]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
qapi: Reject alternates that can't work with keyval_parse()
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
debc7065
FB
35* QEMU PC System emulator::
36* QEMU System emulator for non PC targets::
83195237 37* QEMU User space emulator::
78e87797 38* Implementation notes::
7544a042 39* License::
debc7065
FB
40* Index::
41@end menu
42@end ifnottex
43
44@contents
45
46@node Introduction
386405f7
FB
47@chapter Introduction
48
debc7065
FB
49@menu
50* intro_features:: Features
51@end menu
52
53@node intro_features
322d0c66 54@section Features
386405f7 55
1f673135
FB
56QEMU is a FAST! processor emulator using dynamic translation to
57achieve good emulation speed.
1eb20527 58
1f3e7e41 59@cindex operating modes
1eb20527 60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex system emulation
1f3e7e41 64@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
65example a PC), including one or several processors and various
66peripherals. It can be used to launch different Operating Systems
67without rebooting the PC or to debug system code.
1eb20527 68
7544a042 69@cindex user mode emulation
1f3e7e41 70@item User mode emulation. In this mode, QEMU can launch
83195237 71processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
72launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
73to ease cross-compilation and cross-debugging.
1eb20527
FB
74
75@end itemize
76
1f3e7e41
PB
77QEMU has the following features:
78
79@itemize
80@item QEMU can run without a host kernel driver and yet gives acceptable
81performance. It uses dynamic translation to native code for reasonable speed,
82with support for self-modifying code and precise exceptions.
83
84@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
85Windows) and architectures.
86
87@item It performs accurate software emulation of the FPU.
88@end itemize
322d0c66 89
1f3e7e41 90QEMU user mode emulation has the following features:
52c00a5f 91@itemize
1f3e7e41
PB
92@item Generic Linux system call converter, including most ioctls.
93
94@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
95
96@item Accurate signal handling by remapping host signals to target signals.
97@end itemize
98
99QEMU full system emulation has the following features:
100@itemize
101@item
102QEMU uses a full software MMU for maximum portability.
103
104@item
105QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
106execute most of the guest code natively, while
107continuing to emulate the rest of the machine.
108
109@item
110Various hardware devices can be emulated and in some cases, host
111devices (e.g. serial and parallel ports, USB, drives) can be used
112transparently by the guest Operating System. Host device passthrough
113can be used for talking to external physical peripherals (e.g. a
114webcam, modem or tape drive).
115
116@item
117Symmetric multiprocessing (SMP) support. Currently, an in-kernel
118accelerator is required to use more than one host CPU for emulation.
119
52c00a5f 120@end itemize
386405f7 121
0806e3f6 122
debc7065 123@node QEMU PC System emulator
3f9f3aa1 124@chapter QEMU PC System emulator
7544a042 125@cindex system emulation (PC)
1eb20527 126
debc7065
FB
127@menu
128* pcsys_introduction:: Introduction
129* pcsys_quickstart:: Quick Start
130* sec_invocation:: Invocation
a40db1b3
PM
131* pcsys_keys:: Keys in the graphical frontends
132* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
576fd0a1 136* pcsys_other_devs:: Other Devices
debc7065
FB
137* direct_linux_boot:: Direct Linux Boot
138* pcsys_usb:: USB emulation
f858dcae 139* vnc_security:: VNC security
debc7065
FB
140* gdb_usage:: GDB usage
141* pcsys_os_specific:: Target OS specific information
142@end menu
143
144@node pcsys_introduction
0806e3f6
FB
145@section Introduction
146
147@c man begin DESCRIPTION
148
3f9f3aa1
FB
149The QEMU PC System emulator simulates the
150following peripherals:
0806e3f6
FB
151
152@itemize @minus
5fafdf24 153@item
15a34c63 154i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 155@item
15a34c63
FB
156Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
157extensions (hardware level, including all non standard modes).
0806e3f6
FB
158@item
159PS/2 mouse and keyboard
5fafdf24 160@item
15a34c63 1612 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
162@item
163Floppy disk
5fafdf24 164@item
3a2eeac0 165PCI and ISA network adapters
0806e3f6 166@item
05d5818c
FB
167Serial ports
168@item
23076bb3
CM
169IPMI BMC, either and internal or external one
170@item
c0fe3827
FB
171Creative SoundBlaster 16 sound card
172@item
173ENSONIQ AudioPCI ES1370 sound card
174@item
e5c9a13e
AZ
175Intel 82801AA AC97 Audio compatible sound card
176@item
7d72e762
GH
177Intel HD Audio Controller and HDA codec
178@item
2d983446 179Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 180@item
26463dbc
AZ
181Gravis Ultrasound GF1 sound card
182@item
cc53d26d 183CS4231A compatible sound card
184@item
a92ff8c1 185PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
186@end itemize
187
3f9f3aa1
FB
188SMP is supported with up to 255 CPUs.
189
a8ad4159 190QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
191VGA BIOS.
192
c0fe3827
FB
193QEMU uses YM3812 emulation by Tatsuyuki Satoh.
194
2d983446 195QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 196by Tibor "TS" Schütz.
423d65f4 197
1a1a0e20 198Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 199QEMU must be told to not have parallel ports to have working GUS.
720036a5 200
201@example
3804da9d 202qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 203@end example
204
205Alternatively:
206@example
3804da9d 207qemu-system-i386 dos.img -device gus,irq=5
720036a5 208@end example
209
210Or some other unclaimed IRQ.
211
cc53d26d 212CS4231A is the chip used in Windows Sound System and GUSMAX products
213
0806e3f6
FB
214@c man end
215
debc7065 216@node pcsys_quickstart
1eb20527 217@section Quick Start
7544a042 218@cindex quick start
1eb20527 219
285dc330 220Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
221
222@example
3804da9d 223qemu-system-i386 linux.img
0806e3f6
FB
224@end example
225
226Linux should boot and give you a prompt.
227
6cc721cf 228@node sec_invocation
ec410fc9
FB
229@section Invocation
230
231@example
0806e3f6 232@c man begin SYNOPSIS
8485140f 233@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 234@c man end
ec410fc9
FB
235@end example
236
0806e3f6 237@c man begin OPTIONS
d2c639d6
BS
238@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
239targets do not need a disk image.
ec410fc9 240
5824d651 241@include qemu-options.texi
ec410fc9 242
3e11db9a
FB
243@c man end
244
debc7065 245@node pcsys_keys
a40db1b3 246@section Keys in the graphical frontends
3e11db9a
FB
247
248@c man begin OPTIONS
249
de1db2a1
BH
250During the graphical emulation, you can use special key combinations to change
251modes. The default key mappings are shown below, but if you use @code{-alt-grab}
252then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
253@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
254
a1b74fe8 255@table @key
f9859310 256@item Ctrl-Alt-f
7544a042 257@kindex Ctrl-Alt-f
a1b74fe8 258Toggle full screen
a0a821a4 259
d6a65ba3
JK
260@item Ctrl-Alt-+
261@kindex Ctrl-Alt-+
262Enlarge the screen
263
264@item Ctrl-Alt--
265@kindex Ctrl-Alt--
266Shrink the screen
267
c4a735f9 268@item Ctrl-Alt-u
7544a042 269@kindex Ctrl-Alt-u
c4a735f9 270Restore the screen's un-scaled dimensions
271
f9859310 272@item Ctrl-Alt-n
7544a042 273@kindex Ctrl-Alt-n
a0a821a4
FB
274Switch to virtual console 'n'. Standard console mappings are:
275@table @emph
276@item 1
277Target system display
278@item 2
279Monitor
280@item 3
281Serial port
a1b74fe8
FB
282@end table
283
f9859310 284@item Ctrl-Alt
7544a042 285@kindex Ctrl-Alt
a0a821a4
FB
286Toggle mouse and keyboard grab.
287@end table
288
7544a042
SW
289@kindex Ctrl-Up
290@kindex Ctrl-Down
291@kindex Ctrl-PageUp
292@kindex Ctrl-PageDown
3e11db9a
FB
293In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
294@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
295
a40db1b3
PM
296@c man end
297
298@node mux_keys
299@section Keys in the character backend multiplexer
300
301@c man begin OPTIONS
302
303During emulation, if you are using a character backend multiplexer
304(which is the default if you are using @option{-nographic}) then
305several commands are available via an escape sequence. These
306key sequences all start with an escape character, which is @key{Ctrl-a}
307by default, but can be changed with @option{-echr}. The list below assumes
308you're using the default.
ec410fc9
FB
309
310@table @key
a1b74fe8 311@item Ctrl-a h
7544a042 312@kindex Ctrl-a h
ec410fc9 313Print this help
3b46e624 314@item Ctrl-a x
7544a042 315@kindex Ctrl-a x
366dfc52 316Exit emulator
3b46e624 317@item Ctrl-a s
7544a042 318@kindex Ctrl-a s
1f47a922 319Save disk data back to file (if -snapshot)
20d8a3ed 320@item Ctrl-a t
7544a042 321@kindex Ctrl-a t
d2c639d6 322Toggle console timestamps
a1b74fe8 323@item Ctrl-a b
7544a042 324@kindex Ctrl-a b
1f673135 325Send break (magic sysrq in Linux)
a1b74fe8 326@item Ctrl-a c
7544a042 327@kindex Ctrl-a c
a40db1b3
PM
328Rotate between the frontends connected to the multiplexer (usually
329this switches between the monitor and the console)
a1b74fe8 330@item Ctrl-a Ctrl-a
a40db1b3
PM
331@kindex Ctrl-a Ctrl-a
332Send the escape character to the frontend
ec410fc9 333@end table
0806e3f6
FB
334@c man end
335
336@ignore
337
1f673135
FB
338@c man begin SEEALSO
339The HTML documentation of QEMU for more precise information and Linux
340user mode emulator invocation.
341@c man end
342
343@c man begin AUTHOR
344Fabrice Bellard
345@c man end
346
347@end ignore
348
debc7065 349@node pcsys_monitor
1f673135 350@section QEMU Monitor
7544a042 351@cindex QEMU monitor
1f673135
FB
352
353The QEMU monitor is used to give complex commands to the QEMU
354emulator. You can use it to:
355
356@itemize @minus
357
358@item
e598752a 359Remove or insert removable media images
89dfe898 360(such as CD-ROM or floppies).
1f673135 361
5fafdf24 362@item
1f673135
FB
363Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
364from a disk file.
365
366@item Inspect the VM state without an external debugger.
367
368@end itemize
369
370@subsection Commands
371
372The following commands are available:
373
2313086a 374@include qemu-monitor.texi
0806e3f6 375
2cd8af2d
PB
376@include qemu-monitor-info.texi
377
1f673135
FB
378@subsection Integer expressions
379
380The monitor understands integers expressions for every integer
381argument. You can use register names to get the value of specifics
382CPU registers by prefixing them with @emph{$}.
ec410fc9 383
1f47a922
FB
384@node disk_images
385@section Disk Images
386
acd935ef
FB
387Since version 0.6.1, QEMU supports many disk image formats, including
388growable disk images (their size increase as non empty sectors are
13a2e80f
FB
389written), compressed and encrypted disk images. Version 0.8.3 added
390the new qcow2 disk image format which is essential to support VM
391snapshots.
1f47a922 392
debc7065
FB
393@menu
394* disk_images_quickstart:: Quick start for disk image creation
395* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 396* vm_snapshots:: VM snapshots
debc7065 397* qemu_img_invocation:: qemu-img Invocation
975b092b 398* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 399* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
665b5d0d
MAL
493@node qemu_ga_invocation
494@subsection @code{qemu-ga} Invocation
495
496@include qemu-ga.texi
497
d3067b02
KW
498@node disk_images_formats
499@subsection Disk image file formats
500
501QEMU supports many image file formats that can be used with VMs as well as with
502any of the tools (like @code{qemu-img}). This includes the preferred formats
503raw and qcow2 as well as formats that are supported for compatibility with
504older QEMU versions or other hypervisors.
505
506Depending on the image format, different options can be passed to
507@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
508This section describes each format and the options that are supported for it.
509
510@table @option
511@item raw
512
513Raw disk image format. This format has the advantage of
514being simple and easily exportable to all other emulators. If your
515file system supports @emph{holes} (for example in ext2 or ext3 on
516Linux or NTFS on Windows), then only the written sectors will reserve
517space. Use @code{qemu-img info} to know the real size used by the
518image or @code{ls -ls} on Unix/Linux.
519
06247428
HT
520Supported options:
521@table @code
522@item preallocation
523Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
524@code{falloc} mode preallocates space for image by calling posix_fallocate().
525@code{full} mode preallocates space for image by writing zeros to underlying
526storage.
527@end table
528
d3067b02
KW
529@item qcow2
530QEMU image format, the most versatile format. Use it to have smaller
531images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
532on Windows), zlib based compression and support of multiple VM
533snapshots.
d3067b02
KW
534
535Supported options:
536@table @code
537@item compat
7fa9e1f9
SH
538Determines the qcow2 version to use. @code{compat=0.10} uses the
539traditional image format that can be read by any QEMU since 0.10.
d3067b02 540@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
541newer understand (this is the default). Amongst others, this includes
542zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
543
544@item backing_file
545File name of a base image (see @option{create} subcommand)
546@item backing_fmt
547Image format of the base image
548@item encryption
136cd19d 549If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 550
136cd19d
DB
551The use of encryption in qcow and qcow2 images is considered to be flawed by
552modern cryptography standards, suffering from a number of design problems:
553
554@itemize @minus
555@item The AES-CBC cipher is used with predictable initialization vectors based
556on the sector number. This makes it vulnerable to chosen plaintext attacks
557which can reveal the existence of encrypted data.
558@item The user passphrase is directly used as the encryption key. A poorly
559chosen or short passphrase will compromise the security of the encryption.
560@item In the event of the passphrase being compromised there is no way to
561change the passphrase to protect data in any qcow images. The files must
562be cloned, using a different encryption passphrase in the new file. The
563original file must then be securely erased using a program like shred,
564though even this is ineffective with many modern storage technologies.
565@end itemize
566
a1f688f4
MA
567Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
568it will go away in a future release. Users are recommended to use an
569alternative encryption technology such as the Linux dm-crypt / LUKS
570system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
0e4271b7
HT
578Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
579@code{full}). An image with preallocated metadata is initially larger but can
580improve performance when the image needs to grow. @code{falloc} and @code{full}
581preallocations are like the same options of @code{raw} format, but sets up
582metadata also.
d3067b02
KW
583
584@item lazy_refcounts
585If this option is set to @code{on}, reference count updates are postponed with
586the goal of avoiding metadata I/O and improving performance. This is
587particularly interesting with @option{cache=writethrough} which doesn't batch
588metadata updates. The tradeoff is that after a host crash, the reference count
589tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
590check -r all} is required, which may take some time.
591
592This option can only be enabled if @code{compat=1.1} is specified.
593
4ab15590 594@item nocow
bc3a7f90 595If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
596valid on btrfs, no effect on other file systems.
597
598Btrfs has low performance when hosting a VM image file, even more when the guest
599on the VM also using btrfs as file system. Turning off COW is a way to mitigate
600this bad performance. Generally there are two ways to turn off COW on btrfs:
601a) Disable it by mounting with nodatacow, then all newly created files will be
602NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
603does.
604
605Note: this option is only valid to new or empty files. If there is an existing
606file which is COW and has data blocks already, it couldn't be changed to NOCOW
607by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 608the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 609
d3067b02
KW
610@end table
611
612@item qed
613Old QEMU image format with support for backing files and compact image files
614(when your filesystem or transport medium does not support holes).
615
616When converting QED images to qcow2, you might want to consider using the
617@code{lazy_refcounts=on} option to get a more QED-like behaviour.
618
619Supported options:
620@table @code
621@item backing_file
622File name of a base image (see @option{create} subcommand).
623@item backing_fmt
624Image file format of backing file (optional). Useful if the format cannot be
625autodetected because it has no header, like some vhd/vpc files.
626@item cluster_size
627Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
628cluster sizes can improve the image file size whereas larger cluster sizes
629generally provide better performance.
630@item table_size
631Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
632and 16). There is normally no need to change this value but this option can be
633used for performance benchmarking.
634@end table
635
636@item qcow
637Old QEMU image format with support for backing files, compact image files,
638encryption and compression.
639
640Supported options:
641@table @code
642@item backing_file
643File name of a base image (see @option{create} subcommand)
644@item encryption
645If this option is set to @code{on}, the image is encrypted.
646@end table
647
d3067b02
KW
648@item vdi
649VirtualBox 1.1 compatible image format.
650Supported options:
651@table @code
652@item static
653If this option is set to @code{on}, the image is created with metadata
654preallocation.
655@end table
656
657@item vmdk
658VMware 3 and 4 compatible image format.
659
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand).
664@item compat6
665Create a VMDK version 6 image (instead of version 4)
f249924e
JK
666@item hwversion
667Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
668if hwversion is specified.
d3067b02
KW
669@item subformat
670Specifies which VMDK subformat to use. Valid options are
671@code{monolithicSparse} (default),
672@code{monolithicFlat},
673@code{twoGbMaxExtentSparse},
674@code{twoGbMaxExtentFlat} and
675@code{streamOptimized}.
676@end table
677
678@item vpc
679VirtualPC compatible image format (VHD).
680Supported options:
681@table @code
682@item subformat
683Specifies which VHD subformat to use. Valid options are
684@code{dynamic} (default) and @code{fixed}.
685@end table
8282db1b
JC
686
687@item VHDX
688Hyper-V compatible image format (VHDX).
689Supported options:
690@table @code
691@item subformat
692Specifies which VHDX subformat to use. Valid options are
693@code{dynamic} (default) and @code{fixed}.
694@item block_state_zero
30af51ce
JC
695Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
696or @code{off}. When set to @code{off}, new blocks will be created as
697@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
698arbitrary data for those blocks. Do not set to @code{off} when using
699@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
700@item block_size
701Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
702@item log_size
703Log size; min 1 MB.
704@end table
d3067b02
KW
705@end table
706
707@subsubsection Read-only formats
708More disk image file formats are supported in a read-only mode.
709@table @option
710@item bochs
711Bochs images of @code{growing} type.
712@item cloop
713Linux Compressed Loop image, useful only to reuse directly compressed
714CD-ROM images present for example in the Knoppix CD-ROMs.
715@item dmg
716Apple disk image.
717@item parallels
718Parallels disk image format.
719@end table
720
721
19cb3738
FB
722@node host_drives
723@subsection Using host drives
724
725In addition to disk image files, QEMU can directly access host
726devices. We describe here the usage for QEMU version >= 0.8.3.
727
728@subsubsection Linux
729
730On Linux, you can directly use the host device filename instead of a
4be456f1 731disk image filename provided you have enough privileges to access
92a539d2 732it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 733
f542086d 734@table @code
19cb3738
FB
735@item CD
736You can specify a CDROM device even if no CDROM is loaded. QEMU has
737specific code to detect CDROM insertion or removal. CDROM ejection by
738the guest OS is supported. Currently only data CDs are supported.
739@item Floppy
740You can specify a floppy device even if no floppy is loaded. Floppy
741removal is currently not detected accurately (if you change floppy
742without doing floppy access while the floppy is not loaded, the guest
743OS will think that the same floppy is loaded).
92a539d2
MA
744Use of the host's floppy device is deprecated, and support for it will
745be removed in a future release.
19cb3738
FB
746@item Hard disks
747Hard disks can be used. Normally you must specify the whole disk
748(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
749see it as a partitioned disk. WARNING: unless you know what you do, it
750is better to only make READ-ONLY accesses to the hard disk otherwise
751you may corrupt your host data (use the @option{-snapshot} command
752line option or modify the device permissions accordingly).
753@end table
754
755@subsubsection Windows
756
01781963
FB
757@table @code
758@item CD
4be456f1 759The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
760alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
761supported as an alias to the first CDROM drive.
19cb3738 762
e598752a 763Currently there is no specific code to handle removable media, so it
19cb3738
FB
764is better to use the @code{change} or @code{eject} monitor commands to
765change or eject media.
01781963 766@item Hard disks
89dfe898 767Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
768where @var{N} is the drive number (0 is the first hard disk).
769
770WARNING: unless you know what you do, it is better to only make
771READ-ONLY accesses to the hard disk otherwise you may corrupt your
772host data (use the @option{-snapshot} command line so that the
773modifications are written in a temporary file).
774@end table
775
19cb3738
FB
776
777@subsubsection Mac OS X
778
5fafdf24 779@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 780
e598752a 781Currently there is no specific code to handle removable media, so it
19cb3738
FB
782is better to use the @code{change} or @code{eject} monitor commands to
783change or eject media.
784
debc7065 785@node disk_images_fat_images
2c6cadd4
FB
786@subsection Virtual FAT disk images
787
788QEMU can automatically create a virtual FAT disk image from a
789directory tree. In order to use it, just type:
790
5fafdf24 791@example
3804da9d 792qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
793@end example
794
795Then you access access to all the files in the @file{/my_directory}
796directory without having to copy them in a disk image or to export
797them via SAMBA or NFS. The default access is @emph{read-only}.
798
799Floppies can be emulated with the @code{:floppy:} option:
800
5fafdf24 801@example
3804da9d 802qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
803@end example
804
805A read/write support is available for testing (beta stage) with the
806@code{:rw:} option:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
810@end example
811
812What you should @emph{never} do:
813@itemize
814@item use non-ASCII filenames ;
815@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
816@item expect it to work when loadvm'ing ;
817@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
818@end itemize
819
75818250
TS
820@node disk_images_nbd
821@subsection NBD access
822
823QEMU can access directly to block device exported using the Network Block Device
824protocol.
825
826@example
1d7d2a9d 827qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
828@end example
829
830If the NBD server is located on the same host, you can use an unix socket instead
831of an inet socket:
832
833@example
1d7d2a9d 834qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
835@end example
836
837In this case, the block device must be exported using qemu-nbd:
838
839@example
840qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
841@end example
842
9d85d557 843The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
844@example
845qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
846@end example
847
1d7d2a9d 848@noindent
75818250
TS
849and then you can use it with two guests:
850@example
1d7d2a9d
PB
851qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
852qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
853@end example
854
1d7d2a9d
PB
855If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
856own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 857@example
1d7d2a9d
PB
858qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
859qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
860@end example
861
862The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
863also available. Here are some example of the older syntax:
864@example
865qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
866qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
867qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
868@end example
869
42af9c30
MK
870@node disk_images_sheepdog
871@subsection Sheepdog disk images
872
873Sheepdog is a distributed storage system for QEMU. It provides highly
874available block level storage volumes that can be attached to
875QEMU-based virtual machines.
876
877You can create a Sheepdog disk image with the command:
878@example
5d6768e3 879qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
880@end example
881where @var{image} is the Sheepdog image name and @var{size} is its
882size.
883
884To import the existing @var{filename} to Sheepdog, you can use a
885convert command.
886@example
5d6768e3 887qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
888@end example
889
890You can boot from the Sheepdog disk image with the command:
891@example
5d6768e3 892qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
893@end example
894
895You can also create a snapshot of the Sheepdog image like qcow2.
896@example
5d6768e3 897qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
898@end example
899where @var{tag} is a tag name of the newly created snapshot.
900
901To boot from the Sheepdog snapshot, specify the tag name of the
902snapshot.
903@example
5d6768e3 904qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
905@end example
906
907You can create a cloned image from the existing snapshot.
908@example
5d6768e3 909qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
910@end example
911where @var{base} is a image name of the source snapshot and @var{tag}
912is its tag name.
913
1b8bbb46
MK
914You can use an unix socket instead of an inet socket:
915
916@example
917qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
918@end example
919
42af9c30
MK
920If the Sheepdog daemon doesn't run on the local host, you need to
921specify one of the Sheepdog servers to connect to.
922@example
5d6768e3
MK
923qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
924qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
925@end example
926
00984e39
RS
927@node disk_images_iscsi
928@subsection iSCSI LUNs
929
930iSCSI is a popular protocol used to access SCSI devices across a computer
931network.
932
933There are two different ways iSCSI devices can be used by QEMU.
934
935The first method is to mount the iSCSI LUN on the host, and make it appear as
936any other ordinary SCSI device on the host and then to access this device as a
937/dev/sd device from QEMU. How to do this differs between host OSes.
938
939The second method involves using the iSCSI initiator that is built into
940QEMU. This provides a mechanism that works the same way regardless of which
941host OS you are running QEMU on. This section will describe this second method
942of using iSCSI together with QEMU.
943
944In QEMU, iSCSI devices are described using special iSCSI URLs
945
946@example
947URL syntax:
948iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
949@end example
950
951Username and password are optional and only used if your target is set up
952using CHAP authentication for access control.
953Alternatively the username and password can also be set via environment
954variables to have these not show up in the process list
955
956@example
957export LIBISCSI_CHAP_USERNAME=<username>
958export LIBISCSI_CHAP_PASSWORD=<password>
959iscsi://<host>/<target-iqn-name>/<lun>
960@end example
961
f9dadc98
RS
962Various session related parameters can be set via special options, either
963in a configuration file provided via '-readconfig' or directly on the
964command line.
965
31459f46
RS
966If the initiator-name is not specified qemu will use a default name
967of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
968virtual machine.
969
970
f9dadc98
RS
971@example
972Setting a specific initiator name to use when logging in to the target
973-iscsi initiator-name=iqn.qemu.test:my-initiator
974@end example
975
976@example
977Controlling which type of header digest to negotiate with the target
978-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
979@end example
980
981These can also be set via a configuration file
982@example
983[iscsi]
984 user = "CHAP username"
985 password = "CHAP password"
986 initiator-name = "iqn.qemu.test:my-initiator"
987 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
988 header-digest = "CRC32C"
989@end example
990
991
992Setting the target name allows different options for different targets
993@example
994[iscsi "iqn.target.name"]
995 user = "CHAP username"
996 password = "CHAP password"
997 initiator-name = "iqn.qemu.test:my-initiator"
998 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
999 header-digest = "CRC32C"
1000@end example
1001
1002
1003Howto use a configuration file to set iSCSI configuration options:
1004@example
1005cat >iscsi.conf <<EOF
1006[iscsi]
1007 user = "me"
1008 password = "my password"
1009 initiator-name = "iqn.qemu.test:my-initiator"
1010 header-digest = "CRC32C"
1011EOF
1012
1013qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1014 -readconfig iscsi.conf
1015@end example
1016
1017
00984e39
RS
1018Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1019@example
1020This example shows how to set up an iSCSI target with one CDROM and one DISK
1021using the Linux STGT software target. This target is available on Red Hat based
1022systems as the package 'scsi-target-utils'.
1023
1024tgtd --iscsi portal=127.0.0.1:3260
1025tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1026tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1027 -b /IMAGES/disk.img --device-type=disk
1028tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1029 -b /IMAGES/cd.iso --device-type=cd
1030tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1031
f9dadc98
RS
1032qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1033 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1034 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1035@end example
1036
8809e289
BR
1037@node disk_images_gluster
1038@subsection GlusterFS disk images
00984e39 1039
736a83fa 1040GlusterFS is a user space distributed file system.
8809e289
BR
1041
1042You can boot from the GlusterFS disk image with the command:
1043@example
76b5550f
PKK
1044URI:
1045qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1046 [?socket=...][,file.debug=9][,file.logfile=...]
1047
1048JSON:
1049qemu-system-x86_64 'json:@{"driver":"qcow2",
1050 "file":@{"driver":"gluster",
1051 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1052 "server":[@{"type":"tcp","host":"...","port":"..."@},
1053 @{"type":"unix","socket":"..."@}]@}@}'
8809e289
BR
1054@end example
1055
1056@var{gluster} is the protocol.
1057
76b5550f 1058@var{type} specifies the transport type used to connect to gluster
8809e289 1059management daemon (glusterd). Valid transport types are
76b5550f
PKK
1060tcp and unix. In the URI form, if a transport type isn't specified,
1061then tcp type is assumed.
8809e289 1062
76b5550f
PKK
1063@var{host} specifies the server where the volume file specification for
1064the given volume resides. This can be either a hostname or an ipv4 address.
1065If transport type is unix, then @var{host} field should not be specified.
8809e289
BR
1066Instead @var{socket} field needs to be populated with the path to unix domain
1067socket.
1068
1069@var{port} is the port number on which glusterd is listening. This is optional
76b5550f
PKK
1070and if not specified, it defaults to port 24007. If the transport type is unix,
1071then @var{port} should not be specified.
1072
1073@var{volume} is the name of the gluster volume which contains the disk image.
1074
1075@var{path} is the path to the actual disk image that resides on gluster volume.
1076
1077@var{debug} is the logging level of the gluster protocol driver. Debug levels
1078are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1079The default level is 4. The current logging levels defined in the gluster source
1080are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
10816 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1082
1083@var{logfile} is a commandline option to mention log file path which helps in
1084logging to the specified file and also help in persisting the gfapi logs. The
1085default is stderr.
1086
8809e289 1087
8809e289 1088
8809e289
BR
1089
1090You can create a GlusterFS disk image with the command:
1091@example
76b5550f 1092qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
8809e289
BR
1093@end example
1094
1095Examples
1096@example
1097qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1098qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1099qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1100qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1101qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1102qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1103qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1104qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
76b5550f
PKK
1105qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1106qemu-system-x86_64 'json:@{"driver":"qcow2",
1107 "file":@{"driver":"gluster",
1108 "volume":"testvol","path":"a.img",
1109 "debug":9,"logfile":"/var/log/qemu-gluster.log",
1110 "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1111 @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1112qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1113 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1114 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1115 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
8809e289 1116@end example
00984e39 1117
0a12ec87
RJ
1118@node disk_images_ssh
1119@subsection Secure Shell (ssh) disk images
1120
1121You can access disk images located on a remote ssh server
1122by using the ssh protocol:
1123
1124@example
1125qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1126@end example
1127
1128Alternative syntax using properties:
1129
1130@example
1131qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1132@end example
1133
1134@var{ssh} is the protocol.
1135
1136@var{user} is the remote user. If not specified, then the local
1137username is tried.
1138
1139@var{server} specifies the remote ssh server. Any ssh server can be
1140used, but it must implement the sftp-server protocol. Most Unix/Linux
1141systems should work without requiring any extra configuration.
1142
1143@var{port} is the port number on which sshd is listening. By default
1144the standard ssh port (22) is used.
1145
1146@var{path} is the path to the disk image.
1147
1148The optional @var{host_key_check} parameter controls how the remote
1149host's key is checked. The default is @code{yes} which means to use
1150the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1151turns off known-hosts checking. Or you can check that the host key
1152matches a specific fingerprint:
1153@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1154(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1155tools only use MD5 to print fingerprints).
1156
1157Currently authentication must be done using ssh-agent. Other
1158authentication methods may be supported in future.
1159
9a2d462e
RJ
1160Note: Many ssh servers do not support an @code{fsync}-style operation.
1161The ssh driver cannot guarantee that disk flush requests are
1162obeyed, and this causes a risk of disk corruption if the remote
1163server or network goes down during writes. The driver will
1164print a warning when @code{fsync} is not supported:
1165
1166warning: ssh server @code{ssh.example.com:22} does not support fsync
1167
1168With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1169supported.
0a12ec87 1170
debc7065 1171@node pcsys_network
9d4fb82e
FB
1172@section Network emulation
1173
4be456f1 1174QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1175target) and can connect them to an arbitrary number of Virtual Local
1176Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1177VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1178simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1179network stack can replace the TAP device to have a basic network
1180connection.
1181
1182@subsection VLANs
9d4fb82e 1183
41d03949
FB
1184QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1185connection between several network devices. These devices can be for
1186example QEMU virtual Ethernet cards or virtual Host ethernet devices
1187(TAP devices).
9d4fb82e 1188
41d03949
FB
1189@subsection Using TAP network interfaces
1190
1191This is the standard way to connect QEMU to a real network. QEMU adds
1192a virtual network device on your host (called @code{tapN}), and you
1193can then configure it as if it was a real ethernet card.
9d4fb82e 1194
8f40c388
FB
1195@subsubsection Linux host
1196
9d4fb82e
FB
1197As an example, you can download the @file{linux-test-xxx.tar.gz}
1198archive and copy the script @file{qemu-ifup} in @file{/etc} and
1199configure properly @code{sudo} so that the command @code{ifconfig}
1200contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1201that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1202device @file{/dev/net/tun} must be present.
1203
ee0f4751
FB
1204See @ref{sec_invocation} to have examples of command lines using the
1205TAP network interfaces.
9d4fb82e 1206
8f40c388
FB
1207@subsubsection Windows host
1208
1209There is a virtual ethernet driver for Windows 2000/XP systems, called
1210TAP-Win32. But it is not included in standard QEMU for Windows,
1211so you will need to get it separately. It is part of OpenVPN package,
1212so download OpenVPN from : @url{http://openvpn.net/}.
1213
9d4fb82e
FB
1214@subsection Using the user mode network stack
1215
41d03949
FB
1216By using the option @option{-net user} (default configuration if no
1217@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1218network stack (you don't need root privilege to use the virtual
41d03949 1219network). The virtual network configuration is the following:
9d4fb82e
FB
1220
1221@example
1222
41d03949
FB
1223 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1224 | (10.0.2.2)
9d4fb82e 1225 |
2518bd0d 1226 ----> DNS server (10.0.2.3)
3b46e624 1227 |
2518bd0d 1228 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1229@end example
1230
1231The QEMU VM behaves as if it was behind a firewall which blocks all
1232incoming connections. You can use a DHCP client to automatically
41d03949
FB
1233configure the network in the QEMU VM. The DHCP server assign addresses
1234to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1235
1236In order to check that the user mode network is working, you can ping
1237the address 10.0.2.2 and verify that you got an address in the range
123810.0.2.x from the QEMU virtual DHCP server.
1239
37cbfcce
GH
1240Note that ICMP traffic in general does not work with user mode networking.
1241@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1242however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1243ping sockets to allow @code{ping} to the Internet. The host admin has to set
1244the ping_group_range in order to grant access to those sockets. To allow ping
1245for GID 100 (usually users group):
1246
1247@example
1248echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1249@end example
b415a407 1250
9bf05444
FB
1251When using the built-in TFTP server, the router is also the TFTP
1252server.
1253
c8c6afa8
TH
1254When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1255connections can be redirected from the host to the guest. It allows for
1256example to redirect X11, telnet or SSH connections.
443f1376 1257
41d03949
FB
1258@subsection Connecting VLANs between QEMU instances
1259
1260Using the @option{-net socket} option, it is possible to make VLANs
1261that span several QEMU instances. See @ref{sec_invocation} to have a
1262basic example.
1263
576fd0a1 1264@node pcsys_other_devs
6cbf4c8c
CM
1265@section Other Devices
1266
1267@subsection Inter-VM Shared Memory device
1268
5400c02b
MA
1269On Linux hosts, a shared memory device is available. The basic syntax
1270is:
6cbf4c8c
CM
1271
1272@example
5400c02b
MA
1273qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1274@end example
1275
1276where @var{hostmem} names a host memory backend. For a POSIX shared
1277memory backend, use something like
1278
1279@example
1280-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1281@end example
1282
1283If desired, interrupts can be sent between guest VMs accessing the same shared
1284memory region. Interrupt support requires using a shared memory server and
1285using a chardev socket to connect to it. The code for the shared memory server
1286is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1287memory server is:
1288
1289@example
a75eb03b 1290# First start the ivshmem server once and for all
50d34c4e 1291ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1292
1293# Then start your qemu instances with matching arguments
5400c02b 1294qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1295 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1296@end example
1297
1298When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1299using the same server to communicate via interrupts. Guests can read their
1309cf44 1300VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1301
62a830b6
MA
1302@subsubsection Migration with ivshmem
1303
5400c02b
MA
1304With device property @option{master=on}, the guest will copy the shared
1305memory on migration to the destination host. With @option{master=off},
1306the guest will not be able to migrate with the device attached. In the
1307latter case, the device should be detached and then reattached after
1308migration using the PCI hotplug support.
6cbf4c8c 1309
62a830b6
MA
1310At most one of the devices sharing the same memory can be master. The
1311master must complete migration before you plug back the other devices.
1312
7d4f4bda
MAL
1313@subsubsection ivshmem and hugepages
1314
1315Instead of specifying the <shm size> using POSIX shm, you may specify
1316a memory backend that has hugepage support:
1317
1318@example
5400c02b
MA
1319qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1320 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1321@end example
1322
1323ivshmem-server also supports hugepages mount points with the
1324@option{-m} memory path argument.
1325
9d4fb82e
FB
1326@node direct_linux_boot
1327@section Direct Linux Boot
1f673135
FB
1328
1329This section explains how to launch a Linux kernel inside QEMU without
1330having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1331kernel testing.
1f673135 1332
ee0f4751 1333The syntax is:
1f673135 1334@example
3804da9d 1335qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1336@end example
1337
ee0f4751
FB
1338Use @option{-kernel} to provide the Linux kernel image and
1339@option{-append} to give the kernel command line arguments. The
1340@option{-initrd} option can be used to provide an INITRD image.
1f673135 1341
ee0f4751
FB
1342When using the direct Linux boot, a disk image for the first hard disk
1343@file{hda} is required because its boot sector is used to launch the
1344Linux kernel.
1f673135 1345
ee0f4751
FB
1346If you do not need graphical output, you can disable it and redirect
1347the virtual serial port and the QEMU monitor to the console with the
1348@option{-nographic} option. The typical command line is:
1f673135 1349@example
3804da9d
SW
1350qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1351 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1352@end example
1353
ee0f4751
FB
1354Use @key{Ctrl-a c} to switch between the serial console and the
1355monitor (@pxref{pcsys_keys}).
1f673135 1356
debc7065 1357@node pcsys_usb
b389dbfb
FB
1358@section USB emulation
1359
a92ff8c1
TH
1360QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
1361plug virtual USB devices or real host USB devices (only works with certain
1362host operating systems). QEMU will automatically create and connect virtual
1363USB hubs as necessary to connect multiple USB devices.
b389dbfb 1364
0aff66b5
PB
1365@menu
1366* usb_devices::
1367* host_usb_devices::
1368@end menu
1369@node usb_devices
1370@subsection Connecting USB devices
b389dbfb 1371
a92ff8c1
TH
1372USB devices can be connected with the @option{-device usb-...} command line
1373option or the @code{device_add} monitor command. Available devices are:
b389dbfb 1374
db380c06 1375@table @code
a92ff8c1 1376@item usb-mouse
0aff66b5 1377Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 1378@item usb-tablet
c6d46c20 1379Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1380This means QEMU is able to report the mouse position without having
0aff66b5 1381to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
1382@item usb-storage,drive=@var{drive_id}
1383Mass storage device backed by @var{drive_id} (@pxref{disk_images})
1384@item usb-uas
1385USB attached SCSI device, see
1386@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1387for details
1388@item usb-bot
1389Bulk-only transport storage device, see
1390@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1391for details here, too
1392@item usb-mtp,x-root=@var{dir}
1393Media transfer protocol device, using @var{dir} as root of the file tree
1394that is presented to the guest.
1395@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
1396Pass through the host device identified by @var{bus} and @var{addr}
1397@item usb-host,vendorid=@var{vendor},productid=@var{product}
1398Pass through the host device identified by @var{vendor} and @var{product} ID
1399@item usb-wacom-tablet
f6d2a316
AZ
1400Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1401above but it can be used with the tslib library because in addition to touch
1402coordinates it reports touch pressure.
a92ff8c1 1403@item usb-kbd
47b2d338 1404Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 1405@item usb-serial,chardev=@var{id}
db380c06 1406Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
1407device @var{id}.
1408@item usb-braille,chardev=@var{id}
2e4d9fb1 1409Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
1410or fake device referenced by @var{id}.
1411@item usb-net[,netdev=@var{id}]
1412Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
1413specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 1414For instance, user-mode networking can be used with
6c9f886c 1415@example
a92ff8c1 1416qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 1417@end example
a92ff8c1
TH
1418@item usb-ccid
1419Smartcard reader device
1420@item usb-audio
1421USB audio device
1422@item usb-bt-dongle
1423Bluetooth dongle for the transport layer of HCI. It is connected to HCI
1424scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
1425Note that the syntax for the @code{-device usb-bt-dongle} option is not as
1426useful yet as it was with the legacy @code{-usbdevice} option. So to
1427configure an USB bluetooth device, you might need to use
1428"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
1429bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
1430the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1431no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1432This USB device implements the USB Transport Layer of HCI. Example
1433usage:
1434@example
8485140f 1435@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1436@end example
0aff66b5 1437@end table
b389dbfb 1438
0aff66b5 1439@node host_usb_devices
b389dbfb
FB
1440@subsection Using host USB devices on a Linux host
1441
1442WARNING: this is an experimental feature. QEMU will slow down when
1443using it. USB devices requiring real time streaming (i.e. USB Video
1444Cameras) are not supported yet.
1445
1446@enumerate
5fafdf24 1447@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1448is actually using the USB device. A simple way to do that is simply to
1449disable the corresponding kernel module by renaming it from @file{mydriver.o}
1450to @file{mydriver.o.disabled}.
1451
1452@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1453@example
1454ls /proc/bus/usb
1455001 devices drivers
1456@end example
1457
1458@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1459@example
1460chown -R myuid /proc/bus/usb
1461@end example
1462
1463@item Launch QEMU and do in the monitor:
5fafdf24 1464@example
b389dbfb
FB
1465info usbhost
1466 Device 1.2, speed 480 Mb/s
1467 Class 00: USB device 1234:5678, USB DISK
1468@end example
1469You should see the list of the devices you can use (Never try to use
1470hubs, it won't work).
1471
1472@item Add the device in QEMU by using:
5fafdf24 1473@example
a92ff8c1 1474device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1475@end example
1476
a92ff8c1
TH
1477Normally the guest OS should report that a new USB device is plugged.
1478You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1479
1480@item Now you can try to use the host USB device in QEMU.
1481
1482@end enumerate
1483
1484When relaunching QEMU, you may have to unplug and plug again the USB
1485device to make it work again (this is a bug).
1486
f858dcae
TS
1487@node vnc_security
1488@section VNC security
1489
1490The VNC server capability provides access to the graphical console
1491of the guest VM across the network. This has a number of security
1492considerations depending on the deployment scenarios.
1493
1494@menu
1495* vnc_sec_none::
1496* vnc_sec_password::
1497* vnc_sec_certificate::
1498* vnc_sec_certificate_verify::
1499* vnc_sec_certificate_pw::
2f9606b3
AL
1500* vnc_sec_sasl::
1501* vnc_sec_certificate_sasl::
f858dcae 1502* vnc_generate_cert::
2f9606b3 1503* vnc_setup_sasl::
f858dcae
TS
1504@end menu
1505@node vnc_sec_none
1506@subsection Without passwords
1507
1508The simplest VNC server setup does not include any form of authentication.
1509For this setup it is recommended to restrict it to listen on a UNIX domain
1510socket only. For example
1511
1512@example
3804da9d 1513qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1514@end example
1515
1516This ensures that only users on local box with read/write access to that
1517path can access the VNC server. To securely access the VNC server from a
1518remote machine, a combination of netcat+ssh can be used to provide a secure
1519tunnel.
1520
1521@node vnc_sec_password
1522@subsection With passwords
1523
1524The VNC protocol has limited support for password based authentication. Since
1525the protocol limits passwords to 8 characters it should not be considered
1526to provide high security. The password can be fairly easily brute-forced by
1527a client making repeat connections. For this reason, a VNC server using password
1528authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1529or UNIX domain sockets. Password authentication is not supported when operating
1530in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1531authentication is requested with the @code{password} option, and then once QEMU
1532is running the password is set with the monitor. Until the monitor is used to
1533set the password all clients will be rejected.
f858dcae
TS
1534
1535@example
3804da9d 1536qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1537(qemu) change vnc password
1538Password: ********
1539(qemu)
1540@end example
1541
1542@node vnc_sec_certificate
1543@subsection With x509 certificates
1544
1545The QEMU VNC server also implements the VeNCrypt extension allowing use of
1546TLS for encryption of the session, and x509 certificates for authentication.
1547The use of x509 certificates is strongly recommended, because TLS on its
1548own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1549support provides a secure session, but no authentication. This allows any
1550client to connect, and provides an encrypted session.
1551
1552@example
3804da9d 1553qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1554@end example
1555
1556In the above example @code{/etc/pki/qemu} should contain at least three files,
1557@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1558users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1559NB the @code{server-key.pem} file should be protected with file mode 0600 to
1560only be readable by the user owning it.
1561
1562@node vnc_sec_certificate_verify
1563@subsection With x509 certificates and client verification
1564
1565Certificates can also provide a means to authenticate the client connecting.
1566The server will request that the client provide a certificate, which it will
1567then validate against the CA certificate. This is a good choice if deploying
1568in an environment with a private internal certificate authority.
1569
1570@example
3804da9d 1571qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1572@end example
1573
1574
1575@node vnc_sec_certificate_pw
1576@subsection With x509 certificates, client verification and passwords
1577
1578Finally, the previous method can be combined with VNC password authentication
1579to provide two layers of authentication for clients.
1580
1581@example
3804da9d 1582qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1583(qemu) change vnc password
1584Password: ********
1585(qemu)
1586@end example
1587
2f9606b3
AL
1588
1589@node vnc_sec_sasl
1590@subsection With SASL authentication
1591
1592The SASL authentication method is a VNC extension, that provides an
1593easily extendable, pluggable authentication method. This allows for
1594integration with a wide range of authentication mechanisms, such as
1595PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1596The strength of the authentication depends on the exact mechanism
1597configured. If the chosen mechanism also provides a SSF layer, then
1598it will encrypt the datastream as well.
1599
1600Refer to the later docs on how to choose the exact SASL mechanism
1601used for authentication, but assuming use of one supporting SSF,
1602then QEMU can be launched with:
1603
1604@example
3804da9d 1605qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1606@end example
1607
1608@node vnc_sec_certificate_sasl
1609@subsection With x509 certificates and SASL authentication
1610
1611If the desired SASL authentication mechanism does not supported
1612SSF layers, then it is strongly advised to run it in combination
1613with TLS and x509 certificates. This provides securely encrypted
1614data stream, avoiding risk of compromising of the security
1615credentials. This can be enabled, by combining the 'sasl' option
1616with the aforementioned TLS + x509 options:
1617
1618@example
3804da9d 1619qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1620@end example
1621
1622
f858dcae
TS
1623@node vnc_generate_cert
1624@subsection Generating certificates for VNC
1625
1626The GNU TLS packages provides a command called @code{certtool} which can
1627be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1628is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1629each server. If using certificates for authentication, then each client
1630will also need to be issued a certificate. The recommendation is for the
1631server to keep its certificates in either @code{/etc/pki/qemu} or for
1632unprivileged users in @code{$HOME/.pki/qemu}.
1633
1634@menu
1635* vnc_generate_ca::
1636* vnc_generate_server::
1637* vnc_generate_client::
1638@end menu
1639@node vnc_generate_ca
1640@subsubsection Setup the Certificate Authority
1641
1642This step only needs to be performed once per organization / organizational
1643unit. First the CA needs a private key. This key must be kept VERY secret
1644and secure. If this key is compromised the entire trust chain of the certificates
1645issued with it is lost.
1646
1647@example
1648# certtool --generate-privkey > ca-key.pem
1649@end example
1650
1651A CA needs to have a public certificate. For simplicity it can be a self-signed
1652certificate, or one issue by a commercial certificate issuing authority. To
1653generate a self-signed certificate requires one core piece of information, the
1654name of the organization.
1655
1656@example
1657# cat > ca.info <<EOF
1658cn = Name of your organization
1659ca
1660cert_signing_key
1661EOF
1662# certtool --generate-self-signed \
1663 --load-privkey ca-key.pem
1664 --template ca.info \
1665 --outfile ca-cert.pem
1666@end example
1667
1668The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1669TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1670
1671@node vnc_generate_server
1672@subsubsection Issuing server certificates
1673
1674Each server (or host) needs to be issued with a key and certificate. When connecting
1675the certificate is sent to the client which validates it against the CA certificate.
1676The core piece of information for a server certificate is the hostname. This should
1677be the fully qualified hostname that the client will connect with, since the client
1678will typically also verify the hostname in the certificate. On the host holding the
1679secure CA private key:
1680
1681@example
1682# cat > server.info <<EOF
1683organization = Name of your organization
1684cn = server.foo.example.com
1685tls_www_server
1686encryption_key
1687signing_key
1688EOF
1689# certtool --generate-privkey > server-key.pem
1690# certtool --generate-certificate \
1691 --load-ca-certificate ca-cert.pem \
1692 --load-ca-privkey ca-key.pem \
63c693f8 1693 --load-privkey server-key.pem \
f858dcae
TS
1694 --template server.info \
1695 --outfile server-cert.pem
1696@end example
1697
1698The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1699to the server for which they were generated. The @code{server-key.pem} is security
1700sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1701
1702@node vnc_generate_client
1703@subsubsection Issuing client certificates
1704
1705If the QEMU VNC server is to use the @code{x509verify} option to validate client
1706certificates as its authentication mechanism, each client also needs to be issued
1707a certificate. The client certificate contains enough metadata to uniquely identify
1708the client, typically organization, state, city, building, etc. On the host holding
1709the secure CA private key:
1710
1711@example
1712# cat > client.info <<EOF
1713country = GB
1714state = London
1715locality = London
63c693f8 1716organization = Name of your organization
f858dcae
TS
1717cn = client.foo.example.com
1718tls_www_client
1719encryption_key
1720signing_key
1721EOF
1722# certtool --generate-privkey > client-key.pem
1723# certtool --generate-certificate \
1724 --load-ca-certificate ca-cert.pem \
1725 --load-ca-privkey ca-key.pem \
1726 --load-privkey client-key.pem \
1727 --template client.info \
1728 --outfile client-cert.pem
1729@end example
1730
1731The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1732copied to the client for which they were generated.
1733
2f9606b3
AL
1734
1735@node vnc_setup_sasl
1736
1737@subsection Configuring SASL mechanisms
1738
1739The following documentation assumes use of the Cyrus SASL implementation on a
1740Linux host, but the principals should apply to any other SASL impl. When SASL
1741is enabled, the mechanism configuration will be loaded from system default
1742SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1743unprivileged user, an environment variable SASL_CONF_PATH can be used
1744to make it search alternate locations for the service config.
1745
c6a9a9f5
DB
1746If the TLS option is enabled for VNC, then it will provide session encryption,
1747otherwise the SASL mechanism will have to provide encryption. In the latter
1748case the list of possible plugins that can be used is drastically reduced. In
1749fact only the GSSAPI SASL mechanism provides an acceptable level of security
1750by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1751mechanism, however, it has multiple serious flaws described in detail in
1752RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1753provides a simple username/password auth facility similar to DIGEST-MD5, but
1754does not support session encryption, so can only be used in combination with
1755TLS.
1756
1757When not using TLS the recommended configuration is
2f9606b3
AL
1758
1759@example
c6a9a9f5
DB
1760mech_list: gssapi
1761keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1762@end example
1763
c6a9a9f5
DB
1764This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1765the server principal stored in /etc/qemu/krb5.tab. For this to work the
1766administrator of your KDC must generate a Kerberos principal for the server,
1767with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1768'somehost.example.com' with the fully qualified host name of the machine
1769running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1770
c6a9a9f5
DB
1771When using TLS, if username+password authentication is desired, then a
1772reasonable configuration is
2f9606b3
AL
1773
1774@example
c6a9a9f5
DB
1775mech_list: scram-sha-1
1776sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1777@end example
1778
c6a9a9f5
DB
1779The saslpasswd2 program can be used to populate the passwd.db file with
1780accounts.
2f9606b3 1781
c6a9a9f5
DB
1782Other SASL configurations will be left as an exercise for the reader. Note that
1783all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1784secure data channel.
2f9606b3 1785
0806e3f6 1786@node gdb_usage
da415d54
FB
1787@section GDB usage
1788
1789QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1790'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1791
b65ee4fa 1792In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1793gdb connection:
1794@example
3804da9d
SW
1795qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1796 -append "root=/dev/hda"
da415d54
FB
1797Connected to host network interface: tun0
1798Waiting gdb connection on port 1234
1799@end example
1800
1801Then launch gdb on the 'vmlinux' executable:
1802@example
1803> gdb vmlinux
1804@end example
1805
1806In gdb, connect to QEMU:
1807@example
6c9bf893 1808(gdb) target remote localhost:1234
da415d54
FB
1809@end example
1810
1811Then you can use gdb normally. For example, type 'c' to launch the kernel:
1812@example
1813(gdb) c
1814@end example
1815
0806e3f6
FB
1816Here are some useful tips in order to use gdb on system code:
1817
1818@enumerate
1819@item
1820Use @code{info reg} to display all the CPU registers.
1821@item
1822Use @code{x/10i $eip} to display the code at the PC position.
1823@item
1824Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1825@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1826@end enumerate
1827
60897d36
EI
1828Advanced debugging options:
1829
b6af0975 1830The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1831@table @code
60897d36
EI
1832@item maintenance packet qqemu.sstepbits
1833
1834This will display the MASK bits used to control the single stepping IE:
1835@example
1836(gdb) maintenance packet qqemu.sstepbits
1837sending: "qqemu.sstepbits"
1838received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1839@end example
1840@item maintenance packet qqemu.sstep
1841
1842This will display the current value of the mask used when single stepping IE:
1843@example
1844(gdb) maintenance packet qqemu.sstep
1845sending: "qqemu.sstep"
1846received: "0x7"
1847@end example
1848@item maintenance packet Qqemu.sstep=HEX_VALUE
1849
1850This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1851@example
1852(gdb) maintenance packet Qqemu.sstep=0x5
1853sending: "qemu.sstep=0x5"
1854received: "OK"
1855@end example
94d45e44 1856@end table
60897d36 1857
debc7065 1858@node pcsys_os_specific
1a084f3d
FB
1859@section Target OS specific information
1860
1861@subsection Linux
1862
15a34c63
FB
1863To have access to SVGA graphic modes under X11, use the @code{vesa} or
1864the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1865color depth in the guest and the host OS.
1a084f3d 1866
e3371e62
FB
1867When using a 2.6 guest Linux kernel, you should add the option
1868@code{clock=pit} on the kernel command line because the 2.6 Linux
1869kernels make very strict real time clock checks by default that QEMU
1870cannot simulate exactly.
1871
7c3fc84d
FB
1872When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1873not activated because QEMU is slower with this patch. The QEMU
1874Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1875Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1876patch by default. Newer kernels don't have it.
1877
1a084f3d
FB
1878@subsection Windows
1879
1880If you have a slow host, using Windows 95 is better as it gives the
1881best speed. Windows 2000 is also a good choice.
1882
e3371e62
FB
1883@subsubsection SVGA graphic modes support
1884
1885QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1886card. All Windows versions starting from Windows 95 should recognize
1887and use this graphic card. For optimal performances, use 16 bit color
1888depth in the guest and the host OS.
1a084f3d 1889
3cb0853a
FB
1890If you are using Windows XP as guest OS and if you want to use high
1891resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18921280x1024x16), then you should use the VESA VBE virtual graphic card
1893(option @option{-std-vga}).
1894
e3371e62
FB
1895@subsubsection CPU usage reduction
1896
1897Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1898instruction. The result is that it takes host CPU cycles even when
1899idle. You can install the utility from
3ba34a70
TH
1900@url{http://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1901to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1902
9d0a8e6f 1903@subsubsection Windows 2000 disk full problem
e3371e62 1904
9d0a8e6f
FB
1905Windows 2000 has a bug which gives a disk full problem during its
1906installation. When installing it, use the @option{-win2k-hack} QEMU
1907option to enable a specific workaround. After Windows 2000 is
1908installed, you no longer need this option (this option slows down the
1909IDE transfers).
e3371e62 1910
6cc721cf
FB
1911@subsubsection Windows 2000 shutdown
1912
1913Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1914can. It comes from the fact that Windows 2000 does not automatically
1915use the APM driver provided by the BIOS.
1916
1917In order to correct that, do the following (thanks to Struan
1918Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1919Add/Troubleshoot a device => Add a new device & Next => No, select the
1920hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1921(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1922correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1923
1924@subsubsection Share a directory between Unix and Windows
1925
c8c6afa8
TH
1926See @ref{sec_invocation} about the help of the option
1927@option{'-netdev user,smb=...'}.
6cc721cf 1928
2192c332 1929@subsubsection Windows XP security problem
e3371e62
FB
1930
1931Some releases of Windows XP install correctly but give a security
1932error when booting:
1933@example
1934A problem is preventing Windows from accurately checking the
1935license for this computer. Error code: 0x800703e6.
1936@end example
e3371e62 1937
2192c332
FB
1938The workaround is to install a service pack for XP after a boot in safe
1939mode. Then reboot, and the problem should go away. Since there is no
1940network while in safe mode, its recommended to download the full
1941installation of SP1 or SP2 and transfer that via an ISO or using the
1942vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1943
a0a821a4
FB
1944@subsection MS-DOS and FreeDOS
1945
1946@subsubsection CPU usage reduction
1947
1948DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70
TH
1949it takes host CPU cycles even when idle. You can install the utility from
1950@url{http://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1951to solve this problem.
a0a821a4 1952
debc7065 1953@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1954@chapter QEMU System emulator for non PC targets
1955
1956QEMU is a generic emulator and it emulates many non PC
1957machines. Most of the options are similar to the PC emulator. The
4be456f1 1958differences are mentioned in the following sections.
3f9f3aa1 1959
debc7065 1960@menu
7544a042 1961* PowerPC System emulator::
24d4de45
TS
1962* Sparc32 System emulator::
1963* Sparc64 System emulator::
1964* MIPS System emulator::
1965* ARM System emulator::
1966* ColdFire System emulator::
7544a042
SW
1967* Cris System emulator::
1968* Microblaze System emulator::
1969* SH4 System emulator::
3aeaea65 1970* Xtensa System emulator::
debc7065
FB
1971@end menu
1972
7544a042
SW
1973@node PowerPC System emulator
1974@section PowerPC System emulator
1975@cindex system emulation (PowerPC)
1a084f3d 1976
15a34c63
FB
1977Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1978or PowerMac PowerPC system.
1a084f3d 1979
b671f9ed 1980QEMU emulates the following PowerMac peripherals:
1a084f3d 1981
15a34c63 1982@itemize @minus
5fafdf24 1983@item
006f3a48 1984UniNorth or Grackle PCI Bridge
15a34c63
FB
1985@item
1986PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1987@item
15a34c63 19882 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1989@item
15a34c63
FB
1990NE2000 PCI adapters
1991@item
1992Non Volatile RAM
1993@item
1994VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1995@end itemize
1996
b671f9ed 1997QEMU emulates the following PREP peripherals:
52c00a5f
FB
1998
1999@itemize @minus
5fafdf24 2000@item
15a34c63
FB
2001PCI Bridge
2002@item
2003PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2004@item
52c00a5f
FB
20052 IDE interfaces with hard disk and CD-ROM support
2006@item
2007Floppy disk
5fafdf24 2008@item
15a34c63 2009NE2000 network adapters
52c00a5f
FB
2010@item
2011Serial port
2012@item
2013PREP Non Volatile RAM
15a34c63
FB
2014@item
2015PC compatible keyboard and mouse.
52c00a5f
FB
2016@end itemize
2017
15a34c63 2018QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2019@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2020
992e5acd 2021Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2022for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2023v2) portable firmware implementation. The goal is to implement a 100%
2024IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2025
15a34c63
FB
2026@c man begin OPTIONS
2027
2028The following options are specific to the PowerPC emulation:
2029
2030@table @option
2031
4e257e5e 2032@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2033
340fb41b 2034Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2035
4e257e5e 2036@item -prom-env @var{string}
95efd11c
BS
2037
2038Set OpenBIOS variables in NVRAM, for example:
2039
2040@example
2041qemu-system-ppc -prom-env 'auto-boot?=false' \
2042 -prom-env 'boot-device=hd:2,\yaboot' \
2043 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2044@end example
2045
2046These variables are not used by Open Hack'Ware.
2047
15a34c63
FB
2048@end table
2049
5fafdf24 2050@c man end
15a34c63
FB
2051
2052
52c00a5f 2053More information is available at
3f9f3aa1 2054@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2055
24d4de45
TS
2056@node Sparc32 System emulator
2057@section Sparc32 System emulator
7544a042 2058@cindex system emulation (Sparc32)
e80cfcfc 2059
34a3d239
BS
2060Use the executable @file{qemu-system-sparc} to simulate the following
2061Sun4m architecture machines:
2062@itemize @minus
2063@item
2064SPARCstation 4
2065@item
2066SPARCstation 5
2067@item
2068SPARCstation 10
2069@item
2070SPARCstation 20
2071@item
2072SPARCserver 600MP
2073@item
2074SPARCstation LX
2075@item
2076SPARCstation Voyager
2077@item
2078SPARCclassic
2079@item
2080SPARCbook
2081@end itemize
2082
2083The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2084but Linux limits the number of usable CPUs to 4.
e80cfcfc 2085
6a4e1771 2086QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2087
2088@itemize @minus
3475187d 2089@item
6a4e1771 2090IOMMU
e80cfcfc 2091@item
33632788 2092TCX or cgthree Frame buffer
5fafdf24 2093@item
e80cfcfc
FB
2094Lance (Am7990) Ethernet
2095@item
34a3d239 2096Non Volatile RAM M48T02/M48T08
e80cfcfc 2097@item
3475187d
FB
2098Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2099and power/reset logic
2100@item
2101ESP SCSI controller with hard disk and CD-ROM support
2102@item
6a3b9cc9 2103Floppy drive (not on SS-600MP)
a2502b58
BS
2104@item
2105CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2106@end itemize
2107
6a3b9cc9
BS
2108The number of peripherals is fixed in the architecture. Maximum
2109memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2110others 2047MB.
3475187d 2111
30a604f3 2112Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2113@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2114firmware implementation. The goal is to implement a 100% IEEE
21151275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2116
2117A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2118the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2119most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2120don't work probably due to interface issues between OpenBIOS and
2121Solaris.
3475187d
FB
2122
2123@c man begin OPTIONS
2124
a2502b58 2125The following options are specific to the Sparc32 emulation:
3475187d
FB
2126
2127@table @option
2128
4e257e5e 2129@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2130
33632788
MCA
2131Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2132option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2133of 1152x900x8 for people who wish to use OBP.
3475187d 2134
4e257e5e 2135@item -prom-env @var{string}
66508601
BS
2136
2137Set OpenBIOS variables in NVRAM, for example:
2138
2139@example
2140qemu-system-sparc -prom-env 'auto-boot?=false' \
2141 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2142@end example
2143
6a4e1771 2144@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2145
2146Set the emulated machine type. Default is SS-5.
2147
3475187d
FB
2148@end table
2149
5fafdf24 2150@c man end
3475187d 2151
24d4de45
TS
2152@node Sparc64 System emulator
2153@section Sparc64 System emulator
7544a042 2154@cindex system emulation (Sparc64)
e80cfcfc 2155
34a3d239
BS
2156Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2157(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2158Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2159able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
2160Sun4v emulator is still a work in progress.
2161
2162The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
2163of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
2164and is able to boot the disk.s10hw2 Solaris image.
2165@example
2166qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
2167 -nographic -m 256 \
2168 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
2169@end example
2170
b756921a 2171
c7ba218d 2172QEMU emulates the following peripherals:
83469015
FB
2173
2174@itemize @minus
2175@item
5fafdf24 2176UltraSparc IIi APB PCI Bridge
83469015
FB
2177@item
2178PCI VGA compatible card with VESA Bochs Extensions
2179@item
34a3d239
BS
2180PS/2 mouse and keyboard
2181@item
83469015
FB
2182Non Volatile RAM M48T59
2183@item
2184PC-compatible serial ports
c7ba218d
BS
2185@item
21862 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2187@item
2188Floppy disk
83469015
FB
2189@end itemize
2190
c7ba218d
BS
2191@c man begin OPTIONS
2192
2193The following options are specific to the Sparc64 emulation:
2194
2195@table @option
2196
4e257e5e 2197@item -prom-env @var{string}
34a3d239
BS
2198
2199Set OpenBIOS variables in NVRAM, for example:
2200
2201@example
2202qemu-system-sparc64 -prom-env 'auto-boot?=false'
2203@end example
2204
a2664ca0 2205@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
2206
2207Set the emulated machine type. The default is sun4u.
2208
2209@end table
2210
2211@c man end
2212
24d4de45
TS
2213@node MIPS System emulator
2214@section MIPS System emulator
7544a042 2215@cindex system emulation (MIPS)
9d0a8e6f 2216
d9aedc32
TS
2217Four executables cover simulation of 32 and 64-bit MIPS systems in
2218both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2219@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2220Five different machine types are emulated:
24d4de45
TS
2221
2222@itemize @minus
2223@item
2224A generic ISA PC-like machine "mips"
2225@item
2226The MIPS Malta prototype board "malta"
2227@item
d9aedc32 2228An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2229@item
f0fc6f8f 2230MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2231@item
2232A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2233@end itemize
2234
2235The generic emulation is supported by Debian 'Etch' and is able to
2236install Debian into a virtual disk image. The following devices are
2237emulated:
3f9f3aa1
FB
2238
2239@itemize @minus
5fafdf24 2240@item
6bf5b4e8 2241A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2242@item
2243PC style serial port
2244@item
24d4de45
TS
2245PC style IDE disk
2246@item
3f9f3aa1
FB
2247NE2000 network card
2248@end itemize
2249
24d4de45
TS
2250The Malta emulation supports the following devices:
2251
2252@itemize @minus
2253@item
0b64d008 2254Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2255@item
2256PIIX4 PCI/USB/SMbus controller
2257@item
2258The Multi-I/O chip's serial device
2259@item
3a2eeac0 2260PCI network cards (PCnet32 and others)
24d4de45
TS
2261@item
2262Malta FPGA serial device
2263@item
1f605a76 2264Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2265@end itemize
2266
2267The ACER Pica emulation supports:
2268
2269@itemize @minus
2270@item
2271MIPS R4000 CPU
2272@item
2273PC-style IRQ and DMA controllers
2274@item
2275PC Keyboard
2276@item
2277IDE controller
2278@end itemize
3f9f3aa1 2279
b5e4946f 2280The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2281to what the proprietary MIPS emulator uses for running Linux.
2282It supports:
6bf5b4e8
TS
2283
2284@itemize @minus
2285@item
2286A range of MIPS CPUs, default is the 24Kf
2287@item
2288PC style serial port
2289@item
2290MIPSnet network emulation
2291@end itemize
2292
88cb0a02
AJ
2293The MIPS Magnum R4000 emulation supports:
2294
2295@itemize @minus
2296@item
2297MIPS R4000 CPU
2298@item
2299PC-style IRQ controller
2300@item
2301PC Keyboard
2302@item
2303SCSI controller
2304@item
2305G364 framebuffer
2306@end itemize
2307
2308
24d4de45
TS
2309@node ARM System emulator
2310@section ARM System emulator
7544a042 2311@cindex system emulation (ARM)
3f9f3aa1
FB
2312
2313Use the executable @file{qemu-system-arm} to simulate a ARM
2314machine. The ARM Integrator/CP board is emulated with the following
2315devices:
2316
2317@itemize @minus
2318@item
9ee6e8bb 2319ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2320@item
2321Two PL011 UARTs
5fafdf24 2322@item
3f9f3aa1 2323SMC 91c111 Ethernet adapter
00a9bf19
PB
2324@item
2325PL110 LCD controller
2326@item
2327PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2328@item
2329PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2330@end itemize
2331
2332The ARM Versatile baseboard is emulated with the following devices:
2333
2334@itemize @minus
2335@item
9ee6e8bb 2336ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2337@item
2338PL190 Vectored Interrupt Controller
2339@item
2340Four PL011 UARTs
5fafdf24 2341@item
00a9bf19
PB
2342SMC 91c111 Ethernet adapter
2343@item
2344PL110 LCD controller
2345@item
2346PL050 KMI with PS/2 keyboard and mouse.
2347@item
2348PCI host bridge. Note the emulated PCI bridge only provides access to
2349PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2350This means some devices (eg. ne2k_pci NIC) are not usable, and others
2351(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2352mapped control registers.
e6de1bad
PB
2353@item
2354PCI OHCI USB controller.
2355@item
2356LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2357@item
2358PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2359@end itemize
2360
21a88941
PB
2361Several variants of the ARM RealView baseboard are emulated,
2362including the EB, PB-A8 and PBX-A9. Due to interactions with the
2363bootloader, only certain Linux kernel configurations work out
2364of the box on these boards.
2365
2366Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2367enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2368should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2369disabled and expect 1024M RAM.
2370
40c5c6cd 2371The following devices are emulated:
d7739d75
PB
2372
2373@itemize @minus
2374@item
f7c70325 2375ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2376@item
2377ARM AMBA Generic/Distributed Interrupt Controller
2378@item
2379Four PL011 UARTs
5fafdf24 2380@item
0ef849d7 2381SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2382@item
2383PL110 LCD controller
2384@item
2385PL050 KMI with PS/2 keyboard and mouse
2386@item
2387PCI host bridge
2388@item
2389PCI OHCI USB controller
2390@item
2391LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2392@item
2393PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2394@end itemize
2395
b00052e4
AZ
2396The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2397and "Terrier") emulation includes the following peripherals:
2398
2399@itemize @minus
2400@item
2401Intel PXA270 System-on-chip (ARM V5TE core)
2402@item
2403NAND Flash memory
2404@item
2405IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2406@item
2407On-chip OHCI USB controller
2408@item
2409On-chip LCD controller
2410@item
2411On-chip Real Time Clock
2412@item
2413TI ADS7846 touchscreen controller on SSP bus
2414@item
2415Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2416@item
2417GPIO-connected keyboard controller and LEDs
2418@item
549444e1 2419Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2420@item
2421Three on-chip UARTs
2422@item
2423WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2424@end itemize
2425
02645926
AZ
2426The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2427following elements:
2428
2429@itemize @minus
2430@item
2431Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2432@item
2433ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2434@item
2435On-chip LCD controller
2436@item
2437On-chip Real Time Clock
2438@item
2439TI TSC2102i touchscreen controller / analog-digital converter / Audio
2440CODEC, connected through MicroWire and I@math{^2}S busses
2441@item
2442GPIO-connected matrix keypad
2443@item
2444Secure Digital card connected to OMAP MMC/SD host
2445@item
2446Three on-chip UARTs
2447@end itemize
2448
c30bb264
AZ
2449Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2450emulation supports the following elements:
2451
2452@itemize @minus
2453@item
2454Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2455@item
2456RAM and non-volatile OneNAND Flash memories
2457@item
2458Display connected to EPSON remote framebuffer chip and OMAP on-chip
2459display controller and a LS041y3 MIPI DBI-C controller
2460@item
2461TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2462driven through SPI bus
2463@item
2464National Semiconductor LM8323-controlled qwerty keyboard driven
2465through I@math{^2}C bus
2466@item
2467Secure Digital card connected to OMAP MMC/SD host
2468@item
2469Three OMAP on-chip UARTs and on-chip STI debugging console
2470@item
40c5c6cd 2471A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2472@item
c30bb264
AZ
2473Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2474TUSB6010 chip - only USB host mode is supported
2475@item
2476TI TMP105 temperature sensor driven through I@math{^2}C bus
2477@item
2478TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2479@item
2480Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2481through CBUS
2482@end itemize
2483
9ee6e8bb
PB
2484The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2485devices:
2486
2487@itemize @minus
2488@item
2489Cortex-M3 CPU core.
2490@item
249164k Flash and 8k SRAM.
2492@item
2493Timers, UARTs, ADC and I@math{^2}C interface.
2494@item
2495OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2496@end itemize
2497
2498The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2499devices:
2500
2501@itemize @minus
2502@item
2503Cortex-M3 CPU core.
2504@item
2505256k Flash and 64k SRAM.
2506@item
2507Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2508@item
2509OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2510@end itemize
2511
57cd6e97
AZ
2512The Freecom MusicPal internet radio emulation includes the following
2513elements:
2514
2515@itemize @minus
2516@item
2517Marvell MV88W8618 ARM core.
2518@item
251932 MB RAM, 256 KB SRAM, 8 MB flash.
2520@item
2521Up to 2 16550 UARTs
2522@item
2523MV88W8xx8 Ethernet controller
2524@item
2525MV88W8618 audio controller, WM8750 CODEC and mixer
2526@item
e080e785 2527128×64 display with brightness control
57cd6e97
AZ
2528@item
25292 buttons, 2 navigation wheels with button function
2530@end itemize
2531
997641a8 2532The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2533The emulation includes the following elements:
997641a8
AZ
2534
2535@itemize @minus
2536@item
2537Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2538@item
2539ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2540V1
25411 Flash of 16MB and 1 Flash of 8MB
2542V2
25431 Flash of 32MB
2544@item
2545On-chip LCD controller
2546@item
2547On-chip Real Time Clock
2548@item
2549Secure Digital card connected to OMAP MMC/SD host
2550@item
2551Three on-chip UARTs
2552@end itemize
2553
3f9f3aa1
FB
2554A Linux 2.6 test image is available on the QEMU web site. More
2555information is available in the QEMU mailing-list archive.
9d0a8e6f 2556
d2c639d6
BS
2557@c man begin OPTIONS
2558
2559The following options are specific to the ARM emulation:
2560
2561@table @option
2562
2563@item -semihosting
2564Enable semihosting syscall emulation.
2565
2566On ARM this implements the "Angel" interface.
2567
2568Note that this allows guest direct access to the host filesystem,
2569so should only be used with trusted guest OS.
2570
2571@end table
2572
24d4de45
TS
2573@node ColdFire System emulator
2574@section ColdFire System emulator
7544a042
SW
2575@cindex system emulation (ColdFire)
2576@cindex system emulation (M68K)
209a4e69
PB
2577
2578Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2579The emulator is able to boot a uClinux kernel.
707e011b
PB
2580
2581The M5208EVB emulation includes the following devices:
2582
2583@itemize @minus
5fafdf24 2584@item
707e011b
PB
2585MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2586@item
2587Three Two on-chip UARTs.
2588@item
2589Fast Ethernet Controller (FEC)
2590@end itemize
2591
2592The AN5206 emulation includes the following devices:
209a4e69
PB
2593
2594@itemize @minus
5fafdf24 2595@item
209a4e69
PB
2596MCF5206 ColdFire V2 Microprocessor.
2597@item
2598Two on-chip UARTs.
2599@end itemize
2600
d2c639d6
BS
2601@c man begin OPTIONS
2602
7544a042 2603The following options are specific to the ColdFire emulation:
d2c639d6
BS
2604
2605@table @option
2606
2607@item -semihosting
2608Enable semihosting syscall emulation.
2609
2610On M68K this implements the "ColdFire GDB" interface used by libgloss.
2611
2612Note that this allows guest direct access to the host filesystem,
2613so should only be used with trusted guest OS.
2614
2615@end table
2616
7544a042
SW
2617@node Cris System emulator
2618@section Cris System emulator
2619@cindex system emulation (Cris)
2620
2621TODO
2622
2623@node Microblaze System emulator
2624@section Microblaze System emulator
2625@cindex system emulation (Microblaze)
2626
2627TODO
2628
2629@node SH4 System emulator
2630@section SH4 System emulator
2631@cindex system emulation (SH4)
2632
2633TODO
2634
3aeaea65
MF
2635@node Xtensa System emulator
2636@section Xtensa System emulator
2637@cindex system emulation (Xtensa)
2638
2639Two executables cover simulation of both Xtensa endian options,
2640@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2641Two different machine types are emulated:
2642
2643@itemize @minus
2644@item
2645Xtensa emulator pseudo board "sim"
2646@item
2647Avnet LX60/LX110/LX200 board
2648@end itemize
2649
b5e4946f 2650The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2651to one provided by the proprietary Tensilica ISS.
2652It supports:
2653
2654@itemize @minus
2655@item
2656A range of Xtensa CPUs, default is the DC232B
2657@item
2658Console and filesystem access via semihosting calls
2659@end itemize
2660
2661The Avnet LX60/LX110/LX200 emulation supports:
2662
2663@itemize @minus
2664@item
2665A range of Xtensa CPUs, default is the DC232B
2666@item
266716550 UART
2668@item
2669OpenCores 10/100 Mbps Ethernet MAC
2670@end itemize
2671
2672@c man begin OPTIONS
2673
2674The following options are specific to the Xtensa emulation:
2675
2676@table @option
2677
2678@item -semihosting
2679Enable semihosting syscall emulation.
2680
2681Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2682Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2683
2684Note that this allows guest direct access to the host filesystem,
2685so should only be used with trusted guest OS.
2686
2687@end table
5fafdf24
TS
2688@node QEMU User space emulator
2689@chapter QEMU User space emulator
83195237
FB
2690
2691@menu
2692* Supported Operating Systems ::
0722cc42 2693* Features::
83195237 2694* Linux User space emulator::
84778508 2695* BSD User space emulator ::
83195237
FB
2696@end menu
2697
2698@node Supported Operating Systems
2699@section Supported Operating Systems
2700
2701The following OS are supported in user space emulation:
2702
2703@itemize @minus
2704@item
4be456f1 2705Linux (referred as qemu-linux-user)
83195237 2706@item
84778508 2707BSD (referred as qemu-bsd-user)
83195237
FB
2708@end itemize
2709
0722cc42
PB
2710@node Features
2711@section Features
2712
2713QEMU user space emulation has the following notable features:
2714
2715@table @strong
2716@item System call translation:
2717QEMU includes a generic system call translator. This means that
2718the parameters of the system calls can be converted to fix
2719endianness and 32/64-bit mismatches between hosts and targets.
2720IOCTLs can be converted too.
2721
2722@item POSIX signal handling:
2723QEMU can redirect to the running program all signals coming from
2724the host (such as @code{SIGALRM}), as well as synthesize signals from
2725virtual CPU exceptions (for example @code{SIGFPE} when the program
2726executes a division by zero).
2727
2728QEMU relies on the host kernel to emulate most signal system
2729calls, for example to emulate the signal mask. On Linux, QEMU
2730supports both normal and real-time signals.
2731
2732@item Threading:
2733On Linux, QEMU can emulate the @code{clone} syscall and create a real
2734host thread (with a separate virtual CPU) for each emulated thread.
2735Note that not all targets currently emulate atomic operations correctly.
2736x86 and ARM use a global lock in order to preserve their semantics.
2737@end table
2738
2739QEMU was conceived so that ultimately it can emulate itself. Although
2740it is not very useful, it is an important test to show the power of the
2741emulator.
2742
83195237
FB
2743@node Linux User space emulator
2744@section Linux User space emulator
386405f7 2745
debc7065
FB
2746@menu
2747* Quick Start::
2748* Wine launch::
2749* Command line options::
79737e4a 2750* Other binaries::
debc7065
FB
2751@end menu
2752
2753@node Quick Start
83195237 2754@subsection Quick Start
df0f11a0 2755
1f673135 2756In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2757itself and all the target (x86) dynamic libraries used by it.
386405f7 2758
1f673135 2759@itemize
386405f7 2760
1f673135
FB
2761@item On x86, you can just try to launch any process by using the native
2762libraries:
386405f7 2763
5fafdf24 2764@example
1f673135
FB
2765qemu-i386 -L / /bin/ls
2766@end example
386405f7 2767
1f673135
FB
2768@code{-L /} tells that the x86 dynamic linker must be searched with a
2769@file{/} prefix.
386405f7 2770
b65ee4fa
SW
2771@item Since QEMU is also a linux process, you can launch QEMU with
2772QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2773
5fafdf24 2774@example
1f673135
FB
2775qemu-i386 -L / qemu-i386 -L / /bin/ls
2776@end example
386405f7 2777
1f673135
FB
2778@item On non x86 CPUs, you need first to download at least an x86 glibc
2779(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2780@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2781
1f673135 2782@example
5fafdf24 2783unset LD_LIBRARY_PATH
1f673135 2784@end example
1eb87257 2785
1f673135 2786Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2787
1f673135
FB
2788@example
2789qemu-i386 tests/i386/ls
2790@end example
4c3b5a48 2791You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2792QEMU is automatically launched by the Linux kernel when you try to
2793launch x86 executables. It requires the @code{binfmt_misc} module in the
2794Linux kernel.
1eb87257 2795
1f673135
FB
2796@item The x86 version of QEMU is also included. You can try weird things such as:
2797@example
debc7065
FB
2798qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2799 /usr/local/qemu-i386/bin/ls-i386
1f673135 2800@end example
1eb20527 2801
1f673135 2802@end itemize
1eb20527 2803
debc7065 2804@node Wine launch
83195237 2805@subsection Wine launch
1eb20527 2806
1f673135 2807@itemize
386405f7 2808
1f673135
FB
2809@item Ensure that you have a working QEMU with the x86 glibc
2810distribution (see previous section). In order to verify it, you must be
2811able to do:
386405f7 2812
1f673135
FB
2813@example
2814qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2815@end example
386405f7 2816
1f673135 2817@item Download the binary x86 Wine install
5fafdf24 2818(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2819
1f673135 2820@item Configure Wine on your account. Look at the provided script
debc7065 2821@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2822@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2823
1f673135 2824@item Then you can try the example @file{putty.exe}:
386405f7 2825
1f673135 2826@example
debc7065
FB
2827qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2828 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2829@end example
386405f7 2830
1f673135 2831@end itemize
fd429f2f 2832
debc7065 2833@node Command line options
83195237 2834@subsection Command line options
1eb20527 2835
1f673135 2836@example
8485140f 2837@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2838@end example
1eb20527 2839
1f673135
FB
2840@table @option
2841@item -h
2842Print the help
3b46e624 2843@item -L path
1f673135
FB
2844Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2845@item -s size
2846Set the x86 stack size in bytes (default=524288)
34a3d239 2847@item -cpu model
c8057f95 2848Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2849@item -E @var{var}=@var{value}
2850Set environment @var{var} to @var{value}.
2851@item -U @var{var}
2852Remove @var{var} from the environment.
379f6698
PB
2853@item -B offset
2854Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2855the address region required by guest applications is reserved on the host.
2856This option is currently only supported on some hosts.
68a1c816
PB
2857@item -R size
2858Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2859"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2860@end table
2861
1f673135 2862Debug options:
386405f7 2863
1f673135 2864@table @option
989b697d
PM
2865@item -d item1,...
2866Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2867@item -p pagesize
2868Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2869@item -g port
2870Wait gdb connection to port
1b530a6d
AJ
2871@item -singlestep
2872Run the emulation in single step mode.
1f673135 2873@end table
386405f7 2874
b01bcae6
AZ
2875Environment variables:
2876
2877@table @env
2878@item QEMU_STRACE
2879Print system calls and arguments similar to the 'strace' program
2880(NOTE: the actual 'strace' program will not work because the user
2881space emulator hasn't implemented ptrace). At the moment this is
2882incomplete. All system calls that don't have a specific argument
2883format are printed with information for six arguments. Many
2884flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2885@end table
b01bcae6 2886
79737e4a 2887@node Other binaries
83195237 2888@subsection Other binaries
79737e4a 2889
7544a042
SW
2890@cindex user mode (Alpha)
2891@command{qemu-alpha} TODO.
2892
2893@cindex user mode (ARM)
2894@command{qemu-armeb} TODO.
2895
2896@cindex user mode (ARM)
79737e4a
PB
2897@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2898binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2899configurations), and arm-uclinux bFLT format binaries.
2900
7544a042
SW
2901@cindex user mode (ColdFire)
2902@cindex user mode (M68K)
e6e5906b
PB
2903@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2904(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2905coldfire uClinux bFLT format binaries.
2906
79737e4a
PB
2907The binary format is detected automatically.
2908
7544a042
SW
2909@cindex user mode (Cris)
2910@command{qemu-cris} TODO.
2911
2912@cindex user mode (i386)
2913@command{qemu-i386} TODO.
2914@command{qemu-x86_64} TODO.
2915
2916@cindex user mode (Microblaze)
2917@command{qemu-microblaze} TODO.
2918
2919@cindex user mode (MIPS)
2920@command{qemu-mips} TODO.
2921@command{qemu-mipsel} TODO.
2922
e671711c
MV
2923@cindex user mode (NiosII)
2924@command{qemu-nios2} TODO.
2925
7544a042
SW
2926@cindex user mode (PowerPC)
2927@command{qemu-ppc64abi32} TODO.
2928@command{qemu-ppc64} TODO.
2929@command{qemu-ppc} TODO.
2930
2931@cindex user mode (SH4)
2932@command{qemu-sh4eb} TODO.
2933@command{qemu-sh4} TODO.
2934
2935@cindex user mode (SPARC)
34a3d239
BS
2936@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2937
a785e42e
BS
2938@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2939(Sparc64 CPU, 32 bit ABI).
2940
2941@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2942SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2943
84778508
BS
2944@node BSD User space emulator
2945@section BSD User space emulator
2946
2947@menu
2948* BSD Status::
2949* BSD Quick Start::
2950* BSD Command line options::
2951@end menu
2952
2953@node BSD Status
2954@subsection BSD Status
2955
2956@itemize @minus
2957@item
2958target Sparc64 on Sparc64: Some trivial programs work.
2959@end itemize
2960
2961@node BSD Quick Start
2962@subsection Quick Start
2963
2964In order to launch a BSD process, QEMU needs the process executable
2965itself and all the target dynamic libraries used by it.
2966
2967@itemize
2968
2969@item On Sparc64, you can just try to launch any process by using the native
2970libraries:
2971
2972@example
2973qemu-sparc64 /bin/ls
2974@end example
2975
2976@end itemize
2977
2978@node BSD Command line options
2979@subsection Command line options
2980
2981@example
8485140f 2982@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2983@end example
2984
2985@table @option
2986@item -h
2987Print the help
2988@item -L path
2989Set the library root path (default=/)
2990@item -s size
2991Set the stack size in bytes (default=524288)
f66724c9
SW
2992@item -ignore-environment
2993Start with an empty environment. Without this option,
40c5c6cd 2994the initial environment is a copy of the caller's environment.
f66724c9
SW
2995@item -E @var{var}=@var{value}
2996Set environment @var{var} to @var{value}.
2997@item -U @var{var}
2998Remove @var{var} from the environment.
84778508
BS
2999@item -bsd type
3000Set the type of the emulated BSD Operating system. Valid values are
3001FreeBSD, NetBSD and OpenBSD (default).
3002@end table
3003
3004Debug options:
3005
3006@table @option
989b697d
PM
3007@item -d item1,...
3008Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
3009@item -p pagesize
3010Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
3011@item -singlestep
3012Run the emulation in single step mode.
84778508
BS
3013@end table
3014
47eacb4f 3015
78e87797
PB
3016@include qemu-tech.texi
3017
7544a042
SW
3018@node License
3019@appendix License
3020
3021QEMU is a trademark of Fabrice Bellard.
3022
3023QEMU is released under the GNU General Public License (TODO: add link).
3024Parts of QEMU have specific licenses, see file LICENSE.
3025
3026TODO (refer to file LICENSE, include it, include the GPL?)
3027
debc7065 3028@node Index
7544a042
SW
3029@appendix Index
3030@menu
3031* Concept Index::
3032* Function Index::
3033* Keystroke Index::
3034* Program Index::
3035* Data Type Index::
3036* Variable Index::
3037@end menu
3038
3039@node Concept Index
3040@section Concept Index
3041This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3042@printindex cp
3043
7544a042
SW
3044@node Function Index
3045@section Function Index
3046This index could be used for command line options and monitor functions.
3047@printindex fn
3048
3049@node Keystroke Index
3050@section Keystroke Index
3051
3052This is a list of all keystrokes which have a special function
3053in system emulation.
3054
3055@printindex ky
3056
3057@node Program Index
3058@section Program Index
3059@printindex pg
3060
3061@node Data Type Index
3062@section Data Type Index
3063
3064This index could be used for qdev device names and options.
3065
3066@printindex tp
3067
3068@node Variable Index
3069@section Variable Index
3070@printindex vr
3071
debc7065 3072@bye