]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
hw/arm/mps2: Add ethernet
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
7544a042 41* License::
debc7065
FB
42* Index::
43@end menu
44@end ifnottex
45
46@contents
47
48@node Introduction
386405f7
FB
49@chapter Introduction
50
debc7065
FB
51@menu
52* intro_features:: Features
53@end menu
54
55@node intro_features
322d0c66 56@section Features
386405f7 57
1f673135
FB
58QEMU is a FAST! processor emulator using dynamic translation to
59achieve good emulation speed.
1eb20527 60
1f3e7e41 61@cindex operating modes
1eb20527 62QEMU has two operating modes:
0806e3f6 63
d7e5edca 64@itemize
7544a042 65@cindex system emulation
1f3e7e41 66@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
67example a PC), including one or several processors and various
68peripherals. It can be used to launch different Operating Systems
69without rebooting the PC or to debug system code.
1eb20527 70
7544a042 71@cindex user mode emulation
1f3e7e41 72@item User mode emulation. In this mode, QEMU can launch
83195237 73processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
74launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
75to ease cross-compilation and cross-debugging.
1eb20527
FB
76
77@end itemize
78
1f3e7e41
PB
79QEMU has the following features:
80
81@itemize
82@item QEMU can run without a host kernel driver and yet gives acceptable
83performance. It uses dynamic translation to native code for reasonable speed,
84with support for self-modifying code and precise exceptions.
85
86@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
87Windows) and architectures.
88
89@item It performs accurate software emulation of the FPU.
90@end itemize
322d0c66 91
1f3e7e41 92QEMU user mode emulation has the following features:
52c00a5f 93@itemize
1f3e7e41
PB
94@item Generic Linux system call converter, including most ioctls.
95
96@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
97
98@item Accurate signal handling by remapping host signals to target signals.
99@end itemize
100
101QEMU full system emulation has the following features:
102@itemize
103@item
104QEMU uses a full software MMU for maximum portability.
105
106@item
107QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
108execute most of the guest code natively, while
109continuing to emulate the rest of the machine.
110
111@item
112Various hardware devices can be emulated and in some cases, host
113devices (e.g. serial and parallel ports, USB, drives) can be used
114transparently by the guest Operating System. Host device passthrough
115can be used for talking to external physical peripherals (e.g. a
116webcam, modem or tape drive).
117
118@item
119Symmetric multiprocessing (SMP) support. Currently, an in-kernel
120accelerator is required to use more than one host CPU for emulation.
121
52c00a5f 122@end itemize
386405f7 123
0806e3f6 124
debc7065 125@node QEMU PC System emulator
3f9f3aa1 126@chapter QEMU PC System emulator
7544a042 127@cindex system emulation (PC)
1eb20527 128
debc7065
FB
129@menu
130* pcsys_introduction:: Introduction
131* pcsys_quickstart:: Quick Start
132* sec_invocation:: Invocation
a40db1b3
PM
133* pcsys_keys:: Keys in the graphical frontends
134* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
576fd0a1 138* pcsys_other_devs:: Other Devices
debc7065
FB
139* direct_linux_boot:: Direct Linux Boot
140* pcsys_usb:: USB emulation
f858dcae 141* vnc_security:: VNC security
debc7065
FB
142* gdb_usage:: GDB usage
143* pcsys_os_specific:: Target OS specific information
144@end menu
145
146@node pcsys_introduction
0806e3f6
FB
147@section Introduction
148
149@c man begin DESCRIPTION
150
3f9f3aa1
FB
151The QEMU PC System emulator simulates the
152following peripherals:
0806e3f6
FB
153
154@itemize @minus
5fafdf24 155@item
15a34c63 156i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 157@item
15a34c63
FB
158Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
159extensions (hardware level, including all non standard modes).
0806e3f6
FB
160@item
161PS/2 mouse and keyboard
5fafdf24 162@item
15a34c63 1632 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
164@item
165Floppy disk
5fafdf24 166@item
3a2eeac0 167PCI and ISA network adapters
0806e3f6 168@item
05d5818c
FB
169Serial ports
170@item
23076bb3
CM
171IPMI BMC, either and internal or external one
172@item
c0fe3827
FB
173Creative SoundBlaster 16 sound card
174@item
175ENSONIQ AudioPCI ES1370 sound card
176@item
e5c9a13e
AZ
177Intel 82801AA AC97 Audio compatible sound card
178@item
7d72e762
GH
179Intel HD Audio Controller and HDA codec
180@item
2d983446 181Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 182@item
26463dbc
AZ
183Gravis Ultrasound GF1 sound card
184@item
cc53d26d 185CS4231A compatible sound card
186@item
a92ff8c1 187PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
188@end itemize
189
3f9f3aa1
FB
190SMP is supported with up to 255 CPUs.
191
a8ad4159 192QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
193VGA BIOS.
194
c0fe3827
FB
195QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196
2d983446 197QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 198by Tibor "TS" Schütz.
423d65f4 199
1a1a0e20 200Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 201QEMU must be told to not have parallel ports to have working GUS.
720036a5 202
203@example
3804da9d 204qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 205@end example
206
207Alternatively:
208@example
3804da9d 209qemu-system-i386 dos.img -device gus,irq=5
720036a5 210@end example
211
212Or some other unclaimed IRQ.
213
cc53d26d 214CS4231A is the chip used in Windows Sound System and GUSMAX products
215
0806e3f6
FB
216@c man end
217
debc7065 218@node pcsys_quickstart
1eb20527 219@section Quick Start
7544a042 220@cindex quick start
1eb20527 221
285dc330 222Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
223
224@example
3804da9d 225qemu-system-i386 linux.img
0806e3f6
FB
226@end example
227
228Linux should boot and give you a prompt.
229
6cc721cf 230@node sec_invocation
ec410fc9
FB
231@section Invocation
232
233@example
0806e3f6 234@c man begin SYNOPSIS
8485140f 235@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 236@c man end
ec410fc9
FB
237@end example
238
0806e3f6 239@c man begin OPTIONS
d2c639d6
BS
240@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
241targets do not need a disk image.
ec410fc9 242
5824d651 243@include qemu-options.texi
ec410fc9 244
3e11db9a
FB
245@c man end
246
debc7065 247@node pcsys_keys
a40db1b3 248@section Keys in the graphical frontends
3e11db9a
FB
249
250@c man begin OPTIONS
251
de1db2a1
BH
252During the graphical emulation, you can use special key combinations to change
253modes. The default key mappings are shown below, but if you use @code{-alt-grab}
254then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
255@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
256
a1b74fe8 257@table @key
f9859310 258@item Ctrl-Alt-f
7544a042 259@kindex Ctrl-Alt-f
a1b74fe8 260Toggle full screen
a0a821a4 261
d6a65ba3
JK
262@item Ctrl-Alt-+
263@kindex Ctrl-Alt-+
264Enlarge the screen
265
266@item Ctrl-Alt--
267@kindex Ctrl-Alt--
268Shrink the screen
269
c4a735f9 270@item Ctrl-Alt-u
7544a042 271@kindex Ctrl-Alt-u
c4a735f9 272Restore the screen's un-scaled dimensions
273
f9859310 274@item Ctrl-Alt-n
7544a042 275@kindex Ctrl-Alt-n
a0a821a4
FB
276Switch to virtual console 'n'. Standard console mappings are:
277@table @emph
278@item 1
279Target system display
280@item 2
281Monitor
282@item 3
283Serial port
a1b74fe8
FB
284@end table
285
f9859310 286@item Ctrl-Alt
7544a042 287@kindex Ctrl-Alt
a0a821a4
FB
288Toggle mouse and keyboard grab.
289@end table
290
7544a042
SW
291@kindex Ctrl-Up
292@kindex Ctrl-Down
293@kindex Ctrl-PageUp
294@kindex Ctrl-PageDown
3e11db9a
FB
295In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
296@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
297
a40db1b3
PM
298@c man end
299
300@node mux_keys
301@section Keys in the character backend multiplexer
302
303@c man begin OPTIONS
304
305During emulation, if you are using a character backend multiplexer
306(which is the default if you are using @option{-nographic}) then
307several commands are available via an escape sequence. These
308key sequences all start with an escape character, which is @key{Ctrl-a}
309by default, but can be changed with @option{-echr}. The list below assumes
310you're using the default.
ec410fc9
FB
311
312@table @key
a1b74fe8 313@item Ctrl-a h
7544a042 314@kindex Ctrl-a h
ec410fc9 315Print this help
3b46e624 316@item Ctrl-a x
7544a042 317@kindex Ctrl-a x
366dfc52 318Exit emulator
3b46e624 319@item Ctrl-a s
7544a042 320@kindex Ctrl-a s
1f47a922 321Save disk data back to file (if -snapshot)
20d8a3ed 322@item Ctrl-a t
7544a042 323@kindex Ctrl-a t
d2c639d6 324Toggle console timestamps
a1b74fe8 325@item Ctrl-a b
7544a042 326@kindex Ctrl-a b
1f673135 327Send break (magic sysrq in Linux)
a1b74fe8 328@item Ctrl-a c
7544a042 329@kindex Ctrl-a c
a40db1b3
PM
330Rotate between the frontends connected to the multiplexer (usually
331this switches between the monitor and the console)
a1b74fe8 332@item Ctrl-a Ctrl-a
a40db1b3
PM
333@kindex Ctrl-a Ctrl-a
334Send the escape character to the frontend
ec410fc9 335@end table
0806e3f6
FB
336@c man end
337
338@ignore
339
1f673135
FB
340@c man begin SEEALSO
341The HTML documentation of QEMU for more precise information and Linux
342user mode emulator invocation.
343@c man end
344
345@c man begin AUTHOR
346Fabrice Bellard
347@c man end
348
349@end ignore
350
debc7065 351@node pcsys_monitor
1f673135 352@section QEMU Monitor
7544a042 353@cindex QEMU monitor
1f673135
FB
354
355The QEMU monitor is used to give complex commands to the QEMU
356emulator. You can use it to:
357
358@itemize @minus
359
360@item
e598752a 361Remove or insert removable media images
89dfe898 362(such as CD-ROM or floppies).
1f673135 363
5fafdf24 364@item
1f673135
FB
365Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
366from a disk file.
367
368@item Inspect the VM state without an external debugger.
369
370@end itemize
371
372@subsection Commands
373
374The following commands are available:
375
2313086a 376@include qemu-monitor.texi
0806e3f6 377
2cd8af2d
PB
378@include qemu-monitor-info.texi
379
1f673135
FB
380@subsection Integer expressions
381
382The monitor understands integers expressions for every integer
383argument. You can use register names to get the value of specifics
384CPU registers by prefixing them with @emph{$}.
ec410fc9 385
1f47a922
FB
386@node disk_images
387@section Disk Images
388
ee29bdb6
PB
389QEMU supports many disk image formats, including growable disk images
390(their size increase as non empty sectors are written), compressed and
391encrypted disk images.
1f47a922 392
debc7065
FB
393@menu
394* disk_images_quickstart:: Quick start for disk image creation
395* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 396* vm_snapshots:: VM snapshots
debc7065 397* qemu_img_invocation:: qemu-img Invocation
975b092b 398* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 399* disk_images_formats:: Disk image file formats
19cb3738 400* host_drives:: Using host drives
debc7065 401* disk_images_fat_images:: Virtual FAT disk images
75818250 402* disk_images_nbd:: NBD access
42af9c30 403* disk_images_sheepdog:: Sheepdog disk images
00984e39 404* disk_images_iscsi:: iSCSI LUNs
8809e289 405* disk_images_gluster:: GlusterFS disk images
0a12ec87 406* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
407@end menu
408
409@node disk_images_quickstart
acd935ef
FB
410@subsection Quick start for disk image creation
411
412You can create a disk image with the command:
1f47a922 413@example
acd935ef 414qemu-img create myimage.img mysize
1f47a922 415@end example
acd935ef
FB
416where @var{myimage.img} is the disk image filename and @var{mysize} is its
417size in kilobytes. You can add an @code{M} suffix to give the size in
418megabytes and a @code{G} suffix for gigabytes.
419
debc7065 420See @ref{qemu_img_invocation} for more information.
1f47a922 421
debc7065 422@node disk_images_snapshot_mode
1f47a922
FB
423@subsection Snapshot mode
424
425If you use the option @option{-snapshot}, all disk images are
426considered as read only. When sectors in written, they are written in
427a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
428write back to the raw disk images by using the @code{commit} monitor
429command (or @key{C-a s} in the serial console).
1f47a922 430
13a2e80f
FB
431@node vm_snapshots
432@subsection VM snapshots
433
434VM snapshots are snapshots of the complete virtual machine including
435CPU state, RAM, device state and the content of all the writable
436disks. In order to use VM snapshots, you must have at least one non
437removable and writable block device using the @code{qcow2} disk image
438format. Normally this device is the first virtual hard drive.
439
440Use the monitor command @code{savevm} to create a new VM snapshot or
441replace an existing one. A human readable name can be assigned to each
19d36792 442snapshot in addition to its numerical ID.
13a2e80f
FB
443
444Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445a VM snapshot. @code{info snapshots} lists the available snapshots
446with their associated information:
447
448@example
449(qemu) info snapshots
450Snapshot devices: hda
451Snapshot list (from hda):
452ID TAG VM SIZE DATE VM CLOCK
4531 start 41M 2006-08-06 12:38:02 00:00:14.954
4542 40M 2006-08-06 12:43:29 00:00:18.633
4553 msys 40M 2006-08-06 12:44:04 00:00:23.514
456@end example
457
458A VM snapshot is made of a VM state info (its size is shown in
459@code{info snapshots}) and a snapshot of every writable disk image.
460The VM state info is stored in the first @code{qcow2} non removable
461and writable block device. The disk image snapshots are stored in
462every disk image. The size of a snapshot in a disk image is difficult
463to evaluate and is not shown by @code{info snapshots} because the
464associated disk sectors are shared among all the snapshots to save
19d36792
FB
465disk space (otherwise each snapshot would need a full copy of all the
466disk images).
13a2e80f
FB
467
468When using the (unrelated) @code{-snapshot} option
469(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470but they are deleted as soon as you exit QEMU.
471
472VM snapshots currently have the following known limitations:
473@itemize
5fafdf24 474@item
13a2e80f
FB
475They cannot cope with removable devices if they are removed or
476inserted after a snapshot is done.
5fafdf24 477@item
13a2e80f
FB
478A few device drivers still have incomplete snapshot support so their
479state is not saved or restored properly (in particular USB).
480@end itemize
481
acd935ef
FB
482@node qemu_img_invocation
483@subsection @code{qemu-img} Invocation
1f47a922 484
acd935ef 485@include qemu-img.texi
05efe46e 486
975b092b
TS
487@node qemu_nbd_invocation
488@subsection @code{qemu-nbd} Invocation
489
490@include qemu-nbd.texi
491
d3067b02
KW
492@node disk_images_formats
493@subsection Disk image file formats
494
495QEMU supports many image file formats that can be used with VMs as well as with
496any of the tools (like @code{qemu-img}). This includes the preferred formats
497raw and qcow2 as well as formats that are supported for compatibility with
498older QEMU versions or other hypervisors.
499
500Depending on the image format, different options can be passed to
501@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
502This section describes each format and the options that are supported for it.
503
504@table @option
505@item raw
506
507Raw disk image format. This format has the advantage of
508being simple and easily exportable to all other emulators. If your
509file system supports @emph{holes} (for example in ext2 or ext3 on
510Linux or NTFS on Windows), then only the written sectors will reserve
511space. Use @code{qemu-img info} to know the real size used by the
512image or @code{ls -ls} on Unix/Linux.
513
06247428
HT
514Supported options:
515@table @code
516@item preallocation
517Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
518@code{falloc} mode preallocates space for image by calling posix_fallocate().
519@code{full} mode preallocates space for image by writing zeros to underlying
520storage.
521@end table
522
d3067b02
KW
523@item qcow2
524QEMU image format, the most versatile format. Use it to have smaller
525images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
526on Windows), zlib based compression and support of multiple VM
527snapshots.
d3067b02
KW
528
529Supported options:
530@table @code
531@item compat
7fa9e1f9
SH
532Determines the qcow2 version to use. @code{compat=0.10} uses the
533traditional image format that can be read by any QEMU since 0.10.
d3067b02 534@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
535newer understand (this is the default). Amongst others, this includes
536zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
537
538@item backing_file
539File name of a base image (see @option{create} subcommand)
540@item backing_fmt
541Image format of the base image
542@item encryption
12f7efd0 543This option is deprecated and equivalent to @code{encrypt.format=aes}
d3067b02 544
12f7efd0
DB
545@item encrypt.format
546
547If this is set to @code{luks}, it requests that the qcow2 payload (not
548qcow2 header) be encrypted using the LUKS format. The passphrase to
549use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
550parameter. LUKS encryption parameters can be tuned with the other
551@code{encrypt.*} parameters.
552
553If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
554The encryption key is given by the @code{encrypt.key-secret} parameter.
555This encryption format is considered to be flawed by modern cryptography
556standards, suffering from a number of design problems:
136cd19d
DB
557
558@itemize @minus
559@item The AES-CBC cipher is used with predictable initialization vectors based
560on the sector number. This makes it vulnerable to chosen plaintext attacks
561which can reveal the existence of encrypted data.
562@item The user passphrase is directly used as the encryption key. A poorly
563chosen or short passphrase will compromise the security of the encryption.
564@item In the event of the passphrase being compromised there is no way to
565change the passphrase to protect data in any qcow images. The files must
566be cloned, using a different encryption passphrase in the new file. The
567original file must then be securely erased using a program like shred,
568though even this is ineffective with many modern storage technologies.
569@end itemize
570
12f7efd0
DB
571The use of this is no longer supported in system emulators. Support only
572remains in the command line utilities, for the purposes of data liberation
573and interoperability with old versions of QEMU. The @code{luks} format
574should be used instead.
575
576@item encrypt.key-secret
577
578Provides the ID of a @code{secret} object that contains the passphrase
579(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
580
581@item encrypt.cipher-alg
582
583Name of the cipher algorithm and key length. Currently defaults
584to @code{aes-256}. Only used when @code{encrypt.format=luks}.
585
586@item encrypt.cipher-mode
587
588Name of the encryption mode to use. Currently defaults to @code{xts}.
589Only used when @code{encrypt.format=luks}.
590
591@item encrypt.ivgen-alg
592
593Name of the initialization vector generator algorithm. Currently defaults
594to @code{plain64}. Only used when @code{encrypt.format=luks}.
595
596@item encrypt.ivgen-hash-alg
597
598Name of the hash algorithm to use with the initialization vector generator
599(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
600
601@item encrypt.hash-alg
602
603Name of the hash algorithm to use for PBKDF algorithm
604Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
605
606@item encrypt.iter-time
607
608Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
609Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
d3067b02
KW
610
611@item cluster_size
612Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
613sizes can improve the image file size whereas larger cluster sizes generally
614provide better performance.
615
616@item preallocation
0e4271b7
HT
617Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
618@code{full}). An image with preallocated metadata is initially larger but can
619improve performance when the image needs to grow. @code{falloc} and @code{full}
620preallocations are like the same options of @code{raw} format, but sets up
621metadata also.
d3067b02
KW
622
623@item lazy_refcounts
624If this option is set to @code{on}, reference count updates are postponed with
625the goal of avoiding metadata I/O and improving performance. This is
626particularly interesting with @option{cache=writethrough} which doesn't batch
627metadata updates. The tradeoff is that after a host crash, the reference count
628tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
629check -r all} is required, which may take some time.
630
631This option can only be enabled if @code{compat=1.1} is specified.
632
4ab15590 633@item nocow
bc3a7f90 634If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
635valid on btrfs, no effect on other file systems.
636
637Btrfs has low performance when hosting a VM image file, even more when the guest
638on the VM also using btrfs as file system. Turning off COW is a way to mitigate
639this bad performance. Generally there are two ways to turn off COW on btrfs:
640a) Disable it by mounting with nodatacow, then all newly created files will be
641NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
642does.
643
644Note: this option is only valid to new or empty files. If there is an existing
645file which is COW and has data blocks already, it couldn't be changed to NOCOW
646by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 647the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 648
d3067b02
KW
649@end table
650
651@item qed
652Old QEMU image format with support for backing files and compact image files
653(when your filesystem or transport medium does not support holes).
654
655When converting QED images to qcow2, you might want to consider using the
656@code{lazy_refcounts=on} option to get a more QED-like behaviour.
657
658Supported options:
659@table @code
660@item backing_file
661File name of a base image (see @option{create} subcommand).
662@item backing_fmt
663Image file format of backing file (optional). Useful if the format cannot be
664autodetected because it has no header, like some vhd/vpc files.
665@item cluster_size
666Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
667cluster sizes can improve the image file size whereas larger cluster sizes
668generally provide better performance.
669@item table_size
670Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
671and 16). There is normally no need to change this value but this option can be
672used for performance benchmarking.
673@end table
674
675@item qcow
676Old QEMU image format with support for backing files, compact image files,
677encryption and compression.
678
679Supported options:
680@table @code
681@item backing_file
682File name of a base image (see @option{create} subcommand)
683@item encryption
12f7efd0
DB
684This option is deprecated and equivalent to @code{encrypt.format=aes}
685
686@item encrypt.format
687If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
688The encryption key is given by the @code{encrypt.key-secret} parameter.
689This encryption format is considered to be flawed by modern cryptography
690standards, suffering from a number of design problems enumerated previously
691against the @code{qcow2} image format.
692
693The use of this is no longer supported in system emulators. Support only
694remains in the command line utilities, for the purposes of data liberation
695and interoperability with old versions of QEMU.
696
697Users requiring native encryption should use the @code{qcow2} format
698instead with @code{encrypt.format=luks}.
699
700@item encrypt.key-secret
701
702Provides the ID of a @code{secret} object that contains the encryption
703key (@code{encrypt.format=aes}).
704
705@end table
706
707@item luks
708
709LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
710
711Supported options:
712@table @code
713
714@item key-secret
715
716Provides the ID of a @code{secret} object that contains the passphrase.
717
718@item cipher-alg
719
720Name of the cipher algorithm and key length. Currently defaults
721to @code{aes-256}.
722
723@item cipher-mode
724
725Name of the encryption mode to use. Currently defaults to @code{xts}.
726
727@item ivgen-alg
728
729Name of the initialization vector generator algorithm. Currently defaults
730to @code{plain64}.
731
732@item ivgen-hash-alg
733
734Name of the hash algorithm to use with the initialization vector generator
735(if required). Defaults to @code{sha256}.
736
737@item hash-alg
738
739Name of the hash algorithm to use for PBKDF algorithm
740Defaults to @code{sha256}.
741
742@item iter-time
743
744Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
745Defaults to @code{2000}.
746
d3067b02
KW
747@end table
748
d3067b02
KW
749@item vdi
750VirtualBox 1.1 compatible image format.
751Supported options:
752@table @code
753@item static
754If this option is set to @code{on}, the image is created with metadata
755preallocation.
756@end table
757
758@item vmdk
759VMware 3 and 4 compatible image format.
760
761Supported options:
762@table @code
763@item backing_file
764File name of a base image (see @option{create} subcommand).
765@item compat6
766Create a VMDK version 6 image (instead of version 4)
f249924e
JK
767@item hwversion
768Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
769if hwversion is specified.
d3067b02
KW
770@item subformat
771Specifies which VMDK subformat to use. Valid options are
772@code{monolithicSparse} (default),
773@code{monolithicFlat},
774@code{twoGbMaxExtentSparse},
775@code{twoGbMaxExtentFlat} and
776@code{streamOptimized}.
777@end table
778
779@item vpc
780VirtualPC compatible image format (VHD).
781Supported options:
782@table @code
783@item subformat
784Specifies which VHD subformat to use. Valid options are
785@code{dynamic} (default) and @code{fixed}.
786@end table
8282db1b
JC
787
788@item VHDX
789Hyper-V compatible image format (VHDX).
790Supported options:
791@table @code
792@item subformat
793Specifies which VHDX subformat to use. Valid options are
794@code{dynamic} (default) and @code{fixed}.
795@item block_state_zero
30af51ce
JC
796Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
797or @code{off}. When set to @code{off}, new blocks will be created as
798@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
799arbitrary data for those blocks. Do not set to @code{off} when using
800@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
801@item block_size
802Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
803@item log_size
804Log size; min 1 MB.
805@end table
d3067b02
KW
806@end table
807
808@subsubsection Read-only formats
809More disk image file formats are supported in a read-only mode.
810@table @option
811@item bochs
812Bochs images of @code{growing} type.
813@item cloop
814Linux Compressed Loop image, useful only to reuse directly compressed
815CD-ROM images present for example in the Knoppix CD-ROMs.
816@item dmg
817Apple disk image.
818@item parallels
819Parallels disk image format.
820@end table
821
822
19cb3738
FB
823@node host_drives
824@subsection Using host drives
825
826In addition to disk image files, QEMU can directly access host
827devices. We describe here the usage for QEMU version >= 0.8.3.
828
829@subsubsection Linux
830
831On Linux, you can directly use the host device filename instead of a
4be456f1 832disk image filename provided you have enough privileges to access
92a539d2 833it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 834
f542086d 835@table @code
19cb3738
FB
836@item CD
837You can specify a CDROM device even if no CDROM is loaded. QEMU has
838specific code to detect CDROM insertion or removal. CDROM ejection by
839the guest OS is supported. Currently only data CDs are supported.
840@item Floppy
841You can specify a floppy device even if no floppy is loaded. Floppy
842removal is currently not detected accurately (if you change floppy
843without doing floppy access while the floppy is not loaded, the guest
844OS will think that the same floppy is loaded).
92a539d2
MA
845Use of the host's floppy device is deprecated, and support for it will
846be removed in a future release.
19cb3738
FB
847@item Hard disks
848Hard disks can be used. Normally you must specify the whole disk
849(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
850see it as a partitioned disk. WARNING: unless you know what you do, it
851is better to only make READ-ONLY accesses to the hard disk otherwise
852you may corrupt your host data (use the @option{-snapshot} command
853line option or modify the device permissions accordingly).
854@end table
855
856@subsubsection Windows
857
01781963
FB
858@table @code
859@item CD
4be456f1 860The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
861alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
862supported as an alias to the first CDROM drive.
19cb3738 863
e598752a 864Currently there is no specific code to handle removable media, so it
19cb3738
FB
865is better to use the @code{change} or @code{eject} monitor commands to
866change or eject media.
01781963 867@item Hard disks
89dfe898 868Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
869where @var{N} is the drive number (0 is the first hard disk).
870
871WARNING: unless you know what you do, it is better to only make
872READ-ONLY accesses to the hard disk otherwise you may corrupt your
873host data (use the @option{-snapshot} command line so that the
874modifications are written in a temporary file).
875@end table
876
19cb3738
FB
877
878@subsubsection Mac OS X
879
5fafdf24 880@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 881
e598752a 882Currently there is no specific code to handle removable media, so it
19cb3738
FB
883is better to use the @code{change} or @code{eject} monitor commands to
884change or eject media.
885
debc7065 886@node disk_images_fat_images
2c6cadd4
FB
887@subsection Virtual FAT disk images
888
889QEMU can automatically create a virtual FAT disk image from a
890directory tree. In order to use it, just type:
891
5fafdf24 892@example
3804da9d 893qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
894@end example
895
896Then you access access to all the files in the @file{/my_directory}
897directory without having to copy them in a disk image or to export
898them via SAMBA or NFS. The default access is @emph{read-only}.
899
900Floppies can be emulated with the @code{:floppy:} option:
901
5fafdf24 902@example
3804da9d 903qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
904@end example
905
906A read/write support is available for testing (beta stage) with the
907@code{:rw:} option:
908
5fafdf24 909@example
3804da9d 910qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
911@end example
912
913What you should @emph{never} do:
914@itemize
915@item use non-ASCII filenames ;
916@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
917@item expect it to work when loadvm'ing ;
918@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
919@end itemize
920
75818250
TS
921@node disk_images_nbd
922@subsection NBD access
923
924QEMU can access directly to block device exported using the Network Block Device
925protocol.
926
927@example
1d7d2a9d 928qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
929@end example
930
931If the NBD server is located on the same host, you can use an unix socket instead
932of an inet socket:
933
934@example
1d7d2a9d 935qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
936@end example
937
938In this case, the block device must be exported using qemu-nbd:
939
940@example
941qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
942@end example
943
9d85d557 944The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
945@example
946qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
947@end example
948
1d7d2a9d 949@noindent
75818250
TS
950and then you can use it with two guests:
951@example
1d7d2a9d
PB
952qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
953qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
954@end example
955
1d7d2a9d
PB
956If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
957own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 958@example
1d7d2a9d
PB
959qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
960qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
961@end example
962
963The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
964also available. Here are some example of the older syntax:
965@example
966qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
967qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
968qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
969@end example
970
42af9c30
MK
971@node disk_images_sheepdog
972@subsection Sheepdog disk images
973
974Sheepdog is a distributed storage system for QEMU. It provides highly
975available block level storage volumes that can be attached to
976QEMU-based virtual machines.
977
978You can create a Sheepdog disk image with the command:
979@example
5d6768e3 980qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
981@end example
982where @var{image} is the Sheepdog image name and @var{size} is its
983size.
984
985To import the existing @var{filename} to Sheepdog, you can use a
986convert command.
987@example
5d6768e3 988qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
989@end example
990
991You can boot from the Sheepdog disk image with the command:
992@example
5d6768e3 993qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
994@end example
995
996You can also create a snapshot of the Sheepdog image like qcow2.
997@example
5d6768e3 998qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
999@end example
1000where @var{tag} is a tag name of the newly created snapshot.
1001
1002To boot from the Sheepdog snapshot, specify the tag name of the
1003snapshot.
1004@example
5d6768e3 1005qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
1006@end example
1007
1008You can create a cloned image from the existing snapshot.
1009@example
5d6768e3 1010qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
1011@end example
1012where @var{base} is a image name of the source snapshot and @var{tag}
1013is its tag name.
1014
1b8bbb46
MK
1015You can use an unix socket instead of an inet socket:
1016
1017@example
1018qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
1019@end example
1020
42af9c30
MK
1021If the Sheepdog daemon doesn't run on the local host, you need to
1022specify one of the Sheepdog servers to connect to.
1023@example
5d6768e3
MK
1024qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
1025qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
1026@end example
1027
00984e39
RS
1028@node disk_images_iscsi
1029@subsection iSCSI LUNs
1030
1031iSCSI is a popular protocol used to access SCSI devices across a computer
1032network.
1033
1034There are two different ways iSCSI devices can be used by QEMU.
1035
1036The first method is to mount the iSCSI LUN on the host, and make it appear as
1037any other ordinary SCSI device on the host and then to access this device as a
1038/dev/sd device from QEMU. How to do this differs between host OSes.
1039
1040The second method involves using the iSCSI initiator that is built into
1041QEMU. This provides a mechanism that works the same way regardless of which
1042host OS you are running QEMU on. This section will describe this second method
1043of using iSCSI together with QEMU.
1044
1045In QEMU, iSCSI devices are described using special iSCSI URLs
1046
1047@example
1048URL syntax:
1049iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
1050@end example
1051
1052Username and password are optional and only used if your target is set up
1053using CHAP authentication for access control.
1054Alternatively the username and password can also be set via environment
1055variables to have these not show up in the process list
1056
1057@example
1058export LIBISCSI_CHAP_USERNAME=<username>
1059export LIBISCSI_CHAP_PASSWORD=<password>
1060iscsi://<host>/<target-iqn-name>/<lun>
1061@end example
1062
f9dadc98
RS
1063Various session related parameters can be set via special options, either
1064in a configuration file provided via '-readconfig' or directly on the
1065command line.
1066
31459f46
RS
1067If the initiator-name is not specified qemu will use a default name
1068of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
1069virtual machine.
1070
1071
f9dadc98
RS
1072@example
1073Setting a specific initiator name to use when logging in to the target
1074-iscsi initiator-name=iqn.qemu.test:my-initiator
1075@end example
1076
1077@example
1078Controlling which type of header digest to negotiate with the target
1079-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1080@end example
1081
1082These can also be set via a configuration file
1083@example
1084[iscsi]
1085 user = "CHAP username"
1086 password = "CHAP password"
1087 initiator-name = "iqn.qemu.test:my-initiator"
1088 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1089 header-digest = "CRC32C"
1090@end example
1091
1092
1093Setting the target name allows different options for different targets
1094@example
1095[iscsi "iqn.target.name"]
1096 user = "CHAP username"
1097 password = "CHAP password"
1098 initiator-name = "iqn.qemu.test:my-initiator"
1099 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1100 header-digest = "CRC32C"
1101@end example
1102
1103
1104Howto use a configuration file to set iSCSI configuration options:
1105@example
1106cat >iscsi.conf <<EOF
1107[iscsi]
1108 user = "me"
1109 password = "my password"
1110 initiator-name = "iqn.qemu.test:my-initiator"
1111 header-digest = "CRC32C"
1112EOF
1113
1114qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1115 -readconfig iscsi.conf
1116@end example
1117
1118
00984e39
RS
1119Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1120@example
1121This example shows how to set up an iSCSI target with one CDROM and one DISK
1122using the Linux STGT software target. This target is available on Red Hat based
1123systems as the package 'scsi-target-utils'.
1124
1125tgtd --iscsi portal=127.0.0.1:3260
1126tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1127tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1128 -b /IMAGES/disk.img --device-type=disk
1129tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1130 -b /IMAGES/cd.iso --device-type=cd
1131tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1132
f9dadc98
RS
1133qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1134 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1135 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1136@end example
1137
8809e289
BR
1138@node disk_images_gluster
1139@subsection GlusterFS disk images
00984e39 1140
736a83fa 1141GlusterFS is a user space distributed file system.
8809e289
BR
1142
1143You can boot from the GlusterFS disk image with the command:
1144@example
76b5550f
PKK
1145URI:
1146qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1147 [?socket=...][,file.debug=9][,file.logfile=...]
1148
1149JSON:
1150qemu-system-x86_64 'json:@{"driver":"qcow2",
1151 "file":@{"driver":"gluster",
1152 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1153 "server":[@{"type":"tcp","host":"...","port":"..."@},
1154 @{"type":"unix","socket":"..."@}]@}@}'
8809e289
BR
1155@end example
1156
1157@var{gluster} is the protocol.
1158
76b5550f 1159@var{type} specifies the transport type used to connect to gluster
8809e289 1160management daemon (glusterd). Valid transport types are
76b5550f
PKK
1161tcp and unix. In the URI form, if a transport type isn't specified,
1162then tcp type is assumed.
8809e289 1163
76b5550f
PKK
1164@var{host} specifies the server where the volume file specification for
1165the given volume resides. This can be either a hostname or an ipv4 address.
1166If transport type is unix, then @var{host} field should not be specified.
8809e289
BR
1167Instead @var{socket} field needs to be populated with the path to unix domain
1168socket.
1169
1170@var{port} is the port number on which glusterd is listening. This is optional
76b5550f
PKK
1171and if not specified, it defaults to port 24007. If the transport type is unix,
1172then @var{port} should not be specified.
1173
1174@var{volume} is the name of the gluster volume which contains the disk image.
1175
1176@var{path} is the path to the actual disk image that resides on gluster volume.
1177
1178@var{debug} is the logging level of the gluster protocol driver. Debug levels
1179are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1180The default level is 4. The current logging levels defined in the gluster source
1181are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
11826 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1183
1184@var{logfile} is a commandline option to mention log file path which helps in
1185logging to the specified file and also help in persisting the gfapi logs. The
1186default is stderr.
1187
8809e289 1188
8809e289 1189
8809e289
BR
1190
1191You can create a GlusterFS disk image with the command:
1192@example
76b5550f 1193qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
8809e289
BR
1194@end example
1195
1196Examples
1197@example
1198qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1199qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1200qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1201qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1202qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1203qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1204qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1205qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
76b5550f
PKK
1206qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1207qemu-system-x86_64 'json:@{"driver":"qcow2",
1208 "file":@{"driver":"gluster",
1209 "volume":"testvol","path":"a.img",
1210 "debug":9,"logfile":"/var/log/qemu-gluster.log",
1211 "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1212 @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1213qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1214 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1215 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1216 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
8809e289 1217@end example
00984e39 1218
0a12ec87
RJ
1219@node disk_images_ssh
1220@subsection Secure Shell (ssh) disk images
1221
1222You can access disk images located on a remote ssh server
1223by using the ssh protocol:
1224
1225@example
1226qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1227@end example
1228
1229Alternative syntax using properties:
1230
1231@example
1232qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1233@end example
1234
1235@var{ssh} is the protocol.
1236
1237@var{user} is the remote user. If not specified, then the local
1238username is tried.
1239
1240@var{server} specifies the remote ssh server. Any ssh server can be
1241used, but it must implement the sftp-server protocol. Most Unix/Linux
1242systems should work without requiring any extra configuration.
1243
1244@var{port} is the port number on which sshd is listening. By default
1245the standard ssh port (22) is used.
1246
1247@var{path} is the path to the disk image.
1248
1249The optional @var{host_key_check} parameter controls how the remote
1250host's key is checked. The default is @code{yes} which means to use
1251the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1252turns off known-hosts checking. Or you can check that the host key
1253matches a specific fingerprint:
1254@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1255(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1256tools only use MD5 to print fingerprints).
1257
1258Currently authentication must be done using ssh-agent. Other
1259authentication methods may be supported in future.
1260
9a2d462e
RJ
1261Note: Many ssh servers do not support an @code{fsync}-style operation.
1262The ssh driver cannot guarantee that disk flush requests are
1263obeyed, and this causes a risk of disk corruption if the remote
1264server or network goes down during writes. The driver will
1265print a warning when @code{fsync} is not supported:
1266
1267warning: ssh server @code{ssh.example.com:22} does not support fsync
1268
1269With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1270supported.
0a12ec87 1271
debc7065 1272@node pcsys_network
9d4fb82e
FB
1273@section Network emulation
1274
4be456f1 1275QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1276target) and can connect them to an arbitrary number of Virtual Local
1277Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1278VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1279simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1280network stack can replace the TAP device to have a basic network
1281connection.
1282
1283@subsection VLANs
9d4fb82e 1284
41d03949
FB
1285QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1286connection between several network devices. These devices can be for
1287example QEMU virtual Ethernet cards or virtual Host ethernet devices
1288(TAP devices).
9d4fb82e 1289
41d03949
FB
1290@subsection Using TAP network interfaces
1291
1292This is the standard way to connect QEMU to a real network. QEMU adds
1293a virtual network device on your host (called @code{tapN}), and you
1294can then configure it as if it was a real ethernet card.
9d4fb82e 1295
8f40c388
FB
1296@subsubsection Linux host
1297
9d4fb82e
FB
1298As an example, you can download the @file{linux-test-xxx.tar.gz}
1299archive and copy the script @file{qemu-ifup} in @file{/etc} and
1300configure properly @code{sudo} so that the command @code{ifconfig}
1301contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1302that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1303device @file{/dev/net/tun} must be present.
1304
ee0f4751
FB
1305See @ref{sec_invocation} to have examples of command lines using the
1306TAP network interfaces.
9d4fb82e 1307
8f40c388
FB
1308@subsubsection Windows host
1309
1310There is a virtual ethernet driver for Windows 2000/XP systems, called
1311TAP-Win32. But it is not included in standard QEMU for Windows,
1312so you will need to get it separately. It is part of OpenVPN package,
1313so download OpenVPN from : @url{http://openvpn.net/}.
1314
9d4fb82e
FB
1315@subsection Using the user mode network stack
1316
41d03949
FB
1317By using the option @option{-net user} (default configuration if no
1318@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1319network stack (you don't need root privilege to use the virtual
41d03949 1320network). The virtual network configuration is the following:
9d4fb82e
FB
1321
1322@example
1323
41d03949
FB
1324 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1325 | (10.0.2.2)
9d4fb82e 1326 |
2518bd0d 1327 ----> DNS server (10.0.2.3)
3b46e624 1328 |
2518bd0d 1329 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1330@end example
1331
1332The QEMU VM behaves as if it was behind a firewall which blocks all
1333incoming connections. You can use a DHCP client to automatically
41d03949
FB
1334configure the network in the QEMU VM. The DHCP server assign addresses
1335to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1336
1337In order to check that the user mode network is working, you can ping
1338the address 10.0.2.2 and verify that you got an address in the range
133910.0.2.x from the QEMU virtual DHCP server.
1340
37cbfcce
GH
1341Note that ICMP traffic in general does not work with user mode networking.
1342@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1343however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1344ping sockets to allow @code{ping} to the Internet. The host admin has to set
1345the ping_group_range in order to grant access to those sockets. To allow ping
1346for GID 100 (usually users group):
1347
1348@example
1349echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1350@end example
b415a407 1351
9bf05444
FB
1352When using the built-in TFTP server, the router is also the TFTP
1353server.
1354
c8c6afa8
TH
1355When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1356connections can be redirected from the host to the guest. It allows for
1357example to redirect X11, telnet or SSH connections.
443f1376 1358
41d03949
FB
1359@subsection Connecting VLANs between QEMU instances
1360
1361Using the @option{-net socket} option, it is possible to make VLANs
1362that span several QEMU instances. See @ref{sec_invocation} to have a
1363basic example.
1364
576fd0a1 1365@node pcsys_other_devs
6cbf4c8c
CM
1366@section Other Devices
1367
1368@subsection Inter-VM Shared Memory device
1369
5400c02b
MA
1370On Linux hosts, a shared memory device is available. The basic syntax
1371is:
6cbf4c8c
CM
1372
1373@example
5400c02b
MA
1374qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1375@end example
1376
1377where @var{hostmem} names a host memory backend. For a POSIX shared
1378memory backend, use something like
1379
1380@example
1381-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1382@end example
1383
1384If desired, interrupts can be sent between guest VMs accessing the same shared
1385memory region. Interrupt support requires using a shared memory server and
1386using a chardev socket to connect to it. The code for the shared memory server
1387is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1388memory server is:
1389
1390@example
a75eb03b 1391# First start the ivshmem server once and for all
50d34c4e 1392ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1393
1394# Then start your qemu instances with matching arguments
5400c02b 1395qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1396 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1397@end example
1398
1399When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1400using the same server to communicate via interrupts. Guests can read their
1309cf44 1401VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1402
62a830b6
MA
1403@subsubsection Migration with ivshmem
1404
5400c02b
MA
1405With device property @option{master=on}, the guest will copy the shared
1406memory on migration to the destination host. With @option{master=off},
1407the guest will not be able to migrate with the device attached. In the
1408latter case, the device should be detached and then reattached after
1409migration using the PCI hotplug support.
6cbf4c8c 1410
62a830b6
MA
1411At most one of the devices sharing the same memory can be master. The
1412master must complete migration before you plug back the other devices.
1413
7d4f4bda
MAL
1414@subsubsection ivshmem and hugepages
1415
1416Instead of specifying the <shm size> using POSIX shm, you may specify
1417a memory backend that has hugepage support:
1418
1419@example
5400c02b
MA
1420qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1421 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1422@end example
1423
1424ivshmem-server also supports hugepages mount points with the
1425@option{-m} memory path argument.
1426
9d4fb82e
FB
1427@node direct_linux_boot
1428@section Direct Linux Boot
1f673135
FB
1429
1430This section explains how to launch a Linux kernel inside QEMU without
1431having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1432kernel testing.
1f673135 1433
ee0f4751 1434The syntax is:
1f673135 1435@example
3804da9d 1436qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1437@end example
1438
ee0f4751
FB
1439Use @option{-kernel} to provide the Linux kernel image and
1440@option{-append} to give the kernel command line arguments. The
1441@option{-initrd} option can be used to provide an INITRD image.
1f673135 1442
ee0f4751
FB
1443When using the direct Linux boot, a disk image for the first hard disk
1444@file{hda} is required because its boot sector is used to launch the
1445Linux kernel.
1f673135 1446
ee0f4751
FB
1447If you do not need graphical output, you can disable it and redirect
1448the virtual serial port and the QEMU monitor to the console with the
1449@option{-nographic} option. The typical command line is:
1f673135 1450@example
3804da9d
SW
1451qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1452 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1453@end example
1454
ee0f4751
FB
1455Use @key{Ctrl-a c} to switch between the serial console and the
1456monitor (@pxref{pcsys_keys}).
1f673135 1457
debc7065 1458@node pcsys_usb
b389dbfb
FB
1459@section USB emulation
1460
a92ff8c1
TH
1461QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
1462plug virtual USB devices or real host USB devices (only works with certain
1463host operating systems). QEMU will automatically create and connect virtual
1464USB hubs as necessary to connect multiple USB devices.
b389dbfb 1465
0aff66b5
PB
1466@menu
1467* usb_devices::
1468* host_usb_devices::
1469@end menu
1470@node usb_devices
1471@subsection Connecting USB devices
b389dbfb 1472
a92ff8c1
TH
1473USB devices can be connected with the @option{-device usb-...} command line
1474option or the @code{device_add} monitor command. Available devices are:
b389dbfb 1475
db380c06 1476@table @code
a92ff8c1 1477@item usb-mouse
0aff66b5 1478Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 1479@item usb-tablet
c6d46c20 1480Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1481This means QEMU is able to report the mouse position without having
0aff66b5 1482to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
1483@item usb-storage,drive=@var{drive_id}
1484Mass storage device backed by @var{drive_id} (@pxref{disk_images})
1485@item usb-uas
1486USB attached SCSI device, see
1487@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1488for details
1489@item usb-bot
1490Bulk-only transport storage device, see
1491@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1492for details here, too
1493@item usb-mtp,x-root=@var{dir}
1494Media transfer protocol device, using @var{dir} as root of the file tree
1495that is presented to the guest.
1496@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
1497Pass through the host device identified by @var{bus} and @var{addr}
1498@item usb-host,vendorid=@var{vendor},productid=@var{product}
1499Pass through the host device identified by @var{vendor} and @var{product} ID
1500@item usb-wacom-tablet
f6d2a316
AZ
1501Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1502above but it can be used with the tslib library because in addition to touch
1503coordinates it reports touch pressure.
a92ff8c1 1504@item usb-kbd
47b2d338 1505Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 1506@item usb-serial,chardev=@var{id}
db380c06 1507Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
1508device @var{id}.
1509@item usb-braille,chardev=@var{id}
2e4d9fb1 1510Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
1511or fake device referenced by @var{id}.
1512@item usb-net[,netdev=@var{id}]
1513Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
1514specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 1515For instance, user-mode networking can be used with
6c9f886c 1516@example
a92ff8c1 1517qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 1518@end example
a92ff8c1
TH
1519@item usb-ccid
1520Smartcard reader device
1521@item usb-audio
1522USB audio device
1523@item usb-bt-dongle
1524Bluetooth dongle for the transport layer of HCI. It is connected to HCI
1525scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
1526Note that the syntax for the @code{-device usb-bt-dongle} option is not as
1527useful yet as it was with the legacy @code{-usbdevice} option. So to
1528configure an USB bluetooth device, you might need to use
1529"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
1530bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
1531the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1532no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1533This USB device implements the USB Transport Layer of HCI. Example
1534usage:
1535@example
8485140f 1536@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1537@end example
0aff66b5 1538@end table
b389dbfb 1539
0aff66b5 1540@node host_usb_devices
b389dbfb
FB
1541@subsection Using host USB devices on a Linux host
1542
1543WARNING: this is an experimental feature. QEMU will slow down when
1544using it. USB devices requiring real time streaming (i.e. USB Video
1545Cameras) are not supported yet.
1546
1547@enumerate
5fafdf24 1548@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1549is actually using the USB device. A simple way to do that is simply to
1550disable the corresponding kernel module by renaming it from @file{mydriver.o}
1551to @file{mydriver.o.disabled}.
1552
1553@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1554@example
1555ls /proc/bus/usb
1556001 devices drivers
1557@end example
1558
1559@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1560@example
1561chown -R myuid /proc/bus/usb
1562@end example
1563
1564@item Launch QEMU and do in the monitor:
5fafdf24 1565@example
b389dbfb
FB
1566info usbhost
1567 Device 1.2, speed 480 Mb/s
1568 Class 00: USB device 1234:5678, USB DISK
1569@end example
1570You should see the list of the devices you can use (Never try to use
1571hubs, it won't work).
1572
1573@item Add the device in QEMU by using:
5fafdf24 1574@example
a92ff8c1 1575device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1576@end example
1577
a92ff8c1
TH
1578Normally the guest OS should report that a new USB device is plugged.
1579You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1580
1581@item Now you can try to use the host USB device in QEMU.
1582
1583@end enumerate
1584
1585When relaunching QEMU, you may have to unplug and plug again the USB
1586device to make it work again (this is a bug).
1587
f858dcae
TS
1588@node vnc_security
1589@section VNC security
1590
1591The VNC server capability provides access to the graphical console
1592of the guest VM across the network. This has a number of security
1593considerations depending on the deployment scenarios.
1594
1595@menu
1596* vnc_sec_none::
1597* vnc_sec_password::
1598* vnc_sec_certificate::
1599* vnc_sec_certificate_verify::
1600* vnc_sec_certificate_pw::
2f9606b3
AL
1601* vnc_sec_sasl::
1602* vnc_sec_certificate_sasl::
f858dcae 1603* vnc_generate_cert::
2f9606b3 1604* vnc_setup_sasl::
f858dcae
TS
1605@end menu
1606@node vnc_sec_none
1607@subsection Without passwords
1608
1609The simplest VNC server setup does not include any form of authentication.
1610For this setup it is recommended to restrict it to listen on a UNIX domain
1611socket only. For example
1612
1613@example
3804da9d 1614qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1615@end example
1616
1617This ensures that only users on local box with read/write access to that
1618path can access the VNC server. To securely access the VNC server from a
1619remote machine, a combination of netcat+ssh can be used to provide a secure
1620tunnel.
1621
1622@node vnc_sec_password
1623@subsection With passwords
1624
1625The VNC protocol has limited support for password based authentication. Since
1626the protocol limits passwords to 8 characters it should not be considered
1627to provide high security. The password can be fairly easily brute-forced by
1628a client making repeat connections. For this reason, a VNC server using password
1629authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1630or UNIX domain sockets. Password authentication is not supported when operating
1631in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1632authentication is requested with the @code{password} option, and then once QEMU
1633is running the password is set with the monitor. Until the monitor is used to
1634set the password all clients will be rejected.
f858dcae
TS
1635
1636@example
3804da9d 1637qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1638(qemu) change vnc password
1639Password: ********
1640(qemu)
1641@end example
1642
1643@node vnc_sec_certificate
1644@subsection With x509 certificates
1645
1646The QEMU VNC server also implements the VeNCrypt extension allowing use of
1647TLS for encryption of the session, and x509 certificates for authentication.
1648The use of x509 certificates is strongly recommended, because TLS on its
1649own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1650support provides a secure session, but no authentication. This allows any
1651client to connect, and provides an encrypted session.
1652
1653@example
3804da9d 1654qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1655@end example
1656
1657In the above example @code{/etc/pki/qemu} should contain at least three files,
1658@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1659users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1660NB the @code{server-key.pem} file should be protected with file mode 0600 to
1661only be readable by the user owning it.
1662
1663@node vnc_sec_certificate_verify
1664@subsection With x509 certificates and client verification
1665
1666Certificates can also provide a means to authenticate the client connecting.
1667The server will request that the client provide a certificate, which it will
1668then validate against the CA certificate. This is a good choice if deploying
1669in an environment with a private internal certificate authority.
1670
1671@example
3804da9d 1672qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1673@end example
1674
1675
1676@node vnc_sec_certificate_pw
1677@subsection With x509 certificates, client verification and passwords
1678
1679Finally, the previous method can be combined with VNC password authentication
1680to provide two layers of authentication for clients.
1681
1682@example
3804da9d 1683qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1684(qemu) change vnc password
1685Password: ********
1686(qemu)
1687@end example
1688
2f9606b3
AL
1689
1690@node vnc_sec_sasl
1691@subsection With SASL authentication
1692
1693The SASL authentication method is a VNC extension, that provides an
1694easily extendable, pluggable authentication method. This allows for
1695integration with a wide range of authentication mechanisms, such as
1696PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1697The strength of the authentication depends on the exact mechanism
1698configured. If the chosen mechanism also provides a SSF layer, then
1699it will encrypt the datastream as well.
1700
1701Refer to the later docs on how to choose the exact SASL mechanism
1702used for authentication, but assuming use of one supporting SSF,
1703then QEMU can be launched with:
1704
1705@example
3804da9d 1706qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1707@end example
1708
1709@node vnc_sec_certificate_sasl
1710@subsection With x509 certificates and SASL authentication
1711
1712If the desired SASL authentication mechanism does not supported
1713SSF layers, then it is strongly advised to run it in combination
1714with TLS and x509 certificates. This provides securely encrypted
1715data stream, avoiding risk of compromising of the security
1716credentials. This can be enabled, by combining the 'sasl' option
1717with the aforementioned TLS + x509 options:
1718
1719@example
3804da9d 1720qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1721@end example
1722
1723
f858dcae
TS
1724@node vnc_generate_cert
1725@subsection Generating certificates for VNC
1726
1727The GNU TLS packages provides a command called @code{certtool} which can
1728be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1729is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1730each server. If using certificates for authentication, then each client
1731will also need to be issued a certificate. The recommendation is for the
1732server to keep its certificates in either @code{/etc/pki/qemu} or for
1733unprivileged users in @code{$HOME/.pki/qemu}.
1734
1735@menu
1736* vnc_generate_ca::
1737* vnc_generate_server::
1738* vnc_generate_client::
1739@end menu
1740@node vnc_generate_ca
1741@subsubsection Setup the Certificate Authority
1742
1743This step only needs to be performed once per organization / organizational
1744unit. First the CA needs a private key. This key must be kept VERY secret
1745and secure. If this key is compromised the entire trust chain of the certificates
1746issued with it is lost.
1747
1748@example
1749# certtool --generate-privkey > ca-key.pem
1750@end example
1751
1752A CA needs to have a public certificate. For simplicity it can be a self-signed
1753certificate, or one issue by a commercial certificate issuing authority. To
1754generate a self-signed certificate requires one core piece of information, the
1755name of the organization.
1756
1757@example
1758# cat > ca.info <<EOF
1759cn = Name of your organization
1760ca
1761cert_signing_key
1762EOF
1763# certtool --generate-self-signed \
1764 --load-privkey ca-key.pem
1765 --template ca.info \
1766 --outfile ca-cert.pem
1767@end example
1768
1769The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1770TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1771
1772@node vnc_generate_server
1773@subsubsection Issuing server certificates
1774
1775Each server (or host) needs to be issued with a key and certificate. When connecting
1776the certificate is sent to the client which validates it against the CA certificate.
1777The core piece of information for a server certificate is the hostname. This should
1778be the fully qualified hostname that the client will connect with, since the client
1779will typically also verify the hostname in the certificate. On the host holding the
1780secure CA private key:
1781
1782@example
1783# cat > server.info <<EOF
1784organization = Name of your organization
1785cn = server.foo.example.com
1786tls_www_server
1787encryption_key
1788signing_key
1789EOF
1790# certtool --generate-privkey > server-key.pem
1791# certtool --generate-certificate \
1792 --load-ca-certificate ca-cert.pem \
1793 --load-ca-privkey ca-key.pem \
63c693f8 1794 --load-privkey server-key.pem \
f858dcae
TS
1795 --template server.info \
1796 --outfile server-cert.pem
1797@end example
1798
1799The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1800to the server for which they were generated. The @code{server-key.pem} is security
1801sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1802
1803@node vnc_generate_client
1804@subsubsection Issuing client certificates
1805
1806If the QEMU VNC server is to use the @code{x509verify} option to validate client
1807certificates as its authentication mechanism, each client also needs to be issued
1808a certificate. The client certificate contains enough metadata to uniquely identify
1809the client, typically organization, state, city, building, etc. On the host holding
1810the secure CA private key:
1811
1812@example
1813# cat > client.info <<EOF
1814country = GB
1815state = London
1816locality = London
63c693f8 1817organization = Name of your organization
f858dcae
TS
1818cn = client.foo.example.com
1819tls_www_client
1820encryption_key
1821signing_key
1822EOF
1823# certtool --generate-privkey > client-key.pem
1824# certtool --generate-certificate \
1825 --load-ca-certificate ca-cert.pem \
1826 --load-ca-privkey ca-key.pem \
1827 --load-privkey client-key.pem \
1828 --template client.info \
1829 --outfile client-cert.pem
1830@end example
1831
1832The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1833copied to the client for which they were generated.
1834
2f9606b3
AL
1835
1836@node vnc_setup_sasl
1837
1838@subsection Configuring SASL mechanisms
1839
1840The following documentation assumes use of the Cyrus SASL implementation on a
1841Linux host, but the principals should apply to any other SASL impl. When SASL
1842is enabled, the mechanism configuration will be loaded from system default
1843SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1844unprivileged user, an environment variable SASL_CONF_PATH can be used
1845to make it search alternate locations for the service config.
1846
c6a9a9f5
DB
1847If the TLS option is enabled for VNC, then it will provide session encryption,
1848otherwise the SASL mechanism will have to provide encryption. In the latter
1849case the list of possible plugins that can be used is drastically reduced. In
1850fact only the GSSAPI SASL mechanism provides an acceptable level of security
1851by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1852mechanism, however, it has multiple serious flaws described in detail in
1853RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1854provides a simple username/password auth facility similar to DIGEST-MD5, but
1855does not support session encryption, so can only be used in combination with
1856TLS.
1857
1858When not using TLS the recommended configuration is
2f9606b3
AL
1859
1860@example
c6a9a9f5
DB
1861mech_list: gssapi
1862keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1863@end example
1864
c6a9a9f5
DB
1865This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1866the server principal stored in /etc/qemu/krb5.tab. For this to work the
1867administrator of your KDC must generate a Kerberos principal for the server,
1868with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1869'somehost.example.com' with the fully qualified host name of the machine
1870running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1871
c6a9a9f5
DB
1872When using TLS, if username+password authentication is desired, then a
1873reasonable configuration is
2f9606b3
AL
1874
1875@example
c6a9a9f5
DB
1876mech_list: scram-sha-1
1877sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1878@end example
1879
c6a9a9f5
DB
1880The saslpasswd2 program can be used to populate the passwd.db file with
1881accounts.
2f9606b3 1882
c6a9a9f5
DB
1883Other SASL configurations will be left as an exercise for the reader. Note that
1884all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1885secure data channel.
2f9606b3 1886
0806e3f6 1887@node gdb_usage
da415d54
FB
1888@section GDB usage
1889
1890QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1891'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1892
b65ee4fa 1893In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1894gdb connection:
1895@example
3804da9d
SW
1896qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1897 -append "root=/dev/hda"
da415d54
FB
1898Connected to host network interface: tun0
1899Waiting gdb connection on port 1234
1900@end example
1901
1902Then launch gdb on the 'vmlinux' executable:
1903@example
1904> gdb vmlinux
1905@end example
1906
1907In gdb, connect to QEMU:
1908@example
6c9bf893 1909(gdb) target remote localhost:1234
da415d54
FB
1910@end example
1911
1912Then you can use gdb normally. For example, type 'c' to launch the kernel:
1913@example
1914(gdb) c
1915@end example
1916
0806e3f6
FB
1917Here are some useful tips in order to use gdb on system code:
1918
1919@enumerate
1920@item
1921Use @code{info reg} to display all the CPU registers.
1922@item
1923Use @code{x/10i $eip} to display the code at the PC position.
1924@item
1925Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1926@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1927@end enumerate
1928
60897d36
EI
1929Advanced debugging options:
1930
b6af0975 1931The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1932@table @code
60897d36
EI
1933@item maintenance packet qqemu.sstepbits
1934
1935This will display the MASK bits used to control the single stepping IE:
1936@example
1937(gdb) maintenance packet qqemu.sstepbits
1938sending: "qqemu.sstepbits"
1939received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1940@end example
1941@item maintenance packet qqemu.sstep
1942
1943This will display the current value of the mask used when single stepping IE:
1944@example
1945(gdb) maintenance packet qqemu.sstep
1946sending: "qqemu.sstep"
1947received: "0x7"
1948@end example
1949@item maintenance packet Qqemu.sstep=HEX_VALUE
1950
1951This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1952@example
1953(gdb) maintenance packet Qqemu.sstep=0x5
1954sending: "qemu.sstep=0x5"
1955received: "OK"
1956@end example
94d45e44 1957@end table
60897d36 1958
debc7065 1959@node pcsys_os_specific
1a084f3d
FB
1960@section Target OS specific information
1961
1962@subsection Linux
1963
15a34c63
FB
1964To have access to SVGA graphic modes under X11, use the @code{vesa} or
1965the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1966color depth in the guest and the host OS.
1a084f3d 1967
e3371e62
FB
1968When using a 2.6 guest Linux kernel, you should add the option
1969@code{clock=pit} on the kernel command line because the 2.6 Linux
1970kernels make very strict real time clock checks by default that QEMU
1971cannot simulate exactly.
1972
7c3fc84d
FB
1973When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1974not activated because QEMU is slower with this patch. The QEMU
1975Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1976Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1977patch by default. Newer kernels don't have it.
1978
1a084f3d
FB
1979@subsection Windows
1980
1981If you have a slow host, using Windows 95 is better as it gives the
1982best speed. Windows 2000 is also a good choice.
1983
e3371e62
FB
1984@subsubsection SVGA graphic modes support
1985
1986QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1987card. All Windows versions starting from Windows 95 should recognize
1988and use this graphic card. For optimal performances, use 16 bit color
1989depth in the guest and the host OS.
1a084f3d 1990
3cb0853a
FB
1991If you are using Windows XP as guest OS and if you want to use high
1992resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
19931280x1024x16), then you should use the VESA VBE virtual graphic card
1994(option @option{-std-vga}).
1995
e3371e62
FB
1996@subsubsection CPU usage reduction
1997
1998Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1999instruction. The result is that it takes host CPU cycles even when
2000idle. You can install the utility from
3ba34a70
TH
2001@url{http://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
2002to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2003
9d0a8e6f 2004@subsubsection Windows 2000 disk full problem
e3371e62 2005
9d0a8e6f
FB
2006Windows 2000 has a bug which gives a disk full problem during its
2007installation. When installing it, use the @option{-win2k-hack} QEMU
2008option to enable a specific workaround. After Windows 2000 is
2009installed, you no longer need this option (this option slows down the
2010IDE transfers).
e3371e62 2011
6cc721cf
FB
2012@subsubsection Windows 2000 shutdown
2013
2014Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2015can. It comes from the fact that Windows 2000 does not automatically
2016use the APM driver provided by the BIOS.
2017
2018In order to correct that, do the following (thanks to Struan
2019Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2020Add/Troubleshoot a device => Add a new device & Next => No, select the
2021hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2022(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2023correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2024
2025@subsubsection Share a directory between Unix and Windows
2026
c8c6afa8
TH
2027See @ref{sec_invocation} about the help of the option
2028@option{'-netdev user,smb=...'}.
6cc721cf 2029
2192c332 2030@subsubsection Windows XP security problem
e3371e62
FB
2031
2032Some releases of Windows XP install correctly but give a security
2033error when booting:
2034@example
2035A problem is preventing Windows from accurately checking the
2036license for this computer. Error code: 0x800703e6.
2037@end example
e3371e62 2038
2192c332
FB
2039The workaround is to install a service pack for XP after a boot in safe
2040mode. Then reboot, and the problem should go away. Since there is no
2041network while in safe mode, its recommended to download the full
2042installation of SP1 or SP2 and transfer that via an ISO or using the
2043vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2044
a0a821a4
FB
2045@subsection MS-DOS and FreeDOS
2046
2047@subsubsection CPU usage reduction
2048
2049DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70
TH
2050it takes host CPU cycles even when idle. You can install the utility from
2051@url{http://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
2052to solve this problem.
a0a821a4 2053
debc7065 2054@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2055@chapter QEMU System emulator for non PC targets
2056
2057QEMU is a generic emulator and it emulates many non PC
2058machines. Most of the options are similar to the PC emulator. The
4be456f1 2059differences are mentioned in the following sections.
3f9f3aa1 2060
debc7065 2061@menu
7544a042 2062* PowerPC System emulator::
24d4de45
TS
2063* Sparc32 System emulator::
2064* Sparc64 System emulator::
2065* MIPS System emulator::
2066* ARM System emulator::
2067* ColdFire System emulator::
7544a042
SW
2068* Cris System emulator::
2069* Microblaze System emulator::
2070* SH4 System emulator::
3aeaea65 2071* Xtensa System emulator::
debc7065
FB
2072@end menu
2073
7544a042
SW
2074@node PowerPC System emulator
2075@section PowerPC System emulator
2076@cindex system emulation (PowerPC)
1a084f3d 2077
15a34c63
FB
2078Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2079or PowerMac PowerPC system.
1a084f3d 2080
b671f9ed 2081QEMU emulates the following PowerMac peripherals:
1a084f3d 2082
15a34c63 2083@itemize @minus
5fafdf24 2084@item
006f3a48 2085UniNorth or Grackle PCI Bridge
15a34c63
FB
2086@item
2087PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2088@item
15a34c63 20892 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2090@item
15a34c63
FB
2091NE2000 PCI adapters
2092@item
2093Non Volatile RAM
2094@item
2095VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2096@end itemize
2097
b671f9ed 2098QEMU emulates the following PREP peripherals:
52c00a5f
FB
2099
2100@itemize @minus
5fafdf24 2101@item
15a34c63
FB
2102PCI Bridge
2103@item
2104PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2105@item
52c00a5f
FB
21062 IDE interfaces with hard disk and CD-ROM support
2107@item
2108Floppy disk
5fafdf24 2109@item
15a34c63 2110NE2000 network adapters
52c00a5f
FB
2111@item
2112Serial port
2113@item
2114PREP Non Volatile RAM
15a34c63
FB
2115@item
2116PC compatible keyboard and mouse.
52c00a5f
FB
2117@end itemize
2118
15a34c63 2119QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2120@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2121
992e5acd 2122Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2123for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2124v2) portable firmware implementation. The goal is to implement a 100%
2125IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2126
15a34c63
FB
2127@c man begin OPTIONS
2128
2129The following options are specific to the PowerPC emulation:
2130
2131@table @option
2132
4e257e5e 2133@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2134
340fb41b 2135Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2136
4e257e5e 2137@item -prom-env @var{string}
95efd11c
BS
2138
2139Set OpenBIOS variables in NVRAM, for example:
2140
2141@example
2142qemu-system-ppc -prom-env 'auto-boot?=false' \
2143 -prom-env 'boot-device=hd:2,\yaboot' \
2144 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2145@end example
2146
2147These variables are not used by Open Hack'Ware.
2148
15a34c63
FB
2149@end table
2150
5fafdf24 2151@c man end
15a34c63
FB
2152
2153
52c00a5f 2154More information is available at
3f9f3aa1 2155@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2156
24d4de45
TS
2157@node Sparc32 System emulator
2158@section Sparc32 System emulator
7544a042 2159@cindex system emulation (Sparc32)
e80cfcfc 2160
34a3d239
BS
2161Use the executable @file{qemu-system-sparc} to simulate the following
2162Sun4m architecture machines:
2163@itemize @minus
2164@item
2165SPARCstation 4
2166@item
2167SPARCstation 5
2168@item
2169SPARCstation 10
2170@item
2171SPARCstation 20
2172@item
2173SPARCserver 600MP
2174@item
2175SPARCstation LX
2176@item
2177SPARCstation Voyager
2178@item
2179SPARCclassic
2180@item
2181SPARCbook
2182@end itemize
2183
2184The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2185but Linux limits the number of usable CPUs to 4.
e80cfcfc 2186
6a4e1771 2187QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2188
2189@itemize @minus
3475187d 2190@item
6a4e1771 2191IOMMU
e80cfcfc 2192@item
33632788 2193TCX or cgthree Frame buffer
5fafdf24 2194@item
e80cfcfc
FB
2195Lance (Am7990) Ethernet
2196@item
34a3d239 2197Non Volatile RAM M48T02/M48T08
e80cfcfc 2198@item
3475187d
FB
2199Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2200and power/reset logic
2201@item
2202ESP SCSI controller with hard disk and CD-ROM support
2203@item
6a3b9cc9 2204Floppy drive (not on SS-600MP)
a2502b58
BS
2205@item
2206CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2207@end itemize
2208
6a3b9cc9
BS
2209The number of peripherals is fixed in the architecture. Maximum
2210memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2211others 2047MB.
3475187d 2212
30a604f3 2213Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2214@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2215firmware implementation. The goal is to implement a 100% IEEE
22161275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2217
2218A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2219the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2220most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2221don't work probably due to interface issues between OpenBIOS and
2222Solaris.
3475187d
FB
2223
2224@c man begin OPTIONS
2225
a2502b58 2226The following options are specific to the Sparc32 emulation:
3475187d
FB
2227
2228@table @option
2229
4e257e5e 2230@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2231
33632788
MCA
2232Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2233option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2234of 1152x900x8 for people who wish to use OBP.
3475187d 2235
4e257e5e 2236@item -prom-env @var{string}
66508601
BS
2237
2238Set OpenBIOS variables in NVRAM, for example:
2239
2240@example
2241qemu-system-sparc -prom-env 'auto-boot?=false' \
2242 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2243@end example
2244
6a4e1771 2245@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2246
2247Set the emulated machine type. Default is SS-5.
2248
3475187d
FB
2249@end table
2250
5fafdf24 2251@c man end
3475187d 2252
24d4de45
TS
2253@node Sparc64 System emulator
2254@section Sparc64 System emulator
7544a042 2255@cindex system emulation (Sparc64)
e80cfcfc 2256
34a3d239
BS
2257Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2258(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2259Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2260able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
2261Sun4v emulator is still a work in progress.
2262
2263The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
2264of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
2265and is able to boot the disk.s10hw2 Solaris image.
2266@example
2267qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
2268 -nographic -m 256 \
2269 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
2270@end example
2271
b756921a 2272
c7ba218d 2273QEMU emulates the following peripherals:
83469015
FB
2274
2275@itemize @minus
2276@item
5fafdf24 2277UltraSparc IIi APB PCI Bridge
83469015
FB
2278@item
2279PCI VGA compatible card with VESA Bochs Extensions
2280@item
34a3d239
BS
2281PS/2 mouse and keyboard
2282@item
83469015
FB
2283Non Volatile RAM M48T59
2284@item
2285PC-compatible serial ports
c7ba218d
BS
2286@item
22872 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2288@item
2289Floppy disk
83469015
FB
2290@end itemize
2291
c7ba218d
BS
2292@c man begin OPTIONS
2293
2294The following options are specific to the Sparc64 emulation:
2295
2296@table @option
2297
4e257e5e 2298@item -prom-env @var{string}
34a3d239
BS
2299
2300Set OpenBIOS variables in NVRAM, for example:
2301
2302@example
2303qemu-system-sparc64 -prom-env 'auto-boot?=false'
2304@end example
2305
a2664ca0 2306@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
2307
2308Set the emulated machine type. The default is sun4u.
2309
2310@end table
2311
2312@c man end
2313
24d4de45
TS
2314@node MIPS System emulator
2315@section MIPS System emulator
7544a042 2316@cindex system emulation (MIPS)
9d0a8e6f 2317
d9aedc32
TS
2318Four executables cover simulation of 32 and 64-bit MIPS systems in
2319both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2320@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2321Five different machine types are emulated:
24d4de45
TS
2322
2323@itemize @minus
2324@item
2325A generic ISA PC-like machine "mips"
2326@item
2327The MIPS Malta prototype board "malta"
2328@item
d9aedc32 2329An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2330@item
f0fc6f8f 2331MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2332@item
2333A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2334@end itemize
2335
2336The generic emulation is supported by Debian 'Etch' and is able to
2337install Debian into a virtual disk image. The following devices are
2338emulated:
3f9f3aa1
FB
2339
2340@itemize @minus
5fafdf24 2341@item
6bf5b4e8 2342A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2343@item
2344PC style serial port
2345@item
24d4de45
TS
2346PC style IDE disk
2347@item
3f9f3aa1
FB
2348NE2000 network card
2349@end itemize
2350
24d4de45
TS
2351The Malta emulation supports the following devices:
2352
2353@itemize @minus
2354@item
0b64d008 2355Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2356@item
2357PIIX4 PCI/USB/SMbus controller
2358@item
2359The Multi-I/O chip's serial device
2360@item
3a2eeac0 2361PCI network cards (PCnet32 and others)
24d4de45
TS
2362@item
2363Malta FPGA serial device
2364@item
1f605a76 2365Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2366@end itemize
2367
2368The ACER Pica emulation supports:
2369
2370@itemize @minus
2371@item
2372MIPS R4000 CPU
2373@item
2374PC-style IRQ and DMA controllers
2375@item
2376PC Keyboard
2377@item
2378IDE controller
2379@end itemize
3f9f3aa1 2380
b5e4946f 2381The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2382to what the proprietary MIPS emulator uses for running Linux.
2383It supports:
6bf5b4e8
TS
2384
2385@itemize @minus
2386@item
2387A range of MIPS CPUs, default is the 24Kf
2388@item
2389PC style serial port
2390@item
2391MIPSnet network emulation
2392@end itemize
2393
88cb0a02
AJ
2394The MIPS Magnum R4000 emulation supports:
2395
2396@itemize @minus
2397@item
2398MIPS R4000 CPU
2399@item
2400PC-style IRQ controller
2401@item
2402PC Keyboard
2403@item
2404SCSI controller
2405@item
2406G364 framebuffer
2407@end itemize
2408
2409
24d4de45
TS
2410@node ARM System emulator
2411@section ARM System emulator
7544a042 2412@cindex system emulation (ARM)
3f9f3aa1
FB
2413
2414Use the executable @file{qemu-system-arm} to simulate a ARM
2415machine. The ARM Integrator/CP board is emulated with the following
2416devices:
2417
2418@itemize @minus
2419@item
9ee6e8bb 2420ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2421@item
2422Two PL011 UARTs
5fafdf24 2423@item
3f9f3aa1 2424SMC 91c111 Ethernet adapter
00a9bf19
PB
2425@item
2426PL110 LCD controller
2427@item
2428PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2429@item
2430PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2431@end itemize
2432
2433The ARM Versatile baseboard is emulated with the following devices:
2434
2435@itemize @minus
2436@item
9ee6e8bb 2437ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2438@item
2439PL190 Vectored Interrupt Controller
2440@item
2441Four PL011 UARTs
5fafdf24 2442@item
00a9bf19
PB
2443SMC 91c111 Ethernet adapter
2444@item
2445PL110 LCD controller
2446@item
2447PL050 KMI with PS/2 keyboard and mouse.
2448@item
2449PCI host bridge. Note the emulated PCI bridge only provides access to
2450PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2451This means some devices (eg. ne2k_pci NIC) are not usable, and others
2452(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2453mapped control registers.
e6de1bad
PB
2454@item
2455PCI OHCI USB controller.
2456@item
2457LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2458@item
2459PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2460@end itemize
2461
21a88941
PB
2462Several variants of the ARM RealView baseboard are emulated,
2463including the EB, PB-A8 and PBX-A9. Due to interactions with the
2464bootloader, only certain Linux kernel configurations work out
2465of the box on these boards.
2466
2467Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2468enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2469should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2470disabled and expect 1024M RAM.
2471
40c5c6cd 2472The following devices are emulated:
d7739d75
PB
2473
2474@itemize @minus
2475@item
f7c70325 2476ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2477@item
2478ARM AMBA Generic/Distributed Interrupt Controller
2479@item
2480Four PL011 UARTs
5fafdf24 2481@item
0ef849d7 2482SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2483@item
2484PL110 LCD controller
2485@item
2486PL050 KMI with PS/2 keyboard and mouse
2487@item
2488PCI host bridge
2489@item
2490PCI OHCI USB controller
2491@item
2492LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2493@item
2494PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2495@end itemize
2496
b00052e4
AZ
2497The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2498and "Terrier") emulation includes the following peripherals:
2499
2500@itemize @minus
2501@item
2502Intel PXA270 System-on-chip (ARM V5TE core)
2503@item
2504NAND Flash memory
2505@item
2506IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2507@item
2508On-chip OHCI USB controller
2509@item
2510On-chip LCD controller
2511@item
2512On-chip Real Time Clock
2513@item
2514TI ADS7846 touchscreen controller on SSP bus
2515@item
2516Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2517@item
2518GPIO-connected keyboard controller and LEDs
2519@item
549444e1 2520Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2521@item
2522Three on-chip UARTs
2523@item
2524WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2525@end itemize
2526
02645926
AZ
2527The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2528following elements:
2529
2530@itemize @minus
2531@item
2532Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2533@item
2534ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2535@item
2536On-chip LCD controller
2537@item
2538On-chip Real Time Clock
2539@item
2540TI TSC2102i touchscreen controller / analog-digital converter / Audio
2541CODEC, connected through MicroWire and I@math{^2}S busses
2542@item
2543GPIO-connected matrix keypad
2544@item
2545Secure Digital card connected to OMAP MMC/SD host
2546@item
2547Three on-chip UARTs
2548@end itemize
2549
c30bb264
AZ
2550Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2551emulation supports the following elements:
2552
2553@itemize @minus
2554@item
2555Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2556@item
2557RAM and non-volatile OneNAND Flash memories
2558@item
2559Display connected to EPSON remote framebuffer chip and OMAP on-chip
2560display controller and a LS041y3 MIPI DBI-C controller
2561@item
2562TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2563driven through SPI bus
2564@item
2565National Semiconductor LM8323-controlled qwerty keyboard driven
2566through I@math{^2}C bus
2567@item
2568Secure Digital card connected to OMAP MMC/SD host
2569@item
2570Three OMAP on-chip UARTs and on-chip STI debugging console
2571@item
40c5c6cd 2572A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2573@item
c30bb264
AZ
2574Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2575TUSB6010 chip - only USB host mode is supported
2576@item
2577TI TMP105 temperature sensor driven through I@math{^2}C bus
2578@item
2579TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2580@item
2581Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2582through CBUS
2583@end itemize
2584
9ee6e8bb
PB
2585The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2586devices:
2587
2588@itemize @minus
2589@item
2590Cortex-M3 CPU core.
2591@item
259264k Flash and 8k SRAM.
2593@item
2594Timers, UARTs, ADC and I@math{^2}C interface.
2595@item
2596OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2597@end itemize
2598
2599The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2600devices:
2601
2602@itemize @minus
2603@item
2604Cortex-M3 CPU core.
2605@item
2606256k Flash and 64k SRAM.
2607@item
2608Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2609@item
2610OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2611@end itemize
2612
57cd6e97
AZ
2613The Freecom MusicPal internet radio emulation includes the following
2614elements:
2615
2616@itemize @minus
2617@item
2618Marvell MV88W8618 ARM core.
2619@item
262032 MB RAM, 256 KB SRAM, 8 MB flash.
2621@item
2622Up to 2 16550 UARTs
2623@item
2624MV88W8xx8 Ethernet controller
2625@item
2626MV88W8618 audio controller, WM8750 CODEC and mixer
2627@item
e080e785 2628128×64 display with brightness control
57cd6e97
AZ
2629@item
26302 buttons, 2 navigation wheels with button function
2631@end itemize
2632
997641a8 2633The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2634The emulation includes the following elements:
997641a8
AZ
2635
2636@itemize @minus
2637@item
2638Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2639@item
2640ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2641V1
26421 Flash of 16MB and 1 Flash of 8MB
2643V2
26441 Flash of 32MB
2645@item
2646On-chip LCD controller
2647@item
2648On-chip Real Time Clock
2649@item
2650Secure Digital card connected to OMAP MMC/SD host
2651@item
2652Three on-chip UARTs
2653@end itemize
2654
3f9f3aa1
FB
2655A Linux 2.6 test image is available on the QEMU web site. More
2656information is available in the QEMU mailing-list archive.
9d0a8e6f 2657
d2c639d6
BS
2658@c man begin OPTIONS
2659
2660The following options are specific to the ARM emulation:
2661
2662@table @option
2663
2664@item -semihosting
2665Enable semihosting syscall emulation.
2666
2667On ARM this implements the "Angel" interface.
2668
2669Note that this allows guest direct access to the host filesystem,
2670so should only be used with trusted guest OS.
2671
2672@end table
2673
abc67eb6
TH
2674@c man end
2675
24d4de45
TS
2676@node ColdFire System emulator
2677@section ColdFire System emulator
7544a042
SW
2678@cindex system emulation (ColdFire)
2679@cindex system emulation (M68K)
209a4e69
PB
2680
2681Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2682The emulator is able to boot a uClinux kernel.
707e011b
PB
2683
2684The M5208EVB emulation includes the following devices:
2685
2686@itemize @minus
5fafdf24 2687@item
707e011b
PB
2688MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2689@item
2690Three Two on-chip UARTs.
2691@item
2692Fast Ethernet Controller (FEC)
2693@end itemize
2694
2695The AN5206 emulation includes the following devices:
209a4e69
PB
2696
2697@itemize @minus
5fafdf24 2698@item
209a4e69
PB
2699MCF5206 ColdFire V2 Microprocessor.
2700@item
2701Two on-chip UARTs.
2702@end itemize
2703
d2c639d6
BS
2704@c man begin OPTIONS
2705
7544a042 2706The following options are specific to the ColdFire emulation:
d2c639d6
BS
2707
2708@table @option
2709
2710@item -semihosting
2711Enable semihosting syscall emulation.
2712
2713On M68K this implements the "ColdFire GDB" interface used by libgloss.
2714
2715Note that this allows guest direct access to the host filesystem,
2716so should only be used with trusted guest OS.
2717
2718@end table
2719
abc67eb6
TH
2720@c man end
2721
7544a042
SW
2722@node Cris System emulator
2723@section Cris System emulator
2724@cindex system emulation (Cris)
2725
2726TODO
2727
2728@node Microblaze System emulator
2729@section Microblaze System emulator
2730@cindex system emulation (Microblaze)
2731
2732TODO
2733
2734@node SH4 System emulator
2735@section SH4 System emulator
2736@cindex system emulation (SH4)
2737
2738TODO
2739
3aeaea65
MF
2740@node Xtensa System emulator
2741@section Xtensa System emulator
2742@cindex system emulation (Xtensa)
2743
2744Two executables cover simulation of both Xtensa endian options,
2745@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2746Two different machine types are emulated:
2747
2748@itemize @minus
2749@item
2750Xtensa emulator pseudo board "sim"
2751@item
2752Avnet LX60/LX110/LX200 board
2753@end itemize
2754
b5e4946f 2755The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2756to one provided by the proprietary Tensilica ISS.
2757It supports:
2758
2759@itemize @minus
2760@item
2761A range of Xtensa CPUs, default is the DC232B
2762@item
2763Console and filesystem access via semihosting calls
2764@end itemize
2765
2766The Avnet LX60/LX110/LX200 emulation supports:
2767
2768@itemize @minus
2769@item
2770A range of Xtensa CPUs, default is the DC232B
2771@item
277216550 UART
2773@item
2774OpenCores 10/100 Mbps Ethernet MAC
2775@end itemize
2776
2777@c man begin OPTIONS
2778
2779The following options are specific to the Xtensa emulation:
2780
2781@table @option
2782
2783@item -semihosting
2784Enable semihosting syscall emulation.
2785
2786Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2787Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2788
2789Note that this allows guest direct access to the host filesystem,
2790so should only be used with trusted guest OS.
2791
2792@end table
3f2ce724 2793
abc67eb6
TH
2794@c man end
2795
3f2ce724
TH
2796@node QEMU Guest Agent
2797@chapter QEMU Guest Agent invocation
2798
2799@include qemu-ga.texi
2800
5fafdf24
TS
2801@node QEMU User space emulator
2802@chapter QEMU User space emulator
83195237
FB
2803
2804@menu
2805* Supported Operating Systems ::
0722cc42 2806* Features::
83195237 2807* Linux User space emulator::
84778508 2808* BSD User space emulator ::
83195237
FB
2809@end menu
2810
2811@node Supported Operating Systems
2812@section Supported Operating Systems
2813
2814The following OS are supported in user space emulation:
2815
2816@itemize @minus
2817@item
4be456f1 2818Linux (referred as qemu-linux-user)
83195237 2819@item
84778508 2820BSD (referred as qemu-bsd-user)
83195237
FB
2821@end itemize
2822
0722cc42
PB
2823@node Features
2824@section Features
2825
2826QEMU user space emulation has the following notable features:
2827
2828@table @strong
2829@item System call translation:
2830QEMU includes a generic system call translator. This means that
2831the parameters of the system calls can be converted to fix
2832endianness and 32/64-bit mismatches between hosts and targets.
2833IOCTLs can be converted too.
2834
2835@item POSIX signal handling:
2836QEMU can redirect to the running program all signals coming from
2837the host (such as @code{SIGALRM}), as well as synthesize signals from
2838virtual CPU exceptions (for example @code{SIGFPE} when the program
2839executes a division by zero).
2840
2841QEMU relies on the host kernel to emulate most signal system
2842calls, for example to emulate the signal mask. On Linux, QEMU
2843supports both normal and real-time signals.
2844
2845@item Threading:
2846On Linux, QEMU can emulate the @code{clone} syscall and create a real
2847host thread (with a separate virtual CPU) for each emulated thread.
2848Note that not all targets currently emulate atomic operations correctly.
2849x86 and ARM use a global lock in order to preserve their semantics.
2850@end table
2851
2852QEMU was conceived so that ultimately it can emulate itself. Although
2853it is not very useful, it is an important test to show the power of the
2854emulator.
2855
83195237
FB
2856@node Linux User space emulator
2857@section Linux User space emulator
386405f7 2858
debc7065
FB
2859@menu
2860* Quick Start::
2861* Wine launch::
2862* Command line options::
79737e4a 2863* Other binaries::
debc7065
FB
2864@end menu
2865
2866@node Quick Start
83195237 2867@subsection Quick Start
df0f11a0 2868
1f673135 2869In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2870itself and all the target (x86) dynamic libraries used by it.
386405f7 2871
1f673135 2872@itemize
386405f7 2873
1f673135
FB
2874@item On x86, you can just try to launch any process by using the native
2875libraries:
386405f7 2876
5fafdf24 2877@example
1f673135
FB
2878qemu-i386 -L / /bin/ls
2879@end example
386405f7 2880
1f673135
FB
2881@code{-L /} tells that the x86 dynamic linker must be searched with a
2882@file{/} prefix.
386405f7 2883
b65ee4fa
SW
2884@item Since QEMU is also a linux process, you can launch QEMU with
2885QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2886
5fafdf24 2887@example
1f673135
FB
2888qemu-i386 -L / qemu-i386 -L / /bin/ls
2889@end example
386405f7 2890
1f673135
FB
2891@item On non x86 CPUs, you need first to download at least an x86 glibc
2892(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2893@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2894
1f673135 2895@example
5fafdf24 2896unset LD_LIBRARY_PATH
1f673135 2897@end example
1eb87257 2898
1f673135 2899Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2900
1f673135
FB
2901@example
2902qemu-i386 tests/i386/ls
2903@end example
4c3b5a48 2904You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2905QEMU is automatically launched by the Linux kernel when you try to
2906launch x86 executables. It requires the @code{binfmt_misc} module in the
2907Linux kernel.
1eb87257 2908
1f673135
FB
2909@item The x86 version of QEMU is also included. You can try weird things such as:
2910@example
debc7065
FB
2911qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2912 /usr/local/qemu-i386/bin/ls-i386
1f673135 2913@end example
1eb20527 2914
1f673135 2915@end itemize
1eb20527 2916
debc7065 2917@node Wine launch
83195237 2918@subsection Wine launch
1eb20527 2919
1f673135 2920@itemize
386405f7 2921
1f673135
FB
2922@item Ensure that you have a working QEMU with the x86 glibc
2923distribution (see previous section). In order to verify it, you must be
2924able to do:
386405f7 2925
1f673135
FB
2926@example
2927qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2928@end example
386405f7 2929
1f673135 2930@item Download the binary x86 Wine install
5fafdf24 2931(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2932
1f673135 2933@item Configure Wine on your account. Look at the provided script
debc7065 2934@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2935@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2936
1f673135 2937@item Then you can try the example @file{putty.exe}:
386405f7 2938
1f673135 2939@example
debc7065
FB
2940qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2941 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2942@end example
386405f7 2943
1f673135 2944@end itemize
fd429f2f 2945
debc7065 2946@node Command line options
83195237 2947@subsection Command line options
1eb20527 2948
1f673135 2949@example
8485140f 2950@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2951@end example
1eb20527 2952
1f673135
FB
2953@table @option
2954@item -h
2955Print the help
3b46e624 2956@item -L path
1f673135
FB
2957Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2958@item -s size
2959Set the x86 stack size in bytes (default=524288)
34a3d239 2960@item -cpu model
c8057f95 2961Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2962@item -E @var{var}=@var{value}
2963Set environment @var{var} to @var{value}.
2964@item -U @var{var}
2965Remove @var{var} from the environment.
379f6698
PB
2966@item -B offset
2967Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2968the address region required by guest applications is reserved on the host.
2969This option is currently only supported on some hosts.
68a1c816
PB
2970@item -R size
2971Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2972"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2973@end table
2974
1f673135 2975Debug options:
386405f7 2976
1f673135 2977@table @option
989b697d
PM
2978@item -d item1,...
2979Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2980@item -p pagesize
2981Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2982@item -g port
2983Wait gdb connection to port
1b530a6d
AJ
2984@item -singlestep
2985Run the emulation in single step mode.
1f673135 2986@end table
386405f7 2987
b01bcae6
AZ
2988Environment variables:
2989
2990@table @env
2991@item QEMU_STRACE
2992Print system calls and arguments similar to the 'strace' program
2993(NOTE: the actual 'strace' program will not work because the user
2994space emulator hasn't implemented ptrace). At the moment this is
2995incomplete. All system calls that don't have a specific argument
2996format are printed with information for six arguments. Many
2997flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2998@end table
b01bcae6 2999
79737e4a 3000@node Other binaries
83195237 3001@subsection Other binaries
79737e4a 3002
7544a042
SW
3003@cindex user mode (Alpha)
3004@command{qemu-alpha} TODO.
3005
3006@cindex user mode (ARM)
3007@command{qemu-armeb} TODO.
3008
3009@cindex user mode (ARM)
79737e4a
PB
3010@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3011binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3012configurations), and arm-uclinux bFLT format binaries.
3013
7544a042
SW
3014@cindex user mode (ColdFire)
3015@cindex user mode (M68K)
e6e5906b
PB
3016@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3017(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3018coldfire uClinux bFLT format binaries.
3019
79737e4a
PB
3020The binary format is detected automatically.
3021
7544a042
SW
3022@cindex user mode (Cris)
3023@command{qemu-cris} TODO.
3024
3025@cindex user mode (i386)
3026@command{qemu-i386} TODO.
3027@command{qemu-x86_64} TODO.
3028
3029@cindex user mode (Microblaze)
3030@command{qemu-microblaze} TODO.
3031
3032@cindex user mode (MIPS)
3033@command{qemu-mips} TODO.
3034@command{qemu-mipsel} TODO.
3035
e671711c
MV
3036@cindex user mode (NiosII)
3037@command{qemu-nios2} TODO.
3038
7544a042
SW
3039@cindex user mode (PowerPC)
3040@command{qemu-ppc64abi32} TODO.
3041@command{qemu-ppc64} TODO.
3042@command{qemu-ppc} TODO.
3043
3044@cindex user mode (SH4)
3045@command{qemu-sh4eb} TODO.
3046@command{qemu-sh4} TODO.
3047
3048@cindex user mode (SPARC)
34a3d239
BS
3049@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3050
a785e42e
BS
3051@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3052(Sparc64 CPU, 32 bit ABI).
3053
3054@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3055SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3056
84778508
BS
3057@node BSD User space emulator
3058@section BSD User space emulator
3059
3060@menu
3061* BSD Status::
3062* BSD Quick Start::
3063* BSD Command line options::
3064@end menu
3065
3066@node BSD Status
3067@subsection BSD Status
3068
3069@itemize @minus
3070@item
3071target Sparc64 on Sparc64: Some trivial programs work.
3072@end itemize
3073
3074@node BSD Quick Start
3075@subsection Quick Start
3076
3077In order to launch a BSD process, QEMU needs the process executable
3078itself and all the target dynamic libraries used by it.
3079
3080@itemize
3081
3082@item On Sparc64, you can just try to launch any process by using the native
3083libraries:
3084
3085@example
3086qemu-sparc64 /bin/ls
3087@end example
3088
3089@end itemize
3090
3091@node BSD Command line options
3092@subsection Command line options
3093
3094@example
8485140f 3095@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
3096@end example
3097
3098@table @option
3099@item -h
3100Print the help
3101@item -L path
3102Set the library root path (default=/)
3103@item -s size
3104Set the stack size in bytes (default=524288)
f66724c9
SW
3105@item -ignore-environment
3106Start with an empty environment. Without this option,
40c5c6cd 3107the initial environment is a copy of the caller's environment.
f66724c9
SW
3108@item -E @var{var}=@var{value}
3109Set environment @var{var} to @var{value}.
3110@item -U @var{var}
3111Remove @var{var} from the environment.
84778508
BS
3112@item -bsd type
3113Set the type of the emulated BSD Operating system. Valid values are
3114FreeBSD, NetBSD and OpenBSD (default).
3115@end table
3116
3117Debug options:
3118
3119@table @option
989b697d
PM
3120@item -d item1,...
3121Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
3122@item -p pagesize
3123Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
3124@item -singlestep
3125Run the emulation in single step mode.
84778508
BS
3126@end table
3127
47eacb4f 3128
78e87797
PB
3129@include qemu-tech.texi
3130
7544a042
SW
3131@node License
3132@appendix License
3133
3134QEMU is a trademark of Fabrice Bellard.
3135
2f8d8f01
TH
3136QEMU is released under the
3137@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
3138version 2. Parts of QEMU have specific licenses, see file
3139@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 3140
debc7065 3141@node Index
7544a042
SW
3142@appendix Index
3143@menu
3144* Concept Index::
3145* Function Index::
3146* Keystroke Index::
3147* Program Index::
3148* Data Type Index::
3149* Variable Index::
3150@end menu
3151
3152@node Concept Index
3153@section Concept Index
3154This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3155@printindex cp
3156
7544a042
SW
3157@node Function Index
3158@section Function Index
3159This index could be used for command line options and monitor functions.
3160@printindex fn
3161
3162@node Keystroke Index
3163@section Keystroke Index
3164
3165This is a list of all keystrokes which have a special function
3166in system emulation.
3167
3168@printindex ky
3169
3170@node Program Index
3171@section Program Index
3172@printindex pg
3173
3174@node Data Type Index
3175@section Data Type Index
3176
3177This index could be used for qdev device names and options.
3178
3179@printindex tp
3180
3181@node Variable Index
3182@section Variable Index
3183@printindex vr
3184
debc7065 3185@bye