]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
memory.h: Improve IOMMU related documentation
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
2ce16640
DDAG
102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106#define RAM_UF_ZEROPAGE (1 << 3)
e2eef170 107#endif
9fa3e853 108
20bccb82
PM
109#ifdef TARGET_PAGE_BITS_VARY
110int target_page_bits;
111bool target_page_bits_decided;
112#endif
113
bdc44640 114struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
f240eb6f 117__thread CPUState *current_cpu;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef 120 2 = Adaptive rate instruction counting. */
5708fc66 121int use_icount;
6a00d601 122
a0be0c58
YZ
123uintptr_t qemu_host_page_size;
124intptr_t qemu_host_page_mask;
a0be0c58 125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
729633c2 190 MemoryRegionSection *mru_section;
1db8abb1
PB
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
193 */
194 PhysPageEntry phys_map;
53cb28cb 195 PhysPageMap map;
1db8abb1
PB
196};
197
90260c6c
JK
198#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199typedef struct subpage_t {
200 MemoryRegion iomem;
16620684 201 FlatView *fv;
90260c6c 202 hwaddr base;
2615fabd 203 uint16_t sub_section[];
90260c6c
JK
204} subpage_t;
205
b41aac4f
LPF
206#define PHYS_SECTION_UNASSIGNED 0
207#define PHYS_SECTION_NOTDIRTY 1
208#define PHYS_SECTION_ROM 2
209#define PHYS_SECTION_WATCH 3
5312bd8b 210
e2eef170 211static void io_mem_init(void);
62152b8a 212static void memory_map_init(void);
09daed84 213static void tcg_commit(MemoryListener *listener);
e2eef170 214
1ec9b909 215static MemoryRegion io_mem_watch;
32857f4d
PM
216
217/**
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
223 */
224struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
229};
230
8deaf12c
GH
231struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
235};
236
6658ffb8 237#endif
fd6ce8f6 238
6d9a1304 239#if !defined(CONFIG_USER_ONLY)
d6f2ea22 240
53cb28cb 241static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 242{
101420b8 243 static unsigned alloc_hint = 16;
53cb28cb 244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 248 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 249 }
f7bf5461
AK
250}
251
db94604b 252static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
253{
254 unsigned i;
8b795765 255 uint32_t ret;
db94604b
PB
256 PhysPageEntry e;
257 PhysPageEntry *p;
f7bf5461 258
53cb28cb 259 ret = map->nodes_nb++;
db94604b 260 p = map->nodes[ret];
f7bf5461 261 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 262 assert(ret != map->nodes_nb_alloc);
db94604b
PB
263
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 266 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 267 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 268 }
f7bf5461 269 return ret;
d6f2ea22
AK
270}
271
53cb28cb
MA
272static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 274 int level)
f7bf5461
AK
275{
276 PhysPageEntry *p;
03f49957 277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 278
9736e55b 279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 280 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 281 }
db94604b 282 p = map->nodes[lp->ptr];
03f49957 283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 284
03f49957 285 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 286 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 287 lp->skip = 0;
c19e8800 288 lp->ptr = leaf;
07f07b31
AK
289 *index += step;
290 *nb -= step;
2999097b 291 } else {
53cb28cb 292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
293 }
294 ++lp;
f7bf5461
AK
295 }
296}
297
ac1970fb 298static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 299 hwaddr index, hwaddr nb,
2999097b 300 uint16_t leaf)
f7bf5461 301{
2999097b 302 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 304
53cb28cb 305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
306}
307
b35ba30f
MT
308/* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
310 */
efee678d 311static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
312{
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
317
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
320 }
321
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
326 }
327
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
efee678d 331 phys_page_compact(&p[i], nodes);
b35ba30f
MT
332 }
333 }
334
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
338 }
339
340 assert(valid_ptr < P_L2_SIZE);
341
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
345 }
346
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
354 */
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
358 }
359}
360
8629d3fc 361void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 362{
b35ba30f 363 if (d->phys_map.skip) {
efee678d 364 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
365 }
366}
367
29cb533d
FZ
368static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
370{
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
373 */
258dfaaa 374 return int128_gethi(section->size) ||
29cb533d 375 range_covers_byte(section->offset_within_address_space,
258dfaaa 376 int128_getlo(section->size), addr);
29cb533d
FZ
377}
378
003a0cf2 379static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 380{
003a0cf2
PX
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
97115a8d 384 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 385 int i;
f1f6e3b8 386
9736e55b 387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 389 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 390 }
9affd6fc 391 p = nodes[lp.ptr];
03f49957 392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 393 }
b35ba30f 394
29cb533d 395 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
399 }
f3705d53
AK
400}
401
e5548617
BS
402bool memory_region_is_unassigned(MemoryRegion *mr)
403{
2a8e7499 404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 405 && mr != &io_mem_watch;
fd6ce8f6 406}
149f54b5 407
79e2b9ae 408/* Called from RCU critical section */
c7086b4a 409static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
410 hwaddr addr,
411 bool resolve_subpage)
9f029603 412{
729633c2 413 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
414 subpage_t *subpage;
415
07c114bb
PB
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
003a0cf2 418 section = phys_page_find(d, addr);
07c114bb 419 atomic_set(&d->mru_section, section);
729633c2 420 }
90260c6c
JK
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
424 }
425 return section;
9f029603
JK
426}
427
79e2b9ae 428/* Called from RCU critical section */
90260c6c 429static MemoryRegionSection *
c7086b4a 430address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 431 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
432{
433 MemoryRegionSection *section;
965eb2fc 434 MemoryRegion *mr;
a87f3954 435 Int128 diff;
149f54b5 436
c7086b4a 437 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
440
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
443
965eb2fc 444 mr = section->mr;
b242e0e0
PB
445
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
452 *
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
456 */
965eb2fc 457 if (memory_region_is_ram(mr)) {
e4a511f8 458 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
460 }
149f54b5
PB
461 return section;
462}
90260c6c 463
a411c84b
PB
464/**
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
467 *
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
473 * cannot be %NULL.
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
481 *
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
484 */
485static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as)
492{
493 MemoryRegionSection *section;
494 hwaddr page_mask = (hwaddr)-1;
495
496 do {
497 hwaddr addr = *xlat;
498 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
499 IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
500 IOMMU_WO : IOMMU_RO);
501
502 if (!(iotlb.perm & (1 << is_write))) {
503 goto unassigned;
504 }
505
506 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
507 | (addr & iotlb.addr_mask));
508 page_mask &= iotlb.addr_mask;
509 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
510 *target_as = iotlb.target_as;
511
512 section = address_space_translate_internal(
513 address_space_to_dispatch(iotlb.target_as), addr, xlat,
514 plen_out, is_mmio);
515
516 iommu_mr = memory_region_get_iommu(section->mr);
517 } while (unlikely(iommu_mr));
518
519 if (page_mask_out) {
520 *page_mask_out = page_mask;
521 }
522 return *section;
523
524unassigned:
525 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
526}
527
d5e5fafd
PX
528/**
529 * flatview_do_translate - translate an address in FlatView
530 *
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
534 * cannot be @NULL.
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 543 * @target_as: the address space targeted by the IOMMU
d5e5fafd
PX
544 *
545 * This function is called from RCU critical section
546 */
16620684
AK
547static MemoryRegionSection flatview_do_translate(FlatView *fv,
548 hwaddr addr,
549 hwaddr *xlat,
d5e5fafd
PX
550 hwaddr *plen_out,
551 hwaddr *page_mask_out,
16620684
AK
552 bool is_write,
553 bool is_mmio,
554 AddressSpace **target_as)
052c8fa9 555{
052c8fa9 556 MemoryRegionSection *section;
3df9d748 557 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
558 hwaddr plen = (hwaddr)(-1);
559
ad2804d9
PB
560 if (!plen_out) {
561 plen_out = &plen;
d5e5fafd 562 }
052c8fa9 563
a411c84b
PB
564 section = address_space_translate_internal(
565 flatview_to_dispatch(fv), addr, xlat,
566 plen_out, is_mmio);
052c8fa9 567
a411c84b
PB
568 iommu_mr = memory_region_get_iommu(section->mr);
569 if (unlikely(iommu_mr)) {
570 return address_space_translate_iommu(iommu_mr, xlat,
571 plen_out, page_mask_out,
572 is_write, is_mmio,
573 target_as);
052c8fa9 574 }
d5e5fafd 575 if (page_mask_out) {
a411c84b
PB
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
578 }
579
a764040c 580 return *section;
052c8fa9
JW
581}
582
583/* Called from RCU critical section */
a764040c
PX
584IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
585 bool is_write)
90260c6c 586{
a764040c 587 MemoryRegionSection section;
076a93d7 588 hwaddr xlat, page_mask;
30951157 589
076a93d7
PX
590 /*
591 * This can never be MMIO, and we don't really care about plen,
592 * but page mask.
593 */
594 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
595 NULL, &page_mask, is_write, false, &as);
30951157 596
a764040c
PX
597 /* Illegal translation */
598 if (section.mr == &io_mem_unassigned) {
599 goto iotlb_fail;
600 }
30951157 601
a764040c
PX
602 /* Convert memory region offset into address space offset */
603 xlat += section.offset_within_address_space -
604 section.offset_within_region;
605
a764040c 606 return (IOMMUTLBEntry) {
e76bb18f 607 .target_as = as,
076a93d7
PX
608 .iova = addr & ~page_mask,
609 .translated_addr = xlat & ~page_mask,
610 .addr_mask = page_mask,
a764040c
PX
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
612 .perm = IOMMU_RW,
613 };
614
615iotlb_fail:
616 return (IOMMUTLBEntry) {0};
617}
618
619/* Called from RCU critical section */
16620684
AK
620MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
621 hwaddr *plen, bool is_write)
a764040c
PX
622{
623 MemoryRegion *mr;
624 MemoryRegionSection section;
16620684 625 AddressSpace *as = NULL;
a764040c
PX
626
627 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
628 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
629 is_write, true, &as);
a764040c
PX
630 mr = section.mr;
631
fe680d0d 632 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 633 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 634 *plen = MIN(page, *plen);
a87f3954
PB
635 }
636
30951157 637 return mr;
90260c6c
JK
638}
639
79e2b9ae 640/* Called from RCU critical section */
90260c6c 641MemoryRegionSection *
d7898cda 642address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 643 hwaddr *xlat, hwaddr *plen)
90260c6c 644{
30951157 645 MemoryRegionSection *section;
f35e44e7 646 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
647
648 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 649
3df9d748 650 assert(!memory_region_is_iommu(section->mr));
30951157 651 return section;
90260c6c 652}
5b6dd868 653#endif
fd6ce8f6 654
b170fce3 655#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
656
657static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 658{
259186a7 659 CPUState *cpu = opaque;
a513fe19 660
5b6dd868
BS
661 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
662 version_id is increased. */
259186a7 663 cpu->interrupt_request &= ~0x01;
d10eb08f 664 tlb_flush(cpu);
5b6dd868 665
15a356c4
PD
666 /* loadvm has just updated the content of RAM, bypassing the
667 * usual mechanisms that ensure we flush TBs for writes to
668 * memory we've translated code from. So we must flush all TBs,
669 * which will now be stale.
670 */
671 tb_flush(cpu);
672
5b6dd868 673 return 0;
a513fe19 674}
7501267e 675
6c3bff0e
PD
676static int cpu_common_pre_load(void *opaque)
677{
678 CPUState *cpu = opaque;
679
adee6424 680 cpu->exception_index = -1;
6c3bff0e
PD
681
682 return 0;
683}
684
685static bool cpu_common_exception_index_needed(void *opaque)
686{
687 CPUState *cpu = opaque;
688
adee6424 689 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
690}
691
692static const VMStateDescription vmstate_cpu_common_exception_index = {
693 .name = "cpu_common/exception_index",
694 .version_id = 1,
695 .minimum_version_id = 1,
5cd8cada 696 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
697 .fields = (VMStateField[]) {
698 VMSTATE_INT32(exception_index, CPUState),
699 VMSTATE_END_OF_LIST()
700 }
701};
702
bac05aa9
AS
703static bool cpu_common_crash_occurred_needed(void *opaque)
704{
705 CPUState *cpu = opaque;
706
707 return cpu->crash_occurred;
708}
709
710static const VMStateDescription vmstate_cpu_common_crash_occurred = {
711 .name = "cpu_common/crash_occurred",
712 .version_id = 1,
713 .minimum_version_id = 1,
714 .needed = cpu_common_crash_occurred_needed,
715 .fields = (VMStateField[]) {
716 VMSTATE_BOOL(crash_occurred, CPUState),
717 VMSTATE_END_OF_LIST()
718 }
719};
720
1a1562f5 721const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
722 .name = "cpu_common",
723 .version_id = 1,
724 .minimum_version_id = 1,
6c3bff0e 725 .pre_load = cpu_common_pre_load,
5b6dd868 726 .post_load = cpu_common_post_load,
35d08458 727 .fields = (VMStateField[]) {
259186a7
AF
728 VMSTATE_UINT32(halted, CPUState),
729 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 730 VMSTATE_END_OF_LIST()
6c3bff0e 731 },
5cd8cada
JQ
732 .subsections = (const VMStateDescription*[]) {
733 &vmstate_cpu_common_exception_index,
bac05aa9 734 &vmstate_cpu_common_crash_occurred,
5cd8cada 735 NULL
5b6dd868
BS
736 }
737};
1a1562f5 738
5b6dd868 739#endif
ea041c0e 740
38d8f5c8 741CPUState *qemu_get_cpu(int index)
ea041c0e 742{
bdc44640 743 CPUState *cpu;
ea041c0e 744
bdc44640 745 CPU_FOREACH(cpu) {
55e5c285 746 if (cpu->cpu_index == index) {
bdc44640 747 return cpu;
55e5c285 748 }
ea041c0e 749 }
5b6dd868 750
bdc44640 751 return NULL;
ea041c0e
FB
752}
753
09daed84 754#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
755void cpu_address_space_init(CPUState *cpu, int asidx,
756 const char *prefix, MemoryRegion *mr)
09daed84 757{
12ebc9a7 758 CPUAddressSpace *newas;
80ceb07a 759 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 760 char *as_name;
80ceb07a
PX
761
762 assert(mr);
87a621d8
PX
763 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
764 address_space_init(as, mr, as_name);
765 g_free(as_name);
12ebc9a7
PM
766
767 /* Target code should have set num_ases before calling us */
768 assert(asidx < cpu->num_ases);
769
56943e8c
PM
770 if (asidx == 0) {
771 /* address space 0 gets the convenience alias */
772 cpu->as = as;
773 }
774
12ebc9a7
PM
775 /* KVM cannot currently support multiple address spaces. */
776 assert(asidx == 0 || !kvm_enabled());
09daed84 777
12ebc9a7
PM
778 if (!cpu->cpu_ases) {
779 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 780 }
32857f4d 781
12ebc9a7
PM
782 newas = &cpu->cpu_ases[asidx];
783 newas->cpu = cpu;
784 newas->as = as;
56943e8c 785 if (tcg_enabled()) {
12ebc9a7
PM
786 newas->tcg_as_listener.commit = tcg_commit;
787 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 788 }
09daed84 789}
651a5bc0
PM
790
791AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
792{
793 /* Return the AddressSpace corresponding to the specified index */
794 return cpu->cpu_ases[asidx].as;
795}
09daed84
EI
796#endif
797
7bbc124e 798void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 799{
9dfeca7c
BR
800 CPUClass *cc = CPU_GET_CLASS(cpu);
801
267f685b 802 cpu_list_remove(cpu);
9dfeca7c
BR
803
804 if (cc->vmsd != NULL) {
805 vmstate_unregister(NULL, cc->vmsd, cpu);
806 }
807 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
808 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
809 }
1c59eb39
BR
810}
811
c7e002c5
FZ
812Property cpu_common_props[] = {
813#ifndef CONFIG_USER_ONLY
814 /* Create a memory property for softmmu CPU object,
815 * so users can wire up its memory. (This can't go in qom/cpu.c
816 * because that file is compiled only once for both user-mode
817 * and system builds.) The default if no link is set up is to use
818 * the system address space.
819 */
820 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
821 MemoryRegion *),
822#endif
823 DEFINE_PROP_END_OF_LIST(),
824};
825
39e329e3 826void cpu_exec_initfn(CPUState *cpu)
ea041c0e 827{
56943e8c 828 cpu->as = NULL;
12ebc9a7 829 cpu->num_ases = 0;
56943e8c 830
291135b5 831#ifndef CONFIG_USER_ONLY
291135b5 832 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
833 cpu->memory = system_memory;
834 object_ref(OBJECT(cpu->memory));
291135b5 835#endif
39e329e3
LV
836}
837
ce5b1bbf 838void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 839{
55c3ceef 840 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 841 static bool tcg_target_initialized;
291135b5 842
267f685b 843 cpu_list_add(cpu);
1bc7e522 844
2dda6354
EC
845 if (tcg_enabled() && !tcg_target_initialized) {
846 tcg_target_initialized = true;
55c3ceef
RH
847 cc->tcg_initialize();
848 }
849
1bc7e522 850#ifndef CONFIG_USER_ONLY
e0d47944 851 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 852 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 853 }
b170fce3 854 if (cc->vmsd != NULL) {
741da0d3 855 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 856 }
741da0d3 857#endif
ea041c0e
FB
858}
859
2278b939
IM
860const char *parse_cpu_model(const char *cpu_model)
861{
862 ObjectClass *oc;
863 CPUClass *cc;
864 gchar **model_pieces;
865 const char *cpu_type;
866
867 model_pieces = g_strsplit(cpu_model, ",", 2);
868
869 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
870 if (oc == NULL) {
871 error_report("unable to find CPU model '%s'", model_pieces[0]);
872 g_strfreev(model_pieces);
873 exit(EXIT_FAILURE);
874 }
875
876 cpu_type = object_class_get_name(oc);
877 cc = CPU_CLASS(oc);
878 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
879 g_strfreev(model_pieces);
880 return cpu_type;
881}
882
406bc339 883#if defined(CONFIG_USER_ONLY)
00b941e5 884static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 885{
406bc339
PK
886 mmap_lock();
887 tb_lock();
888 tb_invalidate_phys_page_range(pc, pc + 1, 0);
889 tb_unlock();
890 mmap_unlock();
891}
892#else
893static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
894{
895 MemTxAttrs attrs;
896 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
897 int asidx = cpu_asidx_from_attrs(cpu, attrs);
898 if (phys != -1) {
899 /* Locks grabbed by tb_invalidate_phys_addr */
900 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
901 phys | (pc & ~TARGET_PAGE_MASK));
902 }
1e7855a5 903}
406bc339 904#endif
d720b93d 905
c527ee8f 906#if defined(CONFIG_USER_ONLY)
75a34036 907void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
908
909{
910}
911
3ee887e8
PM
912int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
913 int flags)
914{
915 return -ENOSYS;
916}
917
918void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
919{
920}
921
75a34036 922int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
923 int flags, CPUWatchpoint **watchpoint)
924{
925 return -ENOSYS;
926}
927#else
6658ffb8 928/* Add a watchpoint. */
75a34036 929int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 930 int flags, CPUWatchpoint **watchpoint)
6658ffb8 931{
c0ce998e 932 CPUWatchpoint *wp;
6658ffb8 933
05068c0d 934 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 935 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
936 error_report("tried to set invalid watchpoint at %"
937 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
938 return -EINVAL;
939 }
7267c094 940 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
941
942 wp->vaddr = addr;
05068c0d 943 wp->len = len;
a1d1bb31
AL
944 wp->flags = flags;
945
2dc9f411 946 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
947 if (flags & BP_GDB) {
948 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
949 } else {
950 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
951 }
6658ffb8 952
31b030d4 953 tlb_flush_page(cpu, addr);
a1d1bb31
AL
954
955 if (watchpoint)
956 *watchpoint = wp;
957 return 0;
6658ffb8
PB
958}
959
a1d1bb31 960/* Remove a specific watchpoint. */
75a34036 961int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 962 int flags)
6658ffb8 963{
a1d1bb31 964 CPUWatchpoint *wp;
6658ffb8 965
ff4700b0 966 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 967 if (addr == wp->vaddr && len == wp->len
6e140f28 968 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 969 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
970 return 0;
971 }
972 }
a1d1bb31 973 return -ENOENT;
6658ffb8
PB
974}
975
a1d1bb31 976/* Remove a specific watchpoint by reference. */
75a34036 977void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 978{
ff4700b0 979 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 980
31b030d4 981 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 982
7267c094 983 g_free(watchpoint);
a1d1bb31
AL
984}
985
986/* Remove all matching watchpoints. */
75a34036 987void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 988{
c0ce998e 989 CPUWatchpoint *wp, *next;
a1d1bb31 990
ff4700b0 991 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
992 if (wp->flags & mask) {
993 cpu_watchpoint_remove_by_ref(cpu, wp);
994 }
c0ce998e 995 }
7d03f82f 996}
05068c0d
PM
997
998/* Return true if this watchpoint address matches the specified
999 * access (ie the address range covered by the watchpoint overlaps
1000 * partially or completely with the address range covered by the
1001 * access).
1002 */
1003static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1004 vaddr addr,
1005 vaddr len)
1006{
1007 /* We know the lengths are non-zero, but a little caution is
1008 * required to avoid errors in the case where the range ends
1009 * exactly at the top of the address space and so addr + len
1010 * wraps round to zero.
1011 */
1012 vaddr wpend = wp->vaddr + wp->len - 1;
1013 vaddr addrend = addr + len - 1;
1014
1015 return !(addr > wpend || wp->vaddr > addrend);
1016}
1017
c527ee8f 1018#endif
7d03f82f 1019
a1d1bb31 1020/* Add a breakpoint. */
b3310ab3 1021int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1022 CPUBreakpoint **breakpoint)
4c3a88a2 1023{
c0ce998e 1024 CPUBreakpoint *bp;
3b46e624 1025
7267c094 1026 bp = g_malloc(sizeof(*bp));
4c3a88a2 1027
a1d1bb31
AL
1028 bp->pc = pc;
1029 bp->flags = flags;
1030
2dc9f411 1031 /* keep all GDB-injected breakpoints in front */
00b941e5 1032 if (flags & BP_GDB) {
f0c3c505 1033 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1034 } else {
f0c3c505 1035 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1036 }
3b46e624 1037
f0c3c505 1038 breakpoint_invalidate(cpu, pc);
a1d1bb31 1039
00b941e5 1040 if (breakpoint) {
a1d1bb31 1041 *breakpoint = bp;
00b941e5 1042 }
4c3a88a2 1043 return 0;
4c3a88a2
FB
1044}
1045
a1d1bb31 1046/* Remove a specific breakpoint. */
b3310ab3 1047int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1048{
a1d1bb31
AL
1049 CPUBreakpoint *bp;
1050
f0c3c505 1051 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1052 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1053 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1054 return 0;
1055 }
7d03f82f 1056 }
a1d1bb31 1057 return -ENOENT;
7d03f82f
EI
1058}
1059
a1d1bb31 1060/* Remove a specific breakpoint by reference. */
b3310ab3 1061void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1062{
f0c3c505
AF
1063 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1064
1065 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1066
7267c094 1067 g_free(breakpoint);
a1d1bb31
AL
1068}
1069
1070/* Remove all matching breakpoints. */
b3310ab3 1071void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1072{
c0ce998e 1073 CPUBreakpoint *bp, *next;
a1d1bb31 1074
f0c3c505 1075 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1076 if (bp->flags & mask) {
1077 cpu_breakpoint_remove_by_ref(cpu, bp);
1078 }
c0ce998e 1079 }
4c3a88a2
FB
1080}
1081
c33a346e
FB
1082/* enable or disable single step mode. EXCP_DEBUG is returned by the
1083 CPU loop after each instruction */
3825b28f 1084void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1085{
ed2803da
AF
1086 if (cpu->singlestep_enabled != enabled) {
1087 cpu->singlestep_enabled = enabled;
1088 if (kvm_enabled()) {
38e478ec 1089 kvm_update_guest_debug(cpu, 0);
ed2803da 1090 } else {
ccbb4d44 1091 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1092 /* XXX: only flush what is necessary */
bbd77c18 1093 tb_flush(cpu);
e22a25c9 1094 }
c33a346e 1095 }
c33a346e
FB
1096}
1097
a47dddd7 1098void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1099{
1100 va_list ap;
493ae1f0 1101 va_list ap2;
7501267e
FB
1102
1103 va_start(ap, fmt);
493ae1f0 1104 va_copy(ap2, ap);
7501267e
FB
1105 fprintf(stderr, "qemu: fatal: ");
1106 vfprintf(stderr, fmt, ap);
1107 fprintf(stderr, "\n");
878096ee 1108 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1109 if (qemu_log_separate()) {
1ee73216 1110 qemu_log_lock();
93fcfe39
AL
1111 qemu_log("qemu: fatal: ");
1112 qemu_log_vprintf(fmt, ap2);
1113 qemu_log("\n");
a0762859 1114 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1115 qemu_log_flush();
1ee73216 1116 qemu_log_unlock();
93fcfe39 1117 qemu_log_close();
924edcae 1118 }
493ae1f0 1119 va_end(ap2);
f9373291 1120 va_end(ap);
7615936e 1121 replay_finish();
fd052bf6
RV
1122#if defined(CONFIG_USER_ONLY)
1123 {
1124 struct sigaction act;
1125 sigfillset(&act.sa_mask);
1126 act.sa_handler = SIG_DFL;
1127 sigaction(SIGABRT, &act, NULL);
1128 }
1129#endif
7501267e
FB
1130 abort();
1131}
1132
0124311e 1133#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1134/* Called from RCU critical section */
041603fe
PB
1135static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1136{
1137 RAMBlock *block;
1138
43771539 1139 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1140 if (block && addr - block->offset < block->max_length) {
68851b98 1141 return block;
041603fe 1142 }
99e15582 1143 RAMBLOCK_FOREACH(block) {
9b8424d5 1144 if (addr - block->offset < block->max_length) {
041603fe
PB
1145 goto found;
1146 }
1147 }
1148
1149 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1150 abort();
1151
1152found:
43771539
PB
1153 /* It is safe to write mru_block outside the iothread lock. This
1154 * is what happens:
1155 *
1156 * mru_block = xxx
1157 * rcu_read_unlock()
1158 * xxx removed from list
1159 * rcu_read_lock()
1160 * read mru_block
1161 * mru_block = NULL;
1162 * call_rcu(reclaim_ramblock, xxx);
1163 * rcu_read_unlock()
1164 *
1165 * atomic_rcu_set is not needed here. The block was already published
1166 * when it was placed into the list. Here we're just making an extra
1167 * copy of the pointer.
1168 */
041603fe
PB
1169 ram_list.mru_block = block;
1170 return block;
1171}
1172
a2f4d5be 1173static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1174{
9a13565d 1175 CPUState *cpu;
041603fe 1176 ram_addr_t start1;
a2f4d5be
JQ
1177 RAMBlock *block;
1178 ram_addr_t end;
1179
1180 end = TARGET_PAGE_ALIGN(start + length);
1181 start &= TARGET_PAGE_MASK;
d24981d3 1182
0dc3f44a 1183 rcu_read_lock();
041603fe
PB
1184 block = qemu_get_ram_block(start);
1185 assert(block == qemu_get_ram_block(end - 1));
1240be24 1186 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1187 CPU_FOREACH(cpu) {
1188 tlb_reset_dirty(cpu, start1, length);
1189 }
0dc3f44a 1190 rcu_read_unlock();
d24981d3
JQ
1191}
1192
5579c7f3 1193/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1194bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1195 ram_addr_t length,
1196 unsigned client)
1ccde1cb 1197{
5b82b703 1198 DirtyMemoryBlocks *blocks;
03eebc9e 1199 unsigned long end, page;
5b82b703 1200 bool dirty = false;
03eebc9e
SH
1201
1202 if (length == 0) {
1203 return false;
1204 }
f23db169 1205
03eebc9e
SH
1206 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1207 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1208
1209 rcu_read_lock();
1210
1211 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1212
1213 while (page < end) {
1214 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1215 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1216 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1217
1218 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1219 offset, num);
1220 page += num;
1221 }
1222
1223 rcu_read_unlock();
03eebc9e
SH
1224
1225 if (dirty && tcg_enabled()) {
a2f4d5be 1226 tlb_reset_dirty_range_all(start, length);
5579c7f3 1227 }
03eebc9e
SH
1228
1229 return dirty;
1ccde1cb
FB
1230}
1231
8deaf12c
GH
1232DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1233 (ram_addr_t start, ram_addr_t length, unsigned client)
1234{
1235 DirtyMemoryBlocks *blocks;
1236 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1237 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1238 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1239 DirtyBitmapSnapshot *snap;
1240 unsigned long page, end, dest;
1241
1242 snap = g_malloc0(sizeof(*snap) +
1243 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1244 snap->start = first;
1245 snap->end = last;
1246
1247 page = first >> TARGET_PAGE_BITS;
1248 end = last >> TARGET_PAGE_BITS;
1249 dest = 0;
1250
1251 rcu_read_lock();
1252
1253 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1254
1255 while (page < end) {
1256 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1257 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1258 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1259
1260 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1261 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1262 offset >>= BITS_PER_LEVEL;
1263
1264 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1265 blocks->blocks[idx] + offset,
1266 num);
1267 page += num;
1268 dest += num >> BITS_PER_LEVEL;
1269 }
1270
1271 rcu_read_unlock();
1272
1273 if (tcg_enabled()) {
1274 tlb_reset_dirty_range_all(start, length);
1275 }
1276
1277 return snap;
1278}
1279
1280bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1281 ram_addr_t start,
1282 ram_addr_t length)
1283{
1284 unsigned long page, end;
1285
1286 assert(start >= snap->start);
1287 assert(start + length <= snap->end);
1288
1289 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1290 page = (start - snap->start) >> TARGET_PAGE_BITS;
1291
1292 while (page < end) {
1293 if (test_bit(page, snap->dirty)) {
1294 return true;
1295 }
1296 page++;
1297 }
1298 return false;
1299}
1300
79e2b9ae 1301/* Called from RCU critical section */
bb0e627a 1302hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1303 MemoryRegionSection *section,
1304 target_ulong vaddr,
1305 hwaddr paddr, hwaddr xlat,
1306 int prot,
1307 target_ulong *address)
e5548617 1308{
a8170e5e 1309 hwaddr iotlb;
e5548617
BS
1310 CPUWatchpoint *wp;
1311
cc5bea60 1312 if (memory_region_is_ram(section->mr)) {
e5548617 1313 /* Normal RAM. */
e4e69794 1314 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1315 if (!section->readonly) {
b41aac4f 1316 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1317 } else {
b41aac4f 1318 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1319 }
1320 } else {
0b8e2c10
PM
1321 AddressSpaceDispatch *d;
1322
16620684 1323 d = flatview_to_dispatch(section->fv);
0b8e2c10 1324 iotlb = section - d->map.sections;
149f54b5 1325 iotlb += xlat;
e5548617
BS
1326 }
1327
1328 /* Make accesses to pages with watchpoints go via the
1329 watchpoint trap routines. */
ff4700b0 1330 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1331 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1332 /* Avoid trapping reads of pages with a write breakpoint. */
1333 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1334 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1335 *address |= TLB_MMIO;
1336 break;
1337 }
1338 }
1339 }
1340
1341 return iotlb;
1342}
9fa3e853
FB
1343#endif /* defined(CONFIG_USER_ONLY) */
1344
e2eef170 1345#if !defined(CONFIG_USER_ONLY)
8da3ff18 1346
c227f099 1347static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1348 uint16_t section);
16620684 1349static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1350
06329cce 1351static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1352 qemu_anon_ram_alloc;
91138037
MA
1353
1354/*
1355 * Set a custom physical guest memory alloator.
1356 * Accelerators with unusual needs may need this. Hopefully, we can
1357 * get rid of it eventually.
1358 */
06329cce 1359void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1360{
1361 phys_mem_alloc = alloc;
1362}
1363
53cb28cb
MA
1364static uint16_t phys_section_add(PhysPageMap *map,
1365 MemoryRegionSection *section)
5312bd8b 1366{
68f3f65b
PB
1367 /* The physical section number is ORed with a page-aligned
1368 * pointer to produce the iotlb entries. Thus it should
1369 * never overflow into the page-aligned value.
1370 */
53cb28cb 1371 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1372
53cb28cb
MA
1373 if (map->sections_nb == map->sections_nb_alloc) {
1374 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1375 map->sections = g_renew(MemoryRegionSection, map->sections,
1376 map->sections_nb_alloc);
5312bd8b 1377 }
53cb28cb 1378 map->sections[map->sections_nb] = *section;
dfde4e6e 1379 memory_region_ref(section->mr);
53cb28cb 1380 return map->sections_nb++;
5312bd8b
AK
1381}
1382
058bc4b5
PB
1383static void phys_section_destroy(MemoryRegion *mr)
1384{
55b4e80b
DS
1385 bool have_sub_page = mr->subpage;
1386
dfde4e6e
PB
1387 memory_region_unref(mr);
1388
55b4e80b 1389 if (have_sub_page) {
058bc4b5 1390 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1391 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1392 g_free(subpage);
1393 }
1394}
1395
6092666e 1396static void phys_sections_free(PhysPageMap *map)
5312bd8b 1397{
9affd6fc
PB
1398 while (map->sections_nb > 0) {
1399 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1400 phys_section_destroy(section->mr);
1401 }
9affd6fc
PB
1402 g_free(map->sections);
1403 g_free(map->nodes);
5312bd8b
AK
1404}
1405
9950322a 1406static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1407{
9950322a 1408 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1409 subpage_t *subpage;
a8170e5e 1410 hwaddr base = section->offset_within_address_space
0f0cb164 1411 & TARGET_PAGE_MASK;
003a0cf2 1412 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1413 MemoryRegionSection subsection = {
1414 .offset_within_address_space = base,
052e87b0 1415 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1416 };
a8170e5e 1417 hwaddr start, end;
0f0cb164 1418
f3705d53 1419 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1420
f3705d53 1421 if (!(existing->mr->subpage)) {
16620684
AK
1422 subpage = subpage_init(fv, base);
1423 subsection.fv = fv;
0f0cb164 1424 subsection.mr = &subpage->iomem;
ac1970fb 1425 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1426 phys_section_add(&d->map, &subsection));
0f0cb164 1427 } else {
f3705d53 1428 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1429 }
1430 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1431 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1432 subpage_register(subpage, start, end,
1433 phys_section_add(&d->map, section));
0f0cb164
AK
1434}
1435
1436
9950322a 1437static void register_multipage(FlatView *fv,
052e87b0 1438 MemoryRegionSection *section)
33417e70 1439{
9950322a 1440 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1441 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1442 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1443 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1444 TARGET_PAGE_BITS));
dd81124b 1445
733d5ef5
PB
1446 assert(num_pages);
1447 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1448}
1449
8629d3fc 1450void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1451{
99b9cc06 1452 MemoryRegionSection now = *section, remain = *section;
052e87b0 1453 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1454
733d5ef5
PB
1455 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1456 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1457 - now.offset_within_address_space;
1458
052e87b0 1459 now.size = int128_min(int128_make64(left), now.size);
9950322a 1460 register_subpage(fv, &now);
733d5ef5 1461 } else {
052e87b0 1462 now.size = int128_zero();
733d5ef5 1463 }
052e87b0
PB
1464 while (int128_ne(remain.size, now.size)) {
1465 remain.size = int128_sub(remain.size, now.size);
1466 remain.offset_within_address_space += int128_get64(now.size);
1467 remain.offset_within_region += int128_get64(now.size);
69b67646 1468 now = remain;
052e87b0 1469 if (int128_lt(remain.size, page_size)) {
9950322a 1470 register_subpage(fv, &now);
88266249 1471 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1472 now.size = page_size;
9950322a 1473 register_subpage(fv, &now);
69b67646 1474 } else {
052e87b0 1475 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1476 register_multipage(fv, &now);
69b67646 1477 }
0f0cb164
AK
1478 }
1479}
1480
62a2744c
SY
1481void qemu_flush_coalesced_mmio_buffer(void)
1482{
1483 if (kvm_enabled())
1484 kvm_flush_coalesced_mmio_buffer();
1485}
1486
b2a8658e
UD
1487void qemu_mutex_lock_ramlist(void)
1488{
1489 qemu_mutex_lock(&ram_list.mutex);
1490}
1491
1492void qemu_mutex_unlock_ramlist(void)
1493{
1494 qemu_mutex_unlock(&ram_list.mutex);
1495}
1496
be9b23c4
PX
1497void ram_block_dump(Monitor *mon)
1498{
1499 RAMBlock *block;
1500 char *psize;
1501
1502 rcu_read_lock();
1503 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1504 "Block Name", "PSize", "Offset", "Used", "Total");
1505 RAMBLOCK_FOREACH(block) {
1506 psize = size_to_str(block->page_size);
1507 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1508 " 0x%016" PRIx64 "\n", block->idstr, psize,
1509 (uint64_t)block->offset,
1510 (uint64_t)block->used_length,
1511 (uint64_t)block->max_length);
1512 g_free(psize);
1513 }
1514 rcu_read_unlock();
1515}
1516
9c607668
AK
1517#ifdef __linux__
1518/*
1519 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1520 * may or may not name the same files / on the same filesystem now as
1521 * when we actually open and map them. Iterate over the file
1522 * descriptors instead, and use qemu_fd_getpagesize().
1523 */
1524static int find_max_supported_pagesize(Object *obj, void *opaque)
1525{
9c607668
AK
1526 long *hpsize_min = opaque;
1527
1528 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1529 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1530
0de6e2a3
DG
1531 if (hpsize < *hpsize_min) {
1532 *hpsize_min = hpsize;
9c607668
AK
1533 }
1534 }
1535
1536 return 0;
1537}
1538
1539long qemu_getrampagesize(void)
1540{
1541 long hpsize = LONG_MAX;
1542 long mainrampagesize;
1543 Object *memdev_root;
1544
0de6e2a3 1545 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1546
1547 /* it's possible we have memory-backend objects with
1548 * hugepage-backed RAM. these may get mapped into system
1549 * address space via -numa parameters or memory hotplug
1550 * hooks. we want to take these into account, but we
1551 * also want to make sure these supported hugepage
1552 * sizes are applicable across the entire range of memory
1553 * we may boot from, so we take the min across all
1554 * backends, and assume normal pages in cases where a
1555 * backend isn't backed by hugepages.
1556 */
1557 memdev_root = object_resolve_path("/objects", NULL);
1558 if (memdev_root) {
1559 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1560 }
1561 if (hpsize == LONG_MAX) {
1562 /* No additional memory regions found ==> Report main RAM page size */
1563 return mainrampagesize;
1564 }
1565
1566 /* If NUMA is disabled or the NUMA nodes are not backed with a
1567 * memory-backend, then there is at least one node using "normal" RAM,
1568 * so if its page size is smaller we have got to report that size instead.
1569 */
1570 if (hpsize > mainrampagesize &&
1571 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1572 static bool warned;
1573 if (!warned) {
1574 error_report("Huge page support disabled (n/a for main memory).");
1575 warned = true;
1576 }
1577 return mainrampagesize;
1578 }
1579
1580 return hpsize;
1581}
1582#else
1583long qemu_getrampagesize(void)
1584{
1585 return getpagesize();
1586}
1587#endif
1588
e1e84ba0 1589#ifdef __linux__
d6af99c9
HZ
1590static int64_t get_file_size(int fd)
1591{
1592 int64_t size = lseek(fd, 0, SEEK_END);
1593 if (size < 0) {
1594 return -errno;
1595 }
1596 return size;
1597}
1598
8d37b030
MAL
1599static int file_ram_open(const char *path,
1600 const char *region_name,
1601 bool *created,
1602 Error **errp)
c902760f
MT
1603{
1604 char *filename;
8ca761f6
PF
1605 char *sanitized_name;
1606 char *c;
5c3ece79 1607 int fd = -1;
c902760f 1608
8d37b030 1609 *created = false;
fd97fd44
MA
1610 for (;;) {
1611 fd = open(path, O_RDWR);
1612 if (fd >= 0) {
1613 /* @path names an existing file, use it */
1614 break;
8d31d6b6 1615 }
fd97fd44
MA
1616 if (errno == ENOENT) {
1617 /* @path names a file that doesn't exist, create it */
1618 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1619 if (fd >= 0) {
8d37b030 1620 *created = true;
fd97fd44
MA
1621 break;
1622 }
1623 } else if (errno == EISDIR) {
1624 /* @path names a directory, create a file there */
1625 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1626 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1627 for (c = sanitized_name; *c != '\0'; c++) {
1628 if (*c == '/') {
1629 *c = '_';
1630 }
1631 }
8ca761f6 1632
fd97fd44
MA
1633 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1634 sanitized_name);
1635 g_free(sanitized_name);
8d31d6b6 1636
fd97fd44
MA
1637 fd = mkstemp(filename);
1638 if (fd >= 0) {
1639 unlink(filename);
1640 g_free(filename);
1641 break;
1642 }
1643 g_free(filename);
8d31d6b6 1644 }
fd97fd44
MA
1645 if (errno != EEXIST && errno != EINTR) {
1646 error_setg_errno(errp, errno,
1647 "can't open backing store %s for guest RAM",
1648 path);
8d37b030 1649 return -1;
fd97fd44
MA
1650 }
1651 /*
1652 * Try again on EINTR and EEXIST. The latter happens when
1653 * something else creates the file between our two open().
1654 */
8d31d6b6 1655 }
c902760f 1656
8d37b030
MAL
1657 return fd;
1658}
1659
1660static void *file_ram_alloc(RAMBlock *block,
1661 ram_addr_t memory,
1662 int fd,
1663 bool truncate,
1664 Error **errp)
1665{
1666 void *area;
1667
863e9621 1668 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1669 if (block->mr->align % block->page_size) {
1670 error_setg(errp, "alignment 0x%" PRIx64
1671 " must be multiples of page size 0x%zx",
1672 block->mr->align, block->page_size);
1673 return NULL;
1674 }
1675 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1676#if defined(__s390x__)
1677 if (kvm_enabled()) {
1678 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1679 }
1680#endif
fd97fd44 1681
863e9621 1682 if (memory < block->page_size) {
fd97fd44 1683 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1684 "or larger than page size 0x%zx",
1685 memory, block->page_size);
8d37b030 1686 return NULL;
1775f111
HZ
1687 }
1688
863e9621 1689 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1690
1691 /*
1692 * ftruncate is not supported by hugetlbfs in older
1693 * hosts, so don't bother bailing out on errors.
1694 * If anything goes wrong with it under other filesystems,
1695 * mmap will fail.
d6af99c9
HZ
1696 *
1697 * Do not truncate the non-empty backend file to avoid corrupting
1698 * the existing data in the file. Disabling shrinking is not
1699 * enough. For example, the current vNVDIMM implementation stores
1700 * the guest NVDIMM labels at the end of the backend file. If the
1701 * backend file is later extended, QEMU will not be able to find
1702 * those labels. Therefore, extending the non-empty backend file
1703 * is disabled as well.
c902760f 1704 */
8d37b030 1705 if (truncate && ftruncate(fd, memory)) {
9742bf26 1706 perror("ftruncate");
7f56e740 1707 }
c902760f 1708
d2f39add
DD
1709 area = qemu_ram_mmap(fd, memory, block->mr->align,
1710 block->flags & RAM_SHARED);
c902760f 1711 if (area == MAP_FAILED) {
7f56e740 1712 error_setg_errno(errp, errno,
fd97fd44 1713 "unable to map backing store for guest RAM");
8d37b030 1714 return NULL;
c902760f 1715 }
ef36fa14
MT
1716
1717 if (mem_prealloc) {
1e356fc1 1718 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1719 if (errp && *errp) {
8d37b030
MAL
1720 qemu_ram_munmap(area, memory);
1721 return NULL;
056b68af 1722 }
ef36fa14
MT
1723 }
1724
04b16653 1725 block->fd = fd;
c902760f
MT
1726 return area;
1727}
1728#endif
1729
154cc9ea
DDAG
1730/* Allocate space within the ram_addr_t space that governs the
1731 * dirty bitmaps.
1732 * Called with the ramlist lock held.
1733 */
d17b5288 1734static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1735{
1736 RAMBlock *block, *next_block;
3e837b2c 1737 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1738
49cd9ac6
SH
1739 assert(size != 0); /* it would hand out same offset multiple times */
1740
0dc3f44a 1741 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1742 return 0;
0d53d9fe 1743 }
04b16653 1744
99e15582 1745 RAMBLOCK_FOREACH(block) {
154cc9ea 1746 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1747
801110ab
DDAG
1748 /* Align blocks to start on a 'long' in the bitmap
1749 * which makes the bitmap sync'ing take the fast path.
1750 */
154cc9ea 1751 candidate = block->offset + block->max_length;
801110ab 1752 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1753
154cc9ea
DDAG
1754 /* Search for the closest following block
1755 * and find the gap.
1756 */
99e15582 1757 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1758 if (next_block->offset >= candidate) {
04b16653
AW
1759 next = MIN(next, next_block->offset);
1760 }
1761 }
154cc9ea
DDAG
1762
1763 /* If it fits remember our place and remember the size
1764 * of gap, but keep going so that we might find a smaller
1765 * gap to fill so avoiding fragmentation.
1766 */
1767 if (next - candidate >= size && next - candidate < mingap) {
1768 offset = candidate;
1769 mingap = next - candidate;
04b16653 1770 }
154cc9ea
DDAG
1771
1772 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1773 }
3e837b2c
AW
1774
1775 if (offset == RAM_ADDR_MAX) {
1776 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1777 (uint64_t)size);
1778 abort();
1779 }
1780
154cc9ea
DDAG
1781 trace_find_ram_offset(size, offset);
1782
04b16653
AW
1783 return offset;
1784}
1785
b8c48993 1786unsigned long last_ram_page(void)
d17b5288
AW
1787{
1788 RAMBlock *block;
1789 ram_addr_t last = 0;
1790
0dc3f44a 1791 rcu_read_lock();
99e15582 1792 RAMBLOCK_FOREACH(block) {
62be4e3a 1793 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1794 }
0dc3f44a 1795 rcu_read_unlock();
b8c48993 1796 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1797}
1798
ddb97f1d
JB
1799static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1800{
1801 int ret;
ddb97f1d
JB
1802
1803 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1804 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1805 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1806 if (ret) {
1807 perror("qemu_madvise");
1808 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1809 "but dump_guest_core=off specified\n");
1810 }
1811 }
1812}
1813
422148d3
DDAG
1814const char *qemu_ram_get_idstr(RAMBlock *rb)
1815{
1816 return rb->idstr;
1817}
1818
463a4ac2
DDAG
1819bool qemu_ram_is_shared(RAMBlock *rb)
1820{
1821 return rb->flags & RAM_SHARED;
1822}
1823
2ce16640
DDAG
1824/* Note: Only set at the start of postcopy */
1825bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1826{
1827 return rb->flags & RAM_UF_ZEROPAGE;
1828}
1829
1830void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1831{
1832 rb->flags |= RAM_UF_ZEROPAGE;
1833}
1834
ae3a7047 1835/* Called with iothread lock held. */
fa53a0e5 1836void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1837{
fa53a0e5 1838 RAMBlock *block;
20cfe881 1839
c5705a77
AK
1840 assert(new_block);
1841 assert(!new_block->idstr[0]);
84b89d78 1842
09e5ab63
AL
1843 if (dev) {
1844 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1845 if (id) {
1846 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1847 g_free(id);
84b89d78
CM
1848 }
1849 }
1850 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1851
ab0a9956 1852 rcu_read_lock();
99e15582 1853 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1854 if (block != new_block &&
1855 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1856 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1857 new_block->idstr);
1858 abort();
1859 }
1860 }
0dc3f44a 1861 rcu_read_unlock();
c5705a77
AK
1862}
1863
ae3a7047 1864/* Called with iothread lock held. */
fa53a0e5 1865void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1866{
ae3a7047
MD
1867 /* FIXME: arch_init.c assumes that this is not called throughout
1868 * migration. Ignore the problem since hot-unplug during migration
1869 * does not work anyway.
1870 */
20cfe881
HT
1871 if (block) {
1872 memset(block->idstr, 0, sizeof(block->idstr));
1873 }
1874}
1875
863e9621
DDAG
1876size_t qemu_ram_pagesize(RAMBlock *rb)
1877{
1878 return rb->page_size;
1879}
1880
67f11b5c
DDAG
1881/* Returns the largest size of page in use */
1882size_t qemu_ram_pagesize_largest(void)
1883{
1884 RAMBlock *block;
1885 size_t largest = 0;
1886
99e15582 1887 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1888 largest = MAX(largest, qemu_ram_pagesize(block));
1889 }
1890
1891 return largest;
1892}
1893
8490fc78
LC
1894static int memory_try_enable_merging(void *addr, size_t len)
1895{
75cc7f01 1896 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1897 /* disabled by the user */
1898 return 0;
1899 }
1900
1901 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1902}
1903
62be4e3a
MT
1904/* Only legal before guest might have detected the memory size: e.g. on
1905 * incoming migration, or right after reset.
1906 *
1907 * As memory core doesn't know how is memory accessed, it is up to
1908 * resize callback to update device state and/or add assertions to detect
1909 * misuse, if necessary.
1910 */
fa53a0e5 1911int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1912{
62be4e3a
MT
1913 assert(block);
1914
4ed023ce 1915 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1916
62be4e3a
MT
1917 if (block->used_length == newsize) {
1918 return 0;
1919 }
1920
1921 if (!(block->flags & RAM_RESIZEABLE)) {
1922 error_setg_errno(errp, EINVAL,
1923 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1924 " in != 0x" RAM_ADDR_FMT, block->idstr,
1925 newsize, block->used_length);
1926 return -EINVAL;
1927 }
1928
1929 if (block->max_length < newsize) {
1930 error_setg_errno(errp, EINVAL,
1931 "Length too large: %s: 0x" RAM_ADDR_FMT
1932 " > 0x" RAM_ADDR_FMT, block->idstr,
1933 newsize, block->max_length);
1934 return -EINVAL;
1935 }
1936
1937 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1938 block->used_length = newsize;
58d2707e
PB
1939 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1940 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1941 memory_region_set_size(block->mr, newsize);
1942 if (block->resized) {
1943 block->resized(block->idstr, newsize, block->host);
1944 }
1945 return 0;
1946}
1947
5b82b703
SH
1948/* Called with ram_list.mutex held */
1949static void dirty_memory_extend(ram_addr_t old_ram_size,
1950 ram_addr_t new_ram_size)
1951{
1952 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1953 DIRTY_MEMORY_BLOCK_SIZE);
1954 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1955 DIRTY_MEMORY_BLOCK_SIZE);
1956 int i;
1957
1958 /* Only need to extend if block count increased */
1959 if (new_num_blocks <= old_num_blocks) {
1960 return;
1961 }
1962
1963 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1964 DirtyMemoryBlocks *old_blocks;
1965 DirtyMemoryBlocks *new_blocks;
1966 int j;
1967
1968 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1969 new_blocks = g_malloc(sizeof(*new_blocks) +
1970 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1971
1972 if (old_num_blocks) {
1973 memcpy(new_blocks->blocks, old_blocks->blocks,
1974 old_num_blocks * sizeof(old_blocks->blocks[0]));
1975 }
1976
1977 for (j = old_num_blocks; j < new_num_blocks; j++) {
1978 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1979 }
1980
1981 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1982
1983 if (old_blocks) {
1984 g_free_rcu(old_blocks, rcu);
1985 }
1986 }
1987}
1988
06329cce 1989static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 1990{
e1c57ab8 1991 RAMBlock *block;
0d53d9fe 1992 RAMBlock *last_block = NULL;
2152f5ca 1993 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1994 Error *err = NULL;
2152f5ca 1995
b8c48993 1996 old_ram_size = last_ram_page();
c5705a77 1997
b2a8658e 1998 qemu_mutex_lock_ramlist();
9b8424d5 1999 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2000
2001 if (!new_block->host) {
2002 if (xen_enabled()) {
9b8424d5 2003 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2004 new_block->mr, &err);
2005 if (err) {
2006 error_propagate(errp, err);
2007 qemu_mutex_unlock_ramlist();
39c350ee 2008 return;
37aa7a0e 2009 }
e1c57ab8 2010 } else {
9b8424d5 2011 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2012 &new_block->mr->align, shared);
39228250 2013 if (!new_block->host) {
ef701d7b
HT
2014 error_setg_errno(errp, errno,
2015 "cannot set up guest memory '%s'",
2016 memory_region_name(new_block->mr));
2017 qemu_mutex_unlock_ramlist();
39c350ee 2018 return;
39228250 2019 }
9b8424d5 2020 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2021 }
c902760f 2022 }
94a6b54f 2023
dd631697
LZ
2024 new_ram_size = MAX(old_ram_size,
2025 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2026 if (new_ram_size > old_ram_size) {
5b82b703 2027 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2028 }
0d53d9fe
MD
2029 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2030 * QLIST (which has an RCU-friendly variant) does not have insertion at
2031 * tail, so save the last element in last_block.
2032 */
99e15582 2033 RAMBLOCK_FOREACH(block) {
0d53d9fe 2034 last_block = block;
9b8424d5 2035 if (block->max_length < new_block->max_length) {
abb26d63
PB
2036 break;
2037 }
2038 }
2039 if (block) {
0dc3f44a 2040 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2041 } else if (last_block) {
0dc3f44a 2042 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2043 } else { /* list is empty */
0dc3f44a 2044 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2045 }
0d6d3c87 2046 ram_list.mru_block = NULL;
94a6b54f 2047
0dc3f44a
MD
2048 /* Write list before version */
2049 smp_wmb();
f798b07f 2050 ram_list.version++;
b2a8658e 2051 qemu_mutex_unlock_ramlist();
f798b07f 2052
9b8424d5 2053 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2054 new_block->used_length,
2055 DIRTY_CLIENTS_ALL);
94a6b54f 2056
a904c911
PB
2057 if (new_block->host) {
2058 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2059 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2060 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2061 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2062 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2063 }
94a6b54f 2064}
e9a1ab19 2065
0b183fc8 2066#ifdef __linux__
38b3362d
MAL
2067RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2068 bool share, int fd,
2069 Error **errp)
e1c57ab8
PB
2070{
2071 RAMBlock *new_block;
ef701d7b 2072 Error *local_err = NULL;
8d37b030 2073 int64_t file_size;
e1c57ab8
PB
2074
2075 if (xen_enabled()) {
7f56e740 2076 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2077 return NULL;
e1c57ab8
PB
2078 }
2079
e45e7ae2
MAL
2080 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2081 error_setg(errp,
2082 "host lacks kvm mmu notifiers, -mem-path unsupported");
2083 return NULL;
2084 }
2085
e1c57ab8
PB
2086 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2087 /*
2088 * file_ram_alloc() needs to allocate just like
2089 * phys_mem_alloc, but we haven't bothered to provide
2090 * a hook there.
2091 */
7f56e740
PB
2092 error_setg(errp,
2093 "-mem-path not supported with this accelerator");
528f46af 2094 return NULL;
e1c57ab8
PB
2095 }
2096
4ed023ce 2097 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2098 file_size = get_file_size(fd);
2099 if (file_size > 0 && file_size < size) {
2100 error_setg(errp, "backing store %s size 0x%" PRIx64
2101 " does not match 'size' option 0x" RAM_ADDR_FMT,
2102 mem_path, file_size, size);
8d37b030
MAL
2103 return NULL;
2104 }
2105
e1c57ab8
PB
2106 new_block = g_malloc0(sizeof(*new_block));
2107 new_block->mr = mr;
9b8424d5
MT
2108 new_block->used_length = size;
2109 new_block->max_length = size;
dbcb8981 2110 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2111 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2112 if (!new_block->host) {
2113 g_free(new_block);
528f46af 2114 return NULL;
7f56e740
PB
2115 }
2116
06329cce 2117 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2118 if (local_err) {
2119 g_free(new_block);
2120 error_propagate(errp, local_err);
528f46af 2121 return NULL;
ef701d7b 2122 }
528f46af 2123 return new_block;
38b3362d
MAL
2124
2125}
2126
2127
2128RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2129 bool share, const char *mem_path,
2130 Error **errp)
2131{
2132 int fd;
2133 bool created;
2134 RAMBlock *block;
2135
2136 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2137 if (fd < 0) {
2138 return NULL;
2139 }
2140
2141 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2142 if (!block) {
2143 if (created) {
2144 unlink(mem_path);
2145 }
2146 close(fd);
2147 return NULL;
2148 }
2149
2150 return block;
e1c57ab8 2151}
0b183fc8 2152#endif
e1c57ab8 2153
62be4e3a 2154static
528f46af
FZ
2155RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2156 void (*resized)(const char*,
2157 uint64_t length,
2158 void *host),
06329cce 2159 void *host, bool resizeable, bool share,
528f46af 2160 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2161{
2162 RAMBlock *new_block;
ef701d7b 2163 Error *local_err = NULL;
e1c57ab8 2164
4ed023ce
DDAG
2165 size = HOST_PAGE_ALIGN(size);
2166 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2167 new_block = g_malloc0(sizeof(*new_block));
2168 new_block->mr = mr;
62be4e3a 2169 new_block->resized = resized;
9b8424d5
MT
2170 new_block->used_length = size;
2171 new_block->max_length = max_size;
62be4e3a 2172 assert(max_size >= size);
e1c57ab8 2173 new_block->fd = -1;
863e9621 2174 new_block->page_size = getpagesize();
e1c57ab8
PB
2175 new_block->host = host;
2176 if (host) {
7bd4f430 2177 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2178 }
62be4e3a
MT
2179 if (resizeable) {
2180 new_block->flags |= RAM_RESIZEABLE;
2181 }
06329cce 2182 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2183 if (local_err) {
2184 g_free(new_block);
2185 error_propagate(errp, local_err);
528f46af 2186 return NULL;
ef701d7b 2187 }
528f46af 2188 return new_block;
e1c57ab8
PB
2189}
2190
528f46af 2191RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2192 MemoryRegion *mr, Error **errp)
2193{
06329cce
MA
2194 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2195 false, mr, errp);
62be4e3a
MT
2196}
2197
06329cce
MA
2198RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2199 MemoryRegion *mr, Error **errp)
6977dfe6 2200{
06329cce
MA
2201 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2202 share, mr, errp);
62be4e3a
MT
2203}
2204
528f46af 2205RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2206 void (*resized)(const char*,
2207 uint64_t length,
2208 void *host),
2209 MemoryRegion *mr, Error **errp)
2210{
06329cce
MA
2211 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2212 false, mr, errp);
6977dfe6
YT
2213}
2214
43771539
PB
2215static void reclaim_ramblock(RAMBlock *block)
2216{
2217 if (block->flags & RAM_PREALLOC) {
2218 ;
2219 } else if (xen_enabled()) {
2220 xen_invalidate_map_cache_entry(block->host);
2221#ifndef _WIN32
2222 } else if (block->fd >= 0) {
2f3a2bb1 2223 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2224 close(block->fd);
2225#endif
2226 } else {
2227 qemu_anon_ram_free(block->host, block->max_length);
2228 }
2229 g_free(block);
2230}
2231
f1060c55 2232void qemu_ram_free(RAMBlock *block)
e9a1ab19 2233{
85bc2a15
MAL
2234 if (!block) {
2235 return;
2236 }
2237
0987d735
PB
2238 if (block->host) {
2239 ram_block_notify_remove(block->host, block->max_length);
2240 }
2241
b2a8658e 2242 qemu_mutex_lock_ramlist();
f1060c55
FZ
2243 QLIST_REMOVE_RCU(block, next);
2244 ram_list.mru_block = NULL;
2245 /* Write list before version */
2246 smp_wmb();
2247 ram_list.version++;
2248 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2249 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2250}
2251
cd19cfa2
HY
2252#ifndef _WIN32
2253void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2254{
2255 RAMBlock *block;
2256 ram_addr_t offset;
2257 int flags;
2258 void *area, *vaddr;
2259
99e15582 2260 RAMBLOCK_FOREACH(block) {
cd19cfa2 2261 offset = addr - block->offset;
9b8424d5 2262 if (offset < block->max_length) {
1240be24 2263 vaddr = ramblock_ptr(block, offset);
7bd4f430 2264 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2265 ;
dfeaf2ab
MA
2266 } else if (xen_enabled()) {
2267 abort();
cd19cfa2
HY
2268 } else {
2269 flags = MAP_FIXED;
3435f395 2270 if (block->fd >= 0) {
dbcb8981
PB
2271 flags |= (block->flags & RAM_SHARED ?
2272 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2273 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2274 flags, block->fd, offset);
cd19cfa2 2275 } else {
2eb9fbaa
MA
2276 /*
2277 * Remap needs to match alloc. Accelerators that
2278 * set phys_mem_alloc never remap. If they did,
2279 * we'd need a remap hook here.
2280 */
2281 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2282
cd19cfa2
HY
2283 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2284 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2285 flags, -1, 0);
cd19cfa2
HY
2286 }
2287 if (area != vaddr) {
493d89bf
AF
2288 error_report("Could not remap addr: "
2289 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2290 length, addr);
cd19cfa2
HY
2291 exit(1);
2292 }
8490fc78 2293 memory_try_enable_merging(vaddr, length);
ddb97f1d 2294 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2295 }
cd19cfa2
HY
2296 }
2297 }
2298}
2299#endif /* !_WIN32 */
2300
1b5ec234 2301/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2302 * This should not be used for general purpose DMA. Use address_space_map
2303 * or address_space_rw instead. For local memory (e.g. video ram) that the
2304 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2305 *
49b24afc 2306 * Called within RCU critical section.
1b5ec234 2307 */
0878d0e1 2308void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2309{
3655cb9c
GA
2310 RAMBlock *block = ram_block;
2311
2312 if (block == NULL) {
2313 block = qemu_get_ram_block(addr);
0878d0e1 2314 addr -= block->offset;
3655cb9c 2315 }
ae3a7047
MD
2316
2317 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2318 /* We need to check if the requested address is in the RAM
2319 * because we don't want to map the entire memory in QEMU.
2320 * In that case just map until the end of the page.
2321 */
2322 if (block->offset == 0) {
1ff7c598 2323 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2324 }
ae3a7047 2325
1ff7c598 2326 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2327 }
0878d0e1 2328 return ramblock_ptr(block, addr);
dc828ca1
PB
2329}
2330
0878d0e1 2331/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2332 * but takes a size argument.
0dc3f44a 2333 *
e81bcda5 2334 * Called within RCU critical section.
ae3a7047 2335 */
3655cb9c 2336static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2337 hwaddr *size, bool lock)
38bee5dc 2338{
3655cb9c 2339 RAMBlock *block = ram_block;
8ab934f9
SS
2340 if (*size == 0) {
2341 return NULL;
2342 }
e81bcda5 2343
3655cb9c
GA
2344 if (block == NULL) {
2345 block = qemu_get_ram_block(addr);
0878d0e1 2346 addr -= block->offset;
3655cb9c 2347 }
0878d0e1 2348 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2349
2350 if (xen_enabled() && block->host == NULL) {
2351 /* We need to check if the requested address is in the RAM
2352 * because we don't want to map the entire memory in QEMU.
2353 * In that case just map the requested area.
2354 */
2355 if (block->offset == 0) {
f5aa69bd 2356 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2357 }
2358
f5aa69bd 2359 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2360 }
e81bcda5 2361
0878d0e1 2362 return ramblock_ptr(block, addr);
38bee5dc
SS
2363}
2364
f90bb71b
DDAG
2365/* Return the offset of a hostpointer within a ramblock */
2366ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2367{
2368 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2369 assert((uintptr_t)host >= (uintptr_t)rb->host);
2370 assert(res < rb->max_length);
2371
2372 return res;
2373}
2374
422148d3
DDAG
2375/*
2376 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2377 * in that RAMBlock.
2378 *
2379 * ptr: Host pointer to look up
2380 * round_offset: If true round the result offset down to a page boundary
2381 * *ram_addr: set to result ram_addr
2382 * *offset: set to result offset within the RAMBlock
2383 *
2384 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2385 *
2386 * By the time this function returns, the returned pointer is not protected
2387 * by RCU anymore. If the caller is not within an RCU critical section and
2388 * does not hold the iothread lock, it must have other means of protecting the
2389 * pointer, such as a reference to the region that includes the incoming
2390 * ram_addr_t.
2391 */
422148d3 2392RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2393 ram_addr_t *offset)
5579c7f3 2394{
94a6b54f
PB
2395 RAMBlock *block;
2396 uint8_t *host = ptr;
2397
868bb33f 2398 if (xen_enabled()) {
f615f396 2399 ram_addr_t ram_addr;
0dc3f44a 2400 rcu_read_lock();
f615f396
PB
2401 ram_addr = xen_ram_addr_from_mapcache(ptr);
2402 block = qemu_get_ram_block(ram_addr);
422148d3 2403 if (block) {
d6b6aec4 2404 *offset = ram_addr - block->offset;
422148d3 2405 }
0dc3f44a 2406 rcu_read_unlock();
422148d3 2407 return block;
712c2b41
SS
2408 }
2409
0dc3f44a
MD
2410 rcu_read_lock();
2411 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2412 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2413 goto found;
2414 }
2415
99e15582 2416 RAMBLOCK_FOREACH(block) {
432d268c
JN
2417 /* This case append when the block is not mapped. */
2418 if (block->host == NULL) {
2419 continue;
2420 }
9b8424d5 2421 if (host - block->host < block->max_length) {
23887b79 2422 goto found;
f471a17e 2423 }
94a6b54f 2424 }
432d268c 2425
0dc3f44a 2426 rcu_read_unlock();
1b5ec234 2427 return NULL;
23887b79
PB
2428
2429found:
422148d3
DDAG
2430 *offset = (host - block->host);
2431 if (round_offset) {
2432 *offset &= TARGET_PAGE_MASK;
2433 }
0dc3f44a 2434 rcu_read_unlock();
422148d3
DDAG
2435 return block;
2436}
2437
e3dd7493
DDAG
2438/*
2439 * Finds the named RAMBlock
2440 *
2441 * name: The name of RAMBlock to find
2442 *
2443 * Returns: RAMBlock (or NULL if not found)
2444 */
2445RAMBlock *qemu_ram_block_by_name(const char *name)
2446{
2447 RAMBlock *block;
2448
99e15582 2449 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2450 if (!strcmp(name, block->idstr)) {
2451 return block;
2452 }
2453 }
2454
2455 return NULL;
2456}
2457
422148d3
DDAG
2458/* Some of the softmmu routines need to translate from a host pointer
2459 (typically a TLB entry) back to a ram offset. */
07bdaa41 2460ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2461{
2462 RAMBlock *block;
f615f396 2463 ram_addr_t offset;
422148d3 2464
f615f396 2465 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2466 if (!block) {
07bdaa41 2467 return RAM_ADDR_INVALID;
422148d3
DDAG
2468 }
2469
07bdaa41 2470 return block->offset + offset;
e890261f 2471}
f471a17e 2472
27266271
PM
2473/* Called within RCU critical section. */
2474void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2475 CPUState *cpu,
2476 vaddr mem_vaddr,
2477 ram_addr_t ram_addr,
2478 unsigned size)
2479{
2480 ndi->cpu = cpu;
2481 ndi->ram_addr = ram_addr;
2482 ndi->mem_vaddr = mem_vaddr;
2483 ndi->size = size;
2484 ndi->locked = false;
ba051fb5 2485
5aa1ef71 2486 assert(tcg_enabled());
52159192 2487 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2488 ndi->locked = true;
ba051fb5 2489 tb_lock();
0e0df1e2 2490 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2491 }
27266271
PM
2492}
2493
2494/* Called within RCU critical section. */
2495void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2496{
2497 if (ndi->locked) {
2498 tb_unlock();
2499 }
2500
2501 /* Set both VGA and migration bits for simplicity and to remove
2502 * the notdirty callback faster.
2503 */
2504 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2505 DIRTY_CLIENTS_NOCODE);
2506 /* we remove the notdirty callback only if the code has been
2507 flushed */
2508 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2509 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2510 }
2511}
2512
2513/* Called within RCU critical section. */
2514static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2515 uint64_t val, unsigned size)
2516{
2517 NotDirtyInfo ndi;
2518
2519 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2520 ram_addr, size);
2521
0e0df1e2
AK
2522 switch (size) {
2523 case 1:
0878d0e1 2524 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2525 break;
2526 case 2:
0878d0e1 2527 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2528 break;
2529 case 4:
0878d0e1 2530 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2531 break;
ad52878f
AB
2532 case 8:
2533 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2534 break;
0e0df1e2
AK
2535 default:
2536 abort();
3a7d929e 2537 }
27266271 2538 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2539}
2540
b018ddf6
PB
2541static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2542 unsigned size, bool is_write)
2543{
2544 return is_write;
2545}
2546
0e0df1e2 2547static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2548 .write = notdirty_mem_write,
b018ddf6 2549 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2550 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2551 .valid = {
2552 .min_access_size = 1,
2553 .max_access_size = 8,
2554 .unaligned = false,
2555 },
2556 .impl = {
2557 .min_access_size = 1,
2558 .max_access_size = 8,
2559 .unaligned = false,
2560 },
1ccde1cb
FB
2561};
2562
0f459d16 2563/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2564static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2565{
93afeade 2566 CPUState *cpu = current_cpu;
568496c0 2567 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2568 target_ulong vaddr;
a1d1bb31 2569 CPUWatchpoint *wp;
0f459d16 2570
5aa1ef71 2571 assert(tcg_enabled());
ff4700b0 2572 if (cpu->watchpoint_hit) {
06d55cc1
AL
2573 /* We re-entered the check after replacing the TB. Now raise
2574 * the debug interrupt so that is will trigger after the
2575 * current instruction. */
93afeade 2576 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2577 return;
2578 }
93afeade 2579 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2580 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2581 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2582 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2583 && (wp->flags & flags)) {
08225676
PM
2584 if (flags == BP_MEM_READ) {
2585 wp->flags |= BP_WATCHPOINT_HIT_READ;
2586 } else {
2587 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2588 }
2589 wp->hitaddr = vaddr;
66b9b43c 2590 wp->hitattrs = attrs;
ff4700b0 2591 if (!cpu->watchpoint_hit) {
568496c0
SF
2592 if (wp->flags & BP_CPU &&
2593 !cc->debug_check_watchpoint(cpu, wp)) {
2594 wp->flags &= ~BP_WATCHPOINT_HIT;
2595 continue;
2596 }
ff4700b0 2597 cpu->watchpoint_hit = wp;
a5e99826 2598
8d04fb55
JK
2599 /* Both tb_lock and iothread_mutex will be reset when
2600 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2601 * back into the cpu_exec main loop.
a5e99826
FK
2602 */
2603 tb_lock();
239c51a5 2604 tb_check_watchpoint(cpu);
6e140f28 2605 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2606 cpu->exception_index = EXCP_DEBUG;
5638d180 2607 cpu_loop_exit(cpu);
6e140f28 2608 } else {
9b990ee5
RH
2609 /* Force execution of one insn next time. */
2610 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2611 cpu_loop_exit_noexc(cpu);
6e140f28 2612 }
06d55cc1 2613 }
6e140f28
AL
2614 } else {
2615 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2616 }
2617 }
2618}
2619
6658ffb8
PB
2620/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2621 so these check for a hit then pass through to the normal out-of-line
2622 phys routines. */
66b9b43c
PM
2623static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2624 unsigned size, MemTxAttrs attrs)
6658ffb8 2625{
66b9b43c
PM
2626 MemTxResult res;
2627 uint64_t data;
79ed0416
PM
2628 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2629 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2630
2631 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2632 switch (size) {
66b9b43c 2633 case 1:
79ed0416 2634 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2635 break;
2636 case 2:
79ed0416 2637 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2638 break;
2639 case 4:
79ed0416 2640 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2641 break;
306526b5
PB
2642 case 8:
2643 data = address_space_ldq(as, addr, attrs, &res);
2644 break;
1ec9b909
AK
2645 default: abort();
2646 }
66b9b43c
PM
2647 *pdata = data;
2648 return res;
6658ffb8
PB
2649}
2650
66b9b43c
PM
2651static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2652 uint64_t val, unsigned size,
2653 MemTxAttrs attrs)
6658ffb8 2654{
66b9b43c 2655 MemTxResult res;
79ed0416
PM
2656 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2657 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2658
2659 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2660 switch (size) {
67364150 2661 case 1:
79ed0416 2662 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2663 break;
2664 case 2:
79ed0416 2665 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2666 break;
2667 case 4:
79ed0416 2668 address_space_stl(as, addr, val, attrs, &res);
67364150 2669 break;
306526b5
PB
2670 case 8:
2671 address_space_stq(as, addr, val, attrs, &res);
2672 break;
1ec9b909
AK
2673 default: abort();
2674 }
66b9b43c 2675 return res;
6658ffb8
PB
2676}
2677
1ec9b909 2678static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2679 .read_with_attrs = watch_mem_read,
2680 .write_with_attrs = watch_mem_write,
1ec9b909 2681 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2682 .valid = {
2683 .min_access_size = 1,
2684 .max_access_size = 8,
2685 .unaligned = false,
2686 },
2687 .impl = {
2688 .min_access_size = 1,
2689 .max_access_size = 8,
2690 .unaligned = false,
2691 },
6658ffb8 2692};
6658ffb8 2693
b2a44fca
PB
2694static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2695 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2696static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2697 const uint8_t *buf, int len);
2698static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2699 bool is_write);
2700
f25a49e0
PM
2701static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2702 unsigned len, MemTxAttrs attrs)
db7b5426 2703{
acc9d80b 2704 subpage_t *subpage = opaque;
ff6cff75 2705 uint8_t buf[8];
5c9eb028 2706 MemTxResult res;
791af8c8 2707
db7b5426 2708#if defined(DEBUG_SUBPAGE)
016e9d62 2709 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2710 subpage, len, addr);
db7b5426 2711#endif
16620684 2712 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2713 if (res) {
2714 return res;
f25a49e0 2715 }
acc9d80b
JK
2716 switch (len) {
2717 case 1:
f25a49e0
PM
2718 *data = ldub_p(buf);
2719 return MEMTX_OK;
acc9d80b 2720 case 2:
f25a49e0
PM
2721 *data = lduw_p(buf);
2722 return MEMTX_OK;
acc9d80b 2723 case 4:
f25a49e0
PM
2724 *data = ldl_p(buf);
2725 return MEMTX_OK;
ff6cff75 2726 case 8:
f25a49e0
PM
2727 *data = ldq_p(buf);
2728 return MEMTX_OK;
acc9d80b
JK
2729 default:
2730 abort();
2731 }
db7b5426
BS
2732}
2733
f25a49e0
PM
2734static MemTxResult subpage_write(void *opaque, hwaddr addr,
2735 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2736{
acc9d80b 2737 subpage_t *subpage = opaque;
ff6cff75 2738 uint8_t buf[8];
acc9d80b 2739
db7b5426 2740#if defined(DEBUG_SUBPAGE)
016e9d62 2741 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2742 " value %"PRIx64"\n",
2743 __func__, subpage, len, addr, value);
db7b5426 2744#endif
acc9d80b
JK
2745 switch (len) {
2746 case 1:
2747 stb_p(buf, value);
2748 break;
2749 case 2:
2750 stw_p(buf, value);
2751 break;
2752 case 4:
2753 stl_p(buf, value);
2754 break;
ff6cff75
PB
2755 case 8:
2756 stq_p(buf, value);
2757 break;
acc9d80b
JK
2758 default:
2759 abort();
2760 }
16620684 2761 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2762}
2763
c353e4cc 2764static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2765 unsigned len, bool is_write)
c353e4cc 2766{
acc9d80b 2767 subpage_t *subpage = opaque;
c353e4cc 2768#if defined(DEBUG_SUBPAGE)
016e9d62 2769 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2770 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2771#endif
2772
16620684
AK
2773 return flatview_access_valid(subpage->fv, addr + subpage->base,
2774 len, is_write);
c353e4cc
PB
2775}
2776
70c68e44 2777static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2778 .read_with_attrs = subpage_read,
2779 .write_with_attrs = subpage_write,
ff6cff75
PB
2780 .impl.min_access_size = 1,
2781 .impl.max_access_size = 8,
2782 .valid.min_access_size = 1,
2783 .valid.max_access_size = 8,
c353e4cc 2784 .valid.accepts = subpage_accepts,
70c68e44 2785 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2786};
2787
c227f099 2788static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2789 uint16_t section)
db7b5426
BS
2790{
2791 int idx, eidx;
2792
2793 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2794 return -1;
2795 idx = SUBPAGE_IDX(start);
2796 eidx = SUBPAGE_IDX(end);
2797#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2798 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2799 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2800#endif
db7b5426 2801 for (; idx <= eidx; idx++) {
5312bd8b 2802 mmio->sub_section[idx] = section;
db7b5426
BS
2803 }
2804
2805 return 0;
2806}
2807
16620684 2808static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2809{
c227f099 2810 subpage_t *mmio;
db7b5426 2811
2615fabd 2812 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2813 mmio->fv = fv;
1eec614b 2814 mmio->base = base;
2c9b15ca 2815 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2816 NULL, TARGET_PAGE_SIZE);
b3b00c78 2817 mmio->iomem.subpage = true;
db7b5426 2818#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2819 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2820 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2821#endif
b41aac4f 2822 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2823
2824 return mmio;
2825}
2826
16620684 2827static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2828{
16620684 2829 assert(fv);
5312bd8b 2830 MemoryRegionSection section = {
16620684 2831 .fv = fv,
5312bd8b
AK
2832 .mr = mr,
2833 .offset_within_address_space = 0,
2834 .offset_within_region = 0,
052e87b0 2835 .size = int128_2_64(),
5312bd8b
AK
2836 };
2837
53cb28cb 2838 return phys_section_add(map, &section);
5312bd8b
AK
2839}
2840
8af36743
PM
2841static void readonly_mem_write(void *opaque, hwaddr addr,
2842 uint64_t val, unsigned size)
2843{
2844 /* Ignore any write to ROM. */
2845}
2846
2847static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2848 unsigned size, bool is_write)
2849{
2850 return is_write;
2851}
2852
2853/* This will only be used for writes, because reads are special cased
2854 * to directly access the underlying host ram.
2855 */
2856static const MemoryRegionOps readonly_mem_ops = {
2857 .write = readonly_mem_write,
2858 .valid.accepts = readonly_mem_accepts,
2859 .endianness = DEVICE_NATIVE_ENDIAN,
2860 .valid = {
2861 .min_access_size = 1,
2862 .max_access_size = 8,
2863 .unaligned = false,
2864 },
2865 .impl = {
2866 .min_access_size = 1,
2867 .max_access_size = 8,
2868 .unaligned = false,
2869 },
2870};
2871
a54c87b6 2872MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2873{
a54c87b6
PM
2874 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2875 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2876 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2877 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2878
2879 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2880}
2881
e9179ce1
AK
2882static void io_mem_init(void)
2883{
8af36743
PM
2884 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2885 NULL, NULL, UINT64_MAX);
2c9b15ca 2886 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2887 NULL, UINT64_MAX);
8d04fb55
JK
2888
2889 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2890 * which can be called without the iothread mutex.
2891 */
2c9b15ca 2892 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2893 NULL, UINT64_MAX);
8d04fb55
JK
2894 memory_region_clear_global_locking(&io_mem_notdirty);
2895
2c9b15ca 2896 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2897 NULL, UINT64_MAX);
e9179ce1
AK
2898}
2899
8629d3fc 2900AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2901{
53cb28cb
MA
2902 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2903 uint16_t n;
2904
16620684 2905 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2906 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2907 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2908 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2909 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2910 assert(n == PHYS_SECTION_ROM);
16620684 2911 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2912 assert(n == PHYS_SECTION_WATCH);
00752703 2913
9736e55b 2914 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2915
2916 return d;
00752703
PB
2917}
2918
66a6df1d 2919void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2920{
2921 phys_sections_free(&d->map);
2922 g_free(d);
2923}
2924
1d71148e 2925static void tcg_commit(MemoryListener *listener)
50c1e149 2926{
32857f4d
PM
2927 CPUAddressSpace *cpuas;
2928 AddressSpaceDispatch *d;
117712c3
AK
2929
2930 /* since each CPU stores ram addresses in its TLB cache, we must
2931 reset the modified entries */
32857f4d
PM
2932 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2933 cpu_reloading_memory_map();
2934 /* The CPU and TLB are protected by the iothread lock.
2935 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2936 * may have split the RCU critical section.
2937 */
66a6df1d 2938 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2939 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2940 tlb_flush(cpuas->cpu);
50c1e149
AK
2941}
2942
62152b8a
AK
2943static void memory_map_init(void)
2944{
7267c094 2945 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2946
57271d63 2947 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2948 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2949
7267c094 2950 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2951 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2952 65536);
7dca8043 2953 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2954}
2955
2956MemoryRegion *get_system_memory(void)
2957{
2958 return system_memory;
2959}
2960
309cb471
AK
2961MemoryRegion *get_system_io(void)
2962{
2963 return system_io;
2964}
2965
e2eef170
PB
2966#endif /* !defined(CONFIG_USER_ONLY) */
2967
13eb76e0
FB
2968/* physical memory access (slow version, mainly for debug) */
2969#if defined(CONFIG_USER_ONLY)
f17ec444 2970int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2971 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2972{
2973 int l, flags;
2974 target_ulong page;
53a5960a 2975 void * p;
13eb76e0
FB
2976
2977 while (len > 0) {
2978 page = addr & TARGET_PAGE_MASK;
2979 l = (page + TARGET_PAGE_SIZE) - addr;
2980 if (l > len)
2981 l = len;
2982 flags = page_get_flags(page);
2983 if (!(flags & PAGE_VALID))
a68fe89c 2984 return -1;
13eb76e0
FB
2985 if (is_write) {
2986 if (!(flags & PAGE_WRITE))
a68fe89c 2987 return -1;
579a97f7 2988 /* XXX: this code should not depend on lock_user */
72fb7daa 2989 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2990 return -1;
72fb7daa
AJ
2991 memcpy(p, buf, l);
2992 unlock_user(p, addr, l);
13eb76e0
FB
2993 } else {
2994 if (!(flags & PAGE_READ))
a68fe89c 2995 return -1;
579a97f7 2996 /* XXX: this code should not depend on lock_user */
72fb7daa 2997 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2998 return -1;
72fb7daa 2999 memcpy(buf, p, l);
5b257578 3000 unlock_user(p, addr, 0);
13eb76e0
FB
3001 }
3002 len -= l;
3003 buf += l;
3004 addr += l;
3005 }
a68fe89c 3006 return 0;
13eb76e0 3007}
8df1cd07 3008
13eb76e0 3009#else
51d7a9eb 3010
845b6214 3011static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3012 hwaddr length)
51d7a9eb 3013{
e87f7778 3014 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3015 addr += memory_region_get_ram_addr(mr);
3016
e87f7778
PB
3017 /* No early return if dirty_log_mask is or becomes 0, because
3018 * cpu_physical_memory_set_dirty_range will still call
3019 * xen_modified_memory.
3020 */
3021 if (dirty_log_mask) {
3022 dirty_log_mask =
3023 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3024 }
3025 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3026 assert(tcg_enabled());
ba051fb5 3027 tb_lock();
e87f7778 3028 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 3029 tb_unlock();
e87f7778 3030 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3031 }
e87f7778 3032 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3033}
3034
23326164 3035static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3036{
e1622f4b 3037 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3038
3039 /* Regions are assumed to support 1-4 byte accesses unless
3040 otherwise specified. */
23326164
RH
3041 if (access_size_max == 0) {
3042 access_size_max = 4;
3043 }
3044
3045 /* Bound the maximum access by the alignment of the address. */
3046 if (!mr->ops->impl.unaligned) {
3047 unsigned align_size_max = addr & -addr;
3048 if (align_size_max != 0 && align_size_max < access_size_max) {
3049 access_size_max = align_size_max;
3050 }
82f2563f 3051 }
23326164
RH
3052
3053 /* Don't attempt accesses larger than the maximum. */
3054 if (l > access_size_max) {
3055 l = access_size_max;
82f2563f 3056 }
6554f5c0 3057 l = pow2floor(l);
23326164
RH
3058
3059 return l;
82f2563f
PB
3060}
3061
4840f10e 3062static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3063{
4840f10e
JK
3064 bool unlocked = !qemu_mutex_iothread_locked();
3065 bool release_lock = false;
3066
3067 if (unlocked && mr->global_locking) {
3068 qemu_mutex_lock_iothread();
3069 unlocked = false;
3070 release_lock = true;
3071 }
125b3806 3072 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3073 if (unlocked) {
3074 qemu_mutex_lock_iothread();
3075 }
125b3806 3076 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3077 if (unlocked) {
3078 qemu_mutex_unlock_iothread();
3079 }
125b3806 3080 }
4840f10e
JK
3081
3082 return release_lock;
125b3806
PB
3083}
3084
a203ac70 3085/* Called within RCU critical section. */
16620684
AK
3086static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3087 MemTxAttrs attrs,
3088 const uint8_t *buf,
3089 int len, hwaddr addr1,
3090 hwaddr l, MemoryRegion *mr)
13eb76e0 3091{
13eb76e0 3092 uint8_t *ptr;
791af8c8 3093 uint64_t val;
3b643495 3094 MemTxResult result = MEMTX_OK;
4840f10e 3095 bool release_lock = false;
3b46e624 3096
a203ac70 3097 for (;;) {
eb7eeb88
PB
3098 if (!memory_access_is_direct(mr, true)) {
3099 release_lock |= prepare_mmio_access(mr);
3100 l = memory_access_size(mr, l, addr1);
3101 /* XXX: could force current_cpu to NULL to avoid
3102 potential bugs */
3103 switch (l) {
3104 case 8:
3105 /* 64 bit write access */
3106 val = ldq_p(buf);
3107 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3108 attrs);
3109 break;
3110 case 4:
3111 /* 32 bit write access */
6da67de6 3112 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
3113 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3114 attrs);
3115 break;
3116 case 2:
3117 /* 16 bit write access */
3118 val = lduw_p(buf);
3119 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3120 attrs);
3121 break;
3122 case 1:
3123 /* 8 bit write access */
3124 val = ldub_p(buf);
3125 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3126 attrs);
3127 break;
3128 default:
3129 abort();
13eb76e0
FB
3130 }
3131 } else {
eb7eeb88 3132 /* RAM case */
f5aa69bd 3133 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3134 memcpy(ptr, buf, l);
3135 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3136 }
4840f10e
JK
3137
3138 if (release_lock) {
3139 qemu_mutex_unlock_iothread();
3140 release_lock = false;
3141 }
3142
13eb76e0
FB
3143 len -= l;
3144 buf += l;
3145 addr += l;
a203ac70
PB
3146
3147 if (!len) {
3148 break;
3149 }
3150
3151 l = len;
16620684 3152 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3153 }
fd8aaa76 3154
3b643495 3155 return result;
13eb76e0 3156}
8df1cd07 3157
4c6ebbb3 3158/* Called from RCU critical section. */
16620684
AK
3159static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3160 const uint8_t *buf, int len)
ac1970fb 3161{
eb7eeb88 3162 hwaddr l;
eb7eeb88
PB
3163 hwaddr addr1;
3164 MemoryRegion *mr;
3165 MemTxResult result = MEMTX_OK;
eb7eeb88 3166
4c6ebbb3
PB
3167 l = len;
3168 mr = flatview_translate(fv, addr, &addr1, &l, true);
3169 result = flatview_write_continue(fv, addr, attrs, buf, len,
3170 addr1, l, mr);
a203ac70
PB
3171
3172 return result;
3173}
3174
3175/* Called within RCU critical section. */
16620684
AK
3176MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3177 MemTxAttrs attrs, uint8_t *buf,
3178 int len, hwaddr addr1, hwaddr l,
3179 MemoryRegion *mr)
a203ac70
PB
3180{
3181 uint8_t *ptr;
3182 uint64_t val;
3183 MemTxResult result = MEMTX_OK;
3184 bool release_lock = false;
eb7eeb88 3185
a203ac70 3186 for (;;) {
eb7eeb88
PB
3187 if (!memory_access_is_direct(mr, false)) {
3188 /* I/O case */
3189 release_lock |= prepare_mmio_access(mr);
3190 l = memory_access_size(mr, l, addr1);
3191 switch (l) {
3192 case 8:
3193 /* 64 bit read access */
3194 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3195 attrs);
3196 stq_p(buf, val);
3197 break;
3198 case 4:
3199 /* 32 bit read access */
3200 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3201 attrs);
3202 stl_p(buf, val);
3203 break;
3204 case 2:
3205 /* 16 bit read access */
3206 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3207 attrs);
3208 stw_p(buf, val);
3209 break;
3210 case 1:
3211 /* 8 bit read access */
3212 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3213 attrs);
3214 stb_p(buf, val);
3215 break;
3216 default:
3217 abort();
3218 }
3219 } else {
3220 /* RAM case */
f5aa69bd 3221 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3222 memcpy(buf, ptr, l);
3223 }
3224
3225 if (release_lock) {
3226 qemu_mutex_unlock_iothread();
3227 release_lock = false;
3228 }
3229
3230 len -= l;
3231 buf += l;
3232 addr += l;
a203ac70
PB
3233
3234 if (!len) {
3235 break;
3236 }
3237
3238 l = len;
16620684 3239 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3240 }
3241
3242 return result;
3243}
3244
b2a44fca
PB
3245/* Called from RCU critical section. */
3246static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3247 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3248{
3249 hwaddr l;
3250 hwaddr addr1;
3251 MemoryRegion *mr;
eb7eeb88 3252
b2a44fca
PB
3253 l = len;
3254 mr = flatview_translate(fv, addr, &addr1, &l, false);
3255 return flatview_read_continue(fv, addr, attrs, buf, len,
3256 addr1, l, mr);
ac1970fb
AK
3257}
3258
b2a44fca
PB
3259MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3260 MemTxAttrs attrs, uint8_t *buf, int len)
3261{
3262 MemTxResult result = MEMTX_OK;
3263 FlatView *fv;
3264
3265 if (len > 0) {
3266 rcu_read_lock();
3267 fv = address_space_to_flatview(as);
3268 result = flatview_read(fv, addr, attrs, buf, len);
3269 rcu_read_unlock();
3270 }
3271
3272 return result;
3273}
3274
4c6ebbb3
PB
3275MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3276 MemTxAttrs attrs,
3277 const uint8_t *buf, int len)
3278{
3279 MemTxResult result = MEMTX_OK;
3280 FlatView *fv;
3281
3282 if (len > 0) {
3283 rcu_read_lock();
3284 fv = address_space_to_flatview(as);
3285 result = flatview_write(fv, addr, attrs, buf, len);
3286 rcu_read_unlock();
3287 }
3288
3289 return result;
3290}
3291
db84fd97
PB
3292MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3293 uint8_t *buf, int len, bool is_write)
3294{
3295 if (is_write) {
3296 return address_space_write(as, addr, attrs, buf, len);
3297 } else {
3298 return address_space_read_full(as, addr, attrs, buf, len);
3299 }
3300}
3301
a8170e5e 3302void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3303 int len, int is_write)
3304{
5c9eb028
PM
3305 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3306 buf, len, is_write);
ac1970fb
AK
3307}
3308
582b55a9
AG
3309enum write_rom_type {
3310 WRITE_DATA,
3311 FLUSH_CACHE,
3312};
3313
2a221651 3314static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3315 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3316{
149f54b5 3317 hwaddr l;
d0ecd2aa 3318 uint8_t *ptr;
149f54b5 3319 hwaddr addr1;
5c8a00ce 3320 MemoryRegion *mr;
3b46e624 3321
41063e1e 3322 rcu_read_lock();
d0ecd2aa 3323 while (len > 0) {
149f54b5 3324 l = len;
2a221651 3325 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3326
5c8a00ce
PB
3327 if (!(memory_region_is_ram(mr) ||
3328 memory_region_is_romd(mr))) {
b242e0e0 3329 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3330 } else {
d0ecd2aa 3331 /* ROM/RAM case */
0878d0e1 3332 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3333 switch (type) {
3334 case WRITE_DATA:
3335 memcpy(ptr, buf, l);
845b6214 3336 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3337 break;
3338 case FLUSH_CACHE:
3339 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3340 break;
3341 }
d0ecd2aa
FB
3342 }
3343 len -= l;
3344 buf += l;
3345 addr += l;
3346 }
41063e1e 3347 rcu_read_unlock();
d0ecd2aa
FB
3348}
3349
582b55a9 3350/* used for ROM loading : can write in RAM and ROM */
2a221651 3351void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3352 const uint8_t *buf, int len)
3353{
2a221651 3354 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3355}
3356
3357void cpu_flush_icache_range(hwaddr start, int len)
3358{
3359 /*
3360 * This function should do the same thing as an icache flush that was
3361 * triggered from within the guest. For TCG we are always cache coherent,
3362 * so there is no need to flush anything. For KVM / Xen we need to flush
3363 * the host's instruction cache at least.
3364 */
3365 if (tcg_enabled()) {
3366 return;
3367 }
3368
2a221651
EI
3369 cpu_physical_memory_write_rom_internal(&address_space_memory,
3370 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3371}
3372
6d16c2f8 3373typedef struct {
d3e71559 3374 MemoryRegion *mr;
6d16c2f8 3375 void *buffer;
a8170e5e
AK
3376 hwaddr addr;
3377 hwaddr len;
c2cba0ff 3378 bool in_use;
6d16c2f8
AL
3379} BounceBuffer;
3380
3381static BounceBuffer bounce;
3382
ba223c29 3383typedef struct MapClient {
e95205e1 3384 QEMUBH *bh;
72cf2d4f 3385 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3386} MapClient;
3387
38e047b5 3388QemuMutex map_client_list_lock;
72cf2d4f
BS
3389static QLIST_HEAD(map_client_list, MapClient) map_client_list
3390 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3391
e95205e1
FZ
3392static void cpu_unregister_map_client_do(MapClient *client)
3393{
3394 QLIST_REMOVE(client, link);
3395 g_free(client);
3396}
3397
33b6c2ed
FZ
3398static void cpu_notify_map_clients_locked(void)
3399{
3400 MapClient *client;
3401
3402 while (!QLIST_EMPTY(&map_client_list)) {
3403 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3404 qemu_bh_schedule(client->bh);
3405 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3406 }
3407}
3408
e95205e1 3409void cpu_register_map_client(QEMUBH *bh)
ba223c29 3410{
7267c094 3411 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3412
38e047b5 3413 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3414 client->bh = bh;
72cf2d4f 3415 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3416 if (!atomic_read(&bounce.in_use)) {
3417 cpu_notify_map_clients_locked();
3418 }
38e047b5 3419 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3420}
3421
38e047b5 3422void cpu_exec_init_all(void)
ba223c29 3423{
38e047b5 3424 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3425 /* The data structures we set up here depend on knowing the page size,
3426 * so no more changes can be made after this point.
3427 * In an ideal world, nothing we did before we had finished the
3428 * machine setup would care about the target page size, and we could
3429 * do this much later, rather than requiring board models to state
3430 * up front what their requirements are.
3431 */
3432 finalize_target_page_bits();
38e047b5 3433 io_mem_init();
680a4783 3434 memory_map_init();
38e047b5 3435 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3436}
3437
e95205e1 3438void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3439{
3440 MapClient *client;
3441
e95205e1
FZ
3442 qemu_mutex_lock(&map_client_list_lock);
3443 QLIST_FOREACH(client, &map_client_list, link) {
3444 if (client->bh == bh) {
3445 cpu_unregister_map_client_do(client);
3446 break;
3447 }
ba223c29 3448 }
e95205e1 3449 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3450}
3451
3452static void cpu_notify_map_clients(void)
3453{
38e047b5 3454 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3455 cpu_notify_map_clients_locked();
38e047b5 3456 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3457}
3458
16620684
AK
3459static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3460 bool is_write)
51644ab7 3461{
5c8a00ce 3462 MemoryRegion *mr;
51644ab7
PB
3463 hwaddr l, xlat;
3464
3465 while (len > 0) {
3466 l = len;
16620684 3467 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3468 if (!memory_access_is_direct(mr, is_write)) {
3469 l = memory_access_size(mr, l, addr);
3470 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
3471 return false;
3472 }
3473 }
3474
3475 len -= l;
3476 addr += l;
3477 }
3478 return true;
3479}
3480
16620684
AK
3481bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3482 int len, bool is_write)
3483{
11e732a5
PB
3484 FlatView *fv;
3485 bool result;
3486
3487 rcu_read_lock();
3488 fv = address_space_to_flatview(as);
3489 result = flatview_access_valid(fv, addr, len, is_write);
3490 rcu_read_unlock();
3491 return result;
16620684
AK
3492}
3493
715c31ec 3494static hwaddr
16620684
AK
3495flatview_extend_translation(FlatView *fv, hwaddr addr,
3496 hwaddr target_len,
715c31ec
PB
3497 MemoryRegion *mr, hwaddr base, hwaddr len,
3498 bool is_write)
3499{
3500 hwaddr done = 0;
3501 hwaddr xlat;
3502 MemoryRegion *this_mr;
3503
3504 for (;;) {
3505 target_len -= len;
3506 addr += len;
3507 done += len;
3508 if (target_len == 0) {
3509 return done;
3510 }
3511
3512 len = target_len;
16620684
AK
3513 this_mr = flatview_translate(fv, addr, &xlat,
3514 &len, is_write);
715c31ec
PB
3515 if (this_mr != mr || xlat != base + done) {
3516 return done;
3517 }
3518 }
3519}
3520
6d16c2f8
AL
3521/* Map a physical memory region into a host virtual address.
3522 * May map a subset of the requested range, given by and returned in *plen.
3523 * May return NULL if resources needed to perform the mapping are exhausted.
3524 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3525 * Use cpu_register_map_client() to know when retrying the map operation is
3526 * likely to succeed.
6d16c2f8 3527 */
ac1970fb 3528void *address_space_map(AddressSpace *as,
a8170e5e
AK
3529 hwaddr addr,
3530 hwaddr *plen,
ac1970fb 3531 bool is_write)
6d16c2f8 3532{
a8170e5e 3533 hwaddr len = *plen;
715c31ec
PB
3534 hwaddr l, xlat;
3535 MemoryRegion *mr;
e81bcda5 3536 void *ptr;
ad0c60fa 3537 FlatView *fv;
6d16c2f8 3538
e3127ae0
PB
3539 if (len == 0) {
3540 return NULL;
3541 }
38bee5dc 3542
e3127ae0 3543 l = len;
41063e1e 3544 rcu_read_lock();
ad0c60fa 3545 fv = address_space_to_flatview(as);
16620684 3546 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3547
e3127ae0 3548 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3549 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3550 rcu_read_unlock();
e3127ae0 3551 return NULL;
6d16c2f8 3552 }
e85d9db5
KW
3553 /* Avoid unbounded allocations */
3554 l = MIN(l, TARGET_PAGE_SIZE);
3555 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3556 bounce.addr = addr;
3557 bounce.len = l;
d3e71559
PB
3558
3559 memory_region_ref(mr);
3560 bounce.mr = mr;
e3127ae0 3561 if (!is_write) {
16620684 3562 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3563 bounce.buffer, l);
8ab934f9 3564 }
6d16c2f8 3565
41063e1e 3566 rcu_read_unlock();
e3127ae0
PB
3567 *plen = l;
3568 return bounce.buffer;
3569 }
3570
e3127ae0 3571
d3e71559 3572 memory_region_ref(mr);
16620684
AK
3573 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3574 l, is_write);
f5aa69bd 3575 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3576 rcu_read_unlock();
3577
3578 return ptr;
6d16c2f8
AL
3579}
3580
ac1970fb 3581/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3582 * Will also mark the memory as dirty if is_write == 1. access_len gives
3583 * the amount of memory that was actually read or written by the caller.
3584 */
a8170e5e
AK
3585void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3586 int is_write, hwaddr access_len)
6d16c2f8
AL
3587{
3588 if (buffer != bounce.buffer) {
d3e71559
PB
3589 MemoryRegion *mr;
3590 ram_addr_t addr1;
3591
07bdaa41 3592 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3593 assert(mr != NULL);
6d16c2f8 3594 if (is_write) {
845b6214 3595 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3596 }
868bb33f 3597 if (xen_enabled()) {
e41d7c69 3598 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3599 }
d3e71559 3600 memory_region_unref(mr);
6d16c2f8
AL
3601 return;
3602 }
3603 if (is_write) {
5c9eb028
PM
3604 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3605 bounce.buffer, access_len);
6d16c2f8 3606 }
f8a83245 3607 qemu_vfree(bounce.buffer);
6d16c2f8 3608 bounce.buffer = NULL;
d3e71559 3609 memory_region_unref(bounce.mr);
c2cba0ff 3610 atomic_mb_set(&bounce.in_use, false);
ba223c29 3611 cpu_notify_map_clients();
6d16c2f8 3612}
d0ecd2aa 3613
a8170e5e
AK
3614void *cpu_physical_memory_map(hwaddr addr,
3615 hwaddr *plen,
ac1970fb
AK
3616 int is_write)
3617{
3618 return address_space_map(&address_space_memory, addr, plen, is_write);
3619}
3620
a8170e5e
AK
3621void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3622 int is_write, hwaddr access_len)
ac1970fb
AK
3623{
3624 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3625}
3626
0ce265ff
PB
3627#define ARG1_DECL AddressSpace *as
3628#define ARG1 as
3629#define SUFFIX
3630#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3631#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3632#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3633#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3634#define RCU_READ_LOCK(...) rcu_read_lock()
3635#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3636#include "memory_ldst.inc.c"
1e78bcc1 3637
1f4e496e
PB
3638int64_t address_space_cache_init(MemoryRegionCache *cache,
3639 AddressSpace *as,
3640 hwaddr addr,
3641 hwaddr len,
3642 bool is_write)
3643{
48564041
PB
3644 AddressSpaceDispatch *d;
3645 hwaddr l;
3646 MemoryRegion *mr;
3647
3648 assert(len > 0);
3649
3650 l = len;
3651 cache->fv = address_space_get_flatview(as);
3652 d = flatview_to_dispatch(cache->fv);
3653 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3654
3655 mr = cache->mrs.mr;
3656 memory_region_ref(mr);
3657 if (memory_access_is_direct(mr, is_write)) {
3658 l = flatview_extend_translation(cache->fv, addr, len, mr,
3659 cache->xlat, l, is_write);
3660 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3661 } else {
3662 cache->ptr = NULL;
3663 }
3664
3665 cache->len = l;
3666 cache->is_write = is_write;
3667 return l;
1f4e496e
PB
3668}
3669
3670void address_space_cache_invalidate(MemoryRegionCache *cache,
3671 hwaddr addr,
3672 hwaddr access_len)
3673{
48564041
PB
3674 assert(cache->is_write);
3675 if (likely(cache->ptr)) {
3676 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3677 }
1f4e496e
PB
3678}
3679
3680void address_space_cache_destroy(MemoryRegionCache *cache)
3681{
48564041
PB
3682 if (!cache->mrs.mr) {
3683 return;
3684 }
3685
3686 if (xen_enabled()) {
3687 xen_invalidate_map_cache_entry(cache->ptr);
3688 }
3689 memory_region_unref(cache->mrs.mr);
3690 flatview_unref(cache->fv);
3691 cache->mrs.mr = NULL;
3692 cache->fv = NULL;
3693}
3694
3695/* Called from RCU critical section. This function has the same
3696 * semantics as address_space_translate, but it only works on a
3697 * predefined range of a MemoryRegion that was mapped with
3698 * address_space_cache_init.
3699 */
3700static inline MemoryRegion *address_space_translate_cached(
3701 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3702 hwaddr *plen, bool is_write)
3703{
3704 MemoryRegionSection section;
3705 MemoryRegion *mr;
3706 IOMMUMemoryRegion *iommu_mr;
3707 AddressSpace *target_as;
3708
3709 assert(!cache->ptr);
3710 *xlat = addr + cache->xlat;
3711
3712 mr = cache->mrs.mr;
3713 iommu_mr = memory_region_get_iommu(mr);
3714 if (!iommu_mr) {
3715 /* MMIO region. */
3716 return mr;
3717 }
3718
3719 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3720 NULL, is_write, true,
3721 &target_as);
3722 return section.mr;
3723}
3724
3725/* Called from RCU critical section. address_space_read_cached uses this
3726 * out of line function when the target is an MMIO or IOMMU region.
3727 */
3728void
3729address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3730 void *buf, int len)
3731{
3732 hwaddr addr1, l;
3733 MemoryRegion *mr;
3734
3735 l = len;
3736 mr = address_space_translate_cached(cache, addr, &addr1, &l, false);
3737 flatview_read_continue(cache->fv,
3738 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3739 addr1, l, mr);
3740}
3741
3742/* Called from RCU critical section. address_space_write_cached uses this
3743 * out of line function when the target is an MMIO or IOMMU region.
3744 */
3745void
3746address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3747 const void *buf, int len)
3748{
3749 hwaddr addr1, l;
3750 MemoryRegion *mr;
3751
3752 l = len;
3753 mr = address_space_translate_cached(cache, addr, &addr1, &l, true);
3754 flatview_write_continue(cache->fv,
3755 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3756 addr1, l, mr);
1f4e496e
PB
3757}
3758
3759#define ARG1_DECL MemoryRegionCache *cache
3760#define ARG1 cache
48564041
PB
3761#define SUFFIX _cached_slow
3762#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3763#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3764#define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
90c4fe5f 3765#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
48564041
PB
3766#define RCU_READ_LOCK() ((void)0)
3767#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3768#include "memory_ldst.inc.c"
3769
5e2972fd 3770/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3771int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3772 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3773{
3774 int l;
a8170e5e 3775 hwaddr phys_addr;
9b3c35e0 3776 target_ulong page;
13eb76e0 3777
79ca7a1b 3778 cpu_synchronize_state(cpu);
13eb76e0 3779 while (len > 0) {
5232e4c7
PM
3780 int asidx;
3781 MemTxAttrs attrs;
3782
13eb76e0 3783 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3784 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3785 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3786 /* if no physical page mapped, return an error */
3787 if (phys_addr == -1)
3788 return -1;
3789 l = (page + TARGET_PAGE_SIZE) - addr;
3790 if (l > len)
3791 l = len;
5e2972fd 3792 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3793 if (is_write) {
5232e4c7
PM
3794 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3795 phys_addr, buf, l);
2e38847b 3796 } else {
5232e4c7
PM
3797 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3798 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3799 buf, l, 0);
2e38847b 3800 }
13eb76e0
FB
3801 len -= l;
3802 buf += l;
3803 addr += l;
3804 }
3805 return 0;
3806}
038629a6
DDAG
3807
3808/*
3809 * Allows code that needs to deal with migration bitmaps etc to still be built
3810 * target independent.
3811 */
20afaed9 3812size_t qemu_target_page_size(void)
038629a6 3813{
20afaed9 3814 return TARGET_PAGE_SIZE;
038629a6
DDAG
3815}
3816
46d702b1
JQ
3817int qemu_target_page_bits(void)
3818{
3819 return TARGET_PAGE_BITS;
3820}
3821
3822int qemu_target_page_bits_min(void)
3823{
3824 return TARGET_PAGE_BITS_MIN;
3825}
a68fe89c 3826#endif
13eb76e0 3827
8e4a424b
BS
3828/*
3829 * A helper function for the _utterly broken_ virtio device model to find out if
3830 * it's running on a big endian machine. Don't do this at home kids!
3831 */
98ed8ecf
GK
3832bool target_words_bigendian(void);
3833bool target_words_bigendian(void)
8e4a424b
BS
3834{
3835#if defined(TARGET_WORDS_BIGENDIAN)
3836 return true;
3837#else
3838 return false;
3839#endif
3840}
3841
76f35538 3842#ifndef CONFIG_USER_ONLY
a8170e5e 3843bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3844{
5c8a00ce 3845 MemoryRegion*mr;
149f54b5 3846 hwaddr l = 1;
41063e1e 3847 bool res;
76f35538 3848
41063e1e 3849 rcu_read_lock();
5c8a00ce
PB
3850 mr = address_space_translate(&address_space_memory,
3851 phys_addr, &phys_addr, &l, false);
76f35538 3852
41063e1e
PB
3853 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3854 rcu_read_unlock();
3855 return res;
76f35538 3856}
bd2fa51f 3857
e3807054 3858int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3859{
3860 RAMBlock *block;
e3807054 3861 int ret = 0;
bd2fa51f 3862
0dc3f44a 3863 rcu_read_lock();
99e15582 3864 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3865 ret = func(block->idstr, block->host, block->offset,
3866 block->used_length, opaque);
3867 if (ret) {
3868 break;
3869 }
bd2fa51f 3870 }
0dc3f44a 3871 rcu_read_unlock();
e3807054 3872 return ret;
bd2fa51f 3873}
d3a5038c
DDAG
3874
3875/*
3876 * Unmap pages of memory from start to start+length such that
3877 * they a) read as 0, b) Trigger whatever fault mechanism
3878 * the OS provides for postcopy.
3879 * The pages must be unmapped by the end of the function.
3880 * Returns: 0 on success, none-0 on failure
3881 *
3882 */
3883int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3884{
3885 int ret = -1;
3886
3887 uint8_t *host_startaddr = rb->host + start;
3888
3889 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3890 error_report("ram_block_discard_range: Unaligned start address: %p",
3891 host_startaddr);
3892 goto err;
3893 }
3894
3895 if ((start + length) <= rb->used_length) {
db144f70 3896 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3897 uint8_t *host_endaddr = host_startaddr + length;
3898 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3899 error_report("ram_block_discard_range: Unaligned end address: %p",
3900 host_endaddr);
3901 goto err;
3902 }
3903
3904 errno = ENOTSUP; /* If we are missing MADVISE etc */
3905
db144f70
DDAG
3906 /* The logic here is messy;
3907 * madvise DONTNEED fails for hugepages
3908 * fallocate works on hugepages and shmem
3909 */
3910 need_madvise = (rb->page_size == qemu_host_page_size);
3911 need_fallocate = rb->fd != -1;
3912 if (need_fallocate) {
3913 /* For a file, this causes the area of the file to be zero'd
3914 * if read, and for hugetlbfs also causes it to be unmapped
3915 * so a userfault will trigger.
e2fa71f5
DDAG
3916 */
3917#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3918 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3919 start, length);
db144f70
DDAG
3920 if (ret) {
3921 ret = -errno;
3922 error_report("ram_block_discard_range: Failed to fallocate "
3923 "%s:%" PRIx64 " +%zx (%d)",
3924 rb->idstr, start, length, ret);
3925 goto err;
3926 }
3927#else
3928 ret = -ENOSYS;
3929 error_report("ram_block_discard_range: fallocate not available/file"
3930 "%s:%" PRIx64 " +%zx (%d)",
3931 rb->idstr, start, length, ret);
3932 goto err;
e2fa71f5
DDAG
3933#endif
3934 }
db144f70
DDAG
3935 if (need_madvise) {
3936 /* For normal RAM this causes it to be unmapped,
3937 * for shared memory it causes the local mapping to disappear
3938 * and to fall back on the file contents (which we just
3939 * fallocate'd away).
3940 */
3941#if defined(CONFIG_MADVISE)
3942 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3943 if (ret) {
3944 ret = -errno;
3945 error_report("ram_block_discard_range: Failed to discard range "
3946 "%s:%" PRIx64 " +%zx (%d)",
3947 rb->idstr, start, length, ret);
3948 goto err;
3949 }
3950#else
3951 ret = -ENOSYS;
3952 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3953 "%s:%" PRIx64 " +%zx (%d)",
3954 rb->idstr, start, length, ret);
db144f70
DDAG
3955 goto err;
3956#endif
d3a5038c 3957 }
db144f70
DDAG
3958 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3959 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3960 } else {
3961 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3962 "/%zx/" RAM_ADDR_FMT")",
3963 rb->idstr, start, length, rb->used_length);
3964 }
3965
3966err:
3967 return ret;
3968}
3969
ec3f8c99 3970#endif
a0be0c58
YZ
3971
3972void page_size_init(void)
3973{
3974 /* NOTE: we can always suppose that qemu_host_page_size >=
3975 TARGET_PAGE_SIZE */
a0be0c58
YZ
3976 if (qemu_host_page_size == 0) {
3977 qemu_host_page_size = qemu_real_host_page_size;
3978 }
3979 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3980 qemu_host_page_size = TARGET_PAGE_SIZE;
3981 }
3982 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3983}
5e8fd947
AK
3984
3985#if !defined(CONFIG_USER_ONLY)
3986
3987static void mtree_print_phys_entries(fprintf_function mon, void *f,
3988 int start, int end, int skip, int ptr)
3989{
3990 if (start == end - 1) {
3991 mon(f, "\t%3d ", start);
3992 } else {
3993 mon(f, "\t%3d..%-3d ", start, end - 1);
3994 }
3995 mon(f, " skip=%d ", skip);
3996 if (ptr == PHYS_MAP_NODE_NIL) {
3997 mon(f, " ptr=NIL");
3998 } else if (!skip) {
3999 mon(f, " ptr=#%d", ptr);
4000 } else {
4001 mon(f, " ptr=[%d]", ptr);
4002 }
4003 mon(f, "\n");
4004}
4005
4006#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4007 int128_sub((size), int128_one())) : 0)
4008
4009void mtree_print_dispatch(fprintf_function mon, void *f,
4010 AddressSpaceDispatch *d, MemoryRegion *root)
4011{
4012 int i;
4013
4014 mon(f, " Dispatch\n");
4015 mon(f, " Physical sections\n");
4016
4017 for (i = 0; i < d->map.sections_nb; ++i) {
4018 MemoryRegionSection *s = d->map.sections + i;
4019 const char *names[] = { " [unassigned]", " [not dirty]",
4020 " [ROM]", " [watch]" };
4021
4022 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4023 i,
4024 s->offset_within_address_space,
4025 s->offset_within_address_space + MR_SIZE(s->mr->size),
4026 s->mr->name ? s->mr->name : "(noname)",
4027 i < ARRAY_SIZE(names) ? names[i] : "",
4028 s->mr == root ? " [ROOT]" : "",
4029 s == d->mru_section ? " [MRU]" : "",
4030 s->mr->is_iommu ? " [iommu]" : "");
4031
4032 if (s->mr->alias) {
4033 mon(f, " alias=%s", s->mr->alias->name ?
4034 s->mr->alias->name : "noname");
4035 }
4036 mon(f, "\n");
4037 }
4038
4039 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4040 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4041 for (i = 0; i < d->map.nodes_nb; ++i) {
4042 int j, jprev;
4043 PhysPageEntry prev;
4044 Node *n = d->map.nodes + i;
4045
4046 mon(f, " [%d]\n", i);
4047
4048 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4049 PhysPageEntry *pe = *n + j;
4050
4051 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4052 continue;
4053 }
4054
4055 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4056
4057 jprev = j;
4058 prev = *pe;
4059 }
4060
4061 if (jprev != ARRAY_SIZE(*n)) {
4062 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4063 }
4064 }
4065}
4066
4067#endif