a new l2arc device entry.
5507 */
5508 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5509 adddev->l2ad_spa = spa;
5510 adddev->l2ad_vdev = vd;
9babb374
BB
5511 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5512 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
5513 adddev->l2ad_hand = adddev->l2ad_start;
5514 adddev->l2ad_evict = adddev->l2ad_start;
5515 adddev->l2ad_first = B_TRUE;
d164b209 5516 adddev->l2ad_writing = B_FALSE;
98f72a53 5517 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
5518
5519 /*
5520 * This is a list of all ARC buffers that are still valid on the
5521 * device.
5522 */
5523 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5524 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5525 offsetof(arc_buf_hdr_t, b_l2node));
5526
428870ff 5527 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
5528
5529 /*
5530 * Add device to global list
5531 */
5532 mutex_enter(&l2arc_dev_mtx);
5533 list_insert_head(l2arc_dev_list, adddev);
5534 atomic_inc_64(&l2arc_ndev);
5535 mutex_exit(&l2arc_dev_mtx);
5536}
5537
5538/*
5539 * Remove a vdev from the L2ARC.
5540 */
5541void
5542l2arc_remove_vdev(vdev_t *vd)
5543{
5544 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5545
34dc7c2f
BB
5546 /*
5547 * Find the device by vdev
5548 */
5549 mutex_enter(&l2arc_dev_mtx);
5550 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5551 nextdev = list_next(l2arc_dev_list, dev);
5552 if (vd == dev->l2ad_vdev) {
5553 remdev = dev;
5554 break;
5555 }
5556 }
5557 ASSERT(remdev != NULL);
5558
5559 /*
5560 * Remove device from global list
5561 */
5562 list_remove(l2arc_dev_list, remdev);
5563 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
5564 atomic_dec_64(&l2arc_ndev);
5565 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
5566
5567 /*
5568 * Clear all buflists and ARC references. L2ARC device flush.
5569 */
5570 l2arc_evict(remdev, 0, B_TRUE);
5571 list_destroy(remdev->l2ad_buflist);
5572 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5573 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
5574}
5575
5576void
b128c09f 5577l2arc_init(void)
34dc7c2f
BB
5578{
5579 l2arc_thread_exit = 0;
5580 l2arc_ndev = 0;
5581 l2arc_writes_sent = 0;
5582 l2arc_writes_done = 0;
5583
5584 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5585 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5586 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
40d06e3c 5587 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
5588 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5589
5590 l2arc_dev_list = &L2ARC_dev_list;
5591 l2arc_free_on_write = &L2ARC_free_on_write;
5592 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5593 offsetof(l2arc_dev_t, l2ad_node));
5594 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5595 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
5596}
5597
5598void
b128c09f 5599l2arc_fini(void)
34dc7c2f 5600{
b128c09f
BB
5601 /*
5602 * This is called from dmu_fini(), which is called from spa_fini();
5603 * Because of this, we can assume that all l2arc devices have
5604 * already been removed when the pools themselves were removed.
5605 */
5606
5607 l2arc_do_free_on_write();
34dc7c2f
BB
5608
5609 mutex_destroy(&l2arc_feed_thr_lock);
5610 cv_destroy(&l2arc_feed_thr_cv);
5611 mutex_destroy(&l2arc_dev_mtx);
5612 mutex_destroy(&l2arc_buflist_mtx);
5613 mutex_destroy(&l2arc_free_on_write_mtx);
5614
5615 list_destroy(l2arc_dev_list);
5616 list_destroy(l2arc_free_on_write);
5617}
b128c09f
BB
5618
5619void
5620l2arc_start(void)
5621{
fb5f0bc8 5622 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5623 return;
5624
5625 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5626 TS_RUN, minclsyspri);
5627}
5628
5629void
5630l2arc_stop(void)
5631{
fb5f0bc8 5632 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5633 return;
5634
5635 mutex_enter(&l2arc_feed_thr_lock);
5636 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5637 l2arc_thread_exit = 1;
5638 while (l2arc_thread_exit != 0)
5639 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5640 mutex_exit(&l2arc_feed_thr_lock);
5641}
c28b2279
BB
5642
5643#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
5644EXPORT_SYMBOL(arc_buf_size);
5645EXPORT_SYMBOL(arc_write);
c28b2279
BB
5646EXPORT_SYMBOL(arc_read);
5647EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 5648EXPORT_SYMBOL(arc_buf_info);
c28b2279 5649EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
5650EXPORT_SYMBOL(arc_add_prune_callback);
5651EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 5652
bce45ec9 5653module_param(zfs_arc_min, ulong, 0644);
c409e464 5654MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 5655
bce45ec9 5656module_param(zfs_arc_max, ulong, 0644);
c409e464 5657MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 5658
bce45ec9 5659module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 5660MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 5661
bce45ec9 5662module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 5663MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 5664
bc888666
BB
5665module_param(zfs_arc_meta_adjust_restarts, ulong, 0644);
5666MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
5667 "Limit number of restarts in arc_adjust_meta");
5668
bce45ec9 5669module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
5670MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5671
89c8cac4
PS
5672module_param(zfs_arc_p_aggressive_disable, int, 0644);
5673MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
5674
62422785
PS
5675module_param(zfs_arc_p_dampener_disable, int, 0644);
5676MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
5677
bce45ec9 5678module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
5679MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5680
1f7c30df
BB
5681module_param(zfs_disable_dup_eviction, int, 0644);
5682MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5683
49ddb315
MA
5684module_param(zfs_arc_average_blocksize, int, 0444);
5685MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
5686
0c5493d4
BB
5687module_param(zfs_arc_memory_throttle_disable, int, 0644);
5688MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5689
bce45ec9
BB
5690module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5691MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5692
5693module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
5694MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5695
bce45ec9 5696module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
5697MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5698
bce45ec9 5699module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
5700MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5701
3a17a7a9
SK
5702module_param(l2arc_headroom_boost, ulong, 0644);
5703MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
5704
bce45ec9 5705module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
5706MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5707
bce45ec9 5708module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
5709MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5710
bce45ec9 5711module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
5712MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5713
3a17a7a9
SK
5714module_param(l2arc_nocompress, int, 0644);
5715MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
5716
bce45ec9 5717module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
5718MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5719
bce45ec9 5720module_param(l2arc_norw, int, 0644);
abd8610c
BB
5721MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5722
c28b2279 5723#endif