]> git.proxmox.com Git - mirror_edk2.git/blob - AppPkg/Applications/Python/Python-2.7.10/Objects/object.c
EmbeddedPkg: Extend NvVarStoreFormattedLib LIBRARY_CLASS
[mirror_edk2.git] / AppPkg / Applications / Python / Python-2.7.10 / Objects / object.c
1
2 /* Generic object operations; and implementation of None (NoObject) */
3
4 #include "Python.h"
5 #include "frameobject.h"
6
7 #ifdef __cplusplus
8 extern "C" {
9 #endif
10
11 #ifdef Py_REF_DEBUG
12 Py_ssize_t _Py_RefTotal;
13
14 Py_ssize_t
15 _Py_GetRefTotal(void)
16 {
17 PyObject *o;
18 Py_ssize_t total = _Py_RefTotal;
19 /* ignore the references to the dummy object of the dicts and sets
20 because they are not reliable and not useful (now that the
21 hash table code is well-tested) */
22 o = _PyDict_Dummy();
23 if (o != NULL)
24 total -= o->ob_refcnt;
25 o = _PySet_Dummy();
26 if (o != NULL)
27 total -= o->ob_refcnt;
28 return total;
29 }
30 #endif /* Py_REF_DEBUG */
31
32 int Py_DivisionWarningFlag;
33 int Py_Py3kWarningFlag;
34
35 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
36 These are used by the individual routines for object creation.
37 Do not call them otherwise, they do not initialize the object! */
38
39 #ifdef Py_TRACE_REFS
40 /* Head of circular doubly-linked list of all objects. These are linked
41 * together via the _ob_prev and _ob_next members of a PyObject, which
42 * exist only in a Py_TRACE_REFS build.
43 */
44 static PyObject refchain = {&refchain, &refchain};
45
46 /* Insert op at the front of the list of all objects. If force is true,
47 * op is added even if _ob_prev and _ob_next are non-NULL already. If
48 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
49 * force should be true if and only if op points to freshly allocated,
50 * uninitialized memory, or you've unlinked op from the list and are
51 * relinking it into the front.
52 * Note that objects are normally added to the list via _Py_NewReference,
53 * which is called by PyObject_Init. Not all objects are initialized that
54 * way, though; exceptions include statically allocated type objects, and
55 * statically allocated singletons (like Py_True and Py_None).
56 */
57 void
58 _Py_AddToAllObjects(PyObject *op, int force)
59 {
60 #ifdef Py_DEBUG
61 if (!force) {
62 /* If it's initialized memory, op must be in or out of
63 * the list unambiguously.
64 */
65 assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
66 }
67 #endif
68 if (force || op->_ob_prev == NULL) {
69 op->_ob_next = refchain._ob_next;
70 op->_ob_prev = &refchain;
71 refchain._ob_next->_ob_prev = op;
72 refchain._ob_next = op;
73 }
74 }
75 #endif /* Py_TRACE_REFS */
76
77 #ifdef COUNT_ALLOCS
78 static PyTypeObject *type_list;
79 /* All types are added to type_list, at least when
80 they get one object created. That makes them
81 immortal, which unfortunately contributes to
82 garbage itself. If unlist_types_without_objects
83 is set, they will be removed from the type_list
84 once the last object is deallocated. */
85 static int unlist_types_without_objects;
86 extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs;
87 extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
88 extern Py_ssize_t null_strings, one_strings;
89 void
90 dump_counts(FILE* f)
91 {
92 PyTypeObject *tp;
93
94 for (tp = type_list; tp; tp = tp->tp_next)
95 fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, "
96 "freed: %" PY_FORMAT_SIZE_T "d, "
97 "max in use: %" PY_FORMAT_SIZE_T "d\n",
98 tp->tp_name, tp->tp_allocs, tp->tp_frees,
99 tp->tp_maxalloc);
100 fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, "
101 "empty: %" PY_FORMAT_SIZE_T "d\n",
102 fast_tuple_allocs, tuple_zero_allocs);
103 fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, "
104 "neg: %" PY_FORMAT_SIZE_T "d\n",
105 quick_int_allocs, quick_neg_int_allocs);
106 fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, "
107 "1-strings: %" PY_FORMAT_SIZE_T "d\n",
108 null_strings, one_strings);
109 }
110
111 PyObject *
112 get_counts(void)
113 {
114 PyTypeObject *tp;
115 PyObject *result;
116 PyObject *v;
117
118 result = PyList_New(0);
119 if (result == NULL)
120 return NULL;
121 for (tp = type_list; tp; tp = tp->tp_next) {
122 v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
123 tp->tp_frees, tp->tp_maxalloc);
124 if (v == NULL) {
125 Py_DECREF(result);
126 return NULL;
127 }
128 if (PyList_Append(result, v) < 0) {
129 Py_DECREF(v);
130 Py_DECREF(result);
131 return NULL;
132 }
133 Py_DECREF(v);
134 }
135 return result;
136 }
137
138 void
139 inc_count(PyTypeObject *tp)
140 {
141 if (tp->tp_next == NULL && tp->tp_prev == NULL) {
142 /* first time; insert in linked list */
143 if (tp->tp_next != NULL) /* sanity check */
144 Py_FatalError("XXX inc_count sanity check");
145 if (type_list)
146 type_list->tp_prev = tp;
147 tp->tp_next = type_list;
148 /* Note that as of Python 2.2, heap-allocated type objects
149 * can go away, but this code requires that they stay alive
150 * until program exit. That's why we're careful with
151 * refcounts here. type_list gets a new reference to tp,
152 * while ownership of the reference type_list used to hold
153 * (if any) was transferred to tp->tp_next in the line above.
154 * tp is thus effectively immortal after this.
155 */
156 Py_INCREF(tp);
157 type_list = tp;
158 #ifdef Py_TRACE_REFS
159 /* Also insert in the doubly-linked list of all objects,
160 * if not already there.
161 */
162 _Py_AddToAllObjects((PyObject *)tp, 0);
163 #endif
164 }
165 tp->tp_allocs++;
166 if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
167 tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
168 }
169
170 void dec_count(PyTypeObject *tp)
171 {
172 tp->tp_frees++;
173 if (unlist_types_without_objects &&
174 tp->tp_allocs == tp->tp_frees) {
175 /* unlink the type from type_list */
176 if (tp->tp_prev)
177 tp->tp_prev->tp_next = tp->tp_next;
178 else
179 type_list = tp->tp_next;
180 if (tp->tp_next)
181 tp->tp_next->tp_prev = tp->tp_prev;
182 tp->tp_next = tp->tp_prev = NULL;
183 Py_DECREF(tp);
184 }
185 }
186
187 #endif
188
189 #ifdef Py_REF_DEBUG
190 /* Log a fatal error; doesn't return. */
191 void
192 _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
193 {
194 char buf[300];
195
196 PyOS_snprintf(buf, sizeof(buf),
197 "%s:%i object at %p has negative ref count "
198 "%" PY_FORMAT_SIZE_T "d",
199 fname, lineno, op, op->ob_refcnt);
200 Py_FatalError(buf);
201 }
202
203 #endif /* Py_REF_DEBUG */
204
205 void
206 Py_IncRef(PyObject *o)
207 {
208 Py_XINCREF(o);
209 }
210
211 void
212 Py_DecRef(PyObject *o)
213 {
214 Py_XDECREF(o);
215 }
216
217 PyObject *
218 PyObject_Init(PyObject *op, PyTypeObject *tp)
219 {
220 if (op == NULL)
221 return PyErr_NoMemory();
222 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
223 Py_TYPE(op) = tp;
224 _Py_NewReference(op);
225 return op;
226 }
227
228 PyVarObject *
229 PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
230 {
231 if (op == NULL)
232 return (PyVarObject *) PyErr_NoMemory();
233 /* Any changes should be reflected in PyObject_INIT_VAR */
234 op->ob_size = size;
235 Py_TYPE(op) = tp;
236 _Py_NewReference((PyObject *)op);
237 return op;
238 }
239
240 PyObject *
241 _PyObject_New(PyTypeObject *tp)
242 {
243 PyObject *op;
244 op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
245 if (op == NULL)
246 return PyErr_NoMemory();
247 return PyObject_INIT(op, tp);
248 }
249
250 PyVarObject *
251 _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
252 {
253 PyVarObject *op;
254 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
255 op = (PyVarObject *) PyObject_MALLOC(size);
256 if (op == NULL)
257 return (PyVarObject *)PyErr_NoMemory();
258 return PyObject_INIT_VAR(op, tp, nitems);
259 }
260
261 /* for binary compatibility with 2.2 */
262 #undef _PyObject_Del
263 void
264 _PyObject_Del(PyObject *op)
265 {
266 PyObject_FREE(op);
267 }
268
269 /* Implementation of PyObject_Print with recursion checking */
270 static int
271 internal_print(PyObject *op, FILE *fp, int flags, int nesting)
272 {
273 int ret = 0;
274 if (nesting > 10) {
275 PyErr_SetString(PyExc_RuntimeError, "print recursion");
276 return -1;
277 }
278 if (PyErr_CheckSignals())
279 return -1;
280 #ifdef USE_STACKCHECK
281 if (PyOS_CheckStack()) {
282 PyErr_SetString(PyExc_MemoryError, "stack overflow");
283 return -1;
284 }
285 #endif
286 clearerr(fp); /* Clear any previous error condition */
287 if (op == NULL) {
288 Py_BEGIN_ALLOW_THREADS
289 fprintf(fp, "<nil>");
290 Py_END_ALLOW_THREADS
291 }
292 else {
293 if (op->ob_refcnt <= 0)
294 /* XXX(twouters) cast refcount to long until %zd is
295 universally available */
296 Py_BEGIN_ALLOW_THREADS
297 fprintf(fp, "<refcnt %ld at %p>",
298 (long)op->ob_refcnt, op);
299 Py_END_ALLOW_THREADS
300 else if (Py_TYPE(op)->tp_print == NULL) {
301 PyObject *s;
302 if (flags & Py_PRINT_RAW)
303 s = PyObject_Str(op);
304 else
305 s = PyObject_Repr(op);
306 if (s == NULL)
307 ret = -1;
308 else {
309 ret = internal_print(s, fp, Py_PRINT_RAW,
310 nesting+1);
311 }
312 Py_XDECREF(s);
313 }
314 else
315 ret = (*Py_TYPE(op)->tp_print)(op, fp, flags);
316 }
317 if (ret == 0) {
318 if (ferror(fp)) {
319 PyErr_SetFromErrno(PyExc_IOError);
320 clearerr(fp);
321 ret = -1;
322 }
323 }
324 return ret;
325 }
326
327 int
328 PyObject_Print(PyObject *op, FILE *fp, int flags)
329 {
330 return internal_print(op, fp, flags, 0);
331 }
332
333
334 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
335 void _PyObject_Dump(PyObject* op)
336 {
337 if (op == NULL)
338 fprintf(stderr, "NULL\n");
339 else {
340 #ifdef WITH_THREAD
341 PyGILState_STATE gil;
342 #endif
343 fprintf(stderr, "object : ");
344 #ifdef WITH_THREAD
345 gil = PyGILState_Ensure();
346 #endif
347 (void)PyObject_Print(op, stderr, 0);
348 #ifdef WITH_THREAD
349 PyGILState_Release(gil);
350 #endif
351 /* XXX(twouters) cast refcount to long until %zd is
352 universally available */
353 fprintf(stderr, "\n"
354 "type : %s\n"
355 "refcount: %ld\n"
356 "address : %p\n",
357 Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name,
358 (long)op->ob_refcnt,
359 op);
360 }
361 }
362
363 PyObject *
364 PyObject_Repr(PyObject *v)
365 {
366 if (PyErr_CheckSignals())
367 return NULL;
368 #ifdef USE_STACKCHECK
369 if (PyOS_CheckStack()) {
370 PyErr_SetString(PyExc_MemoryError, "stack overflow");
371 return NULL;
372 }
373 #endif
374 if (v == NULL)
375 return PyString_FromString("<NULL>");
376 else if (Py_TYPE(v)->tp_repr == NULL)
377 return PyString_FromFormat("<%s object at %p>",
378 Py_TYPE(v)->tp_name, v);
379 else {
380 PyObject *res;
381 res = (*Py_TYPE(v)->tp_repr)(v);
382 if (res == NULL)
383 return NULL;
384 #ifdef Py_USING_UNICODE
385 if (PyUnicode_Check(res)) {
386 PyObject* str;
387 str = PyUnicode_AsEncodedString(res, NULL, NULL);
388 Py_DECREF(res);
389 if (str)
390 res = str;
391 else
392 return NULL;
393 }
394 #endif
395 if (!PyString_Check(res)) {
396 PyErr_Format(PyExc_TypeError,
397 "__repr__ returned non-string (type %.200s)",
398 Py_TYPE(res)->tp_name);
399 Py_DECREF(res);
400 return NULL;
401 }
402 return res;
403 }
404 }
405
406 PyObject *
407 _PyObject_Str(PyObject *v)
408 {
409 PyObject *res;
410 int type_ok;
411 if (v == NULL)
412 return PyString_FromString("<NULL>");
413 if (PyString_CheckExact(v)) {
414 Py_INCREF(v);
415 return v;
416 }
417 #ifdef Py_USING_UNICODE
418 if (PyUnicode_CheckExact(v)) {
419 Py_INCREF(v);
420 return v;
421 }
422 #endif
423 if (Py_TYPE(v)->tp_str == NULL)
424 return PyObject_Repr(v);
425
426 /* It is possible for a type to have a tp_str representation that loops
427 infinitely. */
428 if (Py_EnterRecursiveCall(" while getting the str of an object"))
429 return NULL;
430 res = (*Py_TYPE(v)->tp_str)(v);
431 Py_LeaveRecursiveCall();
432 if (res == NULL)
433 return NULL;
434 type_ok = PyString_Check(res);
435 #ifdef Py_USING_UNICODE
436 type_ok = type_ok || PyUnicode_Check(res);
437 #endif
438 if (!type_ok) {
439 PyErr_Format(PyExc_TypeError,
440 "__str__ returned non-string (type %.200s)",
441 Py_TYPE(res)->tp_name);
442 Py_DECREF(res);
443 return NULL;
444 }
445 return res;
446 }
447
448 PyObject *
449 PyObject_Str(PyObject *v)
450 {
451 PyObject *res = _PyObject_Str(v);
452 if (res == NULL)
453 return NULL;
454 #ifdef Py_USING_UNICODE
455 if (PyUnicode_Check(res)) {
456 PyObject* str;
457 str = PyUnicode_AsEncodedString(res, NULL, NULL);
458 Py_DECREF(res);
459 if (str)
460 res = str;
461 else
462 return NULL;
463 }
464 #endif
465 assert(PyString_Check(res));
466 return res;
467 }
468
469 #ifdef Py_USING_UNICODE
470 PyObject *
471 PyObject_Unicode(PyObject *v)
472 {
473 PyObject *res;
474 PyObject *func;
475 PyObject *str;
476 int unicode_method_found = 0;
477 static PyObject *unicodestr = NULL;
478
479 if (v == NULL) {
480 res = PyString_FromString("<NULL>");
481 if (res == NULL)
482 return NULL;
483 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
484 Py_DECREF(res);
485 return str;
486 } else if (PyUnicode_CheckExact(v)) {
487 Py_INCREF(v);
488 return v;
489 }
490
491 if (PyInstance_Check(v)) {
492 /* We're an instance of a classic class */
493 /* Try __unicode__ from the instance -- alas we have no type */
494 if (!unicodestr) {
495 unicodestr = PyString_InternFromString("__unicode__");
496 if (!unicodestr)
497 return NULL;
498 }
499 func = PyObject_GetAttr(v, unicodestr);
500 if (func != NULL) {
501 unicode_method_found = 1;
502 res = PyObject_CallFunctionObjArgs(func, NULL);
503 Py_DECREF(func);
504 }
505 else {
506 PyErr_Clear();
507 }
508 }
509 else {
510 /* Not a classic class instance, try __unicode__. */
511 func = _PyObject_LookupSpecial(v, "__unicode__", &unicodestr);
512 if (func != NULL) {
513 unicode_method_found = 1;
514 res = PyObject_CallFunctionObjArgs(func, NULL);
515 Py_DECREF(func);
516 }
517 else if (PyErr_Occurred())
518 return NULL;
519 }
520
521 /* Didn't find __unicode__ */
522 if (!unicode_method_found) {
523 if (PyUnicode_Check(v)) {
524 /* For a Unicode subtype that's didn't overwrite __unicode__,
525 return a true Unicode object with the same data. */
526 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
527 PyUnicode_GET_SIZE(v));
528 }
529 if (PyString_CheckExact(v)) {
530 Py_INCREF(v);
531 res = v;
532 }
533 else {
534 if (Py_TYPE(v)->tp_str != NULL)
535 res = (*Py_TYPE(v)->tp_str)(v);
536 else
537 res = PyObject_Repr(v);
538 }
539 }
540
541 if (res == NULL)
542 return NULL;
543 if (!PyUnicode_Check(res)) {
544 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
545 Py_DECREF(res);
546 res = str;
547 }
548 return res;
549 }
550 #endif
551
552
553 /* Helper to warn about deprecated tp_compare return values. Return:
554 -2 for an exception;
555 -1 if v < w;
556 0 if v == w;
557 1 if v > w.
558 (This function cannot return 2.)
559 */
560 static int
561 adjust_tp_compare(int c)
562 {
563 if (PyErr_Occurred()) {
564 if (c != -1 && c != -2) {
565 PyObject *t, *v, *tb;
566 PyErr_Fetch(&t, &v, &tb);
567 if (PyErr_Warn(PyExc_RuntimeWarning,
568 "tp_compare didn't return -1 or -2 "
569 "for exception") < 0) {
570 Py_XDECREF(t);
571 Py_XDECREF(v);
572 Py_XDECREF(tb);
573 }
574 else
575 PyErr_Restore(t, v, tb);
576 }
577 return -2;
578 }
579 else if (c < -1 || c > 1) {
580 if (PyErr_Warn(PyExc_RuntimeWarning,
581 "tp_compare didn't return -1, 0 or 1") < 0)
582 return -2;
583 else
584 return c < -1 ? -1 : 1;
585 }
586 else {
587 assert(c >= -1 && c <= 1);
588 return c;
589 }
590 }
591
592
593 /* Macro to get the tp_richcompare field of a type if defined */
594 #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
595 ? (t)->tp_richcompare : NULL)
596
597 /* Map rich comparison operators to their swapped version, e.g. LT --> GT */
598 int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
599
600 /* Try a genuine rich comparison, returning an object. Return:
601 NULL for exception;
602 NotImplemented if this particular rich comparison is not implemented or
603 undefined;
604 some object not equal to NotImplemented if it is implemented
605 (this latter object may not be a Boolean).
606 */
607 static PyObject *
608 try_rich_compare(PyObject *v, PyObject *w, int op)
609 {
610 richcmpfunc f;
611 PyObject *res;
612
613 if (v->ob_type != w->ob_type &&
614 PyType_IsSubtype(w->ob_type, v->ob_type) &&
615 (f = RICHCOMPARE(w->ob_type)) != NULL) {
616 res = (*f)(w, v, _Py_SwappedOp[op]);
617 if (res != Py_NotImplemented)
618 return res;
619 Py_DECREF(res);
620 }
621 if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
622 res = (*f)(v, w, op);
623 if (res != Py_NotImplemented)
624 return res;
625 Py_DECREF(res);
626 }
627 if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
628 return (*f)(w, v, _Py_SwappedOp[op]);
629 }
630 res = Py_NotImplemented;
631 Py_INCREF(res);
632 return res;
633 }
634
635 /* Try a genuine rich comparison, returning an int. Return:
636 -1 for exception (including the case where try_rich_compare() returns an
637 object that's not a Boolean);
638 0 if the outcome is false;
639 1 if the outcome is true;
640 2 if this particular rich comparison is not implemented or undefined.
641 */
642 static int
643 try_rich_compare_bool(PyObject *v, PyObject *w, int op)
644 {
645 PyObject *res;
646 int ok;
647
648 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
649 return 2; /* Shortcut, avoid INCREF+DECREF */
650 res = try_rich_compare(v, w, op);
651 if (res == NULL)
652 return -1;
653 if (res == Py_NotImplemented) {
654 Py_DECREF(res);
655 return 2;
656 }
657 ok = PyObject_IsTrue(res);
658 Py_DECREF(res);
659 return ok;
660 }
661
662 /* Try rich comparisons to determine a 3-way comparison. Return:
663 -2 for an exception;
664 -1 if v < w;
665 0 if v == w;
666 1 if v > w;
667 2 if this particular rich comparison is not implemented or undefined.
668 */
669 static int
670 try_rich_to_3way_compare(PyObject *v, PyObject *w)
671 {
672 static struct { int op; int outcome; } tries[3] = {
673 /* Try this operator, and if it is true, use this outcome: */
674 {Py_EQ, 0},
675 {Py_LT, -1},
676 {Py_GT, 1},
677 };
678 int i;
679
680 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
681 return 2; /* Shortcut */
682
683 for (i = 0; i < 3; i++) {
684 switch (try_rich_compare_bool(v, w, tries[i].op)) {
685 case -1:
686 return -2;
687 case 1:
688 return tries[i].outcome;
689 }
690 }
691
692 return 2;
693 }
694
695 /* Try a 3-way comparison, returning an int. Return:
696 -2 for an exception;
697 -1 if v < w;
698 0 if v == w;
699 1 if v > w;
700 2 if this particular 3-way comparison is not implemented or undefined.
701 */
702 static int
703 try_3way_compare(PyObject *v, PyObject *w)
704 {
705 int c;
706 cmpfunc f;
707
708 /* Comparisons involving instances are given to instance_compare,
709 which has the same return conventions as this function. */
710
711 f = v->ob_type->tp_compare;
712 if (PyInstance_Check(v))
713 return (*f)(v, w);
714 if (PyInstance_Check(w))
715 return (*w->ob_type->tp_compare)(v, w);
716
717 /* If both have the same (non-NULL) tp_compare, use it. */
718 if (f != NULL && f == w->ob_type->tp_compare) {
719 c = (*f)(v, w);
720 return adjust_tp_compare(c);
721 }
722
723 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
724 if (f == _PyObject_SlotCompare ||
725 w->ob_type->tp_compare == _PyObject_SlotCompare)
726 return _PyObject_SlotCompare(v, w);
727
728 /* If we're here, v and w,
729 a) are not instances;
730 b) have different types or a type without tp_compare; and
731 c) don't have a user-defined tp_compare.
732 tp_compare implementations in C assume that both arguments
733 have their type, so we give up if the coercion fails or if
734 it yields types which are still incompatible (which can
735 happen with a user-defined nb_coerce).
736 */
737 c = PyNumber_CoerceEx(&v, &w);
738 if (c < 0)
739 return -2;
740 if (c > 0)
741 return 2;
742 f = v->ob_type->tp_compare;
743 if (f != NULL && f == w->ob_type->tp_compare) {
744 c = (*f)(v, w);
745 Py_DECREF(v);
746 Py_DECREF(w);
747 return adjust_tp_compare(c);
748 }
749
750 /* No comparison defined */
751 Py_DECREF(v);
752 Py_DECREF(w);
753 return 2;
754 }
755
756 /* Final fallback 3-way comparison, returning an int. Return:
757 -2 if an error occurred;
758 -1 if v < w;
759 0 if v == w;
760 1 if v > w.
761 */
762 static int
763 default_3way_compare(PyObject *v, PyObject *w)
764 {
765 int c;
766 const char *vname, *wname;
767
768 if (v->ob_type == w->ob_type) {
769 /* When comparing these pointers, they must be cast to
770 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
771 * uintptr_t). ANSI specifies that pointer compares other
772 * than == and != to non-related structures are undefined.
773 */
774 Py_uintptr_t vv = (Py_uintptr_t)v;
775 Py_uintptr_t ww = (Py_uintptr_t)w;
776 return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
777 }
778
779 /* None is smaller than anything */
780 if (v == Py_None)
781 return -1;
782 if (w == Py_None)
783 return 1;
784
785 /* different type: compare type names; numbers are smaller */
786 if (PyNumber_Check(v))
787 vname = "";
788 else
789 vname = v->ob_type->tp_name;
790 if (PyNumber_Check(w))
791 wname = "";
792 else
793 wname = w->ob_type->tp_name;
794 c = strcmp(vname, wname);
795 if (c < 0)
796 return -1;
797 if (c > 0)
798 return 1;
799 /* Same type name, or (more likely) incomparable numeric types */
800 return ((Py_uintptr_t)(v->ob_type) < (
801 Py_uintptr_t)(w->ob_type)) ? -1 : 1;
802 }
803
804 /* Do a 3-way comparison, by hook or by crook. Return:
805 -2 for an exception (but see below);
806 -1 if v < w;
807 0 if v == w;
808 1 if v > w;
809 BUT: if the object implements a tp_compare function, it returns
810 whatever this function returns (whether with an exception or not).
811 */
812 static int
813 do_cmp(PyObject *v, PyObject *w)
814 {
815 int c;
816 cmpfunc f;
817
818 if (v->ob_type == w->ob_type
819 && (f = v->ob_type->tp_compare) != NULL) {
820 c = (*f)(v, w);
821 if (PyInstance_Check(v)) {
822 /* Instance tp_compare has a different signature.
823 But if it returns undefined we fall through. */
824 if (c != 2)
825 return c;
826 /* Else fall through to try_rich_to_3way_compare() */
827 }
828 else
829 return adjust_tp_compare(c);
830 }
831 /* We only get here if one of the following is true:
832 a) v and w have different types
833 b) v and w have the same type, which doesn't have tp_compare
834 c) v and w are instances, and either __cmp__ is not defined or
835 __cmp__ returns NotImplemented
836 */
837 c = try_rich_to_3way_compare(v, w);
838 if (c < 2)
839 return c;
840 c = try_3way_compare(v, w);
841 if (c < 2)
842 return c;
843 return default_3way_compare(v, w);
844 }
845
846 /* Compare v to w. Return
847 -1 if v < w or exception (PyErr_Occurred() true in latter case).
848 0 if v == w.
849 1 if v > w.
850 XXX The docs (C API manual) say the return value is undefined in case
851 XXX of error.
852 */
853 int
854 PyObject_Compare(PyObject *v, PyObject *w)
855 {
856 int result;
857
858 if (v == NULL || w == NULL) {
859 PyErr_BadInternalCall();
860 return -1;
861 }
862 if (v == w)
863 return 0;
864 if (Py_EnterRecursiveCall(" in cmp"))
865 return -1;
866 result = do_cmp(v, w);
867 Py_LeaveRecursiveCall();
868 return result < 0 ? -1 : result;
869 }
870
871 /* Return (new reference to) Py_True or Py_False. */
872 static PyObject *
873 convert_3way_to_object(int op, int c)
874 {
875 PyObject *result;
876 switch (op) {
877 case Py_LT: c = c < 0; break;
878 case Py_LE: c = c <= 0; break;
879 case Py_EQ: c = c == 0; break;
880 case Py_NE: c = c != 0; break;
881 case Py_GT: c = c > 0; break;
882 case Py_GE: c = c >= 0; break;
883 }
884 result = c ? Py_True : Py_False;
885 Py_INCREF(result);
886 return result;
887 }
888
889 /* We want a rich comparison but don't have one. Try a 3-way cmp instead.
890 Return
891 NULL if error
892 Py_True if v op w
893 Py_False if not (v op w)
894 */
895 static PyObject *
896 try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
897 {
898 int c;
899
900 c = try_3way_compare(v, w);
901 if (c >= 2) {
902
903 /* Py3K warning if types are not equal and comparison isn't == or != */
904 if (Py_Py3kWarningFlag &&
905 v->ob_type != w->ob_type && op != Py_EQ && op != Py_NE &&
906 PyErr_WarnEx(PyExc_DeprecationWarning,
907 "comparing unequal types not supported "
908 "in 3.x", 1) < 0) {
909 return NULL;
910 }
911
912 c = default_3way_compare(v, w);
913 }
914 if (c <= -2)
915 return NULL;
916 return convert_3way_to_object(op, c);
917 }
918
919 /* Do rich comparison on v and w. Return
920 NULL if error
921 Else a new reference to an object other than Py_NotImplemented, usually(?):
922 Py_True if v op w
923 Py_False if not (v op w)
924 */
925 static PyObject *
926 do_richcmp(PyObject *v, PyObject *w, int op)
927 {
928 PyObject *res;
929
930 res = try_rich_compare(v, w, op);
931 if (res != Py_NotImplemented)
932 return res;
933 Py_DECREF(res);
934
935 return try_3way_to_rich_compare(v, w, op);
936 }
937
938 /* Return:
939 NULL for exception;
940 some object not equal to NotImplemented if it is implemented
941 (this latter object may not be a Boolean).
942 */
943 PyObject *
944 PyObject_RichCompare(PyObject *v, PyObject *w, int op)
945 {
946 PyObject *res;
947
948 assert(Py_LT <= op && op <= Py_GE);
949 if (Py_EnterRecursiveCall(" in cmp"))
950 return NULL;
951
952 /* If the types are equal, and not old-style instances, try to
953 get out cheap (don't bother with coercions etc.). */
954 if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
955 cmpfunc fcmp;
956 richcmpfunc frich = RICHCOMPARE(v->ob_type);
957 /* If the type has richcmp, try it first. try_rich_compare
958 tries it two-sided, which is not needed since we've a
959 single type only. */
960 if (frich != NULL) {
961 res = (*frich)(v, w, op);
962 if (res != Py_NotImplemented)
963 goto Done;
964 Py_DECREF(res);
965 }
966 /* No richcmp, or this particular richmp not implemented.
967 Try 3-way cmp. */
968 fcmp = v->ob_type->tp_compare;
969 if (fcmp != NULL) {
970 int c = (*fcmp)(v, w);
971 c = adjust_tp_compare(c);
972 if (c == -2) {
973 res = NULL;
974 goto Done;
975 }
976 res = convert_3way_to_object(op, c);
977 goto Done;
978 }
979 }
980
981 /* Fast path not taken, or couldn't deliver a useful result. */
982 res = do_richcmp(v, w, op);
983 Done:
984 Py_LeaveRecursiveCall();
985 return res;
986 }
987
988 /* Return -1 if error; 1 if v op w; 0 if not (v op w). */
989 int
990 PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
991 {
992 PyObject *res;
993 int ok;
994
995 /* Quick result when objects are the same.
996 Guarantees that identity implies equality. */
997 if (v == w) {
998 if (op == Py_EQ)
999 return 1;
1000 else if (op == Py_NE)
1001 return 0;
1002 }
1003
1004 res = PyObject_RichCompare(v, w, op);
1005 if (res == NULL)
1006 return -1;
1007 if (PyBool_Check(res))
1008 ok = (res == Py_True);
1009 else
1010 ok = PyObject_IsTrue(res);
1011 Py_DECREF(res);
1012 return ok;
1013 }
1014
1015 /* Set of hash utility functions to help maintaining the invariant that
1016 if a==b then hash(a)==hash(b)
1017
1018 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
1019 */
1020
1021 long
1022 _Py_HashDouble(double v)
1023 {
1024 double intpart, fractpart;
1025 int expo;
1026 long hipart;
1027 long x; /* the final hash value */
1028 /* This is designed so that Python numbers of different types
1029 * that compare equal hash to the same value; otherwise comparisons
1030 * of mapping keys will turn out weird.
1031 */
1032
1033 if (!Py_IS_FINITE(v)) {
1034 if (Py_IS_INFINITY(v))
1035 return v < 0 ? -271828 : 314159;
1036 else
1037 return 0;
1038 }
1039 fractpart = modf(v, &intpart);
1040 if (fractpart == 0.0) {
1041 /* This must return the same hash as an equal int or long. */
1042 if (intpart > LONG_MAX/2 || -intpart > LONG_MAX/2) {
1043 /* Convert to long and use its hash. */
1044 PyObject *plong; /* converted to Python long */
1045 plong = PyLong_FromDouble(v);
1046 if (plong == NULL)
1047 return -1;
1048 x = PyObject_Hash(plong);
1049 Py_DECREF(plong);
1050 return x;
1051 }
1052 /* Fits in a C long == a Python int, so is its own hash. */
1053 x = (long)intpart;
1054 if (x == -1)
1055 x = -2;
1056 return x;
1057 }
1058 /* The fractional part is non-zero, so we don't have to worry about
1059 * making this match the hash of some other type.
1060 * Use frexp to get at the bits in the double.
1061 * Since the VAX D double format has 56 mantissa bits, which is the
1062 * most of any double format in use, each of these parts may have as
1063 * many as (but no more than) 56 significant bits.
1064 * So, assuming sizeof(long) >= 4, each part can be broken into two
1065 * longs; frexp and multiplication are used to do that.
1066 * Also, since the Cray double format has 15 exponent bits, which is
1067 * the most of any double format in use, shifting the exponent field
1068 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
1069 */
1070 v = frexp(v, &expo);
1071 v *= 2147483648.0; /* 2**31 */
1072 hipart = (long)v; /* take the top 32 bits */
1073 v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
1074 x = hipart + (long)v + (expo << 15);
1075 if (x == -1)
1076 x = -2;
1077 return x;
1078 }
1079
1080 long
1081 _Py_HashPointer(void *p)
1082 {
1083 long x;
1084 size_t y = (size_t)p;
1085 /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
1086 excessive hash collisions for dicts and sets */
1087 y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
1088 x = (long)y;
1089 if (x == -1)
1090 x = -2;
1091 return x;
1092 }
1093
1094 long
1095 PyObject_HashNotImplemented(PyObject *self)
1096 {
1097 PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
1098 self->ob_type->tp_name);
1099 return -1;
1100 }
1101
1102 _Py_HashSecret_t _Py_HashSecret;
1103
1104 long
1105 PyObject_Hash(PyObject *v)
1106 {
1107 PyTypeObject *tp = v->ob_type;
1108 if (tp->tp_hash != NULL)
1109 return (*tp->tp_hash)(v);
1110 /* To keep to the general practice that inheriting
1111 * solely from object in C code should work without
1112 * an explicit call to PyType_Ready, we implicitly call
1113 * PyType_Ready here and then check the tp_hash slot again
1114 */
1115 if (tp->tp_dict == NULL) {
1116 if (PyType_Ready(tp) < 0)
1117 return -1;
1118 if (tp->tp_hash != NULL)
1119 return (*tp->tp_hash)(v);
1120 }
1121 if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
1122 return _Py_HashPointer(v); /* Use address as hash value */
1123 }
1124 /* If there's a cmp but no hash defined, the object can't be hashed */
1125 return PyObject_HashNotImplemented(v);
1126 }
1127
1128 PyObject *
1129 PyObject_GetAttrString(PyObject *v, const char *name)
1130 {
1131 PyObject *w, *res;
1132
1133 if (Py_TYPE(v)->tp_getattr != NULL)
1134 return (*Py_TYPE(v)->tp_getattr)(v, (char*)name);
1135 w = PyString_InternFromString(name);
1136 if (w == NULL)
1137 return NULL;
1138 res = PyObject_GetAttr(v, w);
1139 Py_XDECREF(w);
1140 return res;
1141 }
1142
1143 int
1144 PyObject_HasAttrString(PyObject *v, const char *name)
1145 {
1146 PyObject *res = PyObject_GetAttrString(v, name);
1147 if (res != NULL) {
1148 Py_DECREF(res);
1149 return 1;
1150 }
1151 PyErr_Clear();
1152 return 0;
1153 }
1154
1155 int
1156 PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
1157 {
1158 PyObject *s;
1159 int res;
1160
1161 if (Py_TYPE(v)->tp_setattr != NULL)
1162 return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w);
1163 s = PyString_InternFromString(name);
1164 if (s == NULL)
1165 return -1;
1166 res = PyObject_SetAttr(v, s, w);
1167 Py_XDECREF(s);
1168 return res;
1169 }
1170
1171 PyObject *
1172 PyObject_GetAttr(PyObject *v, PyObject *name)
1173 {
1174 PyTypeObject *tp = Py_TYPE(v);
1175
1176 if (!PyString_Check(name)) {
1177 #ifdef Py_USING_UNICODE
1178 /* The Unicode to string conversion is done here because the
1179 existing tp_getattro slots expect a string object as name
1180 and we wouldn't want to break those. */
1181 if (PyUnicode_Check(name)) {
1182 name = _PyUnicode_AsDefaultEncodedString(name, NULL);
1183 if (name == NULL)
1184 return NULL;
1185 }
1186 else
1187 #endif
1188 {
1189 PyErr_Format(PyExc_TypeError,
1190 "attribute name must be string, not '%.200s'",
1191 Py_TYPE(name)->tp_name);
1192 return NULL;
1193 }
1194 }
1195 if (tp->tp_getattro != NULL)
1196 return (*tp->tp_getattro)(v, name);
1197 if (tp->tp_getattr != NULL)
1198 return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
1199 PyErr_Format(PyExc_AttributeError,
1200 "'%.50s' object has no attribute '%.400s'",
1201 tp->tp_name, PyString_AS_STRING(name));
1202 return NULL;
1203 }
1204
1205 int
1206 PyObject_HasAttr(PyObject *v, PyObject *name)
1207 {
1208 PyObject *res = PyObject_GetAttr(v, name);
1209 if (res != NULL) {
1210 Py_DECREF(res);
1211 return 1;
1212 }
1213 PyErr_Clear();
1214 return 0;
1215 }
1216
1217 int
1218 PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
1219 {
1220 PyTypeObject *tp = Py_TYPE(v);
1221 int err;
1222
1223 if (!PyString_Check(name)){
1224 #ifdef Py_USING_UNICODE
1225 /* The Unicode to string conversion is done here because the
1226 existing tp_setattro slots expect a string object as name
1227 and we wouldn't want to break those. */
1228 if (PyUnicode_Check(name)) {
1229 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1230 if (name == NULL)
1231 return -1;
1232 }
1233 else
1234 #endif
1235 {
1236 PyErr_Format(PyExc_TypeError,
1237 "attribute name must be string, not '%.200s'",
1238 Py_TYPE(name)->tp_name);
1239 return -1;
1240 }
1241 }
1242 else
1243 Py_INCREF(name);
1244
1245 PyString_InternInPlace(&name);
1246 if (tp->tp_setattro != NULL) {
1247 err = (*tp->tp_setattro)(v, name, value);
1248 Py_DECREF(name);
1249 return err;
1250 }
1251 if (tp->tp_setattr != NULL) {
1252 err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
1253 Py_DECREF(name);
1254 return err;
1255 }
1256 Py_DECREF(name);
1257 if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
1258 PyErr_Format(PyExc_TypeError,
1259 "'%.100s' object has no attributes "
1260 "(%s .%.100s)",
1261 tp->tp_name,
1262 value==NULL ? "del" : "assign to",
1263 PyString_AS_STRING(name));
1264 else
1265 PyErr_Format(PyExc_TypeError,
1266 "'%.100s' object has only read-only attributes "
1267 "(%s .%.100s)",
1268 tp->tp_name,
1269 value==NULL ? "del" : "assign to",
1270 PyString_AS_STRING(name));
1271 return -1;
1272 }
1273
1274 /* Helper to get a pointer to an object's __dict__ slot, if any */
1275
1276 PyObject **
1277 _PyObject_GetDictPtr(PyObject *obj)
1278 {
1279 Py_ssize_t dictoffset;
1280 PyTypeObject *tp = Py_TYPE(obj);
1281
1282 if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
1283 return NULL;
1284 dictoffset = tp->tp_dictoffset;
1285 if (dictoffset == 0)
1286 return NULL;
1287 if (dictoffset < 0) {
1288 Py_ssize_t tsize;
1289 size_t size;
1290
1291 tsize = ((PyVarObject *)obj)->ob_size;
1292 if (tsize < 0)
1293 tsize = -tsize;
1294 size = _PyObject_VAR_SIZE(tp, tsize);
1295
1296 dictoffset += (long)size;
1297 assert(dictoffset > 0);
1298 assert(dictoffset % SIZEOF_VOID_P == 0);
1299 }
1300 return (PyObject **) ((char *)obj + dictoffset);
1301 }
1302
1303 PyObject *
1304 PyObject_SelfIter(PyObject *obj)
1305 {
1306 Py_INCREF(obj);
1307 return obj;
1308 }
1309
1310 /* Helper used when the __next__ method is removed from a type:
1311 tp_iternext is never NULL and can be safely called without checking
1312 on every iteration.
1313 */
1314
1315 PyObject *
1316 _PyObject_NextNotImplemented(PyObject *self)
1317 {
1318 PyErr_Format(PyExc_TypeError,
1319 "'%.200s' object is not iterable",
1320 Py_TYPE(self)->tp_name);
1321 return NULL;
1322 }
1323
1324 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1325
1326 PyObject *
1327 _PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict)
1328 {
1329 PyTypeObject *tp = Py_TYPE(obj);
1330 PyObject *descr = NULL;
1331 PyObject *res = NULL;
1332 descrgetfunc f;
1333 Py_ssize_t dictoffset;
1334 PyObject **dictptr;
1335
1336 if (!PyString_Check(name)){
1337 #ifdef Py_USING_UNICODE
1338 /* The Unicode to string conversion is done here because the
1339 existing tp_setattro slots expect a string object as name
1340 and we wouldn't want to break those. */
1341 if (PyUnicode_Check(name)) {
1342 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1343 if (name == NULL)
1344 return NULL;
1345 }
1346 else
1347 #endif
1348 {
1349 PyErr_Format(PyExc_TypeError,
1350 "attribute name must be string, not '%.200s'",
1351 Py_TYPE(name)->tp_name);
1352 return NULL;
1353 }
1354 }
1355 else
1356 Py_INCREF(name);
1357
1358 if (tp->tp_dict == NULL) {
1359 if (PyType_Ready(tp) < 0)
1360 goto done;
1361 }
1362
1363 #if 0 /* XXX this is not quite _PyType_Lookup anymore */
1364 /* Inline _PyType_Lookup */
1365 {
1366 Py_ssize_t i, n;
1367 PyObject *mro, *base, *dict;
1368
1369 /* Look in tp_dict of types in MRO */
1370 mro = tp->tp_mro;
1371 assert(mro != NULL);
1372 assert(PyTuple_Check(mro));
1373 n = PyTuple_GET_SIZE(mro);
1374 for (i = 0; i < n; i++) {
1375 base = PyTuple_GET_ITEM(mro, i);
1376 if (PyClass_Check(base))
1377 dict = ((PyClassObject *)base)->cl_dict;
1378 else {
1379 assert(PyType_Check(base));
1380 dict = ((PyTypeObject *)base)->tp_dict;
1381 }
1382 assert(dict && PyDict_Check(dict));
1383 descr = PyDict_GetItem(dict, name);
1384 if (descr != NULL)
1385 break;
1386 }
1387 }
1388 #else
1389 descr = _PyType_Lookup(tp, name);
1390 #endif
1391
1392 Py_XINCREF(descr);
1393
1394 f = NULL;
1395 if (descr != NULL &&
1396 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1397 f = descr->ob_type->tp_descr_get;
1398 if (f != NULL && PyDescr_IsData(descr)) {
1399 res = f(descr, obj, (PyObject *)obj->ob_type);
1400 Py_DECREF(descr);
1401 goto done;
1402 }
1403 }
1404
1405 if (dict == NULL) {
1406 /* Inline _PyObject_GetDictPtr */
1407 dictoffset = tp->tp_dictoffset;
1408 if (dictoffset != 0) {
1409 if (dictoffset < 0) {
1410 Py_ssize_t tsize;
1411 size_t size;
1412
1413 tsize = ((PyVarObject *)obj)->ob_size;
1414 if (tsize < 0)
1415 tsize = -tsize;
1416 size = _PyObject_VAR_SIZE(tp, tsize);
1417
1418 dictoffset += (long)size;
1419 assert(dictoffset > 0);
1420 assert(dictoffset % SIZEOF_VOID_P == 0);
1421 }
1422 dictptr = (PyObject **) ((char *)obj + dictoffset);
1423 dict = *dictptr;
1424 }
1425 }
1426 if (dict != NULL) {
1427 Py_INCREF(dict);
1428 res = PyDict_GetItem(dict, name);
1429 if (res != NULL) {
1430 Py_INCREF(res);
1431 Py_XDECREF(descr);
1432 Py_DECREF(dict);
1433 goto done;
1434 }
1435 Py_DECREF(dict);
1436 }
1437
1438 if (f != NULL) {
1439 res = f(descr, obj, (PyObject *)Py_TYPE(obj));
1440 Py_DECREF(descr);
1441 goto done;
1442 }
1443
1444 if (descr != NULL) {
1445 res = descr;
1446 /* descr was already increfed above */
1447 goto done;
1448 }
1449
1450 PyErr_Format(PyExc_AttributeError,
1451 "'%.50s' object has no attribute '%.400s'",
1452 tp->tp_name, PyString_AS_STRING(name));
1453 done:
1454 Py_DECREF(name);
1455 return res;
1456 }
1457
1458 PyObject *
1459 PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
1460 {
1461 return _PyObject_GenericGetAttrWithDict(obj, name, NULL);
1462 }
1463
1464 int
1465 _PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name,
1466 PyObject *value, PyObject *dict)
1467 {
1468 PyTypeObject *tp = Py_TYPE(obj);
1469 PyObject *descr;
1470 descrsetfunc f;
1471 PyObject **dictptr;
1472 int res = -1;
1473
1474 if (!PyString_Check(name)){
1475 #ifdef Py_USING_UNICODE
1476 /* The Unicode to string conversion is done here because the
1477 existing tp_setattro slots expect a string object as name
1478 and we wouldn't want to break those. */
1479 if (PyUnicode_Check(name)) {
1480 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1481 if (name == NULL)
1482 return -1;
1483 }
1484 else
1485 #endif
1486 {
1487 PyErr_Format(PyExc_TypeError,
1488 "attribute name must be string, not '%.200s'",
1489 Py_TYPE(name)->tp_name);
1490 return -1;
1491 }
1492 }
1493 else
1494 Py_INCREF(name);
1495
1496 if (tp->tp_dict == NULL) {
1497 if (PyType_Ready(tp) < 0)
1498 goto done;
1499 }
1500
1501 descr = _PyType_Lookup(tp, name);
1502 f = NULL;
1503 if (descr != NULL &&
1504 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1505 f = descr->ob_type->tp_descr_set;
1506 if (f != NULL && PyDescr_IsData(descr)) {
1507 res = f(descr, obj, value);
1508 goto done;
1509 }
1510 }
1511
1512 if (dict == NULL) {
1513 dictptr = _PyObject_GetDictPtr(obj);
1514 if (dictptr != NULL) {
1515 dict = *dictptr;
1516 if (dict == NULL && value != NULL) {
1517 dict = PyDict_New();
1518 if (dict == NULL)
1519 goto done;
1520 *dictptr = dict;
1521 }
1522 }
1523 }
1524 if (dict != NULL) {
1525 Py_INCREF(dict);
1526 if (value == NULL)
1527 res = PyDict_DelItem(dict, name);
1528 else
1529 res = PyDict_SetItem(dict, name, value);
1530 if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
1531 PyErr_SetObject(PyExc_AttributeError, name);
1532 Py_DECREF(dict);
1533 goto done;
1534 }
1535
1536 if (f != NULL) {
1537 res = f(descr, obj, value);
1538 goto done;
1539 }
1540
1541 if (descr == NULL) {
1542 PyErr_Format(PyExc_AttributeError,
1543 "'%.100s' object has no attribute '%.200s'",
1544 tp->tp_name, PyString_AS_STRING(name));
1545 goto done;
1546 }
1547
1548 PyErr_Format(PyExc_AttributeError,
1549 "'%.50s' object attribute '%.400s' is read-only",
1550 tp->tp_name, PyString_AS_STRING(name));
1551 done:
1552 Py_DECREF(name);
1553 return res;
1554 }
1555
1556 int
1557 PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
1558 {
1559 return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL);
1560 }
1561
1562
1563 /* Test a value used as condition, e.g., in a for or if statement.
1564 Return -1 if an error occurred */
1565
1566 int
1567 PyObject_IsTrue(PyObject *v)
1568 {
1569 Py_ssize_t res;
1570 if (v == Py_True)
1571 return 1;
1572 if (v == Py_False)
1573 return 0;
1574 if (v == Py_None)
1575 return 0;
1576 else if (v->ob_type->tp_as_number != NULL &&
1577 v->ob_type->tp_as_number->nb_nonzero != NULL)
1578 res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
1579 else if (v->ob_type->tp_as_mapping != NULL &&
1580 v->ob_type->tp_as_mapping->mp_length != NULL)
1581 res = (*v->ob_type->tp_as_mapping->mp_length)(v);
1582 else if (v->ob_type->tp_as_sequence != NULL &&
1583 v->ob_type->tp_as_sequence->sq_length != NULL)
1584 res = (*v->ob_type->tp_as_sequence->sq_length)(v);
1585 else
1586 return 1;
1587 /* if it is negative, it should be either -1 or -2 */
1588 return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
1589 }
1590
1591 /* equivalent of 'not v'
1592 Return -1 if an error occurred */
1593
1594 int
1595 PyObject_Not(PyObject *v)
1596 {
1597 int res;
1598 res = PyObject_IsTrue(v);
1599 if (res < 0)
1600 return res;
1601 return res == 0;
1602 }
1603
1604 /* Coerce two numeric types to the "larger" one.
1605 Increment the reference count on each argument.
1606 Return value:
1607 -1 if an error occurred;
1608 0 if the coercion succeeded (and then the reference counts are increased);
1609 1 if no coercion is possible (and no error is raised).
1610 */
1611 int
1612 PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
1613 {
1614 register PyObject *v = *pv;
1615 register PyObject *w = *pw;
1616 int res;
1617
1618 /* Shortcut only for old-style types */
1619 if (v->ob_type == w->ob_type &&
1620 !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES))
1621 {
1622 Py_INCREF(v);
1623 Py_INCREF(w);
1624 return 0;
1625 }
1626 if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
1627 res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
1628 if (res <= 0)
1629 return res;
1630 }
1631 if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
1632 res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
1633 if (res <= 0)
1634 return res;
1635 }
1636 return 1;
1637 }
1638
1639 /* Coerce two numeric types to the "larger" one.
1640 Increment the reference count on each argument.
1641 Return -1 and raise an exception if no coercion is possible
1642 (and then no reference count is incremented).
1643 */
1644 int
1645 PyNumber_Coerce(PyObject **pv, PyObject **pw)
1646 {
1647 int err = PyNumber_CoerceEx(pv, pw);
1648 if (err <= 0)
1649 return err;
1650 PyErr_SetString(PyExc_TypeError, "number coercion failed");
1651 return -1;
1652 }
1653
1654
1655 /* Test whether an object can be called */
1656
1657 int
1658 PyCallable_Check(PyObject *x)
1659 {
1660 if (x == NULL)
1661 return 0;
1662 if (PyInstance_Check(x)) {
1663 PyObject *call = PyObject_GetAttrString(x, "__call__");
1664 if (call == NULL) {
1665 PyErr_Clear();
1666 return 0;
1667 }
1668 /* Could test recursively but don't, for fear of endless
1669 recursion if some joker sets self.__call__ = self */
1670 Py_DECREF(call);
1671 return 1;
1672 }
1673 else {
1674 return x->ob_type->tp_call != NULL;
1675 }
1676 }
1677
1678 /* ------------------------- PyObject_Dir() helpers ------------------------- */
1679
1680 /* Helper for PyObject_Dir.
1681 Merge the __dict__ of aclass into dict, and recursively also all
1682 the __dict__s of aclass's base classes. The order of merging isn't
1683 defined, as it's expected that only the final set of dict keys is
1684 interesting.
1685 Return 0 on success, -1 on error.
1686 */
1687
1688 static int
1689 merge_class_dict(PyObject* dict, PyObject* aclass)
1690 {
1691 PyObject *classdict;
1692 PyObject *bases;
1693
1694 assert(PyDict_Check(dict));
1695 assert(aclass);
1696
1697 /* Merge in the type's dict (if any). */
1698 classdict = PyObject_GetAttrString(aclass, "__dict__");
1699 if (classdict == NULL)
1700 PyErr_Clear();
1701 else {
1702 int status = PyDict_Update(dict, classdict);
1703 Py_DECREF(classdict);
1704 if (status < 0)
1705 return -1;
1706 }
1707
1708 /* Recursively merge in the base types' (if any) dicts. */
1709 bases = PyObject_GetAttrString(aclass, "__bases__");
1710 if (bases == NULL)
1711 PyErr_Clear();
1712 else {
1713 /* We have no guarantee that bases is a real tuple */
1714 Py_ssize_t i, n;
1715 n = PySequence_Size(bases); /* This better be right */
1716 if (n < 0)
1717 PyErr_Clear();
1718 else {
1719 for (i = 0; i < n; i++) {
1720 int status;
1721 PyObject *base = PySequence_GetItem(bases, i);
1722 if (base == NULL) {
1723 Py_DECREF(bases);
1724 return -1;
1725 }
1726 status = merge_class_dict(dict, base);
1727 Py_DECREF(base);
1728 if (status < 0) {
1729 Py_DECREF(bases);
1730 return -1;
1731 }
1732 }
1733 }
1734 Py_DECREF(bases);
1735 }
1736 return 0;
1737 }
1738
1739 /* Helper for PyObject_Dir.
1740 If obj has an attr named attrname that's a list, merge its string
1741 elements into keys of dict.
1742 Return 0 on success, -1 on error. Errors due to not finding the attr,
1743 or the attr not being a list, are suppressed.
1744 */
1745
1746 static int
1747 merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname)
1748 {
1749 PyObject *list;
1750 int result = 0;
1751
1752 assert(PyDict_Check(dict));
1753 assert(obj);
1754 assert(attrname);
1755
1756 list = PyObject_GetAttrString(obj, attrname);
1757 if (list == NULL)
1758 PyErr_Clear();
1759
1760 else if (PyList_Check(list)) {
1761 int i;
1762 for (i = 0; i < PyList_GET_SIZE(list); ++i) {
1763 PyObject *item = PyList_GET_ITEM(list, i);
1764 if (PyString_Check(item)) {
1765 result = PyDict_SetItem(dict, item, Py_None);
1766 if (result < 0)
1767 break;
1768 }
1769 }
1770 if (Py_Py3kWarningFlag &&
1771 (strcmp(attrname, "__members__") == 0 ||
1772 strcmp(attrname, "__methods__") == 0)) {
1773 if (PyErr_WarnEx(PyExc_DeprecationWarning,
1774 "__members__ and __methods__ not "
1775 "supported in 3.x", 1) < 0) {
1776 Py_XDECREF(list);
1777 return -1;
1778 }
1779 }
1780 }
1781
1782 Py_XDECREF(list);
1783 return result;
1784 }
1785
1786 /* Helper for PyObject_Dir without arguments: returns the local scope. */
1787 static PyObject *
1788 _dir_locals(void)
1789 {
1790 PyObject *names;
1791 PyObject *locals = PyEval_GetLocals();
1792
1793 if (locals == NULL) {
1794 PyErr_SetString(PyExc_SystemError, "frame does not exist");
1795 return NULL;
1796 }
1797
1798 names = PyMapping_Keys(locals);
1799 if (!names)
1800 return NULL;
1801 if (!PyList_Check(names)) {
1802 PyErr_Format(PyExc_TypeError,
1803 "dir(): expected keys() of locals to be a list, "
1804 "not '%.200s'", Py_TYPE(names)->tp_name);
1805 Py_DECREF(names);
1806 return NULL;
1807 }
1808 /* the locals don't need to be DECREF'd */
1809 return names;
1810 }
1811
1812 /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1813 We deliberately don't suck up its __class__, as methods belonging to the
1814 metaclass would probably be more confusing than helpful.
1815 */
1816 static PyObject *
1817 _specialized_dir_type(PyObject *obj)
1818 {
1819 PyObject *result = NULL;
1820 PyObject *dict = PyDict_New();
1821
1822 if (dict != NULL && merge_class_dict(dict, obj) == 0)
1823 result = PyDict_Keys(dict);
1824
1825 Py_XDECREF(dict);
1826 return result;
1827 }
1828
1829 /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1830 static PyObject *
1831 _specialized_dir_module(PyObject *obj)
1832 {
1833 PyObject *result = NULL;
1834 PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
1835
1836 if (dict != NULL) {
1837 if (PyDict_Check(dict))
1838 result = PyDict_Keys(dict);
1839 else {
1840 char *name = PyModule_GetName(obj);
1841 if (name)
1842 PyErr_Format(PyExc_TypeError,
1843 "%.200s.__dict__ is not a dictionary",
1844 name);
1845 }
1846 }
1847
1848 Py_XDECREF(dict);
1849 return result;
1850 }
1851
1852 /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1853 and recursively up the __class__.__bases__ chain.
1854 */
1855 static PyObject *
1856 _generic_dir(PyObject *obj)
1857 {
1858 PyObject *result = NULL;
1859 PyObject *dict = NULL;
1860 PyObject *itsclass = NULL;
1861
1862 /* Get __dict__ (which may or may not be a real dict...) */
1863 dict = PyObject_GetAttrString(obj, "__dict__");
1864 if (dict == NULL) {
1865 PyErr_Clear();
1866 dict = PyDict_New();
1867 }
1868 else if (!PyDict_Check(dict)) {
1869 Py_DECREF(dict);
1870 dict = PyDict_New();
1871 }
1872 else {
1873 /* Copy __dict__ to avoid mutating it. */
1874 PyObject *temp = PyDict_Copy(dict);
1875 Py_DECREF(dict);
1876 dict = temp;
1877 }
1878
1879 if (dict == NULL)
1880 goto error;
1881
1882 /* Merge in __members__ and __methods__ (if any).
1883 * This is removed in Python 3000. */
1884 if (merge_list_attr(dict, obj, "__members__") < 0)
1885 goto error;
1886 if (merge_list_attr(dict, obj, "__methods__") < 0)
1887 goto error;
1888
1889 /* Merge in attrs reachable from its class. */
1890 itsclass = PyObject_GetAttrString(obj, "__class__");
1891 if (itsclass == NULL)
1892 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1893 __class__ exists? */
1894 PyErr_Clear();
1895 else {
1896 if (merge_class_dict(dict, itsclass) != 0)
1897 goto error;
1898 }
1899
1900 result = PyDict_Keys(dict);
1901 /* fall through */
1902 error:
1903 Py_XDECREF(itsclass);
1904 Py_XDECREF(dict);
1905 return result;
1906 }
1907
1908 /* Helper for PyObject_Dir: object introspection.
1909 This calls one of the above specialized versions if no __dir__ method
1910 exists. */
1911 static PyObject *
1912 _dir_object(PyObject *obj)
1913 {
1914 PyObject *result = NULL;
1915 static PyObject *dir_str = NULL;
1916 PyObject *dirfunc;
1917
1918 assert(obj);
1919 if (PyInstance_Check(obj)) {
1920 dirfunc = PyObject_GetAttrString(obj, "__dir__");
1921 if (dirfunc == NULL) {
1922 if (PyErr_ExceptionMatches(PyExc_AttributeError))
1923 PyErr_Clear();
1924 else
1925 return NULL;
1926 }
1927 }
1928 else {
1929 dirfunc = _PyObject_LookupSpecial(obj, "__dir__", &dir_str);
1930 if (PyErr_Occurred())
1931 return NULL;
1932 }
1933 if (dirfunc == NULL) {
1934 /* use default implementation */
1935 if (PyModule_Check(obj))
1936 result = _specialized_dir_module(obj);
1937 else if (PyType_Check(obj) || PyClass_Check(obj))
1938 result = _specialized_dir_type(obj);
1939 else
1940 result = _generic_dir(obj);
1941 }
1942 else {
1943 /* use __dir__ */
1944 result = PyObject_CallFunctionObjArgs(dirfunc, NULL);
1945 Py_DECREF(dirfunc);
1946 if (result == NULL)
1947 return NULL;
1948
1949 /* result must be a list */
1950 /* XXX(gbrandl): could also check if all items are strings */
1951 if (!PyList_Check(result)) {
1952 PyErr_Format(PyExc_TypeError,
1953 "__dir__() must return a list, not %.200s",
1954 Py_TYPE(result)->tp_name);
1955 Py_DECREF(result);
1956 result = NULL;
1957 }
1958 }
1959
1960 return result;
1961 }
1962
1963 /* Implementation of dir() -- if obj is NULL, returns the names in the current
1964 (local) scope. Otherwise, performs introspection of the object: returns a
1965 sorted list of attribute names (supposedly) accessible from the object
1966 */
1967 PyObject *
1968 PyObject_Dir(PyObject *obj)
1969 {
1970 PyObject * result;
1971
1972 if (obj == NULL)
1973 /* no object -- introspect the locals */
1974 result = _dir_locals();
1975 else
1976 /* object -- introspect the object */
1977 result = _dir_object(obj);
1978
1979 assert(result == NULL || PyList_Check(result));
1980
1981 if (result != NULL && PyList_Sort(result) != 0) {
1982 /* sorting the list failed */
1983 Py_DECREF(result);
1984 result = NULL;
1985 }
1986
1987 return result;
1988 }
1989
1990 /*
1991 NoObject is usable as a non-NULL undefined value, used by the macro None.
1992 There is (and should be!) no way to create other objects of this type,
1993 so there is exactly one (which is indestructible, by the way).
1994 (XXX This type and the type of NotImplemented below should be unified.)
1995 */
1996
1997 /* ARGSUSED */
1998 static PyObject *
1999 none_repr(PyObject *op)
2000 {
2001 return PyString_FromString("None");
2002 }
2003
2004 /* ARGUSED */
2005 static void
2006 none_dealloc(PyObject* ignore)
2007 {
2008 /* This should never get called, but we also don't want to SEGV if
2009 * we accidentally decref None out of existence.
2010 */
2011 Py_FatalError("deallocating None");
2012 }
2013
2014
2015 static PyTypeObject PyNone_Type = {
2016 PyVarObject_HEAD_INIT(&PyType_Type, 0)
2017 "NoneType",
2018 0,
2019 0,
2020 none_dealloc, /*tp_dealloc*/ /*never called*/
2021 0, /*tp_print*/
2022 0, /*tp_getattr*/
2023 0, /*tp_setattr*/
2024 0, /*tp_compare*/
2025 none_repr, /*tp_repr*/
2026 0, /*tp_as_number*/
2027 0, /*tp_as_sequence*/
2028 0, /*tp_as_mapping*/
2029 (hashfunc)_Py_HashPointer, /*tp_hash */
2030 };
2031
2032 PyObject _Py_NoneStruct = {
2033 _PyObject_EXTRA_INIT
2034 1, &PyNone_Type
2035 };
2036
2037 /* NotImplemented is an object that can be used to signal that an
2038 operation is not implemented for the given type combination. */
2039
2040 static PyObject *
2041 NotImplemented_repr(PyObject *op)
2042 {
2043 return PyString_FromString("NotImplemented");
2044 }
2045
2046 static PyTypeObject PyNotImplemented_Type = {
2047 PyVarObject_HEAD_INIT(&PyType_Type, 0)
2048 "NotImplementedType",
2049 0,
2050 0,
2051 none_dealloc, /*tp_dealloc*/ /*never called*/
2052 0, /*tp_print*/
2053 0, /*tp_getattr*/
2054 0, /*tp_setattr*/
2055 0, /*tp_compare*/
2056 NotImplemented_repr, /*tp_repr*/
2057 0, /*tp_as_number*/
2058 0, /*tp_as_sequence*/
2059 0, /*tp_as_mapping*/
2060 0, /*tp_hash */
2061 };
2062
2063 PyObject _Py_NotImplementedStruct = {
2064 _PyObject_EXTRA_INIT
2065 1, &PyNotImplemented_Type
2066 };
2067
2068 void
2069 _Py_ReadyTypes(void)
2070 {
2071 if (PyType_Ready(&PyType_Type) < 0)
2072 Py_FatalError("Can't initialize type type");
2073
2074 if (PyType_Ready(&_PyWeakref_RefType) < 0)
2075 Py_FatalError("Can't initialize weakref type");
2076
2077 if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0)
2078 Py_FatalError("Can't initialize callable weakref proxy type");
2079
2080 if (PyType_Ready(&_PyWeakref_ProxyType) < 0)
2081 Py_FatalError("Can't initialize weakref proxy type");
2082
2083 if (PyType_Ready(&PyBool_Type) < 0)
2084 Py_FatalError("Can't initialize bool type");
2085
2086 if (PyType_Ready(&PyString_Type) < 0)
2087 Py_FatalError("Can't initialize str type");
2088
2089 if (PyType_Ready(&PyByteArray_Type) < 0)
2090 Py_FatalError("Can't initialize bytearray type");
2091
2092 if (PyType_Ready(&PyList_Type) < 0)
2093 Py_FatalError("Can't initialize list type");
2094
2095 if (PyType_Ready(&PyNone_Type) < 0)
2096 Py_FatalError("Can't initialize None type");
2097
2098 if (PyType_Ready(&PyNotImplemented_Type) < 0)
2099 Py_FatalError("Can't initialize NotImplemented type");
2100
2101 if (PyType_Ready(&PyTraceBack_Type) < 0)
2102 Py_FatalError("Can't initialize traceback type");
2103
2104 if (PyType_Ready(&PySuper_Type) < 0)
2105 Py_FatalError("Can't initialize super type");
2106
2107 if (PyType_Ready(&PyBaseObject_Type) < 0)
2108 Py_FatalError("Can't initialize object type");
2109
2110 if (PyType_Ready(&PyRange_Type) < 0)
2111 Py_FatalError("Can't initialize xrange type");
2112
2113 if (PyType_Ready(&PyDict_Type) < 0)
2114 Py_FatalError("Can't initialize dict type");
2115
2116 if (PyType_Ready(&PySet_Type) < 0)
2117 Py_FatalError("Can't initialize set type");
2118
2119 #ifdef Py_USING_UNICODE
2120 if (PyType_Ready(&PyUnicode_Type) < 0)
2121 Py_FatalError("Can't initialize unicode type");
2122 #endif
2123
2124 if (PyType_Ready(&PySlice_Type) < 0)
2125 Py_FatalError("Can't initialize slice type");
2126
2127 if (PyType_Ready(&PyStaticMethod_Type) < 0)
2128 Py_FatalError("Can't initialize static method type");
2129
2130 #ifndef WITHOUT_COMPLEX
2131 if (PyType_Ready(&PyComplex_Type) < 0)
2132 Py_FatalError("Can't initialize complex type");
2133 #endif
2134
2135 if (PyType_Ready(&PyFloat_Type) < 0)
2136 Py_FatalError("Can't initialize float type");
2137
2138 if (PyType_Ready(&PyBuffer_Type) < 0)
2139 Py_FatalError("Can't initialize buffer type");
2140
2141 if (PyType_Ready(&PyLong_Type) < 0)
2142 Py_FatalError("Can't initialize long type");
2143
2144 if (PyType_Ready(&PyInt_Type) < 0)
2145 Py_FatalError("Can't initialize int type");
2146
2147 if (PyType_Ready(&PyFrozenSet_Type) < 0)
2148 Py_FatalError("Can't initialize frozenset type");
2149
2150 if (PyType_Ready(&PyProperty_Type) < 0)
2151 Py_FatalError("Can't initialize property type");
2152
2153 if (PyType_Ready(&PyMemoryView_Type) < 0)
2154 Py_FatalError("Can't initialize memoryview type");
2155
2156 if (PyType_Ready(&PyTuple_Type) < 0)
2157 Py_FatalError("Can't initialize tuple type");
2158
2159 if (PyType_Ready(&PyEnum_Type) < 0)
2160 Py_FatalError("Can't initialize enumerate type");
2161
2162 if (PyType_Ready(&PyReversed_Type) < 0)
2163 Py_FatalError("Can't initialize reversed type");
2164
2165 if (PyType_Ready(&PyCode_Type) < 0)
2166 Py_FatalError("Can't initialize code type");
2167
2168 if (PyType_Ready(&PyFrame_Type) < 0)
2169 Py_FatalError("Can't initialize frame type");
2170
2171 if (PyType_Ready(&PyCFunction_Type) < 0)
2172 Py_FatalError("Can't initialize builtin function type");
2173
2174 if (PyType_Ready(&PyMethod_Type) < 0)
2175 Py_FatalError("Can't initialize method type");
2176
2177 if (PyType_Ready(&PyFunction_Type) < 0)
2178 Py_FatalError("Can't initialize function type");
2179
2180 if (PyType_Ready(&PyClass_Type) < 0)
2181 Py_FatalError("Can't initialize class type");
2182
2183 if (PyType_Ready(&PyDictProxy_Type) < 0)
2184 Py_FatalError("Can't initialize dict proxy type");
2185
2186 if (PyType_Ready(&PyGen_Type) < 0)
2187 Py_FatalError("Can't initialize generator type");
2188
2189 if (PyType_Ready(&PyGetSetDescr_Type) < 0)
2190 Py_FatalError("Can't initialize get-set descriptor type");
2191
2192 if (PyType_Ready(&PyWrapperDescr_Type) < 0)
2193 Py_FatalError("Can't initialize wrapper type");
2194
2195 if (PyType_Ready(&PyInstance_Type) < 0)
2196 Py_FatalError("Can't initialize instance type");
2197
2198 if (PyType_Ready(&PyEllipsis_Type) < 0)
2199 Py_FatalError("Can't initialize ellipsis type");
2200
2201 if (PyType_Ready(&PyMemberDescr_Type) < 0)
2202 Py_FatalError("Can't initialize member descriptor type");
2203
2204 if (PyType_Ready(&PyFile_Type) < 0)
2205 Py_FatalError("Can't initialize file type");
2206
2207 if (PyType_Ready(&PyCapsule_Type) < 0)
2208 Py_FatalError("Can't initialize capsule type");
2209
2210 if (PyType_Ready(&PyCell_Type) < 0)
2211 Py_FatalError("Can't initialize cell type");
2212
2213 if (PyType_Ready(&PyCallIter_Type) < 0)
2214 Py_FatalError("Can't initialize call iter type");
2215
2216 if (PyType_Ready(&PySeqIter_Type) < 0)
2217 Py_FatalError("Can't initialize sequence iterator type");
2218 }
2219
2220
2221 #ifdef Py_TRACE_REFS
2222
2223 void
2224 _Py_NewReference(PyObject *op)
2225 {
2226 _Py_INC_REFTOTAL;
2227 op->ob_refcnt = 1;
2228 _Py_AddToAllObjects(op, 1);
2229 _Py_INC_TPALLOCS(op);
2230 }
2231
2232 void
2233 _Py_ForgetReference(register PyObject *op)
2234 {
2235 #ifdef SLOW_UNREF_CHECK
2236 register PyObject *p;
2237 #endif
2238 if (op->ob_refcnt < 0)
2239 Py_FatalError("UNREF negative refcnt");
2240 if (op == &refchain ||
2241 op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
2242 Py_FatalError("UNREF invalid object");
2243 #ifdef SLOW_UNREF_CHECK
2244 for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
2245 if (p == op)
2246 break;
2247 }
2248 if (p == &refchain) /* Not found */
2249 Py_FatalError("UNREF unknown object");
2250 #endif
2251 op->_ob_next->_ob_prev = op->_ob_prev;
2252 op->_ob_prev->_ob_next = op->_ob_next;
2253 op->_ob_next = op->_ob_prev = NULL;
2254 _Py_INC_TPFREES(op);
2255 }
2256
2257 void
2258 _Py_Dealloc(PyObject *op)
2259 {
2260 destructor dealloc = Py_TYPE(op)->tp_dealloc;
2261 _Py_ForgetReference(op);
2262 (*dealloc)(op);
2263 }
2264
2265 /* Print all live objects. Because PyObject_Print is called, the
2266 * interpreter must be in a healthy state.
2267 */
2268 void
2269 _Py_PrintReferences(FILE *fp)
2270 {
2271 PyObject *op;
2272 fprintf(fp, "Remaining objects:\n");
2273 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
2274 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
2275 if (PyObject_Print(op, fp, 0) != 0)
2276 PyErr_Clear();
2277 putc('\n', fp);
2278 }
2279 }
2280
2281 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
2282 * doesn't make any calls to the Python C API, so is always safe to call.
2283 */
2284 void
2285 _Py_PrintReferenceAddresses(FILE *fp)
2286 {
2287 PyObject *op;
2288 fprintf(fp, "Remaining object addresses:\n");
2289 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
2290 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
2291 op->ob_refcnt, Py_TYPE(op)->tp_name);
2292 }
2293
2294 PyObject *
2295 _Py_GetObjects(PyObject *self, PyObject *args)
2296 {
2297 int i, n;
2298 PyObject *t = NULL;
2299 PyObject *res, *op;
2300
2301 if (!PyArg_ParseTuple(args, "i|O", &n, &t))
2302 return NULL;
2303 op = refchain._ob_next;
2304 res = PyList_New(0);
2305 if (res == NULL)
2306 return NULL;
2307 for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
2308 while (op == self || op == args || op == res || op == t ||
2309 (t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) {
2310 op = op->_ob_next;
2311 if (op == &refchain)
2312 return res;
2313 }
2314 if (PyList_Append(res, op) < 0) {
2315 Py_DECREF(res);
2316 return NULL;
2317 }
2318 op = op->_ob_next;
2319 }
2320 return res;
2321 }
2322
2323 #endif
2324
2325
2326 /* Hack to force loading of capsule.o */
2327 PyTypeObject *_Py_capsule_hack = &PyCapsule_Type;
2328
2329
2330 /* Hack to force loading of cobject.o */
2331 PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
2332
2333
2334 /* Hack to force loading of abstract.o */
2335 Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
2336
2337
2338 /* Python's malloc wrappers (see pymem.h) */
2339
2340 void *
2341 PyMem_Malloc(size_t nbytes)
2342 {
2343 return PyMem_MALLOC(nbytes);
2344 }
2345
2346 void *
2347 PyMem_Realloc(void *p, size_t nbytes)
2348 {
2349 return PyMem_REALLOC(p, nbytes);
2350 }
2351
2352 void
2353 PyMem_Free(void *p)
2354 {
2355 PyMem_FREE(p);
2356 }
2357
2358
2359 /* These methods are used to control infinite recursion in repr, str, print,
2360 etc. Container objects that may recursively contain themselves,
2361 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
2362 Py_ReprLeave() to avoid infinite recursion.
2363
2364 Py_ReprEnter() returns 0 the first time it is called for a particular
2365 object and 1 every time thereafter. It returns -1 if an exception
2366 occurred. Py_ReprLeave() has no return value.
2367
2368 See dictobject.c and listobject.c for examples of use.
2369 */
2370
2371 #define KEY "Py_Repr"
2372
2373 int
2374 Py_ReprEnter(PyObject *obj)
2375 {
2376 PyObject *dict;
2377 PyObject *list;
2378 Py_ssize_t i;
2379
2380 dict = PyThreadState_GetDict();
2381 if (dict == NULL)
2382 return 0;
2383 list = PyDict_GetItemString(dict, KEY);
2384 if (list == NULL) {
2385 list = PyList_New(0);
2386 if (list == NULL)
2387 return -1;
2388 if (PyDict_SetItemString(dict, KEY, list) < 0)
2389 return -1;
2390 Py_DECREF(list);
2391 }
2392 i = PyList_GET_SIZE(list);
2393 while (--i >= 0) {
2394 if (PyList_GET_ITEM(list, i) == obj)
2395 return 1;
2396 }
2397 PyList_Append(list, obj);
2398 return 0;
2399 }
2400
2401 void
2402 Py_ReprLeave(PyObject *obj)
2403 {
2404 PyObject *dict;
2405 PyObject *list;
2406 Py_ssize_t i;
2407
2408 dict = PyThreadState_GetDict();
2409 if (dict == NULL)
2410 return;
2411 list = PyDict_GetItemString(dict, KEY);
2412 if (list == NULL || !PyList_Check(list))
2413 return;
2414 i = PyList_GET_SIZE(list);
2415 /* Count backwards because we always expect obj to be list[-1] */
2416 while (--i >= 0) {
2417 if (PyList_GET_ITEM(list, i) == obj) {
2418 PyList_SetSlice(list, i, i + 1, NULL);
2419 break;
2420 }
2421 }
2422 }
2423
2424 /* Trashcan support. */
2425
2426 /* Current call-stack depth of tp_dealloc calls. */
2427 int _PyTrash_delete_nesting = 0;
2428
2429 /* List of objects that still need to be cleaned up, singly linked via their
2430 * gc headers' gc_prev pointers.
2431 */
2432 PyObject *_PyTrash_delete_later = NULL;
2433
2434 /* Add op to the _PyTrash_delete_later list. Called when the current
2435 * call-stack depth gets large. op must be a currently untracked gc'ed
2436 * object, with refcount 0. Py_DECREF must already have been called on it.
2437 */
2438 void
2439 _PyTrash_deposit_object(PyObject *op)
2440 {
2441 assert(PyObject_IS_GC(op));
2442 assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
2443 assert(op->ob_refcnt == 0);
2444 _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
2445 _PyTrash_delete_later = op;
2446 }
2447
2448 /* The equivalent API, using per-thread state recursion info */
2449 void
2450 _PyTrash_thread_deposit_object(PyObject *op)
2451 {
2452 PyThreadState *tstate = PyThreadState_GET();
2453 assert(PyObject_IS_GC(op));
2454 assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
2455 assert(op->ob_refcnt == 0);
2456 _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *) tstate->trash_delete_later;
2457 tstate->trash_delete_later = op;
2458 }
2459
2460 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
2461 * the call-stack unwinds again.
2462 */
2463 void
2464 _PyTrash_destroy_chain(void)
2465 {
2466 while (_PyTrash_delete_later) {
2467 PyObject *op = _PyTrash_delete_later;
2468 destructor dealloc = Py_TYPE(op)->tp_dealloc;
2469
2470 _PyTrash_delete_later =
2471 (PyObject*) _Py_AS_GC(op)->gc.gc_prev;
2472
2473 /* Call the deallocator directly. This used to try to
2474 * fool Py_DECREF into calling it indirectly, but
2475 * Py_DECREF was already called on this object, and in
2476 * assorted non-release builds calling Py_DECREF again ends
2477 * up distorting allocation statistics.
2478 */
2479 assert(op->ob_refcnt == 0);
2480 ++_PyTrash_delete_nesting;
2481 (*dealloc)(op);
2482 --_PyTrash_delete_nesting;
2483 }
2484 }
2485
2486 /* The equivalent API, using per-thread state recursion info */
2487 void
2488 _PyTrash_thread_destroy_chain(void)
2489 {
2490 PyThreadState *tstate = PyThreadState_GET();
2491 while (tstate->trash_delete_later) {
2492 PyObject *op = tstate->trash_delete_later;
2493 destructor dealloc = Py_TYPE(op)->tp_dealloc;
2494
2495 tstate->trash_delete_later =
2496 (PyObject*) _Py_AS_GC(op)->gc.gc_prev;
2497
2498 /* Call the deallocator directly. This used to try to
2499 * fool Py_DECREF into calling it indirectly, but
2500 * Py_DECREF was already called on this object, and in
2501 * assorted non-release builds calling Py_DECREF again ends
2502 * up distorting allocation statistics.
2503 */
2504 assert(op->ob_refcnt == 0);
2505 ++tstate->trash_delete_nesting;
2506 (*dealloc)(op);
2507 --tstate->trash_delete_nesting;
2508 }
2509 }
2510
2511 #ifdef __cplusplus
2512 }
2513 #endif