]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Update all default taskq settings
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
5dbd68a3 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
3bec585e 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
bd089c54 107 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
b9541d6b 121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
ca0bf58d 138#include <sys/multilist.h>
34dc7c2f
BB
139#ifdef _KERNEL
140#include <sys/vmsystm.h>
141#include <vm/anon.h>
142#include <sys/fs/swapnode.h>
ab26409d 143#include <sys/zpl.h>
aaed7c40 144#include <linux/mm_compat.h>
34dc7c2f
BB
145#endif
146#include <sys/callb.h>
147#include <sys/kstat.h>
570827e1 148#include <sys/dmu_tx.h>
428870ff 149#include <zfs_fletcher.h>
59ec819a 150#include <sys/arc_impl.h>
49ee64e5 151#include <sys/trace_arc.h>
34dc7c2f 152
498877ba
MA
153#ifndef _KERNEL
154/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
155boolean_t arc_watch = B_FALSE;
156#endif
157
ca0bf58d
PS
158static kmutex_t arc_reclaim_lock;
159static kcondvar_t arc_reclaim_thread_cv;
160static boolean_t arc_reclaim_thread_exit;
161static kcondvar_t arc_reclaim_waiters_cv;
162
163static kmutex_t arc_user_evicts_lock;
164static kcondvar_t arc_user_evicts_cv;
165static boolean_t arc_user_evicts_thread_exit;
34dc7c2f 166
2cbb06b5
BB
167/* number of objects to prune from caches when arc_meta_limit is reached */
168int zfs_arc_meta_prune = 10000;
34dc7c2f 169
f6046738
BB
170/* The preferred strategy to employ when arc_meta_limit is reached */
171int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
172
34dc7c2f
BB
173typedef enum arc_reclaim_strategy {
174 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
175 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
176} arc_reclaim_strategy_t;
177
e8b96c60 178/*
ca0bf58d
PS
179 * The number of headers to evict in arc_evict_state_impl() before
180 * dropping the sublist lock and evicting from another sublist. A lower
181 * value means we're more likely to evict the "correct" header (i.e. the
182 * oldest header in the arc state), but comes with higher overhead
183 * (i.e. more invocations of arc_evict_state_impl()).
184 */
185int zfs_arc_evict_batch_limit = 10;
186
187/*
188 * The number of sublists used for each of the arc state lists. If this
189 * is not set to a suitable value by the user, it will be configured to
190 * the number of CPUs on the system in arc_init().
e8b96c60 191 */
ca0bf58d 192int zfs_arc_num_sublists_per_state = 0;
e8b96c60 193
34dc7c2f 194/* number of seconds before growing cache again */
bce45ec9 195int zfs_arc_grow_retry = 5;
34dc7c2f 196
ca0bf58d
PS
197/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
198int zfs_arc_overflow_shift = 8;
199
89c8cac4
PS
200/* disable anon data aggressively growing arc_p */
201int zfs_arc_p_aggressive_disable = 1;
202
62422785
PS
203/* disable arc_p adapt dampener in arc_adapt */
204int zfs_arc_p_dampener_disable = 1;
205
d164b209 206/* log2(fraction of arc to reclaim) */
bce45ec9 207int zfs_arc_shrink_shift = 5;
d164b209 208
34dc7c2f
BB
209/*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
bce45ec9
BB
213int zfs_arc_min_prefetch_lifespan = HZ;
214
215/* disable arc proactive arc throttle due to low memory */
216int zfs_arc_memory_throttle_disable = 1;
217
218/* disable duplicate buffer eviction */
219int zfs_disable_dup_eviction = 0;
34dc7c2f 220
49ddb315
MA
221/* average block used to size buf_hash_table */
222int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
223
ca0bf58d
PS
224/*
225 * minimum lifespan of a prefetch block in clock ticks
226 * (initialized in arc_init())
227 */
228static int arc_min_prefetch_lifespan;
229
e8b96c60
MA
230/*
231 * If this percent of memory is free, don't throttle.
232 */
233int arc_lotsfree_percent = 10;
234
34dc7c2f
BB
235static int arc_dead;
236
bce45ec9
BB
237/* expiration time for arc_no_grow */
238static clock_t arc_grow_time = 0;
239
b128c09f
BB
240/*
241 * The arc has filled available memory and has now warmed up.
242 */
243static boolean_t arc_warm;
244
34dc7c2f
BB
245/*
246 * These tunables are for performance analysis.
247 */
c28b2279
BB
248unsigned long zfs_arc_max = 0;
249unsigned long zfs_arc_min = 0;
250unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 251unsigned long zfs_arc_meta_min = 0;
34dc7c2f 252
bc888666
BB
253/*
254 * Limit the number of restarts in arc_adjust_meta()
255 */
256unsigned long zfs_arc_meta_adjust_restarts = 4096;
257
34dc7c2f
BB
258/* The 6 states: */
259static arc_state_t ARC_anon;
260static arc_state_t ARC_mru;
261static arc_state_t ARC_mru_ghost;
262static arc_state_t ARC_mfu;
263static arc_state_t ARC_mfu_ghost;
264static arc_state_t ARC_l2c_only;
265
266typedef struct arc_stats {
267 kstat_named_t arcstat_hits;
268 kstat_named_t arcstat_misses;
269 kstat_named_t arcstat_demand_data_hits;
270 kstat_named_t arcstat_demand_data_misses;
271 kstat_named_t arcstat_demand_metadata_hits;
272 kstat_named_t arcstat_demand_metadata_misses;
273 kstat_named_t arcstat_prefetch_data_hits;
274 kstat_named_t arcstat_prefetch_data_misses;
275 kstat_named_t arcstat_prefetch_metadata_hits;
276 kstat_named_t arcstat_prefetch_metadata_misses;
277 kstat_named_t arcstat_mru_hits;
278 kstat_named_t arcstat_mru_ghost_hits;
279 kstat_named_t arcstat_mfu_hits;
280 kstat_named_t arcstat_mfu_ghost_hits;
281 kstat_named_t arcstat_deleted;
e49f1e20
WA
282 /*
283 * Number of buffers that could not be evicted because the hash lock
284 * was held by another thread. The lock may not necessarily be held
285 * by something using the same buffer, since hash locks are shared
286 * by multiple buffers.
287 */
34dc7c2f 288 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
289 /*
290 * Number of buffers skipped because they have I/O in progress, are
291 * indrect prefetch buffers that have not lived long enough, or are
292 * not from the spa we're trying to evict from.
293 */
34dc7c2f 294 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
295 /*
296 * Number of times arc_evict_state() was unable to evict enough
297 * buffers to reach its target amount.
298 */
299 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
300 kstat_named_t arcstat_evict_l2_cached;
301 kstat_named_t arcstat_evict_l2_eligible;
302 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 303 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
304 kstat_named_t arcstat_hash_elements;
305 kstat_named_t arcstat_hash_elements_max;
306 kstat_named_t arcstat_hash_collisions;
307 kstat_named_t arcstat_hash_chains;
308 kstat_named_t arcstat_hash_chain_max;
309 kstat_named_t arcstat_p;
310 kstat_named_t arcstat_c;
311 kstat_named_t arcstat_c_min;
312 kstat_named_t arcstat_c_max;
313 kstat_named_t arcstat_size;
314 kstat_named_t arcstat_hdr_size;
d164b209 315 kstat_named_t arcstat_data_size;
cc7f677c 316 kstat_named_t arcstat_meta_size;
d164b209 317 kstat_named_t arcstat_other_size;
13be560d
BB
318 kstat_named_t arcstat_anon_size;
319 kstat_named_t arcstat_anon_evict_data;
320 kstat_named_t arcstat_anon_evict_metadata;
321 kstat_named_t arcstat_mru_size;
322 kstat_named_t arcstat_mru_evict_data;
323 kstat_named_t arcstat_mru_evict_metadata;
324 kstat_named_t arcstat_mru_ghost_size;
325 kstat_named_t arcstat_mru_ghost_evict_data;
326 kstat_named_t arcstat_mru_ghost_evict_metadata;
327 kstat_named_t arcstat_mfu_size;
328 kstat_named_t arcstat_mfu_evict_data;
329 kstat_named_t arcstat_mfu_evict_metadata;
330 kstat_named_t arcstat_mfu_ghost_size;
331 kstat_named_t arcstat_mfu_ghost_evict_data;
332 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
333 kstat_named_t arcstat_l2_hits;
334 kstat_named_t arcstat_l2_misses;
335 kstat_named_t arcstat_l2_feeds;
336 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
337 kstat_named_t arcstat_l2_read_bytes;
338 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
339 kstat_named_t arcstat_l2_writes_sent;
340 kstat_named_t arcstat_l2_writes_done;
341 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 342 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
343 kstat_named_t arcstat_l2_evict_lock_retry;
344 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 345 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f 346 kstat_named_t arcstat_l2_free_on_write;
ca0bf58d 347 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
348 kstat_named_t arcstat_l2_abort_lowmem;
349 kstat_named_t arcstat_l2_cksum_bad;
350 kstat_named_t arcstat_l2_io_error;
351 kstat_named_t arcstat_l2_size;
3a17a7a9 352 kstat_named_t arcstat_l2_asize;
34dc7c2f 353 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
354 kstat_named_t arcstat_l2_compress_successes;
355 kstat_named_t arcstat_l2_compress_zeros;
356 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 357 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
358 kstat_named_t arcstat_duplicate_buffers;
359 kstat_named_t arcstat_duplicate_buffers_size;
360 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
361 kstat_named_t arcstat_memory_direct_count;
362 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
363 kstat_named_t arcstat_no_grow;
364 kstat_named_t arcstat_tempreserve;
365 kstat_named_t arcstat_loaned_bytes;
ab26409d 366 kstat_named_t arcstat_prune;
1834f2d8
BB
367 kstat_named_t arcstat_meta_used;
368 kstat_named_t arcstat_meta_limit;
369 kstat_named_t arcstat_meta_max;
ca0bf58d 370 kstat_named_t arcstat_meta_min;
34dc7c2f
BB
371} arc_stats_t;
372
373static arc_stats_t arc_stats = {
374 { "hits", KSTAT_DATA_UINT64 },
375 { "misses", KSTAT_DATA_UINT64 },
376 { "demand_data_hits", KSTAT_DATA_UINT64 },
377 { "demand_data_misses", KSTAT_DATA_UINT64 },
378 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
379 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
380 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
381 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
382 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
383 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
384 { "mru_hits", KSTAT_DATA_UINT64 },
385 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
386 { "mfu_hits", KSTAT_DATA_UINT64 },
387 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
388 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
389 { "mutex_miss", KSTAT_DATA_UINT64 },
390 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 391 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
392 { "evict_l2_cached", KSTAT_DATA_UINT64 },
393 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
394 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 395 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
396 { "hash_elements", KSTAT_DATA_UINT64 },
397 { "hash_elements_max", KSTAT_DATA_UINT64 },
398 { "hash_collisions", KSTAT_DATA_UINT64 },
399 { "hash_chains", KSTAT_DATA_UINT64 },
400 { "hash_chain_max", KSTAT_DATA_UINT64 },
401 { "p", KSTAT_DATA_UINT64 },
402 { "c", KSTAT_DATA_UINT64 },
403 { "c_min", KSTAT_DATA_UINT64 },
404 { "c_max", KSTAT_DATA_UINT64 },
405 { "size", KSTAT_DATA_UINT64 },
406 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 407 { "data_size", KSTAT_DATA_UINT64 },
cc7f677c 408 { "meta_size", KSTAT_DATA_UINT64 },
d164b209 409 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
410 { "anon_size", KSTAT_DATA_UINT64 },
411 { "anon_evict_data", KSTAT_DATA_UINT64 },
412 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
413 { "mru_size", KSTAT_DATA_UINT64 },
414 { "mru_evict_data", KSTAT_DATA_UINT64 },
415 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
416 { "mru_ghost_size", KSTAT_DATA_UINT64 },
417 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
418 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
419 { "mfu_size", KSTAT_DATA_UINT64 },
420 { "mfu_evict_data", KSTAT_DATA_UINT64 },
421 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
422 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
423 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
424 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
425 { "l2_hits", KSTAT_DATA_UINT64 },
426 { "l2_misses", KSTAT_DATA_UINT64 },
427 { "l2_feeds", KSTAT_DATA_UINT64 },
428 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
429 { "l2_read_bytes", KSTAT_DATA_UINT64 },
430 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
431 { "l2_writes_sent", KSTAT_DATA_UINT64 },
432 { "l2_writes_done", KSTAT_DATA_UINT64 },
433 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 434 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
435 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
436 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 437 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f 438 { "l2_free_on_write", KSTAT_DATA_UINT64 },
ca0bf58d 439 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
440 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
441 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
442 { "l2_io_error", KSTAT_DATA_UINT64 },
443 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 444 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 445 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
446 { "l2_compress_successes", KSTAT_DATA_UINT64 },
447 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
448 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 449 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
450 { "duplicate_buffers", KSTAT_DATA_UINT64 },
451 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
452 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
453 { "memory_direct_count", KSTAT_DATA_UINT64 },
454 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
455 { "arc_no_grow", KSTAT_DATA_UINT64 },
456 { "arc_tempreserve", KSTAT_DATA_UINT64 },
457 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 458 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
459 { "arc_meta_used", KSTAT_DATA_UINT64 },
460 { "arc_meta_limit", KSTAT_DATA_UINT64 },
461 { "arc_meta_max", KSTAT_DATA_UINT64 },
ca0bf58d 462 { "arc_meta_min", KSTAT_DATA_UINT64 },
34dc7c2f
BB
463};
464
465#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
466
467#define ARCSTAT_INCR(stat, val) \
d3cc8b15 468 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 469
428870ff 470#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
471#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
472
473#define ARCSTAT_MAX(stat, val) { \
474 uint64_t m; \
475 while ((val) > (m = arc_stats.stat.value.ui64) && \
476 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
477 continue; \
478}
479
480#define ARCSTAT_MAXSTAT(stat) \
481 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
482
483/*
484 * We define a macro to allow ARC hits/misses to be easily broken down by
485 * two separate conditions, giving a total of four different subtypes for
486 * each of hits and misses (so eight statistics total).
487 */
488#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
489 if (cond1) { \
490 if (cond2) { \
491 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
492 } else { \
493 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
494 } \
495 } else { \
496 if (cond2) { \
497 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
498 } else { \
499 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
500 } \
501 }
502
503kstat_t *arc_ksp;
428870ff 504static arc_state_t *arc_anon;
34dc7c2f
BB
505static arc_state_t *arc_mru;
506static arc_state_t *arc_mru_ghost;
507static arc_state_t *arc_mfu;
508static arc_state_t *arc_mfu_ghost;
509static arc_state_t *arc_l2c_only;
510
511/*
512 * There are several ARC variables that are critical to export as kstats --
513 * but we don't want to have to grovel around in the kstat whenever we wish to
514 * manipulate them. For these variables, we therefore define them to be in
515 * terms of the statistic variable. This assures that we are not introducing
516 * the possibility of inconsistency by having shadow copies of the variables,
517 * while still allowing the code to be readable.
518 */
519#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
520#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
521#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
522#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
523#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
524#define arc_no_grow ARCSTAT(arcstat_no_grow)
525#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
526#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 527#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
ca0bf58d 528#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
529#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
530#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 531
3a17a7a9
SK
532#define L2ARC_IS_VALID_COMPRESS(_c_) \
533 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
534
ab26409d
BB
535static list_t arc_prune_list;
536static kmutex_t arc_prune_mtx;
f6046738 537static taskq_t *arc_prune_taskq;
34dc7c2f 538static arc_buf_t *arc_eviction_list;
34dc7c2f 539static arc_buf_hdr_t arc_eviction_hdr;
428870ff 540
34dc7c2f
BB
541#define GHOST_STATE(state) \
542 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
543 (state) == arc_l2c_only)
544
2a432414
GW
545#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
546#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
547#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
548#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
549#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
550#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
b9541d6b 551
2a432414 552#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
b9541d6b 553#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
2a432414 554#define HDR_L2_READING(hdr) \
b9541d6b
CW
555 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
556 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
557#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
558#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
559#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
34dc7c2f 560
b9541d6b
CW
561#define HDR_ISTYPE_METADATA(hdr) \
562 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
563#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
564
565#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
566#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
567
568/* For storing compression mode in b_flags */
569#define HDR_COMPRESS_OFFSET 24
570#define HDR_COMPRESS_NBITS 7
571
572#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
573 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
574#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
575 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
576
34dc7c2f
BB
577/*
578 * Other sizes
579 */
580
b9541d6b
CW
581#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
582#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
583
584/*
585 * Hash table routines
586 */
587
00b46022
BB
588#define HT_LOCK_ALIGN 64
589#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
590
591struct ht_lock {
592 kmutex_t ht_lock;
593#ifdef _KERNEL
00b46022 594 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
595#endif
596};
597
b31d8ea7 598#define BUF_LOCKS 8192
34dc7c2f
BB
599typedef struct buf_hash_table {
600 uint64_t ht_mask;
601 arc_buf_hdr_t **ht_table;
602 struct ht_lock ht_locks[BUF_LOCKS];
603} buf_hash_table_t;
604
605static buf_hash_table_t buf_hash_table;
606
607#define BUF_HASH_INDEX(spa, dva, birth) \
608 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
609#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
610#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
611#define HDR_LOCK(hdr) \
612 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
613
614uint64_t zfs_crc64_table[256];
615
616/*
617 * Level 2 ARC
618 */
619
620#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
621#define L2ARC_HEADROOM 2 /* num of writes */
622/*
623 * If we discover during ARC scan any buffers to be compressed, we boost
624 * our headroom for the next scanning cycle by this percentage multiple.
625 */
626#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
627#define L2ARC_FEED_SECS 1 /* caching interval secs */
628#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 629
d962d5da
PS
630/*
631 * Used to distinguish headers that are being process by
632 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
633 * address. This can happen when the header is added to the l2arc's list
634 * of buffers to write in the first stage of l2arc_write_buffers(), but
635 * has not yet been written out which happens in the second stage of
636 * l2arc_write_buffers().
637 */
638#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
639
34dc7c2f
BB
640#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
641#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
642
d3cc8b15 643/* L2ARC Performance Tunables */
abd8610c
BB
644unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
645unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
646unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 647unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
648unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
649unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
650int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 651int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 652int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 653int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
654
655/*
656 * L2ARC Internals
657 */
34dc7c2f
BB
658static list_t L2ARC_dev_list; /* device list */
659static list_t *l2arc_dev_list; /* device list pointer */
660static kmutex_t l2arc_dev_mtx; /* device list mutex */
661static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
662static list_t L2ARC_free_on_write; /* free after write buf list */
663static list_t *l2arc_free_on_write; /* free after write list ptr */
664static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
665static uint64_t l2arc_ndev; /* number of devices */
666
667typedef struct l2arc_read_callback {
3a17a7a9
SK
668 arc_buf_t *l2rcb_buf; /* read buffer */
669 spa_t *l2rcb_spa; /* spa */
670 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 671 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
672 int l2rcb_flags; /* original flags */
673 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
674} l2arc_read_callback_t;
675
34dc7c2f
BB
676typedef struct l2arc_data_free {
677 /* protected by l2arc_free_on_write_mtx */
678 void *l2df_data;
679 size_t l2df_size;
680 void (*l2df_func)(void *, size_t);
681 list_node_t l2df_list_node;
682} l2arc_data_free_t;
683
684static kmutex_t l2arc_feed_thr_lock;
685static kcondvar_t l2arc_feed_thr_cv;
686static uint8_t l2arc_thread_exit;
687
2a432414
GW
688static void arc_get_data_buf(arc_buf_t *);
689static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 690static boolean_t arc_is_overflowing(void);
2a432414
GW
691static void arc_buf_watch(arc_buf_t *);
692
b9541d6b
CW
693static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
694static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
695
2a432414
GW
696static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
697static void l2arc_read_done(zio_t *);
34dc7c2f 698
b9541d6b 699static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
2a432414
GW
700static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
701static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
3a17a7a9 702
34dc7c2f 703static uint64_t
d164b209 704buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 705{
34dc7c2f
BB
706 uint8_t *vdva = (uint8_t *)dva;
707 uint64_t crc = -1ULL;
708 int i;
709
710 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
711
712 for (i = 0; i < sizeof (dva_t); i++)
713 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
714
d164b209 715 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
716
717 return (crc);
718}
719
720#define BUF_EMPTY(buf) \
721 ((buf)->b_dva.dva_word[0] == 0 && \
b9541d6b 722 (buf)->b_dva.dva_word[1] == 0)
34dc7c2f
BB
723
724#define BUF_EQUAL(spa, dva, birth, buf) \
725 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
726 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
727 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
728
428870ff
BB
729static void
730buf_discard_identity(arc_buf_hdr_t *hdr)
731{
732 hdr->b_dva.dva_word[0] = 0;
733 hdr->b_dva.dva_word[1] = 0;
734 hdr->b_birth = 0;
428870ff
BB
735}
736
34dc7c2f 737static arc_buf_hdr_t *
9b67f605 738buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 739{
9b67f605
MA
740 const dva_t *dva = BP_IDENTITY(bp);
741 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
742 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
743 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 744 arc_buf_hdr_t *hdr;
34dc7c2f
BB
745
746 mutex_enter(hash_lock);
2a432414
GW
747 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
748 hdr = hdr->b_hash_next) {
749 if (BUF_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 750 *lockp = hash_lock;
2a432414 751 return (hdr);
34dc7c2f
BB
752 }
753 }
754 mutex_exit(hash_lock);
755 *lockp = NULL;
756 return (NULL);
757}
758
759/*
760 * Insert an entry into the hash table. If there is already an element
761 * equal to elem in the hash table, then the already existing element
762 * will be returned and the new element will not be inserted.
763 * Otherwise returns NULL.
b9541d6b 764 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
765 */
766static arc_buf_hdr_t *
2a432414 767buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 768{
2a432414 769 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 770 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 771 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
772 uint32_t i;
773
2a432414
GW
774 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
775 ASSERT(hdr->b_birth != 0);
776 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
777
778 if (lockp != NULL) {
779 *lockp = hash_lock;
780 mutex_enter(hash_lock);
781 } else {
782 ASSERT(MUTEX_HELD(hash_lock));
783 }
784
2a432414
GW
785 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
786 fhdr = fhdr->b_hash_next, i++) {
787 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
788 return (fhdr);
34dc7c2f
BB
789 }
790
2a432414
GW
791 hdr->b_hash_next = buf_hash_table.ht_table[idx];
792 buf_hash_table.ht_table[idx] = hdr;
793 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
794
795 /* collect some hash table performance data */
796 if (i > 0) {
797 ARCSTAT_BUMP(arcstat_hash_collisions);
798 if (i == 1)
799 ARCSTAT_BUMP(arcstat_hash_chains);
800
801 ARCSTAT_MAX(arcstat_hash_chain_max, i);
802 }
803
804 ARCSTAT_BUMP(arcstat_hash_elements);
805 ARCSTAT_MAXSTAT(arcstat_hash_elements);
806
807 return (NULL);
808}
809
810static void
2a432414 811buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 812{
2a432414
GW
813 arc_buf_hdr_t *fhdr, **hdrp;
814 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
815
816 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 817 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 818
2a432414
GW
819 hdrp = &buf_hash_table.ht_table[idx];
820 while ((fhdr = *hdrp) != hdr) {
821 ASSERT(fhdr != NULL);
822 hdrp = &fhdr->b_hash_next;
34dc7c2f 823 }
2a432414
GW
824 *hdrp = hdr->b_hash_next;
825 hdr->b_hash_next = NULL;
826 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
827
828 /* collect some hash table performance data */
829 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
830
831 if (buf_hash_table.ht_table[idx] &&
832 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
833 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
834}
835
836/*
837 * Global data structures and functions for the buf kmem cache.
838 */
b9541d6b
CW
839static kmem_cache_t *hdr_full_cache;
840static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
841static kmem_cache_t *buf_cache;
842
843static void
844buf_fini(void)
845{
846 int i;
847
00b46022 848#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
849 /*
850 * Large allocations which do not require contiguous pages
851 * should be using vmem_free() in the linux kernel\
852 */
00b46022
BB
853 vmem_free(buf_hash_table.ht_table,
854 (buf_hash_table.ht_mask + 1) * sizeof (void *));
855#else
34dc7c2f
BB
856 kmem_free(buf_hash_table.ht_table,
857 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 858#endif
34dc7c2f
BB
859 for (i = 0; i < BUF_LOCKS; i++)
860 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
861 kmem_cache_destroy(hdr_full_cache);
862 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
863 kmem_cache_destroy(buf_cache);
864}
865
866/*
867 * Constructor callback - called when the cache is empty
868 * and a new buf is requested.
869 */
870/* ARGSUSED */
871static int
b9541d6b
CW
872hdr_full_cons(void *vbuf, void *unused, int kmflag)
873{
874 arc_buf_hdr_t *hdr = vbuf;
875
876 bzero(hdr, HDR_FULL_SIZE);
877 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
878 refcount_create(&hdr->b_l1hdr.b_refcnt);
879 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
880 list_link_init(&hdr->b_l1hdr.b_arc_node);
881 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 882 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
883 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
884
885 return (0);
886}
887
888/* ARGSUSED */
889static int
890hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 891{
2a432414
GW
892 arc_buf_hdr_t *hdr = vbuf;
893
b9541d6b
CW
894 bzero(hdr, HDR_L2ONLY_SIZE);
895 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 896
34dc7c2f
BB
897 return (0);
898}
899
b128c09f
BB
900/* ARGSUSED */
901static int
902buf_cons(void *vbuf, void *unused, int kmflag)
903{
904 arc_buf_t *buf = vbuf;
905
906 bzero(buf, sizeof (arc_buf_t));
428870ff 907 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
908 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
909
b128c09f
BB
910 return (0);
911}
912
34dc7c2f
BB
913/*
914 * Destructor callback - called when a cached buf is
915 * no longer required.
916 */
917/* ARGSUSED */
918static void
b9541d6b 919hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 920{
2a432414 921 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 922
2a432414 923 ASSERT(BUF_EMPTY(hdr));
b9541d6b
CW
924 cv_destroy(&hdr->b_l1hdr.b_cv);
925 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
926 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 927 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
928 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
929}
930
931/* ARGSUSED */
932static void
933hdr_l2only_dest(void *vbuf, void *unused)
934{
935 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
936
937 ASSERT(BUF_EMPTY(hdr));
938 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
939}
940
b128c09f
BB
941/* ARGSUSED */
942static void
943buf_dest(void *vbuf, void *unused)
944{
945 arc_buf_t *buf = vbuf;
946
428870ff 947 mutex_destroy(&buf->b_evict_lock);
d164b209 948 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
949}
950
34dc7c2f
BB
951static void
952buf_init(void)
953{
954 uint64_t *ct;
955 uint64_t hsize = 1ULL << 12;
956 int i, j;
957
958 /*
959 * The hash table is big enough to fill all of physical memory
49ddb315
MA
960 * with an average block size of zfs_arc_average_blocksize (default 8K).
961 * By default, the table will take up
962 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 963 */
49ddb315 964 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
965 hsize <<= 1;
966retry:
967 buf_hash_table.ht_mask = hsize - 1;
00b46022 968#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
969 /*
970 * Large allocations which do not require contiguous pages
971 * should be using vmem_alloc() in the linux kernel
972 */
00b46022
BB
973 buf_hash_table.ht_table =
974 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
975#else
34dc7c2f
BB
976 buf_hash_table.ht_table =
977 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 978#endif
34dc7c2f
BB
979 if (buf_hash_table.ht_table == NULL) {
980 ASSERT(hsize > (1ULL << 8));
981 hsize >>= 1;
982 goto retry;
983 }
984
b9541d6b
CW
985 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
986 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
987 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
988 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
989 NULL, NULL, 0);
34dc7c2f 990 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 991 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
992
993 for (i = 0; i < 256; i++)
994 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
995 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
996
997 for (i = 0; i < BUF_LOCKS; i++) {
998 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 999 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1000 }
1001}
1002
b9541d6b
CW
1003/*
1004 * Transition between the two allocation states for the arc_buf_hdr struct.
1005 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1006 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1007 * version is used when a cache buffer is only in the L2ARC in order to reduce
1008 * memory usage.
1009 */
1010static arc_buf_hdr_t *
1011arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1012{
1013 arc_buf_hdr_t *nhdr;
1014 l2arc_dev_t *dev;
1015
1016 ASSERT(HDR_HAS_L2HDR(hdr));
1017 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1018 (old == hdr_l2only_cache && new == hdr_full_cache));
1019
1020 dev = hdr->b_l2hdr.b_dev;
1021 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1022
1023 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1024 buf_hash_remove(hdr);
1025
1026 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
d962d5da 1027
b9541d6b
CW
1028 if (new == hdr_full_cache) {
1029 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1030 /*
1031 * arc_access and arc_change_state need to be aware that a
1032 * header has just come out of L2ARC, so we set its state to
1033 * l2c_only even though it's about to change.
1034 */
1035 nhdr->b_l1hdr.b_state = arc_l2c_only;
ca0bf58d
PS
1036
1037 /* Verify previous threads set to NULL before freeing */
1038 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
b9541d6b
CW
1039 } else {
1040 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1041 ASSERT0(hdr->b_l1hdr.b_datacnt);
ca0bf58d
PS
1042
1043 /*
1044 * If we've reached here, We must have been called from
1045 * arc_evict_hdr(), as such we should have already been
1046 * removed from any ghost list we were previously on
1047 * (which protects us from racing with arc_evict_state),
1048 * thus no locking is needed during this check.
1049 */
1050 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1051
b9541d6b 1052 /*
ca0bf58d
PS
1053 * A buffer must not be moved into the arc_l2c_only
1054 * state if it's not finished being written out to the
1055 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1056 * might try to be accessed, even though it was removed.
b9541d6b 1057 */
ca0bf58d
PS
1058 VERIFY(!HDR_L2_WRITING(hdr));
1059 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1060
b9541d6b
CW
1061 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1062 }
1063 /*
1064 * The header has been reallocated so we need to re-insert it into any
1065 * lists it was on.
1066 */
1067 (void) buf_hash_insert(nhdr, NULL);
1068
1069 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1070
1071 mutex_enter(&dev->l2ad_mtx);
1072
1073 /*
1074 * We must place the realloc'ed header back into the list at
1075 * the same spot. Otherwise, if it's placed earlier in the list,
1076 * l2arc_write_buffers() could find it during the function's
1077 * write phase, and try to write it out to the l2arc.
1078 */
1079 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1080 list_remove(&dev->l2ad_buflist, hdr);
1081
1082 mutex_exit(&dev->l2ad_mtx);
1083
d962d5da
PS
1084 /*
1085 * Since we're using the pointer address as the tag when
1086 * incrementing and decrementing the l2ad_alloc refcount, we
1087 * must remove the old pointer (that we're about to destroy) and
1088 * add the new pointer to the refcount. Otherwise we'd remove
1089 * the wrong pointer address when calling arc_hdr_destroy() later.
1090 */
1091
1092 (void) refcount_remove_many(&dev->l2ad_alloc,
1093 hdr->b_l2hdr.b_asize, hdr);
1094
1095 (void) refcount_add_many(&dev->l2ad_alloc,
1096 nhdr->b_l2hdr.b_asize, nhdr);
1097
b9541d6b
CW
1098 buf_discard_identity(hdr);
1099 hdr->b_freeze_cksum = NULL;
1100 kmem_cache_free(old, hdr);
1101
1102 return (nhdr);
1103}
1104
1105
34dc7c2f
BB
1106#define ARC_MINTIME (hz>>4) /* 62 ms */
1107
1108static void
1109arc_cksum_verify(arc_buf_t *buf)
1110{
1111 zio_cksum_t zc;
1112
1113 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1114 return;
1115
b9541d6b
CW
1116 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1117 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1118 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1119 return;
1120 }
1121 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1122 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1123 panic("buffer modified while frozen!");
b9541d6b 1124 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1125}
1126
1127static int
1128arc_cksum_equal(arc_buf_t *buf)
1129{
1130 zio_cksum_t zc;
1131 int equal;
1132
b9541d6b 1133 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1134 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1135 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
b9541d6b 1136 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1137
1138 return (equal);
1139}
1140
1141static void
1142arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1143{
1144 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1145 return;
1146
b9541d6b 1147 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f 1148 if (buf->b_hdr->b_freeze_cksum != NULL) {
b9541d6b 1149 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1150 return;
1151 }
409dc1a5 1152 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
79c76d5b 1153 KM_SLEEP);
34dc7c2f
BB
1154 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1155 buf->b_hdr->b_freeze_cksum);
b9541d6b 1156 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1157 arc_buf_watch(buf);
1158}
1159
1160#ifndef _KERNEL
1161void
1162arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1163{
1164 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1165}
1166#endif
1167
1168/* ARGSUSED */
1169static void
1170arc_buf_unwatch(arc_buf_t *buf)
1171{
1172#ifndef _KERNEL
1173 if (arc_watch) {
1174 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1175 PROT_READ | PROT_WRITE));
1176 }
1177#endif
1178}
1179
1180/* ARGSUSED */
1181static void
1182arc_buf_watch(arc_buf_t *buf)
1183{
1184#ifndef _KERNEL
1185 if (arc_watch)
1186 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1187#endif
34dc7c2f
BB
1188}
1189
b9541d6b
CW
1190static arc_buf_contents_t
1191arc_buf_type(arc_buf_hdr_t *hdr)
1192{
1193 if (HDR_ISTYPE_METADATA(hdr)) {
1194 return (ARC_BUFC_METADATA);
1195 } else {
1196 return (ARC_BUFC_DATA);
1197 }
1198}
1199
1200static uint32_t
1201arc_bufc_to_flags(arc_buf_contents_t type)
1202{
1203 switch (type) {
1204 case ARC_BUFC_DATA:
1205 /* metadata field is 0 if buffer contains normal data */
1206 return (0);
1207 case ARC_BUFC_METADATA:
1208 return (ARC_FLAG_BUFC_METADATA);
1209 default:
1210 break;
1211 }
1212 panic("undefined ARC buffer type!");
1213 return ((uint32_t)-1);
1214}
1215
34dc7c2f
BB
1216void
1217arc_buf_thaw(arc_buf_t *buf)
1218{
1219 if (zfs_flags & ZFS_DEBUG_MODIFY) {
b9541d6b 1220 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f 1221 panic("modifying non-anon buffer!");
b9541d6b 1222 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
34dc7c2f
BB
1223 panic("modifying buffer while i/o in progress!");
1224 arc_cksum_verify(buf);
1225 }
1226
b9541d6b 1227 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1228 if (buf->b_hdr->b_freeze_cksum != NULL) {
1229 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1230 buf->b_hdr->b_freeze_cksum = NULL;
1231 }
428870ff 1232
b9541d6b 1233 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1234
1235 arc_buf_unwatch(buf);
34dc7c2f
BB
1236}
1237
1238void
1239arc_buf_freeze(arc_buf_t *buf)
1240{
428870ff
BB
1241 kmutex_t *hash_lock;
1242
34dc7c2f
BB
1243 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1244 return;
1245
428870ff
BB
1246 hash_lock = HDR_LOCK(buf->b_hdr);
1247 mutex_enter(hash_lock);
1248
34dc7c2f 1249 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
b9541d6b 1250 buf->b_hdr->b_l1hdr.b_state == arc_anon);
34dc7c2f 1251 arc_cksum_compute(buf, B_FALSE);
428870ff 1252 mutex_exit(hash_lock);
498877ba 1253
34dc7c2f
BB
1254}
1255
1256static void
2a432414 1257add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f 1258{
b9541d6b
CW
1259 arc_state_t *state;
1260
1261 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1262 ASSERT(MUTEX_HELD(hash_lock));
1263
b9541d6b
CW
1264 state = hdr->b_l1hdr.b_state;
1265
1266 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1267 (state != arc_anon)) {
1268 /* We don't use the L2-only state list. */
1269 if (state != arc_l2c_only) {
ca0bf58d 1270 arc_buf_contents_t type = arc_buf_type(hdr);
b9541d6b 1271 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
ca0bf58d
PS
1272 multilist_t *list = &state->arcs_list[type];
1273 uint64_t *size = &state->arcs_lsize[type];
1274
1275 multilist_remove(list, hdr);
b9541d6b 1276
b9541d6b
CW
1277 if (GHOST_STATE(state)) {
1278 ASSERT0(hdr->b_l1hdr.b_datacnt);
1279 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1280 delta = hdr->b_size;
1281 }
1282 ASSERT(delta > 0);
1283 ASSERT3U(*size, >=, delta);
1284 atomic_add_64(size, -delta);
34dc7c2f 1285 }
b128c09f 1286 /* remove the prefetch flag if we get a reference */
b9541d6b 1287 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
34dc7c2f
BB
1288 }
1289}
1290
1291static int
2a432414 1292remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1293{
1294 int cnt;
b9541d6b 1295 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1296
b9541d6b 1297 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1298 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1299 ASSERT(!GHOST_STATE(state));
1300
b9541d6b
CW
1301 /*
1302 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1303 * check to prevent usage of the arc_l2c_only list.
1304 */
1305 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1306 (state != arc_anon)) {
ca0bf58d
PS
1307 arc_buf_contents_t type = arc_buf_type(hdr);
1308 multilist_t *list = &state->arcs_list[type];
1309 uint64_t *size = &state->arcs_lsize[type];
1310
1311 multilist_insert(list, hdr);
34dc7c2f 1312
b9541d6b
CW
1313 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1314 atomic_add_64(size, hdr->b_size *
1315 hdr->b_l1hdr.b_datacnt);
34dc7c2f
BB
1316 }
1317 return (cnt);
1318}
1319
e0b0ca98
BB
1320/*
1321 * Returns detailed information about a specific arc buffer. When the
1322 * state_index argument is set the function will calculate the arc header
1323 * list position for its arc state. Since this requires a linear traversal
1324 * callers are strongly encourage not to do this. However, it can be helpful
1325 * for targeted analysis so the functionality is provided.
1326 */
1327void
1328arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1329{
1330 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
1331 l1arc_buf_hdr_t *l1hdr = NULL;
1332 l2arc_buf_hdr_t *l2hdr = NULL;
1333 arc_state_t *state = NULL;
1334
1335 if (HDR_HAS_L1HDR(hdr)) {
1336 l1hdr = &hdr->b_l1hdr;
1337 state = l1hdr->b_state;
1338 }
1339 if (HDR_HAS_L2HDR(hdr))
1340 l2hdr = &hdr->b_l2hdr;
e0b0ca98 1341
d1d7e268 1342 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98 1343 abi->abi_flags = hdr->b_flags;
b9541d6b
CW
1344
1345 if (l1hdr) {
1346 abi->abi_datacnt = l1hdr->b_datacnt;
1347 abi->abi_access = l1hdr->b_arc_access;
1348 abi->abi_mru_hits = l1hdr->b_mru_hits;
1349 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1350 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1351 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1352 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1353 }
1354
1355 if (l2hdr) {
1356 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1357 abi->abi_l2arc_asize = l2hdr->b_asize;
1358 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1359 abi->abi_l2arc_hits = l2hdr->b_hits;
1360 }
1361
e0b0ca98 1362 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 1363 abi->abi_state_contents = arc_buf_type(hdr);
e0b0ca98 1364 abi->abi_size = hdr->b_size;
e0b0ca98
BB
1365}
1366
34dc7c2f 1367/*
ca0bf58d 1368 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
1369 * for the buffer must be held by the caller.
1370 */
1371static void
2a432414
GW
1372arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1373 kmutex_t *hash_lock)
34dc7c2f 1374{
b9541d6b
CW
1375 arc_state_t *old_state;
1376 int64_t refcnt;
1377 uint32_t datacnt;
34dc7c2f 1378 uint64_t from_delta, to_delta;
b9541d6b
CW
1379 arc_buf_contents_t buftype = arc_buf_type(hdr);
1380
1381 /*
1382 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1383 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1384 * L1 hdr doesn't always exist when we change state to arc_anon before
1385 * destroying a header, in which case reallocating to add the L1 hdr is
1386 * pointless.
1387 */
1388 if (HDR_HAS_L1HDR(hdr)) {
1389 old_state = hdr->b_l1hdr.b_state;
1390 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1391 datacnt = hdr->b_l1hdr.b_datacnt;
1392 } else {
1393 old_state = arc_l2c_only;
1394 refcnt = 0;
1395 datacnt = 0;
1396 }
34dc7c2f
BB
1397
1398 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1399 ASSERT3P(new_state, !=, old_state);
b9541d6b
CW
1400 ASSERT(refcnt == 0 || datacnt > 0);
1401 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1402 ASSERT(old_state != arc_anon || datacnt <= 1);
34dc7c2f 1403
b9541d6b 1404 from_delta = to_delta = datacnt * hdr->b_size;
34dc7c2f
BB
1405
1406 /*
1407 * If this buffer is evictable, transfer it from the
1408 * old state list to the new state list.
1409 */
1410 if (refcnt == 0) {
b9541d6b 1411 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 1412 uint64_t *size = &old_state->arcs_lsize[buftype];
34dc7c2f 1413
b9541d6b 1414 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1415 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1416
1417 /*
1418 * If prefetching out of the ghost cache,
428870ff 1419 * we will have a non-zero datacnt.
34dc7c2f 1420 */
b9541d6b 1421 if (GHOST_STATE(old_state) && datacnt == 0) {
34dc7c2f 1422 /* ghost elements have a ghost size */
b9541d6b 1423 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1424 from_delta = hdr->b_size;
34dc7c2f
BB
1425 }
1426 ASSERT3U(*size, >=, from_delta);
1427 atomic_add_64(size, -from_delta);
34dc7c2f 1428 }
b9541d6b 1429 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b 1430 uint64_t *size = &new_state->arcs_lsize[buftype];
34dc7c2f 1431
b9541d6b
CW
1432 /*
1433 * An L1 header always exists here, since if we're
1434 * moving to some L1-cached state (i.e. not l2c_only or
1435 * anonymous), we realloc the header to add an L1hdr
1436 * beforehand.
1437 */
1438 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1439 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1440
1441 /* ghost elements have a ghost size */
1442 if (GHOST_STATE(new_state)) {
b9541d6b
CW
1443 ASSERT0(datacnt);
1444 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1445 to_delta = hdr->b_size;
34dc7c2f
BB
1446 }
1447 atomic_add_64(size, to_delta);
34dc7c2f
BB
1448 }
1449 }
1450
2a432414
GW
1451 ASSERT(!BUF_EMPTY(hdr));
1452 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1453 buf_hash_remove(hdr);
34dc7c2f 1454
b9541d6b
CW
1455 /* adjust state sizes (ignore arc_l2c_only) */
1456 if (to_delta && new_state != arc_l2c_only)
34dc7c2f 1457 atomic_add_64(&new_state->arcs_size, to_delta);
b9541d6b 1458 if (from_delta && old_state != arc_l2c_only) {
34dc7c2f
BB
1459 ASSERT3U(old_state->arcs_size, >=, from_delta);
1460 atomic_add_64(&old_state->arcs_size, -from_delta);
1461 }
b9541d6b
CW
1462 if (HDR_HAS_L1HDR(hdr))
1463 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 1464
b9541d6b
CW
1465 /*
1466 * L2 headers should never be on the L2 state list since they don't
1467 * have L1 headers allocated.
1468 */
ca0bf58d
PS
1469 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1470 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
1471}
1472
1473void
d164b209 1474arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1475{
d164b209
BB
1476 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1477
1478 switch (type) {
e75c13c3
BB
1479 default:
1480 break;
d164b209
BB
1481 case ARC_SPACE_DATA:
1482 ARCSTAT_INCR(arcstat_data_size, space);
1483 break;
cc7f677c
PS
1484 case ARC_SPACE_META:
1485 ARCSTAT_INCR(arcstat_meta_size, space);
1486 break;
d164b209
BB
1487 case ARC_SPACE_OTHER:
1488 ARCSTAT_INCR(arcstat_other_size, space);
1489 break;
1490 case ARC_SPACE_HDRS:
1491 ARCSTAT_INCR(arcstat_hdr_size, space);
1492 break;
1493 case ARC_SPACE_L2HDRS:
1494 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1495 break;
1496 }
1497
596a8935 1498 if (type != ARC_SPACE_DATA) {
cc7f677c 1499 ARCSTAT_INCR(arcstat_meta_used, space);
596a8935
BB
1500 if (arc_meta_max < arc_meta_used)
1501 arc_meta_max = arc_meta_used;
1502 }
cc7f677c 1503
34dc7c2f
BB
1504 atomic_add_64(&arc_size, space);
1505}
1506
1507void
d164b209 1508arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1509{
d164b209
BB
1510 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1511
1512 switch (type) {
e75c13c3
BB
1513 default:
1514 break;
d164b209
BB
1515 case ARC_SPACE_DATA:
1516 ARCSTAT_INCR(arcstat_data_size, -space);
1517 break;
cc7f677c
PS
1518 case ARC_SPACE_META:
1519 ARCSTAT_INCR(arcstat_meta_size, -space);
1520 break;
d164b209
BB
1521 case ARC_SPACE_OTHER:
1522 ARCSTAT_INCR(arcstat_other_size, -space);
1523 break;
1524 case ARC_SPACE_HDRS:
1525 ARCSTAT_INCR(arcstat_hdr_size, -space);
1526 break;
1527 case ARC_SPACE_L2HDRS:
1528 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1529 break;
1530 }
1531
cc7f677c
PS
1532 if (type != ARC_SPACE_DATA) {
1533 ASSERT(arc_meta_used >= space);
cc7f677c
PS
1534 ARCSTAT_INCR(arcstat_meta_used, -space);
1535 }
1536
34dc7c2f
BB
1537 ASSERT(arc_size >= space);
1538 atomic_add_64(&arc_size, -space);
1539}
1540
34dc7c2f 1541arc_buf_t *
5f6d0b6f 1542arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1543{
1544 arc_buf_hdr_t *hdr;
1545 arc_buf_t *buf;
1546
f1512ee6 1547 VERIFY3U(size, <=, spa_maxblocksize(spa));
b9541d6b 1548 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f 1549 ASSERT(BUF_EMPTY(hdr));
b9541d6b 1550 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
34dc7c2f 1551 hdr->b_size = size;
3541dc6d 1552 hdr->b_spa = spa_load_guid(spa);
b9541d6b
CW
1553 hdr->b_l1hdr.b_mru_hits = 0;
1554 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1555 hdr->b_l1hdr.b_mfu_hits = 0;
1556 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1557 hdr->b_l1hdr.b_l2_hits = 0;
1558
34dc7c2f
BB
1559 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1560 buf->b_hdr = hdr;
1561 buf->b_data = NULL;
1562 buf->b_efunc = NULL;
1563 buf->b_private = NULL;
1564 buf->b_next = NULL;
b9541d6b
CW
1565
1566 hdr->b_flags = arc_bufc_to_flags(type);
1567 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1568
1569 hdr->b_l1hdr.b_buf = buf;
1570 hdr->b_l1hdr.b_state = arc_anon;
1571 hdr->b_l1hdr.b_arc_access = 0;
1572 hdr->b_l1hdr.b_datacnt = 1;
ca0bf58d 1573 hdr->b_l1hdr.b_tmp_cdata = NULL;
b9541d6b 1574
34dc7c2f 1575 arc_get_data_buf(buf);
b9541d6b
CW
1576
1577 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1578 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
34dc7c2f
BB
1579
1580 return (buf);
1581}
1582
9babb374
BB
1583static char *arc_onloan_tag = "onloan";
1584
1585/*
1586 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1587 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1588 * buffers must be returned to the arc before they can be used by the DMU or
1589 * freed.
1590 */
1591arc_buf_t *
5f6d0b6f 1592arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1593{
1594 arc_buf_t *buf;
1595
1596 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1597
1598 atomic_add_64(&arc_loaned_bytes, size);
1599 return (buf);
1600}
1601
1602/*
1603 * Return a loaned arc buffer to the arc.
1604 */
1605void
1606arc_return_buf(arc_buf_t *buf, void *tag)
1607{
1608 arc_buf_hdr_t *hdr = buf->b_hdr;
1609
9babb374 1610 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1611 ASSERT(HDR_HAS_L1HDR(hdr));
1612 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1613 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374
BB
1614
1615 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1616}
1617
428870ff
BB
1618/* Detach an arc_buf from a dbuf (tag) */
1619void
1620arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1621{
b9541d6b 1622 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1623
1624 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1625 ASSERT(HDR_HAS_L1HDR(hdr));
1626 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1627 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff
BB
1628 buf->b_efunc = NULL;
1629 buf->b_private = NULL;
1630
1631 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1632}
1633
34dc7c2f
BB
1634static arc_buf_t *
1635arc_buf_clone(arc_buf_t *from)
1636{
1637 arc_buf_t *buf;
1638 arc_buf_hdr_t *hdr = from->b_hdr;
1639 uint64_t size = hdr->b_size;
1640
b9541d6b
CW
1641 ASSERT(HDR_HAS_L1HDR(hdr));
1642 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
428870ff 1643
34dc7c2f
BB
1644 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1645 buf->b_hdr = hdr;
1646 buf->b_data = NULL;
1647 buf->b_efunc = NULL;
1648 buf->b_private = NULL;
b9541d6b
CW
1649 buf->b_next = hdr->b_l1hdr.b_buf;
1650 hdr->b_l1hdr.b_buf = buf;
34dc7c2f
BB
1651 arc_get_data_buf(buf);
1652 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1653
1654 /*
1655 * This buffer already exists in the arc so create a duplicate
1656 * copy for the caller. If the buffer is associated with user data
1657 * then track the size and number of duplicates. These stats will be
1658 * updated as duplicate buffers are created and destroyed.
1659 */
b9541d6b 1660 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
1661 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1662 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1663 }
b9541d6b 1664 hdr->b_l1hdr.b_datacnt += 1;
34dc7c2f
BB
1665 return (buf);
1666}
1667
1668void
1669arc_buf_add_ref(arc_buf_t *buf, void* tag)
1670{
1671 arc_buf_hdr_t *hdr;
1672 kmutex_t *hash_lock;
1673
1674 /*
b128c09f
BB
1675 * Check to see if this buffer is evicted. Callers
1676 * must verify b_data != NULL to know if the add_ref
1677 * was successful.
34dc7c2f 1678 */
428870ff 1679 mutex_enter(&buf->b_evict_lock);
b128c09f 1680 if (buf->b_data == NULL) {
428870ff 1681 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1682 return;
1683 }
428870ff 1684 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1685 mutex_enter(hash_lock);
428870ff 1686 hdr = buf->b_hdr;
b9541d6b 1687 ASSERT(HDR_HAS_L1HDR(hdr));
428870ff
BB
1688 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1689 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1690
b9541d6b
CW
1691 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1692 hdr->b_l1hdr.b_state == arc_mfu);
1693
34dc7c2f 1694 add_reference(hdr, hash_lock, tag);
d164b209 1695 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1696 arc_access(hdr, hash_lock);
1697 mutex_exit(hash_lock);
1698 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
1699 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1700 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
1701 data, metadata, hits);
1702}
1703
ca0bf58d
PS
1704static void
1705arc_buf_free_on_write(void *data, size_t size,
1706 void (*free_func)(void *, size_t))
1707{
1708 l2arc_data_free_t *df;
1709
1710 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1711 df->l2df_data = data;
1712 df->l2df_size = size;
1713 df->l2df_func = free_func;
1714 mutex_enter(&l2arc_free_on_write_mtx);
1715 list_insert_head(l2arc_free_on_write, df);
1716 mutex_exit(&l2arc_free_on_write_mtx);
1717}
1718
34dc7c2f
BB
1719/*
1720 * Free the arc data buffer. If it is an l2arc write in progress,
1721 * the buffer is placed on l2arc_free_on_write to be freed later.
1722 */
1723static void
498877ba 1724arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1725{
498877ba
MA
1726 arc_buf_hdr_t *hdr = buf->b_hdr;
1727
34dc7c2f 1728 if (HDR_L2_WRITING(hdr)) {
ca0bf58d 1729 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1730 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1731 } else {
498877ba 1732 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1733 }
1734}
1735
ca0bf58d
PS
1736static void
1737arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1738{
1739 ASSERT(HDR_HAS_L2HDR(hdr));
1740 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1741
1742 /*
1743 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1744 * that doesn't exist, the header is in the arc_l2c_only state,
1745 * and there isn't anything to free (it's already been freed).
1746 */
1747 if (!HDR_HAS_L1HDR(hdr))
1748 return;
1749
1750 /*
1751 * The header isn't being written to the l2arc device, thus it
1752 * shouldn't have a b_tmp_cdata to free.
1753 */
1754 if (!HDR_L2_WRITING(hdr)) {
1755 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1756 return;
1757 }
1758
1759 /*
1760 * The header does not have compression enabled. This can be due
1761 * to the buffer not being compressible, or because we're
1762 * freeing the buffer before the second phase of
1763 * l2arc_write_buffer() has started (which does the compression
1764 * step). In either case, b_tmp_cdata does not point to a
1765 * separately compressed buffer, so there's nothing to free (it
1766 * points to the same buffer as the arc_buf_t's b_data field).
1767 */
1768 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1769 hdr->b_l1hdr.b_tmp_cdata = NULL;
1770 return;
1771 }
1772
1773 /*
1774 * There's nothing to free since the buffer was all zero's and
1775 * compressed to a zero length buffer.
1776 */
1777 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1778 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1779 return;
1780 }
1781
1782 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1783
1784 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1785 hdr->b_size, zio_data_buf_free);
1786
1787 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1788 hdr->b_l1hdr.b_tmp_cdata = NULL;
1789}
1790
bd089c54
MA
1791/*
1792 * Free up buf->b_data and if 'remove' is set, then pull the
1793 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1794 */
34dc7c2f 1795static void
ca0bf58d 1796arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
34dc7c2f
BB
1797{
1798 arc_buf_t **bufp;
1799
1800 /* free up data associated with the buf */
b9541d6b
CW
1801 if (buf->b_data != NULL) {
1802 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 1803 uint64_t size = buf->b_hdr->b_size;
b9541d6b 1804 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
1805
1806 arc_cksum_verify(buf);
498877ba 1807 arc_buf_unwatch(buf);
428870ff 1808
ca0bf58d
PS
1809 if (type == ARC_BUFC_METADATA) {
1810 arc_buf_data_free(buf, zio_buf_free);
1811 arc_space_return(size, ARC_SPACE_META);
1812 } else {
1813 ASSERT(type == ARC_BUFC_DATA);
1814 arc_buf_data_free(buf, zio_data_buf_free);
1815 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f 1816 }
ca0bf58d
PS
1817
1818 /* protected by hash lock, if in the hash table */
1819 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
34dc7c2f
BB
1820 uint64_t *cnt = &state->arcs_lsize[type];
1821
b9541d6b
CW
1822 ASSERT(refcount_is_zero(
1823 &buf->b_hdr->b_l1hdr.b_refcnt));
1824 ASSERT(state != arc_anon && state != arc_l2c_only);
34dc7c2f
BB
1825
1826 ASSERT3U(*cnt, >=, size);
1827 atomic_add_64(cnt, -size);
1828 }
1829 ASSERT3U(state->arcs_size, >=, size);
1830 atomic_add_64(&state->arcs_size, -size);
1831 buf->b_data = NULL;
1eb5bfa3
GW
1832
1833 /*
1834 * If we're destroying a duplicate buffer make sure
1835 * that the appropriate statistics are updated.
1836 */
b9541d6b
CW
1837 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
1838 HDR_ISTYPE_DATA(buf->b_hdr)) {
1eb5bfa3
GW
1839 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1840 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1841 }
b9541d6b
CW
1842 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
1843 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f
BB
1844 }
1845
1846 /* only remove the buf if requested */
bd089c54 1847 if (!remove)
34dc7c2f
BB
1848 return;
1849
1850 /* remove the buf from the hdr list */
b9541d6b
CW
1851 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
1852 bufp = &(*bufp)->b_next)
34dc7c2f
BB
1853 continue;
1854 *bufp = buf->b_next;
428870ff 1855 buf->b_next = NULL;
34dc7c2f
BB
1856
1857 ASSERT(buf->b_efunc == NULL);
1858
1859 /* clean up the buf */
1860 buf->b_hdr = NULL;
1861 kmem_cache_free(buf_cache, buf);
1862}
1863
d962d5da
PS
1864static void
1865arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
1866{
1867 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
1868 l2arc_dev_t *dev = l2hdr->b_dev;
1869
1870 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1871 ASSERT(HDR_HAS_L2HDR(hdr));
1872
1873 list_remove(&dev->l2ad_buflist, hdr);
1874
1875 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1876
1877 /*
1878 * We don't want to leak the b_tmp_cdata buffer that was
1879 * allocated in l2arc_write_buffers()
1880 */
1881 arc_buf_l2_cdata_free(hdr);
1882
1883 /*
1884 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
1885 * this header is being processed by l2arc_write_buffers() (i.e.
1886 * it's in the first stage of l2arc_write_buffers()).
1887 * Re-affirming that truth here, just to serve as a reminder. If
1888 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
1889 * may not have its HDR_L2_WRITING flag set. (the write may have
1890 * completed, in which case HDR_L2_WRITING will be false and the
1891 * b_daddr field will point to the address of the buffer on disk).
1892 */
1893 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
1894
1895 /*
1896 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
1897 * l2arc_write_buffers(). Since we've just removed this header
1898 * from the l2arc buffer list, this header will never reach the
1899 * second stage of l2arc_write_buffers(), which increments the
1900 * accounting stats for this header. Thus, we must be careful
1901 * not to decrement them for this header either.
1902 */
1903 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
1904 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1905 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1906
1907 vdev_space_update(dev->l2ad_vdev,
1908 -l2hdr->b_asize, 0, 0);
1909
1910 (void) refcount_remove_many(&dev->l2ad_alloc,
1911 l2hdr->b_asize, hdr);
1912 }
1913
1914 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
1915}
1916
34dc7c2f
BB
1917static void
1918arc_hdr_destroy(arc_buf_hdr_t *hdr)
1919{
b9541d6b
CW
1920 if (HDR_HAS_L1HDR(hdr)) {
1921 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
1922 hdr->b_l1hdr.b_datacnt > 0);
1923 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1924 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1925 }
34dc7c2f 1926 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
1927 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1928
1929 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
1930 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1931 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 1932
d962d5da
PS
1933 if (!buflist_held)
1934 mutex_enter(&dev->l2ad_mtx);
b9541d6b 1935
ca0bf58d 1936 /*
d962d5da
PS
1937 * Even though we checked this conditional above, we
1938 * need to check this again now that we have the
1939 * l2ad_mtx. This is because we could be racing with
1940 * another thread calling l2arc_evict() which might have
1941 * destroyed this header's L2 portion as we were waiting
1942 * to acquire the l2ad_mtx. If that happens, we don't
1943 * want to re-destroy the header's L2 portion.
ca0bf58d 1944 */
d962d5da
PS
1945 if (HDR_HAS_L2HDR(hdr))
1946 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
1947
1948 if (!buflist_held)
d962d5da 1949 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
1950 }
1951
b9541d6b 1952 if (!BUF_EMPTY(hdr))
428870ff 1953 buf_discard_identity(hdr);
b9541d6b 1954
34dc7c2f
BB
1955 if (hdr->b_freeze_cksum != NULL) {
1956 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1957 hdr->b_freeze_cksum = NULL;
1958 }
1959
b9541d6b
CW
1960 if (HDR_HAS_L1HDR(hdr)) {
1961 while (hdr->b_l1hdr.b_buf) {
1962 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
1963
1964 if (buf->b_efunc != NULL) {
ca0bf58d 1965 mutex_enter(&arc_user_evicts_lock);
b9541d6b
CW
1966 mutex_enter(&buf->b_evict_lock);
1967 ASSERT(buf->b_hdr != NULL);
ca0bf58d 1968 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
b9541d6b
CW
1969 hdr->b_l1hdr.b_buf = buf->b_next;
1970 buf->b_hdr = &arc_eviction_hdr;
1971 buf->b_next = arc_eviction_list;
1972 arc_eviction_list = buf;
1973 mutex_exit(&buf->b_evict_lock);
ca0bf58d
PS
1974 cv_signal(&arc_user_evicts_cv);
1975 mutex_exit(&arc_user_evicts_lock);
b9541d6b 1976 } else {
ca0bf58d 1977 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
b9541d6b
CW
1978 }
1979 }
1980 }
1981
34dc7c2f 1982 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 1983 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 1984 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1985 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
1986 kmem_cache_free(hdr_full_cache, hdr);
1987 } else {
1988 kmem_cache_free(hdr_l2only_cache, hdr);
1989 }
34dc7c2f
BB
1990}
1991
1992void
1993arc_buf_free(arc_buf_t *buf, void *tag)
1994{
1995 arc_buf_hdr_t *hdr = buf->b_hdr;
b9541d6b 1996 int hashed = hdr->b_l1hdr.b_state != arc_anon;
34dc7c2f
BB
1997
1998 ASSERT(buf->b_efunc == NULL);
1999 ASSERT(buf->b_data != NULL);
2000
2001 if (hashed) {
2002 kmutex_t *hash_lock = HDR_LOCK(hdr);
2003
2004 mutex_enter(hash_lock);
428870ff
BB
2005 hdr = buf->b_hdr;
2006 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2007
34dc7c2f 2008 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2009 if (hdr->b_l1hdr.b_datacnt > 1) {
ca0bf58d 2010 arc_buf_destroy(buf, TRUE);
428870ff 2011 } else {
b9541d6b 2012 ASSERT(buf == hdr->b_l1hdr.b_buf);
428870ff 2013 ASSERT(buf->b_efunc == NULL);
2a432414 2014 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 2015 }
34dc7c2f
BB
2016 mutex_exit(hash_lock);
2017 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2018 int destroy_hdr;
2019 /*
2020 * We are in the middle of an async write. Don't destroy
2021 * this buffer unless the write completes before we finish
2022 * decrementing the reference count.
2023 */
ca0bf58d 2024 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2025 (void) remove_reference(hdr, NULL, tag);
b9541d6b 2026 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f 2027 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
ca0bf58d 2028 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2029 if (destroy_hdr)
2030 arc_hdr_destroy(hdr);
2031 } else {
428870ff 2032 if (remove_reference(hdr, NULL, tag) > 0)
ca0bf58d 2033 arc_buf_destroy(buf, TRUE);
428870ff 2034 else
34dc7c2f 2035 arc_hdr_destroy(hdr);
34dc7c2f
BB
2036 }
2037}
2038
13fe0198 2039boolean_t
34dc7c2f
BB
2040arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2041{
2042 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 2043 kmutex_t *hash_lock = NULL;
13fe0198 2044 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f 2045
b9541d6b
CW
2046 if (hdr->b_l1hdr.b_state == arc_anon) {
2047 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
34dc7c2f
BB
2048 arc_buf_free(buf, tag);
2049 return (no_callback);
2050 }
2051
b4f7f105 2052 hash_lock = HDR_LOCK(hdr);
34dc7c2f 2053 mutex_enter(hash_lock);
428870ff 2054 hdr = buf->b_hdr;
b9541d6b 2055 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
428870ff 2056 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
b9541d6b 2057 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
34dc7c2f
BB
2058 ASSERT(buf->b_data != NULL);
2059
2060 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2061 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f 2062 if (no_callback)
ca0bf58d 2063 arc_buf_destroy(buf, TRUE);
34dc7c2f 2064 } else if (no_callback) {
b9541d6b 2065 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
428870ff 2066 ASSERT(buf->b_efunc == NULL);
2a432414 2067 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
34dc7c2f 2068 }
b9541d6b
CW
2069 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2070 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
2071 mutex_exit(hash_lock);
2072 return (no_callback);
2073}
2074
5f6d0b6f 2075uint64_t
34dc7c2f
BB
2076arc_buf_size(arc_buf_t *buf)
2077{
2078 return (buf->b_hdr->b_size);
2079}
2080
1eb5bfa3
GW
2081/*
2082 * Called from the DMU to determine if the current buffer should be
2083 * evicted. In order to ensure proper locking, the eviction must be initiated
2084 * from the DMU. Return true if the buffer is associated with user data and
2085 * duplicate buffers still exist.
2086 */
2087boolean_t
2088arc_buf_eviction_needed(arc_buf_t *buf)
2089{
2090 arc_buf_hdr_t *hdr;
2091 boolean_t evict_needed = B_FALSE;
2092
2093 if (zfs_disable_dup_eviction)
2094 return (B_FALSE);
2095
2096 mutex_enter(&buf->b_evict_lock);
2097 hdr = buf->b_hdr;
2098 if (hdr == NULL) {
2099 /*
2100 * We are in arc_do_user_evicts(); let that function
2101 * perform the eviction.
2102 */
2103 ASSERT(buf->b_data == NULL);
2104 mutex_exit(&buf->b_evict_lock);
2105 return (B_FALSE);
2106 } else if (buf->b_data == NULL) {
2107 /*
2108 * We have already been added to the arc eviction list;
2109 * recommend eviction.
2110 */
2111 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2112 mutex_exit(&buf->b_evict_lock);
2113 return (B_TRUE);
2114 }
2115
b9541d6b 2116 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
1eb5bfa3
GW
2117 evict_needed = B_TRUE;
2118
2119 mutex_exit(&buf->b_evict_lock);
2120 return (evict_needed);
2121}
2122
34dc7c2f 2123/*
ca0bf58d
PS
2124 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2125 * state of the header is dependent on its state prior to entering this
2126 * function. The following transitions are possible:
34dc7c2f 2127 *
ca0bf58d
PS
2128 * - arc_mru -> arc_mru_ghost
2129 * - arc_mfu -> arc_mfu_ghost
2130 * - arc_mru_ghost -> arc_l2c_only
2131 * - arc_mru_ghost -> deleted
2132 * - arc_mfu_ghost -> arc_l2c_only
2133 * - arc_mfu_ghost -> deleted
34dc7c2f 2134 */
ca0bf58d
PS
2135static int64_t
2136arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 2137{
ca0bf58d
PS
2138 arc_state_t *evicted_state, *state;
2139 int64_t bytes_evicted = 0;
34dc7c2f 2140
ca0bf58d
PS
2141 ASSERT(MUTEX_HELD(hash_lock));
2142 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 2143
ca0bf58d
PS
2144 state = hdr->b_l1hdr.b_state;
2145 if (GHOST_STATE(state)) {
2146 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2147 ASSERT(hdr->b_l1hdr.b_buf == NULL);
e8b96c60
MA
2148
2149 /*
ca0bf58d
PS
2150 * l2arc_write_buffers() relies on a header's L1 portion
2151 * (i.e. its b_tmp_cdata field) during its write phase.
2152 * Thus, we cannot push a header onto the arc_l2c_only
2153 * state (removing its L1 piece) until the header is
2154 * done being written to the l2arc.
e8b96c60 2155 */
ca0bf58d
PS
2156 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2157 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2158 return (bytes_evicted);
e8b96c60
MA
2159 }
2160
ca0bf58d
PS
2161 ARCSTAT_BUMP(arcstat_deleted);
2162 bytes_evicted += hdr->b_size;
428870ff 2163
ca0bf58d 2164 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 2165
ca0bf58d
PS
2166 if (HDR_HAS_L2HDR(hdr)) {
2167 /*
2168 * This buffer is cached on the 2nd Level ARC;
2169 * don't destroy the header.
2170 */
2171 arc_change_state(arc_l2c_only, hdr, hash_lock);
2172 /*
2173 * dropping from L1+L2 cached to L2-only,
2174 * realloc to remove the L1 header.
2175 */
2176 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2177 hdr_l2only_cache);
34dc7c2f 2178 } else {
ca0bf58d
PS
2179 arc_change_state(arc_anon, hdr, hash_lock);
2180 arc_hdr_destroy(hdr);
34dc7c2f 2181 }
ca0bf58d 2182 return (bytes_evicted);
34dc7c2f
BB
2183 }
2184
ca0bf58d
PS
2185 ASSERT(state == arc_mru || state == arc_mfu);
2186 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 2187
ca0bf58d
PS
2188 /* prefetch buffers have a minimum lifespan */
2189 if (HDR_IO_IN_PROGRESS(hdr) ||
2190 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2191 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2192 arc_min_prefetch_lifespan)) {
2193 ARCSTAT_BUMP(arcstat_evict_skip);
2194 return (bytes_evicted);
da8ccd0e
PS
2195 }
2196
ca0bf58d
PS
2197 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2198 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2199 while (hdr->b_l1hdr.b_buf) {
2200 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2201 if (!mutex_tryenter(&buf->b_evict_lock)) {
2202 ARCSTAT_BUMP(arcstat_mutex_miss);
2203 break;
2204 }
2205 if (buf->b_data != NULL)
2206 bytes_evicted += hdr->b_size;
2207 if (buf->b_efunc != NULL) {
2208 mutex_enter(&arc_user_evicts_lock);
2209 arc_buf_destroy(buf, FALSE);
2210 hdr->b_l1hdr.b_buf = buf->b_next;
2211 buf->b_hdr = &arc_eviction_hdr;
2212 buf->b_next = arc_eviction_list;
2213 arc_eviction_list = buf;
2214 cv_signal(&arc_user_evicts_cv);
2215 mutex_exit(&arc_user_evicts_lock);
2216 mutex_exit(&buf->b_evict_lock);
2217 } else {
2218 mutex_exit(&buf->b_evict_lock);
2219 arc_buf_destroy(buf, TRUE);
2220 }
2221 }
34dc7c2f 2222
ca0bf58d
PS
2223 if (HDR_HAS_L2HDR(hdr)) {
2224 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2225 } else {
2226 if (l2arc_write_eligible(hdr->b_spa, hdr))
2227 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2228 else
2229 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2230 }
34dc7c2f 2231
ca0bf58d
PS
2232 if (hdr->b_l1hdr.b_datacnt == 0) {
2233 arc_change_state(evicted_state, hdr, hash_lock);
2234 ASSERT(HDR_IN_HASH_TABLE(hdr));
2235 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2236 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2237 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2238 }
34dc7c2f 2239
ca0bf58d 2240 return (bytes_evicted);
34dc7c2f
BB
2241}
2242
ca0bf58d
PS
2243static uint64_t
2244arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2245 uint64_t spa, int64_t bytes)
34dc7c2f 2246{
ca0bf58d
PS
2247 multilist_sublist_t *mls;
2248 uint64_t bytes_evicted = 0;
2249 arc_buf_hdr_t *hdr;
34dc7c2f 2250 kmutex_t *hash_lock;
ca0bf58d 2251 int evict_count = 0;
34dc7c2f 2252
ca0bf58d
PS
2253 ASSERT3P(marker, !=, NULL);
2254 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2255
2256 mls = multilist_sublist_lock(ml, idx);
572e2857 2257
ca0bf58d
PS
2258 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2259 hdr = multilist_sublist_prev(mls, marker)) {
2260 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2261 (evict_count >= zfs_arc_evict_batch_limit))
2262 break;
2263
2264 /*
2265 * To keep our iteration location, move the marker
2266 * forward. Since we're not holding hdr's hash lock, we
2267 * must be very careful and not remove 'hdr' from the
2268 * sublist. Otherwise, other consumers might mistake the
2269 * 'hdr' as not being on a sublist when they call the
2270 * multilist_link_active() function (they all rely on
2271 * the hash lock protecting concurrent insertions and
2272 * removals). multilist_sublist_move_forward() was
2273 * specifically implemented to ensure this is the case
2274 * (only 'marker' will be removed and re-inserted).
2275 */
2276 multilist_sublist_move_forward(mls, marker);
2277
2278 /*
2279 * The only case where the b_spa field should ever be
2280 * zero, is the marker headers inserted by
2281 * arc_evict_state(). It's possible for multiple threads
2282 * to be calling arc_evict_state() concurrently (e.g.
2283 * dsl_pool_close() and zio_inject_fault()), so we must
2284 * skip any markers we see from these other threads.
2285 */
2a432414 2286 if (hdr->b_spa == 0)
572e2857
BB
2287 continue;
2288
ca0bf58d
PS
2289 /* we're only interested in evicting buffers of a certain spa */
2290 if (spa != 0 && hdr->b_spa != spa) {
2291 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 2292 continue;
ca0bf58d
PS
2293 }
2294
2295 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
2296
2297 /*
ca0bf58d
PS
2298 * We aren't calling this function from any code path
2299 * that would already be holding a hash lock, so we're
2300 * asserting on this assumption to be defensive in case
2301 * this ever changes. Without this check, it would be
2302 * possible to incorrectly increment arcstat_mutex_miss
2303 * below (e.g. if the code changed such that we called
2304 * this function with a hash lock held).
e8b96c60 2305 */
ca0bf58d
PS
2306 ASSERT(!MUTEX_HELD(hash_lock));
2307
34dc7c2f 2308 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
2309 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2310 mutex_exit(hash_lock);
34dc7c2f 2311
ca0bf58d 2312 bytes_evicted += evicted;
34dc7c2f 2313
572e2857 2314 /*
ca0bf58d
PS
2315 * If evicted is zero, arc_evict_hdr() must have
2316 * decided to skip this header, don't increment
2317 * evict_count in this case.
572e2857 2318 */
ca0bf58d
PS
2319 if (evicted != 0)
2320 evict_count++;
2321
2322 /*
2323 * If arc_size isn't overflowing, signal any
2324 * threads that might happen to be waiting.
2325 *
2326 * For each header evicted, we wake up a single
2327 * thread. If we used cv_broadcast, we could
2328 * wake up "too many" threads causing arc_size
2329 * to significantly overflow arc_c; since
2330 * arc_get_data_buf() doesn't check for overflow
2331 * when it's woken up (it doesn't because it's
2332 * possible for the ARC to be overflowing while
2333 * full of un-evictable buffers, and the
2334 * function should proceed in this case).
2335 *
2336 * If threads are left sleeping, due to not
2337 * using cv_broadcast, they will be woken up
2338 * just before arc_reclaim_thread() sleeps.
2339 */
2340 mutex_enter(&arc_reclaim_lock);
2341 if (!arc_is_overflowing())
2342 cv_signal(&arc_reclaim_waiters_cv);
2343 mutex_exit(&arc_reclaim_lock);
e8b96c60 2344 } else {
ca0bf58d 2345 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 2346 }
34dc7c2f 2347 }
34dc7c2f 2348
ca0bf58d 2349 multilist_sublist_unlock(mls);
34dc7c2f 2350
ca0bf58d 2351 return (bytes_evicted);
34dc7c2f
BB
2352}
2353
ca0bf58d
PS
2354/*
2355 * Evict buffers from the given arc state, until we've removed the
2356 * specified number of bytes. Move the removed buffers to the
2357 * appropriate evict state.
2358 *
2359 * This function makes a "best effort". It skips over any buffers
2360 * it can't get a hash_lock on, and so, may not catch all candidates.
2361 * It may also return without evicting as much space as requested.
2362 *
2363 * If bytes is specified using the special value ARC_EVICT_ALL, this
2364 * will evict all available (i.e. unlocked and evictable) buffers from
2365 * the given arc state; which is used by arc_flush().
2366 */
2367static uint64_t
2368arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2369 arc_buf_contents_t type)
34dc7c2f 2370{
ca0bf58d
PS
2371 uint64_t total_evicted = 0;
2372 multilist_t *ml = &state->arcs_list[type];
2373 int num_sublists;
2374 arc_buf_hdr_t **markers;
2375 int i;
2376
2377 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2378
2379 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
2380
2381 /*
ca0bf58d
PS
2382 * If we've tried to evict from each sublist, made some
2383 * progress, but still have not hit the target number of bytes
2384 * to evict, we want to keep trying. The markers allow us to
2385 * pick up where we left off for each individual sublist, rather
2386 * than starting from the tail each time.
d164b209 2387 */
ca0bf58d
PS
2388 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2389 for (i = 0; i < num_sublists; i++) {
2390 multilist_sublist_t *mls;
34dc7c2f 2391
ca0bf58d
PS
2392 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2393
2394 /*
2395 * A b_spa of 0 is used to indicate that this header is
2396 * a marker. This fact is used in arc_adjust_type() and
2397 * arc_evict_state_impl().
2398 */
2399 markers[i]->b_spa = 0;
34dc7c2f 2400
ca0bf58d
PS
2401 mls = multilist_sublist_lock(ml, i);
2402 multilist_sublist_insert_tail(mls, markers[i]);
2403 multilist_sublist_unlock(mls);
34dc7c2f
BB
2404 }
2405
d164b209 2406 /*
ca0bf58d
PS
2407 * While we haven't hit our target number of bytes to evict, or
2408 * we're evicting all available buffers.
d164b209 2409 */
ca0bf58d
PS
2410 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2411 /*
2412 * Start eviction using a randomly selected sublist,
2413 * this is to try and evenly balance eviction across all
2414 * sublists. Always starting at the same sublist
2415 * (e.g. index 0) would cause evictions to favor certain
2416 * sublists over others.
2417 */
2418 int sublist_idx = multilist_get_random_index(ml);
2419 uint64_t scan_evicted = 0;
34dc7c2f 2420
ca0bf58d
PS
2421 for (i = 0; i < num_sublists; i++) {
2422 uint64_t bytes_remaining;
2423 uint64_t bytes_evicted;
d164b209 2424
ca0bf58d
PS
2425 if (bytes == ARC_EVICT_ALL)
2426 bytes_remaining = ARC_EVICT_ALL;
2427 else if (total_evicted < bytes)
2428 bytes_remaining = bytes - total_evicted;
2429 else
2430 break;
34dc7c2f 2431
ca0bf58d
PS
2432 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2433 markers[sublist_idx], spa, bytes_remaining);
2434
2435 scan_evicted += bytes_evicted;
2436 total_evicted += bytes_evicted;
2437
2438 /* we've reached the end, wrap to the beginning */
2439 if (++sublist_idx >= num_sublists)
2440 sublist_idx = 0;
2441 }
2442
2443 /*
2444 * If we didn't evict anything during this scan, we have
2445 * no reason to believe we'll evict more during another
2446 * scan, so break the loop.
2447 */
2448 if (scan_evicted == 0) {
2449 /* This isn't possible, let's make that obvious */
2450 ASSERT3S(bytes, !=, 0);
34dc7c2f 2451
ca0bf58d
PS
2452 /*
2453 * When bytes is ARC_EVICT_ALL, the only way to
2454 * break the loop is when scan_evicted is zero.
2455 * In that case, we actually have evicted enough,
2456 * so we don't want to increment the kstat.
2457 */
2458 if (bytes != ARC_EVICT_ALL) {
2459 ASSERT3S(total_evicted, <, bytes);
2460 ARCSTAT_BUMP(arcstat_evict_not_enough);
2461 }
d164b209 2462
ca0bf58d
PS
2463 break;
2464 }
d164b209 2465 }
34dc7c2f 2466
ca0bf58d
PS
2467 for (i = 0; i < num_sublists; i++) {
2468 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2469 multilist_sublist_remove(mls, markers[i]);
2470 multilist_sublist_unlock(mls);
34dc7c2f 2471
ca0bf58d 2472 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 2473 }
ca0bf58d
PS
2474 kmem_free(markers, sizeof (*markers) * num_sublists);
2475
2476 return (total_evicted);
2477}
2478
2479/*
2480 * Flush all "evictable" data of the given type from the arc state
2481 * specified. This will not evict any "active" buffers (i.e. referenced).
2482 *
2483 * When 'retry' is set to FALSE, the function will make a single pass
2484 * over the state and evict any buffers that it can. Since it doesn't
2485 * continually retry the eviction, it might end up leaving some buffers
2486 * in the ARC due to lock misses.
2487 *
2488 * When 'retry' is set to TRUE, the function will continually retry the
2489 * eviction until *all* evictable buffers have been removed from the
2490 * state. As a result, if concurrent insertions into the state are
2491 * allowed (e.g. if the ARC isn't shutting down), this function might
2492 * wind up in an infinite loop, continually trying to evict buffers.
2493 */
2494static uint64_t
2495arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2496 boolean_t retry)
2497{
2498 uint64_t evicted = 0;
2499
2500 while (state->arcs_lsize[type] != 0) {
2501 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2502
2503 if (!retry)
2504 break;
2505 }
2506
2507 return (evicted);
34dc7c2f
BB
2508}
2509
ab26409d 2510/*
f6046738
BB
2511 * Helper function for arc_prune() it is responsible for safely handling
2512 * the execution of a registered arc_prune_func_t.
ab26409d
BB
2513 */
2514static void
f6046738 2515arc_prune_task(void *ptr)
ab26409d 2516{
f6046738
BB
2517 arc_prune_t *ap = (arc_prune_t *)ptr;
2518 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 2519
f6046738
BB
2520 if (func != NULL)
2521 func(ap->p_adjust, ap->p_private);
ab26409d 2522
f6046738
BB
2523 /* Callback unregistered concurrently with execution */
2524 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2525 ASSERT(!list_link_active(&ap->p_node));
2526 refcount_destroy(&ap->p_refcnt);
2527 kmem_free(ap, sizeof (*ap));
2528 }
2529}
ab26409d 2530
f6046738
BB
2531/*
2532 * Notify registered consumers they must drop holds on a portion of the ARC
2533 * buffered they reference. This provides a mechanism to ensure the ARC can
2534 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2535 * is analogous to dnlc_reduce_cache() but more generic.
2536 *
2537 * This operation is performed asyncronously so it may be safely called
2538 * in the context of the arc_adapt_thread(). A reference is taken here
2539 * for each registered arc_prune_t and the arc_prune_task() is responsible
2540 * for releasing it once the registered arc_prune_func_t has completed.
2541 */
2542static void
2543arc_prune_async(int64_t adjust)
2544{
2545 arc_prune_t *ap;
ab26409d 2546
f6046738
BB
2547 mutex_enter(&arc_prune_mtx);
2548 for (ap = list_head(&arc_prune_list); ap != NULL;
2549 ap = list_next(&arc_prune_list, ap)) {
ab26409d 2550
f6046738
BB
2551 if (refcount_count(&ap->p_refcnt) >= 2)
2552 continue;
ab26409d 2553
f6046738
BB
2554 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2555 ap->p_adjust = adjust;
2556 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2557 ARCSTAT_BUMP(arcstat_prune);
ab26409d 2558 }
ab26409d
BB
2559 mutex_exit(&arc_prune_mtx);
2560}
2561
f6046738
BB
2562static void
2563arc_prune(int64_t adjust)
2564{
2565 arc_prune_async(adjust);
2566 taskq_wait_outstanding(arc_prune_taskq, 0);
2567}
2568
ca0bf58d
PS
2569/*
2570 * Evict the specified number of bytes from the state specified,
2571 * restricting eviction to the spa and type given. This function
2572 * prevents us from trying to evict more from a state's list than
2573 * is "evictable", and to skip evicting altogether when passed a
2574 * negative value for "bytes". In contrast, arc_evict_state() will
2575 * evict everything it can, when passed a negative value for "bytes".
2576 */
2577static uint64_t
2578arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2579 arc_buf_contents_t type)
2580{
2581 int64_t delta;
2582
2583 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2584 delta = MIN(state->arcs_lsize[type], bytes);
2585 return (arc_evict_state(state, spa, delta, type));
2586 }
2587
2588 return (0);
2589}
2590
2591/*
2592 * The goal of this function is to evict enough meta data buffers from the
2593 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2594 * more complicated than it appears because it is common for data buffers
2595 * to have holds on meta data buffers. In addition, dnode meta data buffers
2596 * will be held by the dnodes in the block preventing them from being freed.
2597 * This means we can't simply traverse the ARC and expect to always find
2598 * enough unheld meta data buffer to release.
2599 *
2600 * Therefore, this function has been updated to make alternating passes
2601 * over the ARC releasing data buffers and then newly unheld meta data
2602 * buffers. This ensures forward progress is maintained and arc_meta_used
2603 * will decrease. Normally this is sufficient, but if required the ARC
2604 * will call the registered prune callbacks causing dentry and inodes to
2605 * be dropped from the VFS cache. This will make dnode meta data buffers
2606 * available for reclaim.
2607 */
2608static uint64_t
f6046738 2609arc_adjust_meta_balanced(void)
ca0bf58d
PS
2610{
2611 int64_t adjustmnt, delta, prune = 0;
2612 uint64_t total_evicted = 0;
2613 arc_buf_contents_t type = ARC_BUFC_DATA;
2614 unsigned long restarts = zfs_arc_meta_adjust_restarts;
2615
2616restart:
2617 /*
2618 * This slightly differs than the way we evict from the mru in
2619 * arc_adjust because we don't have a "target" value (i.e. no
2620 * "meta" arc_p). As a result, I think we can completely
2621 * cannibalize the metadata in the MRU before we evict the
2622 * metadata from the MFU. I think we probably need to implement a
2623 * "metadata arc_p" value to do this properly.
2624 */
2625 adjustmnt = arc_meta_used - arc_meta_limit;
2626
2627 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2628 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2629 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2630 adjustmnt -= delta;
2631 }
2632
2633 /*
2634 * We can't afford to recalculate adjustmnt here. If we do,
2635 * new metadata buffers can sneak into the MRU or ANON lists,
2636 * thus penalize the MFU metadata. Although the fudge factor is
2637 * small, it has been empirically shown to be significant for
2638 * certain workloads (e.g. creating many empty directories). As
2639 * such, we use the original calculation for adjustmnt, and
2640 * simply decrement the amount of data evicted from the MRU.
2641 */
2642
2643 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2644 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2645 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2646 }
2647
2648 adjustmnt = arc_meta_used - arc_meta_limit;
2649
2650 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2651 delta = MIN(adjustmnt,
2652 arc_mru_ghost->arcs_lsize[type]);
2653 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2654 adjustmnt -= delta;
2655 }
2656
2657 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2658 delta = MIN(adjustmnt,
2659 arc_mfu_ghost->arcs_lsize[type]);
2660 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2661 }
2662
2663 /*
2664 * If after attempting to make the requested adjustment to the ARC
2665 * the meta limit is still being exceeded then request that the
2666 * higher layers drop some cached objects which have holds on ARC
2667 * meta buffers. Requests to the upper layers will be made with
2668 * increasingly large scan sizes until the ARC is below the limit.
2669 */
2670 if (arc_meta_used > arc_meta_limit) {
2671 if (type == ARC_BUFC_DATA) {
2672 type = ARC_BUFC_METADATA;
2673 } else {
2674 type = ARC_BUFC_DATA;
2675
2676 if (zfs_arc_meta_prune) {
2677 prune += zfs_arc_meta_prune;
f6046738 2678 arc_prune_async(prune);
ca0bf58d
PS
2679 }
2680 }
2681
2682 if (restarts > 0) {
2683 restarts--;
2684 goto restart;
2685 }
2686 }
2687 return (total_evicted);
2688}
2689
f6046738
BB
2690/*
2691 * Evict metadata buffers from the cache, such that arc_meta_used is
2692 * capped by the arc_meta_limit tunable.
2693 */
2694static uint64_t
2695arc_adjust_meta_only(void)
2696{
2697 uint64_t total_evicted = 0;
2698 int64_t target;
2699
2700 /*
2701 * If we're over the meta limit, we want to evict enough
2702 * metadata to get back under the meta limit. We don't want to
2703 * evict so much that we drop the MRU below arc_p, though. If
2704 * we're over the meta limit more than we're over arc_p, we
2705 * evict some from the MRU here, and some from the MFU below.
2706 */
2707 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2708 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
2709
2710 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2711
2712 /*
2713 * Similar to the above, we want to evict enough bytes to get us
2714 * below the meta limit, but not so much as to drop us below the
2715 * space alloted to the MFU (which is defined as arc_c - arc_p).
2716 */
2717 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2718 (int64_t)(arc_mfu->arcs_size - (arc_c - arc_p)));
2719
2720 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2721
2722 return (total_evicted);
2723}
2724
2725static uint64_t
2726arc_adjust_meta(void)
2727{
2728 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2729 return (arc_adjust_meta_only());
2730 else
2731 return (arc_adjust_meta_balanced());
2732}
2733
ca0bf58d
PS
2734/*
2735 * Return the type of the oldest buffer in the given arc state
2736 *
2737 * This function will select a random sublist of type ARC_BUFC_DATA and
2738 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2739 * is compared, and the type which contains the "older" buffer will be
2740 * returned.
2741 */
2742static arc_buf_contents_t
2743arc_adjust_type(arc_state_t *state)
2744{
2745 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2746 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2747 int data_idx = multilist_get_random_index(data_ml);
2748 int meta_idx = multilist_get_random_index(meta_ml);
2749 multilist_sublist_t *data_mls;
2750 multilist_sublist_t *meta_mls;
2751 arc_buf_contents_t type;
2752 arc_buf_hdr_t *data_hdr;
2753 arc_buf_hdr_t *meta_hdr;
2754
2755 /*
2756 * We keep the sublist lock until we're finished, to prevent
2757 * the headers from being destroyed via arc_evict_state().
2758 */
2759 data_mls = multilist_sublist_lock(data_ml, data_idx);
2760 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2761
2762 /*
2763 * These two loops are to ensure we skip any markers that
2764 * might be at the tail of the lists due to arc_evict_state().
2765 */
2766
2767 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2768 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2769 if (data_hdr->b_spa != 0)
2770 break;
2771 }
2772
2773 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2774 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2775 if (meta_hdr->b_spa != 0)
2776 break;
2777 }
2778
2779 if (data_hdr == NULL && meta_hdr == NULL) {
2780 type = ARC_BUFC_DATA;
2781 } else if (data_hdr == NULL) {
2782 ASSERT3P(meta_hdr, !=, NULL);
2783 type = ARC_BUFC_METADATA;
2784 } else if (meta_hdr == NULL) {
2785 ASSERT3P(data_hdr, !=, NULL);
2786 type = ARC_BUFC_DATA;
2787 } else {
2788 ASSERT3P(data_hdr, !=, NULL);
2789 ASSERT3P(meta_hdr, !=, NULL);
2790
2791 /* The headers can't be on the sublist without an L1 header */
2792 ASSERT(HDR_HAS_L1HDR(data_hdr));
2793 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2794
2795 if (data_hdr->b_l1hdr.b_arc_access <
2796 meta_hdr->b_l1hdr.b_arc_access) {
2797 type = ARC_BUFC_DATA;
2798 } else {
2799 type = ARC_BUFC_METADATA;
2800 }
2801 }
2802
2803 multilist_sublist_unlock(meta_mls);
2804 multilist_sublist_unlock(data_mls);
2805
2806 return (type);
2807}
2808
2809/*
2810 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2811 */
2812static uint64_t
2813arc_adjust(void)
2814{
2815 uint64_t total_evicted = 0;
2816 uint64_t bytes;
2817 int64_t target;
2818
2819 /*
2820 * If we're over arc_meta_limit, we want to correct that before
2821 * potentially evicting data buffers below.
2822 */
2823 total_evicted += arc_adjust_meta();
2824
2825 /*
2826 * Adjust MRU size
2827 *
2828 * If we're over the target cache size, we want to evict enough
2829 * from the list to get back to our target size. We don't want
2830 * to evict too much from the MRU, such that it drops below
2831 * arc_p. So, if we're over our target cache size more than
2832 * the MRU is over arc_p, we'll evict enough to get back to
2833 * arc_p here, and then evict more from the MFU below.
2834 */
2835 target = MIN((int64_t)(arc_size - arc_c),
2836 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2837 arc_p));
2838
2839 /*
2840 * If we're below arc_meta_min, always prefer to evict data.
2841 * Otherwise, try to satisfy the requested number of bytes to
2842 * evict from the type which contains older buffers; in an
2843 * effort to keep newer buffers in the cache regardless of their
2844 * type. If we cannot satisfy the number of bytes from this
2845 * type, spill over into the next type.
2846 */
2847 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2848 arc_meta_used > arc_meta_min) {
2849 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2850 total_evicted += bytes;
2851
2852 /*
2853 * If we couldn't evict our target number of bytes from
2854 * metadata, we try to get the rest from data.
2855 */
2856 target -= bytes;
2857
2858 total_evicted +=
2859 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2860 } else {
2861 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2862 total_evicted += bytes;
2863
2864 /*
2865 * If we couldn't evict our target number of bytes from
2866 * data, we try to get the rest from metadata.
2867 */
2868 target -= bytes;
2869
2870 total_evicted +=
2871 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2872 }
2873
2874 /*
2875 * Adjust MFU size
2876 *
2877 * Now that we've tried to evict enough from the MRU to get its
2878 * size back to arc_p, if we're still above the target cache
2879 * size, we evict the rest from the MFU.
2880 */
2881 target = arc_size - arc_c;
2882
2883 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2884 arc_meta_used > arc_meta_min) {
2885 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2886 total_evicted += bytes;
2887
2888 /*
2889 * If we couldn't evict our target number of bytes from
2890 * metadata, we try to get the rest from data.
2891 */
2892 target -= bytes;
2893
2894 total_evicted +=
2895 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2896 } else {
2897 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2898 total_evicted += bytes;
2899
2900 /*
2901 * If we couldn't evict our target number of bytes from
2902 * data, we try to get the rest from data.
2903 */
2904 target -= bytes;
2905
2906 total_evicted +=
2907 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2908 }
2909
2910 /*
2911 * Adjust ghost lists
2912 *
2913 * In addition to the above, the ARC also defines target values
2914 * for the ghost lists. The sum of the mru list and mru ghost
2915 * list should never exceed the target size of the cache, and
2916 * the sum of the mru list, mfu list, mru ghost list, and mfu
2917 * ghost list should never exceed twice the target size of the
2918 * cache. The following logic enforces these limits on the ghost
2919 * caches, and evicts from them as needed.
2920 */
2921 target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2922
2923 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
2924 total_evicted += bytes;
2925
2926 target -= bytes;
2927
2928 total_evicted +=
2929 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
2930
2931 /*
2932 * We assume the sum of the mru list and mfu list is less than
2933 * or equal to arc_c (we enforced this above), which means we
2934 * can use the simpler of the two equations below:
2935 *
2936 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
2937 * mru ghost + mfu ghost <= arc_c
2938 */
2939 target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2940
2941 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
2942 total_evicted += bytes;
2943
2944 target -= bytes;
2945
2946 total_evicted +=
2947 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
2948
2949 return (total_evicted);
2950}
2951
34dc7c2f
BB
2952static void
2953arc_do_user_evicts(void)
2954{
ca0bf58d 2955 mutex_enter(&arc_user_evicts_lock);
34dc7c2f
BB
2956 while (arc_eviction_list != NULL) {
2957 arc_buf_t *buf = arc_eviction_list;
2958 arc_eviction_list = buf->b_next;
428870ff 2959 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2960 buf->b_hdr = NULL;
428870ff 2961 mutex_exit(&buf->b_evict_lock);
ca0bf58d 2962 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2963
2964 if (buf->b_efunc != NULL)
bd089c54 2965 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
2966
2967 buf->b_efunc = NULL;
2968 buf->b_private = NULL;
2969 kmem_cache_free(buf_cache, buf);
ca0bf58d 2970 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2971 }
ca0bf58d 2972 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2973}
2974
ca0bf58d
PS
2975void
2976arc_flush(spa_t *spa, boolean_t retry)
ab26409d 2977{
ca0bf58d 2978 uint64_t guid = 0;
94520ca4 2979
bc888666 2980 /*
ca0bf58d
PS
2981 * If retry is TRUE, a spa must not be specified since we have
2982 * no good way to determine if all of a spa's buffers have been
2983 * evicted from an arc state.
bc888666 2984 */
ca0bf58d 2985 ASSERT(!retry || spa == 0);
d164b209 2986
b9541d6b 2987 if (spa != NULL)
3541dc6d 2988 guid = spa_load_guid(spa);
d164b209 2989
ca0bf58d
PS
2990 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
2991 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
2992
2993 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
2994 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
2995
2996 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
2997 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 2998
ca0bf58d
PS
2999 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3000 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3001
34dc7c2f 3002 arc_do_user_evicts();
34dc7c2f
BB
3003 ASSERT(spa || arc_eviction_list == NULL);
3004}
3005
34dc7c2f 3006void
302f753f 3007arc_shrink(uint64_t bytes)
34dc7c2f
BB
3008{
3009 if (arc_c > arc_c_min) {
3010 uint64_t to_free;
3011
bce45ec9 3012 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 3013
34dc7c2f
BB
3014 if (arc_c > arc_c_min + to_free)
3015 atomic_add_64(&arc_c, -to_free);
3016 else
3017 arc_c = arc_c_min;
3018
39e055c4
PS
3019 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
3020
f521ce1b 3021 if (arc_p > to_free)
39e055c4
PS
3022 atomic_add_64(&arc_p, -to_free);
3023 else
f521ce1b 3024 arc_p = 0;
39e055c4 3025
34dc7c2f
BB
3026 if (arc_c > arc_size)
3027 arc_c = MAX(arc_size, arc_c_min);
3028 if (arc_p > arc_c)
3029 arc_p = (arc_c >> 1);
3030 ASSERT(arc_c >= arc_c_min);
3031 ASSERT((int64_t)arc_p >= 0);
3032 }
3033
3034 if (arc_size > arc_c)
ca0bf58d 3035 (void) arc_adjust();
34dc7c2f
BB
3036}
3037
34dc7c2f 3038static void
302f753f 3039arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
3040{
3041 size_t i;
3042 kmem_cache_t *prev_cache = NULL;
3043 kmem_cache_t *prev_data_cache = NULL;
3044 extern kmem_cache_t *zio_buf_cache[];
3045 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f 3046
f6046738
BB
3047 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3048 /*
3049 * We are exceeding our meta-data cache limit.
3050 * Prune some entries to release holds on meta-data.
3051 */
3052 arc_prune(zfs_arc_meta_prune);
3053 }
3054
34dc7c2f
BB
3055 /*
3056 * An aggressive reclamation will shrink the cache size as well as
3057 * reap free buffers from the arc kmem caches.
3058 */
3059 if (strat == ARC_RECLAIM_AGGR)
302f753f 3060 arc_shrink(bytes);
34dc7c2f
BB
3061
3062 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3063 if (zio_buf_cache[i] != prev_cache) {
3064 prev_cache = zio_buf_cache[i];
3065 kmem_cache_reap_now(zio_buf_cache[i]);
3066 }
3067 if (zio_data_buf_cache[i] != prev_data_cache) {
3068 prev_data_cache = zio_data_buf_cache[i];
3069 kmem_cache_reap_now(zio_data_buf_cache[i]);
3070 }
3071 }
ab26409d 3072
ca0bf58d 3073 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
3074 kmem_cache_reap_now(hdr_full_cache);
3075 kmem_cache_reap_now(hdr_l2only_cache);
34dc7c2f
BB
3076}
3077
302f753f 3078/*
ca0bf58d
PS
3079 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3080 * enough data and signal them to proceed. When this happens, the threads in
3081 * arc_get_data_buf() are sleeping while holding the hash lock for their
3082 * particular arc header. Thus, we must be careful to never sleep on a
3083 * hash lock in this thread. This is to prevent the following deadlock:
3084 *
3085 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3086 * waiting for the reclaim thread to signal it.
3087 *
3088 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3089 * fails, and goes to sleep forever.
3090 *
3091 * This possible deadlock is avoided by always acquiring a hash lock
3092 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 3093 */
34dc7c2f 3094static void
302f753f 3095arc_adapt_thread(void)
34dc7c2f 3096{
34dc7c2f 3097 callb_cpr_t cpr;
40d06e3c 3098 fstrans_cookie_t cookie;
ca0bf58d 3099 uint64_t arc_evicted;
34dc7c2f 3100
ca0bf58d 3101 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 3102
40d06e3c 3103 cookie = spl_fstrans_mark();
ca0bf58d
PS
3104 mutex_enter(&arc_reclaim_lock);
3105 while (arc_reclaim_thread_exit == 0) {
302f753f
BB
3106#ifndef _KERNEL
3107 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
3108
ca0bf58d 3109 mutex_exit(&arc_reclaim_lock);
302f753f 3110 if (spa_get_random(100) == 0) {
34dc7c2f
BB
3111
3112 if (arc_no_grow) {
3113 if (last_reclaim == ARC_RECLAIM_CONS) {
3114 last_reclaim = ARC_RECLAIM_AGGR;
3115 } else {
3116 last_reclaim = ARC_RECLAIM_CONS;
3117 }
3118 } else {
3119 arc_no_grow = TRUE;
3120 last_reclaim = ARC_RECLAIM_AGGR;
3121 membar_producer();
3122 }
3123
3124 /* reset the growth delay for every reclaim */
d1d7e268
MK
3125 arc_grow_time = ddi_get_lbolt() +
3126 (zfs_arc_grow_retry * hz);
34dc7c2f 3127
302f753f 3128 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 3129 arc_warm = B_TRUE;
302f753f 3130 }
ca0bf58d
PS
3131#else /* _KERNEL */
3132 mutex_exit(&arc_reclaim_lock);
302f753f 3133#endif /* !_KERNEL */
34dc7c2f 3134
302f753f 3135 /* No recent memory pressure allow the ARC to grow. */
0b75bdb3
CC
3136 if (arc_no_grow &&
3137 ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
34dc7c2f 3138 arc_no_grow = FALSE;
34dc7c2f 3139
ca0bf58d 3140 arc_evicted = arc_adjust();
6a8f9b6b 3141
ca0bf58d
PS
3142 /*
3143 * We're either no longer overflowing, or we
3144 * can't evict anything more, so we should wake
3145 * up any threads before we go to sleep.
3146 */
3147 if (arc_size <= arc_c || arc_evicted == 0)
3148 cv_broadcast(&arc_reclaim_waiters_cv);
34dc7c2f 3149
ca0bf58d 3150 mutex_enter(&arc_reclaim_lock);
34dc7c2f
BB
3151
3152 /* block until needed, or one second, whichever is shorter */
3153 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 3154 (void) cv_timedwait_sig(&arc_reclaim_thread_cv,
ca0bf58d
PS
3155 &arc_reclaim_lock, (ddi_get_lbolt() + hz));
3156 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
bce45ec9
BB
3157
3158
3159 /* Allow the module options to be changed */
3160 if (zfs_arc_max > 64 << 20 &&
3161 zfs_arc_max < physmem * PAGESIZE &&
3162 zfs_arc_max != arc_c_max)
3163 arc_c_max = zfs_arc_max;
3164
121b3cae
TC
3165 if (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT &&
3166 zfs_arc_min <= arc_c_max &&
bce45ec9
BB
3167 zfs_arc_min != arc_c_min)
3168 arc_c_min = zfs_arc_min;
3169
3170 if (zfs_arc_meta_limit > 0 &&
3171 zfs_arc_meta_limit <= arc_c_max &&
3172 zfs_arc_meta_limit != arc_meta_limit)
3173 arc_meta_limit = zfs_arc_meta_limit;
ca0bf58d 3174 }
bce45ec9 3175
ca0bf58d
PS
3176 arc_reclaim_thread_exit = 0;
3177 cv_broadcast(&arc_reclaim_thread_cv);
3178 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3179 spl_fstrans_unmark(cookie);
3180 thread_exit();
3181}
3182
3183static void
3184arc_user_evicts_thread(void)
3185{
3186 callb_cpr_t cpr;
3187 fstrans_cookie_t cookie;
bce45ec9 3188
ca0bf58d 3189 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
bce45ec9 3190
ca0bf58d
PS
3191 cookie = spl_fstrans_mark();
3192 mutex_enter(&arc_user_evicts_lock);
3193 while (!arc_user_evicts_thread_exit) {
3194 mutex_exit(&arc_user_evicts_lock);
3195
3196 arc_do_user_evicts();
3197
3198 /*
3199 * This is necessary in order for the mdb ::arc dcmd to
3200 * show up to date information. Since the ::arc command
3201 * does not call the kstat's update function, without
3202 * this call, the command may show stale stats for the
3203 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3204 * with this change, the data might be up to 1 second
3205 * out of date; but that should suffice. The arc_state_t
3206 * structures can be queried directly if more accurate
3207 * information is needed.
3208 */
3209 if (arc_ksp != NULL)
3210 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3211
3212 mutex_enter(&arc_user_evicts_lock);
3213
3214 /*
3215 * Block until signaled, or after one second (we need to
3216 * call the arc's kstat update function regularly).
3217 */
3218 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 3219 (void) cv_timedwait_sig(&arc_user_evicts_cv,
ca0bf58d
PS
3220 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3221 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
34dc7c2f
BB
3222 }
3223
ca0bf58d
PS
3224 arc_user_evicts_thread_exit = FALSE;
3225 cv_broadcast(&arc_user_evicts_cv);
3226 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
40d06e3c 3227 spl_fstrans_unmark(cookie);
34dc7c2f
BB
3228 thread_exit();
3229}
3230
7cb67b45
BB
3231#ifdef _KERNEL
3232/*
302f753f
BB
3233 * Determine the amount of memory eligible for eviction contained in the
3234 * ARC. All clean data reported by the ghost lists can always be safely
3235 * evicted. Due to arc_c_min, the same does not hold for all clean data
3236 * contained by the regular mru and mfu lists.
3237 *
3238 * In the case of the regular mru and mfu lists, we need to report as
3239 * much clean data as possible, such that evicting that same reported
3240 * data will not bring arc_size below arc_c_min. Thus, in certain
3241 * circumstances, the total amount of clean data in the mru and mfu
3242 * lists might not actually be evictable.
3243 *
3244 * The following two distinct cases are accounted for:
3245 *
3246 * 1. The sum of the amount of dirty data contained by both the mru and
3247 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3248 * is greater than or equal to arc_c_min.
3249 * (i.e. amount of dirty data >= arc_c_min)
3250 *
3251 * This is the easy case; all clean data contained by the mru and mfu
3252 * lists is evictable. Evicting all clean data can only drop arc_size
3253 * to the amount of dirty data, which is greater than arc_c_min.
3254 *
3255 * 2. The sum of the amount of dirty data contained by both the mru and
3256 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3257 * is less than arc_c_min.
3258 * (i.e. arc_c_min > amount of dirty data)
3259 *
3260 * 2.1. arc_size is greater than or equal arc_c_min.
3261 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3262 *
3263 * In this case, not all clean data from the regular mru and mfu
3264 * lists is actually evictable; we must leave enough clean data
3265 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3266 * evictable data from the two lists combined, is exactly the
3267 * difference between arc_size and arc_c_min.
3268 *
3269 * 2.2. arc_size is less than arc_c_min
3270 * (i.e. arc_c_min > arc_size > amount of dirty data)
3271 *
3272 * In this case, none of the data contained in the mru and mfu
3273 * lists is evictable, even if it's clean. Since arc_size is
3274 * already below arc_c_min, evicting any more would only
3275 * increase this negative difference.
7cb67b45 3276 */
302f753f
BB
3277static uint64_t
3278arc_evictable_memory(void) {
3279 uint64_t arc_clean =
3280 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3281 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3282 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3283 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3284 uint64_t ghost_clean =
3285 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3286 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3287 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3288 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3289 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3290
3291 if (arc_dirty >= arc_c_min)
3292 return (ghost_clean + arc_clean);
3293
3294 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3295}
3296
ed6e9cc2
TC
3297/*
3298 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3299 * number of objects which can potentially be freed. If it is nonzero,
3300 * the request is to free that many objects.
3301 *
3302 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3303 * in struct shrinker and also require the shrinker to return the number
3304 * of objects freed.
3305 *
3306 * Older kernels require the shrinker to return the number of freeable
3307 * objects following the freeing of nr_to_free.
3308 */
3309static spl_shrinker_t
7e7baeca 3310__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 3311{
ed6e9cc2 3312 int64_t pages;
7cb67b45 3313
302f753f
BB
3314 /* The arc is considered warm once reclaim has occurred */
3315 if (unlikely(arc_warm == B_FALSE))
3316 arc_warm = B_TRUE;
7cb67b45 3317
302f753f 3318 /* Return the potential number of reclaimable pages */
ed6e9cc2 3319 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
3320 if (sc->nr_to_scan == 0)
3321 return (pages);
3fd70ee6
BB
3322
3323 /* Not allowed to perform filesystem reclaim */
7e7baeca 3324 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 3325 return (SHRINK_STOP);
3fd70ee6 3326
7cb67b45 3327 /* Reclaim in progress */
ca0bf58d 3328 if (mutex_tryenter(&arc_reclaim_lock) == 0)
ed6e9cc2 3329 return (SHRINK_STOP);
7cb67b45 3330
ca0bf58d
PS
3331 mutex_exit(&arc_reclaim_lock);
3332
302f753f
BB
3333 /*
3334 * Evict the requested number of pages by shrinking arc_c the
3335 * requested amount. If there is nothing left to evict just
3336 * reap whatever we can from the various arc slabs.
3337 */
3338 if (pages > 0) {
3339 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
ed6e9cc2
TC
3340
3341#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3342 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3343#else
1e3cb67b 3344 pages = btop(arc_evictable_memory());
ed6e9cc2 3345#endif
302f753f
BB
3346 } else {
3347 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
ed6e9cc2 3348 pages = SHRINK_STOP;
302f753f
BB
3349 }
3350
ca0bf58d
PS
3351 /*
3352 * We've reaped what we can, wake up threads.
3353 */
3354 cv_broadcast(&arc_reclaim_waiters_cv);
3355
302f753f
BB
3356 /*
3357 * When direct reclaim is observed it usually indicates a rapid
3358 * increase in memory pressure. This occurs because the kswapd
3359 * threads were unable to asynchronously keep enough free memory
3360 * available. In this case set arc_no_grow to briefly pause arc
3361 * growth to avoid compounding the memory pressure.
3362 */
7cb67b45 3363 if (current_is_kswapd()) {
302f753f 3364 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 3365 } else {
302f753f 3366 arc_no_grow = B_TRUE;
bce45ec9 3367 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 3368 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
3369 }
3370
1e3cb67b 3371 return (pages);
7cb67b45 3372}
7e7baeca 3373SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
3374
3375SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3376#endif /* _KERNEL */
3377
34dc7c2f
BB
3378/*
3379 * Adapt arc info given the number of bytes we are trying to add and
3380 * the state that we are comming from. This function is only called
3381 * when we are adding new content to the cache.
3382 */
3383static void
3384arc_adapt(int bytes, arc_state_t *state)
3385{
3386 int mult;
3387
3388 if (state == arc_l2c_only)
3389 return;
3390
3391 ASSERT(bytes > 0);
3392 /*
3393 * Adapt the target size of the MRU list:
3394 * - if we just hit in the MRU ghost list, then increase
3395 * the target size of the MRU list.
3396 * - if we just hit in the MFU ghost list, then increase
3397 * the target size of the MFU list by decreasing the
3398 * target size of the MRU list.
3399 */
3400 if (state == arc_mru_ghost) {
3401 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3402 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
62422785
PS
3403
3404 if (!zfs_arc_p_dampener_disable)
3405 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 3406
f521ce1b 3407 arc_p = MIN(arc_c, arc_p + bytes * mult);
34dc7c2f 3408 } else if (state == arc_mfu_ghost) {
d164b209
BB
3409 uint64_t delta;
3410
34dc7c2f
BB
3411 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3412 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
62422785
PS
3413
3414 if (!zfs_arc_p_dampener_disable)
3415 mult = MIN(mult, 10);
34dc7c2f 3416
d164b209 3417 delta = MIN(bytes * mult, arc_p);
f521ce1b 3418 arc_p = MAX(0, arc_p - delta);
34dc7c2f
BB
3419 }
3420 ASSERT((int64_t)arc_p >= 0);
3421
34dc7c2f
BB
3422 if (arc_no_grow)
3423 return;
3424
3425 if (arc_c >= arc_c_max)
3426 return;
3427
3428 /*
3429 * If we're within (2 * maxblocksize) bytes of the target
3430 * cache size, increment the target cache size
3431 */
121b3cae
TC
3432 VERIFY3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3433 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
3434 atomic_add_64(&arc_c, (int64_t)bytes);
3435 if (arc_c > arc_c_max)
3436 arc_c = arc_c_max;
3437 else if (state == arc_anon)
3438 atomic_add_64(&arc_p, (int64_t)bytes);
3439 if (arc_p > arc_c)
3440 arc_p = arc_c;
3441 }
3442 ASSERT((int64_t)arc_p >= 0);
3443}
3444
3445/*
ca0bf58d
PS
3446 * Check if arc_size has grown past our upper threshold, determined by
3447 * zfs_arc_overflow_shift.
34dc7c2f 3448 */
ca0bf58d
PS
3449static boolean_t
3450arc_is_overflowing(void)
34dc7c2f 3451{
ca0bf58d
PS
3452 /* Always allow at least one block of overflow */
3453 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3454 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 3455
ca0bf58d 3456 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
3457}
3458
3459/*
ca0bf58d
PS
3460 * The buffer, supplied as the first argument, needs a data block. If we
3461 * are hitting the hard limit for the cache size, we must sleep, waiting
3462 * for the eviction thread to catch up. If we're past the target size
3463 * but below the hard limit, we'll only signal the reclaim thread and
3464 * continue on.
34dc7c2f
BB
3465 */
3466static void
3467arc_get_data_buf(arc_buf_t *buf)
3468{
b9541d6b 3469 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 3470 uint64_t size = buf->b_hdr->b_size;
b9541d6b 3471 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
3472
3473 arc_adapt(size, state);
3474
3475 /*
ca0bf58d
PS
3476 * If arc_size is currently overflowing, and has grown past our
3477 * upper limit, we must be adding data faster than the evict
3478 * thread can evict. Thus, to ensure we don't compound the
3479 * problem by adding more data and forcing arc_size to grow even
3480 * further past it's target size, we halt and wait for the
3481 * eviction thread to catch up.
3482 *
3483 * It's also possible that the reclaim thread is unable to evict
3484 * enough buffers to get arc_size below the overflow limit (e.g.
3485 * due to buffers being un-evictable, or hash lock collisions).
3486 * In this case, we want to proceed regardless if we're
3487 * overflowing; thus we don't use a while loop here.
34dc7c2f 3488 */
ca0bf58d
PS
3489 if (arc_is_overflowing()) {
3490 mutex_enter(&arc_reclaim_lock);
3491
3492 /*
3493 * Now that we've acquired the lock, we may no longer be
3494 * over the overflow limit, lets check.
3495 *
3496 * We're ignoring the case of spurious wake ups. If that
3497 * were to happen, it'd let this thread consume an ARC
3498 * buffer before it should have (i.e. before we're under
3499 * the overflow limit and were signalled by the reclaim
3500 * thread). As long as that is a rare occurrence, it
3501 * shouldn't cause any harm.
3502 */
3503 if (arc_is_overflowing()) {
3504 cv_signal(&arc_reclaim_thread_cv);
3505 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 3506 }
34dc7c2f 3507
ca0bf58d 3508 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3509 }
ab26409d 3510
da8ccd0e 3511 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
3512 buf->b_data = zio_buf_alloc(size);
3513 arc_space_consume(size, ARC_SPACE_META);
3514 } else {
3515 ASSERT(type == ARC_BUFC_DATA);
3516 buf->b_data = zio_data_buf_alloc(size);
3517 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
3518 }
3519
34dc7c2f
BB
3520 /*
3521 * Update the state size. Note that ghost states have a
3522 * "ghost size" and so don't need to be updated.
3523 */
b9541d6b 3524 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
34dc7c2f
BB
3525 arc_buf_hdr_t *hdr = buf->b_hdr;
3526
b9541d6b 3527 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
ca0bf58d
PS
3528
3529 /*
3530 * If this is reached via arc_read, the link is
3531 * protected by the hash lock. If reached via
3532 * arc_buf_alloc, the header should not be accessed by
3533 * any other thread. And, if reached via arc_read_done,
3534 * the hash lock will protect it if it's found in the
3535 * hash table; otherwise no other thread should be
3536 * trying to [add|remove]_reference it.
3537 */
3538 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b
CW
3539 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3540 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3541 size);
34dc7c2f
BB
3542 }
3543 /*
3544 * If we are growing the cache, and we are adding anonymous
3545 * data, and we have outgrown arc_p, update arc_p
3546 */
ca0bf58d 3547 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
34dc7c2f
BB
3548 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3549 arc_p = MIN(arc_c, arc_p + size);
3550 }
3551}
3552
3553/*
3554 * This routine is called whenever a buffer is accessed.
3555 * NOTE: the hash lock is dropped in this function.
3556 */
3557static void
2a432414 3558arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3559{
428870ff
BB
3560 clock_t now;
3561
34dc7c2f 3562 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 3563 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 3564
b9541d6b 3565 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
3566 /*
3567 * This buffer is not in the cache, and does not
3568 * appear in our "ghost" list. Add the new buffer
3569 * to the MRU state.
3570 */
3571
b9541d6b
CW
3572 ASSERT0(hdr->b_l1hdr.b_arc_access);
3573 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3574 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3575 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 3576
b9541d6b 3577 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
3578 now = ddi_get_lbolt();
3579
34dc7c2f
BB
3580 /*
3581 * If this buffer is here because of a prefetch, then either:
3582 * - clear the flag if this is a "referencing" read
3583 * (any subsequent access will bump this into the MFU state).
3584 * or
3585 * - move the buffer to the head of the list if this is
3586 * another prefetch (to make it less likely to be evicted).
3587 */
b9541d6b
CW
3588 if (HDR_PREFETCH(hdr)) {
3589 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
3590 /* link protected by hash lock */
3591 ASSERT(multilist_link_active(
b9541d6b 3592 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 3593 } else {
2a432414 3594 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
b9541d6b 3595 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
3596 ARCSTAT_BUMP(arcstat_mru_hits);
3597 }
b9541d6b 3598 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
3599 return;
3600 }
3601
3602 /*
3603 * This buffer has been "accessed" only once so far,
3604 * but it is still in the cache. Move it to the MFU
3605 * state.
3606 */
b9541d6b
CW
3607 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3608 ARC_MINTIME)) {
34dc7c2f
BB
3609 /*
3610 * More than 125ms have passed since we
3611 * instantiated this buffer. Move it to the
3612 * most frequently used state.
3613 */
b9541d6b 3614 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
3615 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3616 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3617 }
b9541d6b 3618 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 3619 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 3620 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
3621 arc_state_t *new_state;
3622 /*
3623 * This buffer has been "accessed" recently, but
3624 * was evicted from the cache. Move it to the
3625 * MFU state.
3626 */
3627
b9541d6b 3628 if (HDR_PREFETCH(hdr)) {
34dc7c2f 3629 new_state = arc_mru;
b9541d6b 3630 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
2a432414
GW
3631 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3632 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3633 } else {
3634 new_state = arc_mfu;
2a432414 3635 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3636 }
3637
b9541d6b 3638 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 3639 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3640
b9541d6b 3641 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 3642 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 3643 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
3644 /*
3645 * This buffer has been accessed more than once and is
3646 * still in the cache. Keep it in the MFU state.
3647 *
3648 * NOTE: an add_reference() that occurred when we did
3649 * the arc_read() will have kicked this off the list.
3650 * If it was a prefetch, we will explicitly move it to
3651 * the head of the list now.
3652 */
b9541d6b
CW
3653 if ((HDR_PREFETCH(hdr)) != 0) {
3654 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3655 /* link protected by hash_lock */
3656 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 3657 }
b9541d6b 3658 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 3659 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
3660 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3661 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
3662 arc_state_t *new_state = arc_mfu;
3663 /*
3664 * This buffer has been accessed more than once but has
3665 * been evicted from the cache. Move it back to the
3666 * MFU state.
3667 */
3668
b9541d6b 3669 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
3670 /*
3671 * This is a prefetch access...
3672 * move this block back to the MRU state.
3673 */
b9541d6b 3674 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
3675 new_state = arc_mru;
3676 }
3677
b9541d6b 3678 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3679 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3680 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3681
b9541d6b 3682 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 3683 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 3684 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
3685 /*
3686 * This buffer is on the 2nd Level ARC.
3687 */
3688
b9541d6b 3689 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3690 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3691 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3692 } else {
b9541d6b
CW
3693 cmn_err(CE_PANIC, "invalid arc state 0x%p",
3694 hdr->b_l1hdr.b_state);
34dc7c2f
BB
3695 }
3696}
3697
3698/* a generic arc_done_func_t which you can use */
3699/* ARGSUSED */
3700void
3701arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3702{
428870ff
BB
3703 if (zio == NULL || zio->io_error == 0)
3704 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 3705 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3706}
3707
3708/* a generic arc_done_func_t */
3709void
3710arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3711{
3712 arc_buf_t **bufp = arg;
3713 if (zio && zio->io_error) {
13fe0198 3714 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3715 *bufp = NULL;
3716 } else {
3717 *bufp = buf;
428870ff 3718 ASSERT(buf->b_data);
34dc7c2f
BB
3719 }
3720}
3721
3722static void
3723arc_read_done(zio_t *zio)
3724{
9b67f605 3725 arc_buf_hdr_t *hdr;
34dc7c2f
BB
3726 arc_buf_t *buf;
3727 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 3728 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
3729 arc_callback_t *callback_list, *acb;
3730 int freeable = FALSE;
3731
3732 buf = zio->io_private;
3733 hdr = buf->b_hdr;
3734
3735 /*
3736 * The hdr was inserted into hash-table and removed from lists
3737 * prior to starting I/O. We should find this header, since
3738 * it's in the hash table, and it should be legit since it's
3739 * not possible to evict it during the I/O. The only possible
3740 * reason for it not to be found is if we were freed during the
3741 * read.
3742 */
9b67f605
MA
3743 if (HDR_IN_HASH_TABLE(hdr)) {
3744 arc_buf_hdr_t *found;
3745
3746 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3747 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3748 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3749 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3750 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3751
3752 found = buf_hash_find(hdr->b_spa, zio->io_bp,
3753 &hash_lock);
3754
3755 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3756 hash_lock == NULL) ||
3757 (found == hdr &&
3758 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3759 (found == hdr && HDR_L2_READING(hdr)));
3760 }
34dc7c2f 3761
2a432414 3762 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
b9541d6b 3763 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
2a432414 3764 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
34dc7c2f
BB
3765
3766 /* byteswap if necessary */
b9541d6b 3767 callback_list = hdr->b_l1hdr.b_acb;
34dc7c2f 3768 ASSERT(callback_list != NULL);
428870ff 3769 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
3770 dmu_object_byteswap_t bswap =
3771 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
3772 if (BP_GET_LEVEL(zio->io_bp) > 0)
3773 byteswap_uint64_array(buf->b_data, hdr->b_size);
3774 else
3775 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 3776 }
34dc7c2f
BB
3777
3778 arc_cksum_compute(buf, B_FALSE);
498877ba 3779 arc_buf_watch(buf);
34dc7c2f 3780
b9541d6b
CW
3781 if (hash_lock && zio->io_error == 0 &&
3782 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
3783 /*
3784 * Only call arc_access on anonymous buffers. This is because
3785 * if we've issued an I/O for an evicted buffer, we've already
3786 * called arc_access (to prevent any simultaneous readers from
3787 * getting confused).
3788 */
3789 arc_access(hdr, hash_lock);
3790 }
3791
34dc7c2f
BB
3792 /* create copies of the data buffer for the callers */
3793 abuf = buf;
3794 for (acb = callback_list; acb; acb = acb->acb_next) {
3795 if (acb->acb_done) {
1eb5bfa3
GW
3796 if (abuf == NULL) {
3797 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 3798 abuf = arc_buf_clone(buf);
1eb5bfa3 3799 }
34dc7c2f
BB
3800 acb->acb_buf = abuf;
3801 abuf = NULL;
3802 }
3803 }
b9541d6b 3804 hdr->b_l1hdr.b_acb = NULL;
2a432414 3805 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 3806 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
3807 if (abuf == buf) {
3808 ASSERT(buf->b_efunc == NULL);
b9541d6b 3809 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2a432414 3810 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 3811 }
34dc7c2f 3812
b9541d6b
CW
3813 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3814 callback_list != NULL);
34dc7c2f
BB
3815
3816 if (zio->io_error != 0) {
2a432414 3817 hdr->b_flags |= ARC_FLAG_IO_ERROR;
b9541d6b 3818 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
3819 arc_change_state(arc_anon, hdr, hash_lock);
3820 if (HDR_IN_HASH_TABLE(hdr))
3821 buf_hash_remove(hdr);
b9541d6b 3822 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
3823 }
3824
3825 /*
3826 * Broadcast before we drop the hash_lock to avoid the possibility
3827 * that the hdr (and hence the cv) might be freed before we get to
3828 * the cv_broadcast().
3829 */
b9541d6b 3830 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 3831
b9541d6b 3832 if (hash_lock != NULL) {
34dc7c2f
BB
3833 mutex_exit(hash_lock);
3834 } else {
3835 /*
3836 * This block was freed while we waited for the read to
3837 * complete. It has been removed from the hash table and
3838 * moved to the anonymous state (so that it won't show up
3839 * in the cache).
3840 */
b9541d6b
CW
3841 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3842 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
3843 }
3844
3845 /* execute each callback and free its structure */
3846 while ((acb = callback_list) != NULL) {
3847 if (acb->acb_done)
3848 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3849
3850 if (acb->acb_zio_dummy != NULL) {
3851 acb->acb_zio_dummy->io_error = zio->io_error;
3852 zio_nowait(acb->acb_zio_dummy);
3853 }
3854
3855 callback_list = acb->acb_next;
3856 kmem_free(acb, sizeof (arc_callback_t));
3857 }
3858
3859 if (freeable)
3860 arc_hdr_destroy(hdr);
3861}
3862
3863/*
5c839890 3864 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
3865 * cache. If the block is found in the cache, invoke the provided
3866 * callback immediately and return. Note that the `zio' parameter
3867 * in the callback will be NULL in this case, since no IO was
3868 * required. If the block is not in the cache pass the read request
3869 * on to the spa with a substitute callback function, so that the
3870 * requested block will be added to the cache.
3871 *
3872 * If a read request arrives for a block that has a read in-progress,
3873 * either wait for the in-progress read to complete (and return the
3874 * results); or, if this is a read with a "done" func, add a record
3875 * to the read to invoke the "done" func when the read completes,
3876 * and return; or just return.
3877 *
3878 * arc_read_done() will invoke all the requested "done" functions
3879 * for readers of this block.
3880 */
3881int
294f6806 3882arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
3883 void *private, zio_priority_t priority, int zio_flags,
3884 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 3885{
9b67f605 3886 arc_buf_hdr_t *hdr = NULL;
d4ed6673 3887 arc_buf_t *buf = NULL;
9b67f605 3888 kmutex_t *hash_lock = NULL;
34dc7c2f 3889 zio_t *rzio;
3541dc6d 3890 uint64_t guid = spa_load_guid(spa);
1421c891 3891 int rc = 0;
34dc7c2f 3892
9b67f605
MA
3893 ASSERT(!BP_IS_EMBEDDED(bp) ||
3894 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3895
34dc7c2f 3896top:
9b67f605
MA
3897 if (!BP_IS_EMBEDDED(bp)) {
3898 /*
3899 * Embedded BP's have no DVA and require no I/O to "read".
3900 * Create an anonymous arc buf to back it.
3901 */
3902 hdr = buf_hash_find(guid, bp, &hash_lock);
3903 }
3904
b9541d6b 3905 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
34dc7c2f 3906
2a432414 3907 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
3908
3909 if (HDR_IO_IN_PROGRESS(hdr)) {
3910
2a432414 3911 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 3912 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
3913 mutex_exit(hash_lock);
3914 goto top;
3915 }
2a432414 3916 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
3917
3918 if (done) {
3919 arc_callback_t *acb = NULL;
3920
3921 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 3922 KM_SLEEP);
34dc7c2f
BB
3923 acb->acb_done = done;
3924 acb->acb_private = private;
34dc7c2f
BB
3925 if (pio != NULL)
3926 acb->acb_zio_dummy = zio_null(pio,
d164b209 3927 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3928
3929 ASSERT(acb->acb_done != NULL);
b9541d6b
CW
3930 acb->acb_next = hdr->b_l1hdr.b_acb;
3931 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
3932 add_reference(hdr, hash_lock, private);
3933 mutex_exit(hash_lock);
1421c891 3934 goto out;
34dc7c2f
BB
3935 }
3936 mutex_exit(hash_lock);
1421c891 3937 goto out;
34dc7c2f
BB
3938 }
3939
b9541d6b
CW
3940 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
3941 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
3942
3943 if (done) {
3944 add_reference(hdr, hash_lock, private);
3945 /*
3946 * If this block is already in use, create a new
3947 * copy of the data so that we will be guaranteed
3948 * that arc_release() will always succeed.
3949 */
b9541d6b 3950 buf = hdr->b_l1hdr.b_buf;
34dc7c2f
BB
3951 ASSERT(buf);
3952 ASSERT(buf->b_data);
3953 if (HDR_BUF_AVAILABLE(hdr)) {
3954 ASSERT(buf->b_efunc == NULL);
2a432414 3955 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
34dc7c2f
BB
3956 } else {
3957 buf = arc_buf_clone(buf);
3958 }
428870ff 3959
2a432414 3960 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 3961 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
2a432414 3962 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
3963 }
3964 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3965 arc_access(hdr, hash_lock);
2a432414
GW
3966 if (*arc_flags & ARC_FLAG_L2CACHE)
3967 hdr->b_flags |= ARC_FLAG_L2CACHE;
3968 if (*arc_flags & ARC_FLAG_L2COMPRESS)
3969 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
3970 mutex_exit(hash_lock);
3971 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
3972 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
3973 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
3974 data, metadata, hits);
3975
3976 if (done)
3977 done(NULL, buf, private);
3978 } else {
3979 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 3980 arc_callback_t *acb;
b128c09f 3981 vdev_t *vd = NULL;
a117a6d6 3982 uint64_t addr = 0;
d164b209 3983 boolean_t devw = B_FALSE;
0ed212dc 3984 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
b9541d6b 3985 int32_t b_asize = 0;
34dc7c2f 3986
5f6d0b6f
BB
3987 /*
3988 * Gracefully handle a damaged logical block size as a
3989 * checksum error by passing a dummy zio to the done callback.
3990 */
f1512ee6 3991 if (size > spa_maxblocksize(spa)) {
5f6d0b6f
BB
3992 if (done) {
3993 rzio = zio_null(pio, spa, NULL,
3994 NULL, NULL, zio_flags);
3995 rzio->io_error = ECKSUM;
3996 done(rzio, buf, private);
3997 zio_nowait(rzio);
3998 }
3999 rc = ECKSUM;
4000 goto out;
4001 }
4002
34dc7c2f
BB
4003 if (hdr == NULL) {
4004 /* this block is not in the cache */
9b67f605 4005 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
4006 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4007 buf = arc_buf_alloc(spa, size, private, type);
4008 hdr = buf->b_hdr;
9b67f605
MA
4009 if (!BP_IS_EMBEDDED(bp)) {
4010 hdr->b_dva = *BP_IDENTITY(bp);
4011 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
4012 exists = buf_hash_insert(hdr, &hash_lock);
4013 }
4014 if (exists != NULL) {
34dc7c2f
BB
4015 /* somebody beat us to the hash insert */
4016 mutex_exit(hash_lock);
428870ff 4017 buf_discard_identity(hdr);
34dc7c2f
BB
4018 (void) arc_buf_remove_ref(buf, private);
4019 goto top; /* restart the IO request */
4020 }
2a432414 4021
34dc7c2f 4022 /* if this is a prefetch, we don't have a reference */
2a432414 4023 if (*arc_flags & ARC_FLAG_PREFETCH) {
34dc7c2f
BB
4024 (void) remove_reference(hdr, hash_lock,
4025 private);
2a432414 4026 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f 4027 }
2a432414
GW
4028 if (*arc_flags & ARC_FLAG_L2CACHE)
4029 hdr->b_flags |= ARC_FLAG_L2CACHE;
4030 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4031 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f 4032 if (BP_GET_LEVEL(bp) > 0)
2a432414 4033 hdr->b_flags |= ARC_FLAG_INDIRECT;
34dc7c2f 4034 } else {
b9541d6b
CW
4035 /*
4036 * This block is in the ghost cache. If it was L2-only
4037 * (and thus didn't have an L1 hdr), we realloc the
4038 * header to add an L1 hdr.
4039 */
4040 if (!HDR_HAS_L1HDR(hdr)) {
4041 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4042 hdr_full_cache);
4043 }
4044
4045 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 4046 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 4047 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 4048 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
34dc7c2f
BB
4049
4050 /* if this is a prefetch, we don't have a reference */
2a432414
GW
4051 if (*arc_flags & ARC_FLAG_PREFETCH)
4052 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4053 else
4054 add_reference(hdr, hash_lock, private);
2a432414
GW
4055 if (*arc_flags & ARC_FLAG_L2CACHE)
4056 hdr->b_flags |= ARC_FLAG_L2CACHE;
4057 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4058 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4059 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4060 buf->b_hdr = hdr;
4061 buf->b_data = NULL;
4062 buf->b_efunc = NULL;
4063 buf->b_private = NULL;
4064 buf->b_next = NULL;
b9541d6b
CW
4065 hdr->b_l1hdr.b_buf = buf;
4066 ASSERT0(hdr->b_l1hdr.b_datacnt);
4067 hdr->b_l1hdr.b_datacnt = 1;
428870ff
BB
4068 arc_get_data_buf(buf);
4069 arc_access(hdr, hash_lock);
34dc7c2f
BB
4070 }
4071
b9541d6b 4072 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 4073
79c76d5b 4074 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
4075 acb->acb_done = done;
4076 acb->acb_private = private;
34dc7c2f 4077
b9541d6b
CW
4078 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4079 hdr->b_l1hdr.b_acb = acb;
2a432414 4080 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4081
b9541d6b
CW
4082 if (HDR_HAS_L2HDR(hdr) &&
4083 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4084 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4085 addr = hdr->b_l2hdr.b_daddr;
4086 b_compress = HDR_GET_COMPRESS(hdr);
4087 b_asize = hdr->b_l2hdr.b_asize;
b128c09f
BB
4088 /*
4089 * Lock out device removal.
4090 */
4091 if (vdev_is_dead(vd) ||
4092 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4093 vd = NULL;
4094 }
4095
9b67f605
MA
4096 if (hash_lock != NULL)
4097 mutex_exit(hash_lock);
b128c09f 4098
e49f1e20
WA
4099 /*
4100 * At this point, we have a level 1 cache miss. Try again in
4101 * L2ARC if possible.
4102 */
34dc7c2f 4103 ASSERT3U(hdr->b_size, ==, size);
428870ff 4104 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 4105 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f 4106 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
4107 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4108 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4109 data, metadata, misses);
4110
d164b209 4111 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
4112 /*
4113 * Read from the L2ARC if the following are true:
b128c09f
BB
4114 * 1. The L2ARC vdev was previously cached.
4115 * 2. This buffer still has L2ARC metadata.
4116 * 3. This buffer isn't currently writing to the L2ARC.
4117 * 4. The L2ARC entry wasn't evicted, which may
4118 * also have invalidated the vdev.
d164b209 4119 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 4120 */
b9541d6b 4121 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
4122 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4123 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
4124 l2arc_read_callback_t *cb;
4125
4126 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4127 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 4128 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 4129
34dc7c2f 4130 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 4131 KM_SLEEP);
34dc7c2f
BB
4132 cb->l2rcb_buf = buf;
4133 cb->l2rcb_spa = spa;
4134 cb->l2rcb_bp = *bp;
4135 cb->l2rcb_zb = *zb;
b128c09f 4136 cb->l2rcb_flags = zio_flags;
0ed212dc 4137 cb->l2rcb_compress = b_compress;
34dc7c2f 4138
a117a6d6
GW
4139 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4140 addr + size < vd->vdev_psize -
4141 VDEV_LABEL_END_SIZE);
4142
34dc7c2f 4143 /*
b128c09f
BB
4144 * l2arc read. The SCL_L2ARC lock will be
4145 * released by l2arc_read_done().
3a17a7a9
SK
4146 * Issue a null zio if the underlying buffer
4147 * was squashed to zero size by compression.
34dc7c2f 4148 */
0ed212dc 4149 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
4150 rzio = zio_null(pio, spa, vd,
4151 l2arc_read_done, cb,
4152 zio_flags | ZIO_FLAG_DONT_CACHE |
4153 ZIO_FLAG_CANFAIL |
4154 ZIO_FLAG_DONT_PROPAGATE |
4155 ZIO_FLAG_DONT_RETRY);
4156 } else {
4157 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
4158 b_asize, buf->b_data,
4159 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
4160 l2arc_read_done, cb, priority,
4161 zio_flags | ZIO_FLAG_DONT_CACHE |
4162 ZIO_FLAG_CANFAIL |
4163 ZIO_FLAG_DONT_PROPAGATE |
4164 ZIO_FLAG_DONT_RETRY, B_FALSE);
4165 }
34dc7c2f
BB
4166 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4167 zio_t *, rzio);
0ed212dc 4168 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 4169
2a432414 4170 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 4171 zio_nowait(rzio);
1421c891 4172 goto out;
b128c09f 4173 }
34dc7c2f 4174
2a432414 4175 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 4176 if (zio_wait(rzio) == 0)
1421c891 4177 goto out;
b128c09f
BB
4178
4179 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
4180 } else {
4181 DTRACE_PROBE1(l2arc__miss,
4182 arc_buf_hdr_t *, hdr);
4183 ARCSTAT_BUMP(arcstat_l2_misses);
4184 if (HDR_L2_WRITING(hdr))
4185 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 4186 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 4187 }
d164b209
BB
4188 } else {
4189 if (vd != NULL)
4190 spa_config_exit(spa, SCL_L2ARC, vd);
4191 if (l2arc_ndev != 0) {
4192 DTRACE_PROBE1(l2arc__miss,
4193 arc_buf_hdr_t *, hdr);
4194 ARCSTAT_BUMP(arcstat_l2_misses);
4195 }
34dc7c2f 4196 }
34dc7c2f
BB
4197
4198 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 4199 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 4200
2a432414 4201 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
4202 rc = zio_wait(rzio);
4203 goto out;
4204 }
34dc7c2f 4205
2a432414 4206 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4207 zio_nowait(rzio);
4208 }
1421c891
PS
4209
4210out:
4211 spa_read_history_add(spa, zb, *arc_flags);
4212 return (rc);
34dc7c2f
BB
4213}
4214
ab26409d
BB
4215arc_prune_t *
4216arc_add_prune_callback(arc_prune_func_t *func, void *private)
4217{
4218 arc_prune_t *p;
4219
d1d7e268 4220 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
4221 p->p_pfunc = func;
4222 p->p_private = private;
4223 list_link_init(&p->p_node);
4224 refcount_create(&p->p_refcnt);
4225
4226 mutex_enter(&arc_prune_mtx);
4227 refcount_add(&p->p_refcnt, &arc_prune_list);
4228 list_insert_head(&arc_prune_list, p);
4229 mutex_exit(&arc_prune_mtx);
4230
4231 return (p);
4232}
4233
4234void
4235arc_remove_prune_callback(arc_prune_t *p)
4236{
4237 mutex_enter(&arc_prune_mtx);
4238 list_remove(&arc_prune_list, p);
4239 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4240 refcount_destroy(&p->p_refcnt);
4241 kmem_free(p, sizeof (*p));
4242 }
4243 mutex_exit(&arc_prune_mtx);
4244}
4245
34dc7c2f
BB
4246void
4247arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4248{
4249 ASSERT(buf->b_hdr != NULL);
b9541d6b
CW
4250 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4251 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4252 func == NULL);
428870ff
BB
4253 ASSERT(buf->b_efunc == NULL);
4254 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4255
34dc7c2f
BB
4256 buf->b_efunc = func;
4257 buf->b_private = private;
4258}
4259
df4474f9
MA
4260/*
4261 * Notify the arc that a block was freed, and thus will never be used again.
4262 */
4263void
4264arc_freed(spa_t *spa, const blkptr_t *bp)
4265{
4266 arc_buf_hdr_t *hdr;
4267 kmutex_t *hash_lock;
4268 uint64_t guid = spa_load_guid(spa);
4269
9b67f605
MA
4270 ASSERT(!BP_IS_EMBEDDED(bp));
4271
4272 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
4273 if (hdr == NULL)
4274 return;
4275 if (HDR_BUF_AVAILABLE(hdr)) {
b9541d6b 4276 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
df4474f9 4277 add_reference(hdr, hash_lock, FTAG);
2a432414 4278 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
df4474f9
MA
4279 mutex_exit(hash_lock);
4280
4281 arc_release(buf, FTAG);
4282 (void) arc_buf_remove_ref(buf, FTAG);
4283 } else {
4284 mutex_exit(hash_lock);
4285 }
4286
4287}
4288
34dc7c2f 4289/*
bd089c54
MA
4290 * Clear the user eviction callback set by arc_set_callback(), first calling
4291 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4292 * clearing the callback may result in the arc_buf being destroyed. However,
4293 * it will not result in the *last* arc_buf being destroyed, hence the data
4294 * will remain cached in the ARC. We make a copy of the arc buffer here so
4295 * that we can process the callback without holding any locks.
4296 *
4297 * It's possible that the callback is already in the process of being cleared
4298 * by another thread. In this case we can not clear the callback.
4299 *
4300 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 4301 */
bd089c54
MA
4302boolean_t
4303arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
4304{
4305 arc_buf_hdr_t *hdr;
4306 kmutex_t *hash_lock;
bd089c54
MA
4307 arc_evict_func_t *efunc = buf->b_efunc;
4308 void *private = buf->b_private;
34dc7c2f 4309
428870ff 4310 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
4311 hdr = buf->b_hdr;
4312 if (hdr == NULL) {
4313 /*
4314 * We are in arc_do_user_evicts().
4315 */
4316 ASSERT(buf->b_data == NULL);
428870ff 4317 mutex_exit(&buf->b_evict_lock);
bd089c54 4318 return (B_FALSE);
b128c09f 4319 } else if (buf->b_data == NULL) {
34dc7c2f 4320 /*
b128c09f
BB
4321 * We are on the eviction list; process this buffer now
4322 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 4323 */
b128c09f 4324 buf->b_efunc = NULL;
428870ff 4325 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
4326 VERIFY0(efunc(private));
4327 return (B_TRUE);
34dc7c2f 4328 }
b128c09f
BB
4329 hash_lock = HDR_LOCK(hdr);
4330 mutex_enter(hash_lock);
428870ff
BB
4331 hdr = buf->b_hdr;
4332 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4333
b9541d6b
CW
4334 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4335 hdr->b_l1hdr.b_datacnt);
4336 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4337 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 4338
bd089c54
MA
4339 buf->b_efunc = NULL;
4340 buf->b_private = NULL;
34dc7c2f 4341
b9541d6b 4342 if (hdr->b_l1hdr.b_datacnt > 1) {
bd089c54 4343 mutex_exit(&buf->b_evict_lock);
ca0bf58d 4344 arc_buf_destroy(buf, TRUE);
bd089c54 4345 } else {
b9541d6b 4346 ASSERT(buf == hdr->b_l1hdr.b_buf);
2a432414 4347 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
bd089c54 4348 mutex_exit(&buf->b_evict_lock);
34dc7c2f 4349 }
34dc7c2f 4350
bd089c54
MA
4351 mutex_exit(hash_lock);
4352 VERIFY0(efunc(private));
4353 return (B_TRUE);
34dc7c2f
BB
4354}
4355
4356/*
e49f1e20
WA
4357 * Release this buffer from the cache, making it an anonymous buffer. This
4358 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 4359 * If the buffer has more than one reference, we must make
b128c09f 4360 * a new hdr for the buffer.
34dc7c2f
BB
4361 */
4362void
4363arc_release(arc_buf_t *buf, void *tag)
4364{
b9541d6b
CW
4365 kmutex_t *hash_lock;
4366 arc_state_t *state;
4367 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 4368
428870ff 4369 /*
ca0bf58d 4370 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
4371 * 0 || it's the dnode file), then it must be syncing context.
4372 * But we don't know that information at this level.
4373 */
4374
4375 mutex_enter(&buf->b_evict_lock);
b128c09f 4376
ca0bf58d
PS
4377 ASSERT(HDR_HAS_L1HDR(hdr));
4378
b9541d6b
CW
4379 /*
4380 * We don't grab the hash lock prior to this check, because if
4381 * the buffer's header is in the arc_anon state, it won't be
4382 * linked into the hash table.
4383 */
4384 if (hdr->b_l1hdr.b_state == arc_anon) {
4385 mutex_exit(&buf->b_evict_lock);
4386 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4387 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4388 ASSERT(!HDR_HAS_L2HDR(hdr));
4389 ASSERT(BUF_EMPTY(hdr));
34dc7c2f 4390
b9541d6b
CW
4391 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4392 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4393 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4394
4395 ASSERT3P(buf->b_efunc, ==, NULL);
4396 ASSERT3P(buf->b_private, ==, NULL);
4397
4398 hdr->b_l1hdr.b_arc_access = 0;
4399 arc_buf_thaw(buf);
4400
4401 return;
34dc7c2f
BB
4402 }
4403
b9541d6b
CW
4404 hash_lock = HDR_LOCK(hdr);
4405 mutex_enter(hash_lock);
4406
4407 /*
4408 * This assignment is only valid as long as the hash_lock is
4409 * held, we must be careful not to reference state or the
4410 * b_state field after dropping the lock.
4411 */
4412 state = hdr->b_l1hdr.b_state;
4413 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4414 ASSERT3P(state, !=, arc_anon);
4415
4416 /* this buffer is not on any list */
4417 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4418
4419 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 4420 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
4421
4422 /*
d962d5da
PS
4423 * We have to recheck this conditional again now that
4424 * we're holding the l2ad_mtx to prevent a race with
4425 * another thread which might be concurrently calling
4426 * l2arc_evict(). In that case, l2arc_evict() might have
4427 * destroyed the header's L2 portion as we were waiting
4428 * to acquire the l2ad_mtx.
ca0bf58d 4429 */
d962d5da
PS
4430 if (HDR_HAS_L2HDR(hdr))
4431 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 4432
b9541d6b 4433 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
4434 }
4435
34dc7c2f
BB
4436 /*
4437 * Do we have more than one buf?
4438 */
b9541d6b 4439 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f
BB
4440 arc_buf_hdr_t *nhdr;
4441 arc_buf_t **bufp;
4442 uint64_t blksz = hdr->b_size;
d164b209 4443 uint64_t spa = hdr->b_spa;
b9541d6b 4444 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4445 uint32_t flags = hdr->b_flags;
4446
b9541d6b 4447 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
34dc7c2f 4448 /*
428870ff
BB
4449 * Pull the data off of this hdr and attach it to
4450 * a new anonymous hdr.
34dc7c2f
BB
4451 */
4452 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 4453 bufp = &hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4454 while (*bufp != buf)
4455 bufp = &(*bufp)->b_next;
428870ff 4456 *bufp = buf->b_next;
34dc7c2f
BB
4457 buf->b_next = NULL;
4458
b9541d6b
CW
4459 ASSERT3P(state, !=, arc_l2c_only);
4460 ASSERT3U(state->arcs_size, >=, hdr->b_size);
4461 atomic_add_64(&state->arcs_size, -hdr->b_size);
4462 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4463 uint64_t *size;
4464
4465 ASSERT3P(state, !=, arc_l2c_only);
4466 size = &state->arcs_lsize[type];
34dc7c2f
BB
4467 ASSERT3U(*size, >=, hdr->b_size);
4468 atomic_add_64(size, -hdr->b_size);
4469 }
1eb5bfa3
GW
4470
4471 /*
4472 * We're releasing a duplicate user data buffer, update
4473 * our statistics accordingly.
4474 */
b9541d6b 4475 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
4476 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4477 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4478 -hdr->b_size);
4479 }
b9541d6b 4480 hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f 4481 arc_cksum_verify(buf);
498877ba 4482 arc_buf_unwatch(buf);
34dc7c2f
BB
4483
4484 mutex_exit(hash_lock);
4485
b9541d6b 4486 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f
BB
4487 nhdr->b_size = blksz;
4488 nhdr->b_spa = spa;
b9541d6b
CW
4489
4490 nhdr->b_l1hdr.b_mru_hits = 0;
4491 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4492 nhdr->b_l1hdr.b_mfu_hits = 0;
4493 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4494 nhdr->b_l1hdr.b_l2_hits = 0;
2a432414 4495 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
b9541d6b
CW
4496 nhdr->b_flags |= arc_bufc_to_flags(type);
4497 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4498
4499 nhdr->b_l1hdr.b_buf = buf;
4500 nhdr->b_l1hdr.b_datacnt = 1;
4501 nhdr->b_l1hdr.b_state = arc_anon;
4502 nhdr->b_l1hdr.b_arc_access = 0;
ca0bf58d 4503 nhdr->b_l1hdr.b_tmp_cdata = NULL;
34dc7c2f 4504 nhdr->b_freeze_cksum = NULL;
b9541d6b
CW
4505
4506 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 4507 buf->b_hdr = nhdr;
428870ff 4508 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
4509 atomic_add_64(&arc_anon->arcs_size, blksz);
4510 } else {
428870ff 4511 mutex_exit(&buf->b_evict_lock);
b9541d6b 4512 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
4513 /* protected by hash lock, or hdr is on arc_anon */
4514 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4515 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
4516 hdr->b_l1hdr.b_mru_hits = 0;
4517 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4518 hdr->b_l1hdr.b_mfu_hits = 0;
4519 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4520 hdr->b_l1hdr.b_l2_hits = 0;
4521 arc_change_state(arc_anon, hdr, hash_lock);
4522 hdr->b_l1hdr.b_arc_access = 0;
4523 mutex_exit(hash_lock);
34dc7c2f 4524
428870ff 4525 buf_discard_identity(hdr);
34dc7c2f
BB
4526 arc_buf_thaw(buf);
4527 }
4528 buf->b_efunc = NULL;
4529 buf->b_private = NULL;
34dc7c2f
BB
4530}
4531
4532int
4533arc_released(arc_buf_t *buf)
4534{
b128c09f
BB
4535 int released;
4536
428870ff 4537 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
4538 released = (buf->b_data != NULL &&
4539 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 4540 mutex_exit(&buf->b_evict_lock);
b128c09f 4541 return (released);
34dc7c2f
BB
4542}
4543
34dc7c2f
BB
4544#ifdef ZFS_DEBUG
4545int
4546arc_referenced(arc_buf_t *buf)
4547{
b128c09f
BB
4548 int referenced;
4549
428870ff 4550 mutex_enter(&buf->b_evict_lock);
b9541d6b 4551 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 4552 mutex_exit(&buf->b_evict_lock);
b128c09f 4553 return (referenced);
34dc7c2f
BB
4554}
4555#endif
4556
4557static void
4558arc_write_ready(zio_t *zio)
4559{
4560 arc_write_callback_t *callback = zio->io_private;
4561 arc_buf_t *buf = callback->awcb_buf;
4562 arc_buf_hdr_t *hdr = buf->b_hdr;
4563
b9541d6b
CW
4564 ASSERT(HDR_HAS_L1HDR(hdr));
4565 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4566 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f
BB
4567 callback->awcb_ready(zio, buf, callback->awcb_private);
4568
34dc7c2f
BB
4569 /*
4570 * If the IO is already in progress, then this is a re-write
b128c09f
BB
4571 * attempt, so we need to thaw and re-compute the cksum.
4572 * It is the responsibility of the callback to handle the
4573 * accounting for any re-write attempt.
34dc7c2f
BB
4574 */
4575 if (HDR_IO_IN_PROGRESS(hdr)) {
b9541d6b 4576 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4577 if (hdr->b_freeze_cksum != NULL) {
4578 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4579 hdr->b_freeze_cksum = NULL;
4580 }
b9541d6b 4581 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4582 }
4583 arc_cksum_compute(buf, B_FALSE);
2a432414 4584 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4585}
4586
e8b96c60
MA
4587/*
4588 * The SPA calls this callback for each physical write that happens on behalf
4589 * of a logical write. See the comment in dbuf_write_physdone() for details.
4590 */
4591static void
4592arc_write_physdone(zio_t *zio)
4593{
4594 arc_write_callback_t *cb = zio->io_private;
4595 if (cb->awcb_physdone != NULL)
4596 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4597}
4598
34dc7c2f
BB
4599static void
4600arc_write_done(zio_t *zio)
4601{
4602 arc_write_callback_t *callback = zio->io_private;
4603 arc_buf_t *buf = callback->awcb_buf;
4604 arc_buf_hdr_t *hdr = buf->b_hdr;
4605
b9541d6b 4606 ASSERT(hdr->b_l1hdr.b_acb == NULL);
428870ff
BB
4607
4608 if (zio->io_error == 0) {
9b67f605 4609 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
4610 buf_discard_identity(hdr);
4611 } else {
4612 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4613 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 4614 }
428870ff
BB
4615 } else {
4616 ASSERT(BUF_EMPTY(hdr));
4617 }
34dc7c2f 4618
34dc7c2f 4619 /*
9b67f605
MA
4620 * If the block to be written was all-zero or compressed enough to be
4621 * embedded in the BP, no write was performed so there will be no
4622 * dva/birth/checksum. The buffer must therefore remain anonymous
4623 * (and uncached).
34dc7c2f
BB
4624 */
4625 if (!BUF_EMPTY(hdr)) {
4626 arc_buf_hdr_t *exists;
4627 kmutex_t *hash_lock;
4628
428870ff
BB
4629 ASSERT(zio->io_error == 0);
4630
34dc7c2f
BB
4631 arc_cksum_verify(buf);
4632
4633 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 4634 if (exists != NULL) {
34dc7c2f
BB
4635 /*
4636 * This can only happen if we overwrite for
4637 * sync-to-convergence, because we remove
4638 * buffers from the hash table when we arc_free().
4639 */
428870ff
BB
4640 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4641 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4642 panic("bad overwrite, hdr=%p exists=%p",
4643 (void *)hdr, (void *)exists);
b9541d6b
CW
4644 ASSERT(refcount_is_zero(
4645 &exists->b_l1hdr.b_refcnt));
428870ff
BB
4646 arc_change_state(arc_anon, exists, hash_lock);
4647 mutex_exit(hash_lock);
4648 arc_hdr_destroy(exists);
4649 exists = buf_hash_insert(hdr, &hash_lock);
4650 ASSERT3P(exists, ==, NULL);
03c6040b
GW
4651 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4652 /* nopwrite */
4653 ASSERT(zio->io_prop.zp_nopwrite);
4654 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4655 panic("bad nopwrite, hdr=%p exists=%p",
4656 (void *)hdr, (void *)exists);
428870ff
BB
4657 } else {
4658 /* Dedup */
b9541d6b
CW
4659 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4660 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
4661 ASSERT(BP_GET_DEDUP(zio->io_bp));
4662 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4663 }
34dc7c2f 4664 }
2a432414 4665 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
b128c09f 4666 /* if it's not anon, we are doing a scrub */
b9541d6b 4667 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 4668 arc_access(hdr, hash_lock);
34dc7c2f 4669 mutex_exit(hash_lock);
34dc7c2f 4670 } else {
2a432414 4671 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4672 }
4673
b9541d6b 4674 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 4675 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
4676
4677 kmem_free(callback, sizeof (arc_write_callback_t));
4678}
4679
4680zio_t *
428870ff 4681arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 4682 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
4683 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4684 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 4685 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
4686{
4687 arc_buf_hdr_t *hdr = buf->b_hdr;
4688 arc_write_callback_t *callback;
b128c09f 4689 zio_t *zio;
34dc7c2f 4690
b128c09f 4691 ASSERT(ready != NULL);
428870ff 4692 ASSERT(done != NULL);
34dc7c2f 4693 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b
CW
4694 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4695 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4696 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f 4697 if (l2arc)
2a432414 4698 hdr->b_flags |= ARC_FLAG_L2CACHE;
3a17a7a9 4699 if (l2arc_compress)
2a432414 4700 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
79c76d5b 4701 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 4702 callback->awcb_ready = ready;
e8b96c60 4703 callback->awcb_physdone = physdone;
34dc7c2f
BB
4704 callback->awcb_done = done;
4705 callback->awcb_private = private;
4706 callback->awcb_buf = buf;
b128c09f 4707
428870ff 4708 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
4709 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4710 priority, zio_flags, zb);
34dc7c2f
BB
4711
4712 return (zio);
4713}
4714
34dc7c2f 4715static int
e8b96c60 4716arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
4717{
4718#ifdef _KERNEL
0c5493d4
BB
4719 if (zfs_arc_memory_throttle_disable)
4720 return (0);
4721
e8b96c60 4722 if (freemem <= physmem * arc_lotsfree_percent / 100) {
34dc7c2f 4723 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 4724 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 4725 return (SET_ERROR(EAGAIN));
34dc7c2f 4726 }
34dc7c2f
BB
4727#endif
4728 return (0);
4729}
4730
4731void
4732arc_tempreserve_clear(uint64_t reserve)
4733{
4734 atomic_add_64(&arc_tempreserve, -reserve);
4735 ASSERT((int64_t)arc_tempreserve >= 0);
4736}
4737
4738int
4739arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4740{
4741 int error;
9babb374 4742 uint64_t anon_size;
34dc7c2f 4743
34dc7c2f
BB
4744 if (reserve > arc_c/4 && !arc_no_grow)
4745 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
4746
4747 /*
4748 * Throttle when the calculated memory footprint for the TXG
4749 * exceeds the target ARC size.
4750 */
570827e1
BB
4751 if (reserve > arc_c) {
4752 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 4753 return (SET_ERROR(ERESTART));
570827e1 4754 }
34dc7c2f 4755
9babb374
BB
4756 /*
4757 * Don't count loaned bufs as in flight dirty data to prevent long
4758 * network delays from blocking transactions that are ready to be
4759 * assigned to a txg.
4760 */
4761 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4762
34dc7c2f
BB
4763 /*
4764 * Writes will, almost always, require additional memory allocations
d3cc8b15 4765 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
4766 * make sure that there is sufficient available memory for this.
4767 */
e8b96c60
MA
4768 error = arc_memory_throttle(reserve, txg);
4769 if (error != 0)
34dc7c2f
BB
4770 return (error);
4771
4772 /*
4773 * Throttle writes when the amount of dirty data in the cache
4774 * gets too large. We try to keep the cache less than half full
4775 * of dirty blocks so that our sync times don't grow too large.
4776 * Note: if two requests come in concurrently, we might let them
4777 * both succeed, when one of them should fail. Not a huge deal.
4778 */
9babb374
BB
4779
4780 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4781 anon_size > arc_c / 4) {
34dc7c2f
BB
4782 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4783 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4784 arc_tempreserve>>10,
4785 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4786 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4787 reserve>>10, arc_c>>10);
570827e1 4788 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 4789 return (SET_ERROR(ERESTART));
34dc7c2f
BB
4790 }
4791 atomic_add_64(&arc_tempreserve, reserve);
4792 return (0);
4793}
4794
13be560d
BB
4795static void
4796arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4797 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4798{
4799 size->value.ui64 = state->arcs_size;
4800 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4801 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4802}
4803
4804static int
4805arc_kstat_update(kstat_t *ksp, int rw)
4806{
4807 arc_stats_t *as = ksp->ks_data;
4808
4809 if (rw == KSTAT_WRITE) {
2e528b49 4810 return (SET_ERROR(EACCES));
13be560d
BB
4811 } else {
4812 arc_kstat_update_state(arc_anon,
4813 &as->arcstat_anon_size,
4814 &as->arcstat_anon_evict_data,
4815 &as->arcstat_anon_evict_metadata);
4816 arc_kstat_update_state(arc_mru,
4817 &as->arcstat_mru_size,
4818 &as->arcstat_mru_evict_data,
4819 &as->arcstat_mru_evict_metadata);
4820 arc_kstat_update_state(arc_mru_ghost,
4821 &as->arcstat_mru_ghost_size,
4822 &as->arcstat_mru_ghost_evict_data,
4823 &as->arcstat_mru_ghost_evict_metadata);
4824 arc_kstat_update_state(arc_mfu,
4825 &as->arcstat_mfu_size,
4826 &as->arcstat_mfu_evict_data,
4827 &as->arcstat_mfu_evict_metadata);
fc41c640 4828 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
4829 &as->arcstat_mfu_ghost_size,
4830 &as->arcstat_mfu_ghost_evict_data,
4831 &as->arcstat_mfu_ghost_evict_metadata);
4832 }
4833
4834 return (0);
4835}
4836
ca0bf58d
PS
4837/*
4838 * This function *must* return indices evenly distributed between all
4839 * sublists of the multilist. This is needed due to how the ARC eviction
4840 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4841 * distributed between all sublists and uses this assumption when
4842 * deciding which sublist to evict from and how much to evict from it.
4843 */
4844unsigned int
4845arc_state_multilist_index_func(multilist_t *ml, void *obj)
4846{
4847 arc_buf_hdr_t *hdr = obj;
4848
4849 /*
4850 * We rely on b_dva to generate evenly distributed index
4851 * numbers using buf_hash below. So, as an added precaution,
4852 * let's make sure we never add empty buffers to the arc lists.
4853 */
4854 ASSERT(!BUF_EMPTY(hdr));
4855
4856 /*
4857 * The assumption here, is the hash value for a given
4858 * arc_buf_hdr_t will remain constant throughout its lifetime
4859 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
4860 * Thus, we don't need to store the header's sublist index
4861 * on insertion, as this index can be recalculated on removal.
4862 *
4863 * Also, the low order bits of the hash value are thought to be
4864 * distributed evenly. Otherwise, in the case that the multilist
4865 * has a power of two number of sublists, each sublists' usage
4866 * would not be evenly distributed.
4867 */
4868 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4869 multilist_get_num_sublists(ml));
4870}
4871
34dc7c2f
BB
4872void
4873arc_init(void)
4874{
ca0bf58d
PS
4875 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4876 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
4877 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
4878
4879 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
4880 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f
BB
4881
4882 /* Convert seconds to clock ticks */
bce45ec9 4883 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
4884
4885 /* Start out with 1/8 of all memory */
4886 arc_c = physmem * PAGESIZE / 8;
4887
4888#ifdef _KERNEL
4889 /*
4890 * On architectures where the physical memory can be larger
4891 * than the addressable space (intel in 32-bit mode), we may
4892 * need to limit the cache to 1/8 of VM size.
4893 */
4894 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
4895 /*
4896 * Register a shrinker to support synchronous (direct) memory
4897 * reclaim from the arc. This is done to prevent kswapd from
4898 * swapping out pages when it is preferable to shrink the arc.
4899 */
4900 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
4901#endif
4902
121b3cae
TC
4903 /* set min cache to allow safe operation of arc_adapt() */
4904 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
518b4876 4905 /* set max to 1/2 of all memory */
be5db977 4906 arc_c_max = arc_c * 4;
34dc7c2f
BB
4907
4908 /*
4909 * Allow the tunables to override our calculations if they are
4910 * reasonable (ie. over 64MB)
4911 */
4912 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4913 arc_c_max = zfs_arc_max;
121b3cae
TC
4914 if (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT &&
4915 zfs_arc_min <= arc_c_max)
34dc7c2f
BB
4916 arc_c_min = zfs_arc_min;
4917
4918 arc_c = arc_c_max;
4919 arc_p = (arc_c >> 1);
4920
2b13331d
PS
4921 /* limit meta-data to 3/4 of the arc capacity */
4922 arc_meta_limit = (3 * arc_c_max) / 4;
1834f2d8 4923 arc_meta_max = 0;
34dc7c2f
BB
4924
4925 /* Allow the tunable to override if it is reasonable */
4926 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4927 arc_meta_limit = zfs_arc_meta_limit;
4928
ca0bf58d
PS
4929 if (zfs_arc_num_sublists_per_state < 1)
4930 zfs_arc_num_sublists_per_state = num_online_cpus();
4931
34dc7c2f
BB
4932 /* if kmem_flags are set, lets try to use less memory */
4933 if (kmem_debugging())
4934 arc_c = arc_c / 2;
4935 if (arc_c < arc_c_min)
4936 arc_c = arc_c_min;
4937
4938 arc_anon = &ARC_anon;
4939 arc_mru = &ARC_mru;
4940 arc_mru_ghost = &ARC_mru_ghost;
4941 arc_mfu = &ARC_mfu;
4942 arc_mfu_ghost = &ARC_mfu_ghost;
4943 arc_l2c_only = &ARC_l2c_only;
4944 arc_size = 0;
4945
ca0bf58d 4946 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4947 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4948 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4949 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4950 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
b9541d6b 4951 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4952 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4953 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4954 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4955 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4956 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4957 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4958 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 4959 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4960 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4961 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4962 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4963 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4964 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4965 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4966 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
b9541d6b 4967 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4968 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4969 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4970 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4971 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4972 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4973 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4974 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 4975 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4976 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4977 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4978 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
b9541d6b 4979 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4980 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4981 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
4982 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
b9541d6b 4983 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
4984 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
4985 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
34dc7c2f 4986
e0b0ca98
BB
4987 arc_anon->arcs_state = ARC_STATE_ANON;
4988 arc_mru->arcs_state = ARC_STATE_MRU;
4989 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4990 arc_mfu->arcs_state = ARC_STATE_MFU;
4991 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4992 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4993
34dc7c2f
BB
4994 buf_init();
4995
ca0bf58d
PS
4996 arc_reclaim_thread_exit = FALSE;
4997 arc_user_evicts_thread_exit = FALSE;
ab26409d
BB
4998 list_create(&arc_prune_list, sizeof (arc_prune_t),
4999 offsetof(arc_prune_t, p_node));
34dc7c2f 5000 arc_eviction_list = NULL;
ab26409d 5001 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
5002 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5003
f6046738 5004 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
aa9af22c 5005 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 5006
34dc7c2f
BB
5007 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5008 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5009
5010 if (arc_ksp != NULL) {
5011 arc_ksp->ks_data = &arc_stats;
13be560d 5012 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
5013 kstat_install(arc_ksp);
5014 }
5015
302f753f 5016 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
5017 TS_RUN, minclsyspri);
5018
ca0bf58d
PS
5019 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5020 TS_RUN, minclsyspri);
5021
34dc7c2f 5022 arc_dead = FALSE;
b128c09f 5023 arc_warm = B_FALSE;
34dc7c2f 5024
e8b96c60
MA
5025 /*
5026 * Calculate maximum amount of dirty data per pool.
5027 *
5028 * If it has been set by a module parameter, take that.
5029 * Otherwise, use a percentage of physical memory defined by
5030 * zfs_dirty_data_max_percent (default 10%) with a cap at
5031 * zfs_dirty_data_max_max (default 25% of physical memory).
5032 */
5033 if (zfs_dirty_data_max_max == 0)
5034 zfs_dirty_data_max_max = physmem * PAGESIZE *
5035 zfs_dirty_data_max_max_percent / 100;
5036
5037 if (zfs_dirty_data_max == 0) {
5038 zfs_dirty_data_max = physmem * PAGESIZE *
5039 zfs_dirty_data_max_percent / 100;
5040 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5041 zfs_dirty_data_max_max);
5042 }
34dc7c2f
BB
5043}
5044
5045void
5046arc_fini(void)
5047{
ab26409d
BB
5048 arc_prune_t *p;
5049
7cb67b45
BB
5050#ifdef _KERNEL
5051 spl_unregister_shrinker(&arc_shrinker);
5052#endif /* _KERNEL */
5053
ca0bf58d
PS
5054 mutex_enter(&arc_reclaim_lock);
5055 arc_reclaim_thread_exit = TRUE;
5056 /*
5057 * The reclaim thread will set arc_reclaim_thread_exit back to
5058 * FALSE when it is finished exiting; we're waiting for that.
5059 */
5060 while (arc_reclaim_thread_exit) {
5061 cv_signal(&arc_reclaim_thread_cv);
5062 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5063 }
5064 mutex_exit(&arc_reclaim_lock);
5065
5066 mutex_enter(&arc_user_evicts_lock);
5067 arc_user_evicts_thread_exit = TRUE;
5068 /*
5069 * The user evicts thread will set arc_user_evicts_thread_exit
5070 * to FALSE when it is finished exiting; we're waiting for that.
5071 */
5072 while (arc_user_evicts_thread_exit) {
5073 cv_signal(&arc_user_evicts_cv);
5074 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5075 }
5076 mutex_exit(&arc_user_evicts_lock);
34dc7c2f 5077
ca0bf58d
PS
5078 /* Use TRUE to ensure *all* buffers are evicted */
5079 arc_flush(NULL, TRUE);
34dc7c2f
BB
5080
5081 arc_dead = TRUE;
5082
5083 if (arc_ksp != NULL) {
5084 kstat_delete(arc_ksp);
5085 arc_ksp = NULL;
5086 }
5087
f6046738
BB
5088 taskq_wait(arc_prune_taskq);
5089 taskq_destroy(arc_prune_taskq);
5090
ab26409d
BB
5091 mutex_enter(&arc_prune_mtx);
5092 while ((p = list_head(&arc_prune_list)) != NULL) {
5093 list_remove(&arc_prune_list, p);
5094 refcount_remove(&p->p_refcnt, &arc_prune_list);
5095 refcount_destroy(&p->p_refcnt);
5096 kmem_free(p, sizeof (*p));
5097 }
5098 mutex_exit(&arc_prune_mtx);
5099
5100 list_destroy(&arc_prune_list);
5101 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
5102 mutex_destroy(&arc_reclaim_lock);
5103 cv_destroy(&arc_reclaim_thread_cv);
5104 cv_destroy(&arc_reclaim_waiters_cv);
5105
5106 mutex_destroy(&arc_user_evicts_lock);
5107 cv_destroy(&arc_user_evicts_cv);
5108
5109 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5110 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5111 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5112 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5113 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5114 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5115 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5116 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5117 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5118 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
34dc7c2f
BB
5119
5120 buf_fini();
9babb374 5121
b9541d6b 5122 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
5123}
5124
5125/*
5126 * Level 2 ARC
5127 *
5128 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5129 * It uses dedicated storage devices to hold cached data, which are populated
5130 * using large infrequent writes. The main role of this cache is to boost
5131 * the performance of random read workloads. The intended L2ARC devices
5132 * include short-stroked disks, solid state disks, and other media with
5133 * substantially faster read latency than disk.
5134 *
5135 * +-----------------------+
5136 * | ARC |
5137 * +-----------------------+
5138 * | ^ ^
5139 * | | |
5140 * l2arc_feed_thread() arc_read()
5141 * | | |
5142 * | l2arc read |
5143 * V | |
5144 * +---------------+ |
5145 * | L2ARC | |
5146 * +---------------+ |
5147 * | ^ |
5148 * l2arc_write() | |
5149 * | | |
5150 * V | |
5151 * +-------+ +-------+
5152 * | vdev | | vdev |
5153 * | cache | | cache |
5154 * +-------+ +-------+
5155 * +=========+ .-----.
5156 * : L2ARC : |-_____-|
5157 * : devices : | Disks |
5158 * +=========+ `-_____-'
5159 *
5160 * Read requests are satisfied from the following sources, in order:
5161 *
5162 * 1) ARC
5163 * 2) vdev cache of L2ARC devices
5164 * 3) L2ARC devices
5165 * 4) vdev cache of disks
5166 * 5) disks
5167 *
5168 * Some L2ARC device types exhibit extremely slow write performance.
5169 * To accommodate for this there are some significant differences between
5170 * the L2ARC and traditional cache design:
5171 *
5172 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5173 * the ARC behave as usual, freeing buffers and placing headers on ghost
5174 * lists. The ARC does not send buffers to the L2ARC during eviction as
5175 * this would add inflated write latencies for all ARC memory pressure.
5176 *
5177 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5178 * It does this by periodically scanning buffers from the eviction-end of
5179 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
5180 * not already there. It scans until a headroom of buffers is satisfied,
5181 * which itself is a buffer for ARC eviction. If a compressible buffer is
5182 * found during scanning and selected for writing to an L2ARC device, we
5183 * temporarily boost scanning headroom during the next scan cycle to make
5184 * sure we adapt to compression effects (which might significantly reduce
5185 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
5186 * l2arc_feed_thread(), illustrated below; example sizes are included to
5187 * provide a better sense of ratio than this diagram:
5188 *
5189 * head --> tail
5190 * +---------------------+----------+
5191 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5192 * +---------------------+----------+ | o L2ARC eligible
5193 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5194 * +---------------------+----------+ |
5195 * 15.9 Gbytes ^ 32 Mbytes |
5196 * headroom |
5197 * l2arc_feed_thread()
5198 * |
5199 * l2arc write hand <--[oooo]--'
5200 * | 8 Mbyte
5201 * | write max
5202 * V
5203 * +==============================+
5204 * L2ARC dev |####|#|###|###| |####| ... |
5205 * +==============================+
5206 * 32 Gbytes
5207 *
5208 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5209 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5210 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5211 * safe to say that this is an uncommon case, since buffers at the end of
5212 * the ARC lists have moved there due to inactivity.
5213 *
5214 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5215 * then the L2ARC simply misses copying some buffers. This serves as a
5216 * pressure valve to prevent heavy read workloads from both stalling the ARC
5217 * with waits and clogging the L2ARC with writes. This also helps prevent
5218 * the potential for the L2ARC to churn if it attempts to cache content too
5219 * quickly, such as during backups of the entire pool.
5220 *
b128c09f
BB
5221 * 5. After system boot and before the ARC has filled main memory, there are
5222 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5223 * lists can remain mostly static. Instead of searching from tail of these
5224 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5225 * for eligible buffers, greatly increasing its chance of finding them.
5226 *
5227 * The L2ARC device write speed is also boosted during this time so that
5228 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5229 * there are no L2ARC reads, and no fear of degrading read performance
5230 * through increased writes.
5231 *
5232 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
5233 * the vdev queue can aggregate them into larger and fewer writes. Each
5234 * device is written to in a rotor fashion, sweeping writes through
5235 * available space then repeating.
5236 *
b128c09f 5237 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
5238 * write buffers back to disk based storage.
5239 *
b128c09f 5240 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
5241 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5242 *
5243 * The performance of the L2ARC can be tweaked by a number of tunables, which
5244 * may be necessary for different workloads:
5245 *
5246 * l2arc_write_max max write bytes per interval
b128c09f 5247 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 5248 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 5249 * l2arc_nocompress skip compressing buffers
34dc7c2f 5250 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
5251 * l2arc_headroom_boost when we find compressed buffers during ARC
5252 * scanning, we multiply headroom by this
5253 * percentage factor for the next scan cycle,
5254 * since more compressed buffers are likely to
5255 * be present
34dc7c2f
BB
5256 * l2arc_feed_secs seconds between L2ARC writing
5257 *
5258 * Tunables may be removed or added as future performance improvements are
5259 * integrated, and also may become zpool properties.
d164b209
BB
5260 *
5261 * There are three key functions that control how the L2ARC warms up:
5262 *
5263 * l2arc_write_eligible() check if a buffer is eligible to cache
5264 * l2arc_write_size() calculate how much to write
5265 * l2arc_write_interval() calculate sleep delay between writes
5266 *
5267 * These three functions determine what to write, how much, and how quickly
5268 * to send writes.
34dc7c2f
BB
5269 */
5270
d164b209 5271static boolean_t
2a432414 5272l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
5273{
5274 /*
5275 * A buffer is *not* eligible for the L2ARC if it:
5276 * 1. belongs to a different spa.
428870ff
BB
5277 * 2. is already cached on the L2ARC.
5278 * 3. has an I/O in progress (it may be an incomplete read).
5279 * 4. is flagged not eligible (zfs property).
d164b209 5280 */
b9541d6b 5281 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 5282 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
5283 return (B_FALSE);
5284
5285 return (B_TRUE);
5286}
5287
5288static uint64_t
3a17a7a9 5289l2arc_write_size(void)
d164b209
BB
5290{
5291 uint64_t size;
5292
3a17a7a9
SK
5293 /*
5294 * Make sure our globals have meaningful values in case the user
5295 * altered them.
5296 */
5297 size = l2arc_write_max;
5298 if (size == 0) {
5299 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5300 "be greater than zero, resetting it to the default (%d)",
5301 L2ARC_WRITE_SIZE);
5302 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5303 }
d164b209
BB
5304
5305 if (arc_warm == B_FALSE)
3a17a7a9 5306 size += l2arc_write_boost;
d164b209
BB
5307
5308 return (size);
5309
5310}
5311
5312static clock_t
5313l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5314{
428870ff 5315 clock_t interval, next, now;
d164b209
BB
5316
5317 /*
5318 * If the ARC lists are busy, increase our write rate; if the
5319 * lists are stale, idle back. This is achieved by checking
5320 * how much we previously wrote - if it was more than half of
5321 * what we wanted, schedule the next write much sooner.
5322 */
5323 if (l2arc_feed_again && wrote > (wanted / 2))
5324 interval = (hz * l2arc_feed_min_ms) / 1000;
5325 else
5326 interval = hz * l2arc_feed_secs;
5327
428870ff
BB
5328 now = ddi_get_lbolt();
5329 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
5330
5331 return (next);
5332}
5333
34dc7c2f
BB
5334/*
5335 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 5336 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
5337 */
5338static l2arc_dev_t *
5339l2arc_dev_get_next(void)
5340{
b128c09f 5341 l2arc_dev_t *first, *next = NULL;
34dc7c2f 5342
b128c09f
BB
5343 /*
5344 * Lock out the removal of spas (spa_namespace_lock), then removal
5345 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5346 * both locks will be dropped and a spa config lock held instead.
5347 */
5348 mutex_enter(&spa_namespace_lock);
5349 mutex_enter(&l2arc_dev_mtx);
5350
5351 /* if there are no vdevs, there is nothing to do */
5352 if (l2arc_ndev == 0)
5353 goto out;
5354
5355 first = NULL;
5356 next = l2arc_dev_last;
5357 do {
5358 /* loop around the list looking for a non-faulted vdev */
5359 if (next == NULL) {
34dc7c2f 5360 next = list_head(l2arc_dev_list);
b128c09f
BB
5361 } else {
5362 next = list_next(l2arc_dev_list, next);
5363 if (next == NULL)
5364 next = list_head(l2arc_dev_list);
5365 }
5366
5367 /* if we have come back to the start, bail out */
5368 if (first == NULL)
5369 first = next;
5370 else if (next == first)
5371 break;
5372
5373 } while (vdev_is_dead(next->l2ad_vdev));
5374
5375 /* if we were unable to find any usable vdevs, return NULL */
5376 if (vdev_is_dead(next->l2ad_vdev))
5377 next = NULL;
34dc7c2f
BB
5378
5379 l2arc_dev_last = next;
5380
b128c09f
BB
5381out:
5382 mutex_exit(&l2arc_dev_mtx);
5383
5384 /*
5385 * Grab the config lock to prevent the 'next' device from being
5386 * removed while we are writing to it.
5387 */
5388 if (next != NULL)
5389 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5390 mutex_exit(&spa_namespace_lock);
5391
34dc7c2f
BB
5392 return (next);
5393}
5394
b128c09f
BB
5395/*
5396 * Free buffers that were tagged for destruction.
5397 */
5398static void
0bc8fd78 5399l2arc_do_free_on_write(void)
b128c09f
BB
5400{
5401 list_t *buflist;
5402 l2arc_data_free_t *df, *df_prev;
5403
5404 mutex_enter(&l2arc_free_on_write_mtx);
5405 buflist = l2arc_free_on_write;
5406
5407 for (df = list_tail(buflist); df; df = df_prev) {
5408 df_prev = list_prev(buflist, df);
5409 ASSERT(df->l2df_data != NULL);
5410 ASSERT(df->l2df_func != NULL);
5411 df->l2df_func(df->l2df_data, df->l2df_size);
5412 list_remove(buflist, df);
5413 kmem_free(df, sizeof (l2arc_data_free_t));
5414 }
5415
5416 mutex_exit(&l2arc_free_on_write_mtx);
5417}
5418
34dc7c2f
BB
5419/*
5420 * A write to a cache device has completed. Update all headers to allow
5421 * reads from these buffers to begin.
5422 */
5423static void
5424l2arc_write_done(zio_t *zio)
5425{
5426 l2arc_write_callback_t *cb;
5427 l2arc_dev_t *dev;
5428 list_t *buflist;
2a432414 5429 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 5430 kmutex_t *hash_lock;
3bec585e 5431 int64_t bytes_dropped = 0;
34dc7c2f
BB
5432
5433 cb = zio->io_private;
5434 ASSERT(cb != NULL);
5435 dev = cb->l2wcb_dev;
5436 ASSERT(dev != NULL);
5437 head = cb->l2wcb_head;
5438 ASSERT(head != NULL);
b9541d6b 5439 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5440 ASSERT(buflist != NULL);
5441 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5442 l2arc_write_callback_t *, cb);
5443
5444 if (zio->io_error != 0)
5445 ARCSTAT_BUMP(arcstat_l2_writes_error);
5446
34dc7c2f
BB
5447 /*
5448 * All writes completed, or an error was hit.
5449 */
ca0bf58d
PS
5450top:
5451 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5452 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5453 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5454
2a432414 5455 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5456
5457 /*
5458 * We cannot use mutex_enter or else we can deadlock
5459 * with l2arc_write_buffers (due to swapping the order
5460 * the hash lock and l2ad_mtx are taken).
5461 */
34dc7c2f
BB
5462 if (!mutex_tryenter(hash_lock)) {
5463 /*
ca0bf58d
PS
5464 * Missed the hash lock. We must retry so we
5465 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 5466 */
ca0bf58d
PS
5467 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5468
5469 /*
5470 * We don't want to rescan the headers we've
5471 * already marked as having been written out, so
5472 * we reinsert the head node so we can pick up
5473 * where we left off.
5474 */
5475 list_remove(buflist, head);
5476 list_insert_after(buflist, hdr, head);
5477
5478 mutex_exit(&dev->l2ad_mtx);
5479
5480 /*
5481 * We wait for the hash lock to become available
5482 * to try and prevent busy waiting, and increase
5483 * the chance we'll be able to acquire the lock
5484 * the next time around.
5485 */
5486 mutex_enter(hash_lock);
5487 mutex_exit(hash_lock);
5488 goto top;
34dc7c2f
BB
5489 }
5490
b9541d6b 5491 /*
ca0bf58d
PS
5492 * We could not have been moved into the arc_l2c_only
5493 * state while in-flight due to our ARC_FLAG_L2_WRITING
5494 * bit being set. Let's just ensure that's being enforced.
5495 */
5496 ASSERT(HDR_HAS_L1HDR(hdr));
5497
5498 /*
5499 * We may have allocated a buffer for L2ARC compression,
5500 * we must release it to avoid leaking this data.
b9541d6b 5501 */
ca0bf58d 5502 l2arc_release_cdata_buf(hdr);
b9541d6b 5503
34dc7c2f
BB
5504 if (zio->io_error != 0) {
5505 /*
b128c09f 5506 * Error - drop L2ARC entry.
34dc7c2f 5507 */
2a432414 5508 list_remove(buflist, hdr);
b9541d6b
CW
5509 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5510
5511 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
2a432414 5512 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
d962d5da
PS
5513
5514 bytes_dropped += hdr->b_l2hdr.b_asize;
5515 (void) refcount_remove_many(&dev->l2ad_alloc,
5516 hdr->b_l2hdr.b_asize, hdr);
34dc7c2f
BB
5517 }
5518
5519 /*
ca0bf58d
PS
5520 * Allow ARC to begin reads and ghost list evictions to
5521 * this L2ARC entry.
34dc7c2f 5522 */
2a432414 5523 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
34dc7c2f
BB
5524
5525 mutex_exit(hash_lock);
5526 }
5527
5528 atomic_inc_64(&l2arc_writes_done);
5529 list_remove(buflist, head);
b9541d6b
CW
5530 ASSERT(!HDR_HAS_L1HDR(head));
5531 kmem_cache_free(hdr_l2only_cache, head);
5532 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5533
3bec585e
SK
5534 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5535
b128c09f 5536 l2arc_do_free_on_write();
34dc7c2f
BB
5537
5538 kmem_free(cb, sizeof (l2arc_write_callback_t));
5539}
5540
5541/*
5542 * A read to a cache device completed. Validate buffer contents before
5543 * handing over to the regular ARC routines.
5544 */
5545static void
5546l2arc_read_done(zio_t *zio)
5547{
5548 l2arc_read_callback_t *cb;
5549 arc_buf_hdr_t *hdr;
5550 arc_buf_t *buf;
34dc7c2f 5551 kmutex_t *hash_lock;
b128c09f
BB
5552 int equal;
5553
5554 ASSERT(zio->io_vd != NULL);
5555 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5556
5557 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
5558
5559 cb = zio->io_private;
5560 ASSERT(cb != NULL);
5561 buf = cb->l2rcb_buf;
5562 ASSERT(buf != NULL);
34dc7c2f 5563
428870ff 5564 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 5565 mutex_enter(hash_lock);
428870ff
BB
5566 hdr = buf->b_hdr;
5567 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 5568
3a17a7a9
SK
5569 /*
5570 * If the buffer was compressed, decompress it first.
5571 */
5572 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5573 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5574 ASSERT(zio->io_data != NULL);
5575
34dc7c2f
BB
5576 /*
5577 * Check this survived the L2ARC journey.
5578 */
5579 equal = arc_cksum_equal(buf);
5580 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5581 mutex_exit(hash_lock);
5582 zio->io_private = buf;
b128c09f
BB
5583 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5584 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
5585 arc_read_done(zio);
5586 } else {
5587 mutex_exit(hash_lock);
5588 /*
5589 * Buffer didn't survive caching. Increment stats and
5590 * reissue to the original storage device.
5591 */
b128c09f 5592 if (zio->io_error != 0) {
34dc7c2f 5593 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 5594 } else {
2e528b49 5595 zio->io_error = SET_ERROR(EIO);
b128c09f 5596 }
34dc7c2f
BB
5597 if (!equal)
5598 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5599
34dc7c2f 5600 /*
b128c09f
BB
5601 * If there's no waiter, issue an async i/o to the primary
5602 * storage now. If there *is* a waiter, the caller must
5603 * issue the i/o in a context where it's OK to block.
34dc7c2f 5604 */
d164b209
BB
5605 if (zio->io_waiter == NULL) {
5606 zio_t *pio = zio_unique_parent(zio);
5607
5608 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5609
5610 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
5611 buf->b_data, zio->io_size, arc_read_done, buf,
5612 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 5613 }
34dc7c2f
BB
5614 }
5615
5616 kmem_free(cb, sizeof (l2arc_read_callback_t));
5617}
5618
5619/*
5620 * This is the list priority from which the L2ARC will search for pages to
5621 * cache. This is used within loops (0..3) to cycle through lists in the
5622 * desired order. This order can have a significant effect on cache
5623 * performance.
5624 *
5625 * Currently the metadata lists are hit first, MFU then MRU, followed by
5626 * the data lists. This function returns a locked list, and also returns
5627 * the lock pointer.
5628 */
ca0bf58d
PS
5629static multilist_sublist_t *
5630l2arc_sublist_lock(int list_num)
34dc7c2f 5631{
ca0bf58d
PS
5632 multilist_t *ml = NULL;
5633 unsigned int idx;
34dc7c2f
BB
5634
5635 ASSERT(list_num >= 0 && list_num <= 3);
5636
5637 switch (list_num) {
5638 case 0:
ca0bf58d 5639 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5640 break;
5641 case 1:
ca0bf58d 5642 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5643 break;
5644 case 2:
ca0bf58d 5645 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5646 break;
5647 case 3:
ca0bf58d 5648 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5649 break;
5650 }
5651
ca0bf58d
PS
5652 /*
5653 * Return a randomly-selected sublist. This is acceptable
5654 * because the caller feeds only a little bit of data for each
5655 * call (8MB). Subsequent calls will result in different
5656 * sublists being selected.
5657 */
5658 idx = multilist_get_random_index(ml);
5659 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
5660}
5661
5662/*
5663 * Evict buffers from the device write hand to the distance specified in
5664 * bytes. This distance may span populated buffers, it may span nothing.
5665 * This is clearing a region on the L2ARC device ready for writing.
5666 * If the 'all' boolean is set, every buffer is evicted.
5667 */
5668static void
5669l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5670{
5671 list_t *buflist;
2a432414 5672 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
5673 kmutex_t *hash_lock;
5674 uint64_t taddr;
5675
b9541d6b 5676 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5677
5678 if (!all && dev->l2ad_first) {
5679 /*
5680 * This is the first sweep through the device. There is
5681 * nothing to evict.
5682 */
5683 return;
5684 }
5685
b128c09f 5686 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
5687 /*
5688 * When nearing the end of the device, evict to the end
5689 * before the device write hand jumps to the start.
5690 */
5691 taddr = dev->l2ad_end;
5692 } else {
5693 taddr = dev->l2ad_hand + distance;
5694 }
5695 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5696 uint64_t, taddr, boolean_t, all);
5697
5698top:
b9541d6b 5699 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5700 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5701 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5702
2a432414 5703 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5704
5705 /*
5706 * We cannot use mutex_enter or else we can deadlock
5707 * with l2arc_write_buffers (due to swapping the order
5708 * the hash lock and l2ad_mtx are taken).
5709 */
34dc7c2f
BB
5710 if (!mutex_tryenter(hash_lock)) {
5711 /*
5712 * Missed the hash lock. Retry.
5713 */
5714 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 5715 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
5716 mutex_enter(hash_lock);
5717 mutex_exit(hash_lock);
5718 goto top;
5719 }
5720
2a432414 5721 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
5722 /*
5723 * We hit a write head node. Leave it for
5724 * l2arc_write_done().
5725 */
2a432414 5726 list_remove(buflist, hdr);
34dc7c2f
BB
5727 mutex_exit(hash_lock);
5728 continue;
5729 }
5730
b9541d6b
CW
5731 if (!all && HDR_HAS_L2HDR(hdr) &&
5732 (hdr->b_l2hdr.b_daddr > taddr ||
5733 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
5734 /*
5735 * We've evicted to the target address,
5736 * or the end of the device.
5737 */
5738 mutex_exit(hash_lock);
5739 break;
5740 }
5741
b9541d6b
CW
5742 ASSERT(HDR_HAS_L2HDR(hdr));
5743 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 5744 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
5745 /*
5746 * This doesn't exist in the ARC. Destroy.
5747 * arc_hdr_destroy() will call list_remove()
5748 * and decrement arcstat_l2_size.
5749 */
2a432414
GW
5750 arc_change_state(arc_anon, hdr, hash_lock);
5751 arc_hdr_destroy(hdr);
34dc7c2f 5752 } else {
b9541d6b
CW
5753 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5754 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
5755 /*
5756 * Invalidate issued or about to be issued
5757 * reads, since we may be about to write
5758 * over this location.
5759 */
2a432414 5760 if (HDR_L2_READING(hdr)) {
b128c09f 5761 ARCSTAT_BUMP(arcstat_l2_evict_reading);
2a432414 5762 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
b128c09f
BB
5763 }
5764
ca0bf58d
PS
5765 /* Ensure this header has finished being written */
5766 ASSERT(!HDR_L2_WRITING(hdr));
5767 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
d962d5da
PS
5768
5769 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
5770 }
5771 mutex_exit(hash_lock);
5772 }
b9541d6b 5773 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
5774}
5775
5776/*
5777 * Find and write ARC buffers to the L2ARC device.
5778 *
2a432414 5779 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 5780 * for reading until they have completed writing.
3a17a7a9
SK
5781 * The headroom_boost is an in-out parameter used to maintain headroom boost
5782 * state between calls to this function.
5783 *
5784 * Returns the number of bytes actually written (which may be smaller than
5785 * the delta by which the device hand has changed due to alignment).
34dc7c2f 5786 */
d164b209 5787static uint64_t
3a17a7a9
SK
5788l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5789 boolean_t *headroom_boost)
34dc7c2f 5790{
2a432414 5791 arc_buf_hdr_t *hdr, *hdr_prev, *head;
ef56b078
AG
5792 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
5793 stats_size;
34dc7c2f 5794 void *buf_data;
3a17a7a9 5795 boolean_t full;
34dc7c2f
BB
5796 l2arc_write_callback_t *cb;
5797 zio_t *pio, *wzio;
3541dc6d 5798 uint64_t guid = spa_load_guid(spa);
d6320ddb 5799 int try;
3a17a7a9 5800 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 5801
34dc7c2f
BB
5802 ASSERT(dev->l2ad_vdev != NULL);
5803
3a17a7a9
SK
5804 /* Lower the flag now, we might want to raise it again later. */
5805 *headroom_boost = B_FALSE;
5806
34dc7c2f 5807 pio = NULL;
ef56b078 5808 write_sz = write_asize = 0;
34dc7c2f 5809 full = B_FALSE;
b9541d6b 5810 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2a432414 5811 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
b9541d6b 5812 head->b_flags |= ARC_FLAG_HAS_L2HDR;
34dc7c2f 5813
3a17a7a9
SK
5814 /*
5815 * We will want to try to compress buffers that are at least 2x the
5816 * device sector size.
5817 */
5818 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5819
34dc7c2f
BB
5820 /*
5821 * Copy buffers for L2ARC writing.
5822 */
d6320ddb 5823 for (try = 0; try <= 3; try++) {
ca0bf58d 5824 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
5825 uint64_t passed_sz = 0;
5826
b128c09f
BB
5827 /*
5828 * L2ARC fast warmup.
5829 *
5830 * Until the ARC is warm and starts to evict, read from the
5831 * head of the ARC lists rather than the tail.
5832 */
b128c09f 5833 if (arc_warm == B_FALSE)
ca0bf58d 5834 hdr = multilist_sublist_head(mls);
b128c09f 5835 else
ca0bf58d 5836 hdr = multilist_sublist_tail(mls);
b128c09f 5837
3a17a7a9
SK
5838 headroom = target_sz * l2arc_headroom;
5839 if (do_headroom_boost)
5840 headroom = (headroom * l2arc_headroom_boost) / 100;
5841
2a432414 5842 for (; hdr; hdr = hdr_prev) {
3a17a7a9
SK
5843 kmutex_t *hash_lock;
5844 uint64_t buf_sz;
ef56b078 5845 uint64_t buf_a_sz;
3a17a7a9 5846
b128c09f 5847 if (arc_warm == B_FALSE)
ca0bf58d 5848 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 5849 else
ca0bf58d 5850 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 5851
2a432414 5852 hash_lock = HDR_LOCK(hdr);
3a17a7a9 5853 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
5854 /*
5855 * Skip this buffer rather than waiting.
5856 */
5857 continue;
5858 }
5859
2a432414 5860 passed_sz += hdr->b_size;
34dc7c2f
BB
5861 if (passed_sz > headroom) {
5862 /*
5863 * Searched too far.
5864 */
5865 mutex_exit(hash_lock);
5866 break;
5867 }
5868
2a432414 5869 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
5870 mutex_exit(hash_lock);
5871 continue;
5872 }
5873
ef56b078
AG
5874 /*
5875 * Assume that the buffer is not going to be compressed
5876 * and could take more space on disk because of a larger
5877 * disk block size.
5878 */
5879 buf_sz = hdr->b_size;
5880 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5881
5882 if ((write_asize + buf_a_sz) > target_sz) {
34dc7c2f
BB
5883 full = B_TRUE;
5884 mutex_exit(hash_lock);
5885 break;
5886 }
5887
34dc7c2f
BB
5888 if (pio == NULL) {
5889 /*
5890 * Insert a dummy header on the buflist so
5891 * l2arc_write_done() can find where the
5892 * write buffers begin without searching.
5893 */
ca0bf58d 5894 mutex_enter(&dev->l2ad_mtx);
b9541d6b 5895 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 5896 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5897
409dc1a5 5898 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
79c76d5b 5899 KM_SLEEP);
34dc7c2f
BB
5900 cb->l2wcb_dev = dev;
5901 cb->l2wcb_head = head;
5902 pio = zio_root(spa, l2arc_write_done, cb,
5903 ZIO_FLAG_CANFAIL);
5904 }
5905
5906 /*
5907 * Create and add a new L2ARC header.
5908 */
b9541d6b
CW
5909 hdr->b_l2hdr.b_dev = dev;
5910 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
2a432414 5911 hdr->b_flags |= ARC_FLAG_L2_WRITING;
3a17a7a9
SK
5912 /*
5913 * Temporarily stash the data buffer in b_tmp_cdata.
5914 * The subsequent write step will pick it up from
b9541d6b 5915 * there. This is because can't access b_l1hdr.b_buf
3a17a7a9
SK
5916 * without holding the hash_lock, which we in turn
5917 * can't access without holding the ARC list locks
5918 * (which we want to avoid during compression/writing)
5919 */
b9541d6b
CW
5920 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
5921 hdr->b_l2hdr.b_asize = hdr->b_size;
5922 hdr->b_l2hdr.b_hits = 0;
5923 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9 5924
d962d5da
PS
5925 /*
5926 * Explicitly set the b_daddr field to a known
5927 * value which means "invalid address". This
5928 * enables us to differentiate which stage of
5929 * l2arc_write_buffers() the particular header
5930 * is in (e.g. this loop, or the one below).
5931 * ARC_FLAG_L2_WRITING is not enough to make
5932 * this distinction, and we need to know in
5933 * order to do proper l2arc vdev accounting in
5934 * arc_release() and arc_hdr_destroy().
5935 *
5936 * Note, we can't use a new flag to distinguish
5937 * the two stages because we don't hold the
5938 * header's hash_lock below, in the second stage
5939 * of this function. Thus, we can't simply
5940 * change the b_flags field to denote that the
5941 * IO has been sent. We can change the b_daddr
5942 * field of the L2 portion, though, since we'll
5943 * be holding the l2ad_mtx; which is why we're
5944 * using it to denote the header's state change.
5945 */
5946 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
b9541d6b 5947 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
3a17a7a9 5948
ca0bf58d 5949 mutex_enter(&dev->l2ad_mtx);
b9541d6b 5950 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 5951 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
5952
5953 /*
5954 * Compute and store the buffer cksum before
5955 * writing. On debug the cksum is verified first.
5956 */
b9541d6b
CW
5957 arc_cksum_verify(hdr->b_l1hdr.b_buf);
5958 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
34dc7c2f
BB
5959
5960 mutex_exit(hash_lock);
5961
3a17a7a9 5962 write_sz += buf_sz;
ef56b078 5963 write_asize += buf_a_sz;
3a17a7a9
SK
5964 }
5965
ca0bf58d 5966 multilist_sublist_unlock(mls);
3a17a7a9
SK
5967
5968 if (full == B_TRUE)
5969 break;
5970 }
5971
5972 /* No buffers selected for writing? */
5973 if (pio == NULL) {
5974 ASSERT0(write_sz);
b9541d6b
CW
5975 ASSERT(!HDR_HAS_L1HDR(head));
5976 kmem_cache_free(hdr_l2only_cache, head);
3a17a7a9
SK
5977 return (0);
5978 }
5979
ca0bf58d
PS
5980 mutex_enter(&dev->l2ad_mtx);
5981
ef56b078
AG
5982 /*
5983 * Note that elsewhere in this file arcstat_l2_asize
5984 * and the used space on l2ad_vdev are updated using b_asize,
5985 * which is not necessarily rounded up to the device block size.
5986 * Too keep accounting consistent we do the same here as well:
5987 * stats_size accumulates the sum of b_asize of the written buffers,
5988 * while write_asize accumulates the sum of b_asize rounded up
5989 * to the device block size.
5990 * The latter sum is used only to validate the corectness of the code.
5991 */
5992 stats_size = 0;
5993 write_asize = 0;
5994
3a17a7a9
SK
5995 /*
5996 * Now start writing the buffers. We're starting at the write head
5997 * and work backwards, retracing the course of the buffer selector
5998 * loop above.
5999 */
b9541d6b
CW
6000 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6001 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
3a17a7a9
SK
6002 uint64_t buf_sz;
6003
ca0bf58d
PS
6004 /*
6005 * We rely on the L1 portion of the header below, so
6006 * it's invalid for this header to have been evicted out
6007 * of the ghost cache, prior to being written out. The
6008 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6009 */
6010 ASSERT(HDR_HAS_L1HDR(hdr));
6011
3a17a7a9
SK
6012 /*
6013 * We shouldn't need to lock the buffer here, since we flagged
2a432414
GW
6014 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6015 * take care to only access its L2 cache parameters. In
b9541d6b 6016 * particular, hdr->l1hdr.b_buf may be invalid by now due to
2a432414 6017 * ARC eviction.
3a17a7a9 6018 */
b9541d6b 6019 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
3a17a7a9 6020
b9541d6b
CW
6021 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6022 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6023 if (l2arc_compress_buf(hdr)) {
3a17a7a9
SK
6024 /*
6025 * If compression succeeded, enable headroom
6026 * boost on the next scan cycle.
6027 */
6028 *headroom_boost = B_TRUE;
6029 }
6030 }
6031
6032 /*
6033 * Pick up the buffer data we had previously stashed away
6034 * (and now potentially also compressed).
6035 */
b9541d6b
CW
6036 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6037 buf_sz = hdr->b_l2hdr.b_asize;
3a17a7a9 6038
d962d5da
PS
6039 /*
6040 * We need to do this regardless if buf_sz is zero or
6041 * not, otherwise, when this l2hdr is evicted we'll
6042 * remove a reference that was never added.
6043 */
6044 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6045
3a17a7a9
SK
6046 /* Compression may have squashed the buffer to zero length. */
6047 if (buf_sz != 0) {
ef56b078 6048 uint64_t buf_a_sz;
3a17a7a9 6049
34dc7c2f
BB
6050 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6051 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6052 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6053 ZIO_FLAG_CANFAIL, B_FALSE);
6054
6055 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6056 zio_t *, wzio);
6057 (void) zio_nowait(wzio);
6058
ef56b078 6059 stats_size += buf_sz;
d962d5da 6060
b128c09f
BB
6061 /*
6062 * Keep the clock hand suitably device-aligned.
6063 */
ef56b078
AG
6064 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6065 write_asize += buf_a_sz;
6066 dev->l2ad_hand += buf_a_sz;
34dc7c2f 6067 }
34dc7c2f 6068 }
34dc7c2f 6069
b9541d6b 6070 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6071
3a17a7a9 6072 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 6073 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 6074 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 6075 ARCSTAT_INCR(arcstat_l2_size, write_sz);
ef56b078
AG
6076 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6077 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
34dc7c2f
BB
6078
6079 /*
6080 * Bump device hand to the device start if it is approaching the end.
6081 * l2arc_evict() will already have evicted ahead for this case.
6082 */
b128c09f 6083 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 6084 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
6085 dev->l2ad_first = B_FALSE;
6086 }
6087
d164b209 6088 dev->l2ad_writing = B_TRUE;
34dc7c2f 6089 (void) zio_wait(pio);
d164b209
BB
6090 dev->l2ad_writing = B_FALSE;
6091
3a17a7a9
SK
6092 return (write_asize);
6093}
6094
6095/*
6096 * Compresses an L2ARC buffer.
b9541d6b 6097 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
3a17a7a9
SK
6098 * size in l2hdr->b_asize. This routine tries to compress the data and
6099 * depending on the compression result there are three possible outcomes:
6100 * *) The buffer was incompressible. The original l2hdr contents were left
6101 * untouched and are ready for writing to an L2 device.
6102 * *) The buffer was all-zeros, so there is no need to write it to an L2
6103 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6104 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6105 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6106 * data buffer which holds the compressed data to be written, and b_asize
6107 * tells us how much data there is. b_compress is set to the appropriate
6108 * compression algorithm. Once writing is done, invoke
6109 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6110 *
6111 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6112 * buffer was incompressible).
6113 */
6114static boolean_t
b9541d6b 6115l2arc_compress_buf(arc_buf_hdr_t *hdr)
3a17a7a9
SK
6116{
6117 void *cdata;
9b67f605 6118 size_t csize, len, rounded;
b9541d6b 6119 l2arc_buf_hdr_t *l2hdr;
3a17a7a9 6120
b9541d6b
CW
6121 ASSERT(HDR_HAS_L2HDR(hdr));
6122
6123 l2hdr = &hdr->b_l2hdr;
6124
6125 ASSERT(HDR_HAS_L1HDR(hdr));
6126 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6127 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
3a17a7a9
SK
6128
6129 len = l2hdr->b_asize;
6130 cdata = zio_data_buf_alloc(len);
b9541d6b
CW
6131 ASSERT3P(cdata, !=, NULL);
6132 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
3a17a7a9
SK
6133 cdata, l2hdr->b_asize);
6134
9b67f605
MA
6135 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6136 if (rounded > csize) {
6137 bzero((char *)cdata + csize, rounded - csize);
6138 csize = rounded;
6139 }
6140
3a17a7a9
SK
6141 if (csize == 0) {
6142 /* zero block, indicate that there's nothing to write */
6143 zio_data_buf_free(cdata, len);
b9541d6b 6144 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
3a17a7a9 6145 l2hdr->b_asize = 0;
b9541d6b 6146 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9
SK
6147 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6148 return (B_TRUE);
6149 } else if (csize > 0 && csize < len) {
6150 /*
6151 * Compression succeeded, we'll keep the cdata around for
6152 * writing and release it afterwards.
6153 */
b9541d6b 6154 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
3a17a7a9 6155 l2hdr->b_asize = csize;
b9541d6b 6156 hdr->b_l1hdr.b_tmp_cdata = cdata;
3a17a7a9
SK
6157 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6158 return (B_TRUE);
6159 } else {
6160 /*
6161 * Compression failed, release the compressed buffer.
6162 * l2hdr will be left unmodified.
6163 */
6164 zio_data_buf_free(cdata, len);
6165 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6166 return (B_FALSE);
6167 }
6168}
6169
6170/*
6171 * Decompresses a zio read back from an l2arc device. On success, the
6172 * underlying zio's io_data buffer is overwritten by the uncompressed
6173 * version. On decompression error (corrupt compressed stream), the
6174 * zio->io_error value is set to signal an I/O error.
6175 *
6176 * Please note that the compressed data stream is not checksummed, so
6177 * if the underlying device is experiencing data corruption, we may feed
6178 * corrupt data to the decompressor, so the decompressor needs to be
6179 * able to handle this situation (LZ4 does).
6180 */
6181static void
6182l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6183{
6184 uint64_t csize;
6185 void *cdata;
6186
6187 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6188
6189 if (zio->io_error != 0) {
6190 /*
6191 * An io error has occured, just restore the original io
6192 * size in preparation for a main pool read.
6193 */
6194 zio->io_orig_size = zio->io_size = hdr->b_size;
6195 return;
6196 }
6197
6198 if (c == ZIO_COMPRESS_EMPTY) {
6199 /*
6200 * An empty buffer results in a null zio, which means we
6201 * need to fill its io_data after we're done restoring the
6202 * buffer's contents.
6203 */
b9541d6b
CW
6204 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6205 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6206 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9
SK
6207 } else {
6208 ASSERT(zio->io_data != NULL);
6209 /*
6210 * We copy the compressed data from the start of the arc buffer
6211 * (the zio_read will have pulled in only what we need, the
6212 * rest is garbage which we will overwrite at decompression)
6213 * and then decompress back to the ARC data buffer. This way we
6214 * can minimize copying by simply decompressing back over the
6215 * original compressed data (rather than decompressing to an
6216 * aux buffer and then copying back the uncompressed buffer,
6217 * which is likely to be much larger).
6218 */
6219 csize = zio->io_size;
6220 cdata = zio_data_buf_alloc(csize);
6221 bcopy(zio->io_data, cdata, csize);
6222 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6223 hdr->b_size) != 0)
2e528b49 6224 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
6225 zio_data_buf_free(cdata, csize);
6226 }
6227
6228 /* Restore the expected uncompressed IO size. */
6229 zio->io_orig_size = zio->io_size = hdr->b_size;
6230}
6231
6232/*
6233 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6234 * This buffer serves as a temporary holder of compressed data while
6235 * the buffer entry is being written to an l2arc device. Once that is
6236 * done, we can dispose of it.
6237 */
6238static void
2a432414 6239l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
3a17a7a9 6240{
ca0bf58d
PS
6241 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6242
b9541d6b 6243 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d
PS
6244 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6245
6246 if (comp == ZIO_COMPRESS_OFF) {
6247 /*
6248 * In this case, b_tmp_cdata points to the same buffer
6249 * as the arc_buf_t's b_data field. We don't want to
6250 * free it, since the arc_buf_t will handle that.
6251 */
6252 hdr->b_l1hdr.b_tmp_cdata = NULL;
6253 } else if (comp == ZIO_COMPRESS_EMPTY) {
6254 /*
6255 * In this case, b_tmp_cdata was compressed to an empty
6256 * buffer, thus there's nothing to free and b_tmp_cdata
6257 * should have been set to NULL in l2arc_write_buffers().
6258 */
6259 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6260 } else {
3a17a7a9
SK
6261 /*
6262 * If the data was compressed, then we've allocated a
6263 * temporary buffer for it, so now we need to release it.
6264 */
b9541d6b
CW
6265 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6266 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6267 hdr->b_size);
ca0bf58d 6268 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9 6269 }
ca0bf58d 6270
34dc7c2f
BB
6271}
6272
6273/*
6274 * This thread feeds the L2ARC at regular intervals. This is the beating
6275 * heart of the L2ARC.
6276 */
6277static void
6278l2arc_feed_thread(void)
6279{
6280 callb_cpr_t cpr;
6281 l2arc_dev_t *dev;
6282 spa_t *spa;
d164b209 6283 uint64_t size, wrote;
428870ff 6284 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 6285 boolean_t headroom_boost = B_FALSE;
40d06e3c 6286 fstrans_cookie_t cookie;
34dc7c2f
BB
6287
6288 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6289
6290 mutex_enter(&l2arc_feed_thr_lock);
6291
40d06e3c 6292 cookie = spl_fstrans_mark();
34dc7c2f 6293 while (l2arc_thread_exit == 0) {
34dc7c2f 6294 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 6295 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 6296 &l2arc_feed_thr_lock, next);
34dc7c2f 6297 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 6298 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
6299
6300 /*
b128c09f 6301 * Quick check for L2ARC devices.
34dc7c2f
BB
6302 */
6303 mutex_enter(&l2arc_dev_mtx);
6304 if (l2arc_ndev == 0) {
6305 mutex_exit(&l2arc_dev_mtx);
6306 continue;
6307 }
b128c09f 6308 mutex_exit(&l2arc_dev_mtx);
428870ff 6309 begin = ddi_get_lbolt();
34dc7c2f
BB
6310
6311 /*
b128c09f
BB
6312 * This selects the next l2arc device to write to, and in
6313 * doing so the next spa to feed from: dev->l2ad_spa. This
6314 * will return NULL if there are now no l2arc devices or if
6315 * they are all faulted.
6316 *
6317 * If a device is returned, its spa's config lock is also
6318 * held to prevent device removal. l2arc_dev_get_next()
6319 * will grab and release l2arc_dev_mtx.
34dc7c2f 6320 */
b128c09f 6321 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 6322 continue;
b128c09f
BB
6323
6324 spa = dev->l2ad_spa;
6325 ASSERT(spa != NULL);
34dc7c2f 6326
572e2857
BB
6327 /*
6328 * If the pool is read-only then force the feed thread to
6329 * sleep a little longer.
6330 */
6331 if (!spa_writeable(spa)) {
6332 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6333 spa_config_exit(spa, SCL_L2ARC, dev);
6334 continue;
6335 }
6336
34dc7c2f 6337 /*
b128c09f 6338 * Avoid contributing to memory pressure.
34dc7c2f 6339 */
302f753f 6340 if (arc_no_grow) {
b128c09f
BB
6341 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6342 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
6343 continue;
6344 }
b128c09f 6345
34dc7c2f
BB
6346 ARCSTAT_BUMP(arcstat_l2_feeds);
6347
3a17a7a9 6348 size = l2arc_write_size();
b128c09f 6349
34dc7c2f
BB
6350 /*
6351 * Evict L2ARC buffers that will be overwritten.
6352 */
b128c09f 6353 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
6354
6355 /*
6356 * Write ARC buffers.
6357 */
3a17a7a9 6358 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
6359
6360 /*
6361 * Calculate interval between writes.
6362 */
6363 next = l2arc_write_interval(begin, size, wrote);
b128c09f 6364 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 6365 }
40d06e3c 6366 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6367
6368 l2arc_thread_exit = 0;
6369 cv_broadcast(&l2arc_feed_thr_cv);
6370 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6371 thread_exit();
6372}
6373
b128c09f
BB
6374boolean_t
6375l2arc_vdev_present(vdev_t *vd)
6376{
6377 l2arc_dev_t *dev;
6378
6379 mutex_enter(&l2arc_dev_mtx);
6380 for (dev = list_head(l2arc_dev_list); dev != NULL;
6381 dev = list_next(l2arc_dev_list, dev)) {
6382 if (dev->l2ad_vdev == vd)
6383 break;
6384 }
6385 mutex_exit(&l2arc_dev_mtx);
6386
6387 return (dev != NULL);
6388}
6389
34dc7c2f
BB
6390/*
6391 * Add a vdev for use by the L2ARC. By this point the spa has already
6392 * validated the vdev and opened it.
6393 */
6394void
9babb374 6395l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
6396{
6397 l2arc_dev_t *adddev;
6398
b128c09f
BB
6399 ASSERT(!l2arc_vdev_present(vd));
6400
34dc7c2f
BB
6401 /*
6402 * Create a new l2arc device entry.
6403 */
6404 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6405 adddev->l2ad_spa = spa;
6406 adddev->l2ad_vdev = vd;
9babb374
BB
6407 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6408 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 6409 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 6410 adddev->l2ad_first = B_TRUE;
d164b209 6411 adddev->l2ad_writing = B_FALSE;
98f72a53 6412 list_link_init(&adddev->l2ad_node);
34dc7c2f 6413
b9541d6b 6414 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6415 /*
6416 * This is a list of all ARC buffers that are still valid on the
6417 * device.
6418 */
b9541d6b
CW
6419 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6420 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 6421
428870ff 6422 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 6423 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
6424
6425 /*
6426 * Add device to global list
6427 */
6428 mutex_enter(&l2arc_dev_mtx);
6429 list_insert_head(l2arc_dev_list, adddev);
6430 atomic_inc_64(&l2arc_ndev);
6431 mutex_exit(&l2arc_dev_mtx);
6432}
6433
6434/*
6435 * Remove a vdev from the L2ARC.
6436 */
6437void
6438l2arc_remove_vdev(vdev_t *vd)
6439{
6440 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6441
34dc7c2f
BB
6442 /*
6443 * Find the device by vdev
6444 */
6445 mutex_enter(&l2arc_dev_mtx);
6446 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6447 nextdev = list_next(l2arc_dev_list, dev);
6448 if (vd == dev->l2ad_vdev) {
6449 remdev = dev;
6450 break;
6451 }
6452 }
6453 ASSERT(remdev != NULL);
6454
6455 /*
6456 * Remove device from global list
6457 */
6458 list_remove(l2arc_dev_list, remdev);
6459 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
6460 atomic_dec_64(&l2arc_ndev);
6461 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
6462
6463 /*
6464 * Clear all buflists and ARC references. L2ARC device flush.
6465 */
6466 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
6467 list_destroy(&remdev->l2ad_buflist);
6468 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 6469 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 6470 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
6471}
6472
6473void
b128c09f 6474l2arc_init(void)
34dc7c2f
BB
6475{
6476 l2arc_thread_exit = 0;
6477 l2arc_ndev = 0;
6478 l2arc_writes_sent = 0;
6479 l2arc_writes_done = 0;
6480
6481 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6482 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6483 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6484 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6485
6486 l2arc_dev_list = &L2ARC_dev_list;
6487 l2arc_free_on_write = &L2ARC_free_on_write;
6488 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6489 offsetof(l2arc_dev_t, l2ad_node));
6490 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6491 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
6492}
6493
6494void
b128c09f 6495l2arc_fini(void)
34dc7c2f 6496{
b128c09f
BB
6497 /*
6498 * This is called from dmu_fini(), which is called from spa_fini();
6499 * Because of this, we can assume that all l2arc devices have
6500 * already been removed when the pools themselves were removed.
6501 */
6502
6503 l2arc_do_free_on_write();
34dc7c2f
BB
6504
6505 mutex_destroy(&l2arc_feed_thr_lock);
6506 cv_destroy(&l2arc_feed_thr_cv);
6507 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
6508 mutex_destroy(&l2arc_free_on_write_mtx);
6509
6510 list_destroy(l2arc_dev_list);
6511 list_destroy(l2arc_free_on_write);
6512}
b128c09f
BB
6513
6514void
6515l2arc_start(void)
6516{
fb5f0bc8 6517 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6518 return;
6519
6520 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6521 TS_RUN, minclsyspri);
6522}
6523
6524void
6525l2arc_stop(void)
6526{
fb5f0bc8 6527 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6528 return;
6529
6530 mutex_enter(&l2arc_feed_thr_lock);
6531 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6532 l2arc_thread_exit = 1;
6533 while (l2arc_thread_exit != 0)
6534 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6535 mutex_exit(&l2arc_feed_thr_lock);
6536}
c28b2279
BB
6537
6538#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
6539EXPORT_SYMBOL(arc_buf_size);
6540EXPORT_SYMBOL(arc_write);
c28b2279
BB
6541EXPORT_SYMBOL(arc_read);
6542EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 6543EXPORT_SYMBOL(arc_buf_info);
c28b2279 6544EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
6545EXPORT_SYMBOL(arc_add_prune_callback);
6546EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 6547
bce45ec9 6548module_param(zfs_arc_min, ulong, 0644);
c409e464 6549MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 6550
bce45ec9 6551module_param(zfs_arc_max, ulong, 0644);
c409e464 6552MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 6553
bce45ec9 6554module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 6555MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 6556
ca0bf58d
PS
6557module_param(zfs_arc_meta_min, ulong, 0644);
6558MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
6559
bce45ec9 6560module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 6561MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 6562
bc888666
BB
6563module_param(zfs_arc_meta_adjust_restarts, ulong, 0644);
6564MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
6565 "Limit number of restarts in arc_adjust_meta");
6566
f6046738
BB
6567module_param(zfs_arc_meta_strategy, int, 0644);
6568MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
6569
bce45ec9 6570module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
6571MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
6572
89c8cac4
PS
6573module_param(zfs_arc_p_aggressive_disable, int, 0644);
6574MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
6575
62422785
PS
6576module_param(zfs_arc_p_dampener_disable, int, 0644);
6577MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
6578
bce45ec9 6579module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
6580MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
6581
1f7c30df
BB
6582module_param(zfs_disable_dup_eviction, int, 0644);
6583MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
6584
49ddb315
MA
6585module_param(zfs_arc_average_blocksize, int, 0444);
6586MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
6587
0c5493d4
BB
6588module_param(zfs_arc_memory_throttle_disable, int, 0644);
6589MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
6590
bce45ec9
BB
6591module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
6592MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
6593
ca0bf58d
PS
6594module_param(zfs_arc_num_sublists_per_state, int, 0644);
6595MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
6596 "Number of sublists used in each of the ARC state lists");
6597
bce45ec9 6598module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
6599MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
6600
bce45ec9 6601module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
6602MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
6603
bce45ec9 6604module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
6605MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
6606
3a17a7a9
SK
6607module_param(l2arc_headroom_boost, ulong, 0644);
6608MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
6609
bce45ec9 6610module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
6611MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
6612
bce45ec9 6613module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
6614MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
6615
bce45ec9 6616module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
6617MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
6618
3a17a7a9
SK
6619module_param(l2arc_nocompress, int, 0644);
6620MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
6621
bce45ec9 6622module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
6623MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
6624
bce45ec9 6625module_param(l2arc_norw, int, 0644);
abd8610c
BB
6626MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
6627
c28b2279 6628#endif