]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
file-posix: Clear out first sector in hdev_create
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
75launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
debc7065 248@node pcsys_keys
a40db1b3 249@section Keys in the graphical frontends
3e11db9a
FB
250
251@c man begin OPTIONS
252
de1db2a1
BH
253During the graphical emulation, you can use special key combinations to change
254modes. The default key mappings are shown below, but if you use @code{-alt-grab}
255then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
256@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
257
a1b74fe8 258@table @key
f9859310 259@item Ctrl-Alt-f
7544a042 260@kindex Ctrl-Alt-f
a1b74fe8 261Toggle full screen
a0a821a4 262
d6a65ba3
JK
263@item Ctrl-Alt-+
264@kindex Ctrl-Alt-+
265Enlarge the screen
266
267@item Ctrl-Alt--
268@kindex Ctrl-Alt--
269Shrink the screen
270
c4a735f9 271@item Ctrl-Alt-u
7544a042 272@kindex Ctrl-Alt-u
c4a735f9 273Restore the screen's un-scaled dimensions
274
f9859310 275@item Ctrl-Alt-n
7544a042 276@kindex Ctrl-Alt-n
a0a821a4
FB
277Switch to virtual console 'n'. Standard console mappings are:
278@table @emph
279@item 1
280Target system display
281@item 2
282Monitor
283@item 3
284Serial port
a1b74fe8
FB
285@end table
286
f9859310 287@item Ctrl-Alt
7544a042 288@kindex Ctrl-Alt
a0a821a4
FB
289Toggle mouse and keyboard grab.
290@end table
291
7544a042
SW
292@kindex Ctrl-Up
293@kindex Ctrl-Down
294@kindex Ctrl-PageUp
295@kindex Ctrl-PageDown
3e11db9a
FB
296In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
297@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
298
a40db1b3
PM
299@c man end
300
301@node mux_keys
302@section Keys in the character backend multiplexer
303
304@c man begin OPTIONS
305
306During emulation, if you are using a character backend multiplexer
307(which is the default if you are using @option{-nographic}) then
308several commands are available via an escape sequence. These
309key sequences all start with an escape character, which is @key{Ctrl-a}
310by default, but can be changed with @option{-echr}. The list below assumes
311you're using the default.
ec410fc9
FB
312
313@table @key
a1b74fe8 314@item Ctrl-a h
7544a042 315@kindex Ctrl-a h
ec410fc9 316Print this help
3b46e624 317@item Ctrl-a x
7544a042 318@kindex Ctrl-a x
366dfc52 319Exit emulator
3b46e624 320@item Ctrl-a s
7544a042 321@kindex Ctrl-a s
1f47a922 322Save disk data back to file (if -snapshot)
20d8a3ed 323@item Ctrl-a t
7544a042 324@kindex Ctrl-a t
d2c639d6 325Toggle console timestamps
a1b74fe8 326@item Ctrl-a b
7544a042 327@kindex Ctrl-a b
1f673135 328Send break (magic sysrq in Linux)
a1b74fe8 329@item Ctrl-a c
7544a042 330@kindex Ctrl-a c
a40db1b3
PM
331Rotate between the frontends connected to the multiplexer (usually
332this switches between the monitor and the console)
a1b74fe8 333@item Ctrl-a Ctrl-a
a40db1b3
PM
334@kindex Ctrl-a Ctrl-a
335Send the escape character to the frontend
ec410fc9 336@end table
0806e3f6
FB
337@c man end
338
339@ignore
340
1f673135
FB
341@c man begin SEEALSO
342The HTML documentation of QEMU for more precise information and Linux
343user mode emulator invocation.
344@c man end
345
346@c man begin AUTHOR
347Fabrice Bellard
348@c man end
349
350@end ignore
351
debc7065 352@node pcsys_monitor
1f673135 353@section QEMU Monitor
7544a042 354@cindex QEMU monitor
1f673135
FB
355
356The QEMU monitor is used to give complex commands to the QEMU
357emulator. You can use it to:
358
359@itemize @minus
360
361@item
e598752a 362Remove or insert removable media images
89dfe898 363(such as CD-ROM or floppies).
1f673135 364
5fafdf24 365@item
1f673135
FB
366Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
367from a disk file.
368
369@item Inspect the VM state without an external debugger.
370
371@end itemize
372
373@subsection Commands
374
375The following commands are available:
376
2313086a 377@include qemu-monitor.texi
0806e3f6 378
2cd8af2d
PB
379@include qemu-monitor-info.texi
380
1f673135
FB
381@subsection Integer expressions
382
383The monitor understands integers expressions for every integer
384argument. You can use register names to get the value of specifics
385CPU registers by prefixing them with @emph{$}.
ec410fc9 386
1f47a922
FB
387@node disk_images
388@section Disk Images
389
ee29bdb6
PB
390QEMU supports many disk image formats, including growable disk images
391(their size increase as non empty sectors are written), compressed and
392encrypted disk images.
1f47a922 393
debc7065
FB
394@menu
395* disk_images_quickstart:: Quick start for disk image creation
396* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 397* vm_snapshots:: VM snapshots
debc7065 398* qemu_img_invocation:: qemu-img Invocation
975b092b 399* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
d3067b02
KW
493@node disk_images_formats
494@subsection Disk image file formats
495
496QEMU supports many image file formats that can be used with VMs as well as with
497any of the tools (like @code{qemu-img}). This includes the preferred formats
498raw and qcow2 as well as formats that are supported for compatibility with
499older QEMU versions or other hypervisors.
500
501Depending on the image format, different options can be passed to
502@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
503This section describes each format and the options that are supported for it.
504
505@table @option
506@item raw
507
508Raw disk image format. This format has the advantage of
509being simple and easily exportable to all other emulators. If your
510file system supports @emph{holes} (for example in ext2 or ext3 on
511Linux or NTFS on Windows), then only the written sectors will reserve
512space. Use @code{qemu-img info} to know the real size used by the
513image or @code{ls -ls} on Unix/Linux.
514
06247428
HT
515Supported options:
516@table @code
517@item preallocation
518Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
519@code{falloc} mode preallocates space for image by calling posix_fallocate().
520@code{full} mode preallocates space for image by writing zeros to underlying
521storage.
522@end table
523
d3067b02
KW
524@item qcow2
525QEMU image format, the most versatile format. Use it to have smaller
526images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
527on Windows), zlib based compression and support of multiple VM
528snapshots.
d3067b02
KW
529
530Supported options:
531@table @code
532@item compat
7fa9e1f9
SH
533Determines the qcow2 version to use. @code{compat=0.10} uses the
534traditional image format that can be read by any QEMU since 0.10.
d3067b02 535@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
536newer understand (this is the default). Amongst others, this includes
537zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
538
539@item backing_file
540File name of a base image (see @option{create} subcommand)
541@item backing_fmt
542Image format of the base image
543@item encryption
12f7efd0 544This option is deprecated and equivalent to @code{encrypt.format=aes}
d3067b02 545
12f7efd0
DB
546@item encrypt.format
547
548If this is set to @code{luks}, it requests that the qcow2 payload (not
549qcow2 header) be encrypted using the LUKS format. The passphrase to
550use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
551parameter. LUKS encryption parameters can be tuned with the other
552@code{encrypt.*} parameters.
553
554If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
555The encryption key is given by the @code{encrypt.key-secret} parameter.
556This encryption format is considered to be flawed by modern cryptography
557standards, suffering from a number of design problems:
136cd19d
DB
558
559@itemize @minus
560@item The AES-CBC cipher is used with predictable initialization vectors based
561on the sector number. This makes it vulnerable to chosen plaintext attacks
562which can reveal the existence of encrypted data.
563@item The user passphrase is directly used as the encryption key. A poorly
564chosen or short passphrase will compromise the security of the encryption.
565@item In the event of the passphrase being compromised there is no way to
566change the passphrase to protect data in any qcow images. The files must
567be cloned, using a different encryption passphrase in the new file. The
568original file must then be securely erased using a program like shred,
569though even this is ineffective with many modern storage technologies.
570@end itemize
571
12f7efd0
DB
572The use of this is no longer supported in system emulators. Support only
573remains in the command line utilities, for the purposes of data liberation
574and interoperability with old versions of QEMU. The @code{luks} format
575should be used instead.
576
577@item encrypt.key-secret
578
579Provides the ID of a @code{secret} object that contains the passphrase
580(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
581
582@item encrypt.cipher-alg
583
584Name of the cipher algorithm and key length. Currently defaults
585to @code{aes-256}. Only used when @code{encrypt.format=luks}.
586
587@item encrypt.cipher-mode
588
589Name of the encryption mode to use. Currently defaults to @code{xts}.
590Only used when @code{encrypt.format=luks}.
591
592@item encrypt.ivgen-alg
593
594Name of the initialization vector generator algorithm. Currently defaults
595to @code{plain64}. Only used when @code{encrypt.format=luks}.
596
597@item encrypt.ivgen-hash-alg
598
599Name of the hash algorithm to use with the initialization vector generator
600(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
601
602@item encrypt.hash-alg
603
604Name of the hash algorithm to use for PBKDF algorithm
605Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
606
607@item encrypt.iter-time
608
609Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
610Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
d3067b02
KW
611
612@item cluster_size
613Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
614sizes can improve the image file size whereas larger cluster sizes generally
615provide better performance.
616
617@item preallocation
0e4271b7
HT
618Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
619@code{full}). An image with preallocated metadata is initially larger but can
620improve performance when the image needs to grow. @code{falloc} and @code{full}
621preallocations are like the same options of @code{raw} format, but sets up
622metadata also.
d3067b02
KW
623
624@item lazy_refcounts
625If this option is set to @code{on}, reference count updates are postponed with
626the goal of avoiding metadata I/O and improving performance. This is
627particularly interesting with @option{cache=writethrough} which doesn't batch
628metadata updates. The tradeoff is that after a host crash, the reference count
629tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
630check -r all} is required, which may take some time.
631
632This option can only be enabled if @code{compat=1.1} is specified.
633
4ab15590 634@item nocow
bc3a7f90 635If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
636valid on btrfs, no effect on other file systems.
637
638Btrfs has low performance when hosting a VM image file, even more when the guest
639on the VM also using btrfs as file system. Turning off COW is a way to mitigate
640this bad performance. Generally there are two ways to turn off COW on btrfs:
641a) Disable it by mounting with nodatacow, then all newly created files will be
642NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
643does.
644
645Note: this option is only valid to new or empty files. If there is an existing
646file which is COW and has data blocks already, it couldn't be changed to NOCOW
647by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 648the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 649
d3067b02
KW
650@end table
651
652@item qed
653Old QEMU image format with support for backing files and compact image files
654(when your filesystem or transport medium does not support holes).
655
656When converting QED images to qcow2, you might want to consider using the
657@code{lazy_refcounts=on} option to get a more QED-like behaviour.
658
659Supported options:
660@table @code
661@item backing_file
662File name of a base image (see @option{create} subcommand).
663@item backing_fmt
664Image file format of backing file (optional). Useful if the format cannot be
665autodetected because it has no header, like some vhd/vpc files.
666@item cluster_size
667Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
668cluster sizes can improve the image file size whereas larger cluster sizes
669generally provide better performance.
670@item table_size
671Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
672and 16). There is normally no need to change this value but this option can be
673used for performance benchmarking.
674@end table
675
676@item qcow
677Old QEMU image format with support for backing files, compact image files,
678encryption and compression.
679
680Supported options:
681@table @code
682@item backing_file
683File name of a base image (see @option{create} subcommand)
684@item encryption
12f7efd0
DB
685This option is deprecated and equivalent to @code{encrypt.format=aes}
686
687@item encrypt.format
688If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
689The encryption key is given by the @code{encrypt.key-secret} parameter.
690This encryption format is considered to be flawed by modern cryptography
691standards, suffering from a number of design problems enumerated previously
692against the @code{qcow2} image format.
693
694The use of this is no longer supported in system emulators. Support only
695remains in the command line utilities, for the purposes of data liberation
696and interoperability with old versions of QEMU.
697
698Users requiring native encryption should use the @code{qcow2} format
699instead with @code{encrypt.format=luks}.
700
701@item encrypt.key-secret
702
703Provides the ID of a @code{secret} object that contains the encryption
704key (@code{encrypt.format=aes}).
705
706@end table
707
708@item luks
709
710LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
711
712Supported options:
713@table @code
714
715@item key-secret
716
717Provides the ID of a @code{secret} object that contains the passphrase.
718
719@item cipher-alg
720
721Name of the cipher algorithm and key length. Currently defaults
722to @code{aes-256}.
723
724@item cipher-mode
725
726Name of the encryption mode to use. Currently defaults to @code{xts}.
727
728@item ivgen-alg
729
730Name of the initialization vector generator algorithm. Currently defaults
731to @code{plain64}.
732
733@item ivgen-hash-alg
734
735Name of the hash algorithm to use with the initialization vector generator
736(if required). Defaults to @code{sha256}.
737
738@item hash-alg
739
740Name of the hash algorithm to use for PBKDF algorithm
741Defaults to @code{sha256}.
742
743@item iter-time
744
745Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
746Defaults to @code{2000}.
747
d3067b02
KW
748@end table
749
d3067b02
KW
750@item vdi
751VirtualBox 1.1 compatible image format.
752Supported options:
753@table @code
754@item static
755If this option is set to @code{on}, the image is created with metadata
756preallocation.
757@end table
758
759@item vmdk
760VMware 3 and 4 compatible image format.
761
762Supported options:
763@table @code
764@item backing_file
765File name of a base image (see @option{create} subcommand).
766@item compat6
767Create a VMDK version 6 image (instead of version 4)
f249924e
JK
768@item hwversion
769Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
770if hwversion is specified.
d3067b02
KW
771@item subformat
772Specifies which VMDK subformat to use. Valid options are
773@code{monolithicSparse} (default),
774@code{monolithicFlat},
775@code{twoGbMaxExtentSparse},
776@code{twoGbMaxExtentFlat} and
777@code{streamOptimized}.
778@end table
779
780@item vpc
781VirtualPC compatible image format (VHD).
782Supported options:
783@table @code
784@item subformat
785Specifies which VHD subformat to use. Valid options are
786@code{dynamic} (default) and @code{fixed}.
787@end table
8282db1b
JC
788
789@item VHDX
790Hyper-V compatible image format (VHDX).
791Supported options:
792@table @code
793@item subformat
794Specifies which VHDX subformat to use. Valid options are
795@code{dynamic} (default) and @code{fixed}.
796@item block_state_zero
30af51ce
JC
797Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
798or @code{off}. When set to @code{off}, new blocks will be created as
799@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
800arbitrary data for those blocks. Do not set to @code{off} when using
801@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
802@item block_size
803Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
804@item log_size
805Log size; min 1 MB.
806@end table
d3067b02
KW
807@end table
808
809@subsubsection Read-only formats
810More disk image file formats are supported in a read-only mode.
811@table @option
812@item bochs
813Bochs images of @code{growing} type.
814@item cloop
815Linux Compressed Loop image, useful only to reuse directly compressed
816CD-ROM images present for example in the Knoppix CD-ROMs.
817@item dmg
818Apple disk image.
819@item parallels
820Parallels disk image format.
821@end table
822
823
19cb3738
FB
824@node host_drives
825@subsection Using host drives
826
827In addition to disk image files, QEMU can directly access host
828devices. We describe here the usage for QEMU version >= 0.8.3.
829
830@subsubsection Linux
831
832On Linux, you can directly use the host device filename instead of a
4be456f1 833disk image filename provided you have enough privileges to access
92a539d2 834it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 835
f542086d 836@table @code
19cb3738
FB
837@item CD
838You can specify a CDROM device even if no CDROM is loaded. QEMU has
839specific code to detect CDROM insertion or removal. CDROM ejection by
840the guest OS is supported. Currently only data CDs are supported.
841@item Floppy
842You can specify a floppy device even if no floppy is loaded. Floppy
843removal is currently not detected accurately (if you change floppy
844without doing floppy access while the floppy is not loaded, the guest
845OS will think that the same floppy is loaded).
92a539d2
MA
846Use of the host's floppy device is deprecated, and support for it will
847be removed in a future release.
19cb3738
FB
848@item Hard disks
849Hard disks can be used. Normally you must specify the whole disk
850(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
851see it as a partitioned disk. WARNING: unless you know what you do, it
852is better to only make READ-ONLY accesses to the hard disk otherwise
853you may corrupt your host data (use the @option{-snapshot} command
854line option or modify the device permissions accordingly).
855@end table
856
857@subsubsection Windows
858
01781963
FB
859@table @code
860@item CD
4be456f1 861The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
862alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
863supported as an alias to the first CDROM drive.
19cb3738 864
e598752a 865Currently there is no specific code to handle removable media, so it
19cb3738
FB
866is better to use the @code{change} or @code{eject} monitor commands to
867change or eject media.
01781963 868@item Hard disks
89dfe898 869Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
870where @var{N} is the drive number (0 is the first hard disk).
871
872WARNING: unless you know what you do, it is better to only make
873READ-ONLY accesses to the hard disk otherwise you may corrupt your
874host data (use the @option{-snapshot} command line so that the
875modifications are written in a temporary file).
876@end table
877
19cb3738
FB
878
879@subsubsection Mac OS X
880
5fafdf24 881@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 882
e598752a 883Currently there is no specific code to handle removable media, so it
19cb3738
FB
884is better to use the @code{change} or @code{eject} monitor commands to
885change or eject media.
886
debc7065 887@node disk_images_fat_images
2c6cadd4
FB
888@subsection Virtual FAT disk images
889
890QEMU can automatically create a virtual FAT disk image from a
891directory tree. In order to use it, just type:
892
5fafdf24 893@example
3804da9d 894qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
895@end example
896
897Then you access access to all the files in the @file{/my_directory}
898directory without having to copy them in a disk image or to export
899them via SAMBA or NFS. The default access is @emph{read-only}.
900
901Floppies can be emulated with the @code{:floppy:} option:
902
5fafdf24 903@example
3804da9d 904qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
905@end example
906
907A read/write support is available for testing (beta stage) with the
908@code{:rw:} option:
909
5fafdf24 910@example
3804da9d 911qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
912@end example
913
914What you should @emph{never} do:
915@itemize
916@item use non-ASCII filenames ;
917@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
918@item expect it to work when loadvm'ing ;
919@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
920@end itemize
921
75818250
TS
922@node disk_images_nbd
923@subsection NBD access
924
925QEMU can access directly to block device exported using the Network Block Device
926protocol.
927
928@example
1d7d2a9d 929qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
930@end example
931
932If the NBD server is located on the same host, you can use an unix socket instead
933of an inet socket:
934
935@example
1d7d2a9d 936qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
937@end example
938
939In this case, the block device must be exported using qemu-nbd:
940
941@example
942qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
943@end example
944
9d85d557 945The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
946@example
947qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
948@end example
949
1d7d2a9d 950@noindent
75818250
TS
951and then you can use it with two guests:
952@example
1d7d2a9d
PB
953qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
954qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
955@end example
956
1d7d2a9d
PB
957If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
958own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 959@example
1d7d2a9d
PB
960qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
961qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
962@end example
963
964The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
965also available. Here are some example of the older syntax:
966@example
967qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
968qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
969qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
970@end example
971
42af9c30
MK
972@node disk_images_sheepdog
973@subsection Sheepdog disk images
974
975Sheepdog is a distributed storage system for QEMU. It provides highly
976available block level storage volumes that can be attached to
977QEMU-based virtual machines.
978
979You can create a Sheepdog disk image with the command:
980@example
5d6768e3 981qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
982@end example
983where @var{image} is the Sheepdog image name and @var{size} is its
984size.
985
986To import the existing @var{filename} to Sheepdog, you can use a
987convert command.
988@example
5d6768e3 989qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
990@end example
991
992You can boot from the Sheepdog disk image with the command:
993@example
5d6768e3 994qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
995@end example
996
997You can also create a snapshot of the Sheepdog image like qcow2.
998@example
5d6768e3 999qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
1000@end example
1001where @var{tag} is a tag name of the newly created snapshot.
1002
1003To boot from the Sheepdog snapshot, specify the tag name of the
1004snapshot.
1005@example
5d6768e3 1006qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
1007@end example
1008
1009You can create a cloned image from the existing snapshot.
1010@example
5d6768e3 1011qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
1012@end example
1013where @var{base} is a image name of the source snapshot and @var{tag}
1014is its tag name.
1015
1b8bbb46
MK
1016You can use an unix socket instead of an inet socket:
1017
1018@example
1019qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
1020@end example
1021
42af9c30
MK
1022If the Sheepdog daemon doesn't run on the local host, you need to
1023specify one of the Sheepdog servers to connect to.
1024@example
5d6768e3
MK
1025qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
1026qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
1027@end example
1028
00984e39
RS
1029@node disk_images_iscsi
1030@subsection iSCSI LUNs
1031
1032iSCSI is a popular protocol used to access SCSI devices across a computer
1033network.
1034
1035There are two different ways iSCSI devices can be used by QEMU.
1036
1037The first method is to mount the iSCSI LUN on the host, and make it appear as
1038any other ordinary SCSI device on the host and then to access this device as a
1039/dev/sd device from QEMU. How to do this differs between host OSes.
1040
1041The second method involves using the iSCSI initiator that is built into
1042QEMU. This provides a mechanism that works the same way regardless of which
1043host OS you are running QEMU on. This section will describe this second method
1044of using iSCSI together with QEMU.
1045
1046In QEMU, iSCSI devices are described using special iSCSI URLs
1047
1048@example
1049URL syntax:
1050iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
1051@end example
1052
1053Username and password are optional and only used if your target is set up
1054using CHAP authentication for access control.
1055Alternatively the username and password can also be set via environment
1056variables to have these not show up in the process list
1057
1058@example
1059export LIBISCSI_CHAP_USERNAME=<username>
1060export LIBISCSI_CHAP_PASSWORD=<password>
1061iscsi://<host>/<target-iqn-name>/<lun>
1062@end example
1063
f9dadc98
RS
1064Various session related parameters can be set via special options, either
1065in a configuration file provided via '-readconfig' or directly on the
1066command line.
1067
31459f46 1068If the initiator-name is not specified qemu will use a default name
fb9429dd
FR
1069of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the
1070virtual machine. If the UUID is not specified qemu will use
1071'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
31459f46
RS
1072virtual machine.
1073
f9dadc98
RS
1074@example
1075Setting a specific initiator name to use when logging in to the target
1076-iscsi initiator-name=iqn.qemu.test:my-initiator
1077@end example
1078
1079@example
1080Controlling which type of header digest to negotiate with the target
1081-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1082@end example
1083
1084These can also be set via a configuration file
1085@example
1086[iscsi]
1087 user = "CHAP username"
1088 password = "CHAP password"
1089 initiator-name = "iqn.qemu.test:my-initiator"
1090 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1091 header-digest = "CRC32C"
1092@end example
1093
1094
1095Setting the target name allows different options for different targets
1096@example
1097[iscsi "iqn.target.name"]
1098 user = "CHAP username"
1099 password = "CHAP password"
1100 initiator-name = "iqn.qemu.test:my-initiator"
1101 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1102 header-digest = "CRC32C"
1103@end example
1104
1105
1106Howto use a configuration file to set iSCSI configuration options:
1107@example
1108cat >iscsi.conf <<EOF
1109[iscsi]
1110 user = "me"
1111 password = "my password"
1112 initiator-name = "iqn.qemu.test:my-initiator"
1113 header-digest = "CRC32C"
1114EOF
1115
1116qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1117 -readconfig iscsi.conf
1118@end example
1119
1120
00984e39
RS
1121Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1122@example
1123This example shows how to set up an iSCSI target with one CDROM and one DISK
1124using the Linux STGT software target. This target is available on Red Hat based
1125systems as the package 'scsi-target-utils'.
1126
1127tgtd --iscsi portal=127.0.0.1:3260
1128tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1129tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1130 -b /IMAGES/disk.img --device-type=disk
1131tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1132 -b /IMAGES/cd.iso --device-type=cd
1133tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1134
f9dadc98
RS
1135qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1136 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1137 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1138@end example
1139
8809e289
BR
1140@node disk_images_gluster
1141@subsection GlusterFS disk images
00984e39 1142
736a83fa 1143GlusterFS is a user space distributed file system.
8809e289
BR
1144
1145You can boot from the GlusterFS disk image with the command:
1146@example
76b5550f
PKK
1147URI:
1148qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1149 [?socket=...][,file.debug=9][,file.logfile=...]
1150
1151JSON:
1152qemu-system-x86_64 'json:@{"driver":"qcow2",
1153 "file":@{"driver":"gluster",
1154 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1155 "server":[@{"type":"tcp","host":"...","port":"..."@},
1156 @{"type":"unix","socket":"..."@}]@}@}'
8809e289
BR
1157@end example
1158
1159@var{gluster} is the protocol.
1160
76b5550f 1161@var{type} specifies the transport type used to connect to gluster
8809e289 1162management daemon (glusterd). Valid transport types are
76b5550f
PKK
1163tcp and unix. In the URI form, if a transport type isn't specified,
1164then tcp type is assumed.
8809e289 1165
76b5550f
PKK
1166@var{host} specifies the server where the volume file specification for
1167the given volume resides. This can be either a hostname or an ipv4 address.
1168If transport type is unix, then @var{host} field should not be specified.
8809e289
BR
1169Instead @var{socket} field needs to be populated with the path to unix domain
1170socket.
1171
1172@var{port} is the port number on which glusterd is listening. This is optional
76b5550f
PKK
1173and if not specified, it defaults to port 24007. If the transport type is unix,
1174then @var{port} should not be specified.
1175
1176@var{volume} is the name of the gluster volume which contains the disk image.
1177
1178@var{path} is the path to the actual disk image that resides on gluster volume.
1179
1180@var{debug} is the logging level of the gluster protocol driver. Debug levels
1181are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1182The default level is 4. The current logging levels defined in the gluster source
1183are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
11846 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1185
1186@var{logfile} is a commandline option to mention log file path which helps in
1187logging to the specified file and also help in persisting the gfapi logs. The
1188default is stderr.
1189
8809e289 1190
8809e289 1191
8809e289
BR
1192
1193You can create a GlusterFS disk image with the command:
1194@example
76b5550f 1195qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
8809e289
BR
1196@end example
1197
1198Examples
1199@example
1200qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1201qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1202qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1203qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1204qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1205qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1206qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1207qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
76b5550f
PKK
1208qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1209qemu-system-x86_64 'json:@{"driver":"qcow2",
1210 "file":@{"driver":"gluster",
1211 "volume":"testvol","path":"a.img",
1212 "debug":9,"logfile":"/var/log/qemu-gluster.log",
1213 "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1214 @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1215qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1216 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1217 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1218 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
8809e289 1219@end example
00984e39 1220
0a12ec87
RJ
1221@node disk_images_ssh
1222@subsection Secure Shell (ssh) disk images
1223
1224You can access disk images located on a remote ssh server
1225by using the ssh protocol:
1226
1227@example
1228qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1229@end example
1230
1231Alternative syntax using properties:
1232
1233@example
1234qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1235@end example
1236
1237@var{ssh} is the protocol.
1238
1239@var{user} is the remote user. If not specified, then the local
1240username is tried.
1241
1242@var{server} specifies the remote ssh server. Any ssh server can be
1243used, but it must implement the sftp-server protocol. Most Unix/Linux
1244systems should work without requiring any extra configuration.
1245
1246@var{port} is the port number on which sshd is listening. By default
1247the standard ssh port (22) is used.
1248
1249@var{path} is the path to the disk image.
1250
1251The optional @var{host_key_check} parameter controls how the remote
1252host's key is checked. The default is @code{yes} which means to use
1253the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1254turns off known-hosts checking. Or you can check that the host key
1255matches a specific fingerprint:
1256@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1257(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1258tools only use MD5 to print fingerprints).
1259
1260Currently authentication must be done using ssh-agent. Other
1261authentication methods may be supported in future.
1262
9a2d462e
RJ
1263Note: Many ssh servers do not support an @code{fsync}-style operation.
1264The ssh driver cannot guarantee that disk flush requests are
1265obeyed, and this causes a risk of disk corruption if the remote
1266server or network goes down during writes. The driver will
1267print a warning when @code{fsync} is not supported:
1268
1269warning: ssh server @code{ssh.example.com:22} does not support fsync
1270
1271With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1272supported.
0a12ec87 1273
debc7065 1274@node pcsys_network
9d4fb82e
FB
1275@section Network emulation
1276
4be456f1 1277QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1278target) and can connect them to an arbitrary number of Virtual Local
1279Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1280VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1281simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1282network stack can replace the TAP device to have a basic network
1283connection.
1284
1285@subsection VLANs
9d4fb82e 1286
41d03949
FB
1287QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1288connection between several network devices. These devices can be for
1289example QEMU virtual Ethernet cards or virtual Host ethernet devices
1290(TAP devices).
9d4fb82e 1291
41d03949
FB
1292@subsection Using TAP network interfaces
1293
1294This is the standard way to connect QEMU to a real network. QEMU adds
1295a virtual network device on your host (called @code{tapN}), and you
1296can then configure it as if it was a real ethernet card.
9d4fb82e 1297
8f40c388
FB
1298@subsubsection Linux host
1299
9d4fb82e
FB
1300As an example, you can download the @file{linux-test-xxx.tar.gz}
1301archive and copy the script @file{qemu-ifup} in @file{/etc} and
1302configure properly @code{sudo} so that the command @code{ifconfig}
1303contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1304that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1305device @file{/dev/net/tun} must be present.
1306
ee0f4751
FB
1307See @ref{sec_invocation} to have examples of command lines using the
1308TAP network interfaces.
9d4fb82e 1309
8f40c388
FB
1310@subsubsection Windows host
1311
1312There is a virtual ethernet driver for Windows 2000/XP systems, called
1313TAP-Win32. But it is not included in standard QEMU for Windows,
1314so you will need to get it separately. It is part of OpenVPN package,
1315so download OpenVPN from : @url{http://openvpn.net/}.
1316
9d4fb82e
FB
1317@subsection Using the user mode network stack
1318
41d03949
FB
1319By using the option @option{-net user} (default configuration if no
1320@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1321network stack (you don't need root privilege to use the virtual
41d03949 1322network). The virtual network configuration is the following:
9d4fb82e
FB
1323
1324@example
1325
41d03949
FB
1326 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1327 | (10.0.2.2)
9d4fb82e 1328 |
2518bd0d 1329 ----> DNS server (10.0.2.3)
3b46e624 1330 |
2518bd0d 1331 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1332@end example
1333
1334The QEMU VM behaves as if it was behind a firewall which blocks all
1335incoming connections. You can use a DHCP client to automatically
41d03949
FB
1336configure the network in the QEMU VM. The DHCP server assign addresses
1337to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1338
1339In order to check that the user mode network is working, you can ping
1340the address 10.0.2.2 and verify that you got an address in the range
134110.0.2.x from the QEMU virtual DHCP server.
1342
37cbfcce
GH
1343Note that ICMP traffic in general does not work with user mode networking.
1344@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1345however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1346ping sockets to allow @code{ping} to the Internet. The host admin has to set
1347the ping_group_range in order to grant access to those sockets. To allow ping
1348for GID 100 (usually users group):
1349
1350@example
1351echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1352@end example
b415a407 1353
9bf05444
FB
1354When using the built-in TFTP server, the router is also the TFTP
1355server.
1356
c8c6afa8
TH
1357When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1358connections can be redirected from the host to the guest. It allows for
1359example to redirect X11, telnet or SSH connections.
443f1376 1360
41d03949
FB
1361@subsection Connecting VLANs between QEMU instances
1362
1363Using the @option{-net socket} option, it is possible to make VLANs
1364that span several QEMU instances. See @ref{sec_invocation} to have a
1365basic example.
1366
576fd0a1 1367@node pcsys_other_devs
6cbf4c8c
CM
1368@section Other Devices
1369
1370@subsection Inter-VM Shared Memory device
1371
5400c02b
MA
1372On Linux hosts, a shared memory device is available. The basic syntax
1373is:
6cbf4c8c
CM
1374
1375@example
5400c02b
MA
1376qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1377@end example
1378
1379where @var{hostmem} names a host memory backend. For a POSIX shared
1380memory backend, use something like
1381
1382@example
1383-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1384@end example
1385
1386If desired, interrupts can be sent between guest VMs accessing the same shared
1387memory region. Interrupt support requires using a shared memory server and
1388using a chardev socket to connect to it. The code for the shared memory server
1389is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1390memory server is:
1391
1392@example
a75eb03b 1393# First start the ivshmem server once and for all
50d34c4e 1394ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1395
1396# Then start your qemu instances with matching arguments
5400c02b 1397qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1398 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1399@end example
1400
1401When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1402using the same server to communicate via interrupts. Guests can read their
1309cf44 1403VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1404
62a830b6
MA
1405@subsubsection Migration with ivshmem
1406
5400c02b
MA
1407With device property @option{master=on}, the guest will copy the shared
1408memory on migration to the destination host. With @option{master=off},
1409the guest will not be able to migrate with the device attached. In the
1410latter case, the device should be detached and then reattached after
1411migration using the PCI hotplug support.
6cbf4c8c 1412
62a830b6
MA
1413At most one of the devices sharing the same memory can be master. The
1414master must complete migration before you plug back the other devices.
1415
7d4f4bda
MAL
1416@subsubsection ivshmem and hugepages
1417
1418Instead of specifying the <shm size> using POSIX shm, you may specify
1419a memory backend that has hugepage support:
1420
1421@example
5400c02b
MA
1422qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1423 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1424@end example
1425
1426ivshmem-server also supports hugepages mount points with the
1427@option{-m} memory path argument.
1428
9d4fb82e
FB
1429@node direct_linux_boot
1430@section Direct Linux Boot
1f673135
FB
1431
1432This section explains how to launch a Linux kernel inside QEMU without
1433having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1434kernel testing.
1f673135 1435
ee0f4751 1436The syntax is:
1f673135 1437@example
3804da9d 1438qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1439@end example
1440
ee0f4751
FB
1441Use @option{-kernel} to provide the Linux kernel image and
1442@option{-append} to give the kernel command line arguments. The
1443@option{-initrd} option can be used to provide an INITRD image.
1f673135 1444
ee0f4751
FB
1445When using the direct Linux boot, a disk image for the first hard disk
1446@file{hda} is required because its boot sector is used to launch the
1447Linux kernel.
1f673135 1448
ee0f4751
FB
1449If you do not need graphical output, you can disable it and redirect
1450the virtual serial port and the QEMU monitor to the console with the
1451@option{-nographic} option. The typical command line is:
1f673135 1452@example
3804da9d
SW
1453qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1454 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1455@end example
1456
ee0f4751
FB
1457Use @key{Ctrl-a c} to switch between the serial console and the
1458monitor (@pxref{pcsys_keys}).
1f673135 1459
debc7065 1460@node pcsys_usb
b389dbfb
FB
1461@section USB emulation
1462
a92ff8c1
TH
1463QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
1464plug virtual USB devices or real host USB devices (only works with certain
1465host operating systems). QEMU will automatically create and connect virtual
1466USB hubs as necessary to connect multiple USB devices.
b389dbfb 1467
0aff66b5
PB
1468@menu
1469* usb_devices::
1470* host_usb_devices::
1471@end menu
1472@node usb_devices
1473@subsection Connecting USB devices
b389dbfb 1474
a92ff8c1
TH
1475USB devices can be connected with the @option{-device usb-...} command line
1476option or the @code{device_add} monitor command. Available devices are:
b389dbfb 1477
db380c06 1478@table @code
a92ff8c1 1479@item usb-mouse
0aff66b5 1480Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 1481@item usb-tablet
c6d46c20 1482Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1483This means QEMU is able to report the mouse position without having
0aff66b5 1484to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
1485@item usb-storage,drive=@var{drive_id}
1486Mass storage device backed by @var{drive_id} (@pxref{disk_images})
1487@item usb-uas
1488USB attached SCSI device, see
1489@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1490for details
1491@item usb-bot
1492Bulk-only transport storage device, see
1493@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1494for details here, too
1495@item usb-mtp,x-root=@var{dir}
1496Media transfer protocol device, using @var{dir} as root of the file tree
1497that is presented to the guest.
1498@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
1499Pass through the host device identified by @var{bus} and @var{addr}
1500@item usb-host,vendorid=@var{vendor},productid=@var{product}
1501Pass through the host device identified by @var{vendor} and @var{product} ID
1502@item usb-wacom-tablet
f6d2a316
AZ
1503Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1504above but it can be used with the tslib library because in addition to touch
1505coordinates it reports touch pressure.
a92ff8c1 1506@item usb-kbd
47b2d338 1507Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 1508@item usb-serial,chardev=@var{id}
db380c06 1509Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
1510device @var{id}.
1511@item usb-braille,chardev=@var{id}
2e4d9fb1 1512Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
1513or fake device referenced by @var{id}.
1514@item usb-net[,netdev=@var{id}]
1515Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
1516specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 1517For instance, user-mode networking can be used with
6c9f886c 1518@example
a92ff8c1 1519qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 1520@end example
a92ff8c1
TH
1521@item usb-ccid
1522Smartcard reader device
1523@item usb-audio
1524USB audio device
1525@item usb-bt-dongle
1526Bluetooth dongle for the transport layer of HCI. It is connected to HCI
1527scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
1528Note that the syntax for the @code{-device usb-bt-dongle} option is not as
1529useful yet as it was with the legacy @code{-usbdevice} option. So to
1530configure an USB bluetooth device, you might need to use
1531"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
1532bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
1533the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1534no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1535This USB device implements the USB Transport Layer of HCI. Example
1536usage:
1537@example
8485140f 1538@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1539@end example
0aff66b5 1540@end table
b389dbfb 1541
0aff66b5 1542@node host_usb_devices
b389dbfb
FB
1543@subsection Using host USB devices on a Linux host
1544
1545WARNING: this is an experimental feature. QEMU will slow down when
1546using it. USB devices requiring real time streaming (i.e. USB Video
1547Cameras) are not supported yet.
1548
1549@enumerate
5fafdf24 1550@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1551is actually using the USB device. A simple way to do that is simply to
1552disable the corresponding kernel module by renaming it from @file{mydriver.o}
1553to @file{mydriver.o.disabled}.
1554
1555@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1556@example
1557ls /proc/bus/usb
1558001 devices drivers
1559@end example
1560
1561@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1562@example
1563chown -R myuid /proc/bus/usb
1564@end example
1565
1566@item Launch QEMU and do in the monitor:
5fafdf24 1567@example
b389dbfb
FB
1568info usbhost
1569 Device 1.2, speed 480 Mb/s
1570 Class 00: USB device 1234:5678, USB DISK
1571@end example
1572You should see the list of the devices you can use (Never try to use
1573hubs, it won't work).
1574
1575@item Add the device in QEMU by using:
5fafdf24 1576@example
a92ff8c1 1577device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1578@end example
1579
a92ff8c1
TH
1580Normally the guest OS should report that a new USB device is plugged.
1581You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1582
1583@item Now you can try to use the host USB device in QEMU.
1584
1585@end enumerate
1586
1587When relaunching QEMU, you may have to unplug and plug again the USB
1588device to make it work again (this is a bug).
1589
f858dcae
TS
1590@node vnc_security
1591@section VNC security
1592
1593The VNC server capability provides access to the graphical console
1594of the guest VM across the network. This has a number of security
1595considerations depending on the deployment scenarios.
1596
1597@menu
1598* vnc_sec_none::
1599* vnc_sec_password::
1600* vnc_sec_certificate::
1601* vnc_sec_certificate_verify::
1602* vnc_sec_certificate_pw::
2f9606b3
AL
1603* vnc_sec_sasl::
1604* vnc_sec_certificate_sasl::
f858dcae 1605* vnc_generate_cert::
2f9606b3 1606* vnc_setup_sasl::
f858dcae
TS
1607@end menu
1608@node vnc_sec_none
1609@subsection Without passwords
1610
1611The simplest VNC server setup does not include any form of authentication.
1612For this setup it is recommended to restrict it to listen on a UNIX domain
1613socket only. For example
1614
1615@example
3804da9d 1616qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1617@end example
1618
1619This ensures that only users on local box with read/write access to that
1620path can access the VNC server. To securely access the VNC server from a
1621remote machine, a combination of netcat+ssh can be used to provide a secure
1622tunnel.
1623
1624@node vnc_sec_password
1625@subsection With passwords
1626
1627The VNC protocol has limited support for password based authentication. Since
1628the protocol limits passwords to 8 characters it should not be considered
1629to provide high security. The password can be fairly easily brute-forced by
1630a client making repeat connections. For this reason, a VNC server using password
1631authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1632or UNIX domain sockets. Password authentication is not supported when operating
1633in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1634authentication is requested with the @code{password} option, and then once QEMU
1635is running the password is set with the monitor. Until the monitor is used to
1636set the password all clients will be rejected.
f858dcae
TS
1637
1638@example
3804da9d 1639qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1640(qemu) change vnc password
1641Password: ********
1642(qemu)
1643@end example
1644
1645@node vnc_sec_certificate
1646@subsection With x509 certificates
1647
1648The QEMU VNC server also implements the VeNCrypt extension allowing use of
1649TLS for encryption of the session, and x509 certificates for authentication.
1650The use of x509 certificates is strongly recommended, because TLS on its
1651own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1652support provides a secure session, but no authentication. This allows any
1653client to connect, and provides an encrypted session.
1654
1655@example
3804da9d 1656qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1657@end example
1658
1659In the above example @code{/etc/pki/qemu} should contain at least three files,
1660@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1661users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1662NB the @code{server-key.pem} file should be protected with file mode 0600 to
1663only be readable by the user owning it.
1664
1665@node vnc_sec_certificate_verify
1666@subsection With x509 certificates and client verification
1667
1668Certificates can also provide a means to authenticate the client connecting.
1669The server will request that the client provide a certificate, which it will
1670then validate against the CA certificate. This is a good choice if deploying
1671in an environment with a private internal certificate authority.
1672
1673@example
3804da9d 1674qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1675@end example
1676
1677
1678@node vnc_sec_certificate_pw
1679@subsection With x509 certificates, client verification and passwords
1680
1681Finally, the previous method can be combined with VNC password authentication
1682to provide two layers of authentication for clients.
1683
1684@example
3804da9d 1685qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1686(qemu) change vnc password
1687Password: ********
1688(qemu)
1689@end example
1690
2f9606b3
AL
1691
1692@node vnc_sec_sasl
1693@subsection With SASL authentication
1694
1695The SASL authentication method is a VNC extension, that provides an
1696easily extendable, pluggable authentication method. This allows for
1697integration with a wide range of authentication mechanisms, such as
1698PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1699The strength of the authentication depends on the exact mechanism
1700configured. If the chosen mechanism also provides a SSF layer, then
1701it will encrypt the datastream as well.
1702
1703Refer to the later docs on how to choose the exact SASL mechanism
1704used for authentication, but assuming use of one supporting SSF,
1705then QEMU can be launched with:
1706
1707@example
3804da9d 1708qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1709@end example
1710
1711@node vnc_sec_certificate_sasl
1712@subsection With x509 certificates and SASL authentication
1713
1714If the desired SASL authentication mechanism does not supported
1715SSF layers, then it is strongly advised to run it in combination
1716with TLS and x509 certificates. This provides securely encrypted
1717data stream, avoiding risk of compromising of the security
1718credentials. This can be enabled, by combining the 'sasl' option
1719with the aforementioned TLS + x509 options:
1720
1721@example
3804da9d 1722qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1723@end example
1724
1725
f858dcae
TS
1726@node vnc_generate_cert
1727@subsection Generating certificates for VNC
1728
1729The GNU TLS packages provides a command called @code{certtool} which can
1730be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1731is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1732each server. If using certificates for authentication, then each client
1733will also need to be issued a certificate. The recommendation is for the
1734server to keep its certificates in either @code{/etc/pki/qemu} or for
1735unprivileged users in @code{$HOME/.pki/qemu}.
1736
1737@menu
1738* vnc_generate_ca::
1739* vnc_generate_server::
1740* vnc_generate_client::
1741@end menu
1742@node vnc_generate_ca
1743@subsubsection Setup the Certificate Authority
1744
1745This step only needs to be performed once per organization / organizational
1746unit. First the CA needs a private key. This key must be kept VERY secret
1747and secure. If this key is compromised the entire trust chain of the certificates
1748issued with it is lost.
1749
1750@example
1751# certtool --generate-privkey > ca-key.pem
1752@end example
1753
1754A CA needs to have a public certificate. For simplicity it can be a self-signed
1755certificate, or one issue by a commercial certificate issuing authority. To
1756generate a self-signed certificate requires one core piece of information, the
1757name of the organization.
1758
1759@example
1760# cat > ca.info <<EOF
1761cn = Name of your organization
1762ca
1763cert_signing_key
1764EOF
1765# certtool --generate-self-signed \
1766 --load-privkey ca-key.pem
1767 --template ca.info \
1768 --outfile ca-cert.pem
1769@end example
1770
1771The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1772TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1773
1774@node vnc_generate_server
1775@subsubsection Issuing server certificates
1776
1777Each server (or host) needs to be issued with a key and certificate. When connecting
1778the certificate is sent to the client which validates it against the CA certificate.
1779The core piece of information for a server certificate is the hostname. This should
1780be the fully qualified hostname that the client will connect with, since the client
1781will typically also verify the hostname in the certificate. On the host holding the
1782secure CA private key:
1783
1784@example
1785# cat > server.info <<EOF
1786organization = Name of your organization
1787cn = server.foo.example.com
1788tls_www_server
1789encryption_key
1790signing_key
1791EOF
1792# certtool --generate-privkey > server-key.pem
1793# certtool --generate-certificate \
1794 --load-ca-certificate ca-cert.pem \
1795 --load-ca-privkey ca-key.pem \
63c693f8 1796 --load-privkey server-key.pem \
f858dcae
TS
1797 --template server.info \
1798 --outfile server-cert.pem
1799@end example
1800
1801The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1802to the server for which they were generated. The @code{server-key.pem} is security
1803sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1804
1805@node vnc_generate_client
1806@subsubsection Issuing client certificates
1807
1808If the QEMU VNC server is to use the @code{x509verify} option to validate client
1809certificates as its authentication mechanism, each client also needs to be issued
1810a certificate. The client certificate contains enough metadata to uniquely identify
1811the client, typically organization, state, city, building, etc. On the host holding
1812the secure CA private key:
1813
1814@example
1815# cat > client.info <<EOF
1816country = GB
1817state = London
1818locality = London
63c693f8 1819organization = Name of your organization
f858dcae
TS
1820cn = client.foo.example.com
1821tls_www_client
1822encryption_key
1823signing_key
1824EOF
1825# certtool --generate-privkey > client-key.pem
1826# certtool --generate-certificate \
1827 --load-ca-certificate ca-cert.pem \
1828 --load-ca-privkey ca-key.pem \
1829 --load-privkey client-key.pem \
1830 --template client.info \
1831 --outfile client-cert.pem
1832@end example
1833
1834The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1835copied to the client for which they were generated.
1836
2f9606b3
AL
1837
1838@node vnc_setup_sasl
1839
1840@subsection Configuring SASL mechanisms
1841
1842The following documentation assumes use of the Cyrus SASL implementation on a
1843Linux host, but the principals should apply to any other SASL impl. When SASL
1844is enabled, the mechanism configuration will be loaded from system default
1845SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1846unprivileged user, an environment variable SASL_CONF_PATH can be used
1847to make it search alternate locations for the service config.
1848
c6a9a9f5
DB
1849If the TLS option is enabled for VNC, then it will provide session encryption,
1850otherwise the SASL mechanism will have to provide encryption. In the latter
1851case the list of possible plugins that can be used is drastically reduced. In
1852fact only the GSSAPI SASL mechanism provides an acceptable level of security
1853by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1854mechanism, however, it has multiple serious flaws described in detail in
1855RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1856provides a simple username/password auth facility similar to DIGEST-MD5, but
1857does not support session encryption, so can only be used in combination with
1858TLS.
1859
1860When not using TLS the recommended configuration is
2f9606b3
AL
1861
1862@example
c6a9a9f5
DB
1863mech_list: gssapi
1864keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1865@end example
1866
c6a9a9f5
DB
1867This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1868the server principal stored in /etc/qemu/krb5.tab. For this to work the
1869administrator of your KDC must generate a Kerberos principal for the server,
1870with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1871'somehost.example.com' with the fully qualified host name of the machine
1872running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1873
c6a9a9f5
DB
1874When using TLS, if username+password authentication is desired, then a
1875reasonable configuration is
2f9606b3
AL
1876
1877@example
c6a9a9f5
DB
1878mech_list: scram-sha-1
1879sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1880@end example
1881
c6a9a9f5
DB
1882The saslpasswd2 program can be used to populate the passwd.db file with
1883accounts.
2f9606b3 1884
c6a9a9f5
DB
1885Other SASL configurations will be left as an exercise for the reader. Note that
1886all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1887secure data channel.
2f9606b3 1888
0806e3f6 1889@node gdb_usage
da415d54
FB
1890@section GDB usage
1891
1892QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1893'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1894
b65ee4fa 1895In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1896gdb connection:
1897@example
3804da9d
SW
1898qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1899 -append "root=/dev/hda"
da415d54
FB
1900Connected to host network interface: tun0
1901Waiting gdb connection on port 1234
1902@end example
1903
1904Then launch gdb on the 'vmlinux' executable:
1905@example
1906> gdb vmlinux
1907@end example
1908
1909In gdb, connect to QEMU:
1910@example
6c9bf893 1911(gdb) target remote localhost:1234
da415d54
FB
1912@end example
1913
1914Then you can use gdb normally. For example, type 'c' to launch the kernel:
1915@example
1916(gdb) c
1917@end example
1918
0806e3f6
FB
1919Here are some useful tips in order to use gdb on system code:
1920
1921@enumerate
1922@item
1923Use @code{info reg} to display all the CPU registers.
1924@item
1925Use @code{x/10i $eip} to display the code at the PC position.
1926@item
1927Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1928@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1929@end enumerate
1930
60897d36
EI
1931Advanced debugging options:
1932
b6af0975 1933The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1934@table @code
60897d36
EI
1935@item maintenance packet qqemu.sstepbits
1936
1937This will display the MASK bits used to control the single stepping IE:
1938@example
1939(gdb) maintenance packet qqemu.sstepbits
1940sending: "qqemu.sstepbits"
1941received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1942@end example
1943@item maintenance packet qqemu.sstep
1944
1945This will display the current value of the mask used when single stepping IE:
1946@example
1947(gdb) maintenance packet qqemu.sstep
1948sending: "qqemu.sstep"
1949received: "0x7"
1950@end example
1951@item maintenance packet Qqemu.sstep=HEX_VALUE
1952
1953This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1954@example
1955(gdb) maintenance packet Qqemu.sstep=0x5
1956sending: "qemu.sstep=0x5"
1957received: "OK"
1958@end example
94d45e44 1959@end table
60897d36 1960
debc7065 1961@node pcsys_os_specific
1a084f3d
FB
1962@section Target OS specific information
1963
1964@subsection Linux
1965
15a34c63
FB
1966To have access to SVGA graphic modes under X11, use the @code{vesa} or
1967the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1968color depth in the guest and the host OS.
1a084f3d 1969
e3371e62
FB
1970When using a 2.6 guest Linux kernel, you should add the option
1971@code{clock=pit} on the kernel command line because the 2.6 Linux
1972kernels make very strict real time clock checks by default that QEMU
1973cannot simulate exactly.
1974
7c3fc84d
FB
1975When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1976not activated because QEMU is slower with this patch. The QEMU
1977Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1978Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1979patch by default. Newer kernels don't have it.
1980
1a084f3d
FB
1981@subsection Windows
1982
1983If you have a slow host, using Windows 95 is better as it gives the
1984best speed. Windows 2000 is also a good choice.
1985
e3371e62
FB
1986@subsubsection SVGA graphic modes support
1987
1988QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1989card. All Windows versions starting from Windows 95 should recognize
1990and use this graphic card. For optimal performances, use 16 bit color
1991depth in the guest and the host OS.
1a084f3d 1992
3cb0853a
FB
1993If you are using Windows XP as guest OS and if you want to use high
1994resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
19951280x1024x16), then you should use the VESA VBE virtual graphic card
1996(option @option{-std-vga}).
1997
e3371e62
FB
1998@subsubsection CPU usage reduction
1999
2000Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2001instruction. The result is that it takes host CPU cycles even when
2002idle. You can install the utility from
3ba34a70
TH
2003@url{http://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
2004to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2005
9d0a8e6f 2006@subsubsection Windows 2000 disk full problem
e3371e62 2007
9d0a8e6f
FB
2008Windows 2000 has a bug which gives a disk full problem during its
2009installation. When installing it, use the @option{-win2k-hack} QEMU
2010option to enable a specific workaround. After Windows 2000 is
2011installed, you no longer need this option (this option slows down the
2012IDE transfers).
e3371e62 2013
6cc721cf
FB
2014@subsubsection Windows 2000 shutdown
2015
2016Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2017can. It comes from the fact that Windows 2000 does not automatically
2018use the APM driver provided by the BIOS.
2019
2020In order to correct that, do the following (thanks to Struan
2021Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2022Add/Troubleshoot a device => Add a new device & Next => No, select the
2023hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2024(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2025correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2026
2027@subsubsection Share a directory between Unix and Windows
2028
c8c6afa8
TH
2029See @ref{sec_invocation} about the help of the option
2030@option{'-netdev user,smb=...'}.
6cc721cf 2031
2192c332 2032@subsubsection Windows XP security problem
e3371e62
FB
2033
2034Some releases of Windows XP install correctly but give a security
2035error when booting:
2036@example
2037A problem is preventing Windows from accurately checking the
2038license for this computer. Error code: 0x800703e6.
2039@end example
e3371e62 2040
2192c332
FB
2041The workaround is to install a service pack for XP after a boot in safe
2042mode. Then reboot, and the problem should go away. Since there is no
2043network while in safe mode, its recommended to download the full
2044installation of SP1 or SP2 and transfer that via an ISO or using the
2045vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2046
a0a821a4
FB
2047@subsection MS-DOS and FreeDOS
2048
2049@subsubsection CPU usage reduction
2050
2051DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70
TH
2052it takes host CPU cycles even when idle. You can install the utility from
2053@url{http://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
2054to solve this problem.
a0a821a4 2055
debc7065 2056@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2057@chapter QEMU System emulator for non PC targets
2058
2059QEMU is a generic emulator and it emulates many non PC
2060machines. Most of the options are similar to the PC emulator. The
4be456f1 2061differences are mentioned in the following sections.
3f9f3aa1 2062
debc7065 2063@menu
7544a042 2064* PowerPC System emulator::
24d4de45
TS
2065* Sparc32 System emulator::
2066* Sparc64 System emulator::
2067* MIPS System emulator::
2068* ARM System emulator::
2069* ColdFire System emulator::
7544a042
SW
2070* Cris System emulator::
2071* Microblaze System emulator::
2072* SH4 System emulator::
3aeaea65 2073* Xtensa System emulator::
debc7065
FB
2074@end menu
2075
7544a042
SW
2076@node PowerPC System emulator
2077@section PowerPC System emulator
2078@cindex system emulation (PowerPC)
1a084f3d 2079
15a34c63
FB
2080Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2081or PowerMac PowerPC system.
1a084f3d 2082
b671f9ed 2083QEMU emulates the following PowerMac peripherals:
1a084f3d 2084
15a34c63 2085@itemize @minus
5fafdf24 2086@item
006f3a48 2087UniNorth or Grackle PCI Bridge
15a34c63
FB
2088@item
2089PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2090@item
15a34c63 20912 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2092@item
15a34c63
FB
2093NE2000 PCI adapters
2094@item
2095Non Volatile RAM
2096@item
2097VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2098@end itemize
2099
b671f9ed 2100QEMU emulates the following PREP peripherals:
52c00a5f
FB
2101
2102@itemize @minus
5fafdf24 2103@item
15a34c63
FB
2104PCI Bridge
2105@item
2106PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2107@item
52c00a5f
FB
21082 IDE interfaces with hard disk and CD-ROM support
2109@item
2110Floppy disk
5fafdf24 2111@item
15a34c63 2112NE2000 network adapters
52c00a5f
FB
2113@item
2114Serial port
2115@item
2116PREP Non Volatile RAM
15a34c63
FB
2117@item
2118PC compatible keyboard and mouse.
52c00a5f
FB
2119@end itemize
2120
15a34c63 2121QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2122@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2123
992e5acd 2124Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2125for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2126v2) portable firmware implementation. The goal is to implement a 100%
2127IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2128
15a34c63
FB
2129@c man begin OPTIONS
2130
2131The following options are specific to the PowerPC emulation:
2132
2133@table @option
2134
4e257e5e 2135@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2136
340fb41b 2137Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2138
4e257e5e 2139@item -prom-env @var{string}
95efd11c
BS
2140
2141Set OpenBIOS variables in NVRAM, for example:
2142
2143@example
2144qemu-system-ppc -prom-env 'auto-boot?=false' \
2145 -prom-env 'boot-device=hd:2,\yaboot' \
2146 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2147@end example
2148
2149These variables are not used by Open Hack'Ware.
2150
15a34c63
FB
2151@end table
2152
5fafdf24 2153@c man end
15a34c63
FB
2154
2155
52c00a5f 2156More information is available at
3f9f3aa1 2157@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2158
24d4de45
TS
2159@node Sparc32 System emulator
2160@section Sparc32 System emulator
7544a042 2161@cindex system emulation (Sparc32)
e80cfcfc 2162
34a3d239
BS
2163Use the executable @file{qemu-system-sparc} to simulate the following
2164Sun4m architecture machines:
2165@itemize @minus
2166@item
2167SPARCstation 4
2168@item
2169SPARCstation 5
2170@item
2171SPARCstation 10
2172@item
2173SPARCstation 20
2174@item
2175SPARCserver 600MP
2176@item
2177SPARCstation LX
2178@item
2179SPARCstation Voyager
2180@item
2181SPARCclassic
2182@item
2183SPARCbook
2184@end itemize
2185
2186The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2187but Linux limits the number of usable CPUs to 4.
e80cfcfc 2188
6a4e1771 2189QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2190
2191@itemize @minus
3475187d 2192@item
6a4e1771 2193IOMMU
e80cfcfc 2194@item
33632788 2195TCX or cgthree Frame buffer
5fafdf24 2196@item
e80cfcfc
FB
2197Lance (Am7990) Ethernet
2198@item
34a3d239 2199Non Volatile RAM M48T02/M48T08
e80cfcfc 2200@item
3475187d
FB
2201Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2202and power/reset logic
2203@item
2204ESP SCSI controller with hard disk and CD-ROM support
2205@item
6a3b9cc9 2206Floppy drive (not on SS-600MP)
a2502b58
BS
2207@item
2208CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2209@end itemize
2210
6a3b9cc9
BS
2211The number of peripherals is fixed in the architecture. Maximum
2212memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2213others 2047MB.
3475187d 2214
30a604f3 2215Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2216@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2217firmware implementation. The goal is to implement a 100% IEEE
22181275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2219
2220A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2221the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2222most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2223don't work probably due to interface issues between OpenBIOS and
2224Solaris.
3475187d
FB
2225
2226@c man begin OPTIONS
2227
a2502b58 2228The following options are specific to the Sparc32 emulation:
3475187d
FB
2229
2230@table @option
2231
4e257e5e 2232@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2233
33632788
MCA
2234Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2235option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2236of 1152x900x8 for people who wish to use OBP.
3475187d 2237
4e257e5e 2238@item -prom-env @var{string}
66508601
BS
2239
2240Set OpenBIOS variables in NVRAM, for example:
2241
2242@example
2243qemu-system-sparc -prom-env 'auto-boot?=false' \
2244 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2245@end example
2246
6a4e1771 2247@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2248
2249Set the emulated machine type. Default is SS-5.
2250
3475187d
FB
2251@end table
2252
5fafdf24 2253@c man end
3475187d 2254
24d4de45
TS
2255@node Sparc64 System emulator
2256@section Sparc64 System emulator
7544a042 2257@cindex system emulation (Sparc64)
e80cfcfc 2258
34a3d239
BS
2259Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2260(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2261Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2262able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
2263Sun4v emulator is still a work in progress.
2264
2265The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
2266of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
2267and is able to boot the disk.s10hw2 Solaris image.
2268@example
2269qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
2270 -nographic -m 256 \
2271 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
2272@end example
2273
b756921a 2274
c7ba218d 2275QEMU emulates the following peripherals:
83469015
FB
2276
2277@itemize @minus
2278@item
5fafdf24 2279UltraSparc IIi APB PCI Bridge
83469015
FB
2280@item
2281PCI VGA compatible card with VESA Bochs Extensions
2282@item
34a3d239
BS
2283PS/2 mouse and keyboard
2284@item
83469015
FB
2285Non Volatile RAM M48T59
2286@item
2287PC-compatible serial ports
c7ba218d
BS
2288@item
22892 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2290@item
2291Floppy disk
83469015
FB
2292@end itemize
2293
c7ba218d
BS
2294@c man begin OPTIONS
2295
2296The following options are specific to the Sparc64 emulation:
2297
2298@table @option
2299
4e257e5e 2300@item -prom-env @var{string}
34a3d239
BS
2301
2302Set OpenBIOS variables in NVRAM, for example:
2303
2304@example
2305qemu-system-sparc64 -prom-env 'auto-boot?=false'
2306@end example
2307
a2664ca0 2308@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
2309
2310Set the emulated machine type. The default is sun4u.
2311
2312@end table
2313
2314@c man end
2315
24d4de45
TS
2316@node MIPS System emulator
2317@section MIPS System emulator
7544a042 2318@cindex system emulation (MIPS)
9d0a8e6f 2319
d9aedc32
TS
2320Four executables cover simulation of 32 and 64-bit MIPS systems in
2321both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2322@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2323Five different machine types are emulated:
24d4de45
TS
2324
2325@itemize @minus
2326@item
2327A generic ISA PC-like machine "mips"
2328@item
2329The MIPS Malta prototype board "malta"
2330@item
d9aedc32 2331An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2332@item
f0fc6f8f 2333MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2334@item
2335A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2336@end itemize
2337
2338The generic emulation is supported by Debian 'Etch' and is able to
2339install Debian into a virtual disk image. The following devices are
2340emulated:
3f9f3aa1
FB
2341
2342@itemize @minus
5fafdf24 2343@item
6bf5b4e8 2344A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2345@item
2346PC style serial port
2347@item
24d4de45
TS
2348PC style IDE disk
2349@item
3f9f3aa1
FB
2350NE2000 network card
2351@end itemize
2352
24d4de45
TS
2353The Malta emulation supports the following devices:
2354
2355@itemize @minus
2356@item
0b64d008 2357Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2358@item
2359PIIX4 PCI/USB/SMbus controller
2360@item
2361The Multi-I/O chip's serial device
2362@item
3a2eeac0 2363PCI network cards (PCnet32 and others)
24d4de45
TS
2364@item
2365Malta FPGA serial device
2366@item
1f605a76 2367Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2368@end itemize
2369
2370The ACER Pica emulation supports:
2371
2372@itemize @minus
2373@item
2374MIPS R4000 CPU
2375@item
2376PC-style IRQ and DMA controllers
2377@item
2378PC Keyboard
2379@item
2380IDE controller
2381@end itemize
3f9f3aa1 2382
b5e4946f 2383The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2384to what the proprietary MIPS emulator uses for running Linux.
2385It supports:
6bf5b4e8
TS
2386
2387@itemize @minus
2388@item
2389A range of MIPS CPUs, default is the 24Kf
2390@item
2391PC style serial port
2392@item
2393MIPSnet network emulation
2394@end itemize
2395
88cb0a02
AJ
2396The MIPS Magnum R4000 emulation supports:
2397
2398@itemize @minus
2399@item
2400MIPS R4000 CPU
2401@item
2402PC-style IRQ controller
2403@item
2404PC Keyboard
2405@item
2406SCSI controller
2407@item
2408G364 framebuffer
2409@end itemize
2410
2411
24d4de45
TS
2412@node ARM System emulator
2413@section ARM System emulator
7544a042 2414@cindex system emulation (ARM)
3f9f3aa1
FB
2415
2416Use the executable @file{qemu-system-arm} to simulate a ARM
2417machine. The ARM Integrator/CP board is emulated with the following
2418devices:
2419
2420@itemize @minus
2421@item
9ee6e8bb 2422ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2423@item
2424Two PL011 UARTs
5fafdf24 2425@item
3f9f3aa1 2426SMC 91c111 Ethernet adapter
00a9bf19
PB
2427@item
2428PL110 LCD controller
2429@item
2430PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2431@item
2432PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2433@end itemize
2434
2435The ARM Versatile baseboard is emulated with the following devices:
2436
2437@itemize @minus
2438@item
9ee6e8bb 2439ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2440@item
2441PL190 Vectored Interrupt Controller
2442@item
2443Four PL011 UARTs
5fafdf24 2444@item
00a9bf19
PB
2445SMC 91c111 Ethernet adapter
2446@item
2447PL110 LCD controller
2448@item
2449PL050 KMI with PS/2 keyboard and mouse.
2450@item
2451PCI host bridge. Note the emulated PCI bridge only provides access to
2452PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2453This means some devices (eg. ne2k_pci NIC) are not usable, and others
2454(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2455mapped control registers.
e6de1bad
PB
2456@item
2457PCI OHCI USB controller.
2458@item
2459LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2460@item
2461PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2462@end itemize
2463
21a88941
PB
2464Several variants of the ARM RealView baseboard are emulated,
2465including the EB, PB-A8 and PBX-A9. Due to interactions with the
2466bootloader, only certain Linux kernel configurations work out
2467of the box on these boards.
2468
2469Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2470enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2471should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2472disabled and expect 1024M RAM.
2473
40c5c6cd 2474The following devices are emulated:
d7739d75
PB
2475
2476@itemize @minus
2477@item
f7c70325 2478ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2479@item
2480ARM AMBA Generic/Distributed Interrupt Controller
2481@item
2482Four PL011 UARTs
5fafdf24 2483@item
0ef849d7 2484SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2485@item
2486PL110 LCD controller
2487@item
2488PL050 KMI with PS/2 keyboard and mouse
2489@item
2490PCI host bridge
2491@item
2492PCI OHCI USB controller
2493@item
2494LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2495@item
2496PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2497@end itemize
2498
b00052e4
AZ
2499The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2500and "Terrier") emulation includes the following peripherals:
2501
2502@itemize @minus
2503@item
2504Intel PXA270 System-on-chip (ARM V5TE core)
2505@item
2506NAND Flash memory
2507@item
2508IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2509@item
2510On-chip OHCI USB controller
2511@item
2512On-chip LCD controller
2513@item
2514On-chip Real Time Clock
2515@item
2516TI ADS7846 touchscreen controller on SSP bus
2517@item
2518Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2519@item
2520GPIO-connected keyboard controller and LEDs
2521@item
549444e1 2522Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2523@item
2524Three on-chip UARTs
2525@item
2526WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2527@end itemize
2528
02645926
AZ
2529The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2530following elements:
2531
2532@itemize @minus
2533@item
2534Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2535@item
2536ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2537@item
2538On-chip LCD controller
2539@item
2540On-chip Real Time Clock
2541@item
2542TI TSC2102i touchscreen controller / analog-digital converter / Audio
2543CODEC, connected through MicroWire and I@math{^2}S busses
2544@item
2545GPIO-connected matrix keypad
2546@item
2547Secure Digital card connected to OMAP MMC/SD host
2548@item
2549Three on-chip UARTs
2550@end itemize
2551
c30bb264
AZ
2552Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2553emulation supports the following elements:
2554
2555@itemize @minus
2556@item
2557Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2558@item
2559RAM and non-volatile OneNAND Flash memories
2560@item
2561Display connected to EPSON remote framebuffer chip and OMAP on-chip
2562display controller and a LS041y3 MIPI DBI-C controller
2563@item
2564TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2565driven through SPI bus
2566@item
2567National Semiconductor LM8323-controlled qwerty keyboard driven
2568through I@math{^2}C bus
2569@item
2570Secure Digital card connected to OMAP MMC/SD host
2571@item
2572Three OMAP on-chip UARTs and on-chip STI debugging console
2573@item
40c5c6cd 2574A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2575@item
c30bb264
AZ
2576Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2577TUSB6010 chip - only USB host mode is supported
2578@item
2579TI TMP105 temperature sensor driven through I@math{^2}C bus
2580@item
2581TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2582@item
2583Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2584through CBUS
2585@end itemize
2586
9ee6e8bb
PB
2587The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2588devices:
2589
2590@itemize @minus
2591@item
2592Cortex-M3 CPU core.
2593@item
259464k Flash and 8k SRAM.
2595@item
2596Timers, UARTs, ADC and I@math{^2}C interface.
2597@item
2598OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2599@end itemize
2600
2601The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2602devices:
2603
2604@itemize @minus
2605@item
2606Cortex-M3 CPU core.
2607@item
2608256k Flash and 64k SRAM.
2609@item
2610Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2611@item
2612OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2613@end itemize
2614
57cd6e97
AZ
2615The Freecom MusicPal internet radio emulation includes the following
2616elements:
2617
2618@itemize @minus
2619@item
2620Marvell MV88W8618 ARM core.
2621@item
262232 MB RAM, 256 KB SRAM, 8 MB flash.
2623@item
2624Up to 2 16550 UARTs
2625@item
2626MV88W8xx8 Ethernet controller
2627@item
2628MV88W8618 audio controller, WM8750 CODEC and mixer
2629@item
e080e785 2630128×64 display with brightness control
57cd6e97
AZ
2631@item
26322 buttons, 2 navigation wheels with button function
2633@end itemize
2634
997641a8 2635The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2636The emulation includes the following elements:
997641a8
AZ
2637
2638@itemize @minus
2639@item
2640Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2641@item
2642ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2643V1
26441 Flash of 16MB and 1 Flash of 8MB
2645V2
26461 Flash of 32MB
2647@item
2648On-chip LCD controller
2649@item
2650On-chip Real Time Clock
2651@item
2652Secure Digital card connected to OMAP MMC/SD host
2653@item
2654Three on-chip UARTs
2655@end itemize
2656
3f9f3aa1
FB
2657A Linux 2.6 test image is available on the QEMU web site. More
2658information is available in the QEMU mailing-list archive.
9d0a8e6f 2659
d2c639d6
BS
2660@c man begin OPTIONS
2661
2662The following options are specific to the ARM emulation:
2663
2664@table @option
2665
2666@item -semihosting
2667Enable semihosting syscall emulation.
2668
2669On ARM this implements the "Angel" interface.
2670
2671Note that this allows guest direct access to the host filesystem,
2672so should only be used with trusted guest OS.
2673
2674@end table
2675
abc67eb6
TH
2676@c man end
2677
24d4de45
TS
2678@node ColdFire System emulator
2679@section ColdFire System emulator
7544a042
SW
2680@cindex system emulation (ColdFire)
2681@cindex system emulation (M68K)
209a4e69
PB
2682
2683Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2684The emulator is able to boot a uClinux kernel.
707e011b
PB
2685
2686The M5208EVB emulation includes the following devices:
2687
2688@itemize @minus
5fafdf24 2689@item
707e011b
PB
2690MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2691@item
2692Three Two on-chip UARTs.
2693@item
2694Fast Ethernet Controller (FEC)
2695@end itemize
2696
2697The AN5206 emulation includes the following devices:
209a4e69
PB
2698
2699@itemize @minus
5fafdf24 2700@item
209a4e69
PB
2701MCF5206 ColdFire V2 Microprocessor.
2702@item
2703Two on-chip UARTs.
2704@end itemize
2705
d2c639d6
BS
2706@c man begin OPTIONS
2707
7544a042 2708The following options are specific to the ColdFire emulation:
d2c639d6
BS
2709
2710@table @option
2711
2712@item -semihosting
2713Enable semihosting syscall emulation.
2714
2715On M68K this implements the "ColdFire GDB" interface used by libgloss.
2716
2717Note that this allows guest direct access to the host filesystem,
2718so should only be used with trusted guest OS.
2719
2720@end table
2721
abc67eb6
TH
2722@c man end
2723
7544a042
SW
2724@node Cris System emulator
2725@section Cris System emulator
2726@cindex system emulation (Cris)
2727
2728TODO
2729
2730@node Microblaze System emulator
2731@section Microblaze System emulator
2732@cindex system emulation (Microblaze)
2733
2734TODO
2735
2736@node SH4 System emulator
2737@section SH4 System emulator
2738@cindex system emulation (SH4)
2739
2740TODO
2741
3aeaea65
MF
2742@node Xtensa System emulator
2743@section Xtensa System emulator
2744@cindex system emulation (Xtensa)
2745
2746Two executables cover simulation of both Xtensa endian options,
2747@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2748Two different machine types are emulated:
2749
2750@itemize @minus
2751@item
2752Xtensa emulator pseudo board "sim"
2753@item
2754Avnet LX60/LX110/LX200 board
2755@end itemize
2756
b5e4946f 2757The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2758to one provided by the proprietary Tensilica ISS.
2759It supports:
2760
2761@itemize @minus
2762@item
2763A range of Xtensa CPUs, default is the DC232B
2764@item
2765Console and filesystem access via semihosting calls
2766@end itemize
2767
2768The Avnet LX60/LX110/LX200 emulation supports:
2769
2770@itemize @minus
2771@item
2772A range of Xtensa CPUs, default is the DC232B
2773@item
277416550 UART
2775@item
2776OpenCores 10/100 Mbps Ethernet MAC
2777@end itemize
2778
2779@c man begin OPTIONS
2780
2781The following options are specific to the Xtensa emulation:
2782
2783@table @option
2784
2785@item -semihosting
2786Enable semihosting syscall emulation.
2787
2788Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2789Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2790
2791Note that this allows guest direct access to the host filesystem,
2792so should only be used with trusted guest OS.
2793
2794@end table
3f2ce724 2795
abc67eb6
TH
2796@c man end
2797
3f2ce724
TH
2798@node QEMU Guest Agent
2799@chapter QEMU Guest Agent invocation
2800
2801@include qemu-ga.texi
2802
5fafdf24
TS
2803@node QEMU User space emulator
2804@chapter QEMU User space emulator
83195237
FB
2805
2806@menu
2807* Supported Operating Systems ::
0722cc42 2808* Features::
83195237 2809* Linux User space emulator::
84778508 2810* BSD User space emulator ::
83195237
FB
2811@end menu
2812
2813@node Supported Operating Systems
2814@section Supported Operating Systems
2815
2816The following OS are supported in user space emulation:
2817
2818@itemize @minus
2819@item
4be456f1 2820Linux (referred as qemu-linux-user)
83195237 2821@item
84778508 2822BSD (referred as qemu-bsd-user)
83195237
FB
2823@end itemize
2824
0722cc42
PB
2825@node Features
2826@section Features
2827
2828QEMU user space emulation has the following notable features:
2829
2830@table @strong
2831@item System call translation:
2832QEMU includes a generic system call translator. This means that
2833the parameters of the system calls can be converted to fix
2834endianness and 32/64-bit mismatches between hosts and targets.
2835IOCTLs can be converted too.
2836
2837@item POSIX signal handling:
2838QEMU can redirect to the running program all signals coming from
2839the host (such as @code{SIGALRM}), as well as synthesize signals from
2840virtual CPU exceptions (for example @code{SIGFPE} when the program
2841executes a division by zero).
2842
2843QEMU relies on the host kernel to emulate most signal system
2844calls, for example to emulate the signal mask. On Linux, QEMU
2845supports both normal and real-time signals.
2846
2847@item Threading:
2848On Linux, QEMU can emulate the @code{clone} syscall and create a real
2849host thread (with a separate virtual CPU) for each emulated thread.
2850Note that not all targets currently emulate atomic operations correctly.
2851x86 and ARM use a global lock in order to preserve their semantics.
2852@end table
2853
2854QEMU was conceived so that ultimately it can emulate itself. Although
2855it is not very useful, it is an important test to show the power of the
2856emulator.
2857
83195237
FB
2858@node Linux User space emulator
2859@section Linux User space emulator
386405f7 2860
debc7065
FB
2861@menu
2862* Quick Start::
2863* Wine launch::
2864* Command line options::
79737e4a 2865* Other binaries::
debc7065
FB
2866@end menu
2867
2868@node Quick Start
83195237 2869@subsection Quick Start
df0f11a0 2870
1f673135 2871In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2872itself and all the target (x86) dynamic libraries used by it.
386405f7 2873
1f673135 2874@itemize
386405f7 2875
1f673135
FB
2876@item On x86, you can just try to launch any process by using the native
2877libraries:
386405f7 2878
5fafdf24 2879@example
1f673135
FB
2880qemu-i386 -L / /bin/ls
2881@end example
386405f7 2882
1f673135
FB
2883@code{-L /} tells that the x86 dynamic linker must be searched with a
2884@file{/} prefix.
386405f7 2885
b65ee4fa
SW
2886@item Since QEMU is also a linux process, you can launch QEMU with
2887QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2888
5fafdf24 2889@example
1f673135
FB
2890qemu-i386 -L / qemu-i386 -L / /bin/ls
2891@end example
386405f7 2892
1f673135
FB
2893@item On non x86 CPUs, you need first to download at least an x86 glibc
2894(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2895@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2896
1f673135 2897@example
5fafdf24 2898unset LD_LIBRARY_PATH
1f673135 2899@end example
1eb87257 2900
1f673135 2901Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2902
1f673135
FB
2903@example
2904qemu-i386 tests/i386/ls
2905@end example
4c3b5a48 2906You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2907QEMU is automatically launched by the Linux kernel when you try to
2908launch x86 executables. It requires the @code{binfmt_misc} module in the
2909Linux kernel.
1eb87257 2910
1f673135
FB
2911@item The x86 version of QEMU is also included. You can try weird things such as:
2912@example
debc7065
FB
2913qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2914 /usr/local/qemu-i386/bin/ls-i386
1f673135 2915@end example
1eb20527 2916
1f673135 2917@end itemize
1eb20527 2918
debc7065 2919@node Wine launch
83195237 2920@subsection Wine launch
1eb20527 2921
1f673135 2922@itemize
386405f7 2923
1f673135
FB
2924@item Ensure that you have a working QEMU with the x86 glibc
2925distribution (see previous section). In order to verify it, you must be
2926able to do:
386405f7 2927
1f673135
FB
2928@example
2929qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2930@end example
386405f7 2931
1f673135 2932@item Download the binary x86 Wine install
5fafdf24 2933(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2934
1f673135 2935@item Configure Wine on your account. Look at the provided script
debc7065 2936@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2937@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2938
1f673135 2939@item Then you can try the example @file{putty.exe}:
386405f7 2940
1f673135 2941@example
debc7065
FB
2942qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2943 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2944@end example
386405f7 2945
1f673135 2946@end itemize
fd429f2f 2947
debc7065 2948@node Command line options
83195237 2949@subsection Command line options
1eb20527 2950
1f673135 2951@example
8485140f 2952@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2953@end example
1eb20527 2954
1f673135
FB
2955@table @option
2956@item -h
2957Print the help
3b46e624 2958@item -L path
1f673135
FB
2959Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2960@item -s size
2961Set the x86 stack size in bytes (default=524288)
34a3d239 2962@item -cpu model
c8057f95 2963Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2964@item -E @var{var}=@var{value}
2965Set environment @var{var} to @var{value}.
2966@item -U @var{var}
2967Remove @var{var} from the environment.
379f6698
PB
2968@item -B offset
2969Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2970the address region required by guest applications is reserved on the host.
2971This option is currently only supported on some hosts.
68a1c816
PB
2972@item -R size
2973Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2974"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2975@end table
2976
1f673135 2977Debug options:
386405f7 2978
1f673135 2979@table @option
989b697d
PM
2980@item -d item1,...
2981Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2982@item -p pagesize
2983Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2984@item -g port
2985Wait gdb connection to port
1b530a6d
AJ
2986@item -singlestep
2987Run the emulation in single step mode.
1f673135 2988@end table
386405f7 2989
b01bcae6
AZ
2990Environment variables:
2991
2992@table @env
2993@item QEMU_STRACE
2994Print system calls and arguments similar to the 'strace' program
2995(NOTE: the actual 'strace' program will not work because the user
2996space emulator hasn't implemented ptrace). At the moment this is
2997incomplete. All system calls that don't have a specific argument
2998format are printed with information for six arguments. Many
2999flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 3000@end table
b01bcae6 3001
79737e4a 3002@node Other binaries
83195237 3003@subsection Other binaries
79737e4a 3004
7544a042
SW
3005@cindex user mode (Alpha)
3006@command{qemu-alpha} TODO.
3007
3008@cindex user mode (ARM)
3009@command{qemu-armeb} TODO.
3010
3011@cindex user mode (ARM)
79737e4a
PB
3012@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3013binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3014configurations), and arm-uclinux bFLT format binaries.
3015
7544a042
SW
3016@cindex user mode (ColdFire)
3017@cindex user mode (M68K)
e6e5906b
PB
3018@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3019(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3020coldfire uClinux bFLT format binaries.
3021
79737e4a
PB
3022The binary format is detected automatically.
3023
7544a042
SW
3024@cindex user mode (Cris)
3025@command{qemu-cris} TODO.
3026
3027@cindex user mode (i386)
3028@command{qemu-i386} TODO.
3029@command{qemu-x86_64} TODO.
3030
3031@cindex user mode (Microblaze)
3032@command{qemu-microblaze} TODO.
3033
3034@cindex user mode (MIPS)
3035@command{qemu-mips} TODO.
3036@command{qemu-mipsel} TODO.
3037
e671711c
MV
3038@cindex user mode (NiosII)
3039@command{qemu-nios2} TODO.
3040
7544a042
SW
3041@cindex user mode (PowerPC)
3042@command{qemu-ppc64abi32} TODO.
3043@command{qemu-ppc64} TODO.
3044@command{qemu-ppc} TODO.
3045
3046@cindex user mode (SH4)
3047@command{qemu-sh4eb} TODO.
3048@command{qemu-sh4} TODO.
3049
3050@cindex user mode (SPARC)
34a3d239
BS
3051@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3052
a785e42e
BS
3053@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3054(Sparc64 CPU, 32 bit ABI).
3055
3056@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3057SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3058
84778508
BS
3059@node BSD User space emulator
3060@section BSD User space emulator
3061
3062@menu
3063* BSD Status::
3064* BSD Quick Start::
3065* BSD Command line options::
3066@end menu
3067
3068@node BSD Status
3069@subsection BSD Status
3070
3071@itemize @minus
3072@item
3073target Sparc64 on Sparc64: Some trivial programs work.
3074@end itemize
3075
3076@node BSD Quick Start
3077@subsection Quick Start
3078
3079In order to launch a BSD process, QEMU needs the process executable
3080itself and all the target dynamic libraries used by it.
3081
3082@itemize
3083
3084@item On Sparc64, you can just try to launch any process by using the native
3085libraries:
3086
3087@example
3088qemu-sparc64 /bin/ls
3089@end example
3090
3091@end itemize
3092
3093@node BSD Command line options
3094@subsection Command line options
3095
3096@example
8485140f 3097@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
3098@end example
3099
3100@table @option
3101@item -h
3102Print the help
3103@item -L path
3104Set the library root path (default=/)
3105@item -s size
3106Set the stack size in bytes (default=524288)
f66724c9
SW
3107@item -ignore-environment
3108Start with an empty environment. Without this option,
40c5c6cd 3109the initial environment is a copy of the caller's environment.
f66724c9
SW
3110@item -E @var{var}=@var{value}
3111Set environment @var{var} to @var{value}.
3112@item -U @var{var}
3113Remove @var{var} from the environment.
84778508
BS
3114@item -bsd type
3115Set the type of the emulated BSD Operating system. Valid values are
3116FreeBSD, NetBSD and OpenBSD (default).
3117@end table
3118
3119Debug options:
3120
3121@table @option
989b697d
PM
3122@item -d item1,...
3123Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
3124@item -p pagesize
3125Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
3126@item -singlestep
3127Run the emulation in single step mode.
84778508
BS
3128@end table
3129
47eacb4f 3130
78e87797
PB
3131@include qemu-tech.texi
3132
eb22aeca
DB
3133@node Deprecated features
3134@appendix Deprecated features
3135
3136In general features are intended to be supported indefinitely once
3137introduced into QEMU. In the event that a feature needs to be removed,
3138it will be listed in this appendix. The feature will remain functional
3139for 2 releases prior to actual removal. Deprecated features may also
3140generate warnings on the console when QEMU starts up, or if activated
3141via a monitor command, however, this is not a mandatory requirement.
3142
3143Prior to the 2.10.0 release there was no official policy on how
3144long features would be deprecated prior to their removal, nor
3145any documented list of which features were deprecated. Thus
3146any features deprecated prior to 2.10.0 will be treated as if
3147they were first deprecated in the 2.10.0 release.
3148
3149What follows is a list of all features currently marked as
3150deprecated.
3151
3152@section System emulator command line arguments
3153
3154@subsection -drive boot=on|off (since 1.3.0)
3155
3156The ``boot=on|off'' option to the ``-drive'' argument is
3157ignored. Applications should use the ``bootindex=N'' parameter
3158to set an absolute ordering between devices instead.
3159
3160@subsection -tdf (since 1.3.0)
3161
3162The ``-tdf'' argument is ignored. The behaviour implemented
3163by this argument is now the default when using the KVM PIT,
3164but can be requested explicitly using
3165``-global kvm-pit.lost_tick_policy=slew''.
3166
3167@subsection -no-kvm-pit-reinjection (since 1.3.0)
3168
3169The ``-no-kvm-pit-reinjection'' argument is now a
3170synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
3171
3172@subsection -no-kvm-irqchip (since 1.3.0)
3173
3174The ``-no-kvm-irqchip'' argument is now a synonym for
3175setting ``-machine kernel_irqchip=off''.
3176
3177@subsection -no-kvm-pit (since 1.3.0)
3178
3179The ``-no-kvm-pit'' argument is ignored. It is no longer
3180possible to disable the KVM PIT directly.
3181
3182@subsection -no-kvm (since 1.3.0)
3183
3184The ``-no-kvm'' argument is now a synonym for setting
3185``-machine accel=tcg''.
3186
3187@subsection -mon default=on (since 2.4.0)
3188
3189The ``default'' option to the ``-mon'' argument is
3190now ignored. When multiple monitors were enabled, it
3191indicated which monitor would receive log messages
3192from the various subsystems. This feature is no longer
3193required as messages are now only sent to the monitor
3194in response to explicitly monitor commands.
3195
3196@subsection -vnc tls (since 2.5.0)
3197
3198The ``-vnc tls'' argument is now a synonym for setting
3199``-object tls-creds-anon,id=tls0'' combined with
3200``-vnc tls-creds=tls0'
3201
3202@subsection -vnc x509 (since 2.5.0)
3203
3204The ``-vnc x509=/path/to/certs'' argument is now a
3205synonym for setting
3206``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
3207combined with ``-vnc tls-creds=tls0'
3208
3209@subsection -vnc x509verify (since 2.5.0)
3210
3211The ``-vnc x509verify=/path/to/certs'' argument is now a
3212synonym for setting
3213``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
3214combined with ``-vnc tls-creds=tls0'
3215
3216@subsection -tftp (since 2.6.0)
3217
3218The ``-tftp /some/dir'' argument is now a synonym for setting
3219the ``-netdev user,tftp=/some/dir' argument. The new syntax
3220allows different settings to be provided per NIC.
3221
3222@subsection -bootp (since 2.6.0)
3223
3224The ``-bootp /some/file'' argument is now a synonym for setting
3225the ``-netdev user,bootp=/some/file' argument. The new syntax
3226allows different settings to be provided per NIC.
3227
3228@subsection -redir (since 2.6.0)
3229
3230The ``-redir ARGS'' argument is now a synonym for setting
3231the ``-netdev user,hostfwd=ARGS'' argument instead. The new
3232syntax allows different settings to be provided per NIC.
3233
3234@subsection -smb (since 2.6.0)
3235
3236The ``-smb /some/dir'' argument is now a synonym for setting
3237the ``-netdev user,smb=/some/dir'' argument instead. The new
3238syntax allows different settings to be provided per NIC.
3239
3240@subsection -net channel (since 2.6.0)
3241
3242The ``--net channel,ARGS'' argument is now a synonym for setting
3243the ``-netdev user,guestfwd=ARGS'' argument instead.
3244
3245@subsection -net vlan (since 2.9.0)
3246
69001917 3247The ``-net vlan=NN'' argument is partially replaced with the
eb22aeca
DB
3248new ``-netdev'' argument. The remaining use cases will no
3249longer be directly supported in QEMU.
3250
3251@subsection -drive if=scsi (since 2.9.0)
3252
3253The ``-drive if=scsi'' argument is replaced by the the
3254``-device BUS-TYPE'' argument combined with ``-drive if=none''.
3255
3256@subsection -net dump (since 2.10.0)
3257
3258The ``--net dump'' argument is now replaced with the
3259``-object filter-dump'' argument which works in combination
3260with the modern ``-netdev`` backends instead.
3261
3262@subsection -hdachs (since 2.10.0)
3263
3264The ``-hdachs'' argument is now a synonym for setting
3265the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
3266on the ``ide-hd'' device using the ``-device'' argument.
3267The new syntax allows different settings to be provided
3268per disk.
3269
3270@subsection -usbdevice (since 2.10.0)
3271
3272The ``-usbdevice DEV'' argument is now a synonym for setting
3273the ``-device usb-DEV'' argument instead. The deprecated syntax
3274would automatically enable USB support on the machine type.
3275If using the new syntax, USB support must be explicitly
3276enabled via the ``-machine usb=on'' argument.
3277
3278@section qemu-img command line arguments
3279
3280@subsection convert -s (since 2.0.0)
3281
3282The ``convert -s snapshot_id_or_name'' argument is obsoleted
3283by the ``convert -l snapshot_param'' argument instead.
3284
3285@section System emulator human monitor commands
3286
bd7adc84
TH
3287@subsection host_net_add (since 2.10.0)
3288
3289The ``host_net_add'' command is replaced by the ``netdev_add'' command.
3290
3291@subsection host_net_remove (since 2.10.0)
3292
3293The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
3294
eb22aeca
DB
3295@subsection usb_add (since 2.10.0)
3296
3297The ``usb_add'' command is replaced by the ``device_add'' command.
3298
3299@subsection usb_del (since 2.10.0)
3300
3301The ``usb_del'' command is replaced by the ``device_del'' command.
3302
3303@section System emulator devices
3304
3305@subsection ivshmem (since 2.6.0)
3306
3307The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
3308or ``ivshmem-doorbell`` device types.
3309
3310@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
3311
3312The ``spapr-pci-vfio-host-bridge'' device type is replaced by
3313the ``spapr-pci-host-bridge'' device type.
3314
7544a042
SW
3315@node License
3316@appendix License
3317
3318QEMU is a trademark of Fabrice Bellard.
3319
2f8d8f01
TH
3320QEMU is released under the
3321@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
3322version 2. Parts of QEMU have specific licenses, see file
3323@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 3324
debc7065 3325@node Index
7544a042
SW
3326@appendix Index
3327@menu
3328* Concept Index::
3329* Function Index::
3330* Keystroke Index::
3331* Program Index::
3332* Data Type Index::
3333* Variable Index::
3334@end menu
3335
3336@node Concept Index
3337@section Concept Index
3338This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3339@printindex cp
3340
7544a042
SW
3341@node Function Index
3342@section Function Index
3343This index could be used for command line options and monitor functions.
3344@printindex fn
3345
3346@node Keystroke Index
3347@section Keystroke Index
3348
3349This is a list of all keystrokes which have a special function
3350in system emulation.
3351
3352@printindex ky
3353
3354@node Program Index
3355@section Program Index
3356@printindex pg
3357
3358@node Data Type Index
3359@section Data Type Index
3360
3361This index could be used for qdev device names and options.
3362
3363@printindex tp
3364
3365@node Variable Index
3366@section Variable Index
3367@printindex vr
3368
debc7065 3369@bye