UefiCpuPkg/MpInitLib: Optimize get processor number performance.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
a2ea6894 4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
e9415e48
JW
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 218 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330
JF
219\r
220 AsmWriteCr0 (VolatileRegisters->Cr0);\r
221 AsmWriteCr3 (VolatileRegisters->Cr3);\r
222 AsmWriteCr4 (VolatileRegisters->Cr4);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
e9415e48
JW
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
d69ba6a7 246 if (Tss->Bits.P == 1) {\r
e9415e48
JW
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
68cb9330
JF
251}\r
252\r
9ebcf0f4
JF
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
b8b04307 312\r
8a2d564b
JF
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
31a1e4da 330 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 333 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
334\r
335 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
337 if (ApCount != 0) {\r
338 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
339 Index3 = Index1;\r
340 //\r
341 // Sort key is the hardware default APIC ID\r
342 //\r
31a1e4da 343 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 345 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 346 Index3 = Index2;\r
31a1e4da 347 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
348 }\r
349 }\r
350 if (Index3 != Index1) {\r
31a1e4da 351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 352 CopyMem (\r
31a1e4da
JF
353 &CpuInfoInHob[Index3],\r
354 &CpuInfoInHob[Index1],\r
355 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 356 );\r
31a1e4da 357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
358\r
359 //\r
360 // Also exchange the StartupApSignal.\r
361 //\r
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
363 CpuMpData->CpuData[Index3].StartupApSignal =\r
364 CpuMpData->CpuData[Index1].StartupApSignal;\r
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
366 }\r
367 }\r
368\r
369 //\r
370 // Get the processor number for the BSP\r
371 //\r
372 ApicId = GetInitialApicId ();\r
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 374 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
375 CpuMpData->BspNumber = (UINT32) Index1;\r
376 break;\r
377 }\r
378 }\r
8a2d564b
JF
379 }\r
380}\r
381\r
fe627769
JF
382/**\r
383 Enable x2APIC mode on APs.\r
384\r
385 @param[in, out] Buffer Pointer to private data buffer.\r
386**/\r
387VOID\r
388EFIAPI\r
389ApFuncEnableX2Apic (\r
390 IN OUT VOID *Buffer\r
391 )\r
392{\r
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
394}\r
395\r
b8b04307
JF
396/**\r
397 Do sync on APs.\r
398\r
399 @param[in, out] Buffer Pointer to private data buffer.\r
400**/\r
401VOID\r
402EFIAPI\r
403ApInitializeSync (\r
404 IN OUT VOID *Buffer\r
405 )\r
406{\r
407 CPU_MP_DATA *CpuMpData;\r
408\r
409 CpuMpData = (CPU_MP_DATA *) Buffer;\r
410 //\r
b8b04307
JF
411 // Load microcode on AP\r
412 //\r
2a089134 413 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
414 //\r
415 // Sync BSP's MTRR table to AP\r
416 //\r
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
418}\r
419\r
420/**\r
421 Find the current Processor number by APIC ID.\r
422\r
367284e7
DB
423 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
424 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
425\r
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
428**/\r
429EFI_STATUS\r
430GetProcessorNumber (\r
431 IN CPU_MP_DATA *CpuMpData,\r
432 OUT UINTN *ProcessorNumber\r
433 )\r
434{\r
435 UINTN TotalProcessorNumber;\r
436 UINTN Index;\r
31a1e4da 437 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 438 UINT32 CurrentApicId;\r
31a1e4da
JF
439\r
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
441\r
442 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 443 CurrentApicId = GetApicId ();\r
b8b04307 444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
446 *ProcessorNumber = Index;\r
447 return EFI_SUCCESS;\r
448 }\r
449 }\r
e52838d3 450\r
b8b04307
JF
451 return EFI_NOT_FOUND;\r
452}\r
453\r
03434dff
JF
454/**\r
455 This function will get CPU count in the system.\r
456\r
457 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
458\r
459 @return CPU count detected\r
460**/\r
461UINTN\r
462CollectProcessorCount (\r
463 IN CPU_MP_DATA *CpuMpData\r
464 )\r
465{\r
59a119f0
JF
466 UINTN Index;\r
467\r
03434dff
JF
468 //\r
469 // Send 1st broadcast IPI to APs to wakeup APs\r
470 //\r
471 CpuMpData->InitFlag = ApInitConfig;\r
472 CpuMpData->X2ApicEnable = FALSE;\r
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
03434dff
JF
474 CpuMpData->InitFlag = ApInitDone;\r
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
476 //\r
477 // Wait for all APs finished the initialization\r
478 //\r
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
480 CpuPause ();\r
481 }\r
482\r
71d8226a
JF
483 if (CpuMpData->CpuCount > 255) {\r
484 //\r
485 // If there are more than 255 processor found, force to enable X2APIC\r
486 //\r
487 CpuMpData->X2ApicEnable = TRUE;\r
488 }\r
fe627769
JF
489 if (CpuMpData->X2ApicEnable) {\r
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
491 //\r
492 // Wakeup all APs to enable x2APIC mode\r
493 //\r
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);\r
495 //\r
496 // Wait for all known APs finished\r
497 //\r
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
499 CpuPause ();\r
500 }\r
501 //\r
502 // Enable x2APIC on BSP\r
503 //\r
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
505 //\r
506 // Set BSP/Aps state to IDLE\r
507 //\r
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
510 }\r
fe627769
JF
511 }\r
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
513 //\r
514 // Sort BSP/Aps by CPU APIC ID in ascending order\r
515 //\r
516 SortApicId (CpuMpData);\r
517\r
03434dff
JF
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
519\r
520 return CpuMpData->CpuCount;\r
521}\r
522\r
367284e7 523/**\r
03a1a925
JF
524 Initialize CPU AP Data when AP is wakeup at the first time.\r
525\r
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
527 @param[in] ProcessorNumber The handle number of processor\r
528 @param[in] BistData Processor BIST data\r
367284e7 529 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
530\r
531**/\r
532VOID\r
533InitializeApData (\r
534 IN OUT CPU_MP_DATA *CpuMpData,\r
535 IN UINTN ProcessorNumber,\r
845c5be1 536 IN UINT32 BistData,\r
dd3fa0cd 537 IN UINT64 ApTopOfStack\r
03a1a925
JF
538 )\r
539{\r
31a1e4da
JF
540 CPU_INFO_IN_HOB *CpuInfoInHob;\r
541\r
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
545 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 547\r
03a1a925 548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
551 //\r
552 // Set x2APIC mode if there are any logical processor reporting\r
553 // an Initial APIC ID of 255 or greater.\r
554 //\r
555 AcquireSpinLock(&CpuMpData->MpLock);\r
556 CpuMpData->X2ApicEnable = TRUE;\r
557 ReleaseSpinLock(&CpuMpData->MpLock);\r
558 }\r
559\r
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
562}\r
563\r
b8b04307
JF
564/**\r
565 This function will be called from AP reset code if BSP uses WakeUpAP.\r
566\r
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 568 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
569**/\r
570VOID\r
571EFIAPI\r
572ApWakeupFunction (\r
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 574 IN UINTN ApIndex\r
b8b04307
JF
575 )\r
576{\r
577 CPU_MP_DATA *CpuMpData;\r
578 UINTN ProcessorNumber;\r
579 EFI_AP_PROCEDURE Procedure;\r
580 VOID *Parameter;\r
581 UINT32 BistData;\r
582 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 583 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 584 UINT64 ApTopOfStack;\r
c6b0feb3 585 UINTN CurrentApicMode;\r
b8b04307
JF
586\r
587 //\r
588 // AP finished assembly code and begin to execute C code\r
589 //\r
590 CpuMpData = ExchangeInfo->CpuMpData;\r
591\r
ffab2442
JF
592 //\r
593 // AP's local APIC settings will be lost after received INIT IPI\r
594 // We need to re-initialize them at here\r
595 //\r
596 ProgramVirtualWireMode ();\r
a2ea6894
RN
597 //\r
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
599 //\r
600 DisableLvtInterrupts ();\r
ffab2442 601 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 602\r
c6b0feb3 603 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
604 while (TRUE) {\r
605 if (CpuMpData->InitFlag == ApInitConfig) {\r
606 //\r
607 // Add CPU number\r
608 //\r
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 610 ProcessorNumber = ApIndex;\r
b8b04307
JF
611 //\r
612 // This is first time AP wakeup, get BIST information from AP stack\r
613 //\r
845c5be1 614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
616 //\r
617 // Do some AP initialize sync\r
618 //\r
619 ApInitializeSync (CpuMpData);\r
620 //\r
c563077a
RN
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
622 // to initialize AP in InitConfig path.\r
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
624 //\r
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
628 } else {\r
629 //\r
630 // Execute AP function if AP is ready\r
631 //\r
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
633 //\r
634 // Clear AP start-up signal when AP waken up\r
635 //\r
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
637 InterlockedCompareExchange32 (\r
638 (UINT32 *) ApStartupSignalBuffer,\r
639 WAKEUP_AP_SIGNAL,\r
640 0\r
641 );\r
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
643 //\r
644 // Restore AP's volatile registers saved\r
645 //\r
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
647 } else {\r
648 //\r
649 // The CPU driver might not flush TLB for APs on spot after updating\r
650 // page attributes. AP in mwait loop mode needs to take care of it when\r
651 // woken up.\r
652 //\r
653 CpuFlushTlb ();\r
b8b04307
JF
654 }\r
655\r
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
659 if (Procedure != NULL) {\r
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
661 //\r
43c9fdcc 662 // Enable source debugging on AP function\r
7367cc6c 663 //\r
43c9fdcc
JF
664 EnableDebugAgent ();\r
665 //\r
b8b04307
JF
666 // Invoke AP function here\r
667 //\r
668 Procedure (Parameter);\r
31a1e4da 669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
670 if (CpuMpData->SwitchBspFlag) {\r
671 //\r
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
673 //\r
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 679 } else {\r
c6b0feb3
JF
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
682 if (CurrentApicMode != GetApicMode ()) {\r
683 //\r
684 // If APIC mode change happened during AP function execution,\r
685 // we do not support APIC ID value changed.\r
686 //\r
687 ASSERT (FALSE);\r
688 CpuDeadLoop ();\r
689 } else {\r
690 //\r
691 // Re-get the CPU APICID and Initial APICID if they are changed\r
692 //\r
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
695 }\r
696 }\r
41be0da5 697 }\r
b8b04307
JF
698 }\r
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
700 }\r
701 }\r
702\r
703 //\r
704 // AP finished executing C code\r
705 //\r
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
708\r
709 //\r
710 // Place AP is specified loop mode\r
711 //\r
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
713 //\r
714 // Save AP volatile registers\r
715 //\r
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
717 //\r
718 // Place AP in HLT-loop\r
719 //\r
720 while (TRUE) {\r
721 DisableInterrupts ();\r
722 CpuSleep ();\r
723 CpuPause ();\r
724 }\r
725 }\r
726 while (TRUE) {\r
727 DisableInterrupts ();\r
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
729 //\r
730 // Place AP in MWAIT-loop\r
731 //\r
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
734 //\r
735 // Check AP start-up signal again.\r
736 // If AP start-up signal is not set, place AP into\r
737 // the specified C-state\r
738 //\r
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
740 }\r
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
742 //\r
743 // Place AP in Run-loop\r
744 //\r
745 CpuPause ();\r
746 } else {\r
747 ASSERT (FALSE);\r
748 }\r
749\r
750 //\r
751 // If AP start-up signal is written, AP is waken up\r
752 // otherwise place AP in loop again\r
753 //\r
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
755 break;\r
756 }\r
757 }\r
758 }\r
759}\r
760\r
96f5920d
JF
761/**\r
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
763\r
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
765**/\r
766VOID\r
767WaitApWakeup (\r
768 IN volatile UINT32 *ApStartupSignalBuffer\r
769 )\r
770{\r
771 //\r
772 // If AP is waken up, StartupApSignal should be cleared.\r
773 // Otherwise, write StartupApSignal again till AP waken up.\r
774 //\r
775 while (InterlockedCompareExchange32 (\r
776 (UINT32 *) ApStartupSignalBuffer,\r
777 WAKEUP_AP_SIGNAL,\r
778 WAKEUP_AP_SIGNAL\r
779 ) != 0) {\r
780 CpuPause ();\r
781 }\r
782}\r
783\r
7c3f2a12
JF
784/**\r
785 This function will fill the exchange info structure.\r
786\r
787 @param[in] CpuMpData Pointer to CPU MP Data\r
788\r
789**/\r
790VOID\r
791FillExchangeInfoData (\r
792 IN CPU_MP_DATA *CpuMpData\r
793 )\r
794{\r
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
796 UINTN Size;\r
797 IA32_SEGMENT_DESCRIPTOR *Selector;\r
7c3f2a12
JF
798\r
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
800 ExchangeInfo->Lock = 0;\r
801 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
805\r
806 ExchangeInfo->CodeSegment = AsmReadCs ();\r
807 ExchangeInfo->DataSegment = AsmReadDs ();\r
808\r
809 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
810\r
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 812 ExchangeInfo->ApIndex = 0;\r
0594ec41 813 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
816 ExchangeInfo->CpuMpData = CpuMpData;\r
817\r
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
819\r
3b2928b4
MK
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
821\r
7c3f2a12
JF
822 //\r
823 // Get the BSP's data of GDT and IDT\r
824 //\r
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
827\r
828 //\r
829 // Find a 32-bit code segment\r
830 //\r
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
833 while (Size > 0) {\r
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
835 ExchangeInfo->ModeTransitionSegment =\r
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
837 break;\r
838 }\r
839 Selector += 1;\r
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
841 }\r
842\r
843 //\r
844 // Copy all 32-bit code and 64-bit code into memory with type of\r
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
846 //\r
66833b2a 847 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
849 CpuMpData->AddressMap.ModeTransitionOffset;\r
850 CopyMem (\r
66833b2a 851 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
852 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
853 CpuMpData->AddressMap.ModeTransitionOffset,\r
854 Size\r
855 );\r
856\r
66833b2a 857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
858 } else {\r
859 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
861 }\r
69dfa8d8
JW
862\r
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
864 (UINT32)ExchangeInfo->ModeOffset -\r
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
867}\r
868\r
6e1987f1
LE
869/**\r
870 Helper function that waits until the finished AP count reaches the specified\r
871 limit, or the specified timeout elapses (whichever comes first).\r
872\r
873 @param[in] CpuMpData Pointer to CPU MP Data.\r
874 @param[in] FinishedApLimit The number of finished APs to wait for.\r
875 @param[in] TimeLimit The number of microseconds to wait for.\r
876**/\r
877VOID\r
878TimedWaitForApFinish (\r
879 IN CPU_MP_DATA *CpuMpData,\r
880 IN UINT32 FinishedApLimit,\r
881 IN UINT32 TimeLimit\r
882 );\r
883\r
a6b3d753
SZ
884/**\r
885 Get available system memory below 1MB by specified size.\r
886\r
887 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
888**/\r
889VOID\r
890BackupAndPrepareWakeupBuffer(\r
891 IN CPU_MP_DATA *CpuMpData\r
892 )\r
893{\r
894 CopyMem (\r
895 (VOID *) CpuMpData->BackupBuffer,\r
896 (VOID *) CpuMpData->WakeupBuffer,\r
897 CpuMpData->BackupBufferSize\r
898 );\r
899 CopyMem (\r
900 (VOID *) CpuMpData->WakeupBuffer,\r
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
902 CpuMpData->AddressMap.RendezvousFunnelSize\r
903 );\r
904}\r
905\r
906/**\r
907 Restore wakeup buffer data.\r
908\r
909 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
910**/\r
911VOID\r
912RestoreWakeupBuffer(\r
913 IN CPU_MP_DATA *CpuMpData\r
914 )\r
915{\r
916 CopyMem (\r
917 (VOID *) CpuMpData->WakeupBuffer,\r
918 (VOID *) CpuMpData->BackupBuffer,\r
919 CpuMpData->BackupBufferSize\r
920 );\r
921}\r
922\r
923/**\r
924 Allocate reset vector buffer.\r
925\r
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
927**/\r
928VOID\r
929AllocateResetVector (\r
930 IN OUT CPU_MP_DATA *CpuMpData\r
931 )\r
932{\r
933 UINTN ApResetVectorSize;\r
934\r
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
937 sizeof (MP_CPU_EXCHANGE_INFO);\r
938\r
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
943 CpuMpData->AddressMap.RendezvousFunnelSize -\r
944 CpuMpData->AddressMap.ModeTransitionOffset\r
945 );\r
a6b3d753
SZ
946 }\r
947 BackupAndPrepareWakeupBuffer (CpuMpData);\r
948}\r
949\r
950/**\r
951 Free AP reset vector buffer.\r
952\r
953 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
954**/\r
955VOID\r
956FreeResetVector (\r
957 IN CPU_MP_DATA *CpuMpData\r
958 )\r
959{\r
960 RestoreWakeupBuffer (CpuMpData);\r
961}\r
962\r
96f5920d
JF
963/**\r
964 This function will be called by BSP to wakeup AP.\r
965\r
966 @param[in] CpuMpData Pointer to CPU MP Data\r
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
968 FALSE: Send IPI to AP by ApicId\r
969 @param[in] ProcessorNumber The handle number of specified processor\r
970 @param[in] Procedure The function to be invoked by AP\r
971 @param[in] ProcedureArgument The argument to be passed into AP function\r
972**/\r
973VOID\r
974WakeUpAP (\r
975 IN CPU_MP_DATA *CpuMpData,\r
976 IN BOOLEAN Broadcast,\r
977 IN UINTN ProcessorNumber,\r
978 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
979 IN VOID *ProcedureArgument OPTIONAL\r
980 )\r
981{\r
982 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
983 UINTN Index;\r
984 CPU_AP_DATA *CpuData;\r
985 BOOLEAN ResetVectorRequired;\r
31a1e4da 986 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
987\r
988 CpuMpData->FinishedCount = 0;\r
989 ResetVectorRequired = FALSE;\r
990\r
58942277 991 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
992 CpuMpData->InitFlag != ApInitDone) {\r
993 ResetVectorRequired = TRUE;\r
994 AllocateResetVector (CpuMpData);\r
995 FillExchangeInfoData (CpuMpData);\r
ffab2442 996 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
997 }\r
998\r
999 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1000 //\r
1001 // Get AP target C-state each time when waking up AP,\r
1002 // for it maybe updated by platform again\r
1003 //\r
1004 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1005 }\r
1006\r
1007 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1008\r
1009 if (Broadcast) {\r
1010 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1011 if (Index != CpuMpData->BspNumber) {\r
1012 CpuData = &CpuMpData->CpuData[Index];\r
1013 CpuData->ApFunction = (UINTN) Procedure;\r
1014 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1015 SetApState (CpuData, CpuStateReady);\r
1016 if (CpuMpData->InitFlag != ApInitConfig) {\r
1017 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1018 }\r
1019 }\r
1020 }\r
1021 if (ResetVectorRequired) {\r
1022 //\r
1023 // Wakeup all APs\r
1024 //\r
1025 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1026 }\r
c1192210
JF
1027 if (CpuMpData->InitFlag == ApInitConfig) {\r
1028 //\r
86121874
ED
1029 // Here support two methods to collect AP count through adjust\r
1030 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1031 //\r
1032 // one way is set a value to just let the first AP to start the\r
1033 // initialization, then through the later while loop to wait all Aps\r
1034 // finsh the initialization.\r
1035 // The other way is set a value to let all APs finished the initialzation.\r
1036 // In this case, the later while loop is useless.\r
1037 //\r
1038 TimedWaitForApFinish (\r
1039 CpuMpData,\r
1040 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1041 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1042 );\r
0594ec41
ED
1043\r
1044 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1045 CpuPause();\r
1046 }\r
c1192210 1047 } else {\r
96f5920d
JF
1048 //\r
1049 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1050 //\r
1051 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1052 CpuData = &CpuMpData->CpuData[Index];\r
1053 if (Index != CpuMpData->BspNumber) {\r
1054 WaitApWakeup (CpuData->StartupApSignal);\r
1055 }\r
1056 }\r
1057 }\r
1058 } else {\r
1059 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1060 CpuData->ApFunction = (UINTN) Procedure;\r
1061 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1062 SetApState (CpuData, CpuStateReady);\r
1063 //\r
1064 // Wakeup specified AP\r
1065 //\r
1066 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1067 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1068 if (ResetVectorRequired) {\r
31a1e4da 1069 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1070 SendInitSipiSipi (\r
31a1e4da 1071 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1072 (UINT32) ExchangeInfo->BufferStart\r
1073 );\r
1074 }\r
1075 //\r
1076 // Wait specified AP waken up\r
1077 //\r
1078 WaitApWakeup (CpuData->StartupApSignal);\r
1079 }\r
1080\r
1081 if (ResetVectorRequired) {\r
1082 FreeResetVector (CpuMpData);\r
1083 }\r
58942277
ED
1084\r
1085 //\r
1086 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1087 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1088 // S3SmmInitDone Ppi.\r
1089 //\r
1090 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1091}\r
1092\r
08085f08
JF
1093/**\r
1094 Calculate timeout value and return the current performance counter value.\r
1095\r
1096 Calculate the number of performance counter ticks required for a timeout.\r
1097 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1098 as infinity.\r
1099\r
1100 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1101 @param[out] CurrentTime Returns the current value of the performance counter.\r
1102\r
1103 @return Expected time stamp counter for timeout.\r
1104 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1105 as infinity.\r
1106\r
1107**/\r
1108UINT64\r
1109CalculateTimeout (\r
1110 IN UINTN TimeoutInMicroseconds,\r
1111 OUT UINT64 *CurrentTime\r
1112 )\r
1113{\r
48cfb7c0
ED
1114 UINT64 TimeoutInSeconds;\r
1115 UINT64 TimestampCounterFreq;\r
1116\r
08085f08
JF
1117 //\r
1118 // Read the current value of the performance counter\r
1119 //\r
1120 *CurrentTime = GetPerformanceCounter ();\r
1121\r
1122 //\r
1123 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1124 // as infinity.\r
1125 //\r
1126 if (TimeoutInMicroseconds == 0) {\r
1127 return 0;\r
1128 }\r
1129\r
1130 //\r
1131 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1132 // in Hz.\r
48cfb7c0
ED
1133 //\r
1134 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1135\r
08085f08 1136 //\r
48cfb7c0
ED
1137 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1138 //\r
1139 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1140 //\r
1141 // Convert microseconds into seconds if direct multiplication overflows\r
1142 //\r
1143 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1144 //\r
1145 // Assertion if the final tick count exceeds MAX_UINT64\r
1146 //\r
1147 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1148 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1149 } else {\r
1150 //\r
1151 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1152 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1153 //\r
1154 return DivU64x32 (\r
1155 MultU64x64 (\r
1156 TimestampCounterFreq,\r
1157 TimeoutInMicroseconds\r
1158 ),\r
1159 1000000\r
1160 );\r
1161 }\r
08085f08
JF
1162}\r
1163\r
1164/**\r
1165 Checks whether timeout expires.\r
1166\r
1167 Check whether the number of elapsed performance counter ticks required for\r
1168 a timeout condition has been reached.\r
1169 If Timeout is zero, which means infinity, return value is always FALSE.\r
1170\r
1171 @param[in, out] PreviousTime On input, the value of the performance counter\r
1172 when it was last read.\r
1173 On output, the current value of the performance\r
1174 counter\r
1175 @param[in] TotalTime The total amount of elapsed time in performance\r
1176 counter ticks.\r
1177 @param[in] Timeout The number of performance counter ticks required\r
1178 to reach a timeout condition.\r
1179\r
1180 @retval TRUE A timeout condition has been reached.\r
1181 @retval FALSE A timeout condition has not been reached.\r
1182\r
1183**/\r
1184BOOLEAN\r
1185CheckTimeout (\r
1186 IN OUT UINT64 *PreviousTime,\r
1187 IN UINT64 *TotalTime,\r
1188 IN UINT64 Timeout\r
1189 )\r
1190{\r
1191 UINT64 Start;\r
1192 UINT64 End;\r
1193 UINT64 CurrentTime;\r
1194 INT64 Delta;\r
1195 INT64 Cycle;\r
1196\r
1197 if (Timeout == 0) {\r
1198 return FALSE;\r
1199 }\r
1200 GetPerformanceCounterProperties (&Start, &End);\r
1201 Cycle = End - Start;\r
1202 if (Cycle < 0) {\r
1203 Cycle = -Cycle;\r
1204 }\r
1205 Cycle++;\r
1206 CurrentTime = GetPerformanceCounter();\r
1207 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1208 if (Start > End) {\r
1209 Delta = -Delta;\r
1210 }\r
1211 if (Delta < 0) {\r
1212 Delta += Cycle;\r
1213 }\r
1214 *TotalTime += Delta;\r
1215 *PreviousTime = CurrentTime;\r
1216 if (*TotalTime > Timeout) {\r
1217 return TRUE;\r
1218 }\r
1219 return FALSE;\r
1220}\r
1221\r
6e1987f1
LE
1222/**\r
1223 Helper function that waits until the finished AP count reaches the specified\r
1224 limit, or the specified timeout elapses (whichever comes first).\r
1225\r
1226 @param[in] CpuMpData Pointer to CPU MP Data.\r
1227 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1228 @param[in] TimeLimit The number of microseconds to wait for.\r
1229**/\r
1230VOID\r
1231TimedWaitForApFinish (\r
1232 IN CPU_MP_DATA *CpuMpData,\r
1233 IN UINT32 FinishedApLimit,\r
1234 IN UINT32 TimeLimit\r
1235 )\r
1236{\r
1237 //\r
1238 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1239 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1240 //\r
1241 if (TimeLimit == 0) {\r
1242 return;\r
1243 }\r
1244\r
1245 CpuMpData->TotalTime = 0;\r
1246 CpuMpData->ExpectedTime = CalculateTimeout (\r
1247 TimeLimit,\r
1248 &CpuMpData->CurrentTime\r
1249 );\r
1250 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1251 !CheckTimeout (\r
1252 &CpuMpData->CurrentTime,\r
1253 &CpuMpData->TotalTime,\r
1254 CpuMpData->ExpectedTime\r
1255 )) {\r
1256 CpuPause ();\r
1257 }\r
1258\r
1259 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1260 DEBUG ((\r
1261 DEBUG_VERBOSE,\r
1262 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1263 __FUNCTION__,\r
1264 FinishedApLimit,\r
1265 DivU64x64Remainder (\r
1266 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1267 GetPerformanceCounterProperties (NULL, NULL),\r
1268 NULL\r
1269 )\r
1270 ));\r
1271 }\r
1272}\r
1273\r
08085f08
JF
1274/**\r
1275 Reset an AP to Idle state.\r
1276\r
1277 Any task being executed by the AP will be aborted and the AP\r
1278 will be waiting for a new task in Wait-For-SIPI state.\r
1279\r
1280 @param[in] ProcessorNumber The handle number of processor.\r
1281**/\r
1282VOID\r
1283ResetProcessorToIdleState (\r
1284 IN UINTN ProcessorNumber\r
1285 )\r
1286{\r
1287 CPU_MP_DATA *CpuMpData;\r
1288\r
1289 CpuMpData = GetCpuMpData ();\r
1290\r
cb33bde4 1291 CpuMpData->InitFlag = ApInitReconfig;\r
08085f08 1292 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
cb33bde4
JF
1293 while (CpuMpData->FinishedCount < 1) {\r
1294 CpuPause ();\r
1295 }\r
1296 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1297\r
1298 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1299}\r
1300\r
1301/**\r
1302 Searches for the next waiting AP.\r
1303\r
1304 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1305\r
1306 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1307\r
1308 @retval EFI_SUCCESS The next waiting AP has been found.\r
1309 @retval EFI_NOT_FOUND No waiting AP exists.\r
1310\r
1311**/\r
1312EFI_STATUS\r
1313GetNextWaitingProcessorNumber (\r
1314 OUT UINTN *NextProcessorNumber\r
1315 )\r
1316{\r
1317 UINTN ProcessorNumber;\r
1318 CPU_MP_DATA *CpuMpData;\r
1319\r
1320 CpuMpData = GetCpuMpData ();\r
1321\r
1322 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1323 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1324 *NextProcessorNumber = ProcessorNumber;\r
1325 return EFI_SUCCESS;\r
1326 }\r
1327 }\r
1328\r
1329 return EFI_NOT_FOUND;\r
1330}\r
1331\r
1332/** Checks status of specified AP.\r
1333\r
1334 This function checks whether the specified AP has finished the task assigned\r
1335 by StartupThisAP(), and whether timeout expires.\r
1336\r
1337 @param[in] ProcessorNumber The handle number of processor.\r
1338\r
1339 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1340 @retval EFI_TIMEOUT The timeout expires.\r
1341 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1342**/\r
1343EFI_STATUS\r
1344CheckThisAP (\r
1345 IN UINTN ProcessorNumber\r
1346 )\r
1347{\r
1348 CPU_MP_DATA *CpuMpData;\r
1349 CPU_AP_DATA *CpuData;\r
1350\r
1351 CpuMpData = GetCpuMpData ();\r
1352 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1353\r
1354 //\r
1355 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1356 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1357 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1358 //\r
1359 //\r
1360 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1361 //\r
1362 if (GetApState(CpuData) == CpuStateFinished) {\r
1363 if (CpuData->Finished != NULL) {\r
1364 *(CpuData->Finished) = TRUE;\r
1365 }\r
1366 SetApState (CpuData, CpuStateIdle);\r
1367 return EFI_SUCCESS;\r
1368 } else {\r
1369 //\r
1370 // If timeout expires for StartupThisAP(), report timeout.\r
1371 //\r
1372 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1373 if (CpuData->Finished != NULL) {\r
1374 *(CpuData->Finished) = FALSE;\r
1375 }\r
1376 //\r
1377 // Reset failed AP to idle state\r
1378 //\r
1379 ResetProcessorToIdleState (ProcessorNumber);\r
1380\r
1381 return EFI_TIMEOUT;\r
1382 }\r
1383 }\r
1384 return EFI_NOT_READY;\r
1385}\r
1386\r
1387/**\r
1388 Checks status of all APs.\r
1389\r
1390 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1391 and whether timeout expires.\r
1392\r
1393 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1394 @retval EFI_TIMEOUT The timeout expires.\r
1395 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1396**/\r
1397EFI_STATUS\r
1398CheckAllAPs (\r
1399 VOID\r
1400 )\r
1401{\r
1402 UINTN ProcessorNumber;\r
1403 UINTN NextProcessorNumber;\r
1404 UINTN ListIndex;\r
1405 EFI_STATUS Status;\r
1406 CPU_MP_DATA *CpuMpData;\r
1407 CPU_AP_DATA *CpuData;\r
1408\r
1409 CpuMpData = GetCpuMpData ();\r
1410\r
1411 NextProcessorNumber = 0;\r
1412\r
1413 //\r
1414 // Go through all APs that are responsible for the StartupAllAPs().\r
1415 //\r
1416 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1417 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1418 continue;\r
1419 }\r
1420\r
1421 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1422 //\r
1423 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
1424 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1425 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
1426 //\r
1427 if (GetApState(CpuData) == CpuStateFinished) {\r
1428 CpuMpData->RunningCount ++;\r
1429 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1430 SetApState(CpuData, CpuStateIdle);\r
1431\r
1432 //\r
1433 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1434 //\r
1435 if (CpuMpData->SingleThread) {\r
1436 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1437\r
1438 if (!EFI_ERROR (Status)) {\r
1439 WakeUpAP (\r
1440 CpuMpData,\r
1441 FALSE,\r
1442 (UINT32) NextProcessorNumber,\r
1443 CpuMpData->Procedure,\r
1444 CpuMpData->ProcArguments\r
1445 );\r
1446 }\r
1447 }\r
1448 }\r
1449 }\r
1450\r
1451 //\r
1452 // If all APs finish, return EFI_SUCCESS.\r
1453 //\r
1454 if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
1455 return EFI_SUCCESS;\r
1456 }\r
1457\r
1458 //\r
1459 // If timeout expires, report timeout.\r
1460 //\r
1461 if (CheckTimeout (\r
1462 &CpuMpData->CurrentTime,\r
1463 &CpuMpData->TotalTime,\r
1464 CpuMpData->ExpectedTime)\r
1465 ) {\r
1466 //\r
1467 // If FailedCpuList is not NULL, record all failed APs in it.\r
1468 //\r
1469 if (CpuMpData->FailedCpuList != NULL) {\r
1470 *CpuMpData->FailedCpuList =\r
1471 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
1472 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1473 }\r
1474 ListIndex = 0;\r
1475\r
1476 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1477 //\r
1478 // Check whether this processor is responsible for StartupAllAPs().\r
1479 //\r
1480 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1481 //\r
1482 // Reset failed APs to idle state\r
1483 //\r
1484 ResetProcessorToIdleState (ProcessorNumber);\r
1485 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1486 if (CpuMpData->FailedCpuList != NULL) {\r
1487 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1488 }\r
1489 }\r
1490 }\r
1491 if (CpuMpData->FailedCpuList != NULL) {\r
1492 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1493 }\r
1494 return EFI_TIMEOUT;\r
1495 }\r
1496 return EFI_NOT_READY;\r
1497}\r
1498\r
3e8ad6bd
JF
1499/**\r
1500 MP Initialize Library initialization.\r
1501\r
1502 This service will allocate AP reset vector and wakeup all APs to do APs\r
1503 initialization.\r
1504\r
1505 This service must be invoked before all other MP Initialize Library\r
1506 service are invoked.\r
1507\r
1508 @retval EFI_SUCCESS MP initialization succeeds.\r
1509 @retval Others MP initialization fails.\r
1510\r
1511**/\r
1512EFI_STATUS\r
1513EFIAPI\r
1514MpInitLibInitialize (\r
1515 VOID\r
1516 )\r
1517{\r
6a2ee2bb
JF
1518 CPU_MP_DATA *OldCpuMpData;\r
1519 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1520 UINT32 MaxLogicalProcessorNumber;\r
1521 UINT32 ApStackSize;\r
f7f85d83 1522 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1523 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1524 UINTN BufferSize;\r
9ebcf0f4 1525 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1526 VOID *MpBuffer;\r
1527 UINTN Buffer;\r
1528 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1529 UINT8 ApLoopMode;\r
e59f8f6b 1530 UINT8 *MonitorBuffer;\r
03a1a925 1531 UINTN Index;\r
f7f85d83 1532 UINTN ApResetVectorSize;\r
e59f8f6b 1533 UINTN BackupBufferAddr;\r
c563077a 1534 UINTN ApIdtBase;\r
6936ee03 1535 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1536\r
1537 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1538 if (OldCpuMpData == NULL) {\r
1539 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1540 } else {\r
1541 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1542 }\r
14e8137c 1543 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1544\r
1545 AsmGetAddressMap (&AddressMap);\r
1546 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1547 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1548 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1549\r
c563077a
RN
1550 //\r
1551 // Save BSP's Control registers for APs\r
1552 //\r
1553 SaveVolatileRegisters (&VolatileRegisters);\r
1554\r
e59f8f6b
JF
1555 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1556 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1557 BufferSize += ApResetVectorSize;\r
c563077a
RN
1558 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1559 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1560 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1561 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1562 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1563 ASSERT (MpBuffer != NULL);\r
1564 ZeroMem (MpBuffer, BufferSize);\r
1565 Buffer = (UINTN) MpBuffer;\r
1566\r
c563077a
RN
1567 //\r
1568 // The layout of the Buffer is as below:\r
1569 //\r
1570 // +--------------------+ <-- Buffer\r
1571 // AP Stacks (N)\r
1572 // +--------------------+ <-- MonitorBuffer\r
1573 // AP Monitor Filters (N)\r
1574 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1575 // Backup Buffer\r
1576 // +--------------------+\r
1577 // Padding\r
1578 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1579 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1580 // +--------------------+ <-- CpuMpData\r
1581 // CPU_MP_DATA\r
1582 // +--------------------+ <-- CpuMpData->CpuData\r
1583 // CPU_AP_DATA (N)\r
1584 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1585 // CPU_INFO_IN_HOB (N)\r
1586 // +--------------------+\r
1587 //\r
e59f8f6b
JF
1588 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1589 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1590 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1591 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1592 CpuMpData->Buffer = Buffer;\r
1593 CpuMpData->CpuApStackSize = ApStackSize;\r
1594 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1595 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1596 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1597 CpuMpData->CpuCount = 1;\r
1598 CpuMpData->BspNumber = 0;\r
1599 CpuMpData->WaitEvent = NULL;\r
41be0da5 1600 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1601 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1602 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37 1603 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03
ED
1604 //\r
1605 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1606 // loading microcode time.\r
1607 //\r
1608 MicrocodePatchInRam = NULL;\r
1609 if (MaxLogicalProcessorNumber > 1) {\r
1610 MicrocodePatchInRam = AllocatePages (\r
1611 EFI_SIZE_TO_PAGES (\r
1612 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1613 )\r
1614 );\r
1615 }\r
1616 if (MicrocodePatchInRam == NULL) {\r
1617 //\r
1618 // there is only one processor, or no microcode patch is available, or\r
1619 // memory allocation failed\r
1620 //\r
1621 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1622 } else {\r
1623 //\r
1624 // there are multiple processors, and a microcode patch is available, and\r
1625 // memory allocation succeeded\r
1626 //\r
1627 CopyMem (\r
1628 MicrocodePatchInRam,\r
1629 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1630 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1631 );\r
1632 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1633 }\r
1634\r
e59f8f6b 1635 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1636\r
1637 //\r
1638 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1639 //\r
c563077a
RN
1640 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1641 Buffer + BufferSize);\r
1642\r
1643 //\r
1644 // Duplicate BSP's IDT to APs.\r
1645 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1646 //\r
c563077a
RN
1647 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1648 VolatileRegisters.Idtr.Base = ApIdtBase;\r
1649 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1650 //\r
03a1a925
JF
1651 // Set BSP basic information\r
1652 //\r
f2655dcf 1653 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1654 //\r
e59f8f6b
JF
1655 // Save assembly code information\r
1656 //\r
1657 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1658 //\r
1659 // Finally set AP loop mode\r
1660 //\r
1661 CpuMpData->ApLoopMode = ApLoopMode;\r
1662 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1663\r
1664 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1665\r
e59f8f6b 1666 //\r
03a1a925
JF
1667 // Set up APs wakeup signal buffer\r
1668 //\r
1669 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1670 CpuMpData->CpuData[Index].StartupApSignal =\r
1671 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1672 }\r
94f63c76
JF
1673 //\r
1674 // Load Microcode on BSP\r
1675 //\r
2a089134 1676 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1677 //\r
e59f8f6b
JF
1678 // Store BSP's MTRR setting\r
1679 //\r
1680 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1681 //\r
1682 // Enable the local APIC for Virtual Wire Mode.\r
1683 //\r
1684 ProgramVirtualWireMode ();\r
e59f8f6b 1685\r
6a2ee2bb 1686 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1687 if (MaxLogicalProcessorNumber > 1) {\r
1688 //\r
1689 // Wakeup all APs and calculate the processor count in system\r
1690 //\r
1691 CollectProcessorCount (CpuMpData);\r
1692 }\r
6a2ee2bb
JF
1693 } else {\r
1694 //\r
1695 // APs have been wakeup before, just get the CPU Information\r
1696 // from HOB\r
1697 //\r
1698 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1699 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1700 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1701 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1702 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1703 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1704 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1705 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1706 CpuMpData->X2ApicEnable = TRUE;\r
1707 }\r
31a1e4da 1708 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1709 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1710 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1711 }\r
14e8137c
JF
1712 if (MaxLogicalProcessorNumber > 1) {\r
1713 //\r
1714 // Wakeup APs to do some AP initialize sync\r
1715 //\r
1716 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
1717 //\r
1718 // Wait for all APs finished initialization\r
1719 //\r
1720 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1721 CpuPause ();\r
1722 }\r
1723 CpuMpData->InitFlag = ApInitDone;\r
1724 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1725 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1726 }\r
6a2ee2bb
JF
1727 }\r
1728 }\r
93ca4c0f
JF
1729\r
1730 //\r
1731 // Initialize global data for MP support\r
1732 //\r
1733 InitMpGlobalData (CpuMpData);\r
1734\r
f7f85d83 1735 return EFI_SUCCESS;\r
3e8ad6bd
JF
1736}\r
1737\r
1738/**\r
1739 Gets detailed MP-related information on the requested processor at the\r
1740 instant this call is made. This service may only be called from the BSP.\r
1741\r
1742 @param[in] ProcessorNumber The handle number of processor.\r
1743 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1744 the requested processor is deposited.\r
1745 @param[out] HealthData Return processor health data.\r
1746\r
1747 @retval EFI_SUCCESS Processor information was returned.\r
1748 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1749 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1750 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1751 ProcessorNumber does not exist in the platform.\r
1752 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1753\r
1754**/\r
1755EFI_STATUS\r
1756EFIAPI\r
1757MpInitLibGetProcessorInfo (\r
1758 IN UINTN ProcessorNumber,\r
1759 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1760 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1761 )\r
1762{\r
ad52f25e
JF
1763 CPU_MP_DATA *CpuMpData;\r
1764 UINTN CallerNumber;\r
31a1e4da 1765 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1766\r
1767 CpuMpData = GetCpuMpData ();\r
31a1e4da 1768 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1769\r
1770 //\r
1771 // Check whether caller processor is BSP\r
1772 //\r
1773 MpInitLibWhoAmI (&CallerNumber);\r
1774 if (CallerNumber != CpuMpData->BspNumber) {\r
1775 return EFI_DEVICE_ERROR;\r
1776 }\r
1777\r
1778 if (ProcessorInfoBuffer == NULL) {\r
1779 return EFI_INVALID_PARAMETER;\r
1780 }\r
1781\r
1782 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1783 return EFI_NOT_FOUND;\r
1784 }\r
1785\r
31a1e4da 1786 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1787 ProcessorInfoBuffer->StatusFlag = 0;\r
1788 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1789 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1790 }\r
1791 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1792 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1793 }\r
1794 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1795 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1796 } else {\r
1797 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1798 }\r
1799\r
1800 //\r
1801 // Get processor location information\r
1802 //\r
262128e5 1803 GetProcessorLocationByApicId (\r
31a1e4da 1804 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1805 &ProcessorInfoBuffer->Location.Package,\r
1806 &ProcessorInfoBuffer->Location.Core,\r
1807 &ProcessorInfoBuffer->Location.Thread\r
1808 );\r
ad52f25e
JF
1809\r
1810 if (HealthData != NULL) {\r
31a1e4da 1811 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1812 }\r
1813\r
1814 return EFI_SUCCESS;\r
3e8ad6bd 1815}\r
ad52f25e 1816\r
41be0da5
JF
1817/**\r
1818 Worker function to switch the requested AP to be the BSP from that point onward.\r
1819\r
1820 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1821 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1822 enabled AP. Otherwise, it will be disabled.\r
1823\r
1824 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1825 @retval others Failed to switch BSP.\r
41be0da5
JF
1826\r
1827**/\r
1828EFI_STATUS\r
1829SwitchBSPWorker (\r
1830 IN UINTN ProcessorNumber,\r
1831 IN BOOLEAN EnableOldBSP\r
1832 )\r
1833{\r
1834 CPU_MP_DATA *CpuMpData;\r
1835 UINTN CallerNumber;\r
1836 CPU_STATE State;\r
1837 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1838 BOOLEAN OldInterruptState;\r
26b43433 1839 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1840\r
26b43433
JF
1841 //\r
1842 // Save and Disable Local APIC timer interrupt\r
1843 //\r
1844 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1845 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1846 //\r
1847 // Before send both BSP and AP to a procedure to exchange their roles,\r
1848 // interrupt must be disabled. This is because during the exchange role\r
1849 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1850 // be corrupted, since interrupt return address will be pushed to stack\r
1851 // by hardware.\r
1852 //\r
1853 OldInterruptState = SaveAndDisableInterrupts ();\r
1854\r
1855 //\r
1856 // Mask LINT0 & LINT1 for the old BSP\r
1857 //\r
1858 DisableLvtInterrupts ();\r
41be0da5
JF
1859\r
1860 CpuMpData = GetCpuMpData ();\r
1861\r
1862 //\r
1863 // Check whether caller processor is BSP\r
1864 //\r
1865 MpInitLibWhoAmI (&CallerNumber);\r
1866 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1867 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1868 }\r
1869\r
1870 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1871 return EFI_NOT_FOUND;\r
1872 }\r
1873\r
1874 //\r
1875 // Check whether specified AP is disabled\r
1876 //\r
1877 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1878 if (State == CpuStateDisabled) {\r
1879 return EFI_INVALID_PARAMETER;\r
1880 }\r
1881\r
1882 //\r
1883 // Check whether ProcessorNumber specifies the current BSP\r
1884 //\r
1885 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1886 return EFI_INVALID_PARAMETER;\r
1887 }\r
1888\r
1889 //\r
1890 // Check whether specified AP is busy\r
1891 //\r
1892 if (State == CpuStateBusy) {\r
1893 return EFI_NOT_READY;\r
1894 }\r
1895\r
1896 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1897 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1898 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1899 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1900\r
1901 //\r
1902 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1903 //\r
1904 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1905 ApicBaseMsr.Bits.BSP = 0;\r
1906 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1907\r
1908 //\r
1909 // Need to wakeUp AP (future BSP).\r
1910 //\r
1911 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);\r
1912\r
1913 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1914\r
1915 //\r
1916 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1917 //\r
1918 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1919 ApicBaseMsr.Bits.BSP = 1;\r
1920 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1921 ProgramVirtualWireMode ();\r
41be0da5
JF
1922\r
1923 //\r
1924 // Wait for old BSP finished AP task\r
1925 //\r
1926 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
1927 CpuPause ();\r
1928 }\r
1929\r
1930 CpuMpData->SwitchBspFlag = FALSE;\r
1931 //\r
1932 // Set old BSP enable state\r
1933 //\r
1934 if (!EnableOldBSP) {\r
1935 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1936 } else {\r
1937 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1938 }\r
1939 //\r
1940 // Save new BSP number\r
1941 //\r
1942 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1943\r
a8d75a18
JF
1944 //\r
1945 // Restore interrupt state.\r
1946 //\r
1947 SetInterruptState (OldInterruptState);\r
1948\r
26b43433
JF
1949 if (OldTimerInterruptState) {\r
1950 EnableApicTimerInterrupt ();\r
1951 }\r
a8d75a18 1952\r
41be0da5
JF
1953 return EFI_SUCCESS;\r
1954}\r
ad52f25e 1955\r
e37109bc
JF
1956/**\r
1957 Worker function to let the caller enable or disable an AP from this point onward.\r
1958 This service may only be called from the BSP.\r
1959\r
1960 @param[in] ProcessorNumber The handle number of AP.\r
1961 @param[in] EnableAP Specifies the new state for the processor for\r
1962 enabled, FALSE for disabled.\r
1963 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1964 the new health status of the AP.\r
1965\r
1966 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1967 @retval others Failed to Enable/Disable AP.\r
1968\r
1969**/\r
1970EFI_STATUS\r
1971EnableDisableApWorker (\r
1972 IN UINTN ProcessorNumber,\r
1973 IN BOOLEAN EnableAP,\r
1974 IN UINT32 *HealthFlag OPTIONAL\r
1975 )\r
1976{\r
1977 CPU_MP_DATA *CpuMpData;\r
1978 UINTN CallerNumber;\r
1979\r
1980 CpuMpData = GetCpuMpData ();\r
1981\r
1982 //\r
1983 // Check whether caller processor is BSP\r
1984 //\r
1985 MpInitLibWhoAmI (&CallerNumber);\r
1986 if (CallerNumber != CpuMpData->BspNumber) {\r
1987 return EFI_DEVICE_ERROR;\r
1988 }\r
1989\r
1990 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1991 return EFI_INVALID_PARAMETER;\r
1992 }\r
1993\r
1994 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1995 return EFI_NOT_FOUND;\r
1996 }\r
1997\r
1998 if (!EnableAP) {\r
1999 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2000 } else {\r
d5fdae96 2001 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2002 }\r
2003\r
2004 if (HealthFlag != NULL) {\r
2005 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2006 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2007 }\r
2008\r
2009 return EFI_SUCCESS;\r
2010}\r
2011\r
3e8ad6bd
JF
2012/**\r
2013 This return the handle number for the calling processor. This service may be\r
2014 called from the BSP and APs.\r
2015\r
2016 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2017 The range is from 0 to the total number of\r
2018 logical processors minus 1. The total number of\r
2019 logical processors can be retrieved by\r
2020 MpInitLibGetNumberOfProcessors().\r
2021\r
2022 @retval EFI_SUCCESS The current processor handle number was returned\r
2023 in ProcessorNumber.\r
2024 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2025 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2026\r
2027**/\r
2028EFI_STATUS\r
2029EFIAPI\r
2030MpInitLibWhoAmI (\r
2031 OUT UINTN *ProcessorNumber\r
2032 )\r
2033{\r
5c9e0997
JF
2034 CPU_MP_DATA *CpuMpData;\r
2035\r
2036 if (ProcessorNumber == NULL) {\r
2037 return EFI_INVALID_PARAMETER;\r
2038 }\r
2039\r
2040 CpuMpData = GetCpuMpData ();\r
2041\r
2042 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2043}\r
809213a6 2044\r
3e8ad6bd
JF
2045/**\r
2046 Retrieves the number of logical processor in the platform and the number of\r
2047 those logical processors that are enabled on this boot. This service may only\r
2048 be called from the BSP.\r
2049\r
2050 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2051 processors in the system, including the BSP\r
2052 and disabled APs.\r
2053 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2054 processors that exist in system, including\r
2055 the BSP.\r
2056\r
2057 @retval EFI_SUCCESS The number of logical processors and enabled\r
2058 logical processors was retrieved.\r
2059 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2060 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2061 is NULL.\r
2062 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2063\r
2064**/\r
2065EFI_STATUS\r
2066EFIAPI\r
2067MpInitLibGetNumberOfProcessors (\r
2068 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2069 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2070 )\r
2071{\r
809213a6
JF
2072 CPU_MP_DATA *CpuMpData;\r
2073 UINTN CallerNumber;\r
2074 UINTN ProcessorNumber;\r
2075 UINTN EnabledProcessorNumber;\r
2076 UINTN Index;\r
2077\r
2078 CpuMpData = GetCpuMpData ();\r
2079\r
2080 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2081 return EFI_INVALID_PARAMETER;\r
2082 }\r
2083\r
2084 //\r
2085 // Check whether caller processor is BSP\r
2086 //\r
2087 MpInitLibWhoAmI (&CallerNumber);\r
2088 if (CallerNumber != CpuMpData->BspNumber) {\r
2089 return EFI_DEVICE_ERROR;\r
2090 }\r
2091\r
2092 ProcessorNumber = CpuMpData->CpuCount;\r
2093 EnabledProcessorNumber = 0;\r
2094 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2095 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2096 EnabledProcessorNumber ++;\r
2097 }\r
2098 }\r
2099\r
2100 if (NumberOfProcessors != NULL) {\r
2101 *NumberOfProcessors = ProcessorNumber;\r
2102 }\r
2103 if (NumberOfEnabledProcessors != NULL) {\r
2104 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2105 }\r
2106\r
2107 return EFI_SUCCESS;\r
3e8ad6bd 2108}\r
6a2ee2bb 2109\r
809213a6 2110\r
86efe976
JF
2111/**\r
2112 Worker function to execute a caller provided function on all enabled APs.\r
2113\r
2114 @param[in] Procedure A pointer to the function to be run on\r
2115 enabled APs of the system.\r
2116 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2117 the function specified by Procedure one by\r
2118 one, in ascending order of processor handle\r
2119 number. If FALSE, then all the enabled APs\r
2120 execute the function specified by Procedure\r
2121 simultaneously.\r
2122 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2123 service.\r
367284e7 2124 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2125 APs to return from Procedure, either for\r
2126 blocking or non-blocking mode.\r
2127 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2128 all APs.\r
2129 @param[out] FailedCpuList If all APs finish successfully, then its\r
2130 content is set to NULL. If not all APs\r
2131 finish before timeout expires, then its\r
2132 content is set to address of the buffer\r
2133 holding handle numbers of the failed APs.\r
2134\r
2135 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2136 the timeout expired.\r
2137 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2138 to all enabled APs.\r
2139 @retval others Failed to Startup all APs.\r
2140\r
2141**/\r
2142EFI_STATUS\r
2143StartupAllAPsWorker (\r
2144 IN EFI_AP_PROCEDURE Procedure,\r
2145 IN BOOLEAN SingleThread,\r
2146 IN EFI_EVENT WaitEvent OPTIONAL,\r
2147 IN UINTN TimeoutInMicroseconds,\r
2148 IN VOID *ProcedureArgument OPTIONAL,\r
2149 OUT UINTN **FailedCpuList OPTIONAL\r
2150 )\r
2151{\r
2152 EFI_STATUS Status;\r
2153 CPU_MP_DATA *CpuMpData;\r
2154 UINTN ProcessorCount;\r
2155 UINTN ProcessorNumber;\r
2156 UINTN CallerNumber;\r
2157 CPU_AP_DATA *CpuData;\r
2158 BOOLEAN HasEnabledAp;\r
2159 CPU_STATE ApState;\r
2160\r
2161 CpuMpData = GetCpuMpData ();\r
2162\r
2163 if (FailedCpuList != NULL) {\r
2164 *FailedCpuList = NULL;\r
2165 }\r
2166\r
2167 if (CpuMpData->CpuCount == 1) {\r
2168 return EFI_NOT_STARTED;\r
2169 }\r
2170\r
2171 if (Procedure == NULL) {\r
2172 return EFI_INVALID_PARAMETER;\r
2173 }\r
2174\r
2175 //\r
2176 // Check whether caller processor is BSP\r
2177 //\r
2178 MpInitLibWhoAmI (&CallerNumber);\r
2179 if (CallerNumber != CpuMpData->BspNumber) {\r
2180 return EFI_DEVICE_ERROR;\r
2181 }\r
2182\r
2183 //\r
2184 // Update AP state\r
2185 //\r
2186 CheckAndUpdateApsStatus ();\r
2187\r
2188 ProcessorCount = CpuMpData->CpuCount;\r
2189 HasEnabledAp = FALSE;\r
2190 //\r
2191 // Check whether all enabled APs are idle.\r
2192 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2193 //\r
2194 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2195 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2196 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2197 ApState = GetApState (CpuData);\r
2198 if (ApState != CpuStateDisabled) {\r
2199 HasEnabledAp = TRUE;\r
2200 if (ApState != CpuStateIdle) {\r
2201 //\r
2202 // If any enabled APs are busy, return EFI_NOT_READY.\r
2203 //\r
2204 return EFI_NOT_READY;\r
2205 }\r
2206 }\r
2207 }\r
2208 }\r
2209\r
2210 if (!HasEnabledAp) {\r
2211 //\r
2212 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2213 //\r
2214 return EFI_NOT_STARTED;\r
2215 }\r
2216\r
2217 CpuMpData->StartCount = 0;\r
2218 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2219 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2220 CpuData->Waiting = FALSE;\r
2221 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2222 if (CpuData->State == CpuStateIdle) {\r
2223 //\r
2224 // Mark this processor as responsible for current calling.\r
2225 //\r
2226 CpuData->Waiting = TRUE;\r
2227 CpuMpData->StartCount++;\r
2228 }\r
2229 }\r
2230 }\r
2231\r
2232 CpuMpData->Procedure = Procedure;\r
2233 CpuMpData->ProcArguments = ProcedureArgument;\r
2234 CpuMpData->SingleThread = SingleThread;\r
2235 CpuMpData->FinishedCount = 0;\r
2236 CpuMpData->RunningCount = 0;\r
2237 CpuMpData->FailedCpuList = FailedCpuList;\r
2238 CpuMpData->ExpectedTime = CalculateTimeout (\r
2239 TimeoutInMicroseconds,\r
2240 &CpuMpData->CurrentTime\r
2241 );\r
2242 CpuMpData->TotalTime = 0;\r
2243 CpuMpData->WaitEvent = WaitEvent;\r
2244\r
2245 if (!SingleThread) {\r
2246 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
2247 } else {\r
2248 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2249 if (ProcessorNumber == CallerNumber) {\r
2250 continue;\r
2251 }\r
2252 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2253 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2254 break;\r
2255 }\r
2256 }\r
2257 }\r
2258\r
2259 Status = EFI_SUCCESS;\r
2260 if (WaitEvent == NULL) {\r
2261 do {\r
2262 Status = CheckAllAPs ();\r
2263 } while (Status == EFI_NOT_READY);\r
2264 }\r
2265\r
2266 return Status;\r
2267}\r
2268\r
20ae5774
JF
2269/**\r
2270 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2271 function.\r
2272\r
2273 @param[in] Procedure A pointer to the function to be run on\r
2274 enabled APs of the system.\r
2275 @param[in] ProcessorNumber The handle number of the AP.\r
2276 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2277 service.\r
367284e7 2278 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2279 APs to return from Procedure, either for\r
2280 blocking or non-blocking mode.\r
2281 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2282 all APs.\r
2283 @param[out] Finished If AP returns from Procedure before the\r
2284 timeout expires, its content is set to TRUE.\r
2285 Otherwise, the value is set to FALSE.\r
2286\r
2287 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2288 the timeout expires.\r
2289 @retval others Failed to Startup AP.\r
2290\r
2291**/\r
2292EFI_STATUS\r
2293StartupThisAPWorker (\r
2294 IN EFI_AP_PROCEDURE Procedure,\r
2295 IN UINTN ProcessorNumber,\r
2296 IN EFI_EVENT WaitEvent OPTIONAL,\r
2297 IN UINTN TimeoutInMicroseconds,\r
2298 IN VOID *ProcedureArgument OPTIONAL,\r
2299 OUT BOOLEAN *Finished OPTIONAL\r
2300 )\r
2301{\r
2302 EFI_STATUS Status;\r
2303 CPU_MP_DATA *CpuMpData;\r
2304 CPU_AP_DATA *CpuData;\r
2305 UINTN CallerNumber;\r
2306\r
2307 CpuMpData = GetCpuMpData ();\r
2308\r
2309 if (Finished != NULL) {\r
2310 *Finished = FALSE;\r
2311 }\r
2312\r
2313 //\r
2314 // Check whether caller processor is BSP\r
2315 //\r
2316 MpInitLibWhoAmI (&CallerNumber);\r
2317 if (CallerNumber != CpuMpData->BspNumber) {\r
2318 return EFI_DEVICE_ERROR;\r
2319 }\r
2320\r
2321 //\r
2322 // Check whether processor with the handle specified by ProcessorNumber exists\r
2323 //\r
2324 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2325 return EFI_NOT_FOUND;\r
2326 }\r
2327\r
2328 //\r
2329 // Check whether specified processor is BSP\r
2330 //\r
2331 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2332 return EFI_INVALID_PARAMETER;\r
2333 }\r
2334\r
2335 //\r
2336 // Check parameter Procedure\r
2337 //\r
2338 if (Procedure == NULL) {\r
2339 return EFI_INVALID_PARAMETER;\r
2340 }\r
2341\r
2342 //\r
2343 // Update AP state\r
2344 //\r
2345 CheckAndUpdateApsStatus ();\r
2346\r
2347 //\r
2348 // Check whether specified AP is disabled\r
2349 //\r
2350 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2351 return EFI_INVALID_PARAMETER;\r
2352 }\r
2353\r
2354 //\r
2355 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2356 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2357 // CheckAPsStatus() will check completion and timeout periodically.\r
2358 //\r
2359 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2360 CpuData->WaitEvent = WaitEvent;\r
2361 CpuData->Finished = Finished;\r
2362 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2363 CpuData->TotalTime = 0;\r
2364\r
2365 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
2366\r
2367 //\r
2368 // If WaitEvent is NULL, execute in blocking mode.\r
2369 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2370 //\r
2371 Status = EFI_SUCCESS;\r
2372 if (WaitEvent == NULL) {\r
2373 do {\r
2374 Status = CheckThisAP (ProcessorNumber);\r
2375 } while (Status == EFI_NOT_READY);\r
2376 }\r
2377\r
2378 return Status;\r
2379}\r
2380\r
93ca4c0f
JF
2381/**\r
2382 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2383\r
2384 @return The pointer to CPU MP Data structure.\r
2385**/\r
2386CPU_MP_DATA *\r
2387GetCpuMpDataFromGuidedHob (\r
2388 VOID\r
2389 )\r
2390{\r
2391 EFI_HOB_GUID_TYPE *GuidHob;\r
2392 VOID *DataInHob;\r
2393 CPU_MP_DATA *CpuMpData;\r
2394\r
2395 CpuMpData = NULL;\r
2396 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2397 if (GuidHob != NULL) {\r
2398 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2399 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2400 }\r
2401 return CpuMpData;\r
2402}\r
42c37b3b 2403\r