]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: expand comment on initial AP enumeration
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
9fc1b85f 4 Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.<BR>\r
0acd8697 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
6\r
7**/\r
8\r
9#include "MpLib.h"\r
10\r
93ca4c0f
JF
11EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
12\r
7c3f2a12
JF
13/**\r
14 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
15\r
16 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
17 get the status and sync up the settings.\r
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
19 not working actually.\r
7c3f2a12
JF
20\r
21 @retval TRUE BSP Execute Disable is enabled.\r
22 @retval FALSE BSP Execute Disable is not enabled.\r
23**/\r
24BOOLEAN\r
25IsBspExecuteDisableEnabled (\r
26 VOID\r
27 )\r
28{\r
29 UINT32 Eax;\r
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
31 MSR_IA32_EFER_REGISTER EferMsr;\r
32 BOOLEAN Enabled;\r
844b2d07 33 IA32_CR0 Cr0;\r
7c3f2a12
JF
34\r
35 Enabled = FALSE;\r
844b2d07
JF
36 Cr0.UintN = AsmReadCr0 ();\r
37 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 38 //\r
844b2d07 39 // If CR0 Paging bit is set\r
7c3f2a12 40 //\r
844b2d07
JF
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 44 //\r
844b2d07
JF
45 // CPUID 0x80000001\r
46 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 47 //\r
844b2d07
JF
48 if (Edx.Bits.NX != 0) {\r
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
50 //\r
51 // MSR 0xC0000080\r
52 // Bit 11: Execute Disable Bit enable.\r
53 //\r
54 if (EferMsr.Bits.NXE != 0) {\r
55 Enabled = TRUE;\r
56 }\r
7c3f2a12
JF
57 }\r
58 }\r
59 }\r
60\r
61 return Enabled;\r
62}\r
63\r
41be0da5
JF
64/**\r
65 Worker function for SwitchBSP().\r
66\r
67 Worker function for SwitchBSP(), assigned to the AP which is intended\r
68 to become BSP.\r
69\r
70 @param[in] Buffer Pointer to CPU MP Data\r
71**/\r
72VOID\r
73EFIAPI\r
74FutureBSPProc (\r
75 IN VOID *Buffer\r
76 )\r
77{\r
78 CPU_MP_DATA *DataInHob;\r
79\r
80 DataInHob = (CPU_MP_DATA *) Buffer;\r
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
82}\r
83\r
03a1a925
JF
84/**\r
85 Get the Application Processors state.\r
86\r
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
88\r
89 @return The AP status\r
90**/\r
91CPU_STATE\r
92GetApState (\r
93 IN CPU_AP_DATA *CpuData\r
94 )\r
95{\r
96 return CpuData->State;\r
97}\r
98\r
99/**\r
100 Set the Application Processors state.\r
101\r
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
103 @param[in] State The AP status\r
104**/\r
105VOID\r
106SetApState (\r
107 IN CPU_AP_DATA *CpuData,\r
108 IN CPU_STATE State\r
109 )\r
110{\r
111 AcquireSpinLock (&CpuData->ApLock);\r
112 CpuData->State = State;\r
113 ReleaseSpinLock (&CpuData->ApLock);\r
114}\r
3e8ad6bd 115\r
ffab2442 116/**\r
f70174d6 117 Save BSP's local APIC timer setting.\r
ffab2442
JF
118\r
119 @param[in] CpuMpData Pointer to CPU MP Data\r
120**/\r
121VOID\r
122SaveLocalApicTimerSetting (\r
123 IN CPU_MP_DATA *CpuMpData\r
124 )\r
125{\r
126 //\r
127 // Record the current local APIC timer setting of BSP\r
128 //\r
129 GetApicTimerState (\r
130 &CpuMpData->DivideValue,\r
131 &CpuMpData->PeriodicMode,\r
132 &CpuMpData->Vector\r
133 );\r
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
136}\r
137\r
138/**\r
139 Sync local APIC timer setting from BSP to AP.\r
140\r
141 @param[in] CpuMpData Pointer to CPU MP Data\r
142**/\r
143VOID\r
144SyncLocalApicTimerSetting (\r
145 IN CPU_MP_DATA *CpuMpData\r
146 )\r
147{\r
148 //\r
149 // Sync local APIC timer setting from BSP to AP\r
150 //\r
151 InitializeApicTimer (\r
152 CpuMpData->DivideValue,\r
153 CpuMpData->CurrentTimerCount,\r
154 CpuMpData->PeriodicMode,\r
155 CpuMpData->Vector\r
156 );\r
157 //\r
158 // Disable AP's local APIC timer interrupt\r
159 //\r
160 DisableApicTimerInterrupt ();\r
161}\r
162\r
68cb9330
JF
163/**\r
164 Save the volatile registers required to be restored following INIT IPI.\r
165\r
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
167**/\r
168VOID\r
169SaveVolatileRegisters (\r
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
171 )\r
172{\r
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
174\r
175 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
176 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
177 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
178\r
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
180 if (VersionInfoEdx.Bits.DE != 0) {\r
181 //\r
182 // If processor supports Debugging Extensions feature\r
183 // by CPUID.[EAX=01H]:EDX.BIT2\r
184 //\r
185 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
186 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
187 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
188 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
189 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
190 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
191 }\r
e9415e48
JW
192\r
193 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
194 AsmReadIdtr (&VolatileRegisters->Idtr);\r
195 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
196}\r
197\r
198/**\r
199 Restore the volatile registers following INIT IPI.\r
200\r
201 @param[in] VolatileRegisters Pointer to volatile resisters\r
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
203 FALSE: Do not restore DRx\r
204**/\r
205VOID\r
206RestoreVolatileRegisters (\r
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
208 IN BOOLEAN IsRestoreDr\r
209 )\r
210{\r
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 212 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 213\r
68cb9330
JF
214 AsmWriteCr3 (VolatileRegisters->Cr3);\r
215 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 216 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
217\r
218 if (IsRestoreDr) {\r
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
220 if (VersionInfoEdx.Bits.DE != 0) {\r
221 //\r
222 // If processor supports Debugging Extensions feature\r
223 // by CPUID.[EAX=01H]:EDX.BIT2\r
224 //\r
225 AsmWriteDr0 (VolatileRegisters->Dr0);\r
226 AsmWriteDr1 (VolatileRegisters->Dr1);\r
227 AsmWriteDr2 (VolatileRegisters->Dr2);\r
228 AsmWriteDr3 (VolatileRegisters->Dr3);\r
229 AsmWriteDr6 (VolatileRegisters->Dr6);\r
230 AsmWriteDr7 (VolatileRegisters->Dr7);\r
231 }\r
232 }\r
e9415e48
JW
233\r
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
235 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
236 if (VolatileRegisters->Tr != 0 &&\r
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
239 VolatileRegisters->Tr);\r
d69ba6a7 240 if (Tss->Bits.P == 1) {\r
e9415e48
JW
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
242 AsmWriteTr (VolatileRegisters->Tr);\r
243 }\r
244 }\r
68cb9330
JF
245}\r
246\r
9ebcf0f4
JF
247/**\r
248 Detect whether Mwait-monitor feature is supported.\r
249\r
250 @retval TRUE Mwait-monitor feature is supported.\r
251 @retval FALSE Mwait-monitor feature is not supported.\r
252**/\r
253BOOLEAN\r
254IsMwaitSupport (\r
255 VOID\r
256 )\r
257{\r
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
259\r
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
262}\r
263\r
264/**\r
265 Get AP loop mode.\r
266\r
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
268\r
269 @return The AP loop mode.\r
270**/\r
271UINT8\r
272GetApLoopMode (\r
273 OUT UINT32 *MonitorFilterSize\r
274 )\r
275{\r
276 UINT8 ApLoopMode;\r
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
278\r
279 ASSERT (MonitorFilterSize != NULL);\r
280\r
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
283 if (ApLoopMode == ApInMwaitLoop) {\r
284 if (!IsMwaitSupport ()) {\r
285 //\r
286 // If processor does not support MONITOR/MWAIT feature,\r
287 // force AP in Hlt-loop mode\r
288 //\r
289 ApLoopMode = ApInHltLoop;\r
290 }\r
291 }\r
292\r
293 if (ApLoopMode != ApInMwaitLoop) {\r
294 *MonitorFilterSize = sizeof (UINT32);\r
295 } else {\r
296 //\r
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
299 //\r
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
302 }\r
303\r
304 return ApLoopMode;\r
305}\r
b8b04307 306\r
8a2d564b
JF
307/**\r
308 Sort the APIC ID of all processors.\r
309\r
310 This function sorts the APIC ID of all processors so that processor number is\r
311 assigned in the ascending order of APIC ID which eases MP debugging.\r
312\r
313 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
314**/\r
315VOID\r
316SortApicId (\r
317 IN CPU_MP_DATA *CpuMpData\r
318 )\r
319{\r
320 UINTN Index1;\r
321 UINTN Index2;\r
322 UINTN Index3;\r
323 UINT32 ApicId;\r
31a1e4da 324 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
325 UINT32 ApCount;\r
326 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 327 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
328\r
329 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
331 if (ApCount != 0) {\r
332 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
333 Index3 = Index1;\r
334 //\r
335 // Sort key is the hardware default APIC ID\r
336 //\r
31a1e4da 337 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 339 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 340 Index3 = Index2;\r
31a1e4da 341 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
342 }\r
343 }\r
344 if (Index3 != Index1) {\r
31a1e4da 345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 346 CopyMem (\r
31a1e4da
JF
347 &CpuInfoInHob[Index3],\r
348 &CpuInfoInHob[Index1],\r
349 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 350 );\r
31a1e4da 351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
352\r
353 //\r
354 // Also exchange the StartupApSignal.\r
355 //\r
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
357 CpuMpData->CpuData[Index3].StartupApSignal =\r
358 CpuMpData->CpuData[Index1].StartupApSignal;\r
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
360 }\r
361 }\r
362\r
363 //\r
364 // Get the processor number for the BSP\r
365 //\r
366 ApicId = GetInitialApicId ();\r
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 368 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
369 CpuMpData->BspNumber = (UINT32) Index1;\r
370 break;\r
371 }\r
372 }\r
8a2d564b
JF
373 }\r
374}\r
375\r
fe627769
JF
376/**\r
377 Enable x2APIC mode on APs.\r
378\r
379 @param[in, out] Buffer Pointer to private data buffer.\r
380**/\r
381VOID\r
382EFIAPI\r
383ApFuncEnableX2Apic (\r
384 IN OUT VOID *Buffer\r
385 )\r
386{\r
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
388}\r
389\r
b8b04307
JF
390/**\r
391 Do sync on APs.\r
392\r
393 @param[in, out] Buffer Pointer to private data buffer.\r
394**/\r
395VOID\r
396EFIAPI\r
397ApInitializeSync (\r
398 IN OUT VOID *Buffer\r
399 )\r
400{\r
401 CPU_MP_DATA *CpuMpData;\r
402\r
403 CpuMpData = (CPU_MP_DATA *) Buffer;\r
404 //\r
b8b04307
JF
405 // Load microcode on AP\r
406 //\r
2a089134 407 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
408 //\r
409 // Sync BSP's MTRR table to AP\r
410 //\r
411 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
412}\r
413\r
414/**\r
415 Find the current Processor number by APIC ID.\r
416\r
367284e7
DB
417 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
418 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
419\r
420 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
421 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
422**/\r
423EFI_STATUS\r
424GetProcessorNumber (\r
425 IN CPU_MP_DATA *CpuMpData,\r
426 OUT UINTN *ProcessorNumber\r
427 )\r
428{\r
429 UINTN TotalProcessorNumber;\r
430 UINTN Index;\r
31a1e4da 431 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 432 UINT32 CurrentApicId;\r
31a1e4da
JF
433\r
434 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
435\r
436 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 437 CurrentApicId = GetApicId ();\r
b8b04307 438 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 439 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
440 *ProcessorNumber = Index;\r
441 return EFI_SUCCESS;\r
442 }\r
443 }\r
e52838d3 444\r
b8b04307
JF
445 return EFI_NOT_FOUND;\r
446}\r
447\r
03434dff
JF
448/**\r
449 This function will get CPU count in the system.\r
450\r
451 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
452\r
453 @return CPU count detected\r
454**/\r
455UINTN\r
456CollectProcessorCount (\r
457 IN CPU_MP_DATA *CpuMpData\r
458 )\r
459{\r
59a119f0
JF
460 UINTN Index;\r
461\r
03434dff
JF
462 //\r
463 // Send 1st broadcast IPI to APs to wakeup APs\r
464 //\r
465 CpuMpData->InitFlag = ApInitConfig;\r
466 CpuMpData->X2ApicEnable = FALSE;\r
cf4e79e4 467 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
468 CpuMpData->InitFlag = ApInitDone;\r
469 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
470 //\r
471 // Wait for all APs finished the initialization\r
472 //\r
473 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
474 CpuPause ();\r
475 }\r
476\r
71d8226a
JF
477 if (CpuMpData->CpuCount > 255) {\r
478 //\r
479 // If there are more than 255 processor found, force to enable X2APIC\r
480 //\r
481 CpuMpData->X2ApicEnable = TRUE;\r
482 }\r
fe627769
JF
483 if (CpuMpData->X2ApicEnable) {\r
484 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
485 //\r
486 // Wakeup all APs to enable x2APIC mode\r
487 //\r
cf4e79e4 488 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
489 //\r
490 // Wait for all known APs finished\r
491 //\r
492 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
493 CpuPause ();\r
494 }\r
495 //\r
496 // Enable x2APIC on BSP\r
497 //\r
498 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
499 //\r
500 // Set BSP/Aps state to IDLE\r
501 //\r
502 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
503 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
504 }\r
fe627769
JF
505 }\r
506 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
507 //\r
508 // Sort BSP/Aps by CPU APIC ID in ascending order\r
509 //\r
510 SortApicId (CpuMpData);\r
511\r
03434dff
JF
512 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
513\r
514 return CpuMpData->CpuCount;\r
515}\r
516\r
367284e7 517/**\r
03a1a925
JF
518 Initialize CPU AP Data when AP is wakeup at the first time.\r
519\r
520 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
521 @param[in] ProcessorNumber The handle number of processor\r
522 @param[in] BistData Processor BIST data\r
367284e7 523 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
524\r
525**/\r
526VOID\r
527InitializeApData (\r
528 IN OUT CPU_MP_DATA *CpuMpData,\r
529 IN UINTN ProcessorNumber,\r
845c5be1 530 IN UINT32 BistData,\r
dd3fa0cd 531 IN UINT64 ApTopOfStack\r
03a1a925
JF
532 )\r
533{\r
31a1e4da
JF
534 CPU_INFO_IN_HOB *CpuInfoInHob;\r
535\r
536 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
537 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
538 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
539 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 540 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 541\r
03a1a925 542 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 543 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 544 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
545 //\r
546 // Set x2APIC mode if there are any logical processor reporting\r
547 // an Initial APIC ID of 255 or greater.\r
548 //\r
549 AcquireSpinLock(&CpuMpData->MpLock);\r
550 CpuMpData->X2ApicEnable = TRUE;\r
551 ReleaseSpinLock(&CpuMpData->MpLock);\r
552 }\r
553\r
554 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
555 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
556}\r
557\r
b8b04307
JF
558/**\r
559 This function will be called from AP reset code if BSP uses WakeUpAP.\r
560\r
561 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 562 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
563**/\r
564VOID\r
565EFIAPI\r
566ApWakeupFunction (\r
567 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 568 IN UINTN ApIndex\r
b8b04307
JF
569 )\r
570{\r
571 CPU_MP_DATA *CpuMpData;\r
572 UINTN ProcessorNumber;\r
573 EFI_AP_PROCEDURE Procedure;\r
574 VOID *Parameter;\r
575 UINT32 BistData;\r
576 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 577 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 578 UINT64 ApTopOfStack;\r
c6b0feb3 579 UINTN CurrentApicMode;\r
b8b04307
JF
580\r
581 //\r
582 // AP finished assembly code and begin to execute C code\r
583 //\r
584 CpuMpData = ExchangeInfo->CpuMpData;\r
585\r
ffab2442
JF
586 //\r
587 // AP's local APIC settings will be lost after received INIT IPI\r
588 // We need to re-initialize them at here\r
589 //\r
590 ProgramVirtualWireMode ();\r
a2ea6894
RN
591 //\r
592 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
593 //\r
594 DisableLvtInterrupts ();\r
ffab2442 595 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 596\r
c6b0feb3 597 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
598 while (TRUE) {\r
599 if (CpuMpData->InitFlag == ApInitConfig) {\r
600 //\r
601 // Add CPU number\r
602 //\r
603 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 604 ProcessorNumber = ApIndex;\r
b8b04307
JF
605 //\r
606 // This is first time AP wakeup, get BIST information from AP stack\r
607 //\r
845c5be1 608 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 609 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
610 //\r
611 // Do some AP initialize sync\r
612 //\r
613 ApInitializeSync (CpuMpData);\r
614 //\r
c563077a
RN
615 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
616 // to initialize AP in InitConfig path.\r
617 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
618 //\r
619 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 620 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307 621 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
9fc1b85f
RN
622\r
623 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
624 } else {\r
625 //\r
626 // Execute AP function if AP is ready\r
627 //\r
628 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
629 //\r
630 // Clear AP start-up signal when AP waken up\r
631 //\r
632 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
633 InterlockedCompareExchange32 (\r
634 (UINT32 *) ApStartupSignalBuffer,\r
635 WAKEUP_AP_SIGNAL,\r
636 0\r
637 );\r
638 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
639 //\r
640 // Restore AP's volatile registers saved\r
641 //\r
642 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
643 } else {\r
644 //\r
645 // The CPU driver might not flush TLB for APs on spot after updating\r
646 // page attributes. AP in mwait loop mode needs to take care of it when\r
647 // woken up.\r
648 //\r
649 CpuFlushTlb ();\r
b8b04307
JF
650 }\r
651\r
652 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
653 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
654 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
655 if (Procedure != NULL) {\r
656 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
657 //\r
43c9fdcc 658 // Enable source debugging on AP function\r
7367cc6c 659 //\r
43c9fdcc
JF
660 EnableDebugAgent ();\r
661 //\r
b8b04307
JF
662 // Invoke AP function here\r
663 //\r
664 Procedure (Parameter);\r
31a1e4da 665 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
666 if (CpuMpData->SwitchBspFlag) {\r
667 //\r
668 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
669 //\r
670 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
671 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
672 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
673 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
674 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 675 } else {\r
c6b0feb3
JF
676 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
677 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
678 if (CurrentApicMode != GetApicMode ()) {\r
679 //\r
680 // If APIC mode change happened during AP function execution,\r
681 // we do not support APIC ID value changed.\r
682 //\r
683 ASSERT (FALSE);\r
684 CpuDeadLoop ();\r
685 } else {\r
686 //\r
687 // Re-get the CPU APICID and Initial APICID if they are changed\r
688 //\r
689 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
690 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
691 }\r
692 }\r
41be0da5 693 }\r
b8b04307 694 }\r
e048ce88 695 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
696 }\r
697 }\r
698\r
699 //\r
700 // AP finished executing C code\r
701 //\r
702 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
703\r
704 //\r
705 // Place AP is specified loop mode\r
706 //\r
707 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
708 //\r
709 // Save AP volatile registers\r
710 //\r
711 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
712 //\r
713 // Place AP in HLT-loop\r
714 //\r
715 while (TRUE) {\r
716 DisableInterrupts ();\r
717 CpuSleep ();\r
718 CpuPause ();\r
719 }\r
720 }\r
721 while (TRUE) {\r
722 DisableInterrupts ();\r
723 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
724 //\r
725 // Place AP in MWAIT-loop\r
726 //\r
727 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
728 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
729 //\r
730 // Check AP start-up signal again.\r
731 // If AP start-up signal is not set, place AP into\r
732 // the specified C-state\r
733 //\r
734 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
735 }\r
736 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
737 //\r
738 // Place AP in Run-loop\r
739 //\r
740 CpuPause ();\r
741 } else {\r
742 ASSERT (FALSE);\r
743 }\r
744\r
745 //\r
746 // If AP start-up signal is written, AP is waken up\r
747 // otherwise place AP in loop again\r
748 //\r
749 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
750 break;\r
751 }\r
752 }\r
753 }\r
754}\r
755\r
96f5920d
JF
756/**\r
757 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
758\r
759 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
760**/\r
761VOID\r
762WaitApWakeup (\r
763 IN volatile UINT32 *ApStartupSignalBuffer\r
764 )\r
765{\r
766 //\r
767 // If AP is waken up, StartupApSignal should be cleared.\r
768 // Otherwise, write StartupApSignal again till AP waken up.\r
769 //\r
770 while (InterlockedCompareExchange32 (\r
771 (UINT32 *) ApStartupSignalBuffer,\r
772 WAKEUP_AP_SIGNAL,\r
773 WAKEUP_AP_SIGNAL\r
774 ) != 0) {\r
775 CpuPause ();\r
776 }\r
777}\r
778\r
7c3f2a12
JF
779/**\r
780 This function will fill the exchange info structure.\r
781\r
782 @param[in] CpuMpData Pointer to CPU MP Data\r
783\r
784**/\r
785VOID\r
786FillExchangeInfoData (\r
787 IN CPU_MP_DATA *CpuMpData\r
788 )\r
789{\r
790 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
791 UINTN Size;\r
792 IA32_SEGMENT_DESCRIPTOR *Selector;\r
09f69a87 793 IA32_CR4 Cr4;\r
7c3f2a12
JF
794\r
795 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
796 ExchangeInfo->Lock = 0;\r
797 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
798 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
799 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
800 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
801\r
802 ExchangeInfo->CodeSegment = AsmReadCs ();\r
803 ExchangeInfo->DataSegment = AsmReadDs ();\r
804\r
805 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
806\r
807 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 808 ExchangeInfo->ApIndex = 0;\r
0594ec41 809 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
810 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
811 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
812 ExchangeInfo->CpuMpData = CpuMpData;\r
813\r
814 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
815\r
3b2928b4
MK
816 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
817\r
09f69a87
RN
818 //\r
819 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]\r
820 // to determin whether 5-Level Paging is enabled.\r
821 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows\r
822 // current system setting.\r
823 // Using latter way is simpler because it also eliminates the needs to\r
824 // check whether platform wants to enable it.\r
825 //\r
826 Cr4.UintN = AsmReadCr4 ();\r
827 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);\r
828 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));\r
829\r
7c3f2a12
JF
830 //\r
831 // Get the BSP's data of GDT and IDT\r
832 //\r
833 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
834 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
835\r
836 //\r
837 // Find a 32-bit code segment\r
838 //\r
839 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
840 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
841 while (Size > 0) {\r
842 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
843 ExchangeInfo->ModeTransitionSegment =\r
844 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
845 break;\r
846 }\r
847 Selector += 1;\r
848 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
849 }\r
850\r
851 //\r
852 // Copy all 32-bit code and 64-bit code into memory with type of\r
853 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
854 //\r
66833b2a 855 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
856 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
857 CpuMpData->AddressMap.ModeTransitionOffset;\r
858 CopyMem (\r
66833b2a 859 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
860 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
861 CpuMpData->AddressMap.ModeTransitionOffset,\r
862 Size\r
863 );\r
864\r
66833b2a 865 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
866 } else {\r
867 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
868 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
869 }\r
69dfa8d8
JW
870\r
871 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
872 (UINT32)ExchangeInfo->ModeOffset -\r
873 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
874 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
875}\r
876\r
6e1987f1
LE
877/**\r
878 Helper function that waits until the finished AP count reaches the specified\r
879 limit, or the specified timeout elapses (whichever comes first).\r
880\r
881 @param[in] CpuMpData Pointer to CPU MP Data.\r
882 @param[in] FinishedApLimit The number of finished APs to wait for.\r
883 @param[in] TimeLimit The number of microseconds to wait for.\r
884**/\r
885VOID\r
886TimedWaitForApFinish (\r
887 IN CPU_MP_DATA *CpuMpData,\r
888 IN UINT32 FinishedApLimit,\r
889 IN UINT32 TimeLimit\r
890 );\r
891\r
a6b3d753
SZ
892/**\r
893 Get available system memory below 1MB by specified size.\r
894\r
895 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
896**/\r
897VOID\r
898BackupAndPrepareWakeupBuffer(\r
899 IN CPU_MP_DATA *CpuMpData\r
900 )\r
901{\r
902 CopyMem (\r
903 (VOID *) CpuMpData->BackupBuffer,\r
904 (VOID *) CpuMpData->WakeupBuffer,\r
905 CpuMpData->BackupBufferSize\r
906 );\r
907 CopyMem (\r
908 (VOID *) CpuMpData->WakeupBuffer,\r
909 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
910 CpuMpData->AddressMap.RendezvousFunnelSize\r
911 );\r
912}\r
913\r
914/**\r
915 Restore wakeup buffer data.\r
916\r
917 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
918**/\r
919VOID\r
920RestoreWakeupBuffer(\r
921 IN CPU_MP_DATA *CpuMpData\r
922 )\r
923{\r
924 CopyMem (\r
925 (VOID *) CpuMpData->WakeupBuffer,\r
926 (VOID *) CpuMpData->BackupBuffer,\r
927 CpuMpData->BackupBufferSize\r
928 );\r
929}\r
930\r
931/**\r
932 Allocate reset vector buffer.\r
933\r
934 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
935**/\r
936VOID\r
937AllocateResetVector (\r
938 IN OUT CPU_MP_DATA *CpuMpData\r
939 )\r
940{\r
941 UINTN ApResetVectorSize;\r
942\r
943 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
944 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
945 sizeof (MP_CPU_EXCHANGE_INFO);\r
946\r
947 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
948 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
949 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
950 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
951 CpuMpData->AddressMap.RendezvousFunnelSize -\r
952 CpuMpData->AddressMap.ModeTransitionOffset\r
953 );\r
a6b3d753
SZ
954 }\r
955 BackupAndPrepareWakeupBuffer (CpuMpData);\r
956}\r
957\r
958/**\r
959 Free AP reset vector buffer.\r
960\r
961 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
962**/\r
963VOID\r
964FreeResetVector (\r
965 IN CPU_MP_DATA *CpuMpData\r
966 )\r
967{\r
968 RestoreWakeupBuffer (CpuMpData);\r
969}\r
970\r
96f5920d
JF
971/**\r
972 This function will be called by BSP to wakeup AP.\r
973\r
974 @param[in] CpuMpData Pointer to CPU MP Data\r
975 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
976 FALSE: Send IPI to AP by ApicId\r
977 @param[in] ProcessorNumber The handle number of specified processor\r
978 @param[in] Procedure The function to be invoked by AP\r
979 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 980 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
981**/\r
982VOID\r
983WakeUpAP (\r
984 IN CPU_MP_DATA *CpuMpData,\r
985 IN BOOLEAN Broadcast,\r
986 IN UINTN ProcessorNumber,\r
987 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
988 IN VOID *ProcedureArgument, OPTIONAL\r
989 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
990 )\r
991{\r
992 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
993 UINTN Index;\r
994 CPU_AP_DATA *CpuData;\r
995 BOOLEAN ResetVectorRequired;\r
31a1e4da 996 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
997\r
998 CpuMpData->FinishedCount = 0;\r
999 ResetVectorRequired = FALSE;\r
1000\r
58942277 1001 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
1002 CpuMpData->InitFlag != ApInitDone) {\r
1003 ResetVectorRequired = TRUE;\r
1004 AllocateResetVector (CpuMpData);\r
1005 FillExchangeInfoData (CpuMpData);\r
ffab2442 1006 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
1007 }\r
1008\r
1009 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1010 //\r
1011 // Get AP target C-state each time when waking up AP,\r
1012 // for it maybe updated by platform again\r
1013 //\r
1014 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1015 }\r
1016\r
1017 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1018\r
1019 if (Broadcast) {\r
1020 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1021 if (Index != CpuMpData->BspNumber) {\r
1022 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1023 //\r
1024 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1025 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1026 // is not CpuStateReady.\r
1027 //\r
1028 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1029 continue;\r
1030 }\r
1031\r
96f5920d
JF
1032 CpuData->ApFunction = (UINTN) Procedure;\r
1033 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1034 SetApState (CpuData, CpuStateReady);\r
1035 if (CpuMpData->InitFlag != ApInitConfig) {\r
1036 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1037 }\r
1038 }\r
1039 }\r
1040 if (ResetVectorRequired) {\r
1041 //\r
1042 // Wakeup all APs\r
1043 //\r
1044 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1045 }\r
c1192210
JF
1046 if (CpuMpData->InitFlag == ApInitConfig) {\r
1047 //\r
30459ddd 1048 // The AP enumeration algorithm below is suitable for two use cases.\r
86121874 1049 //\r
30459ddd
LE
1050 // (1) The check-in time for an individual AP is bounded, and APs run\r
1051 // through their initialization routines strongly concurrently. In\r
1052 // particular, the number of concurrently running APs\r
1053 // ("NumApsExecuting") is never expected to fall to zero\r
1054 // *temporarily* -- it is expected to fall to zero only when all\r
1055 // APs have checked-in.\r
1056 //\r
1057 // In this case, the platform is supposed to set\r
1058 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long\r
1059 // enough for one AP to start initialization). The timeout will be\r
1060 // reached soon, and remaining APs are collected by watching\r
1061 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero\r
1062 // mid-process, while some APs have not completed initialization,\r
1063 // the behavior is undefined.\r
1064 //\r
1065 // (2) The check-in time for an individual AP is unbounded, and/or APs\r
1066 // may complete their initializations widely spread out. In\r
1067 // particular, some APs may finish initialization before some APs\r
1068 // even start.\r
1069 //\r
1070 // In this case, the platform is supposed to set\r
1071 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP\r
1072 // enumeration will always take that long (except when the boot CPU\r
1073 // count happens to be maximal, that is,\r
1074 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to\r
1075 // check-in before the timeout, and NumApsExecuting is assumed zero\r
1076 // at timeout. APs that miss the time-out may cause undefined\r
1077 // behavior.\r
86121874
ED
1078 //\r
1079 TimedWaitForApFinish (\r
1080 CpuMpData,\r
1081 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1082 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1083 );\r
0594ec41
ED
1084\r
1085 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1086 CpuPause();\r
1087 }\r
c1192210 1088 } else {\r
96f5920d
JF
1089 //\r
1090 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1091 //\r
1092 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1093 CpuData = &CpuMpData->CpuData[Index];\r
1094 if (Index != CpuMpData->BspNumber) {\r
1095 WaitApWakeup (CpuData->StartupApSignal);\r
1096 }\r
1097 }\r
1098 }\r
1099 } else {\r
1100 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1101 CpuData->ApFunction = (UINTN) Procedure;\r
1102 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1103 SetApState (CpuData, CpuStateReady);\r
1104 //\r
1105 // Wakeup specified AP\r
1106 //\r
1107 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1108 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1109 if (ResetVectorRequired) {\r
31a1e4da 1110 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1111 SendInitSipiSipi (\r
31a1e4da 1112 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1113 (UINT32) ExchangeInfo->BufferStart\r
1114 );\r
1115 }\r
1116 //\r
1117 // Wait specified AP waken up\r
1118 //\r
1119 WaitApWakeup (CpuData->StartupApSignal);\r
1120 }\r
1121\r
1122 if (ResetVectorRequired) {\r
1123 FreeResetVector (CpuMpData);\r
1124 }\r
58942277
ED
1125\r
1126 //\r
1127 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1128 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1129 // S3SmmInitDone Ppi.\r
1130 //\r
1131 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1132}\r
1133\r
08085f08
JF
1134/**\r
1135 Calculate timeout value and return the current performance counter value.\r
1136\r
1137 Calculate the number of performance counter ticks required for a timeout.\r
1138 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1139 as infinity.\r
1140\r
1141 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1142 @param[out] CurrentTime Returns the current value of the performance counter.\r
1143\r
1144 @return Expected time stamp counter for timeout.\r
1145 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1146 as infinity.\r
1147\r
1148**/\r
1149UINT64\r
1150CalculateTimeout (\r
1151 IN UINTN TimeoutInMicroseconds,\r
1152 OUT UINT64 *CurrentTime\r
1153 )\r
1154{\r
48cfb7c0
ED
1155 UINT64 TimeoutInSeconds;\r
1156 UINT64 TimestampCounterFreq;\r
1157\r
08085f08
JF
1158 //\r
1159 // Read the current value of the performance counter\r
1160 //\r
1161 *CurrentTime = GetPerformanceCounter ();\r
1162\r
1163 //\r
1164 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1165 // as infinity.\r
1166 //\r
1167 if (TimeoutInMicroseconds == 0) {\r
1168 return 0;\r
1169 }\r
1170\r
1171 //\r
1172 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1173 // in Hz.\r
48cfb7c0
ED
1174 //\r
1175 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1176\r
08085f08 1177 //\r
48cfb7c0
ED
1178 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1179 //\r
1180 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1181 //\r
1182 // Convert microseconds into seconds if direct multiplication overflows\r
1183 //\r
1184 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1185 //\r
1186 // Assertion if the final tick count exceeds MAX_UINT64\r
1187 //\r
1188 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1189 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1190 } else {\r
1191 //\r
1192 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1193 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1194 //\r
1195 return DivU64x32 (\r
1196 MultU64x64 (\r
1197 TimestampCounterFreq,\r
1198 TimeoutInMicroseconds\r
1199 ),\r
1200 1000000\r
1201 );\r
1202 }\r
08085f08
JF
1203}\r
1204\r
1205/**\r
1206 Checks whether timeout expires.\r
1207\r
1208 Check whether the number of elapsed performance counter ticks required for\r
1209 a timeout condition has been reached.\r
1210 If Timeout is zero, which means infinity, return value is always FALSE.\r
1211\r
1212 @param[in, out] PreviousTime On input, the value of the performance counter\r
1213 when it was last read.\r
1214 On output, the current value of the performance\r
1215 counter\r
1216 @param[in] TotalTime The total amount of elapsed time in performance\r
1217 counter ticks.\r
1218 @param[in] Timeout The number of performance counter ticks required\r
1219 to reach a timeout condition.\r
1220\r
1221 @retval TRUE A timeout condition has been reached.\r
1222 @retval FALSE A timeout condition has not been reached.\r
1223\r
1224**/\r
1225BOOLEAN\r
1226CheckTimeout (\r
1227 IN OUT UINT64 *PreviousTime,\r
1228 IN UINT64 *TotalTime,\r
1229 IN UINT64 Timeout\r
1230 )\r
1231{\r
1232 UINT64 Start;\r
1233 UINT64 End;\r
1234 UINT64 CurrentTime;\r
1235 INT64 Delta;\r
1236 INT64 Cycle;\r
1237\r
1238 if (Timeout == 0) {\r
1239 return FALSE;\r
1240 }\r
1241 GetPerformanceCounterProperties (&Start, &End);\r
1242 Cycle = End - Start;\r
1243 if (Cycle < 0) {\r
1244 Cycle = -Cycle;\r
1245 }\r
1246 Cycle++;\r
1247 CurrentTime = GetPerformanceCounter();\r
1248 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1249 if (Start > End) {\r
1250 Delta = -Delta;\r
1251 }\r
1252 if (Delta < 0) {\r
1253 Delta += Cycle;\r
1254 }\r
1255 *TotalTime += Delta;\r
1256 *PreviousTime = CurrentTime;\r
1257 if (*TotalTime > Timeout) {\r
1258 return TRUE;\r
1259 }\r
1260 return FALSE;\r
1261}\r
1262\r
6e1987f1
LE
1263/**\r
1264 Helper function that waits until the finished AP count reaches the specified\r
1265 limit, or the specified timeout elapses (whichever comes first).\r
1266\r
1267 @param[in] CpuMpData Pointer to CPU MP Data.\r
1268 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1269 @param[in] TimeLimit The number of microseconds to wait for.\r
1270**/\r
1271VOID\r
1272TimedWaitForApFinish (\r
1273 IN CPU_MP_DATA *CpuMpData,\r
1274 IN UINT32 FinishedApLimit,\r
1275 IN UINT32 TimeLimit\r
1276 )\r
1277{\r
1278 //\r
1279 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1280 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1281 //\r
1282 if (TimeLimit == 0) {\r
1283 return;\r
1284 }\r
1285\r
1286 CpuMpData->TotalTime = 0;\r
1287 CpuMpData->ExpectedTime = CalculateTimeout (\r
1288 TimeLimit,\r
1289 &CpuMpData->CurrentTime\r
1290 );\r
1291 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1292 !CheckTimeout (\r
1293 &CpuMpData->CurrentTime,\r
1294 &CpuMpData->TotalTime,\r
1295 CpuMpData->ExpectedTime\r
1296 )) {\r
1297 CpuPause ();\r
1298 }\r
1299\r
1300 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1301 DEBUG ((\r
1302 DEBUG_VERBOSE,\r
1303 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1304 __FUNCTION__,\r
1305 FinishedApLimit,\r
1306 DivU64x64Remainder (\r
1307 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1308 GetPerformanceCounterProperties (NULL, NULL),\r
1309 NULL\r
1310 )\r
1311 ));\r
1312 }\r
1313}\r
1314\r
08085f08
JF
1315/**\r
1316 Reset an AP to Idle state.\r
1317\r
1318 Any task being executed by the AP will be aborted and the AP\r
1319 will be waiting for a new task in Wait-For-SIPI state.\r
1320\r
1321 @param[in] ProcessorNumber The handle number of processor.\r
1322**/\r
1323VOID\r
1324ResetProcessorToIdleState (\r
1325 IN UINTN ProcessorNumber\r
1326 )\r
1327{\r
1328 CPU_MP_DATA *CpuMpData;\r
1329\r
1330 CpuMpData = GetCpuMpData ();\r
1331\r
cb33bde4 1332 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1333 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1334 while (CpuMpData->FinishedCount < 1) {\r
1335 CpuPause ();\r
1336 }\r
1337 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1338\r
1339 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1340}\r
1341\r
1342/**\r
1343 Searches for the next waiting AP.\r
1344\r
1345 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1346\r
1347 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1348\r
1349 @retval EFI_SUCCESS The next waiting AP has been found.\r
1350 @retval EFI_NOT_FOUND No waiting AP exists.\r
1351\r
1352**/\r
1353EFI_STATUS\r
1354GetNextWaitingProcessorNumber (\r
1355 OUT UINTN *NextProcessorNumber\r
1356 )\r
1357{\r
1358 UINTN ProcessorNumber;\r
1359 CPU_MP_DATA *CpuMpData;\r
1360\r
1361 CpuMpData = GetCpuMpData ();\r
1362\r
1363 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1364 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1365 *NextProcessorNumber = ProcessorNumber;\r
1366 return EFI_SUCCESS;\r
1367 }\r
1368 }\r
1369\r
1370 return EFI_NOT_FOUND;\r
1371}\r
1372\r
1373/** Checks status of specified AP.\r
1374\r
1375 This function checks whether the specified AP has finished the task assigned\r
1376 by StartupThisAP(), and whether timeout expires.\r
1377\r
1378 @param[in] ProcessorNumber The handle number of processor.\r
1379\r
1380 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1381 @retval EFI_TIMEOUT The timeout expires.\r
1382 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1383**/\r
1384EFI_STATUS\r
1385CheckThisAP (\r
1386 IN UINTN ProcessorNumber\r
1387 )\r
1388{\r
1389 CPU_MP_DATA *CpuMpData;\r
1390 CPU_AP_DATA *CpuData;\r
1391\r
1392 CpuMpData = GetCpuMpData ();\r
1393 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1394\r
1395 //\r
2a5997f8 1396 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1397 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1398 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1399 //\r
1400 //\r
1401 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1402 //\r
e048ce88 1403 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1404 if (CpuData->Finished != NULL) {\r
1405 *(CpuData->Finished) = TRUE;\r
1406 }\r
e048ce88 1407 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1408 return EFI_SUCCESS;\r
1409 } else {\r
1410 //\r
1411 // If timeout expires for StartupThisAP(), report timeout.\r
1412 //\r
1413 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1414 if (CpuData->Finished != NULL) {\r
1415 *(CpuData->Finished) = FALSE;\r
1416 }\r
1417 //\r
1418 // Reset failed AP to idle state\r
1419 //\r
1420 ResetProcessorToIdleState (ProcessorNumber);\r
1421\r
1422 return EFI_TIMEOUT;\r
1423 }\r
1424 }\r
1425 return EFI_NOT_READY;\r
1426}\r
1427\r
1428/**\r
1429 Checks status of all APs.\r
1430\r
1431 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1432 and whether timeout expires.\r
1433\r
1434 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1435 @retval EFI_TIMEOUT The timeout expires.\r
1436 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1437**/\r
1438EFI_STATUS\r
1439CheckAllAPs (\r
1440 VOID\r
1441 )\r
1442{\r
1443 UINTN ProcessorNumber;\r
1444 UINTN NextProcessorNumber;\r
1445 UINTN ListIndex;\r
1446 EFI_STATUS Status;\r
1447 CPU_MP_DATA *CpuMpData;\r
1448 CPU_AP_DATA *CpuData;\r
1449\r
1450 CpuMpData = GetCpuMpData ();\r
1451\r
1452 NextProcessorNumber = 0;\r
1453\r
1454 //\r
1455 // Go through all APs that are responsible for the StartupAllAPs().\r
1456 //\r
1457 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1458 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1459 continue;\r
1460 }\r
1461\r
1462 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1463 //\r
2a5997f8 1464 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1465 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1466 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1467 //\r
e048ce88 1468 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1469 CpuMpData->RunningCount --;\r
08085f08 1470 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1471 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1472\r
1473 //\r
1474 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1475 //\r
1476 if (CpuMpData->SingleThread) {\r
1477 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1478\r
1479 if (!EFI_ERROR (Status)) {\r
1480 WakeUpAP (\r
1481 CpuMpData,\r
1482 FALSE,\r
1483 (UINT32) NextProcessorNumber,\r
1484 CpuMpData->Procedure,\r
cf4e79e4
ED
1485 CpuMpData->ProcArguments,\r
1486 TRUE\r
08085f08
JF
1487 );\r
1488 }\r
1489 }\r
1490 }\r
1491 }\r
1492\r
1493 //\r
1494 // If all APs finish, return EFI_SUCCESS.\r
1495 //\r
2da3e96c 1496 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1497 return EFI_SUCCESS;\r
1498 }\r
1499\r
1500 //\r
1501 // If timeout expires, report timeout.\r
1502 //\r
1503 if (CheckTimeout (\r
1504 &CpuMpData->CurrentTime,\r
1505 &CpuMpData->TotalTime,\r
1506 CpuMpData->ExpectedTime)\r
1507 ) {\r
1508 //\r
1509 // If FailedCpuList is not NULL, record all failed APs in it.\r
1510 //\r
1511 if (CpuMpData->FailedCpuList != NULL) {\r
1512 *CpuMpData->FailedCpuList =\r
2da3e96c 1513 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1514 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1515 }\r
1516 ListIndex = 0;\r
1517\r
1518 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1519 //\r
1520 // Check whether this processor is responsible for StartupAllAPs().\r
1521 //\r
1522 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1523 //\r
1524 // Reset failed APs to idle state\r
1525 //\r
1526 ResetProcessorToIdleState (ProcessorNumber);\r
1527 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1528 if (CpuMpData->FailedCpuList != NULL) {\r
1529 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1530 }\r
1531 }\r
1532 }\r
1533 if (CpuMpData->FailedCpuList != NULL) {\r
1534 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1535 }\r
1536 return EFI_TIMEOUT;\r
1537 }\r
1538 return EFI_NOT_READY;\r
1539}\r
1540\r
3e8ad6bd
JF
1541/**\r
1542 MP Initialize Library initialization.\r
1543\r
1544 This service will allocate AP reset vector and wakeup all APs to do APs\r
1545 initialization.\r
1546\r
1547 This service must be invoked before all other MP Initialize Library\r
1548 service are invoked.\r
1549\r
1550 @retval EFI_SUCCESS MP initialization succeeds.\r
1551 @retval Others MP initialization fails.\r
1552\r
1553**/\r
1554EFI_STATUS\r
1555EFIAPI\r
1556MpInitLibInitialize (\r
1557 VOID\r
1558 )\r
1559{\r
6a2ee2bb
JF
1560 CPU_MP_DATA *OldCpuMpData;\r
1561 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1562 UINT32 MaxLogicalProcessorNumber;\r
1563 UINT32 ApStackSize;\r
f7f85d83 1564 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1565 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1566 UINTN BufferSize;\r
9ebcf0f4 1567 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1568 VOID *MpBuffer;\r
1569 UINTN Buffer;\r
1570 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1571 UINT8 ApLoopMode;\r
e59f8f6b 1572 UINT8 *MonitorBuffer;\r
03a1a925 1573 UINTN Index;\r
f7f85d83 1574 UINTN ApResetVectorSize;\r
e59f8f6b 1575 UINTN BackupBufferAddr;\r
c563077a 1576 UINTN ApIdtBase;\r
6936ee03 1577 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1578\r
1579 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1580 if (OldCpuMpData == NULL) {\r
1581 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1582 } else {\r
1583 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1584 }\r
14e8137c 1585 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1586\r
1587 AsmGetAddressMap (&AddressMap);\r
1588 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1589 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1590 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1591\r
c563077a 1592 //\r
e09b6b59 1593 // Save BSP's Control registers for APs.\r
c563077a
RN
1594 //\r
1595 SaveVolatileRegisters (&VolatileRegisters);\r
1596\r
e59f8f6b
JF
1597 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1598 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1599 BufferSize += ApResetVectorSize;\r
c563077a
RN
1600 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1601 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1602 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1603 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1604 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1605 ASSERT (MpBuffer != NULL);\r
1606 ZeroMem (MpBuffer, BufferSize);\r
1607 Buffer = (UINTN) MpBuffer;\r
1608\r
c563077a
RN
1609 //\r
1610 // The layout of the Buffer is as below:\r
1611 //\r
1612 // +--------------------+ <-- Buffer\r
1613 // AP Stacks (N)\r
1614 // +--------------------+ <-- MonitorBuffer\r
1615 // AP Monitor Filters (N)\r
1616 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1617 // Backup Buffer\r
1618 // +--------------------+\r
1619 // Padding\r
1620 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1621 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1622 // +--------------------+ <-- CpuMpData\r
1623 // CPU_MP_DATA\r
1624 // +--------------------+ <-- CpuMpData->CpuData\r
1625 // CPU_AP_DATA (N)\r
1626 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1627 // CPU_INFO_IN_HOB (N)\r
1628 // +--------------------+\r
1629 //\r
e59f8f6b
JF
1630 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1631 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1632 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1633 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1634 CpuMpData->Buffer = Buffer;\r
1635 CpuMpData->CpuApStackSize = ApStackSize;\r
1636 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1637 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1638 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1639 CpuMpData->CpuCount = 1;\r
1640 CpuMpData->BspNumber = 0;\r
1641 CpuMpData->WaitEvent = NULL;\r
41be0da5 1642 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1643 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1644 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
89164bab
ED
1645 if (OldCpuMpData == NULL) {\r
1646 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03 1647 //\r
89164bab
ED
1648 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1649 // loading microcode time.\r
6936ee03 1650 //\r
89164bab
ED
1651 MicrocodePatchInRam = NULL;\r
1652 if (MaxLogicalProcessorNumber > 1) {\r
1653 MicrocodePatchInRam = AllocatePages (\r
1654 EFI_SIZE_TO_PAGES (\r
1655 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1656 )\r
1657 );\r
1658 }\r
1659 if (MicrocodePatchInRam == NULL) {\r
1660 //\r
1661 // there is only one processor, or no microcode patch is available, or\r
1662 // memory allocation failed\r
1663 //\r
1664 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1665 } else {\r
1666 //\r
1667 // there are multiple processors, and a microcode patch is available, and\r
1668 // memory allocation succeeded\r
1669 //\r
1670 CopyMem (\r
1671 MicrocodePatchInRam,\r
1672 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1673 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1674 );\r
1675 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1676 }\r
1677 }else {\r
1678 CpuMpData->MicrocodePatchRegionSize = OldCpuMpData->MicrocodePatchRegionSize;\r
1679 CpuMpData->MicrocodePatchAddress = OldCpuMpData->MicrocodePatchAddress;\r
6936ee03 1680 }\r
e59f8f6b 1681 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1682\r
1683 //\r
1684 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1685 //\r
c563077a
RN
1686 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1687 Buffer + BufferSize);\r
1688\r
1689 //\r
1690 // Duplicate BSP's IDT to APs.\r
1691 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1692 //\r
c563077a
RN
1693 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1694 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1695 //\r
1696 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1697 //\r
1698 VolatileRegisters.Tr = 0;\r
c563077a 1699 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1700 //\r
03a1a925
JF
1701 // Set BSP basic information\r
1702 //\r
f2655dcf 1703 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1704 //\r
e59f8f6b
JF
1705 // Save assembly code information\r
1706 //\r
1707 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1708 //\r
1709 // Finally set AP loop mode\r
1710 //\r
1711 CpuMpData->ApLoopMode = ApLoopMode;\r
1712 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1713\r
1714 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1715\r
e59f8f6b 1716 //\r
03a1a925
JF
1717 // Set up APs wakeup signal buffer\r
1718 //\r
1719 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1720 CpuMpData->CpuData[Index].StartupApSignal =\r
1721 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1722 }\r
94f63c76
JF
1723 //\r
1724 // Load Microcode on BSP\r
1725 //\r
2a089134 1726 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1727 //\r
e59f8f6b
JF
1728 // Store BSP's MTRR setting\r
1729 //\r
1730 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1731 //\r
1732 // Enable the local APIC for Virtual Wire Mode.\r
1733 //\r
1734 ProgramVirtualWireMode ();\r
e59f8f6b 1735\r
6a2ee2bb 1736 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1737 if (MaxLogicalProcessorNumber > 1) {\r
1738 //\r
1739 // Wakeup all APs and calculate the processor count in system\r
1740 //\r
1741 CollectProcessorCount (CpuMpData);\r
1742 }\r
6a2ee2bb
JF
1743 } else {\r
1744 //\r
1745 // APs have been wakeup before, just get the CPU Information\r
1746 // from HOB\r
1747 //\r
1748 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1749 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1750 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1751 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1752 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1753 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1754 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1755 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1756 CpuMpData->X2ApicEnable = TRUE;\r
1757 }\r
31a1e4da 1758 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1759 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1760 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1761 }\r
14e8137c
JF
1762 if (MaxLogicalProcessorNumber > 1) {\r
1763 //\r
1764 // Wakeup APs to do some AP initialize sync\r
1765 //\r
cf4e79e4 1766 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
14e8137c
JF
1767 //\r
1768 // Wait for all APs finished initialization\r
1769 //\r
1770 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1771 CpuPause ();\r
1772 }\r
1773 CpuMpData->InitFlag = ApInitDone;\r
1774 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1775 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1776 }\r
6a2ee2bb
JF
1777 }\r
1778 }\r
93ca4c0f
JF
1779\r
1780 //\r
1781 // Initialize global data for MP support\r
1782 //\r
1783 InitMpGlobalData (CpuMpData);\r
1784\r
f7f85d83 1785 return EFI_SUCCESS;\r
3e8ad6bd
JF
1786}\r
1787\r
1788/**\r
1789 Gets detailed MP-related information on the requested processor at the\r
1790 instant this call is made. This service may only be called from the BSP.\r
1791\r
1792 @param[in] ProcessorNumber The handle number of processor.\r
1793 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1794 the requested processor is deposited.\r
1795 @param[out] HealthData Return processor health data.\r
1796\r
1797 @retval EFI_SUCCESS Processor information was returned.\r
1798 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1799 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1800 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1801 ProcessorNumber does not exist in the platform.\r
1802 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1803\r
1804**/\r
1805EFI_STATUS\r
1806EFIAPI\r
1807MpInitLibGetProcessorInfo (\r
1808 IN UINTN ProcessorNumber,\r
1809 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1810 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1811 )\r
1812{\r
ad52f25e
JF
1813 CPU_MP_DATA *CpuMpData;\r
1814 UINTN CallerNumber;\r
31a1e4da 1815 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1816\r
1817 CpuMpData = GetCpuMpData ();\r
31a1e4da 1818 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1819\r
1820 //\r
1821 // Check whether caller processor is BSP\r
1822 //\r
1823 MpInitLibWhoAmI (&CallerNumber);\r
1824 if (CallerNumber != CpuMpData->BspNumber) {\r
1825 return EFI_DEVICE_ERROR;\r
1826 }\r
1827\r
1828 if (ProcessorInfoBuffer == NULL) {\r
1829 return EFI_INVALID_PARAMETER;\r
1830 }\r
1831\r
1832 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1833 return EFI_NOT_FOUND;\r
1834 }\r
1835\r
31a1e4da 1836 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1837 ProcessorInfoBuffer->StatusFlag = 0;\r
1838 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1839 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1840 }\r
1841 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1842 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1843 }\r
1844 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1845 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1846 } else {\r
1847 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1848 }\r
1849\r
1850 //\r
1851 // Get processor location information\r
1852 //\r
262128e5 1853 GetProcessorLocationByApicId (\r
31a1e4da 1854 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1855 &ProcessorInfoBuffer->Location.Package,\r
1856 &ProcessorInfoBuffer->Location.Core,\r
1857 &ProcessorInfoBuffer->Location.Thread\r
1858 );\r
ad52f25e
JF
1859\r
1860 if (HealthData != NULL) {\r
31a1e4da 1861 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1862 }\r
1863\r
1864 return EFI_SUCCESS;\r
3e8ad6bd 1865}\r
ad52f25e 1866\r
41be0da5
JF
1867/**\r
1868 Worker function to switch the requested AP to be the BSP from that point onward.\r
1869\r
1870 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1871 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1872 enabled AP. Otherwise, it will be disabled.\r
1873\r
1874 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1875 @retval others Failed to switch BSP.\r
41be0da5
JF
1876\r
1877**/\r
1878EFI_STATUS\r
1879SwitchBSPWorker (\r
1880 IN UINTN ProcessorNumber,\r
1881 IN BOOLEAN EnableOldBSP\r
1882 )\r
1883{\r
1884 CPU_MP_DATA *CpuMpData;\r
1885 UINTN CallerNumber;\r
1886 CPU_STATE State;\r
1887 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1888 BOOLEAN OldInterruptState;\r
26b43433 1889 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1890\r
26b43433
JF
1891 //\r
1892 // Save and Disable Local APIC timer interrupt\r
1893 //\r
1894 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1895 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1896 //\r
1897 // Before send both BSP and AP to a procedure to exchange their roles,\r
1898 // interrupt must be disabled. This is because during the exchange role\r
1899 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1900 // be corrupted, since interrupt return address will be pushed to stack\r
1901 // by hardware.\r
1902 //\r
1903 OldInterruptState = SaveAndDisableInterrupts ();\r
1904\r
1905 //\r
1906 // Mask LINT0 & LINT1 for the old BSP\r
1907 //\r
1908 DisableLvtInterrupts ();\r
41be0da5
JF
1909\r
1910 CpuMpData = GetCpuMpData ();\r
1911\r
1912 //\r
1913 // Check whether caller processor is BSP\r
1914 //\r
1915 MpInitLibWhoAmI (&CallerNumber);\r
1916 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1917 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1918 }\r
1919\r
1920 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1921 return EFI_NOT_FOUND;\r
1922 }\r
1923\r
1924 //\r
1925 // Check whether specified AP is disabled\r
1926 //\r
1927 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1928 if (State == CpuStateDisabled) {\r
1929 return EFI_INVALID_PARAMETER;\r
1930 }\r
1931\r
1932 //\r
1933 // Check whether ProcessorNumber specifies the current BSP\r
1934 //\r
1935 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1936 return EFI_INVALID_PARAMETER;\r
1937 }\r
1938\r
1939 //\r
1940 // Check whether specified AP is busy\r
1941 //\r
1942 if (State == CpuStateBusy) {\r
1943 return EFI_NOT_READY;\r
1944 }\r
1945\r
1946 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1947 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1948 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1949 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1950\r
1951 //\r
1952 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1953 //\r
1954 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1955 ApicBaseMsr.Bits.BSP = 0;\r
1956 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1957\r
1958 //\r
1959 // Need to wakeUp AP (future BSP).\r
1960 //\r
cf4e79e4 1961 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
1962\r
1963 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1964\r
1965 //\r
1966 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1967 //\r
1968 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1969 ApicBaseMsr.Bits.BSP = 1;\r
1970 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1971 ProgramVirtualWireMode ();\r
41be0da5
JF
1972\r
1973 //\r
1974 // Wait for old BSP finished AP task\r
1975 //\r
e048ce88 1976 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
1977 CpuPause ();\r
1978 }\r
1979\r
1980 CpuMpData->SwitchBspFlag = FALSE;\r
1981 //\r
1982 // Set old BSP enable state\r
1983 //\r
1984 if (!EnableOldBSP) {\r
1985 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1986 } else {\r
1987 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1988 }\r
1989 //\r
1990 // Save new BSP number\r
1991 //\r
1992 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1993\r
a8d75a18
JF
1994 //\r
1995 // Restore interrupt state.\r
1996 //\r
1997 SetInterruptState (OldInterruptState);\r
1998\r
26b43433
JF
1999 if (OldTimerInterruptState) {\r
2000 EnableApicTimerInterrupt ();\r
2001 }\r
a8d75a18 2002\r
41be0da5
JF
2003 return EFI_SUCCESS;\r
2004}\r
ad52f25e 2005\r
e37109bc
JF
2006/**\r
2007 Worker function to let the caller enable or disable an AP from this point onward.\r
2008 This service may only be called from the BSP.\r
2009\r
2010 @param[in] ProcessorNumber The handle number of AP.\r
2011 @param[in] EnableAP Specifies the new state for the processor for\r
2012 enabled, FALSE for disabled.\r
2013 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
2014 the new health status of the AP.\r
2015\r
2016 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
2017 @retval others Failed to Enable/Disable AP.\r
2018\r
2019**/\r
2020EFI_STATUS\r
2021EnableDisableApWorker (\r
2022 IN UINTN ProcessorNumber,\r
2023 IN BOOLEAN EnableAP,\r
2024 IN UINT32 *HealthFlag OPTIONAL\r
2025 )\r
2026{\r
2027 CPU_MP_DATA *CpuMpData;\r
2028 UINTN CallerNumber;\r
2029\r
2030 CpuMpData = GetCpuMpData ();\r
2031\r
2032 //\r
2033 // Check whether caller processor is BSP\r
2034 //\r
2035 MpInitLibWhoAmI (&CallerNumber);\r
2036 if (CallerNumber != CpuMpData->BspNumber) {\r
2037 return EFI_DEVICE_ERROR;\r
2038 }\r
2039\r
2040 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2041 return EFI_INVALID_PARAMETER;\r
2042 }\r
2043\r
2044 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2045 return EFI_NOT_FOUND;\r
2046 }\r
2047\r
2048 if (!EnableAP) {\r
2049 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2050 } else {\r
d5fdae96 2051 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2052 }\r
2053\r
2054 if (HealthFlag != NULL) {\r
2055 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2056 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2057 }\r
2058\r
2059 return EFI_SUCCESS;\r
2060}\r
2061\r
3e8ad6bd
JF
2062/**\r
2063 This return the handle number for the calling processor. This service may be\r
2064 called from the BSP and APs.\r
2065\r
2066 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2067 The range is from 0 to the total number of\r
2068 logical processors minus 1. The total number of\r
2069 logical processors can be retrieved by\r
2070 MpInitLibGetNumberOfProcessors().\r
2071\r
2072 @retval EFI_SUCCESS The current processor handle number was returned\r
2073 in ProcessorNumber.\r
2074 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2075 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2076\r
2077**/\r
2078EFI_STATUS\r
2079EFIAPI\r
2080MpInitLibWhoAmI (\r
2081 OUT UINTN *ProcessorNumber\r
2082 )\r
2083{\r
5c9e0997
JF
2084 CPU_MP_DATA *CpuMpData;\r
2085\r
2086 if (ProcessorNumber == NULL) {\r
2087 return EFI_INVALID_PARAMETER;\r
2088 }\r
2089\r
2090 CpuMpData = GetCpuMpData ();\r
2091\r
2092 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2093}\r
809213a6 2094\r
3e8ad6bd
JF
2095/**\r
2096 Retrieves the number of logical processor in the platform and the number of\r
2097 those logical processors that are enabled on this boot. This service may only\r
2098 be called from the BSP.\r
2099\r
2100 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2101 processors in the system, including the BSP\r
2102 and disabled APs.\r
2103 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2104 processors that exist in system, including\r
2105 the BSP.\r
2106\r
2107 @retval EFI_SUCCESS The number of logical processors and enabled\r
2108 logical processors was retrieved.\r
2109 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2110 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2111 is NULL.\r
2112 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2113\r
2114**/\r
2115EFI_STATUS\r
2116EFIAPI\r
2117MpInitLibGetNumberOfProcessors (\r
2118 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2119 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2120 )\r
2121{\r
809213a6
JF
2122 CPU_MP_DATA *CpuMpData;\r
2123 UINTN CallerNumber;\r
2124 UINTN ProcessorNumber;\r
2125 UINTN EnabledProcessorNumber;\r
2126 UINTN Index;\r
2127\r
2128 CpuMpData = GetCpuMpData ();\r
2129\r
2130 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2131 return EFI_INVALID_PARAMETER;\r
2132 }\r
2133\r
2134 //\r
2135 // Check whether caller processor is BSP\r
2136 //\r
2137 MpInitLibWhoAmI (&CallerNumber);\r
2138 if (CallerNumber != CpuMpData->BspNumber) {\r
2139 return EFI_DEVICE_ERROR;\r
2140 }\r
2141\r
2142 ProcessorNumber = CpuMpData->CpuCount;\r
2143 EnabledProcessorNumber = 0;\r
2144 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2145 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2146 EnabledProcessorNumber ++;\r
2147 }\r
2148 }\r
2149\r
2150 if (NumberOfProcessors != NULL) {\r
2151 *NumberOfProcessors = ProcessorNumber;\r
2152 }\r
2153 if (NumberOfEnabledProcessors != NULL) {\r
2154 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2155 }\r
2156\r
2157 return EFI_SUCCESS;\r
3e8ad6bd 2158}\r
6a2ee2bb 2159\r
809213a6 2160\r
86efe976
JF
2161/**\r
2162 Worker function to execute a caller provided function on all enabled APs.\r
2163\r
2164 @param[in] Procedure A pointer to the function to be run on\r
2165 enabled APs of the system.\r
2166 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2167 the function specified by Procedure one by\r
2168 one, in ascending order of processor handle\r
2169 number. If FALSE, then all the enabled APs\r
2170 execute the function specified by Procedure\r
2171 simultaneously.\r
ee0c39fa 2172 @param[in] ExcludeBsp Whether let BSP also trig this task.\r
86efe976
JF
2173 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2174 service.\r
367284e7 2175 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2176 APs to return from Procedure, either for\r
2177 blocking or non-blocking mode.\r
2178 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2179 all APs.\r
2180 @param[out] FailedCpuList If all APs finish successfully, then its\r
2181 content is set to NULL. If not all APs\r
2182 finish before timeout expires, then its\r
2183 content is set to address of the buffer\r
2184 holding handle numbers of the failed APs.\r
2185\r
2186 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2187 the timeout expired.\r
2188 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2189 to all enabled APs.\r
2190 @retval others Failed to Startup all APs.\r
2191\r
2192**/\r
2193EFI_STATUS\r
ee0c39fa 2194StartupAllCPUsWorker (\r
86efe976
JF
2195 IN EFI_AP_PROCEDURE Procedure,\r
2196 IN BOOLEAN SingleThread,\r
ee0c39fa 2197 IN BOOLEAN ExcludeBsp,\r
86efe976
JF
2198 IN EFI_EVENT WaitEvent OPTIONAL,\r
2199 IN UINTN TimeoutInMicroseconds,\r
2200 IN VOID *ProcedureArgument OPTIONAL,\r
2201 OUT UINTN **FailedCpuList OPTIONAL\r
2202 )\r
2203{\r
2204 EFI_STATUS Status;\r
2205 CPU_MP_DATA *CpuMpData;\r
2206 UINTN ProcessorCount;\r
2207 UINTN ProcessorNumber;\r
2208 UINTN CallerNumber;\r
2209 CPU_AP_DATA *CpuData;\r
2210 BOOLEAN HasEnabledAp;\r
2211 CPU_STATE ApState;\r
2212\r
2213 CpuMpData = GetCpuMpData ();\r
2214\r
2215 if (FailedCpuList != NULL) {\r
2216 *FailedCpuList = NULL;\r
2217 }\r
2218\r
ee0c39fa 2219 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {\r
86efe976
JF
2220 return EFI_NOT_STARTED;\r
2221 }\r
2222\r
2223 if (Procedure == NULL) {\r
2224 return EFI_INVALID_PARAMETER;\r
2225 }\r
2226\r
2227 //\r
2228 // Check whether caller processor is BSP\r
2229 //\r
2230 MpInitLibWhoAmI (&CallerNumber);\r
2231 if (CallerNumber != CpuMpData->BspNumber) {\r
2232 return EFI_DEVICE_ERROR;\r
2233 }\r
2234\r
2235 //\r
2236 // Update AP state\r
2237 //\r
2238 CheckAndUpdateApsStatus ();\r
2239\r
2240 ProcessorCount = CpuMpData->CpuCount;\r
2241 HasEnabledAp = FALSE;\r
2242 //\r
2243 // Check whether all enabled APs are idle.\r
2244 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2245 //\r
2246 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2247 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2248 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2249 ApState = GetApState (CpuData);\r
2250 if (ApState != CpuStateDisabled) {\r
2251 HasEnabledAp = TRUE;\r
2252 if (ApState != CpuStateIdle) {\r
2253 //\r
2254 // If any enabled APs are busy, return EFI_NOT_READY.\r
2255 //\r
2256 return EFI_NOT_READY;\r
2257 }\r
2258 }\r
2259 }\r
2260 }\r
2261\r
ee0c39fa 2262 if (!HasEnabledAp && ExcludeBsp) {\r
86efe976 2263 //\r
ee0c39fa 2264 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.\r
86efe976
JF
2265 //\r
2266 return EFI_NOT_STARTED;\r
2267 }\r
2268\r
2da3e96c 2269 CpuMpData->RunningCount = 0;\r
86efe976
JF
2270 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2271 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2272 CpuData->Waiting = FALSE;\r
2273 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2274 if (CpuData->State == CpuStateIdle) {\r
2275 //\r
2276 // Mark this processor as responsible for current calling.\r
2277 //\r
2278 CpuData->Waiting = TRUE;\r
2da3e96c 2279 CpuMpData->RunningCount++;\r
86efe976
JF
2280 }\r
2281 }\r
2282 }\r
2283\r
2284 CpuMpData->Procedure = Procedure;\r
2285 CpuMpData->ProcArguments = ProcedureArgument;\r
2286 CpuMpData->SingleThread = SingleThread;\r
2287 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2288 CpuMpData->FailedCpuList = FailedCpuList;\r
2289 CpuMpData->ExpectedTime = CalculateTimeout (\r
2290 TimeoutInMicroseconds,\r
2291 &CpuMpData->CurrentTime\r
2292 );\r
2293 CpuMpData->TotalTime = 0;\r
2294 CpuMpData->WaitEvent = WaitEvent;\r
2295\r
2296 if (!SingleThread) {\r
cf4e79e4 2297 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2298 } else {\r
2299 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2300 if (ProcessorNumber == CallerNumber) {\r
2301 continue;\r
2302 }\r
2303 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2304 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2305 break;\r
2306 }\r
2307 }\r
2308 }\r
2309\r
ee0c39fa
ED
2310 if (!ExcludeBsp) {\r
2311 //\r
2312 // Start BSP.\r
2313 //\r
2314 Procedure (ProcedureArgument);\r
2315 }\r
2316\r
86efe976
JF
2317 Status = EFI_SUCCESS;\r
2318 if (WaitEvent == NULL) {\r
2319 do {\r
2320 Status = CheckAllAPs ();\r
2321 } while (Status == EFI_NOT_READY);\r
2322 }\r
2323\r
2324 return Status;\r
2325}\r
2326\r
20ae5774
JF
2327/**\r
2328 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2329 function.\r
2330\r
2331 @param[in] Procedure A pointer to the function to be run on\r
2332 enabled APs of the system.\r
2333 @param[in] ProcessorNumber The handle number of the AP.\r
2334 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2335 service.\r
367284e7 2336 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2337 APs to return from Procedure, either for\r
2338 blocking or non-blocking mode.\r
2339 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2340 all APs.\r
2341 @param[out] Finished If AP returns from Procedure before the\r
2342 timeout expires, its content is set to TRUE.\r
2343 Otherwise, the value is set to FALSE.\r
2344\r
2345 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2346 the timeout expires.\r
2347 @retval others Failed to Startup AP.\r
2348\r
2349**/\r
2350EFI_STATUS\r
2351StartupThisAPWorker (\r
2352 IN EFI_AP_PROCEDURE Procedure,\r
2353 IN UINTN ProcessorNumber,\r
2354 IN EFI_EVENT WaitEvent OPTIONAL,\r
2355 IN UINTN TimeoutInMicroseconds,\r
2356 IN VOID *ProcedureArgument OPTIONAL,\r
2357 OUT BOOLEAN *Finished OPTIONAL\r
2358 )\r
2359{\r
2360 EFI_STATUS Status;\r
2361 CPU_MP_DATA *CpuMpData;\r
2362 CPU_AP_DATA *CpuData;\r
2363 UINTN CallerNumber;\r
2364\r
2365 CpuMpData = GetCpuMpData ();\r
2366\r
2367 if (Finished != NULL) {\r
2368 *Finished = FALSE;\r
2369 }\r
2370\r
2371 //\r
2372 // Check whether caller processor is BSP\r
2373 //\r
2374 MpInitLibWhoAmI (&CallerNumber);\r
2375 if (CallerNumber != CpuMpData->BspNumber) {\r
2376 return EFI_DEVICE_ERROR;\r
2377 }\r
2378\r
2379 //\r
2380 // Check whether processor with the handle specified by ProcessorNumber exists\r
2381 //\r
2382 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2383 return EFI_NOT_FOUND;\r
2384 }\r
2385\r
2386 //\r
2387 // Check whether specified processor is BSP\r
2388 //\r
2389 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2390 return EFI_INVALID_PARAMETER;\r
2391 }\r
2392\r
2393 //\r
2394 // Check parameter Procedure\r
2395 //\r
2396 if (Procedure == NULL) {\r
2397 return EFI_INVALID_PARAMETER;\r
2398 }\r
2399\r
2400 //\r
2401 // Update AP state\r
2402 //\r
2403 CheckAndUpdateApsStatus ();\r
2404\r
2405 //\r
2406 // Check whether specified AP is disabled\r
2407 //\r
2408 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2409 return EFI_INVALID_PARAMETER;\r
2410 }\r
2411\r
2412 //\r
2413 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2414 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2415 // CheckAPsStatus() will check completion and timeout periodically.\r
2416 //\r
2417 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2418 CpuData->WaitEvent = WaitEvent;\r
2419 CpuData->Finished = Finished;\r
2420 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2421 CpuData->TotalTime = 0;\r
2422\r
cf4e79e4 2423 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2424\r
2425 //\r
2426 // If WaitEvent is NULL, execute in blocking mode.\r
2427 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2428 //\r
2429 Status = EFI_SUCCESS;\r
2430 if (WaitEvent == NULL) {\r
2431 do {\r
2432 Status = CheckThisAP (ProcessorNumber);\r
2433 } while (Status == EFI_NOT_READY);\r
2434 }\r
2435\r
2436 return Status;\r
2437}\r
2438\r
93ca4c0f
JF
2439/**\r
2440 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2441\r
2442 @return The pointer to CPU MP Data structure.\r
2443**/\r
2444CPU_MP_DATA *\r
2445GetCpuMpDataFromGuidedHob (\r
2446 VOID\r
2447 )\r
2448{\r
2449 EFI_HOB_GUID_TYPE *GuidHob;\r
2450 VOID *DataInHob;\r
2451 CPU_MP_DATA *CpuMpData;\r
2452\r
2453 CpuMpData = NULL;\r
2454 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2455 if (GuidHob != NULL) {\r
2456 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2457 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2458 }\r
2459 return CpuMpData;\r
2460}\r
42c37b3b 2461\r
ee0c39fa
ED
2462/**\r
2463 This service executes a caller provided function on all enabled CPUs.\r
2464\r
2465 @param[in] Procedure A pointer to the function to be run on\r
2466 enabled APs of the system. See type\r
2467 EFI_AP_PROCEDURE.\r
2468 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2469 APs to return from Procedure, either for\r
2470 blocking or non-blocking mode. Zero means\r
2471 infinity. TimeoutInMicroseconds is ignored\r
2472 for BSP.\r
2473 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2474 all APs.\r
2475\r
2476 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before\r
2477 the timeout expired.\r
2478 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2479 to all enabled CPUs.\r
2480 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
2481 @retval EFI_NOT_READY Any enabled APs are busy.\r
2482 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2483 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
2484 all enabled APs have finished.\r
2485 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
2486\r
2487**/\r
2488EFI_STATUS\r
2489EFIAPI\r
2490MpInitLibStartupAllCPUs (\r
2491 IN EFI_AP_PROCEDURE Procedure,\r
2492 IN UINTN TimeoutInMicroseconds,\r
2493 IN VOID *ProcedureArgument OPTIONAL\r
2494 )\r
2495{\r
2496 return StartupAllCPUsWorker (\r
2497 Procedure,\r
2498 FALSE,\r
2499 FALSE,\r
2500 NULL,\r
2501 TimeoutInMicroseconds,\r
2502 ProcedureArgument,\r
2503 NULL\r
2504 );\r
2505}\r