]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
a2ea6894 4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
0acd8697 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
6\r
7**/\r
8\r
9#include "MpLib.h"\r
10\r
93ca4c0f
JF
11EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
12\r
7c3f2a12
JF
13/**\r
14 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
15\r
16 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
17 get the status and sync up the settings.\r
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
19 not working actually.\r
7c3f2a12
JF
20\r
21 @retval TRUE BSP Execute Disable is enabled.\r
22 @retval FALSE BSP Execute Disable is not enabled.\r
23**/\r
24BOOLEAN\r
25IsBspExecuteDisableEnabled (\r
26 VOID\r
27 )\r
28{\r
29 UINT32 Eax;\r
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
31 MSR_IA32_EFER_REGISTER EferMsr;\r
32 BOOLEAN Enabled;\r
844b2d07 33 IA32_CR0 Cr0;\r
7c3f2a12
JF
34\r
35 Enabled = FALSE;\r
844b2d07
JF
36 Cr0.UintN = AsmReadCr0 ();\r
37 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 38 //\r
844b2d07 39 // If CR0 Paging bit is set\r
7c3f2a12 40 //\r
844b2d07
JF
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 44 //\r
844b2d07
JF
45 // CPUID 0x80000001\r
46 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 47 //\r
844b2d07
JF
48 if (Edx.Bits.NX != 0) {\r
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
50 //\r
51 // MSR 0xC0000080\r
52 // Bit 11: Execute Disable Bit enable.\r
53 //\r
54 if (EferMsr.Bits.NXE != 0) {\r
55 Enabled = TRUE;\r
56 }\r
7c3f2a12
JF
57 }\r
58 }\r
59 }\r
60\r
61 return Enabled;\r
62}\r
63\r
41be0da5
JF
64/**\r
65 Worker function for SwitchBSP().\r
66\r
67 Worker function for SwitchBSP(), assigned to the AP which is intended\r
68 to become BSP.\r
69\r
70 @param[in] Buffer Pointer to CPU MP Data\r
71**/\r
72VOID\r
73EFIAPI\r
74FutureBSPProc (\r
75 IN VOID *Buffer\r
76 )\r
77{\r
78 CPU_MP_DATA *DataInHob;\r
79\r
80 DataInHob = (CPU_MP_DATA *) Buffer;\r
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
82}\r
83\r
03a1a925
JF
84/**\r
85 Get the Application Processors state.\r
86\r
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
88\r
89 @return The AP status\r
90**/\r
91CPU_STATE\r
92GetApState (\r
93 IN CPU_AP_DATA *CpuData\r
94 )\r
95{\r
96 return CpuData->State;\r
97}\r
98\r
99/**\r
100 Set the Application Processors state.\r
101\r
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
103 @param[in] State The AP status\r
104**/\r
105VOID\r
106SetApState (\r
107 IN CPU_AP_DATA *CpuData,\r
108 IN CPU_STATE State\r
109 )\r
110{\r
111 AcquireSpinLock (&CpuData->ApLock);\r
112 CpuData->State = State;\r
113 ReleaseSpinLock (&CpuData->ApLock);\r
114}\r
3e8ad6bd 115\r
ffab2442 116/**\r
f70174d6 117 Save BSP's local APIC timer setting.\r
ffab2442
JF
118\r
119 @param[in] CpuMpData Pointer to CPU MP Data\r
120**/\r
121VOID\r
122SaveLocalApicTimerSetting (\r
123 IN CPU_MP_DATA *CpuMpData\r
124 )\r
125{\r
126 //\r
127 // Record the current local APIC timer setting of BSP\r
128 //\r
129 GetApicTimerState (\r
130 &CpuMpData->DivideValue,\r
131 &CpuMpData->PeriodicMode,\r
132 &CpuMpData->Vector\r
133 );\r
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
136}\r
137\r
138/**\r
139 Sync local APIC timer setting from BSP to AP.\r
140\r
141 @param[in] CpuMpData Pointer to CPU MP Data\r
142**/\r
143VOID\r
144SyncLocalApicTimerSetting (\r
145 IN CPU_MP_DATA *CpuMpData\r
146 )\r
147{\r
148 //\r
149 // Sync local APIC timer setting from BSP to AP\r
150 //\r
151 InitializeApicTimer (\r
152 CpuMpData->DivideValue,\r
153 CpuMpData->CurrentTimerCount,\r
154 CpuMpData->PeriodicMode,\r
155 CpuMpData->Vector\r
156 );\r
157 //\r
158 // Disable AP's local APIC timer interrupt\r
159 //\r
160 DisableApicTimerInterrupt ();\r
161}\r
162\r
68cb9330
JF
163/**\r
164 Save the volatile registers required to be restored following INIT IPI.\r
165\r
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
167**/\r
168VOID\r
169SaveVolatileRegisters (\r
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
171 )\r
172{\r
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
174\r
175 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
176 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
177 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
178\r
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
180 if (VersionInfoEdx.Bits.DE != 0) {\r
181 //\r
182 // If processor supports Debugging Extensions feature\r
183 // by CPUID.[EAX=01H]:EDX.BIT2\r
184 //\r
185 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
186 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
187 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
188 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
189 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
190 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
191 }\r
e9415e48
JW
192\r
193 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
194 AsmReadIdtr (&VolatileRegisters->Idtr);\r
195 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
196}\r
197\r
198/**\r
199 Restore the volatile registers following INIT IPI.\r
200\r
201 @param[in] VolatileRegisters Pointer to volatile resisters\r
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
203 FALSE: Do not restore DRx\r
204**/\r
205VOID\r
206RestoreVolatileRegisters (\r
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
208 IN BOOLEAN IsRestoreDr\r
209 )\r
210{\r
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 212 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 213\r
68cb9330
JF
214 AsmWriteCr3 (VolatileRegisters->Cr3);\r
215 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 216 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
217\r
218 if (IsRestoreDr) {\r
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
220 if (VersionInfoEdx.Bits.DE != 0) {\r
221 //\r
222 // If processor supports Debugging Extensions feature\r
223 // by CPUID.[EAX=01H]:EDX.BIT2\r
224 //\r
225 AsmWriteDr0 (VolatileRegisters->Dr0);\r
226 AsmWriteDr1 (VolatileRegisters->Dr1);\r
227 AsmWriteDr2 (VolatileRegisters->Dr2);\r
228 AsmWriteDr3 (VolatileRegisters->Dr3);\r
229 AsmWriteDr6 (VolatileRegisters->Dr6);\r
230 AsmWriteDr7 (VolatileRegisters->Dr7);\r
231 }\r
232 }\r
e9415e48
JW
233\r
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
235 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
236 if (VolatileRegisters->Tr != 0 &&\r
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
239 VolatileRegisters->Tr);\r
d69ba6a7 240 if (Tss->Bits.P == 1) {\r
e9415e48
JW
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
242 AsmWriteTr (VolatileRegisters->Tr);\r
243 }\r
244 }\r
68cb9330
JF
245}\r
246\r
9ebcf0f4
JF
247/**\r
248 Detect whether Mwait-monitor feature is supported.\r
249\r
250 @retval TRUE Mwait-monitor feature is supported.\r
251 @retval FALSE Mwait-monitor feature is not supported.\r
252**/\r
253BOOLEAN\r
254IsMwaitSupport (\r
255 VOID\r
256 )\r
257{\r
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
259\r
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
262}\r
263\r
264/**\r
265 Get AP loop mode.\r
266\r
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
268\r
269 @return The AP loop mode.\r
270**/\r
271UINT8\r
272GetApLoopMode (\r
273 OUT UINT32 *MonitorFilterSize\r
274 )\r
275{\r
276 UINT8 ApLoopMode;\r
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
278\r
279 ASSERT (MonitorFilterSize != NULL);\r
280\r
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
283 if (ApLoopMode == ApInMwaitLoop) {\r
284 if (!IsMwaitSupport ()) {\r
285 //\r
286 // If processor does not support MONITOR/MWAIT feature,\r
287 // force AP in Hlt-loop mode\r
288 //\r
289 ApLoopMode = ApInHltLoop;\r
290 }\r
291 }\r
292\r
293 if (ApLoopMode != ApInMwaitLoop) {\r
294 *MonitorFilterSize = sizeof (UINT32);\r
295 } else {\r
296 //\r
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
299 //\r
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
302 }\r
303\r
304 return ApLoopMode;\r
305}\r
b8b04307 306\r
8a2d564b
JF
307/**\r
308 Sort the APIC ID of all processors.\r
309\r
310 This function sorts the APIC ID of all processors so that processor number is\r
311 assigned in the ascending order of APIC ID which eases MP debugging.\r
312\r
313 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
314**/\r
315VOID\r
316SortApicId (\r
317 IN CPU_MP_DATA *CpuMpData\r
318 )\r
319{\r
320 UINTN Index1;\r
321 UINTN Index2;\r
322 UINTN Index3;\r
323 UINT32 ApicId;\r
31a1e4da 324 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
325 UINT32 ApCount;\r
326 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 327 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
328\r
329 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
331 if (ApCount != 0) {\r
332 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
333 Index3 = Index1;\r
334 //\r
335 // Sort key is the hardware default APIC ID\r
336 //\r
31a1e4da 337 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 339 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 340 Index3 = Index2;\r
31a1e4da 341 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
342 }\r
343 }\r
344 if (Index3 != Index1) {\r
31a1e4da 345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 346 CopyMem (\r
31a1e4da
JF
347 &CpuInfoInHob[Index3],\r
348 &CpuInfoInHob[Index1],\r
349 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 350 );\r
31a1e4da 351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
352\r
353 //\r
354 // Also exchange the StartupApSignal.\r
355 //\r
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
357 CpuMpData->CpuData[Index3].StartupApSignal =\r
358 CpuMpData->CpuData[Index1].StartupApSignal;\r
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
360 }\r
361 }\r
362\r
363 //\r
364 // Get the processor number for the BSP\r
365 //\r
366 ApicId = GetInitialApicId ();\r
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 368 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
369 CpuMpData->BspNumber = (UINT32) Index1;\r
370 break;\r
371 }\r
372 }\r
8a2d564b
JF
373 }\r
374}\r
375\r
fe627769
JF
376/**\r
377 Enable x2APIC mode on APs.\r
378\r
379 @param[in, out] Buffer Pointer to private data buffer.\r
380**/\r
381VOID\r
382EFIAPI\r
383ApFuncEnableX2Apic (\r
384 IN OUT VOID *Buffer\r
385 )\r
386{\r
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
388}\r
389\r
b8b04307
JF
390/**\r
391 Do sync on APs.\r
392\r
393 @param[in, out] Buffer Pointer to private data buffer.\r
394**/\r
395VOID\r
396EFIAPI\r
397ApInitializeSync (\r
398 IN OUT VOID *Buffer\r
399 )\r
400{\r
401 CPU_MP_DATA *CpuMpData;\r
402\r
403 CpuMpData = (CPU_MP_DATA *) Buffer;\r
404 //\r
b8b04307
JF
405 // Load microcode on AP\r
406 //\r
2a089134 407 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
408 //\r
409 // Sync BSP's MTRR table to AP\r
410 //\r
411 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
412}\r
413\r
414/**\r
415 Find the current Processor number by APIC ID.\r
416\r
367284e7
DB
417 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
418 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
419\r
420 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
421 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
422**/\r
423EFI_STATUS\r
424GetProcessorNumber (\r
425 IN CPU_MP_DATA *CpuMpData,\r
426 OUT UINTN *ProcessorNumber\r
427 )\r
428{\r
429 UINTN TotalProcessorNumber;\r
430 UINTN Index;\r
31a1e4da 431 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 432 UINT32 CurrentApicId;\r
31a1e4da
JF
433\r
434 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
435\r
436 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 437 CurrentApicId = GetApicId ();\r
b8b04307 438 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 439 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
440 *ProcessorNumber = Index;\r
441 return EFI_SUCCESS;\r
442 }\r
443 }\r
e52838d3 444\r
b8b04307
JF
445 return EFI_NOT_FOUND;\r
446}\r
447\r
03434dff
JF
448/**\r
449 This function will get CPU count in the system.\r
450\r
451 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
452\r
453 @return CPU count detected\r
454**/\r
455UINTN\r
456CollectProcessorCount (\r
457 IN CPU_MP_DATA *CpuMpData\r
458 )\r
459{\r
59a119f0
JF
460 UINTN Index;\r
461\r
03434dff
JF
462 //\r
463 // Send 1st broadcast IPI to APs to wakeup APs\r
464 //\r
465 CpuMpData->InitFlag = ApInitConfig;\r
466 CpuMpData->X2ApicEnable = FALSE;\r
cf4e79e4 467 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
468 CpuMpData->InitFlag = ApInitDone;\r
469 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
470 //\r
471 // Wait for all APs finished the initialization\r
472 //\r
473 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
474 CpuPause ();\r
475 }\r
476\r
71d8226a
JF
477 if (CpuMpData->CpuCount > 255) {\r
478 //\r
479 // If there are more than 255 processor found, force to enable X2APIC\r
480 //\r
481 CpuMpData->X2ApicEnable = TRUE;\r
482 }\r
fe627769
JF
483 if (CpuMpData->X2ApicEnable) {\r
484 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
485 //\r
486 // Wakeup all APs to enable x2APIC mode\r
487 //\r
cf4e79e4 488 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
489 //\r
490 // Wait for all known APs finished\r
491 //\r
492 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
493 CpuPause ();\r
494 }\r
495 //\r
496 // Enable x2APIC on BSP\r
497 //\r
498 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
499 //\r
500 // Set BSP/Aps state to IDLE\r
501 //\r
502 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
503 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
504 }\r
fe627769
JF
505 }\r
506 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
507 //\r
508 // Sort BSP/Aps by CPU APIC ID in ascending order\r
509 //\r
510 SortApicId (CpuMpData);\r
511\r
03434dff
JF
512 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
513\r
514 return CpuMpData->CpuCount;\r
515}\r
516\r
367284e7 517/**\r
03a1a925
JF
518 Initialize CPU AP Data when AP is wakeup at the first time.\r
519\r
520 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
521 @param[in] ProcessorNumber The handle number of processor\r
522 @param[in] BistData Processor BIST data\r
367284e7 523 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
524\r
525**/\r
526VOID\r
527InitializeApData (\r
528 IN OUT CPU_MP_DATA *CpuMpData,\r
529 IN UINTN ProcessorNumber,\r
845c5be1 530 IN UINT32 BistData,\r
dd3fa0cd 531 IN UINT64 ApTopOfStack\r
03a1a925
JF
532 )\r
533{\r
31a1e4da
JF
534 CPU_INFO_IN_HOB *CpuInfoInHob;\r
535\r
536 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
537 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
538 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
539 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 540 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 541\r
03a1a925 542 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 543 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 544 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
545 //\r
546 // Set x2APIC mode if there are any logical processor reporting\r
547 // an Initial APIC ID of 255 or greater.\r
548 //\r
549 AcquireSpinLock(&CpuMpData->MpLock);\r
550 CpuMpData->X2ApicEnable = TRUE;\r
551 ReleaseSpinLock(&CpuMpData->MpLock);\r
552 }\r
553\r
554 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
555 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
556}\r
557\r
b8b04307
JF
558/**\r
559 This function will be called from AP reset code if BSP uses WakeUpAP.\r
560\r
561 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 562 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
563**/\r
564VOID\r
565EFIAPI\r
566ApWakeupFunction (\r
567 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 568 IN UINTN ApIndex\r
b8b04307
JF
569 )\r
570{\r
571 CPU_MP_DATA *CpuMpData;\r
572 UINTN ProcessorNumber;\r
573 EFI_AP_PROCEDURE Procedure;\r
574 VOID *Parameter;\r
575 UINT32 BistData;\r
576 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 577 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 578 UINT64 ApTopOfStack;\r
c6b0feb3 579 UINTN CurrentApicMode;\r
b8b04307
JF
580\r
581 //\r
582 // AP finished assembly code and begin to execute C code\r
583 //\r
584 CpuMpData = ExchangeInfo->CpuMpData;\r
585\r
ffab2442
JF
586 //\r
587 // AP's local APIC settings will be lost after received INIT IPI\r
588 // We need to re-initialize them at here\r
589 //\r
590 ProgramVirtualWireMode ();\r
a2ea6894
RN
591 //\r
592 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
593 //\r
594 DisableLvtInterrupts ();\r
ffab2442 595 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 596\r
c6b0feb3 597 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
598 while (TRUE) {\r
599 if (CpuMpData->InitFlag == ApInitConfig) {\r
600 //\r
601 // Add CPU number\r
602 //\r
603 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 604 ProcessorNumber = ApIndex;\r
b8b04307
JF
605 //\r
606 // This is first time AP wakeup, get BIST information from AP stack\r
607 //\r
845c5be1 608 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 609 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
610 //\r
611 // Do some AP initialize sync\r
612 //\r
613 ApInitializeSync (CpuMpData);\r
614 //\r
c563077a
RN
615 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
616 // to initialize AP in InitConfig path.\r
617 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
618 //\r
619 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 620 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
621 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
622 } else {\r
623 //\r
624 // Execute AP function if AP is ready\r
625 //\r
626 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
627 //\r
628 // Clear AP start-up signal when AP waken up\r
629 //\r
630 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
631 InterlockedCompareExchange32 (\r
632 (UINT32 *) ApStartupSignalBuffer,\r
633 WAKEUP_AP_SIGNAL,\r
634 0\r
635 );\r
636 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
637 //\r
638 // Restore AP's volatile registers saved\r
639 //\r
640 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
641 } else {\r
642 //\r
643 // The CPU driver might not flush TLB for APs on spot after updating\r
644 // page attributes. AP in mwait loop mode needs to take care of it when\r
645 // woken up.\r
646 //\r
647 CpuFlushTlb ();\r
b8b04307
JF
648 }\r
649\r
650 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
651 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
652 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
653 if (Procedure != NULL) {\r
654 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
655 //\r
43c9fdcc 656 // Enable source debugging on AP function\r
7367cc6c 657 //\r
43c9fdcc
JF
658 EnableDebugAgent ();\r
659 //\r
b8b04307
JF
660 // Invoke AP function here\r
661 //\r
662 Procedure (Parameter);\r
31a1e4da 663 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
664 if (CpuMpData->SwitchBspFlag) {\r
665 //\r
666 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
667 //\r
668 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
669 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
670 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
671 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
672 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 673 } else {\r
c6b0feb3
JF
674 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
675 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
676 if (CurrentApicMode != GetApicMode ()) {\r
677 //\r
678 // If APIC mode change happened during AP function execution,\r
679 // we do not support APIC ID value changed.\r
680 //\r
681 ASSERT (FALSE);\r
682 CpuDeadLoop ();\r
683 } else {\r
684 //\r
685 // Re-get the CPU APICID and Initial APICID if they are changed\r
686 //\r
687 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
688 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
689 }\r
690 }\r
41be0da5 691 }\r
b8b04307 692 }\r
e048ce88 693 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
694 }\r
695 }\r
696\r
697 //\r
698 // AP finished executing C code\r
699 //\r
700 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 701 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
702\r
703 //\r
704 // Place AP is specified loop mode\r
705 //\r
706 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
707 //\r
708 // Save AP volatile registers\r
709 //\r
710 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
711 //\r
712 // Place AP in HLT-loop\r
713 //\r
714 while (TRUE) {\r
715 DisableInterrupts ();\r
716 CpuSleep ();\r
717 CpuPause ();\r
718 }\r
719 }\r
720 while (TRUE) {\r
721 DisableInterrupts ();\r
722 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
723 //\r
724 // Place AP in MWAIT-loop\r
725 //\r
726 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
727 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
728 //\r
729 // Check AP start-up signal again.\r
730 // If AP start-up signal is not set, place AP into\r
731 // the specified C-state\r
732 //\r
733 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
734 }\r
735 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
736 //\r
737 // Place AP in Run-loop\r
738 //\r
739 CpuPause ();\r
740 } else {\r
741 ASSERT (FALSE);\r
742 }\r
743\r
744 //\r
745 // If AP start-up signal is written, AP is waken up\r
746 // otherwise place AP in loop again\r
747 //\r
748 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
749 break;\r
750 }\r
751 }\r
752 }\r
753}\r
754\r
96f5920d
JF
755/**\r
756 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
757\r
758 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
759**/\r
760VOID\r
761WaitApWakeup (\r
762 IN volatile UINT32 *ApStartupSignalBuffer\r
763 )\r
764{\r
765 //\r
766 // If AP is waken up, StartupApSignal should be cleared.\r
767 // Otherwise, write StartupApSignal again till AP waken up.\r
768 //\r
769 while (InterlockedCompareExchange32 (\r
770 (UINT32 *) ApStartupSignalBuffer,\r
771 WAKEUP_AP_SIGNAL,\r
772 WAKEUP_AP_SIGNAL\r
773 ) != 0) {\r
774 CpuPause ();\r
775 }\r
776}\r
777\r
7c3f2a12
JF
778/**\r
779 This function will fill the exchange info structure.\r
780\r
781 @param[in] CpuMpData Pointer to CPU MP Data\r
782\r
783**/\r
784VOID\r
785FillExchangeInfoData (\r
786 IN CPU_MP_DATA *CpuMpData\r
787 )\r
788{\r
789 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
790 UINTN Size;\r
791 IA32_SEGMENT_DESCRIPTOR *Selector;\r
7c3f2a12
JF
792\r
793 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
794 ExchangeInfo->Lock = 0;\r
795 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
796 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
797 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
798 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
799\r
800 ExchangeInfo->CodeSegment = AsmReadCs ();\r
801 ExchangeInfo->DataSegment = AsmReadDs ();\r
802\r
803 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
804\r
805 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 806 ExchangeInfo->ApIndex = 0;\r
0594ec41 807 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
808 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
809 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
810 ExchangeInfo->CpuMpData = CpuMpData;\r
811\r
812 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
813\r
3b2928b4
MK
814 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
815\r
7c3f2a12
JF
816 //\r
817 // Get the BSP's data of GDT and IDT\r
818 //\r
819 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
820 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
821\r
822 //\r
823 // Find a 32-bit code segment\r
824 //\r
825 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
826 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
827 while (Size > 0) {\r
828 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
829 ExchangeInfo->ModeTransitionSegment =\r
830 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
831 break;\r
832 }\r
833 Selector += 1;\r
834 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
835 }\r
836\r
837 //\r
838 // Copy all 32-bit code and 64-bit code into memory with type of\r
839 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
840 //\r
66833b2a 841 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
842 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
843 CpuMpData->AddressMap.ModeTransitionOffset;\r
844 CopyMem (\r
66833b2a 845 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
846 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
847 CpuMpData->AddressMap.ModeTransitionOffset,\r
848 Size\r
849 );\r
850\r
66833b2a 851 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
852 } else {\r
853 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
854 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
855 }\r
69dfa8d8
JW
856\r
857 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
858 (UINT32)ExchangeInfo->ModeOffset -\r
859 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
860 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
861}\r
862\r
6e1987f1
LE
863/**\r
864 Helper function that waits until the finished AP count reaches the specified\r
865 limit, or the specified timeout elapses (whichever comes first).\r
866\r
867 @param[in] CpuMpData Pointer to CPU MP Data.\r
868 @param[in] FinishedApLimit The number of finished APs to wait for.\r
869 @param[in] TimeLimit The number of microseconds to wait for.\r
870**/\r
871VOID\r
872TimedWaitForApFinish (\r
873 IN CPU_MP_DATA *CpuMpData,\r
874 IN UINT32 FinishedApLimit,\r
875 IN UINT32 TimeLimit\r
876 );\r
877\r
a6b3d753
SZ
878/**\r
879 Get available system memory below 1MB by specified size.\r
880\r
881 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
882**/\r
883VOID\r
884BackupAndPrepareWakeupBuffer(\r
885 IN CPU_MP_DATA *CpuMpData\r
886 )\r
887{\r
888 CopyMem (\r
889 (VOID *) CpuMpData->BackupBuffer,\r
890 (VOID *) CpuMpData->WakeupBuffer,\r
891 CpuMpData->BackupBufferSize\r
892 );\r
893 CopyMem (\r
894 (VOID *) CpuMpData->WakeupBuffer,\r
895 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
896 CpuMpData->AddressMap.RendezvousFunnelSize\r
897 );\r
898}\r
899\r
900/**\r
901 Restore wakeup buffer data.\r
902\r
903 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
904**/\r
905VOID\r
906RestoreWakeupBuffer(\r
907 IN CPU_MP_DATA *CpuMpData\r
908 )\r
909{\r
910 CopyMem (\r
911 (VOID *) CpuMpData->WakeupBuffer,\r
912 (VOID *) CpuMpData->BackupBuffer,\r
913 CpuMpData->BackupBufferSize\r
914 );\r
915}\r
916\r
917/**\r
918 Allocate reset vector buffer.\r
919\r
920 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
921**/\r
922VOID\r
923AllocateResetVector (\r
924 IN OUT CPU_MP_DATA *CpuMpData\r
925 )\r
926{\r
927 UINTN ApResetVectorSize;\r
928\r
929 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
930 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
931 sizeof (MP_CPU_EXCHANGE_INFO);\r
932\r
933 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
934 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
935 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
936 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
937 CpuMpData->AddressMap.RendezvousFunnelSize -\r
938 CpuMpData->AddressMap.ModeTransitionOffset\r
939 );\r
a6b3d753
SZ
940 }\r
941 BackupAndPrepareWakeupBuffer (CpuMpData);\r
942}\r
943\r
944/**\r
945 Free AP reset vector buffer.\r
946\r
947 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
948**/\r
949VOID\r
950FreeResetVector (\r
951 IN CPU_MP_DATA *CpuMpData\r
952 )\r
953{\r
954 RestoreWakeupBuffer (CpuMpData);\r
955}\r
956\r
96f5920d
JF
957/**\r
958 This function will be called by BSP to wakeup AP.\r
959\r
960 @param[in] CpuMpData Pointer to CPU MP Data\r
961 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
962 FALSE: Send IPI to AP by ApicId\r
963 @param[in] ProcessorNumber The handle number of specified processor\r
964 @param[in] Procedure The function to be invoked by AP\r
965 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 966 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
967**/\r
968VOID\r
969WakeUpAP (\r
970 IN CPU_MP_DATA *CpuMpData,\r
971 IN BOOLEAN Broadcast,\r
972 IN UINTN ProcessorNumber,\r
973 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
974 IN VOID *ProcedureArgument, OPTIONAL\r
975 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
976 )\r
977{\r
978 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
979 UINTN Index;\r
980 CPU_AP_DATA *CpuData;\r
981 BOOLEAN ResetVectorRequired;\r
31a1e4da 982 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
983\r
984 CpuMpData->FinishedCount = 0;\r
985 ResetVectorRequired = FALSE;\r
986\r
58942277 987 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
988 CpuMpData->InitFlag != ApInitDone) {\r
989 ResetVectorRequired = TRUE;\r
990 AllocateResetVector (CpuMpData);\r
991 FillExchangeInfoData (CpuMpData);\r
ffab2442 992 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
993 }\r
994\r
995 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
996 //\r
997 // Get AP target C-state each time when waking up AP,\r
998 // for it maybe updated by platform again\r
999 //\r
1000 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1001 }\r
1002\r
1003 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1004\r
1005 if (Broadcast) {\r
1006 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1007 if (Index != CpuMpData->BspNumber) {\r
1008 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1009 //\r
1010 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1011 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1012 // is not CpuStateReady.\r
1013 //\r
1014 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1015 continue;\r
1016 }\r
1017\r
96f5920d
JF
1018 CpuData->ApFunction = (UINTN) Procedure;\r
1019 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1020 SetApState (CpuData, CpuStateReady);\r
1021 if (CpuMpData->InitFlag != ApInitConfig) {\r
1022 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1023 }\r
1024 }\r
1025 }\r
1026 if (ResetVectorRequired) {\r
1027 //\r
1028 // Wakeup all APs\r
1029 //\r
1030 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1031 }\r
c1192210
JF
1032 if (CpuMpData->InitFlag == ApInitConfig) {\r
1033 //\r
86121874
ED
1034 // Here support two methods to collect AP count through adjust\r
1035 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1036 //\r
1037 // one way is set a value to just let the first AP to start the\r
1038 // initialization, then through the later while loop to wait all Aps\r
1039 // finsh the initialization.\r
1040 // The other way is set a value to let all APs finished the initialzation.\r
1041 // In this case, the later while loop is useless.\r
1042 //\r
1043 TimedWaitForApFinish (\r
1044 CpuMpData,\r
1045 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1046 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1047 );\r
0594ec41
ED
1048\r
1049 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1050 CpuPause();\r
1051 }\r
c1192210 1052 } else {\r
96f5920d
JF
1053 //\r
1054 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1055 //\r
1056 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1057 CpuData = &CpuMpData->CpuData[Index];\r
1058 if (Index != CpuMpData->BspNumber) {\r
1059 WaitApWakeup (CpuData->StartupApSignal);\r
1060 }\r
1061 }\r
1062 }\r
1063 } else {\r
1064 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1065 CpuData->ApFunction = (UINTN) Procedure;\r
1066 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1067 SetApState (CpuData, CpuStateReady);\r
1068 //\r
1069 // Wakeup specified AP\r
1070 //\r
1071 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1072 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1073 if (ResetVectorRequired) {\r
31a1e4da 1074 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1075 SendInitSipiSipi (\r
31a1e4da 1076 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1077 (UINT32) ExchangeInfo->BufferStart\r
1078 );\r
1079 }\r
1080 //\r
1081 // Wait specified AP waken up\r
1082 //\r
1083 WaitApWakeup (CpuData->StartupApSignal);\r
1084 }\r
1085\r
1086 if (ResetVectorRequired) {\r
1087 FreeResetVector (CpuMpData);\r
1088 }\r
58942277
ED
1089\r
1090 //\r
1091 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1092 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1093 // S3SmmInitDone Ppi.\r
1094 //\r
1095 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1096}\r
1097\r
08085f08
JF
1098/**\r
1099 Calculate timeout value and return the current performance counter value.\r
1100\r
1101 Calculate the number of performance counter ticks required for a timeout.\r
1102 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1103 as infinity.\r
1104\r
1105 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1106 @param[out] CurrentTime Returns the current value of the performance counter.\r
1107\r
1108 @return Expected time stamp counter for timeout.\r
1109 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1110 as infinity.\r
1111\r
1112**/\r
1113UINT64\r
1114CalculateTimeout (\r
1115 IN UINTN TimeoutInMicroseconds,\r
1116 OUT UINT64 *CurrentTime\r
1117 )\r
1118{\r
48cfb7c0
ED
1119 UINT64 TimeoutInSeconds;\r
1120 UINT64 TimestampCounterFreq;\r
1121\r
08085f08
JF
1122 //\r
1123 // Read the current value of the performance counter\r
1124 //\r
1125 *CurrentTime = GetPerformanceCounter ();\r
1126\r
1127 //\r
1128 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1129 // as infinity.\r
1130 //\r
1131 if (TimeoutInMicroseconds == 0) {\r
1132 return 0;\r
1133 }\r
1134\r
1135 //\r
1136 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1137 // in Hz.\r
48cfb7c0
ED
1138 //\r
1139 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1140\r
08085f08 1141 //\r
48cfb7c0
ED
1142 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1143 //\r
1144 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1145 //\r
1146 // Convert microseconds into seconds if direct multiplication overflows\r
1147 //\r
1148 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1149 //\r
1150 // Assertion if the final tick count exceeds MAX_UINT64\r
1151 //\r
1152 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1153 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1154 } else {\r
1155 //\r
1156 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1157 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1158 //\r
1159 return DivU64x32 (\r
1160 MultU64x64 (\r
1161 TimestampCounterFreq,\r
1162 TimeoutInMicroseconds\r
1163 ),\r
1164 1000000\r
1165 );\r
1166 }\r
08085f08
JF
1167}\r
1168\r
1169/**\r
1170 Checks whether timeout expires.\r
1171\r
1172 Check whether the number of elapsed performance counter ticks required for\r
1173 a timeout condition has been reached.\r
1174 If Timeout is zero, which means infinity, return value is always FALSE.\r
1175\r
1176 @param[in, out] PreviousTime On input, the value of the performance counter\r
1177 when it was last read.\r
1178 On output, the current value of the performance\r
1179 counter\r
1180 @param[in] TotalTime The total amount of elapsed time in performance\r
1181 counter ticks.\r
1182 @param[in] Timeout The number of performance counter ticks required\r
1183 to reach a timeout condition.\r
1184\r
1185 @retval TRUE A timeout condition has been reached.\r
1186 @retval FALSE A timeout condition has not been reached.\r
1187\r
1188**/\r
1189BOOLEAN\r
1190CheckTimeout (\r
1191 IN OUT UINT64 *PreviousTime,\r
1192 IN UINT64 *TotalTime,\r
1193 IN UINT64 Timeout\r
1194 )\r
1195{\r
1196 UINT64 Start;\r
1197 UINT64 End;\r
1198 UINT64 CurrentTime;\r
1199 INT64 Delta;\r
1200 INT64 Cycle;\r
1201\r
1202 if (Timeout == 0) {\r
1203 return FALSE;\r
1204 }\r
1205 GetPerformanceCounterProperties (&Start, &End);\r
1206 Cycle = End - Start;\r
1207 if (Cycle < 0) {\r
1208 Cycle = -Cycle;\r
1209 }\r
1210 Cycle++;\r
1211 CurrentTime = GetPerformanceCounter();\r
1212 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1213 if (Start > End) {\r
1214 Delta = -Delta;\r
1215 }\r
1216 if (Delta < 0) {\r
1217 Delta += Cycle;\r
1218 }\r
1219 *TotalTime += Delta;\r
1220 *PreviousTime = CurrentTime;\r
1221 if (*TotalTime > Timeout) {\r
1222 return TRUE;\r
1223 }\r
1224 return FALSE;\r
1225}\r
1226\r
6e1987f1
LE
1227/**\r
1228 Helper function that waits until the finished AP count reaches the specified\r
1229 limit, or the specified timeout elapses (whichever comes first).\r
1230\r
1231 @param[in] CpuMpData Pointer to CPU MP Data.\r
1232 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1233 @param[in] TimeLimit The number of microseconds to wait for.\r
1234**/\r
1235VOID\r
1236TimedWaitForApFinish (\r
1237 IN CPU_MP_DATA *CpuMpData,\r
1238 IN UINT32 FinishedApLimit,\r
1239 IN UINT32 TimeLimit\r
1240 )\r
1241{\r
1242 //\r
1243 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1244 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1245 //\r
1246 if (TimeLimit == 0) {\r
1247 return;\r
1248 }\r
1249\r
1250 CpuMpData->TotalTime = 0;\r
1251 CpuMpData->ExpectedTime = CalculateTimeout (\r
1252 TimeLimit,\r
1253 &CpuMpData->CurrentTime\r
1254 );\r
1255 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1256 !CheckTimeout (\r
1257 &CpuMpData->CurrentTime,\r
1258 &CpuMpData->TotalTime,\r
1259 CpuMpData->ExpectedTime\r
1260 )) {\r
1261 CpuPause ();\r
1262 }\r
1263\r
1264 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1265 DEBUG ((\r
1266 DEBUG_VERBOSE,\r
1267 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1268 __FUNCTION__,\r
1269 FinishedApLimit,\r
1270 DivU64x64Remainder (\r
1271 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1272 GetPerformanceCounterProperties (NULL, NULL),\r
1273 NULL\r
1274 )\r
1275 ));\r
1276 }\r
1277}\r
1278\r
08085f08
JF
1279/**\r
1280 Reset an AP to Idle state.\r
1281\r
1282 Any task being executed by the AP will be aborted and the AP\r
1283 will be waiting for a new task in Wait-For-SIPI state.\r
1284\r
1285 @param[in] ProcessorNumber The handle number of processor.\r
1286**/\r
1287VOID\r
1288ResetProcessorToIdleState (\r
1289 IN UINTN ProcessorNumber\r
1290 )\r
1291{\r
1292 CPU_MP_DATA *CpuMpData;\r
1293\r
1294 CpuMpData = GetCpuMpData ();\r
1295\r
cb33bde4 1296 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1297 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1298 while (CpuMpData->FinishedCount < 1) {\r
1299 CpuPause ();\r
1300 }\r
1301 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1302\r
1303 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1304}\r
1305\r
1306/**\r
1307 Searches for the next waiting AP.\r
1308\r
1309 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1310\r
1311 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1312\r
1313 @retval EFI_SUCCESS The next waiting AP has been found.\r
1314 @retval EFI_NOT_FOUND No waiting AP exists.\r
1315\r
1316**/\r
1317EFI_STATUS\r
1318GetNextWaitingProcessorNumber (\r
1319 OUT UINTN *NextProcessorNumber\r
1320 )\r
1321{\r
1322 UINTN ProcessorNumber;\r
1323 CPU_MP_DATA *CpuMpData;\r
1324\r
1325 CpuMpData = GetCpuMpData ();\r
1326\r
1327 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1328 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1329 *NextProcessorNumber = ProcessorNumber;\r
1330 return EFI_SUCCESS;\r
1331 }\r
1332 }\r
1333\r
1334 return EFI_NOT_FOUND;\r
1335}\r
1336\r
1337/** Checks status of specified AP.\r
1338\r
1339 This function checks whether the specified AP has finished the task assigned\r
1340 by StartupThisAP(), and whether timeout expires.\r
1341\r
1342 @param[in] ProcessorNumber The handle number of processor.\r
1343\r
1344 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1345 @retval EFI_TIMEOUT The timeout expires.\r
1346 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1347**/\r
1348EFI_STATUS\r
1349CheckThisAP (\r
1350 IN UINTN ProcessorNumber\r
1351 )\r
1352{\r
1353 CPU_MP_DATA *CpuMpData;\r
1354 CPU_AP_DATA *CpuData;\r
1355\r
1356 CpuMpData = GetCpuMpData ();\r
1357 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1358\r
1359 //\r
2a5997f8 1360 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1361 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1362 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1363 //\r
1364 //\r
1365 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1366 //\r
e048ce88 1367 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1368 if (CpuData->Finished != NULL) {\r
1369 *(CpuData->Finished) = TRUE;\r
1370 }\r
e048ce88 1371 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1372 return EFI_SUCCESS;\r
1373 } else {\r
1374 //\r
1375 // If timeout expires for StartupThisAP(), report timeout.\r
1376 //\r
1377 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1378 if (CpuData->Finished != NULL) {\r
1379 *(CpuData->Finished) = FALSE;\r
1380 }\r
1381 //\r
1382 // Reset failed AP to idle state\r
1383 //\r
1384 ResetProcessorToIdleState (ProcessorNumber);\r
1385\r
1386 return EFI_TIMEOUT;\r
1387 }\r
1388 }\r
1389 return EFI_NOT_READY;\r
1390}\r
1391\r
1392/**\r
1393 Checks status of all APs.\r
1394\r
1395 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1396 and whether timeout expires.\r
1397\r
1398 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1399 @retval EFI_TIMEOUT The timeout expires.\r
1400 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1401**/\r
1402EFI_STATUS\r
1403CheckAllAPs (\r
1404 VOID\r
1405 )\r
1406{\r
1407 UINTN ProcessorNumber;\r
1408 UINTN NextProcessorNumber;\r
1409 UINTN ListIndex;\r
1410 EFI_STATUS Status;\r
1411 CPU_MP_DATA *CpuMpData;\r
1412 CPU_AP_DATA *CpuData;\r
1413\r
1414 CpuMpData = GetCpuMpData ();\r
1415\r
1416 NextProcessorNumber = 0;\r
1417\r
1418 //\r
1419 // Go through all APs that are responsible for the StartupAllAPs().\r
1420 //\r
1421 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1422 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1423 continue;\r
1424 }\r
1425\r
1426 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1427 //\r
2a5997f8 1428 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1429 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1430 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1431 //\r
e048ce88 1432 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1433 CpuMpData->RunningCount --;\r
08085f08 1434 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1435 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1436\r
1437 //\r
1438 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1439 //\r
1440 if (CpuMpData->SingleThread) {\r
1441 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1442\r
1443 if (!EFI_ERROR (Status)) {\r
1444 WakeUpAP (\r
1445 CpuMpData,\r
1446 FALSE,\r
1447 (UINT32) NextProcessorNumber,\r
1448 CpuMpData->Procedure,\r
cf4e79e4
ED
1449 CpuMpData->ProcArguments,\r
1450 TRUE\r
08085f08
JF
1451 );\r
1452 }\r
1453 }\r
1454 }\r
1455 }\r
1456\r
1457 //\r
1458 // If all APs finish, return EFI_SUCCESS.\r
1459 //\r
2da3e96c 1460 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1461 return EFI_SUCCESS;\r
1462 }\r
1463\r
1464 //\r
1465 // If timeout expires, report timeout.\r
1466 //\r
1467 if (CheckTimeout (\r
1468 &CpuMpData->CurrentTime,\r
1469 &CpuMpData->TotalTime,\r
1470 CpuMpData->ExpectedTime)\r
1471 ) {\r
1472 //\r
1473 // If FailedCpuList is not NULL, record all failed APs in it.\r
1474 //\r
1475 if (CpuMpData->FailedCpuList != NULL) {\r
1476 *CpuMpData->FailedCpuList =\r
2da3e96c 1477 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1478 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1479 }\r
1480 ListIndex = 0;\r
1481\r
1482 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1483 //\r
1484 // Check whether this processor is responsible for StartupAllAPs().\r
1485 //\r
1486 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1487 //\r
1488 // Reset failed APs to idle state\r
1489 //\r
1490 ResetProcessorToIdleState (ProcessorNumber);\r
1491 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1492 if (CpuMpData->FailedCpuList != NULL) {\r
1493 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1494 }\r
1495 }\r
1496 }\r
1497 if (CpuMpData->FailedCpuList != NULL) {\r
1498 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1499 }\r
1500 return EFI_TIMEOUT;\r
1501 }\r
1502 return EFI_NOT_READY;\r
1503}\r
1504\r
3e8ad6bd
JF
1505/**\r
1506 MP Initialize Library initialization.\r
1507\r
1508 This service will allocate AP reset vector and wakeup all APs to do APs\r
1509 initialization.\r
1510\r
1511 This service must be invoked before all other MP Initialize Library\r
1512 service are invoked.\r
1513\r
1514 @retval EFI_SUCCESS MP initialization succeeds.\r
1515 @retval Others MP initialization fails.\r
1516\r
1517**/\r
1518EFI_STATUS\r
1519EFIAPI\r
1520MpInitLibInitialize (\r
1521 VOID\r
1522 )\r
1523{\r
6a2ee2bb
JF
1524 CPU_MP_DATA *OldCpuMpData;\r
1525 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1526 UINT32 MaxLogicalProcessorNumber;\r
1527 UINT32 ApStackSize;\r
f7f85d83 1528 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1529 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1530 UINTN BufferSize;\r
9ebcf0f4 1531 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1532 VOID *MpBuffer;\r
1533 UINTN Buffer;\r
1534 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1535 UINT8 ApLoopMode;\r
e59f8f6b 1536 UINT8 *MonitorBuffer;\r
03a1a925 1537 UINTN Index;\r
f7f85d83 1538 UINTN ApResetVectorSize;\r
e59f8f6b 1539 UINTN BackupBufferAddr;\r
c563077a 1540 UINTN ApIdtBase;\r
6936ee03 1541 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1542\r
1543 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1544 if (OldCpuMpData == NULL) {\r
1545 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1546 } else {\r
1547 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1548 }\r
14e8137c 1549 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1550\r
1551 AsmGetAddressMap (&AddressMap);\r
1552 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1553 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1554 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1555\r
c563077a 1556 //\r
e09b6b59 1557 // Save BSP's Control registers for APs.\r
c563077a
RN
1558 //\r
1559 SaveVolatileRegisters (&VolatileRegisters);\r
1560\r
e59f8f6b
JF
1561 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1562 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1563 BufferSize += ApResetVectorSize;\r
c563077a
RN
1564 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1565 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1566 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1567 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1568 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1569 ASSERT (MpBuffer != NULL);\r
1570 ZeroMem (MpBuffer, BufferSize);\r
1571 Buffer = (UINTN) MpBuffer;\r
1572\r
c563077a
RN
1573 //\r
1574 // The layout of the Buffer is as below:\r
1575 //\r
1576 // +--------------------+ <-- Buffer\r
1577 // AP Stacks (N)\r
1578 // +--------------------+ <-- MonitorBuffer\r
1579 // AP Monitor Filters (N)\r
1580 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1581 // Backup Buffer\r
1582 // +--------------------+\r
1583 // Padding\r
1584 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1585 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1586 // +--------------------+ <-- CpuMpData\r
1587 // CPU_MP_DATA\r
1588 // +--------------------+ <-- CpuMpData->CpuData\r
1589 // CPU_AP_DATA (N)\r
1590 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1591 // CPU_INFO_IN_HOB (N)\r
1592 // +--------------------+\r
1593 //\r
e59f8f6b
JF
1594 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1595 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1596 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1597 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1598 CpuMpData->Buffer = Buffer;\r
1599 CpuMpData->CpuApStackSize = ApStackSize;\r
1600 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1601 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1602 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1603 CpuMpData->CpuCount = 1;\r
1604 CpuMpData->BspNumber = 0;\r
1605 CpuMpData->WaitEvent = NULL;\r
41be0da5 1606 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1607 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1608 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37 1609 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03
ED
1610 //\r
1611 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1612 // loading microcode time.\r
1613 //\r
1614 MicrocodePatchInRam = NULL;\r
1615 if (MaxLogicalProcessorNumber > 1) {\r
1616 MicrocodePatchInRam = AllocatePages (\r
1617 EFI_SIZE_TO_PAGES (\r
1618 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1619 )\r
1620 );\r
1621 }\r
1622 if (MicrocodePatchInRam == NULL) {\r
1623 //\r
1624 // there is only one processor, or no microcode patch is available, or\r
1625 // memory allocation failed\r
1626 //\r
1627 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1628 } else {\r
1629 //\r
1630 // there are multiple processors, and a microcode patch is available, and\r
1631 // memory allocation succeeded\r
1632 //\r
1633 CopyMem (\r
1634 MicrocodePatchInRam,\r
1635 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1636 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1637 );\r
1638 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1639 }\r
1640\r
e59f8f6b 1641 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1642\r
1643 //\r
1644 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1645 //\r
c563077a
RN
1646 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1647 Buffer + BufferSize);\r
1648\r
1649 //\r
1650 // Duplicate BSP's IDT to APs.\r
1651 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1652 //\r
c563077a
RN
1653 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1654 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1655 //\r
1656 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1657 //\r
1658 VolatileRegisters.Tr = 0;\r
c563077a 1659 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1660 //\r
03a1a925
JF
1661 // Set BSP basic information\r
1662 //\r
f2655dcf 1663 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1664 //\r
e59f8f6b
JF
1665 // Save assembly code information\r
1666 //\r
1667 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1668 //\r
1669 // Finally set AP loop mode\r
1670 //\r
1671 CpuMpData->ApLoopMode = ApLoopMode;\r
1672 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1673\r
1674 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1675\r
e59f8f6b 1676 //\r
03a1a925
JF
1677 // Set up APs wakeup signal buffer\r
1678 //\r
1679 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1680 CpuMpData->CpuData[Index].StartupApSignal =\r
1681 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1682 }\r
94f63c76
JF
1683 //\r
1684 // Load Microcode on BSP\r
1685 //\r
2a089134 1686 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1687 //\r
e59f8f6b
JF
1688 // Store BSP's MTRR setting\r
1689 //\r
1690 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1691 //\r
1692 // Enable the local APIC for Virtual Wire Mode.\r
1693 //\r
1694 ProgramVirtualWireMode ();\r
e59f8f6b 1695\r
6a2ee2bb 1696 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1697 if (MaxLogicalProcessorNumber > 1) {\r
1698 //\r
1699 // Wakeup all APs and calculate the processor count in system\r
1700 //\r
1701 CollectProcessorCount (CpuMpData);\r
1702 }\r
6a2ee2bb
JF
1703 } else {\r
1704 //\r
1705 // APs have been wakeup before, just get the CPU Information\r
1706 // from HOB\r
1707 //\r
1708 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1709 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1710 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1711 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1712 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1713 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1714 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1715 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1716 CpuMpData->X2ApicEnable = TRUE;\r
1717 }\r
31a1e4da 1718 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1719 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1720 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1721 }\r
14e8137c
JF
1722 if (MaxLogicalProcessorNumber > 1) {\r
1723 //\r
1724 // Wakeup APs to do some AP initialize sync\r
1725 //\r
cf4e79e4 1726 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
14e8137c
JF
1727 //\r
1728 // Wait for all APs finished initialization\r
1729 //\r
1730 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1731 CpuPause ();\r
1732 }\r
1733 CpuMpData->InitFlag = ApInitDone;\r
1734 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1735 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1736 }\r
6a2ee2bb
JF
1737 }\r
1738 }\r
93ca4c0f
JF
1739\r
1740 //\r
1741 // Initialize global data for MP support\r
1742 //\r
1743 InitMpGlobalData (CpuMpData);\r
1744\r
f7f85d83 1745 return EFI_SUCCESS;\r
3e8ad6bd
JF
1746}\r
1747\r
1748/**\r
1749 Gets detailed MP-related information on the requested processor at the\r
1750 instant this call is made. This service may only be called from the BSP.\r
1751\r
1752 @param[in] ProcessorNumber The handle number of processor.\r
1753 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1754 the requested processor is deposited.\r
1755 @param[out] HealthData Return processor health data.\r
1756\r
1757 @retval EFI_SUCCESS Processor information was returned.\r
1758 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1759 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1760 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1761 ProcessorNumber does not exist in the platform.\r
1762 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1763\r
1764**/\r
1765EFI_STATUS\r
1766EFIAPI\r
1767MpInitLibGetProcessorInfo (\r
1768 IN UINTN ProcessorNumber,\r
1769 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1770 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1771 )\r
1772{\r
ad52f25e
JF
1773 CPU_MP_DATA *CpuMpData;\r
1774 UINTN CallerNumber;\r
31a1e4da 1775 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1776\r
1777 CpuMpData = GetCpuMpData ();\r
31a1e4da 1778 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1779\r
1780 //\r
1781 // Check whether caller processor is BSP\r
1782 //\r
1783 MpInitLibWhoAmI (&CallerNumber);\r
1784 if (CallerNumber != CpuMpData->BspNumber) {\r
1785 return EFI_DEVICE_ERROR;\r
1786 }\r
1787\r
1788 if (ProcessorInfoBuffer == NULL) {\r
1789 return EFI_INVALID_PARAMETER;\r
1790 }\r
1791\r
1792 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1793 return EFI_NOT_FOUND;\r
1794 }\r
1795\r
31a1e4da 1796 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1797 ProcessorInfoBuffer->StatusFlag = 0;\r
1798 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1799 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1800 }\r
1801 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1802 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1803 }\r
1804 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1805 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1806 } else {\r
1807 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1808 }\r
1809\r
1810 //\r
1811 // Get processor location information\r
1812 //\r
262128e5 1813 GetProcessorLocationByApicId (\r
31a1e4da 1814 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1815 &ProcessorInfoBuffer->Location.Package,\r
1816 &ProcessorInfoBuffer->Location.Core,\r
1817 &ProcessorInfoBuffer->Location.Thread\r
1818 );\r
ad52f25e
JF
1819\r
1820 if (HealthData != NULL) {\r
31a1e4da 1821 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1822 }\r
1823\r
1824 return EFI_SUCCESS;\r
3e8ad6bd 1825}\r
ad52f25e 1826\r
41be0da5
JF
1827/**\r
1828 Worker function to switch the requested AP to be the BSP from that point onward.\r
1829\r
1830 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1831 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1832 enabled AP. Otherwise, it will be disabled.\r
1833\r
1834 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1835 @retval others Failed to switch BSP.\r
41be0da5
JF
1836\r
1837**/\r
1838EFI_STATUS\r
1839SwitchBSPWorker (\r
1840 IN UINTN ProcessorNumber,\r
1841 IN BOOLEAN EnableOldBSP\r
1842 )\r
1843{\r
1844 CPU_MP_DATA *CpuMpData;\r
1845 UINTN CallerNumber;\r
1846 CPU_STATE State;\r
1847 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1848 BOOLEAN OldInterruptState;\r
26b43433 1849 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1850\r
26b43433
JF
1851 //\r
1852 // Save and Disable Local APIC timer interrupt\r
1853 //\r
1854 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1855 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1856 //\r
1857 // Before send both BSP and AP to a procedure to exchange their roles,\r
1858 // interrupt must be disabled. This is because during the exchange role\r
1859 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1860 // be corrupted, since interrupt return address will be pushed to stack\r
1861 // by hardware.\r
1862 //\r
1863 OldInterruptState = SaveAndDisableInterrupts ();\r
1864\r
1865 //\r
1866 // Mask LINT0 & LINT1 for the old BSP\r
1867 //\r
1868 DisableLvtInterrupts ();\r
41be0da5
JF
1869\r
1870 CpuMpData = GetCpuMpData ();\r
1871\r
1872 //\r
1873 // Check whether caller processor is BSP\r
1874 //\r
1875 MpInitLibWhoAmI (&CallerNumber);\r
1876 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1877 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1878 }\r
1879\r
1880 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1881 return EFI_NOT_FOUND;\r
1882 }\r
1883\r
1884 //\r
1885 // Check whether specified AP is disabled\r
1886 //\r
1887 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1888 if (State == CpuStateDisabled) {\r
1889 return EFI_INVALID_PARAMETER;\r
1890 }\r
1891\r
1892 //\r
1893 // Check whether ProcessorNumber specifies the current BSP\r
1894 //\r
1895 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1896 return EFI_INVALID_PARAMETER;\r
1897 }\r
1898\r
1899 //\r
1900 // Check whether specified AP is busy\r
1901 //\r
1902 if (State == CpuStateBusy) {\r
1903 return EFI_NOT_READY;\r
1904 }\r
1905\r
1906 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1907 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1908 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1909 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1910\r
1911 //\r
1912 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1913 //\r
1914 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1915 ApicBaseMsr.Bits.BSP = 0;\r
1916 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1917\r
1918 //\r
1919 // Need to wakeUp AP (future BSP).\r
1920 //\r
cf4e79e4 1921 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
1922\r
1923 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1924\r
1925 //\r
1926 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1927 //\r
1928 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1929 ApicBaseMsr.Bits.BSP = 1;\r
1930 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1931 ProgramVirtualWireMode ();\r
41be0da5
JF
1932\r
1933 //\r
1934 // Wait for old BSP finished AP task\r
1935 //\r
e048ce88 1936 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
1937 CpuPause ();\r
1938 }\r
1939\r
1940 CpuMpData->SwitchBspFlag = FALSE;\r
1941 //\r
1942 // Set old BSP enable state\r
1943 //\r
1944 if (!EnableOldBSP) {\r
1945 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1946 } else {\r
1947 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1948 }\r
1949 //\r
1950 // Save new BSP number\r
1951 //\r
1952 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1953\r
a8d75a18
JF
1954 //\r
1955 // Restore interrupt state.\r
1956 //\r
1957 SetInterruptState (OldInterruptState);\r
1958\r
26b43433
JF
1959 if (OldTimerInterruptState) {\r
1960 EnableApicTimerInterrupt ();\r
1961 }\r
a8d75a18 1962\r
41be0da5
JF
1963 return EFI_SUCCESS;\r
1964}\r
ad52f25e 1965\r
e37109bc
JF
1966/**\r
1967 Worker function to let the caller enable or disable an AP from this point onward.\r
1968 This service may only be called from the BSP.\r
1969\r
1970 @param[in] ProcessorNumber The handle number of AP.\r
1971 @param[in] EnableAP Specifies the new state for the processor for\r
1972 enabled, FALSE for disabled.\r
1973 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1974 the new health status of the AP.\r
1975\r
1976 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1977 @retval others Failed to Enable/Disable AP.\r
1978\r
1979**/\r
1980EFI_STATUS\r
1981EnableDisableApWorker (\r
1982 IN UINTN ProcessorNumber,\r
1983 IN BOOLEAN EnableAP,\r
1984 IN UINT32 *HealthFlag OPTIONAL\r
1985 )\r
1986{\r
1987 CPU_MP_DATA *CpuMpData;\r
1988 UINTN CallerNumber;\r
1989\r
1990 CpuMpData = GetCpuMpData ();\r
1991\r
1992 //\r
1993 // Check whether caller processor is BSP\r
1994 //\r
1995 MpInitLibWhoAmI (&CallerNumber);\r
1996 if (CallerNumber != CpuMpData->BspNumber) {\r
1997 return EFI_DEVICE_ERROR;\r
1998 }\r
1999\r
2000 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2001 return EFI_INVALID_PARAMETER;\r
2002 }\r
2003\r
2004 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2005 return EFI_NOT_FOUND;\r
2006 }\r
2007\r
2008 if (!EnableAP) {\r
2009 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2010 } else {\r
d5fdae96 2011 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2012 }\r
2013\r
2014 if (HealthFlag != NULL) {\r
2015 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2016 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2017 }\r
2018\r
2019 return EFI_SUCCESS;\r
2020}\r
2021\r
3e8ad6bd
JF
2022/**\r
2023 This return the handle number for the calling processor. This service may be\r
2024 called from the BSP and APs.\r
2025\r
2026 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2027 The range is from 0 to the total number of\r
2028 logical processors minus 1. The total number of\r
2029 logical processors can be retrieved by\r
2030 MpInitLibGetNumberOfProcessors().\r
2031\r
2032 @retval EFI_SUCCESS The current processor handle number was returned\r
2033 in ProcessorNumber.\r
2034 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2035 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2036\r
2037**/\r
2038EFI_STATUS\r
2039EFIAPI\r
2040MpInitLibWhoAmI (\r
2041 OUT UINTN *ProcessorNumber\r
2042 )\r
2043{\r
5c9e0997
JF
2044 CPU_MP_DATA *CpuMpData;\r
2045\r
2046 if (ProcessorNumber == NULL) {\r
2047 return EFI_INVALID_PARAMETER;\r
2048 }\r
2049\r
2050 CpuMpData = GetCpuMpData ();\r
2051\r
2052 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2053}\r
809213a6 2054\r
3e8ad6bd
JF
2055/**\r
2056 Retrieves the number of logical processor in the platform and the number of\r
2057 those logical processors that are enabled on this boot. This service may only\r
2058 be called from the BSP.\r
2059\r
2060 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2061 processors in the system, including the BSP\r
2062 and disabled APs.\r
2063 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2064 processors that exist in system, including\r
2065 the BSP.\r
2066\r
2067 @retval EFI_SUCCESS The number of logical processors and enabled\r
2068 logical processors was retrieved.\r
2069 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2070 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2071 is NULL.\r
2072 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2073\r
2074**/\r
2075EFI_STATUS\r
2076EFIAPI\r
2077MpInitLibGetNumberOfProcessors (\r
2078 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2079 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2080 )\r
2081{\r
809213a6
JF
2082 CPU_MP_DATA *CpuMpData;\r
2083 UINTN CallerNumber;\r
2084 UINTN ProcessorNumber;\r
2085 UINTN EnabledProcessorNumber;\r
2086 UINTN Index;\r
2087\r
2088 CpuMpData = GetCpuMpData ();\r
2089\r
2090 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2091 return EFI_INVALID_PARAMETER;\r
2092 }\r
2093\r
2094 //\r
2095 // Check whether caller processor is BSP\r
2096 //\r
2097 MpInitLibWhoAmI (&CallerNumber);\r
2098 if (CallerNumber != CpuMpData->BspNumber) {\r
2099 return EFI_DEVICE_ERROR;\r
2100 }\r
2101\r
2102 ProcessorNumber = CpuMpData->CpuCount;\r
2103 EnabledProcessorNumber = 0;\r
2104 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2105 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2106 EnabledProcessorNumber ++;\r
2107 }\r
2108 }\r
2109\r
2110 if (NumberOfProcessors != NULL) {\r
2111 *NumberOfProcessors = ProcessorNumber;\r
2112 }\r
2113 if (NumberOfEnabledProcessors != NULL) {\r
2114 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2115 }\r
2116\r
2117 return EFI_SUCCESS;\r
3e8ad6bd 2118}\r
6a2ee2bb 2119\r
809213a6 2120\r
86efe976
JF
2121/**\r
2122 Worker function to execute a caller provided function on all enabled APs.\r
2123\r
2124 @param[in] Procedure A pointer to the function to be run on\r
2125 enabled APs of the system.\r
2126 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2127 the function specified by Procedure one by\r
2128 one, in ascending order of processor handle\r
2129 number. If FALSE, then all the enabled APs\r
2130 execute the function specified by Procedure\r
2131 simultaneously.\r
2132 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2133 service.\r
367284e7 2134 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2135 APs to return from Procedure, either for\r
2136 blocking or non-blocking mode.\r
2137 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2138 all APs.\r
2139 @param[out] FailedCpuList If all APs finish successfully, then its\r
2140 content is set to NULL. If not all APs\r
2141 finish before timeout expires, then its\r
2142 content is set to address of the buffer\r
2143 holding handle numbers of the failed APs.\r
2144\r
2145 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2146 the timeout expired.\r
2147 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2148 to all enabled APs.\r
2149 @retval others Failed to Startup all APs.\r
2150\r
2151**/\r
2152EFI_STATUS\r
2153StartupAllAPsWorker (\r
2154 IN EFI_AP_PROCEDURE Procedure,\r
2155 IN BOOLEAN SingleThread,\r
2156 IN EFI_EVENT WaitEvent OPTIONAL,\r
2157 IN UINTN TimeoutInMicroseconds,\r
2158 IN VOID *ProcedureArgument OPTIONAL,\r
2159 OUT UINTN **FailedCpuList OPTIONAL\r
2160 )\r
2161{\r
2162 EFI_STATUS Status;\r
2163 CPU_MP_DATA *CpuMpData;\r
2164 UINTN ProcessorCount;\r
2165 UINTN ProcessorNumber;\r
2166 UINTN CallerNumber;\r
2167 CPU_AP_DATA *CpuData;\r
2168 BOOLEAN HasEnabledAp;\r
2169 CPU_STATE ApState;\r
2170\r
2171 CpuMpData = GetCpuMpData ();\r
2172\r
2173 if (FailedCpuList != NULL) {\r
2174 *FailedCpuList = NULL;\r
2175 }\r
2176\r
2177 if (CpuMpData->CpuCount == 1) {\r
2178 return EFI_NOT_STARTED;\r
2179 }\r
2180\r
2181 if (Procedure == NULL) {\r
2182 return EFI_INVALID_PARAMETER;\r
2183 }\r
2184\r
2185 //\r
2186 // Check whether caller processor is BSP\r
2187 //\r
2188 MpInitLibWhoAmI (&CallerNumber);\r
2189 if (CallerNumber != CpuMpData->BspNumber) {\r
2190 return EFI_DEVICE_ERROR;\r
2191 }\r
2192\r
2193 //\r
2194 // Update AP state\r
2195 //\r
2196 CheckAndUpdateApsStatus ();\r
2197\r
2198 ProcessorCount = CpuMpData->CpuCount;\r
2199 HasEnabledAp = FALSE;\r
2200 //\r
2201 // Check whether all enabled APs are idle.\r
2202 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2203 //\r
2204 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2205 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2206 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2207 ApState = GetApState (CpuData);\r
2208 if (ApState != CpuStateDisabled) {\r
2209 HasEnabledAp = TRUE;\r
2210 if (ApState != CpuStateIdle) {\r
2211 //\r
2212 // If any enabled APs are busy, return EFI_NOT_READY.\r
2213 //\r
2214 return EFI_NOT_READY;\r
2215 }\r
2216 }\r
2217 }\r
2218 }\r
2219\r
2220 if (!HasEnabledAp) {\r
2221 //\r
2222 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2223 //\r
2224 return EFI_NOT_STARTED;\r
2225 }\r
2226\r
2da3e96c 2227 CpuMpData->RunningCount = 0;\r
86efe976
JF
2228 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2229 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2230 CpuData->Waiting = FALSE;\r
2231 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2232 if (CpuData->State == CpuStateIdle) {\r
2233 //\r
2234 // Mark this processor as responsible for current calling.\r
2235 //\r
2236 CpuData->Waiting = TRUE;\r
2da3e96c 2237 CpuMpData->RunningCount++;\r
86efe976
JF
2238 }\r
2239 }\r
2240 }\r
2241\r
2242 CpuMpData->Procedure = Procedure;\r
2243 CpuMpData->ProcArguments = ProcedureArgument;\r
2244 CpuMpData->SingleThread = SingleThread;\r
2245 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2246 CpuMpData->FailedCpuList = FailedCpuList;\r
2247 CpuMpData->ExpectedTime = CalculateTimeout (\r
2248 TimeoutInMicroseconds,\r
2249 &CpuMpData->CurrentTime\r
2250 );\r
2251 CpuMpData->TotalTime = 0;\r
2252 CpuMpData->WaitEvent = WaitEvent;\r
2253\r
2254 if (!SingleThread) {\r
cf4e79e4 2255 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2256 } else {\r
2257 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2258 if (ProcessorNumber == CallerNumber) {\r
2259 continue;\r
2260 }\r
2261 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2262 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2263 break;\r
2264 }\r
2265 }\r
2266 }\r
2267\r
2268 Status = EFI_SUCCESS;\r
2269 if (WaitEvent == NULL) {\r
2270 do {\r
2271 Status = CheckAllAPs ();\r
2272 } while (Status == EFI_NOT_READY);\r
2273 }\r
2274\r
2275 return Status;\r
2276}\r
2277\r
20ae5774
JF
2278/**\r
2279 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2280 function.\r
2281\r
2282 @param[in] Procedure A pointer to the function to be run on\r
2283 enabled APs of the system.\r
2284 @param[in] ProcessorNumber The handle number of the AP.\r
2285 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2286 service.\r
367284e7 2287 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2288 APs to return from Procedure, either for\r
2289 blocking or non-blocking mode.\r
2290 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2291 all APs.\r
2292 @param[out] Finished If AP returns from Procedure before the\r
2293 timeout expires, its content is set to TRUE.\r
2294 Otherwise, the value is set to FALSE.\r
2295\r
2296 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2297 the timeout expires.\r
2298 @retval others Failed to Startup AP.\r
2299\r
2300**/\r
2301EFI_STATUS\r
2302StartupThisAPWorker (\r
2303 IN EFI_AP_PROCEDURE Procedure,\r
2304 IN UINTN ProcessorNumber,\r
2305 IN EFI_EVENT WaitEvent OPTIONAL,\r
2306 IN UINTN TimeoutInMicroseconds,\r
2307 IN VOID *ProcedureArgument OPTIONAL,\r
2308 OUT BOOLEAN *Finished OPTIONAL\r
2309 )\r
2310{\r
2311 EFI_STATUS Status;\r
2312 CPU_MP_DATA *CpuMpData;\r
2313 CPU_AP_DATA *CpuData;\r
2314 UINTN CallerNumber;\r
2315\r
2316 CpuMpData = GetCpuMpData ();\r
2317\r
2318 if (Finished != NULL) {\r
2319 *Finished = FALSE;\r
2320 }\r
2321\r
2322 //\r
2323 // Check whether caller processor is BSP\r
2324 //\r
2325 MpInitLibWhoAmI (&CallerNumber);\r
2326 if (CallerNumber != CpuMpData->BspNumber) {\r
2327 return EFI_DEVICE_ERROR;\r
2328 }\r
2329\r
2330 //\r
2331 // Check whether processor with the handle specified by ProcessorNumber exists\r
2332 //\r
2333 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2334 return EFI_NOT_FOUND;\r
2335 }\r
2336\r
2337 //\r
2338 // Check whether specified processor is BSP\r
2339 //\r
2340 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2341 return EFI_INVALID_PARAMETER;\r
2342 }\r
2343\r
2344 //\r
2345 // Check parameter Procedure\r
2346 //\r
2347 if (Procedure == NULL) {\r
2348 return EFI_INVALID_PARAMETER;\r
2349 }\r
2350\r
2351 //\r
2352 // Update AP state\r
2353 //\r
2354 CheckAndUpdateApsStatus ();\r
2355\r
2356 //\r
2357 // Check whether specified AP is disabled\r
2358 //\r
2359 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2360 return EFI_INVALID_PARAMETER;\r
2361 }\r
2362\r
2363 //\r
2364 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2365 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2366 // CheckAPsStatus() will check completion and timeout periodically.\r
2367 //\r
2368 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2369 CpuData->WaitEvent = WaitEvent;\r
2370 CpuData->Finished = Finished;\r
2371 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2372 CpuData->TotalTime = 0;\r
2373\r
cf4e79e4 2374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2375\r
2376 //\r
2377 // If WaitEvent is NULL, execute in blocking mode.\r
2378 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2379 //\r
2380 Status = EFI_SUCCESS;\r
2381 if (WaitEvent == NULL) {\r
2382 do {\r
2383 Status = CheckThisAP (ProcessorNumber);\r
2384 } while (Status == EFI_NOT_READY);\r
2385 }\r
2386\r
2387 return Status;\r
2388}\r
2389\r
93ca4c0f
JF
2390/**\r
2391 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2392\r
2393 @return The pointer to CPU MP Data structure.\r
2394**/\r
2395CPU_MP_DATA *\r
2396GetCpuMpDataFromGuidedHob (\r
2397 VOID\r
2398 )\r
2399{\r
2400 EFI_HOB_GUID_TYPE *GuidHob;\r
2401 VOID *DataInHob;\r
2402 CPU_MP_DATA *CpuMpData;\r
2403\r
2404 CpuMpData = NULL;\r
2405 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2406 if (GuidHob != NULL) {\r
2407 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2408 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2409 }\r
2410 return CpuMpData;\r
2411}\r
42c37b3b 2412\r