]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/cminyard/tags/for-qemu-i2c-5' into staging
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
dcb32f1d 28#include "tcg/tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
a028edea 38#include "sysemu/qtest.h"
1de7afc9
PB
39#include "qemu/timer.h"
40#include "qemu/config-file.h"
75a34036 41#include "qemu/error-report.h"
b6b71cb5 42#include "qemu/qemu-print.h"
53a5960a 43#if defined(CONFIG_USER_ONLY)
a9c94277 44#include "qemu.h"
432d268c 45#else /* !CONFIG_USER_ONLY */
741da0d3 46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
b58c5c2d 49#include "sysemu/hostmem.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
61c490e2
BM
69#include "qemu/pmem.h"
70
9dfeca7c
BR
71#include "migration/vmstate.h"
72
b35ba30f 73#include "qemu/range.h"
794e8f30
MT
74#ifndef _WIN32
75#include "qemu/mmap-alloc.h"
76#endif
b35ba30f 77
be9b23c4
PX
78#include "monitor/monitor.h"
79
ce317be9
JL
80#ifdef CONFIG_LIBDAXCTL
81#include <daxctl/libdaxctl.h>
82#endif
83
db7b5426 84//#define DEBUG_SUBPAGE
1196be37 85
e2eef170 86#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
87/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
89 */
0d53d9fe 90RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
91
92static MemoryRegion *system_memory;
309cb471 93static MemoryRegion *system_io;
62152b8a 94
f6790af6
AK
95AddressSpace address_space_io;
96AddressSpace address_space_memory;
2673a5da 97
acc9d80b 98static MemoryRegion io_mem_unassigned;
e2eef170 99#endif
9fa3e853 100
a0be0c58
YZ
101uintptr_t qemu_host_page_size;
102intptr_t qemu_host_page_mask;
a0be0c58 103
e2eef170 104#if !defined(CONFIG_USER_ONLY)
fe3dada3
PB
105/* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108int use_icount;
4346ae3e 109
1db8abb1
PB
110typedef struct PhysPageEntry PhysPageEntry;
111
112struct PhysPageEntry {
9736e55b 113 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 114 uint32_t skip : 6;
9736e55b 115 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 116 uint32_t ptr : 26;
1db8abb1
PB
117};
118
8b795765
MT
119#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
120
03f49957 121/* Size of the L2 (and L3, etc) page tables. */
57271d63 122#define ADDR_SPACE_BITS 64
03f49957 123
026736ce 124#define P_L2_BITS 9
03f49957
PB
125#define P_L2_SIZE (1 << P_L2_BITS)
126
127#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
128
129typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 130
53cb28cb 131typedef struct PhysPageMap {
79e2b9ae
PB
132 struct rcu_head rcu;
133
53cb28cb
MA
134 unsigned sections_nb;
135 unsigned sections_nb_alloc;
136 unsigned nodes_nb;
137 unsigned nodes_nb_alloc;
138 Node *nodes;
139 MemoryRegionSection *sections;
140} PhysPageMap;
141
1db8abb1 142struct AddressSpaceDispatch {
729633c2 143 MemoryRegionSection *mru_section;
1db8abb1
PB
144 /* This is a multi-level map on the physical address space.
145 * The bottom level has pointers to MemoryRegionSections.
146 */
147 PhysPageEntry phys_map;
53cb28cb 148 PhysPageMap map;
1db8abb1
PB
149};
150
90260c6c
JK
151#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152typedef struct subpage_t {
153 MemoryRegion iomem;
16620684 154 FlatView *fv;
90260c6c 155 hwaddr base;
2615fabd 156 uint16_t sub_section[];
90260c6c
JK
157} subpage_t;
158
b41aac4f 159#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 160
e2eef170 161static void io_mem_init(void);
62152b8a 162static void memory_map_init(void);
9458a9a1 163static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 164static void tcg_commit(MemoryListener *listener);
e2eef170 165
32857f4d
PM
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
8deaf12c
GH
180struct DirtyBitmapSnapshot {
181 ram_addr_t start;
182 ram_addr_t end;
183 unsigned long dirty[];
184};
185
6658ffb8 186#endif
fd6ce8f6 187
6d9a1304 188#if !defined(CONFIG_USER_ONLY)
d6f2ea22 189
53cb28cb 190static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 191{
101420b8 192 static unsigned alloc_hint = 16;
53cb28cb 193 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 194 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 195 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 196 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 197 }
f7bf5461
AK
198}
199
db94604b 200static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
201{
202 unsigned i;
8b795765 203 uint32_t ret;
db94604b
PB
204 PhysPageEntry e;
205 PhysPageEntry *p;
f7bf5461 206
53cb28cb 207 ret = map->nodes_nb++;
db94604b 208 p = map->nodes[ret];
f7bf5461 209 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 210 assert(ret != map->nodes_nb_alloc);
db94604b
PB
211
212 e.skip = leaf ? 0 : 1;
213 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 214 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 215 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 216 }
f7bf5461 217 return ret;
d6f2ea22
AK
218}
219
53cb28cb 220static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 221 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 222 int level)
f7bf5461
AK
223{
224 PhysPageEntry *p;
03f49957 225 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 226
9736e55b 227 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 228 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 229 }
db94604b 230 p = map->nodes[lp->ptr];
03f49957 231 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 232
03f49957 233 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 234 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 235 lp->skip = 0;
c19e8800 236 lp->ptr = leaf;
07f07b31
AK
237 *index += step;
238 *nb -= step;
2999097b 239 } else {
53cb28cb 240 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
241 }
242 ++lp;
f7bf5461
AK
243 }
244}
245
ac1970fb 246static void phys_page_set(AddressSpaceDispatch *d,
56b15076 247 hwaddr index, uint64_t nb,
2999097b 248 uint16_t leaf)
f7bf5461 249{
2999097b 250 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 251 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 252
53cb28cb 253 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
254}
255
b35ba30f
MT
256/* Compact a non leaf page entry. Simply detect that the entry has a single child,
257 * and update our entry so we can skip it and go directly to the destination.
258 */
efee678d 259static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
260{
261 unsigned valid_ptr = P_L2_SIZE;
262 int valid = 0;
263 PhysPageEntry *p;
264 int i;
265
266 if (lp->ptr == PHYS_MAP_NODE_NIL) {
267 return;
268 }
269
270 p = nodes[lp->ptr];
271 for (i = 0; i < P_L2_SIZE; i++) {
272 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
273 continue;
274 }
275
276 valid_ptr = i;
277 valid++;
278 if (p[i].skip) {
efee678d 279 phys_page_compact(&p[i], nodes);
b35ba30f
MT
280 }
281 }
282
283 /* We can only compress if there's only one child. */
284 if (valid != 1) {
285 return;
286 }
287
288 assert(valid_ptr < P_L2_SIZE);
289
290 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
291 if (P_L2_LEVELS >= (1 << 6) &&
292 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
293 return;
294 }
295
296 lp->ptr = p[valid_ptr].ptr;
297 if (!p[valid_ptr].skip) {
298 /* If our only child is a leaf, make this a leaf. */
299 /* By design, we should have made this node a leaf to begin with so we
300 * should never reach here.
301 * But since it's so simple to handle this, let's do it just in case we
302 * change this rule.
303 */
304 lp->skip = 0;
305 } else {
306 lp->skip += p[valid_ptr].skip;
307 }
308}
309
8629d3fc 310void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 311{
b35ba30f 312 if (d->phys_map.skip) {
efee678d 313 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
314 }
315}
316
29cb533d
FZ
317static inline bool section_covers_addr(const MemoryRegionSection *section,
318 hwaddr addr)
319{
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
322 */
258dfaaa 323 return int128_gethi(section->size) ||
29cb533d 324 range_covers_byte(section->offset_within_address_space,
258dfaaa 325 int128_getlo(section->size), addr);
29cb533d
FZ
326}
327
003a0cf2 328static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 329{
003a0cf2
PX
330 PhysPageEntry lp = d->phys_map, *p;
331 Node *nodes = d->map.nodes;
332 MemoryRegionSection *sections = d->map.sections;
97115a8d 333 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 334 int i;
f1f6e3b8 335
9736e55b 336 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 337 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 338 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 339 }
9affd6fc 340 p = nodes[lp.ptr];
03f49957 341 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 342 }
b35ba30f 343
29cb533d 344 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
345 return &sections[lp.ptr];
346 } else {
347 return &sections[PHYS_SECTION_UNASSIGNED];
348 }
f3705d53
AK
349}
350
79e2b9ae 351/* Called from RCU critical section */
c7086b4a 352static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
353 hwaddr addr,
354 bool resolve_subpage)
9f029603 355{
729633c2 356 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
357 subpage_t *subpage;
358
07c114bb
PB
359 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
360 !section_covers_addr(section, addr)) {
003a0cf2 361 section = phys_page_find(d, addr);
07c114bb 362 atomic_set(&d->mru_section, section);
729633c2 363 }
90260c6c
JK
364 if (resolve_subpage && section->mr->subpage) {
365 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 366 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
367 }
368 return section;
9f029603
JK
369}
370
79e2b9ae 371/* Called from RCU critical section */
90260c6c 372static MemoryRegionSection *
c7086b4a 373address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 374 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
375{
376 MemoryRegionSection *section;
965eb2fc 377 MemoryRegion *mr;
a87f3954 378 Int128 diff;
149f54b5 379
c7086b4a 380 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
381 /* Compute offset within MemoryRegionSection */
382 addr -= section->offset_within_address_space;
383
384 /* Compute offset within MemoryRegion */
385 *xlat = addr + section->offset_within_region;
386
965eb2fc 387 mr = section->mr;
b242e0e0
PB
388
389 /* MMIO registers can be expected to perform full-width accesses based only
390 * on their address, without considering adjacent registers that could
391 * decode to completely different MemoryRegions. When such registers
392 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
393 * regions overlap wildly. For this reason we cannot clamp the accesses
394 * here.
395 *
396 * If the length is small (as is the case for address_space_ldl/stl),
397 * everything works fine. If the incoming length is large, however,
398 * the caller really has to do the clamping through memory_access_size.
399 */
965eb2fc 400 if (memory_region_is_ram(mr)) {
e4a511f8 401 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
402 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
403 }
149f54b5
PB
404 return section;
405}
90260c6c 406
a411c84b
PB
407/**
408 * address_space_translate_iommu - translate an address through an IOMMU
409 * memory region and then through the target address space.
410 *
411 * @iommu_mr: the IOMMU memory region that we start the translation from
412 * @addr: the address to be translated through the MMU
413 * @xlat: the translated address offset within the destination memory region.
414 * It cannot be %NULL.
415 * @plen_out: valid read/write length of the translated address. It
416 * cannot be %NULL.
417 * @page_mask_out: page mask for the translated address. This
418 * should only be meaningful for IOMMU translated
419 * addresses, since there may be huge pages that this bit
420 * would tell. It can be %NULL if we don't care about it.
421 * @is_write: whether the translation operation is for write
422 * @is_mmio: whether this can be MMIO, set true if it can
423 * @target_as: the address space targeted by the IOMMU
2f7b009c 424 * @attrs: transaction attributes
a411c84b
PB
425 *
426 * This function is called from RCU critical section. It is the common
427 * part of flatview_do_translate and address_space_translate_cached.
428 */
429static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
430 hwaddr *xlat,
431 hwaddr *plen_out,
432 hwaddr *page_mask_out,
433 bool is_write,
434 bool is_mmio,
2f7b009c
PM
435 AddressSpace **target_as,
436 MemTxAttrs attrs)
a411c84b
PB
437{
438 MemoryRegionSection *section;
439 hwaddr page_mask = (hwaddr)-1;
440
441 do {
442 hwaddr addr = *xlat;
443 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
444 int iommu_idx = 0;
445 IOMMUTLBEntry iotlb;
446
447 if (imrc->attrs_to_index) {
448 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
449 }
450
451 iotlb = imrc->translate(iommu_mr, addr, is_write ?
452 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
453
454 if (!(iotlb.perm & (1 << is_write))) {
455 goto unassigned;
456 }
457
458 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
459 | (addr & iotlb.addr_mask));
460 page_mask &= iotlb.addr_mask;
461 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
462 *target_as = iotlb.target_as;
463
464 section = address_space_translate_internal(
465 address_space_to_dispatch(iotlb.target_as), addr, xlat,
466 plen_out, is_mmio);
467
468 iommu_mr = memory_region_get_iommu(section->mr);
469 } while (unlikely(iommu_mr));
470
471 if (page_mask_out) {
472 *page_mask_out = page_mask;
473 }
474 return *section;
475
476unassigned:
477 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
478}
479
d5e5fafd
PX
480/**
481 * flatview_do_translate - translate an address in FlatView
482 *
483 * @fv: the flat view that we want to translate on
484 * @addr: the address to be translated in above address space
485 * @xlat: the translated address offset within memory region. It
486 * cannot be @NULL.
487 * @plen_out: valid read/write length of the translated address. It
488 * can be @NULL when we don't care about it.
489 * @page_mask_out: page mask for the translated address. This
490 * should only be meaningful for IOMMU translated
491 * addresses, since there may be huge pages that this bit
492 * would tell. It can be @NULL if we don't care about it.
493 * @is_write: whether the translation operation is for write
494 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 495 * @target_as: the address space targeted by the IOMMU
49e14aa8 496 * @attrs: memory transaction attributes
d5e5fafd
PX
497 *
498 * This function is called from RCU critical section
499 */
16620684
AK
500static MemoryRegionSection flatview_do_translate(FlatView *fv,
501 hwaddr addr,
502 hwaddr *xlat,
d5e5fafd
PX
503 hwaddr *plen_out,
504 hwaddr *page_mask_out,
16620684
AK
505 bool is_write,
506 bool is_mmio,
49e14aa8
PM
507 AddressSpace **target_as,
508 MemTxAttrs attrs)
052c8fa9 509{
052c8fa9 510 MemoryRegionSection *section;
3df9d748 511 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
512 hwaddr plen = (hwaddr)(-1);
513
ad2804d9
PB
514 if (!plen_out) {
515 plen_out = &plen;
d5e5fafd 516 }
052c8fa9 517
a411c84b
PB
518 section = address_space_translate_internal(
519 flatview_to_dispatch(fv), addr, xlat,
520 plen_out, is_mmio);
052c8fa9 521
a411c84b
PB
522 iommu_mr = memory_region_get_iommu(section->mr);
523 if (unlikely(iommu_mr)) {
524 return address_space_translate_iommu(iommu_mr, xlat,
525 plen_out, page_mask_out,
526 is_write, is_mmio,
2f7b009c 527 target_as, attrs);
052c8fa9 528 }
d5e5fafd 529 if (page_mask_out) {
a411c84b
PB
530 /* Not behind an IOMMU, use default page size. */
531 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
532 }
533
a764040c 534 return *section;
052c8fa9
JW
535}
536
537/* Called from RCU critical section */
a764040c 538IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 539 bool is_write, MemTxAttrs attrs)
90260c6c 540{
a764040c 541 MemoryRegionSection section;
076a93d7 542 hwaddr xlat, page_mask;
30951157 543
076a93d7
PX
544 /*
545 * This can never be MMIO, and we don't really care about plen,
546 * but page mask.
547 */
548 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
549 NULL, &page_mask, is_write, false, &as,
550 attrs);
30951157 551
a764040c
PX
552 /* Illegal translation */
553 if (section.mr == &io_mem_unassigned) {
554 goto iotlb_fail;
555 }
30951157 556
a764040c
PX
557 /* Convert memory region offset into address space offset */
558 xlat += section.offset_within_address_space -
559 section.offset_within_region;
560
a764040c 561 return (IOMMUTLBEntry) {
e76bb18f 562 .target_as = as,
076a93d7
PX
563 .iova = addr & ~page_mask,
564 .translated_addr = xlat & ~page_mask,
565 .addr_mask = page_mask,
a764040c
PX
566 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
567 .perm = IOMMU_RW,
568 };
569
570iotlb_fail:
571 return (IOMMUTLBEntry) {0};
572}
573
574/* Called from RCU critical section */
16620684 575MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
576 hwaddr *plen, bool is_write,
577 MemTxAttrs attrs)
a764040c
PX
578{
579 MemoryRegion *mr;
580 MemoryRegionSection section;
16620684 581 AddressSpace *as = NULL;
a764040c
PX
582
583 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 584 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 585 is_write, true, &as, attrs);
a764040c
PX
586 mr = section.mr;
587
fe680d0d 588 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 589 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 590 *plen = MIN(page, *plen);
a87f3954
PB
591 }
592
30951157 593 return mr;
90260c6c
JK
594}
595
1f871c5e
PM
596typedef struct TCGIOMMUNotifier {
597 IOMMUNotifier n;
598 MemoryRegion *mr;
599 CPUState *cpu;
600 int iommu_idx;
601 bool active;
602} TCGIOMMUNotifier;
603
604static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
605{
606 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
607
608 if (!notifier->active) {
609 return;
610 }
611 tlb_flush(notifier->cpu);
612 notifier->active = false;
613 /* We leave the notifier struct on the list to avoid reallocating it later.
614 * Generally the number of IOMMUs a CPU deals with will be small.
615 * In any case we can't unregister the iommu notifier from a notify
616 * callback.
617 */
618}
619
620static void tcg_register_iommu_notifier(CPUState *cpu,
621 IOMMUMemoryRegion *iommu_mr,
622 int iommu_idx)
623{
624 /* Make sure this CPU has an IOMMU notifier registered for this
625 * IOMMU/IOMMU index combination, so that we can flush its TLB
626 * when the IOMMU tells us the mappings we've cached have changed.
627 */
628 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
629 TCGIOMMUNotifier *notifier;
549d4005
EA
630 Error *err = NULL;
631 int i, ret;
1f871c5e
PM
632
633 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 634 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
635 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
636 break;
637 }
638 }
639 if (i == cpu->iommu_notifiers->len) {
640 /* Not found, add a new entry at the end of the array */
641 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
642 notifier = g_new0(TCGIOMMUNotifier, 1);
643 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
644
645 notifier->mr = mr;
646 notifier->iommu_idx = iommu_idx;
647 notifier->cpu = cpu;
648 /* Rather than trying to register interest in the specific part
649 * of the iommu's address space that we've accessed and then
650 * expand it later as subsequent accesses touch more of it, we
651 * just register interest in the whole thing, on the assumption
652 * that iommu reconfiguration will be rare.
653 */
654 iommu_notifier_init(&notifier->n,
655 tcg_iommu_unmap_notify,
656 IOMMU_NOTIFIER_UNMAP,
657 0,
658 HWADDR_MAX,
659 iommu_idx);
549d4005
EA
660 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
661 &err);
662 if (ret) {
663 error_report_err(err);
664 exit(1);
665 }
1f871c5e
PM
666 }
667
668 if (!notifier->active) {
669 notifier->active = true;
670 }
671}
672
673static void tcg_iommu_free_notifier_list(CPUState *cpu)
674{
675 /* Destroy the CPU's notifier list */
676 int i;
677 TCGIOMMUNotifier *notifier;
678
679 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 680 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 681 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 682 g_free(notifier);
1f871c5e
PM
683 }
684 g_array_free(cpu->iommu_notifiers, true);
685}
686
79e2b9ae 687/* Called from RCU critical section */
90260c6c 688MemoryRegionSection *
d7898cda 689address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
690 hwaddr *xlat, hwaddr *plen,
691 MemTxAttrs attrs, int *prot)
90260c6c 692{
30951157 693 MemoryRegionSection *section;
1f871c5e
PM
694 IOMMUMemoryRegion *iommu_mr;
695 IOMMUMemoryRegionClass *imrc;
696 IOMMUTLBEntry iotlb;
697 int iommu_idx;
f35e44e7 698 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 699
1f871c5e
PM
700 for (;;) {
701 section = address_space_translate_internal(d, addr, &addr, plen, false);
702
703 iommu_mr = memory_region_get_iommu(section->mr);
704 if (!iommu_mr) {
705 break;
706 }
707
708 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
709
710 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
711 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
712 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
713 * doesn't short-cut its translation table walk.
714 */
715 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
716 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
717 | (addr & iotlb.addr_mask));
718 /* Update the caller's prot bits to remove permissions the IOMMU
719 * is giving us a failure response for. If we get down to no
720 * permissions left at all we can give up now.
721 */
722 if (!(iotlb.perm & IOMMU_RO)) {
723 *prot &= ~(PAGE_READ | PAGE_EXEC);
724 }
725 if (!(iotlb.perm & IOMMU_WO)) {
726 *prot &= ~PAGE_WRITE;
727 }
728
729 if (!*prot) {
730 goto translate_fail;
731 }
732
733 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
734 }
30951157 735
3df9d748 736 assert(!memory_region_is_iommu(section->mr));
1f871c5e 737 *xlat = addr;
30951157 738 return section;
1f871c5e
PM
739
740translate_fail:
741 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 742}
5b6dd868 743#endif
fd6ce8f6 744
b170fce3 745#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
746
747static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 748{
259186a7 749 CPUState *cpu = opaque;
a513fe19 750
5b6dd868
BS
751 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
752 version_id is increased. */
259186a7 753 cpu->interrupt_request &= ~0x01;
d10eb08f 754 tlb_flush(cpu);
5b6dd868 755
15a356c4
PD
756 /* loadvm has just updated the content of RAM, bypassing the
757 * usual mechanisms that ensure we flush TBs for writes to
758 * memory we've translated code from. So we must flush all TBs,
759 * which will now be stale.
760 */
761 tb_flush(cpu);
762
5b6dd868 763 return 0;
a513fe19 764}
7501267e 765
6c3bff0e
PD
766static int cpu_common_pre_load(void *opaque)
767{
768 CPUState *cpu = opaque;
769
adee6424 770 cpu->exception_index = -1;
6c3bff0e
PD
771
772 return 0;
773}
774
775static bool cpu_common_exception_index_needed(void *opaque)
776{
777 CPUState *cpu = opaque;
778
adee6424 779 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
780}
781
782static const VMStateDescription vmstate_cpu_common_exception_index = {
783 .name = "cpu_common/exception_index",
784 .version_id = 1,
785 .minimum_version_id = 1,
5cd8cada 786 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
787 .fields = (VMStateField[]) {
788 VMSTATE_INT32(exception_index, CPUState),
789 VMSTATE_END_OF_LIST()
790 }
791};
792
bac05aa9
AS
793static bool cpu_common_crash_occurred_needed(void *opaque)
794{
795 CPUState *cpu = opaque;
796
797 return cpu->crash_occurred;
798}
799
800static const VMStateDescription vmstate_cpu_common_crash_occurred = {
801 .name = "cpu_common/crash_occurred",
802 .version_id = 1,
803 .minimum_version_id = 1,
804 .needed = cpu_common_crash_occurred_needed,
805 .fields = (VMStateField[]) {
806 VMSTATE_BOOL(crash_occurred, CPUState),
807 VMSTATE_END_OF_LIST()
808 }
809};
810
1a1562f5 811const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
812 .name = "cpu_common",
813 .version_id = 1,
814 .minimum_version_id = 1,
6c3bff0e 815 .pre_load = cpu_common_pre_load,
5b6dd868 816 .post_load = cpu_common_post_load,
35d08458 817 .fields = (VMStateField[]) {
259186a7
AF
818 VMSTATE_UINT32(halted, CPUState),
819 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 820 VMSTATE_END_OF_LIST()
6c3bff0e 821 },
5cd8cada
JQ
822 .subsections = (const VMStateDescription*[]) {
823 &vmstate_cpu_common_exception_index,
bac05aa9 824 &vmstate_cpu_common_crash_occurred,
5cd8cada 825 NULL
5b6dd868
BS
826 }
827};
1a1562f5 828
80ceb07a
PX
829void cpu_address_space_init(CPUState *cpu, int asidx,
830 const char *prefix, MemoryRegion *mr)
09daed84 831{
12ebc9a7 832 CPUAddressSpace *newas;
80ceb07a 833 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 834 char *as_name;
80ceb07a
PX
835
836 assert(mr);
87a621d8
PX
837 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
838 address_space_init(as, mr, as_name);
839 g_free(as_name);
12ebc9a7
PM
840
841 /* Target code should have set num_ases before calling us */
842 assert(asidx < cpu->num_ases);
843
56943e8c
PM
844 if (asidx == 0) {
845 /* address space 0 gets the convenience alias */
846 cpu->as = as;
847 }
848
12ebc9a7
PM
849 /* KVM cannot currently support multiple address spaces. */
850 assert(asidx == 0 || !kvm_enabled());
09daed84 851
12ebc9a7
PM
852 if (!cpu->cpu_ases) {
853 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 854 }
32857f4d 855
12ebc9a7
PM
856 newas = &cpu->cpu_ases[asidx];
857 newas->cpu = cpu;
858 newas->as = as;
56943e8c 859 if (tcg_enabled()) {
9458a9a1 860 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
861 newas->tcg_as_listener.commit = tcg_commit;
862 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 863 }
09daed84 864}
651a5bc0
PM
865
866AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
867{
868 /* Return the AddressSpace corresponding to the specified index */
869 return cpu->cpu_ases[asidx].as;
870}
09daed84
EI
871#endif
872
7bbc124e 873void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 874{
9dfeca7c
BR
875 CPUClass *cc = CPU_GET_CLASS(cpu);
876
816d9be5 877 tlb_destroy(cpu);
267f685b 878 cpu_list_remove(cpu);
9dfeca7c
BR
879
880 if (cc->vmsd != NULL) {
881 vmstate_unregister(NULL, cc->vmsd, cpu);
882 }
883 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
884 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
885 }
1f871c5e
PM
886#ifndef CONFIG_USER_ONLY
887 tcg_iommu_free_notifier_list(cpu);
888#endif
1c59eb39
BR
889}
890
c7e002c5
FZ
891Property cpu_common_props[] = {
892#ifndef CONFIG_USER_ONLY
893 /* Create a memory property for softmmu CPU object,
2e5b09fd 894 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
895 * because that file is compiled only once for both user-mode
896 * and system builds.) The default if no link is set up is to use
897 * the system address space.
898 */
899 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
900 MemoryRegion *),
901#endif
902 DEFINE_PROP_END_OF_LIST(),
903};
904
39e329e3 905void cpu_exec_initfn(CPUState *cpu)
ea041c0e 906{
56943e8c 907 cpu->as = NULL;
12ebc9a7 908 cpu->num_ases = 0;
56943e8c 909
291135b5 910#ifndef CONFIG_USER_ONLY
291135b5 911 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
912 cpu->memory = system_memory;
913 object_ref(OBJECT(cpu->memory));
291135b5 914#endif
39e329e3
LV
915}
916
ce5b1bbf 917void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 918{
55c3ceef 919 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 920 static bool tcg_target_initialized;
291135b5 921
267f685b 922 cpu_list_add(cpu);
1bc7e522 923
2dda6354
EC
924 if (tcg_enabled() && !tcg_target_initialized) {
925 tcg_target_initialized = true;
55c3ceef
RH
926 cc->tcg_initialize();
927 }
5005e253 928 tlb_init(cpu);
55c3ceef 929
30865f31
EC
930 qemu_plugin_vcpu_init_hook(cpu);
931
3e07593a
PMD
932#ifdef CONFIG_USER_ONLY
933 assert(cc->vmsd == NULL);
934#else /* !CONFIG_USER_ONLY */
e0d47944 935 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 936 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 937 }
b170fce3 938 if (cc->vmsd != NULL) {
741da0d3 939 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 940 }
1f871c5e 941
5601be3b 942 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 943#endif
ea041c0e
FB
944}
945
c1c8cfe5 946const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
947{
948 ObjectClass *oc;
949 CPUClass *cc;
950 gchar **model_pieces;
951 const char *cpu_type;
952
c1c8cfe5 953 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
954 if (!model_pieces[0]) {
955 error_report("-cpu option cannot be empty");
956 exit(1);
957 }
2278b939
IM
958
959 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
960 if (oc == NULL) {
961 error_report("unable to find CPU model '%s'", model_pieces[0]);
962 g_strfreev(model_pieces);
963 exit(EXIT_FAILURE);
964 }
965
966 cpu_type = object_class_get_name(oc);
967 cc = CPU_CLASS(oc);
968 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
969 g_strfreev(model_pieces);
970 return cpu_type;
971}
972
c40d4792 973#if defined(CONFIG_USER_ONLY)
8bca9a03 974void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 975{
406bc339 976 mmap_lock();
ce9f5e27 977 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
978 mmap_unlock();
979}
8bca9a03
PB
980
981static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
982{
983 tb_invalidate_phys_addr(pc);
984}
406bc339 985#else
8bca9a03
PB
986void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
987{
988 ram_addr_t ram_addr;
989 MemoryRegion *mr;
990 hwaddr l = 1;
991
c40d4792
PB
992 if (!tcg_enabled()) {
993 return;
994 }
995
694ea274 996 RCU_READ_LOCK_GUARD();
8bca9a03
PB
997 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
998 if (!(memory_region_is_ram(mr)
999 || memory_region_is_romd(mr))) {
8bca9a03
PB
1000 return;
1001 }
1002 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1003 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1004}
1005
406bc339
PK
1006static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1007{
b55f54bc
MF
1008 /*
1009 * There may not be a virtual to physical translation for the pc
1010 * right now, but there may exist cached TB for this pc.
1011 * Flush the whole TB cache to force re-translation of such TBs.
1012 * This is heavyweight, but we're debugging anyway.
1013 */
1014 tb_flush(cpu);
1e7855a5 1015}
406bc339 1016#endif
d720b93d 1017
74841f04 1018#ifndef CONFIG_USER_ONLY
6658ffb8 1019/* Add a watchpoint. */
75a34036 1020int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1021 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1022{
c0ce998e 1023 CPUWatchpoint *wp;
2e886a24 1024 vaddr in_page;
6658ffb8 1025
05068c0d 1026 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1027 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1028 error_report("tried to set invalid watchpoint at %"
1029 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1030 return -EINVAL;
1031 }
7267c094 1032 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1033
1034 wp->vaddr = addr;
05068c0d 1035 wp->len = len;
a1d1bb31
AL
1036 wp->flags = flags;
1037
2dc9f411 1038 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1039 if (flags & BP_GDB) {
1040 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1041 } else {
1042 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1043 }
6658ffb8 1044
2e886a24
AB
1045 in_page = -(addr | TARGET_PAGE_MASK);
1046 if (len <= in_page) {
1047 tlb_flush_page(cpu, addr);
1048 } else {
1049 tlb_flush(cpu);
1050 }
a1d1bb31
AL
1051
1052 if (watchpoint)
1053 *watchpoint = wp;
1054 return 0;
6658ffb8
PB
1055}
1056
a1d1bb31 1057/* Remove a specific watchpoint. */
75a34036 1058int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1059 int flags)
6658ffb8 1060{
a1d1bb31 1061 CPUWatchpoint *wp;
6658ffb8 1062
ff4700b0 1063 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1064 if (addr == wp->vaddr && len == wp->len
6e140f28 1065 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1066 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1067 return 0;
1068 }
1069 }
a1d1bb31 1070 return -ENOENT;
6658ffb8
PB
1071}
1072
a1d1bb31 1073/* Remove a specific watchpoint by reference. */
75a34036 1074void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1075{
ff4700b0 1076 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1077
31b030d4 1078 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1079
7267c094 1080 g_free(watchpoint);
a1d1bb31
AL
1081}
1082
1083/* Remove all matching watchpoints. */
75a34036 1084void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1085{
c0ce998e 1086 CPUWatchpoint *wp, *next;
a1d1bb31 1087
ff4700b0 1088 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1089 if (wp->flags & mask) {
1090 cpu_watchpoint_remove_by_ref(cpu, wp);
1091 }
c0ce998e 1092 }
7d03f82f 1093}
05068c0d
PM
1094
1095/* Return true if this watchpoint address matches the specified
1096 * access (ie the address range covered by the watchpoint overlaps
1097 * partially or completely with the address range covered by the
1098 * access).
1099 */
56ad8b00
RH
1100static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1101 vaddr addr, vaddr len)
05068c0d
PM
1102{
1103 /* We know the lengths are non-zero, but a little caution is
1104 * required to avoid errors in the case where the range ends
1105 * exactly at the top of the address space and so addr + len
1106 * wraps round to zero.
1107 */
1108 vaddr wpend = wp->vaddr + wp->len - 1;
1109 vaddr addrend = addr + len - 1;
1110
1111 return !(addr > wpend || wp->vaddr > addrend);
1112}
1113
56ad8b00
RH
1114/* Return flags for watchpoints that match addr + prot. */
1115int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1116{
1117 CPUWatchpoint *wp;
1118 int ret = 0;
1119
1120 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 1121 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
1122 ret |= wp->flags;
1123 }
1124 }
1125 return ret;
1126}
74841f04 1127#endif /* !CONFIG_USER_ONLY */
7d03f82f 1128
a1d1bb31 1129/* Add a breakpoint. */
b3310ab3 1130int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1131 CPUBreakpoint **breakpoint)
4c3a88a2 1132{
c0ce998e 1133 CPUBreakpoint *bp;
3b46e624 1134
7267c094 1135 bp = g_malloc(sizeof(*bp));
4c3a88a2 1136
a1d1bb31
AL
1137 bp->pc = pc;
1138 bp->flags = flags;
1139
2dc9f411 1140 /* keep all GDB-injected breakpoints in front */
00b941e5 1141 if (flags & BP_GDB) {
f0c3c505 1142 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1143 } else {
f0c3c505 1144 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1145 }
3b46e624 1146
f0c3c505 1147 breakpoint_invalidate(cpu, pc);
a1d1bb31 1148
00b941e5 1149 if (breakpoint) {
a1d1bb31 1150 *breakpoint = bp;
00b941e5 1151 }
4c3a88a2 1152 return 0;
4c3a88a2
FB
1153}
1154
a1d1bb31 1155/* Remove a specific breakpoint. */
b3310ab3 1156int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1157{
a1d1bb31
AL
1158 CPUBreakpoint *bp;
1159
f0c3c505 1160 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1161 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1162 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1163 return 0;
1164 }
7d03f82f 1165 }
a1d1bb31 1166 return -ENOENT;
7d03f82f
EI
1167}
1168
a1d1bb31 1169/* Remove a specific breakpoint by reference. */
b3310ab3 1170void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1171{
f0c3c505
AF
1172 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1173
1174 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1175
7267c094 1176 g_free(breakpoint);
a1d1bb31
AL
1177}
1178
1179/* Remove all matching breakpoints. */
b3310ab3 1180void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1181{
c0ce998e 1182 CPUBreakpoint *bp, *next;
a1d1bb31 1183
f0c3c505 1184 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1185 if (bp->flags & mask) {
1186 cpu_breakpoint_remove_by_ref(cpu, bp);
1187 }
c0ce998e 1188 }
4c3a88a2
FB
1189}
1190
c33a346e
FB
1191/* enable or disable single step mode. EXCP_DEBUG is returned by the
1192 CPU loop after each instruction */
3825b28f 1193void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1194{
ed2803da
AF
1195 if (cpu->singlestep_enabled != enabled) {
1196 cpu->singlestep_enabled = enabled;
1197 if (kvm_enabled()) {
38e478ec 1198 kvm_update_guest_debug(cpu, 0);
ed2803da 1199 } else {
ccbb4d44 1200 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1201 /* XXX: only flush what is necessary */
bbd77c18 1202 tb_flush(cpu);
e22a25c9 1203 }
c33a346e 1204 }
c33a346e
FB
1205}
1206
a47dddd7 1207void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1208{
1209 va_list ap;
493ae1f0 1210 va_list ap2;
7501267e
FB
1211
1212 va_start(ap, fmt);
493ae1f0 1213 va_copy(ap2, ap);
7501267e
FB
1214 fprintf(stderr, "qemu: fatal: ");
1215 vfprintf(stderr, fmt, ap);
1216 fprintf(stderr, "\n");
90c84c56 1217 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1218 if (qemu_log_separate()) {
fc59d2d8 1219 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1220 qemu_log("qemu: fatal: ");
1221 qemu_log_vprintf(fmt, ap2);
1222 qemu_log("\n");
a0762859 1223 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1224 qemu_log_flush();
fc59d2d8 1225 qemu_log_unlock(logfile);
93fcfe39 1226 qemu_log_close();
924edcae 1227 }
493ae1f0 1228 va_end(ap2);
f9373291 1229 va_end(ap);
7615936e 1230 replay_finish();
fd052bf6
RV
1231#if defined(CONFIG_USER_ONLY)
1232 {
1233 struct sigaction act;
1234 sigfillset(&act.sa_mask);
1235 act.sa_handler = SIG_DFL;
8347c185 1236 act.sa_flags = 0;
fd052bf6
RV
1237 sigaction(SIGABRT, &act, NULL);
1238 }
1239#endif
7501267e
FB
1240 abort();
1241}
1242
0124311e 1243#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1244/* Called from RCU critical section */
041603fe
PB
1245static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1246{
1247 RAMBlock *block;
1248
43771539 1249 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1250 if (block && addr - block->offset < block->max_length) {
68851b98 1251 return block;
041603fe 1252 }
99e15582 1253 RAMBLOCK_FOREACH(block) {
9b8424d5 1254 if (addr - block->offset < block->max_length) {
041603fe
PB
1255 goto found;
1256 }
1257 }
1258
1259 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1260 abort();
1261
1262found:
43771539
PB
1263 /* It is safe to write mru_block outside the iothread lock. This
1264 * is what happens:
1265 *
1266 * mru_block = xxx
1267 * rcu_read_unlock()
1268 * xxx removed from list
1269 * rcu_read_lock()
1270 * read mru_block
1271 * mru_block = NULL;
1272 * call_rcu(reclaim_ramblock, xxx);
1273 * rcu_read_unlock()
1274 *
1275 * atomic_rcu_set is not needed here. The block was already published
1276 * when it was placed into the list. Here we're just making an extra
1277 * copy of the pointer.
1278 */
041603fe
PB
1279 ram_list.mru_block = block;
1280 return block;
1281}
1282
a2f4d5be 1283static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1284{
9a13565d 1285 CPUState *cpu;
041603fe 1286 ram_addr_t start1;
a2f4d5be
JQ
1287 RAMBlock *block;
1288 ram_addr_t end;
1289
f28d0dfd 1290 assert(tcg_enabled());
a2f4d5be
JQ
1291 end = TARGET_PAGE_ALIGN(start + length);
1292 start &= TARGET_PAGE_MASK;
d24981d3 1293
694ea274 1294 RCU_READ_LOCK_GUARD();
041603fe
PB
1295 block = qemu_get_ram_block(start);
1296 assert(block == qemu_get_ram_block(end - 1));
1240be24 1297 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1298 CPU_FOREACH(cpu) {
1299 tlb_reset_dirty(cpu, start1, length);
1300 }
d24981d3
JQ
1301}
1302
5579c7f3 1303/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1304bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1305 ram_addr_t length,
1306 unsigned client)
1ccde1cb 1307{
5b82b703 1308 DirtyMemoryBlocks *blocks;
25aa6b37 1309 unsigned long end, page, start_page;
5b82b703 1310 bool dirty = false;
077874e0
PX
1311 RAMBlock *ramblock;
1312 uint64_t mr_offset, mr_size;
03eebc9e
SH
1313
1314 if (length == 0) {
1315 return false;
1316 }
f23db169 1317
03eebc9e 1318 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1319 start_page = start >> TARGET_PAGE_BITS;
1320 page = start_page;
5b82b703 1321
694ea274
DDAG
1322 WITH_RCU_READ_LOCK_GUARD() {
1323 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1324 ramblock = qemu_get_ram_block(start);
1325 /* Range sanity check on the ramblock */
1326 assert(start >= ramblock->offset &&
1327 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1328
694ea274
DDAG
1329 while (page < end) {
1330 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1331 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1332 unsigned long num = MIN(end - page,
1333 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1334
694ea274
DDAG
1335 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1336 offset, num);
1337 page += num;
1338 }
5b82b703 1339
25aa6b37
MB
1340 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1341 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1342 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1343 }
1344
03eebc9e 1345 if (dirty && tcg_enabled()) {
a2f4d5be 1346 tlb_reset_dirty_range_all(start, length);
5579c7f3 1347 }
03eebc9e
SH
1348
1349 return dirty;
1ccde1cb
FB
1350}
1351
8deaf12c 1352DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1353 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1354{
1355 DirtyMemoryBlocks *blocks;
5dea4079 1356 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1357 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1358 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1359 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1360 DirtyBitmapSnapshot *snap;
1361 unsigned long page, end, dest;
1362
1363 snap = g_malloc0(sizeof(*snap) +
1364 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1365 snap->start = first;
1366 snap->end = last;
1367
1368 page = first >> TARGET_PAGE_BITS;
1369 end = last >> TARGET_PAGE_BITS;
1370 dest = 0;
1371
694ea274
DDAG
1372 WITH_RCU_READ_LOCK_GUARD() {
1373 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1374
694ea274
DDAG
1375 while (page < end) {
1376 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1377 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1378 unsigned long num = MIN(end - page,
1379 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1380
694ea274
DDAG
1381 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1382 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1383 offset >>= BITS_PER_LEVEL;
8deaf12c 1384
694ea274
DDAG
1385 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1386 blocks->blocks[idx] + offset,
1387 num);
1388 page += num;
1389 dest += num >> BITS_PER_LEVEL;
1390 }
8deaf12c
GH
1391 }
1392
8deaf12c
GH
1393 if (tcg_enabled()) {
1394 tlb_reset_dirty_range_all(start, length);
1395 }
1396
077874e0
PX
1397 memory_region_clear_dirty_bitmap(mr, offset, length);
1398
8deaf12c
GH
1399 return snap;
1400}
1401
1402bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1403 ram_addr_t start,
1404 ram_addr_t length)
1405{
1406 unsigned long page, end;
1407
1408 assert(start >= snap->start);
1409 assert(start + length <= snap->end);
1410
1411 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1412 page = (start - snap->start) >> TARGET_PAGE_BITS;
1413
1414 while (page < end) {
1415 if (test_bit(page, snap->dirty)) {
1416 return true;
1417 }
1418 page++;
1419 }
1420 return false;
1421}
1422
79e2b9ae 1423/* Called from RCU critical section */
bb0e627a 1424hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1425 MemoryRegionSection *section)
e5548617 1426{
8f5db641
RH
1427 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1428 return section - d->map.sections;
e5548617 1429}
9fa3e853
FB
1430#endif /* defined(CONFIG_USER_ONLY) */
1431
e2eef170 1432#if !defined(CONFIG_USER_ONLY)
8da3ff18 1433
b797ab1a
WY
1434static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1435 uint16_t section);
16620684 1436static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1437
06329cce 1438static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1439 qemu_anon_ram_alloc;
91138037
MA
1440
1441/*
1442 * Set a custom physical guest memory alloator.
1443 * Accelerators with unusual needs may need this. Hopefully, we can
1444 * get rid of it eventually.
1445 */
06329cce 1446void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1447{
1448 phys_mem_alloc = alloc;
1449}
1450
53cb28cb
MA
1451static uint16_t phys_section_add(PhysPageMap *map,
1452 MemoryRegionSection *section)
5312bd8b 1453{
68f3f65b
PB
1454 /* The physical section number is ORed with a page-aligned
1455 * pointer to produce the iotlb entries. Thus it should
1456 * never overflow into the page-aligned value.
1457 */
53cb28cb 1458 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1459
53cb28cb
MA
1460 if (map->sections_nb == map->sections_nb_alloc) {
1461 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1462 map->sections = g_renew(MemoryRegionSection, map->sections,
1463 map->sections_nb_alloc);
5312bd8b 1464 }
53cb28cb 1465 map->sections[map->sections_nb] = *section;
dfde4e6e 1466 memory_region_ref(section->mr);
53cb28cb 1467 return map->sections_nb++;
5312bd8b
AK
1468}
1469
058bc4b5
PB
1470static void phys_section_destroy(MemoryRegion *mr)
1471{
55b4e80b
DS
1472 bool have_sub_page = mr->subpage;
1473
dfde4e6e
PB
1474 memory_region_unref(mr);
1475
55b4e80b 1476 if (have_sub_page) {
058bc4b5 1477 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1478 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1479 g_free(subpage);
1480 }
1481}
1482
6092666e 1483static void phys_sections_free(PhysPageMap *map)
5312bd8b 1484{
9affd6fc
PB
1485 while (map->sections_nb > 0) {
1486 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1487 phys_section_destroy(section->mr);
1488 }
9affd6fc
PB
1489 g_free(map->sections);
1490 g_free(map->nodes);
5312bd8b
AK
1491}
1492
9950322a 1493static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1494{
9950322a 1495 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1496 subpage_t *subpage;
a8170e5e 1497 hwaddr base = section->offset_within_address_space
0f0cb164 1498 & TARGET_PAGE_MASK;
003a0cf2 1499 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1500 MemoryRegionSection subsection = {
1501 .offset_within_address_space = base,
052e87b0 1502 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1503 };
a8170e5e 1504 hwaddr start, end;
0f0cb164 1505
f3705d53 1506 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1507
f3705d53 1508 if (!(existing->mr->subpage)) {
16620684
AK
1509 subpage = subpage_init(fv, base);
1510 subsection.fv = fv;
0f0cb164 1511 subsection.mr = &subpage->iomem;
ac1970fb 1512 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1513 phys_section_add(&d->map, &subsection));
0f0cb164 1514 } else {
f3705d53 1515 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1516 }
1517 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1518 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1519 subpage_register(subpage, start, end,
1520 phys_section_add(&d->map, section));
0f0cb164
AK
1521}
1522
1523
9950322a 1524static void register_multipage(FlatView *fv,
052e87b0 1525 MemoryRegionSection *section)
33417e70 1526{
9950322a 1527 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1528 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1529 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1530 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1531 TARGET_PAGE_BITS));
dd81124b 1532
733d5ef5
PB
1533 assert(num_pages);
1534 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1535}
1536
494d1997
WY
1537/*
1538 * The range in *section* may look like this:
1539 *
1540 * |s|PPPPPPP|s|
1541 *
1542 * where s stands for subpage and P for page.
1543 */
8629d3fc 1544void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1545{
494d1997 1546 MemoryRegionSection remain = *section;
052e87b0 1547 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1548
494d1997
WY
1549 /* register first subpage */
1550 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1551 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1552 - remain.offset_within_address_space;
733d5ef5 1553
494d1997 1554 MemoryRegionSection now = remain;
052e87b0 1555 now.size = int128_min(int128_make64(left), now.size);
9950322a 1556 register_subpage(fv, &now);
494d1997
WY
1557 if (int128_eq(remain.size, now.size)) {
1558 return;
1559 }
052e87b0
PB
1560 remain.size = int128_sub(remain.size, now.size);
1561 remain.offset_within_address_space += int128_get64(now.size);
1562 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1563 }
1564
1565 /* register whole pages */
1566 if (int128_ge(remain.size, page_size)) {
1567 MemoryRegionSection now = remain;
1568 now.size = int128_and(now.size, int128_neg(page_size));
1569 register_multipage(fv, &now);
1570 if (int128_eq(remain.size, now.size)) {
1571 return;
69b67646 1572 }
494d1997
WY
1573 remain.size = int128_sub(remain.size, now.size);
1574 remain.offset_within_address_space += int128_get64(now.size);
1575 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1576 }
494d1997
WY
1577
1578 /* register last subpage */
1579 register_subpage(fv, &remain);
0f0cb164
AK
1580}
1581
62a2744c
SY
1582void qemu_flush_coalesced_mmio_buffer(void)
1583{
1584 if (kvm_enabled())
1585 kvm_flush_coalesced_mmio_buffer();
1586}
1587
b2a8658e
UD
1588void qemu_mutex_lock_ramlist(void)
1589{
1590 qemu_mutex_lock(&ram_list.mutex);
1591}
1592
1593void qemu_mutex_unlock_ramlist(void)
1594{
1595 qemu_mutex_unlock(&ram_list.mutex);
1596}
1597
be9b23c4
PX
1598void ram_block_dump(Monitor *mon)
1599{
1600 RAMBlock *block;
1601 char *psize;
1602
694ea274 1603 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1604 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1605 "Block Name", "PSize", "Offset", "Used", "Total");
1606 RAMBLOCK_FOREACH(block) {
1607 psize = size_to_str(block->page_size);
1608 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1609 " 0x%016" PRIx64 "\n", block->idstr, psize,
1610 (uint64_t)block->offset,
1611 (uint64_t)block->used_length,
1612 (uint64_t)block->max_length);
1613 g_free(psize);
1614 }
be9b23c4
PX
1615}
1616
9c607668
AK
1617#ifdef __linux__
1618/*
1619 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1620 * may or may not name the same files / on the same filesystem now as
1621 * when we actually open and map them. Iterate over the file
1622 * descriptors instead, and use qemu_fd_getpagesize().
1623 */
905b7ee4 1624static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1625{
9c607668
AK
1626 long *hpsize_min = opaque;
1627
1628 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1629 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1630 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1631
7d5489e6 1632 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1633 *hpsize_min = hpsize;
9c607668
AK
1634 }
1635 }
1636
1637 return 0;
1638}
1639
905b7ee4
DH
1640static int find_max_backend_pagesize(Object *obj, void *opaque)
1641{
1642 long *hpsize_max = opaque;
1643
1644 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1645 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1646 long hpsize = host_memory_backend_pagesize(backend);
1647
1648 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1649 *hpsize_max = hpsize;
1650 }
1651 }
1652
1653 return 0;
1654}
1655
1656/*
1657 * TODO: We assume right now that all mapped host memory backends are
1658 * used as RAM, however some might be used for different purposes.
1659 */
1660long qemu_minrampagesize(void)
9c607668
AK
1661{
1662 long hpsize = LONG_MAX;
ad1172d8 1663 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1664
ad1172d8 1665 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1666 return hpsize;
1667}
905b7ee4
DH
1668
1669long qemu_maxrampagesize(void)
1670{
ad1172d8 1671 long pagesize = 0;
905b7ee4
DH
1672 Object *memdev_root = object_resolve_path("/objects", NULL);
1673
ad1172d8 1674 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1675 return pagesize;
1676}
9c607668 1677#else
905b7ee4
DH
1678long qemu_minrampagesize(void)
1679{
038adc2f 1680 return qemu_real_host_page_size;
905b7ee4
DH
1681}
1682long qemu_maxrampagesize(void)
9c607668 1683{
038adc2f 1684 return qemu_real_host_page_size;
9c607668
AK
1685}
1686#endif
1687
d5dbde46 1688#ifdef CONFIG_POSIX
d6af99c9
HZ
1689static int64_t get_file_size(int fd)
1690{
72d41eb4
SH
1691 int64_t size;
1692#if defined(__linux__)
1693 struct stat st;
1694
1695 if (fstat(fd, &st) < 0) {
1696 return -errno;
1697 }
1698
1699 /* Special handling for devdax character devices */
1700 if (S_ISCHR(st.st_mode)) {
1701 g_autofree char *subsystem_path = NULL;
1702 g_autofree char *subsystem = NULL;
1703
1704 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1705 major(st.st_rdev), minor(st.st_rdev));
1706 subsystem = g_file_read_link(subsystem_path, NULL);
1707
1708 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1709 g_autofree char *size_path = NULL;
1710 g_autofree char *size_str = NULL;
1711
1712 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1713 major(st.st_rdev), minor(st.st_rdev));
1714
1715 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1716 return g_ascii_strtoll(size_str, NULL, 0);
1717 }
1718 }
1719 }
1720#endif /* defined(__linux__) */
1721
1722 /* st.st_size may be zero for special files yet lseek(2) works */
1723 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1724 if (size < 0) {
1725 return -errno;
1726 }
1727 return size;
1728}
1729
ce317be9
JL
1730static int64_t get_file_align(int fd)
1731{
1732 int64_t align = -1;
1733#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1734 struct stat st;
1735
1736 if (fstat(fd, &st) < 0) {
1737 return -errno;
1738 }
1739
1740 /* Special handling for devdax character devices */
1741 if (S_ISCHR(st.st_mode)) {
1742 g_autofree char *path = NULL;
1743 g_autofree char *rpath = NULL;
1744 struct daxctl_ctx *ctx;
1745 struct daxctl_region *region;
1746 int rc = 0;
1747
1748 path = g_strdup_printf("/sys/dev/char/%d:%d",
1749 major(st.st_rdev), minor(st.st_rdev));
1750 rpath = realpath(path, NULL);
1751
1752 rc = daxctl_new(&ctx);
1753 if (rc) {
1754 return -1;
1755 }
1756
1757 daxctl_region_foreach(ctx, region) {
1758 if (strstr(rpath, daxctl_region_get_path(region))) {
1759 align = daxctl_region_get_align(region);
1760 break;
1761 }
1762 }
1763 daxctl_unref(ctx);
1764 }
1765#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1766
1767 return align;
1768}
1769
8d37b030
MAL
1770static int file_ram_open(const char *path,
1771 const char *region_name,
1772 bool *created,
1773 Error **errp)
c902760f
MT
1774{
1775 char *filename;
8ca761f6
PF
1776 char *sanitized_name;
1777 char *c;
5c3ece79 1778 int fd = -1;
c902760f 1779
8d37b030 1780 *created = false;
fd97fd44
MA
1781 for (;;) {
1782 fd = open(path, O_RDWR);
1783 if (fd >= 0) {
1784 /* @path names an existing file, use it */
1785 break;
8d31d6b6 1786 }
fd97fd44
MA
1787 if (errno == ENOENT) {
1788 /* @path names a file that doesn't exist, create it */
1789 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1790 if (fd >= 0) {
8d37b030 1791 *created = true;
fd97fd44
MA
1792 break;
1793 }
1794 } else if (errno == EISDIR) {
1795 /* @path names a directory, create a file there */
1796 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1797 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1798 for (c = sanitized_name; *c != '\0'; c++) {
1799 if (*c == '/') {
1800 *c = '_';
1801 }
1802 }
8ca761f6 1803
fd97fd44
MA
1804 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1805 sanitized_name);
1806 g_free(sanitized_name);
8d31d6b6 1807
fd97fd44
MA
1808 fd = mkstemp(filename);
1809 if (fd >= 0) {
1810 unlink(filename);
1811 g_free(filename);
1812 break;
1813 }
1814 g_free(filename);
8d31d6b6 1815 }
fd97fd44
MA
1816 if (errno != EEXIST && errno != EINTR) {
1817 error_setg_errno(errp, errno,
1818 "can't open backing store %s for guest RAM",
1819 path);
8d37b030 1820 return -1;
fd97fd44
MA
1821 }
1822 /*
1823 * Try again on EINTR and EEXIST. The latter happens when
1824 * something else creates the file between our two open().
1825 */
8d31d6b6 1826 }
c902760f 1827
8d37b030
MAL
1828 return fd;
1829}
1830
1831static void *file_ram_alloc(RAMBlock *block,
1832 ram_addr_t memory,
1833 int fd,
1834 bool truncate,
1835 Error **errp)
1836{
1837 void *area;
1838
863e9621 1839 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1840 if (block->mr->align % block->page_size) {
1841 error_setg(errp, "alignment 0x%" PRIx64
1842 " must be multiples of page size 0x%zx",
1843 block->mr->align, block->page_size);
1844 return NULL;
61362b71
DH
1845 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1846 error_setg(errp, "alignment 0x%" PRIx64
1847 " must be a power of two", block->mr->align);
1848 return NULL;
98376843
HZ
1849 }
1850 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1851#if defined(__s390x__)
1852 if (kvm_enabled()) {
1853 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1854 }
1855#endif
fd97fd44 1856
863e9621 1857 if (memory < block->page_size) {
fd97fd44 1858 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1859 "or larger than page size 0x%zx",
1860 memory, block->page_size);
8d37b030 1861 return NULL;
1775f111
HZ
1862 }
1863
863e9621 1864 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1865
1866 /*
1867 * ftruncate is not supported by hugetlbfs in older
1868 * hosts, so don't bother bailing out on errors.
1869 * If anything goes wrong with it under other filesystems,
1870 * mmap will fail.
d6af99c9
HZ
1871 *
1872 * Do not truncate the non-empty backend file to avoid corrupting
1873 * the existing data in the file. Disabling shrinking is not
1874 * enough. For example, the current vNVDIMM implementation stores
1875 * the guest NVDIMM labels at the end of the backend file. If the
1876 * backend file is later extended, QEMU will not be able to find
1877 * those labels. Therefore, extending the non-empty backend file
1878 * is disabled as well.
c902760f 1879 */
8d37b030 1880 if (truncate && ftruncate(fd, memory)) {
9742bf26 1881 perror("ftruncate");
7f56e740 1882 }
c902760f 1883
d2f39add 1884 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1885 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1886 if (area == MAP_FAILED) {
7f56e740 1887 error_setg_errno(errp, errno,
fd97fd44 1888 "unable to map backing store for guest RAM");
8d37b030 1889 return NULL;
c902760f 1890 }
ef36fa14 1891
04b16653 1892 block->fd = fd;
c902760f
MT
1893 return area;
1894}
1895#endif
1896
154cc9ea
DDAG
1897/* Allocate space within the ram_addr_t space that governs the
1898 * dirty bitmaps.
1899 * Called with the ramlist lock held.
1900 */
d17b5288 1901static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1902{
1903 RAMBlock *block, *next_block;
3e837b2c 1904 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1905
49cd9ac6
SH
1906 assert(size != 0); /* it would hand out same offset multiple times */
1907
0dc3f44a 1908 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1909 return 0;
0d53d9fe 1910 }
04b16653 1911
99e15582 1912 RAMBLOCK_FOREACH(block) {
154cc9ea 1913 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1914
801110ab
DDAG
1915 /* Align blocks to start on a 'long' in the bitmap
1916 * which makes the bitmap sync'ing take the fast path.
1917 */
154cc9ea 1918 candidate = block->offset + block->max_length;
801110ab 1919 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1920
154cc9ea
DDAG
1921 /* Search for the closest following block
1922 * and find the gap.
1923 */
99e15582 1924 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1925 if (next_block->offset >= candidate) {
04b16653
AW
1926 next = MIN(next, next_block->offset);
1927 }
1928 }
154cc9ea
DDAG
1929
1930 /* If it fits remember our place and remember the size
1931 * of gap, but keep going so that we might find a smaller
1932 * gap to fill so avoiding fragmentation.
1933 */
1934 if (next - candidate >= size && next - candidate < mingap) {
1935 offset = candidate;
1936 mingap = next - candidate;
04b16653 1937 }
154cc9ea
DDAG
1938
1939 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1940 }
3e837b2c
AW
1941
1942 if (offset == RAM_ADDR_MAX) {
1943 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1944 (uint64_t)size);
1945 abort();
1946 }
1947
154cc9ea
DDAG
1948 trace_find_ram_offset(size, offset);
1949
04b16653
AW
1950 return offset;
1951}
1952
c136180c 1953static unsigned long last_ram_page(void)
d17b5288
AW
1954{
1955 RAMBlock *block;
1956 ram_addr_t last = 0;
1957
694ea274 1958 RCU_READ_LOCK_GUARD();
99e15582 1959 RAMBLOCK_FOREACH(block) {
62be4e3a 1960 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1961 }
b8c48993 1962 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1963}
1964
ddb97f1d
JB
1965static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1966{
1967 int ret;
ddb97f1d
JB
1968
1969 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1970 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1971 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1972 if (ret) {
1973 perror("qemu_madvise");
1974 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1975 "but dump_guest_core=off specified\n");
1976 }
1977 }
1978}
1979
422148d3
DDAG
1980const char *qemu_ram_get_idstr(RAMBlock *rb)
1981{
1982 return rb->idstr;
1983}
1984
754cb9c0
YK
1985void *qemu_ram_get_host_addr(RAMBlock *rb)
1986{
1987 return rb->host;
1988}
1989
1990ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1991{
1992 return rb->offset;
1993}
1994
1995ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1996{
1997 return rb->used_length;
1998}
1999
463a4ac2
DDAG
2000bool qemu_ram_is_shared(RAMBlock *rb)
2001{
2002 return rb->flags & RAM_SHARED;
2003}
2004
2ce16640
DDAG
2005/* Note: Only set at the start of postcopy */
2006bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2007{
2008 return rb->flags & RAM_UF_ZEROPAGE;
2009}
2010
2011void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2012{
2013 rb->flags |= RAM_UF_ZEROPAGE;
2014}
2015
b895de50
CLG
2016bool qemu_ram_is_migratable(RAMBlock *rb)
2017{
2018 return rb->flags & RAM_MIGRATABLE;
2019}
2020
2021void qemu_ram_set_migratable(RAMBlock *rb)
2022{
2023 rb->flags |= RAM_MIGRATABLE;
2024}
2025
2026void qemu_ram_unset_migratable(RAMBlock *rb)
2027{
2028 rb->flags &= ~RAM_MIGRATABLE;
2029}
2030
ae3a7047 2031/* Called with iothread lock held. */
fa53a0e5 2032void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2033{
fa53a0e5 2034 RAMBlock *block;
20cfe881 2035
c5705a77
AK
2036 assert(new_block);
2037 assert(!new_block->idstr[0]);
84b89d78 2038
09e5ab63
AL
2039 if (dev) {
2040 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2041 if (id) {
2042 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2043 g_free(id);
84b89d78
CM
2044 }
2045 }
2046 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2047
694ea274 2048 RCU_READ_LOCK_GUARD();
99e15582 2049 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2050 if (block != new_block &&
2051 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2052 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2053 new_block->idstr);
2054 abort();
2055 }
2056 }
c5705a77
AK
2057}
2058
ae3a7047 2059/* Called with iothread lock held. */
fa53a0e5 2060void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2061{
ae3a7047
MD
2062 /* FIXME: arch_init.c assumes that this is not called throughout
2063 * migration. Ignore the problem since hot-unplug during migration
2064 * does not work anyway.
2065 */
20cfe881
HT
2066 if (block) {
2067 memset(block->idstr, 0, sizeof(block->idstr));
2068 }
2069}
2070
863e9621
DDAG
2071size_t qemu_ram_pagesize(RAMBlock *rb)
2072{
2073 return rb->page_size;
2074}
2075
67f11b5c
DDAG
2076/* Returns the largest size of page in use */
2077size_t qemu_ram_pagesize_largest(void)
2078{
2079 RAMBlock *block;
2080 size_t largest = 0;
2081
99e15582 2082 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2083 largest = MAX(largest, qemu_ram_pagesize(block));
2084 }
2085
2086 return largest;
2087}
2088
8490fc78
LC
2089static int memory_try_enable_merging(void *addr, size_t len)
2090{
75cc7f01 2091 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2092 /* disabled by the user */
2093 return 0;
2094 }
2095
2096 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2097}
2098
62be4e3a
MT
2099/* Only legal before guest might have detected the memory size: e.g. on
2100 * incoming migration, or right after reset.
2101 *
2102 * As memory core doesn't know how is memory accessed, it is up to
2103 * resize callback to update device state and/or add assertions to detect
2104 * misuse, if necessary.
2105 */
fa53a0e5 2106int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2107{
ce4adc0b
DH
2108 const ram_addr_t unaligned_size = newsize;
2109
62be4e3a
MT
2110 assert(block);
2111
4ed023ce 2112 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2113
62be4e3a 2114 if (block->used_length == newsize) {
ce4adc0b
DH
2115 /*
2116 * We don't have to resize the ram block (which only knows aligned
2117 * sizes), however, we have to notify if the unaligned size changed.
2118 */
2119 if (unaligned_size != memory_region_size(block->mr)) {
2120 memory_region_set_size(block->mr, unaligned_size);
2121 if (block->resized) {
2122 block->resized(block->idstr, unaligned_size, block->host);
2123 }
2124 }
62be4e3a
MT
2125 return 0;
2126 }
2127
2128 if (!(block->flags & RAM_RESIZEABLE)) {
2129 error_setg_errno(errp, EINVAL,
2130 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2131 " in != 0x" RAM_ADDR_FMT, block->idstr,
2132 newsize, block->used_length);
2133 return -EINVAL;
2134 }
2135
2136 if (block->max_length < newsize) {
2137 error_setg_errno(errp, EINVAL,
2138 "Length too large: %s: 0x" RAM_ADDR_FMT
2139 " > 0x" RAM_ADDR_FMT, block->idstr,
2140 newsize, block->max_length);
2141 return -EINVAL;
2142 }
2143
2144 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2145 block->used_length = newsize;
58d2707e
PB
2146 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2147 DIRTY_CLIENTS_ALL);
ce4adc0b 2148 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 2149 if (block->resized) {
ce4adc0b 2150 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
2151 }
2152 return 0;
2153}
2154
61c490e2
BM
2155/*
2156 * Trigger sync on the given ram block for range [start, start + length]
2157 * with the backing store if one is available.
2158 * Otherwise no-op.
2159 * @Note: this is supposed to be a synchronous op.
2160 */
ab7e41e6 2161void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 2162{
61c490e2
BM
2163 /* The requested range should fit in within the block range */
2164 g_assert((start + length) <= block->used_length);
2165
2166#ifdef CONFIG_LIBPMEM
2167 /* The lack of support for pmem should not block the sync */
2168 if (ramblock_is_pmem(block)) {
5d4c9549 2169 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2170 pmem_persist(addr, length);
2171 return;
2172 }
2173#endif
2174 if (block->fd >= 0) {
2175 /**
2176 * Case there is no support for PMEM or the memory has not been
2177 * specified as persistent (or is not one) - use the msync.
2178 * Less optimal but still achieves the same goal
2179 */
5d4c9549 2180 void *addr = ramblock_ptr(block, start);
61c490e2
BM
2181 if (qemu_msync(addr, length, block->fd)) {
2182 warn_report("%s: failed to sync memory range: start: "
2183 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2184 __func__, start, length);
2185 }
2186 }
2187}
2188
5b82b703
SH
2189/* Called with ram_list.mutex held */
2190static void dirty_memory_extend(ram_addr_t old_ram_size,
2191 ram_addr_t new_ram_size)
2192{
2193 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2194 DIRTY_MEMORY_BLOCK_SIZE);
2195 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2196 DIRTY_MEMORY_BLOCK_SIZE);
2197 int i;
2198
2199 /* Only need to extend if block count increased */
2200 if (new_num_blocks <= old_num_blocks) {
2201 return;
2202 }
2203
2204 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2205 DirtyMemoryBlocks *old_blocks;
2206 DirtyMemoryBlocks *new_blocks;
2207 int j;
2208
2209 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2210 new_blocks = g_malloc(sizeof(*new_blocks) +
2211 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2212
2213 if (old_num_blocks) {
2214 memcpy(new_blocks->blocks, old_blocks->blocks,
2215 old_num_blocks * sizeof(old_blocks->blocks[0]));
2216 }
2217
2218 for (j = old_num_blocks; j < new_num_blocks; j++) {
2219 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2220 }
2221
2222 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2223
2224 if (old_blocks) {
2225 g_free_rcu(old_blocks, rcu);
2226 }
2227 }
2228}
2229
06329cce 2230static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2231{
e1c57ab8 2232 RAMBlock *block;
0d53d9fe 2233 RAMBlock *last_block = NULL;
2152f5ca 2234 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2235 Error *err = NULL;
2152f5ca 2236
b8c48993 2237 old_ram_size = last_ram_page();
c5705a77 2238
b2a8658e 2239 qemu_mutex_lock_ramlist();
9b8424d5 2240 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2241
2242 if (!new_block->host) {
2243 if (xen_enabled()) {
9b8424d5 2244 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2245 new_block->mr, &err);
2246 if (err) {
2247 error_propagate(errp, err);
2248 qemu_mutex_unlock_ramlist();
39c350ee 2249 return;
37aa7a0e 2250 }
e1c57ab8 2251 } else {
9b8424d5 2252 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2253 &new_block->mr->align, shared);
39228250 2254 if (!new_block->host) {
ef701d7b
HT
2255 error_setg_errno(errp, errno,
2256 "cannot set up guest memory '%s'",
2257 memory_region_name(new_block->mr));
2258 qemu_mutex_unlock_ramlist();
39c350ee 2259 return;
39228250 2260 }
9b8424d5 2261 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2262 }
c902760f 2263 }
94a6b54f 2264
dd631697
LZ
2265 new_ram_size = MAX(old_ram_size,
2266 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2267 if (new_ram_size > old_ram_size) {
5b82b703 2268 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2269 }
0d53d9fe
MD
2270 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2271 * QLIST (which has an RCU-friendly variant) does not have insertion at
2272 * tail, so save the last element in last_block.
2273 */
99e15582 2274 RAMBLOCK_FOREACH(block) {
0d53d9fe 2275 last_block = block;
9b8424d5 2276 if (block->max_length < new_block->max_length) {
abb26d63
PB
2277 break;
2278 }
2279 }
2280 if (block) {
0dc3f44a 2281 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2282 } else if (last_block) {
0dc3f44a 2283 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2284 } else { /* list is empty */
0dc3f44a 2285 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2286 }
0d6d3c87 2287 ram_list.mru_block = NULL;
94a6b54f 2288
0dc3f44a
MD
2289 /* Write list before version */
2290 smp_wmb();
f798b07f 2291 ram_list.version++;
b2a8658e 2292 qemu_mutex_unlock_ramlist();
f798b07f 2293
9b8424d5 2294 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2295 new_block->used_length,
2296 DIRTY_CLIENTS_ALL);
94a6b54f 2297
a904c911
PB
2298 if (new_block->host) {
2299 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2300 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2301 /*
2302 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2303 * Configure it unless the machine is a qtest server, in which case
2304 * KVM is not used and it may be forked (eg for fuzzing purposes).
2305 */
2306 if (!qtest_enabled()) {
2307 qemu_madvise(new_block->host, new_block->max_length,
2308 QEMU_MADV_DONTFORK);
2309 }
0987d735 2310 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2311 }
94a6b54f 2312}
e9a1ab19 2313
d5dbde46 2314#ifdef CONFIG_POSIX
38b3362d 2315RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2316 uint32_t ram_flags, int fd,
38b3362d 2317 Error **errp)
e1c57ab8
PB
2318{
2319 RAMBlock *new_block;
ef701d7b 2320 Error *local_err = NULL;
ce317be9 2321 int64_t file_size, file_align;
e1c57ab8 2322
a4de8552
JH
2323 /* Just support these ram flags by now. */
2324 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2325
e1c57ab8 2326 if (xen_enabled()) {
7f56e740 2327 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2328 return NULL;
e1c57ab8
PB
2329 }
2330
e45e7ae2
MAL
2331 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2332 error_setg(errp,
2333 "host lacks kvm mmu notifiers, -mem-path unsupported");
2334 return NULL;
2335 }
2336
e1c57ab8
PB
2337 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2338 /*
2339 * file_ram_alloc() needs to allocate just like
2340 * phys_mem_alloc, but we haven't bothered to provide
2341 * a hook there.
2342 */
7f56e740
PB
2343 error_setg(errp,
2344 "-mem-path not supported with this accelerator");
528f46af 2345 return NULL;
e1c57ab8
PB
2346 }
2347
4ed023ce 2348 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2349 file_size = get_file_size(fd);
2350 if (file_size > 0 && file_size < size) {
c001c3b3 2351 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2352 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2353 file_size, size);
8d37b030
MAL
2354 return NULL;
2355 }
2356
ce317be9
JL
2357 file_align = get_file_align(fd);
2358 if (file_align > 0 && mr && file_align > mr->align) {
2359 error_setg(errp, "backing store align 0x%" PRIx64
5f509751 2360 " is larger than 'align' option 0x%" PRIx64,
ce317be9
JL
2361 file_align, mr->align);
2362 return NULL;
2363 }
2364
e1c57ab8
PB
2365 new_block = g_malloc0(sizeof(*new_block));
2366 new_block->mr = mr;
9b8424d5
MT
2367 new_block->used_length = size;
2368 new_block->max_length = size;
cbfc0171 2369 new_block->flags = ram_flags;
8d37b030 2370 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2371 if (!new_block->host) {
2372 g_free(new_block);
528f46af 2373 return NULL;
7f56e740
PB
2374 }
2375
cbfc0171 2376 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2377 if (local_err) {
2378 g_free(new_block);
2379 error_propagate(errp, local_err);
528f46af 2380 return NULL;
ef701d7b 2381 }
528f46af 2382 return new_block;
38b3362d
MAL
2383
2384}
2385
2386
2387RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2388 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2389 Error **errp)
2390{
2391 int fd;
2392 bool created;
2393 RAMBlock *block;
2394
2395 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2396 if (fd < 0) {
2397 return NULL;
2398 }
2399
cbfc0171 2400 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2401 if (!block) {
2402 if (created) {
2403 unlink(mem_path);
2404 }
2405 close(fd);
2406 return NULL;
2407 }
2408
2409 return block;
e1c57ab8 2410}
0b183fc8 2411#endif
e1c57ab8 2412
62be4e3a 2413static
528f46af
FZ
2414RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2415 void (*resized)(const char*,
2416 uint64_t length,
2417 void *host),
06329cce 2418 void *host, bool resizeable, bool share,
528f46af 2419 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2420{
2421 RAMBlock *new_block;
ef701d7b 2422 Error *local_err = NULL;
e1c57ab8 2423
4ed023ce
DDAG
2424 size = HOST_PAGE_ALIGN(size);
2425 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2426 new_block = g_malloc0(sizeof(*new_block));
2427 new_block->mr = mr;
62be4e3a 2428 new_block->resized = resized;
9b8424d5
MT
2429 new_block->used_length = size;
2430 new_block->max_length = max_size;
62be4e3a 2431 assert(max_size >= size);
e1c57ab8 2432 new_block->fd = -1;
038adc2f 2433 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2434 new_block->host = host;
2435 if (host) {
7bd4f430 2436 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2437 }
62be4e3a
MT
2438 if (resizeable) {
2439 new_block->flags |= RAM_RESIZEABLE;
2440 }
06329cce 2441 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2442 if (local_err) {
2443 g_free(new_block);
2444 error_propagate(errp, local_err);
528f46af 2445 return NULL;
ef701d7b 2446 }
528f46af 2447 return new_block;
e1c57ab8
PB
2448}
2449
528f46af 2450RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2451 MemoryRegion *mr, Error **errp)
2452{
06329cce
MA
2453 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2454 false, mr, errp);
62be4e3a
MT
2455}
2456
06329cce
MA
2457RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2458 MemoryRegion *mr, Error **errp)
6977dfe6 2459{
06329cce
MA
2460 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2461 share, mr, errp);
62be4e3a
MT
2462}
2463
528f46af 2464RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2465 void (*resized)(const char*,
2466 uint64_t length,
2467 void *host),
2468 MemoryRegion *mr, Error **errp)
2469{
06329cce
MA
2470 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2471 false, mr, errp);
6977dfe6
YT
2472}
2473
43771539
PB
2474static void reclaim_ramblock(RAMBlock *block)
2475{
2476 if (block->flags & RAM_PREALLOC) {
2477 ;
2478 } else if (xen_enabled()) {
2479 xen_invalidate_map_cache_entry(block->host);
2480#ifndef _WIN32
2481 } else if (block->fd >= 0) {
53adb9d4 2482 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2483 close(block->fd);
2484#endif
2485 } else {
2486 qemu_anon_ram_free(block->host, block->max_length);
2487 }
2488 g_free(block);
2489}
2490
f1060c55 2491void qemu_ram_free(RAMBlock *block)
e9a1ab19 2492{
85bc2a15
MAL
2493 if (!block) {
2494 return;
2495 }
2496
0987d735
PB
2497 if (block->host) {
2498 ram_block_notify_remove(block->host, block->max_length);
2499 }
2500
b2a8658e 2501 qemu_mutex_lock_ramlist();
f1060c55
FZ
2502 QLIST_REMOVE_RCU(block, next);
2503 ram_list.mru_block = NULL;
2504 /* Write list before version */
2505 smp_wmb();
2506 ram_list.version++;
2507 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2508 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2509}
2510
cd19cfa2
HY
2511#ifndef _WIN32
2512void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2513{
2514 RAMBlock *block;
2515 ram_addr_t offset;
2516 int flags;
2517 void *area, *vaddr;
2518
99e15582 2519 RAMBLOCK_FOREACH(block) {
cd19cfa2 2520 offset = addr - block->offset;
9b8424d5 2521 if (offset < block->max_length) {
1240be24 2522 vaddr = ramblock_ptr(block, offset);
7bd4f430 2523 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2524 ;
dfeaf2ab
MA
2525 } else if (xen_enabled()) {
2526 abort();
cd19cfa2
HY
2527 } else {
2528 flags = MAP_FIXED;
3435f395 2529 if (block->fd >= 0) {
dbcb8981
PB
2530 flags |= (block->flags & RAM_SHARED ?
2531 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2532 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2533 flags, block->fd, offset);
cd19cfa2 2534 } else {
2eb9fbaa
MA
2535 /*
2536 * Remap needs to match alloc. Accelerators that
2537 * set phys_mem_alloc never remap. If they did,
2538 * we'd need a remap hook here.
2539 */
2540 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2541
cd19cfa2
HY
2542 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2543 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2544 flags, -1, 0);
cd19cfa2
HY
2545 }
2546 if (area != vaddr) {
493d89bf
AF
2547 error_report("Could not remap addr: "
2548 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2549 length, addr);
cd19cfa2
HY
2550 exit(1);
2551 }
8490fc78 2552 memory_try_enable_merging(vaddr, length);
ddb97f1d 2553 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2554 }
cd19cfa2
HY
2555 }
2556 }
2557}
2558#endif /* !_WIN32 */
2559
1b5ec234 2560/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2561 * This should not be used for general purpose DMA. Use address_space_map
2562 * or address_space_rw instead. For local memory (e.g. video ram) that the
2563 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2564 *
49b24afc 2565 * Called within RCU critical section.
1b5ec234 2566 */
0878d0e1 2567void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2568{
3655cb9c
GA
2569 RAMBlock *block = ram_block;
2570
2571 if (block == NULL) {
2572 block = qemu_get_ram_block(addr);
0878d0e1 2573 addr -= block->offset;
3655cb9c 2574 }
ae3a7047
MD
2575
2576 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2577 /* We need to check if the requested address is in the RAM
2578 * because we don't want to map the entire memory in QEMU.
2579 * In that case just map until the end of the page.
2580 */
2581 if (block->offset == 0) {
1ff7c598 2582 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2583 }
ae3a7047 2584
1ff7c598 2585 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2586 }
0878d0e1 2587 return ramblock_ptr(block, addr);
dc828ca1
PB
2588}
2589
0878d0e1 2590/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2591 * but takes a size argument.
0dc3f44a 2592 *
e81bcda5 2593 * Called within RCU critical section.
ae3a7047 2594 */
3655cb9c 2595static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2596 hwaddr *size, bool lock)
38bee5dc 2597{
3655cb9c 2598 RAMBlock *block = ram_block;
8ab934f9
SS
2599 if (*size == 0) {
2600 return NULL;
2601 }
e81bcda5 2602
3655cb9c
GA
2603 if (block == NULL) {
2604 block = qemu_get_ram_block(addr);
0878d0e1 2605 addr -= block->offset;
3655cb9c 2606 }
0878d0e1 2607 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2608
2609 if (xen_enabled() && block->host == NULL) {
2610 /* We need to check if the requested address is in the RAM
2611 * because we don't want to map the entire memory in QEMU.
2612 * In that case just map the requested area.
2613 */
2614 if (block->offset == 0) {
f5aa69bd 2615 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2616 }
2617
f5aa69bd 2618 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2619 }
e81bcda5 2620
0878d0e1 2621 return ramblock_ptr(block, addr);
38bee5dc
SS
2622}
2623
f90bb71b
DDAG
2624/* Return the offset of a hostpointer within a ramblock */
2625ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2626{
2627 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2628 assert((uintptr_t)host >= (uintptr_t)rb->host);
2629 assert(res < rb->max_length);
2630
2631 return res;
2632}
2633
422148d3
DDAG
2634/*
2635 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2636 * in that RAMBlock.
2637 *
2638 * ptr: Host pointer to look up
2639 * round_offset: If true round the result offset down to a page boundary
2640 * *ram_addr: set to result ram_addr
2641 * *offset: set to result offset within the RAMBlock
2642 *
2643 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2644 *
2645 * By the time this function returns, the returned pointer is not protected
2646 * by RCU anymore. If the caller is not within an RCU critical section and
2647 * does not hold the iothread lock, it must have other means of protecting the
2648 * pointer, such as a reference to the region that includes the incoming
2649 * ram_addr_t.
2650 */
422148d3 2651RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2652 ram_addr_t *offset)
5579c7f3 2653{
94a6b54f
PB
2654 RAMBlock *block;
2655 uint8_t *host = ptr;
2656
868bb33f 2657 if (xen_enabled()) {
f615f396 2658 ram_addr_t ram_addr;
694ea274 2659 RCU_READ_LOCK_GUARD();
f615f396
PB
2660 ram_addr = xen_ram_addr_from_mapcache(ptr);
2661 block = qemu_get_ram_block(ram_addr);
422148d3 2662 if (block) {
d6b6aec4 2663 *offset = ram_addr - block->offset;
422148d3 2664 }
422148d3 2665 return block;
712c2b41
SS
2666 }
2667
694ea274 2668 RCU_READ_LOCK_GUARD();
0dc3f44a 2669 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2670 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2671 goto found;
2672 }
2673
99e15582 2674 RAMBLOCK_FOREACH(block) {
432d268c
JN
2675 /* This case append when the block is not mapped. */
2676 if (block->host == NULL) {
2677 continue;
2678 }
9b8424d5 2679 if (host - block->host < block->max_length) {
23887b79 2680 goto found;
f471a17e 2681 }
94a6b54f 2682 }
432d268c 2683
1b5ec234 2684 return NULL;
23887b79
PB
2685
2686found:
422148d3
DDAG
2687 *offset = (host - block->host);
2688 if (round_offset) {
2689 *offset &= TARGET_PAGE_MASK;
2690 }
422148d3
DDAG
2691 return block;
2692}
2693
e3dd7493
DDAG
2694/*
2695 * Finds the named RAMBlock
2696 *
2697 * name: The name of RAMBlock to find
2698 *
2699 * Returns: RAMBlock (or NULL if not found)
2700 */
2701RAMBlock *qemu_ram_block_by_name(const char *name)
2702{
2703 RAMBlock *block;
2704
99e15582 2705 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2706 if (!strcmp(name, block->idstr)) {
2707 return block;
2708 }
2709 }
2710
2711 return NULL;
2712}
2713
422148d3
DDAG
2714/* Some of the softmmu routines need to translate from a host pointer
2715 (typically a TLB entry) back to a ram offset. */
07bdaa41 2716ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2717{
2718 RAMBlock *block;
f615f396 2719 ram_addr_t offset;
422148d3 2720
f615f396 2721 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2722 if (!block) {
07bdaa41 2723 return RAM_ADDR_INVALID;
422148d3
DDAG
2724 }
2725
07bdaa41 2726 return block->offset + offset;
e890261f 2727}
f471a17e 2728
0f459d16 2729/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2730void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2731 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2732{
568496c0 2733 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2734 CPUWatchpoint *wp;
0f459d16 2735
5aa1ef71 2736 assert(tcg_enabled());
ff4700b0 2737 if (cpu->watchpoint_hit) {
50b107c5
RH
2738 /*
2739 * We re-entered the check after replacing the TB.
2740 * Now raise the debug interrupt so that it will
2741 * trigger after the current instruction.
2742 */
2743 qemu_mutex_lock_iothread();
93afeade 2744 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2745 qemu_mutex_unlock_iothread();
06d55cc1
AL
2746 return;
2747 }
0026348b
DH
2748
2749 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2750 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2751 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2752 && (wp->flags & flags)) {
08225676
PM
2753 if (flags == BP_MEM_READ) {
2754 wp->flags |= BP_WATCHPOINT_HIT_READ;
2755 } else {
2756 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2757 }
0026348b 2758 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2759 wp->hitattrs = attrs;
ff4700b0 2760 if (!cpu->watchpoint_hit) {
568496c0
SF
2761 if (wp->flags & BP_CPU &&
2762 !cc->debug_check_watchpoint(cpu, wp)) {
2763 wp->flags &= ~BP_WATCHPOINT_HIT;
2764 continue;
2765 }
ff4700b0 2766 cpu->watchpoint_hit = wp;
a5e99826 2767
0ac20318 2768 mmap_lock();
ae57db63 2769 tb_check_watchpoint(cpu, ra);
6e140f28 2770 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2771 cpu->exception_index = EXCP_DEBUG;
0ac20318 2772 mmap_unlock();
0026348b 2773 cpu_loop_exit_restore(cpu, ra);
6e140f28 2774 } else {
9b990ee5
RH
2775 /* Force execution of one insn next time. */
2776 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2777 mmap_unlock();
0026348b
DH
2778 if (ra) {
2779 cpu_restore_state(cpu, ra, true);
2780 }
6886b980 2781 cpu_loop_exit_noexc(cpu);
6e140f28 2782 }
06d55cc1 2783 }
6e140f28
AL
2784 } else {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2786 }
2787 }
2788}
2789
b2a44fca 2790static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2791 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2792static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2793 const void *buf, hwaddr len);
0c249ff7 2794static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2795 bool is_write, MemTxAttrs attrs);
16620684 2796
f25a49e0
PM
2797static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2798 unsigned len, MemTxAttrs attrs)
db7b5426 2799{
acc9d80b 2800 subpage_t *subpage = opaque;
ff6cff75 2801 uint8_t buf[8];
5c9eb028 2802 MemTxResult res;
791af8c8 2803
db7b5426 2804#if defined(DEBUG_SUBPAGE)
016e9d62 2805 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2806 subpage, len, addr);
db7b5426 2807#endif
16620684 2808 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2809 if (res) {
2810 return res;
f25a49e0 2811 }
6d3ede54
PM
2812 *data = ldn_p(buf, len);
2813 return MEMTX_OK;
db7b5426
BS
2814}
2815
f25a49e0
PM
2816static MemTxResult subpage_write(void *opaque, hwaddr addr,
2817 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2818{
acc9d80b 2819 subpage_t *subpage = opaque;
ff6cff75 2820 uint8_t buf[8];
acc9d80b 2821
db7b5426 2822#if defined(DEBUG_SUBPAGE)
016e9d62 2823 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2824 " value %"PRIx64"\n",
2825 __func__, subpage, len, addr, value);
db7b5426 2826#endif
6d3ede54 2827 stn_p(buf, len, value);
16620684 2828 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2829}
2830
c353e4cc 2831static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2832 unsigned len, bool is_write,
2833 MemTxAttrs attrs)
c353e4cc 2834{
acc9d80b 2835 subpage_t *subpage = opaque;
c353e4cc 2836#if defined(DEBUG_SUBPAGE)
016e9d62 2837 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2838 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2839#endif
2840
16620684 2841 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2842 len, is_write, attrs);
c353e4cc
PB
2843}
2844
70c68e44 2845static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2846 .read_with_attrs = subpage_read,
2847 .write_with_attrs = subpage_write,
ff6cff75
PB
2848 .impl.min_access_size = 1,
2849 .impl.max_access_size = 8,
2850 .valid.min_access_size = 1,
2851 .valid.max_access_size = 8,
c353e4cc 2852 .valid.accepts = subpage_accepts,
70c68e44 2853 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2854};
2855
b797ab1a
WY
2856static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2857 uint16_t section)
db7b5426
BS
2858{
2859 int idx, eidx;
2860
2861 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2862 return -1;
2863 idx = SUBPAGE_IDX(start);
2864 eidx = SUBPAGE_IDX(end);
2865#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2866 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2867 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2868#endif
db7b5426 2869 for (; idx <= eidx; idx++) {
5312bd8b 2870 mmio->sub_section[idx] = section;
db7b5426
BS
2871 }
2872
2873 return 0;
2874}
2875
16620684 2876static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2877{
c227f099 2878 subpage_t *mmio;
db7b5426 2879
b797ab1a 2880 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2881 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2882 mmio->fv = fv;
1eec614b 2883 mmio->base = base;
2c9b15ca 2884 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2885 NULL, TARGET_PAGE_SIZE);
b3b00c78 2886 mmio->iomem.subpage = true;
db7b5426 2887#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2888 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2889 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2890#endif
db7b5426
BS
2891
2892 return mmio;
2893}
2894
16620684 2895static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2896{
16620684 2897 assert(fv);
5312bd8b 2898 MemoryRegionSection section = {
16620684 2899 .fv = fv,
5312bd8b
AK
2900 .mr = mr,
2901 .offset_within_address_space = 0,
2902 .offset_within_region = 0,
052e87b0 2903 .size = int128_2_64(),
5312bd8b
AK
2904 };
2905
53cb28cb 2906 return phys_section_add(map, &section);
5312bd8b
AK
2907}
2908
2d54f194
PM
2909MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2910 hwaddr index, MemTxAttrs attrs)
aa102231 2911{
a54c87b6
PM
2912 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2913 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2914 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2915 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2916
2d54f194 2917 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2918}
2919
e9179ce1
AK
2920static void io_mem_init(void)
2921{
2c9b15ca 2922 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2923 NULL, UINT64_MAX);
e9179ce1
AK
2924}
2925
8629d3fc 2926AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2927{
53cb28cb
MA
2928 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2929 uint16_t n;
2930
16620684 2931 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2932 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2933
9736e55b 2934 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2935
2936 return d;
00752703
PB
2937}
2938
66a6df1d 2939void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2940{
2941 phys_sections_free(&d->map);
2942 g_free(d);
2943}
2944
9458a9a1
PB
2945static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2946{
2947}
2948
2949static void tcg_log_global_after_sync(MemoryListener *listener)
2950{
2951 CPUAddressSpace *cpuas;
2952
2953 /* Wait for the CPU to end the current TB. This avoids the following
2954 * incorrect race:
2955 *
2956 * vCPU migration
2957 * ---------------------- -------------------------
2958 * TLB check -> slow path
2959 * notdirty_mem_write
2960 * write to RAM
2961 * mark dirty
2962 * clear dirty flag
2963 * TLB check -> fast path
2964 * read memory
2965 * write to RAM
2966 *
2967 * by pushing the migration thread's memory read after the vCPU thread has
2968 * written the memory.
2969 */
86cf9e15
PD
2970 if (replay_mode == REPLAY_MODE_NONE) {
2971 /*
2972 * VGA can make calls to this function while updating the screen.
2973 * In record/replay mode this causes a deadlock, because
2974 * run_on_cpu waits for rr mutex. Therefore no races are possible
2975 * in this case and no need for making run_on_cpu when
2976 * record/replay is not enabled.
2977 */
2978 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2979 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2980 }
9458a9a1
PB
2981}
2982
1d71148e 2983static void tcg_commit(MemoryListener *listener)
50c1e149 2984{
32857f4d
PM
2985 CPUAddressSpace *cpuas;
2986 AddressSpaceDispatch *d;
117712c3 2987
f28d0dfd 2988 assert(tcg_enabled());
117712c3
AK
2989 /* since each CPU stores ram addresses in its TLB cache, we must
2990 reset the modified entries */
32857f4d
PM
2991 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2992 cpu_reloading_memory_map();
2993 /* The CPU and TLB are protected by the iothread lock.
2994 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2995 * may have split the RCU critical section.
2996 */
66a6df1d 2997 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2998 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2999 tlb_flush(cpuas->cpu);
50c1e149
AK
3000}
3001
62152b8a
AK
3002static void memory_map_init(void)
3003{
7267c094 3004 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3005
57271d63 3006 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3007 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3008
7267c094 3009 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3010 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3011 65536);
7dca8043 3012 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3013}
3014
3015MemoryRegion *get_system_memory(void)
3016{
3017 return system_memory;
3018}
3019
309cb471
AK
3020MemoryRegion *get_system_io(void)
3021{
3022 return system_io;
3023}
3024
e2eef170
PB
3025#endif /* !defined(CONFIG_USER_ONLY) */
3026
13eb76e0
FB
3027/* physical memory access (slow version, mainly for debug) */
3028#if defined(CONFIG_USER_ONLY)
f17ec444 3029int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3030 void *ptr, target_ulong len, bool is_write)
13eb76e0 3031{
0c249ff7
LZ
3032 int flags;
3033 target_ulong l, page;
53a5960a 3034 void * p;
d7ef71ef 3035 uint8_t *buf = ptr;
13eb76e0
FB
3036
3037 while (len > 0) {
3038 page = addr & TARGET_PAGE_MASK;
3039 l = (page + TARGET_PAGE_SIZE) - addr;
3040 if (l > len)
3041 l = len;
3042 flags = page_get_flags(page);
3043 if (!(flags & PAGE_VALID))
a68fe89c 3044 return -1;
13eb76e0
FB
3045 if (is_write) {
3046 if (!(flags & PAGE_WRITE))
a68fe89c 3047 return -1;
579a97f7 3048 /* XXX: this code should not depend on lock_user */
72fb7daa 3049 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3050 return -1;
72fb7daa
AJ
3051 memcpy(p, buf, l);
3052 unlock_user(p, addr, l);
13eb76e0
FB
3053 } else {
3054 if (!(flags & PAGE_READ))
a68fe89c 3055 return -1;
579a97f7 3056 /* XXX: this code should not depend on lock_user */
72fb7daa 3057 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3058 return -1;
72fb7daa 3059 memcpy(buf, p, l);
5b257578 3060 unlock_user(p, addr, 0);
13eb76e0
FB
3061 }
3062 len -= l;
3063 buf += l;
3064 addr += l;
3065 }
a68fe89c 3066 return 0;
13eb76e0 3067}
8df1cd07 3068
13eb76e0 3069#else
51d7a9eb 3070
845b6214 3071static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3072 hwaddr length)
51d7a9eb 3073{
e87f7778 3074 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3075 addr += memory_region_get_ram_addr(mr);
3076
e87f7778
PB
3077 /* No early return if dirty_log_mask is or becomes 0, because
3078 * cpu_physical_memory_set_dirty_range will still call
3079 * xen_modified_memory.
3080 */
3081 if (dirty_log_mask) {
3082 dirty_log_mask =
3083 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3084 }
3085 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3086 assert(tcg_enabled());
e87f7778
PB
3087 tb_invalidate_phys_range(addr, addr + length);
3088 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3089 }
e87f7778 3090 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3091}
3092
047be4ed
SH
3093void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3094{
3095 /*
3096 * In principle this function would work on other memory region types too,
3097 * but the ROM device use case is the only one where this operation is
3098 * necessary. Other memory regions should use the
3099 * address_space_read/write() APIs.
3100 */
3101 assert(memory_region_is_romd(mr));
3102
3103 invalidate_and_set_dirty(mr, addr, size);
3104}
3105
23326164 3106static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3107{
e1622f4b 3108 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3109
3110 /* Regions are assumed to support 1-4 byte accesses unless
3111 otherwise specified. */
23326164
RH
3112 if (access_size_max == 0) {
3113 access_size_max = 4;
3114 }
3115
3116 /* Bound the maximum access by the alignment of the address. */
3117 if (!mr->ops->impl.unaligned) {
3118 unsigned align_size_max = addr & -addr;
3119 if (align_size_max != 0 && align_size_max < access_size_max) {
3120 access_size_max = align_size_max;
3121 }
82f2563f 3122 }
23326164
RH
3123
3124 /* Don't attempt accesses larger than the maximum. */
3125 if (l > access_size_max) {
3126 l = access_size_max;
82f2563f 3127 }
6554f5c0 3128 l = pow2floor(l);
23326164
RH
3129
3130 return l;
82f2563f
PB
3131}
3132
4840f10e 3133static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3134{
4840f10e
JK
3135 bool unlocked = !qemu_mutex_iothread_locked();
3136 bool release_lock = false;
3137
3138 if (unlocked && mr->global_locking) {
3139 qemu_mutex_lock_iothread();
3140 unlocked = false;
3141 release_lock = true;
3142 }
125b3806 3143 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3144 if (unlocked) {
3145 qemu_mutex_lock_iothread();
3146 }
125b3806 3147 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3148 if (unlocked) {
3149 qemu_mutex_unlock_iothread();
3150 }
125b3806 3151 }
4840f10e
JK
3152
3153 return release_lock;
125b3806
PB
3154}
3155
a203ac70 3156/* Called within RCU critical section. */
16620684
AK
3157static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3158 MemTxAttrs attrs,
a152be43 3159 const void *ptr,
0c249ff7 3160 hwaddr len, hwaddr addr1,
16620684 3161 hwaddr l, MemoryRegion *mr)
13eb76e0 3162{
20804676 3163 uint8_t *ram_ptr;
791af8c8 3164 uint64_t val;
3b643495 3165 MemTxResult result = MEMTX_OK;
4840f10e 3166 bool release_lock = false;
a152be43 3167 const uint8_t *buf = ptr;
3b46e624 3168
a203ac70 3169 for (;;) {
eb7eeb88
PB
3170 if (!memory_access_is_direct(mr, true)) {
3171 release_lock |= prepare_mmio_access(mr);
3172 l = memory_access_size(mr, l, addr1);
3173 /* XXX: could force current_cpu to NULL to avoid
3174 potential bugs */
9bf825bf 3175 val = ldn_he_p(buf, l);
3d9e7c3e 3176 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3177 size_memop(l), attrs);
13eb76e0 3178 } else {
eb7eeb88 3179 /* RAM case */
20804676
PMD
3180 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3181 memcpy(ram_ptr, buf, l);
eb7eeb88 3182 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3183 }
4840f10e
JK
3184
3185 if (release_lock) {
3186 qemu_mutex_unlock_iothread();
3187 release_lock = false;
3188 }
3189
13eb76e0
FB
3190 len -= l;
3191 buf += l;
3192 addr += l;
a203ac70
PB
3193
3194 if (!len) {
3195 break;
3196 }
3197
3198 l = len;
efa99a2f 3199 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3200 }
fd8aaa76 3201
3b643495 3202 return result;
13eb76e0 3203}
8df1cd07 3204
4c6ebbb3 3205/* Called from RCU critical section. */
16620684 3206static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 3207 const void *buf, hwaddr len)
ac1970fb 3208{
eb7eeb88 3209 hwaddr l;
eb7eeb88
PB
3210 hwaddr addr1;
3211 MemoryRegion *mr;
3212 MemTxResult result = MEMTX_OK;
eb7eeb88 3213
4c6ebbb3 3214 l = len;
efa99a2f 3215 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3216 result = flatview_write_continue(fv, addr, attrs, buf, len,
3217 addr1, l, mr);
a203ac70
PB
3218
3219 return result;
3220}
3221
3222/* Called within RCU critical section. */
16620684 3223MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 3224 MemTxAttrs attrs, void *ptr,
0c249ff7 3225 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3226 MemoryRegion *mr)
a203ac70 3227{
20804676 3228 uint8_t *ram_ptr;
a203ac70
PB
3229 uint64_t val;
3230 MemTxResult result = MEMTX_OK;
3231 bool release_lock = false;
a152be43 3232 uint8_t *buf = ptr;
eb7eeb88 3233
a203ac70 3234 for (;;) {
eb7eeb88
PB
3235 if (!memory_access_is_direct(mr, false)) {
3236 /* I/O case */
3237 release_lock |= prepare_mmio_access(mr);
3238 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3239 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3240 size_memop(l), attrs);
3241 stn_he_p(buf, l, val);
eb7eeb88
PB
3242 } else {
3243 /* RAM case */
20804676
PMD
3244 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3245 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
3246 }
3247
3248 if (release_lock) {
3249 qemu_mutex_unlock_iothread();
3250 release_lock = false;
3251 }
3252
3253 len -= l;
3254 buf += l;
3255 addr += l;
a203ac70
PB
3256
3257 if (!len) {
3258 break;
3259 }
3260
3261 l = len;
efa99a2f 3262 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3263 }
3264
3265 return result;
3266}
3267
b2a44fca
PB
3268/* Called from RCU critical section. */
3269static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 3270 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
3271{
3272 hwaddr l;
3273 hwaddr addr1;
3274 MemoryRegion *mr;
eb7eeb88 3275
b2a44fca 3276 l = len;
efa99a2f 3277 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3278 return flatview_read_continue(fv, addr, attrs, buf, len,
3279 addr1, l, mr);
ac1970fb
AK
3280}
3281
b2a44fca 3282MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 3283 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
3284{
3285 MemTxResult result = MEMTX_OK;
3286 FlatView *fv;
3287
3288 if (len > 0) {
694ea274 3289 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3290 fv = address_space_to_flatview(as);
3291 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3292 }
3293
3294 return result;
3295}
3296
4c6ebbb3
PB
3297MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3298 MemTxAttrs attrs,
daa3dda4 3299 const void *buf, hwaddr len)
4c6ebbb3
PB
3300{
3301 MemTxResult result = MEMTX_OK;
3302 FlatView *fv;
3303
3304 if (len > 0) {
694ea274 3305 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3306 fv = address_space_to_flatview(as);
3307 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3308 }
3309
3310 return result;
3311}
3312
db84fd97 3313MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 3314 void *buf, hwaddr len, bool is_write)
db84fd97
PB
3315{
3316 if (is_write) {
3317 return address_space_write(as, addr, attrs, buf, len);
3318 } else {
3319 return address_space_read_full(as, addr, attrs, buf, len);
3320 }
3321}
3322
d7ef71ef 3323void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 3324 hwaddr len, bool is_write)
ac1970fb 3325{
5c9eb028
PM
3326 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3327 buf, len, is_write);
ac1970fb
AK
3328}
3329
582b55a9
AG
3330enum write_rom_type {
3331 WRITE_DATA,
3332 FLUSH_CACHE,
3333};
3334
75693e14
PM
3335static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3336 hwaddr addr,
3337 MemTxAttrs attrs,
daa3dda4 3338 const void *ptr,
0c249ff7 3339 hwaddr len,
75693e14 3340 enum write_rom_type type)
d0ecd2aa 3341{
149f54b5 3342 hwaddr l;
20804676 3343 uint8_t *ram_ptr;
149f54b5 3344 hwaddr addr1;
5c8a00ce 3345 MemoryRegion *mr;
daa3dda4 3346 const uint8_t *buf = ptr;
3b46e624 3347
694ea274 3348 RCU_READ_LOCK_GUARD();
d0ecd2aa 3349 while (len > 0) {
149f54b5 3350 l = len;
75693e14 3351 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3352
5c8a00ce
PB
3353 if (!(memory_region_is_ram(mr) ||
3354 memory_region_is_romd(mr))) {
b242e0e0 3355 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3356 } else {
d0ecd2aa 3357 /* ROM/RAM case */
20804676 3358 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3359 switch (type) {
3360 case WRITE_DATA:
20804676 3361 memcpy(ram_ptr, buf, l);
845b6214 3362 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3363 break;
3364 case FLUSH_CACHE:
20804676 3365 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
582b55a9
AG
3366 break;
3367 }
d0ecd2aa
FB
3368 }
3369 len -= l;
3370 buf += l;
3371 addr += l;
3372 }
75693e14 3373 return MEMTX_OK;
d0ecd2aa
FB
3374}
3375
582b55a9 3376/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3377MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3378 MemTxAttrs attrs,
daa3dda4 3379 const void *buf, hwaddr len)
582b55a9 3380{
3c8133f9
PM
3381 return address_space_write_rom_internal(as, addr, attrs,
3382 buf, len, WRITE_DATA);
582b55a9
AG
3383}
3384
0c249ff7 3385void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3386{
3387 /*
3388 * This function should do the same thing as an icache flush that was
3389 * triggered from within the guest. For TCG we are always cache coherent,
3390 * so there is no need to flush anything. For KVM / Xen we need to flush
3391 * the host's instruction cache at least.
3392 */
3393 if (tcg_enabled()) {
3394 return;
3395 }
3396
75693e14
PM
3397 address_space_write_rom_internal(&address_space_memory,
3398 start, MEMTXATTRS_UNSPECIFIED,
3399 NULL, len, FLUSH_CACHE);
582b55a9
AG
3400}
3401
6d16c2f8 3402typedef struct {
d3e71559 3403 MemoryRegion *mr;
6d16c2f8 3404 void *buffer;
a8170e5e
AK
3405 hwaddr addr;
3406 hwaddr len;
c2cba0ff 3407 bool in_use;
6d16c2f8
AL
3408} BounceBuffer;
3409
3410static BounceBuffer bounce;
3411
ba223c29 3412typedef struct MapClient {
e95205e1 3413 QEMUBH *bh;
72cf2d4f 3414 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3415} MapClient;
3416
38e047b5 3417QemuMutex map_client_list_lock;
b58deb34 3418static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3419 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3420
e95205e1
FZ
3421static void cpu_unregister_map_client_do(MapClient *client)
3422{
3423 QLIST_REMOVE(client, link);
3424 g_free(client);
3425}
3426
33b6c2ed
FZ
3427static void cpu_notify_map_clients_locked(void)
3428{
3429 MapClient *client;
3430
3431 while (!QLIST_EMPTY(&map_client_list)) {
3432 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3433 qemu_bh_schedule(client->bh);
3434 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3435 }
3436}
3437
e95205e1 3438void cpu_register_map_client(QEMUBH *bh)
ba223c29 3439{
7267c094 3440 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3441
38e047b5 3442 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3443 client->bh = bh;
72cf2d4f 3444 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3445 if (!atomic_read(&bounce.in_use)) {
3446 cpu_notify_map_clients_locked();
3447 }
38e047b5 3448 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3449}
3450
38e047b5 3451void cpu_exec_init_all(void)
ba223c29 3452{
38e047b5 3453 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3454 /* The data structures we set up here depend on knowing the page size,
3455 * so no more changes can be made after this point.
3456 * In an ideal world, nothing we did before we had finished the
3457 * machine setup would care about the target page size, and we could
3458 * do this much later, rather than requiring board models to state
3459 * up front what their requirements are.
3460 */
3461 finalize_target_page_bits();
38e047b5 3462 io_mem_init();
680a4783 3463 memory_map_init();
38e047b5 3464 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3465}
3466
e95205e1 3467void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3468{
3469 MapClient *client;
3470
e95205e1
FZ
3471 qemu_mutex_lock(&map_client_list_lock);
3472 QLIST_FOREACH(client, &map_client_list, link) {
3473 if (client->bh == bh) {
3474 cpu_unregister_map_client_do(client);
3475 break;
3476 }
ba223c29 3477 }
e95205e1 3478 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3479}
3480
3481static void cpu_notify_map_clients(void)
3482{
38e047b5 3483 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3484 cpu_notify_map_clients_locked();
38e047b5 3485 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3486}
3487
0c249ff7 3488static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3489 bool is_write, MemTxAttrs attrs)
51644ab7 3490{
5c8a00ce 3491 MemoryRegion *mr;
51644ab7
PB
3492 hwaddr l, xlat;
3493
3494 while (len > 0) {
3495 l = len;
efa99a2f 3496 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3497 if (!memory_access_is_direct(mr, is_write)) {
3498 l = memory_access_size(mr, l, addr);
eace72b7 3499 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3500 return false;
3501 }
3502 }
3503
3504 len -= l;
3505 addr += l;
3506 }
3507 return true;
3508}
3509
16620684 3510bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3511 hwaddr len, bool is_write,
fddffa42 3512 MemTxAttrs attrs)
16620684 3513{
11e732a5
PB
3514 FlatView *fv;
3515 bool result;
3516
694ea274 3517 RCU_READ_LOCK_GUARD();
11e732a5 3518 fv = address_space_to_flatview(as);
eace72b7 3519 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3520 return result;
16620684
AK
3521}
3522
715c31ec 3523static hwaddr
16620684 3524flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3525 hwaddr target_len,
3526 MemoryRegion *mr, hwaddr base, hwaddr len,
3527 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3528{
3529 hwaddr done = 0;
3530 hwaddr xlat;
3531 MemoryRegion *this_mr;
3532
3533 for (;;) {
3534 target_len -= len;
3535 addr += len;
3536 done += len;
3537 if (target_len == 0) {
3538 return done;
3539 }
3540
3541 len = target_len;
16620684 3542 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3543 &len, is_write, attrs);
715c31ec
PB
3544 if (this_mr != mr || xlat != base + done) {
3545 return done;
3546 }
3547 }
3548}
3549
6d16c2f8
AL
3550/* Map a physical memory region into a host virtual address.
3551 * May map a subset of the requested range, given by and returned in *plen.
3552 * May return NULL if resources needed to perform the mapping are exhausted.
3553 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3554 * Use cpu_register_map_client() to know when retrying the map operation is
3555 * likely to succeed.
6d16c2f8 3556 */
ac1970fb 3557void *address_space_map(AddressSpace *as,
a8170e5e
AK
3558 hwaddr addr,
3559 hwaddr *plen,
f26404fb
PM
3560 bool is_write,
3561 MemTxAttrs attrs)
6d16c2f8 3562{
a8170e5e 3563 hwaddr len = *plen;
715c31ec
PB
3564 hwaddr l, xlat;
3565 MemoryRegion *mr;
e81bcda5 3566 void *ptr;
ad0c60fa 3567 FlatView *fv;
6d16c2f8 3568
e3127ae0
PB
3569 if (len == 0) {
3570 return NULL;
3571 }
38bee5dc 3572
e3127ae0 3573 l = len;
694ea274 3574 RCU_READ_LOCK_GUARD();
ad0c60fa 3575 fv = address_space_to_flatview(as);
efa99a2f 3576 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3577
e3127ae0 3578 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3579 if (atomic_xchg(&bounce.in_use, true)) {
77f55eac 3580 *plen = 0;
e3127ae0 3581 return NULL;
6d16c2f8 3582 }
e85d9db5
KW
3583 /* Avoid unbounded allocations */
3584 l = MIN(l, TARGET_PAGE_SIZE);
3585 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3586 bounce.addr = addr;
3587 bounce.len = l;
d3e71559
PB
3588
3589 memory_region_ref(mr);
3590 bounce.mr = mr;
e3127ae0 3591 if (!is_write) {
16620684 3592 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3593 bounce.buffer, l);
8ab934f9 3594 }
6d16c2f8 3595
e3127ae0
PB
3596 *plen = l;
3597 return bounce.buffer;
3598 }
3599
e3127ae0 3600
d3e71559 3601 memory_region_ref(mr);
16620684 3602 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3603 l, is_write, attrs);
f5aa69bd 3604 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3605
3606 return ptr;
6d16c2f8
AL
3607}
3608
ac1970fb 3609/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3610 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3611 * the amount of memory that was actually read or written by the caller.
3612 */
a8170e5e 3613void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3614 bool is_write, hwaddr access_len)
6d16c2f8
AL
3615{
3616 if (buffer != bounce.buffer) {
d3e71559
PB
3617 MemoryRegion *mr;
3618 ram_addr_t addr1;
3619
07bdaa41 3620 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3621 assert(mr != NULL);
6d16c2f8 3622 if (is_write) {
845b6214 3623 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3624 }
868bb33f 3625 if (xen_enabled()) {
e41d7c69 3626 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3627 }
d3e71559 3628 memory_region_unref(mr);
6d16c2f8
AL
3629 return;
3630 }
3631 if (is_write) {
5c9eb028
PM
3632 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3633 bounce.buffer, access_len);
6d16c2f8 3634 }
f8a83245 3635 qemu_vfree(bounce.buffer);
6d16c2f8 3636 bounce.buffer = NULL;
d3e71559 3637 memory_region_unref(bounce.mr);
c2cba0ff 3638 atomic_mb_set(&bounce.in_use, false);
ba223c29 3639 cpu_notify_map_clients();
6d16c2f8 3640}
d0ecd2aa 3641
a8170e5e
AK
3642void *cpu_physical_memory_map(hwaddr addr,
3643 hwaddr *plen,
28c80bfe 3644 bool is_write)
ac1970fb 3645{
f26404fb
PM
3646 return address_space_map(&address_space_memory, addr, plen, is_write,
3647 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3648}
3649
a8170e5e 3650void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3651 bool is_write, hwaddr access_len)
ac1970fb
AK
3652{
3653 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3654}
3655
0ce265ff
PB
3656#define ARG1_DECL AddressSpace *as
3657#define ARG1 as
3658#define SUFFIX
3659#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3660#define RCU_READ_LOCK(...) rcu_read_lock()
3661#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3662#include "memory_ldst.inc.c"
1e78bcc1 3663
1f4e496e
PB
3664int64_t address_space_cache_init(MemoryRegionCache *cache,
3665 AddressSpace *as,
3666 hwaddr addr,
3667 hwaddr len,
3668 bool is_write)
3669{
48564041
PB
3670 AddressSpaceDispatch *d;
3671 hwaddr l;
3672 MemoryRegion *mr;
3673
3674 assert(len > 0);
3675
3676 l = len;
3677 cache->fv = address_space_get_flatview(as);
3678 d = flatview_to_dispatch(cache->fv);
3679 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3680
3681 mr = cache->mrs.mr;
3682 memory_region_ref(mr);
3683 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3684 /* We don't care about the memory attributes here as we're only
3685 * doing this if we found actual RAM, which behaves the same
3686 * regardless of attributes; so UNSPECIFIED is fine.
3687 */
48564041 3688 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3689 cache->xlat, l, is_write,
3690 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3691 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3692 } else {
3693 cache->ptr = NULL;
3694 }
3695
3696 cache->len = l;
3697 cache->is_write = is_write;
3698 return l;
1f4e496e
PB
3699}
3700
3701void address_space_cache_invalidate(MemoryRegionCache *cache,
3702 hwaddr addr,
3703 hwaddr access_len)
3704{
48564041
PB
3705 assert(cache->is_write);
3706 if (likely(cache->ptr)) {
3707 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3708 }
1f4e496e
PB
3709}
3710
3711void address_space_cache_destroy(MemoryRegionCache *cache)
3712{
48564041
PB
3713 if (!cache->mrs.mr) {
3714 return;
3715 }
3716
3717 if (xen_enabled()) {
3718 xen_invalidate_map_cache_entry(cache->ptr);
3719 }
3720 memory_region_unref(cache->mrs.mr);
3721 flatview_unref(cache->fv);
3722 cache->mrs.mr = NULL;
3723 cache->fv = NULL;
3724}
3725
3726/* Called from RCU critical section. This function has the same
3727 * semantics as address_space_translate, but it only works on a
3728 * predefined range of a MemoryRegion that was mapped with
3729 * address_space_cache_init.
3730 */
3731static inline MemoryRegion *address_space_translate_cached(
3732 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3733 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3734{
3735 MemoryRegionSection section;
3736 MemoryRegion *mr;
3737 IOMMUMemoryRegion *iommu_mr;
3738 AddressSpace *target_as;
3739
3740 assert(!cache->ptr);
3741 *xlat = addr + cache->xlat;
3742
3743 mr = cache->mrs.mr;
3744 iommu_mr = memory_region_get_iommu(mr);
3745 if (!iommu_mr) {
3746 /* MMIO region. */
3747 return mr;
3748 }
3749
3750 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3751 NULL, is_write, true,
2f7b009c 3752 &target_as, attrs);
48564041
PB
3753 return section.mr;
3754}
3755
3756/* Called from RCU critical section. address_space_read_cached uses this
3757 * out of line function when the target is an MMIO or IOMMU region.
3758 */
38df19fa 3759MemTxResult
48564041 3760address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3761 void *buf, hwaddr len)
48564041
PB
3762{
3763 hwaddr addr1, l;
3764 MemoryRegion *mr;
3765
3766 l = len;
bc6b1cec
PM
3767 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3768 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3769 return flatview_read_continue(cache->fv,
3770 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3771 addr1, l, mr);
48564041
PB
3772}
3773
3774/* Called from RCU critical section. address_space_write_cached uses this
3775 * out of line function when the target is an MMIO or IOMMU region.
3776 */
38df19fa 3777MemTxResult
48564041 3778address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3779 const void *buf, hwaddr len)
48564041
PB
3780{
3781 hwaddr addr1, l;
3782 MemoryRegion *mr;
3783
3784 l = len;
bc6b1cec
PM
3785 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3786 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3787 return flatview_write_continue(cache->fv,
3788 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3789 addr1, l, mr);
1f4e496e
PB
3790}
3791
3792#define ARG1_DECL MemoryRegionCache *cache
3793#define ARG1 cache
48564041
PB
3794#define SUFFIX _cached_slow
3795#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3796#define RCU_READ_LOCK() ((void)0)
3797#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3798#include "memory_ldst.inc.c"
3799
5e2972fd 3800/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3801int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3802 void *ptr, target_ulong len, bool is_write)
13eb76e0 3803{
a8170e5e 3804 hwaddr phys_addr;
0c249ff7 3805 target_ulong l, page;
d7ef71ef 3806 uint8_t *buf = ptr;
13eb76e0 3807
79ca7a1b 3808 cpu_synchronize_state(cpu);
13eb76e0 3809 while (len > 0) {
5232e4c7
PM
3810 int asidx;
3811 MemTxAttrs attrs;
ddfc8b96 3812 MemTxResult res;
5232e4c7 3813
13eb76e0 3814 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3815 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3816 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3817 /* if no physical page mapped, return an error */
3818 if (phys_addr == -1)
3819 return -1;
3820 l = (page + TARGET_PAGE_SIZE) - addr;
3821 if (l > len)
3822 l = len;
5e2972fd 3823 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3824 if (is_write) {
ddfc8b96
PMD
3825 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3826 attrs, buf, l);
2e38847b 3827 } else {
ddfc8b96
PMD
3828 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3829 attrs, buf, l);
3830 }
3831 if (res != MEMTX_OK) {
3832 return -1;
2e38847b 3833 }
13eb76e0
FB
3834 len -= l;
3835 buf += l;
3836 addr += l;
3837 }
3838 return 0;
3839}
038629a6
DDAG
3840
3841/*
3842 * Allows code that needs to deal with migration bitmaps etc to still be built
3843 * target independent.
3844 */
20afaed9 3845size_t qemu_target_page_size(void)
038629a6 3846{
20afaed9 3847 return TARGET_PAGE_SIZE;
038629a6
DDAG
3848}
3849
46d702b1
JQ
3850int qemu_target_page_bits(void)
3851{
3852 return TARGET_PAGE_BITS;
3853}
3854
3855int qemu_target_page_bits_min(void)
3856{
3857 return TARGET_PAGE_BITS_MIN;
3858}
a68fe89c 3859#endif
13eb76e0 3860
98ed8ecf 3861bool target_words_bigendian(void)
8e4a424b
BS
3862{
3863#if defined(TARGET_WORDS_BIGENDIAN)
3864 return true;
3865#else
3866 return false;
3867#endif
3868}
3869
76f35538 3870#ifndef CONFIG_USER_ONLY
a8170e5e 3871bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3872{
5c8a00ce 3873 MemoryRegion*mr;
149f54b5 3874 hwaddr l = 1;
41063e1e 3875 bool res;
76f35538 3876
694ea274 3877 RCU_READ_LOCK_GUARD();
5c8a00ce 3878 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3879 phys_addr, &phys_addr, &l, false,
3880 MEMTXATTRS_UNSPECIFIED);
76f35538 3881
41063e1e 3882 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3883 return res;
76f35538 3884}
bd2fa51f 3885
e3807054 3886int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3887{
3888 RAMBlock *block;
e3807054 3889 int ret = 0;
bd2fa51f 3890
694ea274 3891 RCU_READ_LOCK_GUARD();
99e15582 3892 RAMBLOCK_FOREACH(block) {
754cb9c0 3893 ret = func(block, opaque);
e3807054
DDAG
3894 if (ret) {
3895 break;
3896 }
bd2fa51f 3897 }
e3807054 3898 return ret;
bd2fa51f 3899}
d3a5038c
DDAG
3900
3901/*
3902 * Unmap pages of memory from start to start+length such that
3903 * they a) read as 0, b) Trigger whatever fault mechanism
3904 * the OS provides for postcopy.
3905 * The pages must be unmapped by the end of the function.
3906 * Returns: 0 on success, none-0 on failure
3907 *
3908 */
3909int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3910{
3911 int ret = -1;
3912
3913 uint8_t *host_startaddr = rb->host + start;
3914
619bd31d 3915 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3916 error_report("ram_block_discard_range: Unaligned start address: %p",
3917 host_startaddr);
3918 goto err;
3919 }
3920
3921 if ((start + length) <= rb->used_length) {
db144f70 3922 bool need_madvise, need_fallocate;
619bd31d 3923 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3924 error_report("ram_block_discard_range: Unaligned length: %zx",
3925 length);
d3a5038c
DDAG
3926 goto err;
3927 }
3928
3929 errno = ENOTSUP; /* If we are missing MADVISE etc */
3930
db144f70
DDAG
3931 /* The logic here is messy;
3932 * madvise DONTNEED fails for hugepages
3933 * fallocate works on hugepages and shmem
3934 */
3935 need_madvise = (rb->page_size == qemu_host_page_size);
3936 need_fallocate = rb->fd != -1;
3937 if (need_fallocate) {
3938 /* For a file, this causes the area of the file to be zero'd
3939 * if read, and for hugetlbfs also causes it to be unmapped
3940 * so a userfault will trigger.
e2fa71f5
DDAG
3941 */
3942#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3943 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3944 start, length);
db144f70
DDAG
3945 if (ret) {
3946 ret = -errno;
3947 error_report("ram_block_discard_range: Failed to fallocate "
3948 "%s:%" PRIx64 " +%zx (%d)",
3949 rb->idstr, start, length, ret);
3950 goto err;
3951 }
3952#else
3953 ret = -ENOSYS;
3954 error_report("ram_block_discard_range: fallocate not available/file"
3955 "%s:%" PRIx64 " +%zx (%d)",
3956 rb->idstr, start, length, ret);
3957 goto err;
e2fa71f5
DDAG
3958#endif
3959 }
db144f70
DDAG
3960 if (need_madvise) {
3961 /* For normal RAM this causes it to be unmapped,
3962 * for shared memory it causes the local mapping to disappear
3963 * and to fall back on the file contents (which we just
3964 * fallocate'd away).
3965 */
3966#if defined(CONFIG_MADVISE)
3967 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3968 if (ret) {
3969 ret = -errno;
3970 error_report("ram_block_discard_range: Failed to discard range "
3971 "%s:%" PRIx64 " +%zx (%d)",
3972 rb->idstr, start, length, ret);
3973 goto err;
3974 }
3975#else
3976 ret = -ENOSYS;
3977 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3978 "%s:%" PRIx64 " +%zx (%d)",
3979 rb->idstr, start, length, ret);
db144f70
DDAG
3980 goto err;
3981#endif
d3a5038c 3982 }
db144f70
DDAG
3983 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3984 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3985 } else {
3986 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3987 "/%zx/" RAM_ADDR_FMT")",
3988 rb->idstr, start, length, rb->used_length);
3989 }
3990
3991err:
3992 return ret;
3993}
3994
a4de8552
JH
3995bool ramblock_is_pmem(RAMBlock *rb)
3996{
3997 return rb->flags & RAM_PMEM;
3998}
3999
ec3f8c99 4000#endif
a0be0c58
YZ
4001
4002void page_size_init(void)
4003{
4004 /* NOTE: we can always suppose that qemu_host_page_size >=
4005 TARGET_PAGE_SIZE */
a0be0c58
YZ
4006 if (qemu_host_page_size == 0) {
4007 qemu_host_page_size = qemu_real_host_page_size;
4008 }
4009 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4010 qemu_host_page_size = TARGET_PAGE_SIZE;
4011 }
4012 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4013}
5e8fd947
AK
4014
4015#if !defined(CONFIG_USER_ONLY)
4016
b6b71cb5 4017static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4018{
4019 if (start == end - 1) {
b6b71cb5 4020 qemu_printf("\t%3d ", start);
5e8fd947 4021 } else {
b6b71cb5 4022 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4023 }
b6b71cb5 4024 qemu_printf(" skip=%d ", skip);
5e8fd947 4025 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4026 qemu_printf(" ptr=NIL");
5e8fd947 4027 } else if (!skip) {
b6b71cb5 4028 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4029 } else {
b6b71cb5 4030 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4031 }
b6b71cb5 4032 qemu_printf("\n");
5e8fd947
AK
4033}
4034
4035#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4036 int128_sub((size), int128_one())) : 0)
4037
b6b71cb5 4038void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4039{
4040 int i;
4041
b6b71cb5
MA
4042 qemu_printf(" Dispatch\n");
4043 qemu_printf(" Physical sections\n");
5e8fd947
AK
4044
4045 for (i = 0; i < d->map.sections_nb; ++i) {
4046 MemoryRegionSection *s = d->map.sections + i;
4047 const char *names[] = { " [unassigned]", " [not dirty]",
4048 " [ROM]", " [watch]" };
4049
b6b71cb5
MA
4050 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4051 " %s%s%s%s%s",
5e8fd947
AK
4052 i,
4053 s->offset_within_address_space,
4054 s->offset_within_address_space + MR_SIZE(s->mr->size),
4055 s->mr->name ? s->mr->name : "(noname)",
4056 i < ARRAY_SIZE(names) ? names[i] : "",
4057 s->mr == root ? " [ROOT]" : "",
4058 s == d->mru_section ? " [MRU]" : "",
4059 s->mr->is_iommu ? " [iommu]" : "");
4060
4061 if (s->mr->alias) {
b6b71cb5 4062 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4063 s->mr->alias->name : "noname");
4064 }
b6b71cb5 4065 qemu_printf("\n");
5e8fd947
AK
4066 }
4067
b6b71cb5 4068 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4069 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4070 for (i = 0; i < d->map.nodes_nb; ++i) {
4071 int j, jprev;
4072 PhysPageEntry prev;
4073 Node *n = d->map.nodes + i;
4074
b6b71cb5 4075 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4076
4077 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4078 PhysPageEntry *pe = *n + j;
4079
4080 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4081 continue;
4082 }
4083
b6b71cb5 4084 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4085
4086 jprev = j;
4087 prev = *pe;
4088 }
4089
4090 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4091 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4092 }
4093 }
4094}
4095
d24f31db
DH
4096/*
4097 * If positive, discarding RAM is disabled. If negative, discarding RAM is
4098 * required to work and cannot be disabled.
4099 */
4100static int ram_block_discard_disabled;
4101
4102int ram_block_discard_disable(bool state)
4103{
4104 int old;
4105
4106 if (!state) {
4107 atomic_dec(&ram_block_discard_disabled);
4108 return 0;
4109 }
4110
4111 do {
4112 old = atomic_read(&ram_block_discard_disabled);
4113 if (old < 0) {
4114 return -EBUSY;
4115 }
4116 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old + 1) != old);
4117 return 0;
4118}
4119
4120int ram_block_discard_require(bool state)
4121{
4122 int old;
4123
4124 if (!state) {
4125 atomic_inc(&ram_block_discard_disabled);
4126 return 0;
4127 }
4128
4129 do {
4130 old = atomic_read(&ram_block_discard_disabled);
4131 if (old > 0) {
4132 return -EBUSY;
4133 }
4134 } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old - 1) != old);
4135 return 0;
4136}
4137
4138bool ram_block_discard_is_disabled(void)
4139{
4140 return atomic_read(&ram_block_discard_disabled) > 0;
4141}
4142
4143bool ram_block_discard_is_required(void)
4144{
4145 return atomic_read(&ram_block_discard_disabled) < 0;
4146}
4147
5e8fd947 4148#endif