]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
rcu: Allow calling rcu_(un)register_thread() during synchronize_rcu()
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
022c62cb 52#include "exec/cputlb.h"
5b6dd868 53#include "translate-all.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
67d95c15 57
b35ba30f
MT
58#include "qemu/range.h"
59
db7b5426 60//#define DEBUG_SUBPAGE
1196be37 61
e2eef170 62#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
63/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
64 * are protected by the ramlist lock.
65 */
0d53d9fe 66RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
67
68static MemoryRegion *system_memory;
309cb471 69static MemoryRegion *system_io;
62152b8a 70
f6790af6
AK
71AddressSpace address_space_io;
72AddressSpace address_space_memory;
2673a5da 73
0844e007 74MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 75static MemoryRegion io_mem_unassigned;
0e0df1e2 76
7bd4f430
PB
77/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
78#define RAM_PREALLOC (1 << 0)
79
dbcb8981
PB
80/* RAM is mmap-ed with MAP_SHARED */
81#define RAM_SHARED (1 << 1)
82
62be4e3a
MT
83/* Only a portion of RAM (used_length) is actually used, and migrated.
84 * This used_length size can change across reboots.
85 */
86#define RAM_RESIZEABLE (1 << 2)
87
e2eef170 88#endif
9fa3e853 89
bdc44640 90struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
91/* current CPU in the current thread. It is only valid inside
92 cpu_exec() */
4917cf44 93DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 94/* 0 = Do not count executed instructions.
bf20dc07 95 1 = Precise instruction counting.
2e70f6ef 96 2 = Adaptive rate instruction counting. */
5708fc66 97int use_icount;
6a00d601 98
e2eef170 99#if !defined(CONFIG_USER_ONLY)
4346ae3e 100
1db8abb1
PB
101typedef struct PhysPageEntry PhysPageEntry;
102
103struct PhysPageEntry {
9736e55b 104 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 105 uint32_t skip : 6;
9736e55b 106 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 107 uint32_t ptr : 26;
1db8abb1
PB
108};
109
8b795765
MT
110#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
111
03f49957 112/* Size of the L2 (and L3, etc) page tables. */
57271d63 113#define ADDR_SPACE_BITS 64
03f49957 114
026736ce 115#define P_L2_BITS 9
03f49957
PB
116#define P_L2_SIZE (1 << P_L2_BITS)
117
118#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
119
120typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 121
53cb28cb 122typedef struct PhysPageMap {
79e2b9ae
PB
123 struct rcu_head rcu;
124
53cb28cb
MA
125 unsigned sections_nb;
126 unsigned sections_nb_alloc;
127 unsigned nodes_nb;
128 unsigned nodes_nb_alloc;
129 Node *nodes;
130 MemoryRegionSection *sections;
131} PhysPageMap;
132
1db8abb1 133struct AddressSpaceDispatch {
79e2b9ae
PB
134 struct rcu_head rcu;
135
1db8abb1
PB
136 /* This is a multi-level map on the physical address space.
137 * The bottom level has pointers to MemoryRegionSections.
138 */
139 PhysPageEntry phys_map;
53cb28cb 140 PhysPageMap map;
acc9d80b 141 AddressSpace *as;
1db8abb1
PB
142};
143
90260c6c
JK
144#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
145typedef struct subpage_t {
146 MemoryRegion iomem;
acc9d80b 147 AddressSpace *as;
90260c6c
JK
148 hwaddr base;
149 uint16_t sub_section[TARGET_PAGE_SIZE];
150} subpage_t;
151
b41aac4f
LPF
152#define PHYS_SECTION_UNASSIGNED 0
153#define PHYS_SECTION_NOTDIRTY 1
154#define PHYS_SECTION_ROM 2
155#define PHYS_SECTION_WATCH 3
5312bd8b 156
e2eef170 157static void io_mem_init(void);
62152b8a 158static void memory_map_init(void);
09daed84 159static void tcg_commit(MemoryListener *listener);
e2eef170 160
1ec9b909 161static MemoryRegion io_mem_watch;
6658ffb8 162#endif
fd6ce8f6 163
6d9a1304 164#if !defined(CONFIG_USER_ONLY)
d6f2ea22 165
53cb28cb 166static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 167{
53cb28cb
MA
168 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
169 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
171 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 172 }
f7bf5461
AK
173}
174
db94604b 175static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
176{
177 unsigned i;
8b795765 178 uint32_t ret;
db94604b
PB
179 PhysPageEntry e;
180 PhysPageEntry *p;
f7bf5461 181
53cb28cb 182 ret = map->nodes_nb++;
db94604b 183 p = map->nodes[ret];
f7bf5461 184 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 185 assert(ret != map->nodes_nb_alloc);
db94604b
PB
186
187 e.skip = leaf ? 0 : 1;
188 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 189 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 190 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 191 }
f7bf5461 192 return ret;
d6f2ea22
AK
193}
194
53cb28cb
MA
195static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
196 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 197 int level)
f7bf5461
AK
198{
199 PhysPageEntry *p;
03f49957 200 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 201
9736e55b 202 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 203 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 204 }
db94604b 205 p = map->nodes[lp->ptr];
03f49957 206 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 207
03f49957 208 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 209 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 210 lp->skip = 0;
c19e8800 211 lp->ptr = leaf;
07f07b31
AK
212 *index += step;
213 *nb -= step;
2999097b 214 } else {
53cb28cb 215 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
216 }
217 ++lp;
f7bf5461
AK
218 }
219}
220
ac1970fb 221static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 222 hwaddr index, hwaddr nb,
2999097b 223 uint16_t leaf)
f7bf5461 224{
2999097b 225 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 226 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 227
53cb28cb 228 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
229}
230
b35ba30f
MT
231/* Compact a non leaf page entry. Simply detect that the entry has a single child,
232 * and update our entry so we can skip it and go directly to the destination.
233 */
234static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
235{
236 unsigned valid_ptr = P_L2_SIZE;
237 int valid = 0;
238 PhysPageEntry *p;
239 int i;
240
241 if (lp->ptr == PHYS_MAP_NODE_NIL) {
242 return;
243 }
244
245 p = nodes[lp->ptr];
246 for (i = 0; i < P_L2_SIZE; i++) {
247 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
248 continue;
249 }
250
251 valid_ptr = i;
252 valid++;
253 if (p[i].skip) {
254 phys_page_compact(&p[i], nodes, compacted);
255 }
256 }
257
258 /* We can only compress if there's only one child. */
259 if (valid != 1) {
260 return;
261 }
262
263 assert(valid_ptr < P_L2_SIZE);
264
265 /* Don't compress if it won't fit in the # of bits we have. */
266 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
267 return;
268 }
269
270 lp->ptr = p[valid_ptr].ptr;
271 if (!p[valid_ptr].skip) {
272 /* If our only child is a leaf, make this a leaf. */
273 /* By design, we should have made this node a leaf to begin with so we
274 * should never reach here.
275 * But since it's so simple to handle this, let's do it just in case we
276 * change this rule.
277 */
278 lp->skip = 0;
279 } else {
280 lp->skip += p[valid_ptr].skip;
281 }
282}
283
284static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
285{
286 DECLARE_BITMAP(compacted, nodes_nb);
287
288 if (d->phys_map.skip) {
53cb28cb 289 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
290 }
291}
292
97115a8d 293static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 294 Node *nodes, MemoryRegionSection *sections)
92e873b9 295{
31ab2b4a 296 PhysPageEntry *p;
97115a8d 297 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 298 int i;
f1f6e3b8 299
9736e55b 300 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 301 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 302 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 303 }
9affd6fc 304 p = nodes[lp.ptr];
03f49957 305 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 306 }
b35ba30f
MT
307
308 if (sections[lp.ptr].size.hi ||
309 range_covers_byte(sections[lp.ptr].offset_within_address_space,
310 sections[lp.ptr].size.lo, addr)) {
311 return &sections[lp.ptr];
312 } else {
313 return &sections[PHYS_SECTION_UNASSIGNED];
314 }
f3705d53
AK
315}
316
e5548617
BS
317bool memory_region_is_unassigned(MemoryRegion *mr)
318{
2a8e7499 319 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 320 && mr != &io_mem_watch;
fd6ce8f6 321}
149f54b5 322
79e2b9ae 323/* Called from RCU critical section */
c7086b4a 324static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
325 hwaddr addr,
326 bool resolve_subpage)
9f029603 327{
90260c6c
JK
328 MemoryRegionSection *section;
329 subpage_t *subpage;
330
53cb28cb 331 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
332 if (resolve_subpage && section->mr->subpage) {
333 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 334 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
335 }
336 return section;
9f029603
JK
337}
338
79e2b9ae 339/* Called from RCU critical section */
90260c6c 340static MemoryRegionSection *
c7086b4a 341address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 342 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
343{
344 MemoryRegionSection *section;
965eb2fc 345 MemoryRegion *mr;
a87f3954 346 Int128 diff;
149f54b5 347
c7086b4a 348 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
349 /* Compute offset within MemoryRegionSection */
350 addr -= section->offset_within_address_space;
351
352 /* Compute offset within MemoryRegion */
353 *xlat = addr + section->offset_within_region;
354
965eb2fc 355 mr = section->mr;
b242e0e0
PB
356
357 /* MMIO registers can be expected to perform full-width accesses based only
358 * on their address, without considering adjacent registers that could
359 * decode to completely different MemoryRegions. When such registers
360 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
361 * regions overlap wildly. For this reason we cannot clamp the accesses
362 * here.
363 *
364 * If the length is small (as is the case for address_space_ldl/stl),
365 * everything works fine. If the incoming length is large, however,
366 * the caller really has to do the clamping through memory_access_size.
367 */
965eb2fc 368 if (memory_region_is_ram(mr)) {
e4a511f8 369 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
370 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
371 }
149f54b5
PB
372 return section;
373}
90260c6c 374
a87f3954
PB
375static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
376{
377 if (memory_region_is_ram(mr)) {
378 return !(is_write && mr->readonly);
379 }
380 if (memory_region_is_romd(mr)) {
381 return !is_write;
382 }
383
384 return false;
385}
386
41063e1e 387/* Called from RCU critical section */
5c8a00ce
PB
388MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
389 hwaddr *xlat, hwaddr *plen,
390 bool is_write)
90260c6c 391{
30951157
AK
392 IOMMUTLBEntry iotlb;
393 MemoryRegionSection *section;
394 MemoryRegion *mr;
30951157
AK
395
396 for (;;) {
79e2b9ae
PB
397 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
398 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
399 mr = section->mr;
400
401 if (!mr->iommu_ops) {
402 break;
403 }
404
8d7b8cb9 405 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
406 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
407 | (addr & iotlb.addr_mask));
23820dbf 408 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
409 if (!(iotlb.perm & (1 << is_write))) {
410 mr = &io_mem_unassigned;
411 break;
412 }
413
414 as = iotlb.target_as;
415 }
416
fe680d0d 417 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 418 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 419 *plen = MIN(page, *plen);
a87f3954
PB
420 }
421
30951157
AK
422 *xlat = addr;
423 return mr;
90260c6c
JK
424}
425
79e2b9ae 426/* Called from RCU critical section */
90260c6c 427MemoryRegionSection *
9d82b5a7
PB
428address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
429 hwaddr *xlat, hwaddr *plen)
90260c6c 430{
30951157 431 MemoryRegionSection *section;
9d82b5a7
PB
432 section = address_space_translate_internal(cpu->memory_dispatch,
433 addr, xlat, plen, false);
30951157
AK
434
435 assert(!section->mr->iommu_ops);
436 return section;
90260c6c 437}
5b6dd868 438#endif
fd6ce8f6 439
b170fce3 440#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
441
442static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 443{
259186a7 444 CPUState *cpu = opaque;
a513fe19 445
5b6dd868
BS
446 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
447 version_id is increased. */
259186a7 448 cpu->interrupt_request &= ~0x01;
c01a71c1 449 tlb_flush(cpu, 1);
5b6dd868
BS
450
451 return 0;
a513fe19 452}
7501267e 453
6c3bff0e
PD
454static int cpu_common_pre_load(void *opaque)
455{
456 CPUState *cpu = opaque;
457
adee6424 458 cpu->exception_index = -1;
6c3bff0e
PD
459
460 return 0;
461}
462
463static bool cpu_common_exception_index_needed(void *opaque)
464{
465 CPUState *cpu = opaque;
466
adee6424 467 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
468}
469
470static const VMStateDescription vmstate_cpu_common_exception_index = {
471 .name = "cpu_common/exception_index",
472 .version_id = 1,
473 .minimum_version_id = 1,
5cd8cada 474 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
478 }
479};
480
1a1562f5 481const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
6c3bff0e 485 .pre_load = cpu_common_pre_load,
5b6dd868 486 .post_load = cpu_common_post_load,
35d08458 487 .fields = (VMStateField[]) {
259186a7
AF
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 490 VMSTATE_END_OF_LIST()
6c3bff0e 491 },
5cd8cada
JQ
492 .subsections = (const VMStateDescription*[]) {
493 &vmstate_cpu_common_exception_index,
494 NULL
5b6dd868
BS
495 }
496};
1a1562f5 497
5b6dd868 498#endif
ea041c0e 499
38d8f5c8 500CPUState *qemu_get_cpu(int index)
ea041c0e 501{
bdc44640 502 CPUState *cpu;
ea041c0e 503
bdc44640 504 CPU_FOREACH(cpu) {
55e5c285 505 if (cpu->cpu_index == index) {
bdc44640 506 return cpu;
55e5c285 507 }
ea041c0e 508 }
5b6dd868 509
bdc44640 510 return NULL;
ea041c0e
FB
511}
512
09daed84
EI
513#if !defined(CONFIG_USER_ONLY)
514void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
515{
516 /* We only support one address space per cpu at the moment. */
517 assert(cpu->as == as);
518
519 if (cpu->tcg_as_listener) {
520 memory_listener_unregister(cpu->tcg_as_listener);
521 } else {
522 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
523 }
524 cpu->tcg_as_listener->commit = tcg_commit;
525 memory_listener_register(cpu->tcg_as_listener, as);
526}
527#endif
528
b7bca733
BR
529#ifndef CONFIG_USER_ONLY
530static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
531
532static int cpu_get_free_index(Error **errp)
533{
534 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
535
536 if (cpu >= MAX_CPUMASK_BITS) {
537 error_setg(errp, "Trying to use more CPUs than max of %d",
538 MAX_CPUMASK_BITS);
539 return -1;
540 }
541
542 bitmap_set(cpu_index_map, cpu, 1);
543 return cpu;
544}
545
546void cpu_exec_exit(CPUState *cpu)
547{
548 if (cpu->cpu_index == -1) {
549 /* cpu_index was never allocated by this @cpu or was already freed. */
550 return;
551 }
552
553 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
554 cpu->cpu_index = -1;
555}
556#else
557
558static int cpu_get_free_index(Error **errp)
559{
560 CPUState *some_cpu;
561 int cpu_index = 0;
562
563 CPU_FOREACH(some_cpu) {
564 cpu_index++;
565 }
566 return cpu_index;
567}
568
569void cpu_exec_exit(CPUState *cpu)
570{
571}
572#endif
573
4bad9e39 574void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 575{
b170fce3 576 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 577 int cpu_index;
b7bca733 578 Error *local_err = NULL;
5b6dd868 579
291135b5
EH
580#ifndef CONFIG_USER_ONLY
581 cpu->as = &address_space_memory;
582 cpu->thread_id = qemu_get_thread_id();
583 cpu_reload_memory_map(cpu);
584#endif
585
5b6dd868
BS
586#if defined(CONFIG_USER_ONLY)
587 cpu_list_lock();
588#endif
b7bca733
BR
589 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
590 if (local_err) {
591 error_propagate(errp, local_err);
592#if defined(CONFIG_USER_ONLY)
593 cpu_list_unlock();
594#endif
595 return;
5b6dd868 596 }
bdc44640 597 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
598#if defined(CONFIG_USER_ONLY)
599 cpu_list_unlock();
600#endif
e0d47944
AF
601 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
602 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
603 }
5b6dd868 604#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868 605 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
4bad9e39 606 cpu_save, cpu_load, cpu->env_ptr);
b170fce3 607 assert(cc->vmsd == NULL);
e0d47944 608 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 609#endif
b170fce3
AF
610 if (cc->vmsd != NULL) {
611 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
612 }
ea041c0e
FB
613}
614
94df27fd 615#if defined(CONFIG_USER_ONLY)
00b941e5 616static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
617{
618 tb_invalidate_phys_page_range(pc, pc + 1, 0);
619}
620#else
00b941e5 621static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 622{
e8262a1b
MF
623 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
624 if (phys != -1) {
09daed84 625 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 626 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 627 }
1e7855a5 628}
c27004ec 629#endif
d720b93d 630
c527ee8f 631#if defined(CONFIG_USER_ONLY)
75a34036 632void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
633
634{
635}
636
3ee887e8
PM
637int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
638 int flags)
639{
640 return -ENOSYS;
641}
642
643void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
644{
645}
646
75a34036 647int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
648 int flags, CPUWatchpoint **watchpoint)
649{
650 return -ENOSYS;
651}
652#else
6658ffb8 653/* Add a watchpoint. */
75a34036 654int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 655 int flags, CPUWatchpoint **watchpoint)
6658ffb8 656{
c0ce998e 657 CPUWatchpoint *wp;
6658ffb8 658
05068c0d 659 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 660 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
661 error_report("tried to set invalid watchpoint at %"
662 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
663 return -EINVAL;
664 }
7267c094 665 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
666
667 wp->vaddr = addr;
05068c0d 668 wp->len = len;
a1d1bb31
AL
669 wp->flags = flags;
670
2dc9f411 671 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
672 if (flags & BP_GDB) {
673 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
674 } else {
675 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
676 }
6658ffb8 677
31b030d4 678 tlb_flush_page(cpu, addr);
a1d1bb31
AL
679
680 if (watchpoint)
681 *watchpoint = wp;
682 return 0;
6658ffb8
PB
683}
684
a1d1bb31 685/* Remove a specific watchpoint. */
75a34036 686int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 687 int flags)
6658ffb8 688{
a1d1bb31 689 CPUWatchpoint *wp;
6658ffb8 690
ff4700b0 691 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 692 if (addr == wp->vaddr && len == wp->len
6e140f28 693 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 694 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
695 return 0;
696 }
697 }
a1d1bb31 698 return -ENOENT;
6658ffb8
PB
699}
700
a1d1bb31 701/* Remove a specific watchpoint by reference. */
75a34036 702void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 703{
ff4700b0 704 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 705
31b030d4 706 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 707
7267c094 708 g_free(watchpoint);
a1d1bb31
AL
709}
710
711/* Remove all matching watchpoints. */
75a34036 712void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 713{
c0ce998e 714 CPUWatchpoint *wp, *next;
a1d1bb31 715
ff4700b0 716 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
717 if (wp->flags & mask) {
718 cpu_watchpoint_remove_by_ref(cpu, wp);
719 }
c0ce998e 720 }
7d03f82f 721}
05068c0d
PM
722
723/* Return true if this watchpoint address matches the specified
724 * access (ie the address range covered by the watchpoint overlaps
725 * partially or completely with the address range covered by the
726 * access).
727 */
728static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
729 vaddr addr,
730 vaddr len)
731{
732 /* We know the lengths are non-zero, but a little caution is
733 * required to avoid errors in the case where the range ends
734 * exactly at the top of the address space and so addr + len
735 * wraps round to zero.
736 */
737 vaddr wpend = wp->vaddr + wp->len - 1;
738 vaddr addrend = addr + len - 1;
739
740 return !(addr > wpend || wp->vaddr > addrend);
741}
742
c527ee8f 743#endif
7d03f82f 744
a1d1bb31 745/* Add a breakpoint. */
b3310ab3 746int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 747 CPUBreakpoint **breakpoint)
4c3a88a2 748{
c0ce998e 749 CPUBreakpoint *bp;
3b46e624 750
7267c094 751 bp = g_malloc(sizeof(*bp));
4c3a88a2 752
a1d1bb31
AL
753 bp->pc = pc;
754 bp->flags = flags;
755
2dc9f411 756 /* keep all GDB-injected breakpoints in front */
00b941e5 757 if (flags & BP_GDB) {
f0c3c505 758 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 759 } else {
f0c3c505 760 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 761 }
3b46e624 762
f0c3c505 763 breakpoint_invalidate(cpu, pc);
a1d1bb31 764
00b941e5 765 if (breakpoint) {
a1d1bb31 766 *breakpoint = bp;
00b941e5 767 }
4c3a88a2 768 return 0;
4c3a88a2
FB
769}
770
a1d1bb31 771/* Remove a specific breakpoint. */
b3310ab3 772int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 773{
a1d1bb31
AL
774 CPUBreakpoint *bp;
775
f0c3c505 776 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 777 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 778 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
779 return 0;
780 }
7d03f82f 781 }
a1d1bb31 782 return -ENOENT;
7d03f82f
EI
783}
784
a1d1bb31 785/* Remove a specific breakpoint by reference. */
b3310ab3 786void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 787{
f0c3c505
AF
788 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
789
790 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 791
7267c094 792 g_free(breakpoint);
a1d1bb31
AL
793}
794
795/* Remove all matching breakpoints. */
b3310ab3 796void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 797{
c0ce998e 798 CPUBreakpoint *bp, *next;
a1d1bb31 799
f0c3c505 800 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
801 if (bp->flags & mask) {
802 cpu_breakpoint_remove_by_ref(cpu, bp);
803 }
c0ce998e 804 }
4c3a88a2
FB
805}
806
c33a346e
FB
807/* enable or disable single step mode. EXCP_DEBUG is returned by the
808 CPU loop after each instruction */
3825b28f 809void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 810{
ed2803da
AF
811 if (cpu->singlestep_enabled != enabled) {
812 cpu->singlestep_enabled = enabled;
813 if (kvm_enabled()) {
38e478ec 814 kvm_update_guest_debug(cpu, 0);
ed2803da 815 } else {
ccbb4d44 816 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 817 /* XXX: only flush what is necessary */
bbd77c18 818 tb_flush(cpu);
e22a25c9 819 }
c33a346e 820 }
c33a346e
FB
821}
822
a47dddd7 823void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
824{
825 va_list ap;
493ae1f0 826 va_list ap2;
7501267e
FB
827
828 va_start(ap, fmt);
493ae1f0 829 va_copy(ap2, ap);
7501267e
FB
830 fprintf(stderr, "qemu: fatal: ");
831 vfprintf(stderr, fmt, ap);
832 fprintf(stderr, "\n");
878096ee 833 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
834 if (qemu_log_enabled()) {
835 qemu_log("qemu: fatal: ");
836 qemu_log_vprintf(fmt, ap2);
837 qemu_log("\n");
a0762859 838 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 839 qemu_log_flush();
93fcfe39 840 qemu_log_close();
924edcae 841 }
493ae1f0 842 va_end(ap2);
f9373291 843 va_end(ap);
fd052bf6
RV
844#if defined(CONFIG_USER_ONLY)
845 {
846 struct sigaction act;
847 sigfillset(&act.sa_mask);
848 act.sa_handler = SIG_DFL;
849 sigaction(SIGABRT, &act, NULL);
850 }
851#endif
7501267e
FB
852 abort();
853}
854
0124311e 855#if !defined(CONFIG_USER_ONLY)
0dc3f44a 856/* Called from RCU critical section */
041603fe
PB
857static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
858{
859 RAMBlock *block;
860
43771539 861 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 862 if (block && addr - block->offset < block->max_length) {
041603fe
PB
863 goto found;
864 }
0dc3f44a 865 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 866 if (addr - block->offset < block->max_length) {
041603fe
PB
867 goto found;
868 }
869 }
870
871 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
872 abort();
873
874found:
43771539
PB
875 /* It is safe to write mru_block outside the iothread lock. This
876 * is what happens:
877 *
878 * mru_block = xxx
879 * rcu_read_unlock()
880 * xxx removed from list
881 * rcu_read_lock()
882 * read mru_block
883 * mru_block = NULL;
884 * call_rcu(reclaim_ramblock, xxx);
885 * rcu_read_unlock()
886 *
887 * atomic_rcu_set is not needed here. The block was already published
888 * when it was placed into the list. Here we're just making an extra
889 * copy of the pointer.
890 */
041603fe
PB
891 ram_list.mru_block = block;
892 return block;
893}
894
a2f4d5be 895static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 896{
041603fe 897 ram_addr_t start1;
a2f4d5be
JQ
898 RAMBlock *block;
899 ram_addr_t end;
900
901 end = TARGET_PAGE_ALIGN(start + length);
902 start &= TARGET_PAGE_MASK;
d24981d3 903
0dc3f44a 904 rcu_read_lock();
041603fe
PB
905 block = qemu_get_ram_block(start);
906 assert(block == qemu_get_ram_block(end - 1));
1240be24 907 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
041603fe 908 cpu_tlb_reset_dirty_all(start1, length);
0dc3f44a 909 rcu_read_unlock();
d24981d3
JQ
910}
911
5579c7f3 912/* Note: start and end must be within the same ram block. */
03eebc9e
SH
913bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
914 ram_addr_t length,
915 unsigned client)
1ccde1cb 916{
03eebc9e
SH
917 unsigned long end, page;
918 bool dirty;
919
920 if (length == 0) {
921 return false;
922 }
f23db169 923
03eebc9e
SH
924 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
925 page = start >> TARGET_PAGE_BITS;
926 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
927 page, end - page);
928
929 if (dirty && tcg_enabled()) {
a2f4d5be 930 tlb_reset_dirty_range_all(start, length);
5579c7f3 931 }
03eebc9e
SH
932
933 return dirty;
1ccde1cb
FB
934}
935
79e2b9ae 936/* Called from RCU critical section */
bb0e627a 937hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
938 MemoryRegionSection *section,
939 target_ulong vaddr,
940 hwaddr paddr, hwaddr xlat,
941 int prot,
942 target_ulong *address)
e5548617 943{
a8170e5e 944 hwaddr iotlb;
e5548617
BS
945 CPUWatchpoint *wp;
946
cc5bea60 947 if (memory_region_is_ram(section->mr)) {
e5548617
BS
948 /* Normal RAM. */
949 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 950 + xlat;
e5548617 951 if (!section->readonly) {
b41aac4f 952 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 953 } else {
b41aac4f 954 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
955 }
956 } else {
0b8e2c10
PM
957 AddressSpaceDispatch *d;
958
959 d = atomic_rcu_read(&section->address_space->dispatch);
960 iotlb = section - d->map.sections;
149f54b5 961 iotlb += xlat;
e5548617
BS
962 }
963
964 /* Make accesses to pages with watchpoints go via the
965 watchpoint trap routines. */
ff4700b0 966 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 967 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
968 /* Avoid trapping reads of pages with a write breakpoint. */
969 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 970 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
971 *address |= TLB_MMIO;
972 break;
973 }
974 }
975 }
976
977 return iotlb;
978}
9fa3e853
FB
979#endif /* defined(CONFIG_USER_ONLY) */
980
e2eef170 981#if !defined(CONFIG_USER_ONLY)
8da3ff18 982
c227f099 983static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 984 uint16_t section);
acc9d80b 985static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 986
a2b257d6
IM
987static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
988 qemu_anon_ram_alloc;
91138037
MA
989
990/*
991 * Set a custom physical guest memory alloator.
992 * Accelerators with unusual needs may need this. Hopefully, we can
993 * get rid of it eventually.
994 */
a2b257d6 995void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
996{
997 phys_mem_alloc = alloc;
998}
999
53cb28cb
MA
1000static uint16_t phys_section_add(PhysPageMap *map,
1001 MemoryRegionSection *section)
5312bd8b 1002{
68f3f65b
PB
1003 /* The physical section number is ORed with a page-aligned
1004 * pointer to produce the iotlb entries. Thus it should
1005 * never overflow into the page-aligned value.
1006 */
53cb28cb 1007 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1008
53cb28cb
MA
1009 if (map->sections_nb == map->sections_nb_alloc) {
1010 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1011 map->sections = g_renew(MemoryRegionSection, map->sections,
1012 map->sections_nb_alloc);
5312bd8b 1013 }
53cb28cb 1014 map->sections[map->sections_nb] = *section;
dfde4e6e 1015 memory_region_ref(section->mr);
53cb28cb 1016 return map->sections_nb++;
5312bd8b
AK
1017}
1018
058bc4b5
PB
1019static void phys_section_destroy(MemoryRegion *mr)
1020{
dfde4e6e
PB
1021 memory_region_unref(mr);
1022
058bc4b5
PB
1023 if (mr->subpage) {
1024 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1025 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1026 g_free(subpage);
1027 }
1028}
1029
6092666e 1030static void phys_sections_free(PhysPageMap *map)
5312bd8b 1031{
9affd6fc
PB
1032 while (map->sections_nb > 0) {
1033 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1034 phys_section_destroy(section->mr);
1035 }
9affd6fc
PB
1036 g_free(map->sections);
1037 g_free(map->nodes);
5312bd8b
AK
1038}
1039
ac1970fb 1040static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1041{
1042 subpage_t *subpage;
a8170e5e 1043 hwaddr base = section->offset_within_address_space
0f0cb164 1044 & TARGET_PAGE_MASK;
97115a8d 1045 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1046 d->map.nodes, d->map.sections);
0f0cb164
AK
1047 MemoryRegionSection subsection = {
1048 .offset_within_address_space = base,
052e87b0 1049 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1050 };
a8170e5e 1051 hwaddr start, end;
0f0cb164 1052
f3705d53 1053 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1054
f3705d53 1055 if (!(existing->mr->subpage)) {
acc9d80b 1056 subpage = subpage_init(d->as, base);
3be91e86 1057 subsection.address_space = d->as;
0f0cb164 1058 subsection.mr = &subpage->iomem;
ac1970fb 1059 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1060 phys_section_add(&d->map, &subsection));
0f0cb164 1061 } else {
f3705d53 1062 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1063 }
1064 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1065 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1066 subpage_register(subpage, start, end,
1067 phys_section_add(&d->map, section));
0f0cb164
AK
1068}
1069
1070
052e87b0
PB
1071static void register_multipage(AddressSpaceDispatch *d,
1072 MemoryRegionSection *section)
33417e70 1073{
a8170e5e 1074 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1075 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1076 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1077 TARGET_PAGE_BITS));
dd81124b 1078
733d5ef5
PB
1079 assert(num_pages);
1080 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1081}
1082
ac1970fb 1083static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1084{
89ae337a 1085 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1086 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1087 MemoryRegionSection now = *section, remain = *section;
052e87b0 1088 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1089
733d5ef5
PB
1090 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1091 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1092 - now.offset_within_address_space;
1093
052e87b0 1094 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1095 register_subpage(d, &now);
733d5ef5 1096 } else {
052e87b0 1097 now.size = int128_zero();
733d5ef5 1098 }
052e87b0
PB
1099 while (int128_ne(remain.size, now.size)) {
1100 remain.size = int128_sub(remain.size, now.size);
1101 remain.offset_within_address_space += int128_get64(now.size);
1102 remain.offset_within_region += int128_get64(now.size);
69b67646 1103 now = remain;
052e87b0 1104 if (int128_lt(remain.size, page_size)) {
733d5ef5 1105 register_subpage(d, &now);
88266249 1106 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1107 now.size = page_size;
ac1970fb 1108 register_subpage(d, &now);
69b67646 1109 } else {
052e87b0 1110 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1111 register_multipage(d, &now);
69b67646 1112 }
0f0cb164
AK
1113 }
1114}
1115
62a2744c
SY
1116void qemu_flush_coalesced_mmio_buffer(void)
1117{
1118 if (kvm_enabled())
1119 kvm_flush_coalesced_mmio_buffer();
1120}
1121
b2a8658e
UD
1122void qemu_mutex_lock_ramlist(void)
1123{
1124 qemu_mutex_lock(&ram_list.mutex);
1125}
1126
1127void qemu_mutex_unlock_ramlist(void)
1128{
1129 qemu_mutex_unlock(&ram_list.mutex);
1130}
1131
e1e84ba0 1132#ifdef __linux__
c902760f
MT
1133
1134#include <sys/vfs.h>
1135
1136#define HUGETLBFS_MAGIC 0x958458f6
1137
fc7a5800 1138static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1139{
1140 struct statfs fs;
1141 int ret;
1142
1143 do {
9742bf26 1144 ret = statfs(path, &fs);
c902760f
MT
1145 } while (ret != 0 && errno == EINTR);
1146
1147 if (ret != 0) {
fc7a5800
HT
1148 error_setg_errno(errp, errno, "failed to get page size of file %s",
1149 path);
9742bf26 1150 return 0;
c902760f
MT
1151 }
1152
1153 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1154 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1155
1156 return fs.f_bsize;
1157}
1158
04b16653
AW
1159static void *file_ram_alloc(RAMBlock *block,
1160 ram_addr_t memory,
7f56e740
PB
1161 const char *path,
1162 Error **errp)
c902760f
MT
1163{
1164 char *filename;
8ca761f6
PF
1165 char *sanitized_name;
1166 char *c;
557529dd 1167 void *area = NULL;
c902760f 1168 int fd;
557529dd 1169 uint64_t hpagesize;
fc7a5800 1170 Error *local_err = NULL;
c902760f 1171
fc7a5800
HT
1172 hpagesize = gethugepagesize(path, &local_err);
1173 if (local_err) {
1174 error_propagate(errp, local_err);
f9a49dfa 1175 goto error;
c902760f 1176 }
a2b257d6 1177 block->mr->align = hpagesize;
c902760f
MT
1178
1179 if (memory < hpagesize) {
557529dd
HT
1180 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1181 "or larger than huge page size 0x%" PRIx64,
1182 memory, hpagesize);
1183 goto error;
c902760f
MT
1184 }
1185
1186 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1187 error_setg(errp,
1188 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1189 goto error;
c902760f
MT
1190 }
1191
8ca761f6 1192 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
83234bf2 1193 sanitized_name = g_strdup(memory_region_name(block->mr));
8ca761f6
PF
1194 for (c = sanitized_name; *c != '\0'; c++) {
1195 if (*c == '/')
1196 *c = '_';
1197 }
1198
1199 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1200 sanitized_name);
1201 g_free(sanitized_name);
c902760f
MT
1202
1203 fd = mkstemp(filename);
1204 if (fd < 0) {
7f56e740
PB
1205 error_setg_errno(errp, errno,
1206 "unable to create backing store for hugepages");
e4ada482 1207 g_free(filename);
f9a49dfa 1208 goto error;
c902760f
MT
1209 }
1210 unlink(filename);
e4ada482 1211 g_free(filename);
c902760f
MT
1212
1213 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1214
1215 /*
1216 * ftruncate is not supported by hugetlbfs in older
1217 * hosts, so don't bother bailing out on errors.
1218 * If anything goes wrong with it under other filesystems,
1219 * mmap will fail.
1220 */
7f56e740 1221 if (ftruncate(fd, memory)) {
9742bf26 1222 perror("ftruncate");
7f56e740 1223 }
c902760f 1224
dbcb8981
PB
1225 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1226 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1227 fd, 0);
c902760f 1228 if (area == MAP_FAILED) {
7f56e740
PB
1229 error_setg_errno(errp, errno,
1230 "unable to map backing store for hugepages");
9742bf26 1231 close(fd);
f9a49dfa 1232 goto error;
c902760f 1233 }
ef36fa14
MT
1234
1235 if (mem_prealloc) {
38183310 1236 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1237 }
1238
04b16653 1239 block->fd = fd;
c902760f 1240 return area;
f9a49dfa
MT
1241
1242error:
1243 if (mem_prealloc) {
81b07353 1244 error_report("%s", error_get_pretty(*errp));
f9a49dfa
MT
1245 exit(1);
1246 }
1247 return NULL;
c902760f
MT
1248}
1249#endif
1250
0dc3f44a 1251/* Called with the ramlist lock held. */
d17b5288 1252static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1253{
1254 RAMBlock *block, *next_block;
3e837b2c 1255 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1256
49cd9ac6
SH
1257 assert(size != 0); /* it would hand out same offset multiple times */
1258
0dc3f44a 1259 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1260 return 0;
0d53d9fe 1261 }
04b16653 1262
0dc3f44a 1263 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1264 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1265
62be4e3a 1266 end = block->offset + block->max_length;
04b16653 1267
0dc3f44a 1268 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1269 if (next_block->offset >= end) {
1270 next = MIN(next, next_block->offset);
1271 }
1272 }
1273 if (next - end >= size && next - end < mingap) {
3e837b2c 1274 offset = end;
04b16653
AW
1275 mingap = next - end;
1276 }
1277 }
3e837b2c
AW
1278
1279 if (offset == RAM_ADDR_MAX) {
1280 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1281 (uint64_t)size);
1282 abort();
1283 }
1284
04b16653
AW
1285 return offset;
1286}
1287
652d7ec2 1288ram_addr_t last_ram_offset(void)
d17b5288
AW
1289{
1290 RAMBlock *block;
1291 ram_addr_t last = 0;
1292
0dc3f44a
MD
1293 rcu_read_lock();
1294 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1295 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1296 }
0dc3f44a 1297 rcu_read_unlock();
d17b5288
AW
1298 return last;
1299}
1300
ddb97f1d
JB
1301static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1302{
1303 int ret;
ddb97f1d
JB
1304
1305 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1306 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1307 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1308 if (ret) {
1309 perror("qemu_madvise");
1310 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1311 "but dump_guest_core=off specified\n");
1312 }
1313 }
1314}
1315
0dc3f44a
MD
1316/* Called within an RCU critical section, or while the ramlist lock
1317 * is held.
1318 */
20cfe881 1319static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1320{
20cfe881 1321 RAMBlock *block;
84b89d78 1322
0dc3f44a 1323 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1324 if (block->offset == addr) {
20cfe881 1325 return block;
c5705a77
AK
1326 }
1327 }
20cfe881
HT
1328
1329 return NULL;
1330}
1331
ae3a7047 1332/* Called with iothread lock held. */
20cfe881
HT
1333void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1334{
ae3a7047 1335 RAMBlock *new_block, *block;
20cfe881 1336
0dc3f44a 1337 rcu_read_lock();
ae3a7047 1338 new_block = find_ram_block(addr);
c5705a77
AK
1339 assert(new_block);
1340 assert(!new_block->idstr[0]);
84b89d78 1341
09e5ab63
AL
1342 if (dev) {
1343 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1344 if (id) {
1345 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1346 g_free(id);
84b89d78
CM
1347 }
1348 }
1349 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1350
0dc3f44a 1351 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1352 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1353 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1354 new_block->idstr);
1355 abort();
1356 }
1357 }
0dc3f44a 1358 rcu_read_unlock();
c5705a77
AK
1359}
1360
ae3a7047 1361/* Called with iothread lock held. */
20cfe881
HT
1362void qemu_ram_unset_idstr(ram_addr_t addr)
1363{
ae3a7047 1364 RAMBlock *block;
20cfe881 1365
ae3a7047
MD
1366 /* FIXME: arch_init.c assumes that this is not called throughout
1367 * migration. Ignore the problem since hot-unplug during migration
1368 * does not work anyway.
1369 */
1370
0dc3f44a 1371 rcu_read_lock();
ae3a7047 1372 block = find_ram_block(addr);
20cfe881
HT
1373 if (block) {
1374 memset(block->idstr, 0, sizeof(block->idstr));
1375 }
0dc3f44a 1376 rcu_read_unlock();
20cfe881
HT
1377}
1378
8490fc78
LC
1379static int memory_try_enable_merging(void *addr, size_t len)
1380{
75cc7f01 1381 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1382 /* disabled by the user */
1383 return 0;
1384 }
1385
1386 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1387}
1388
62be4e3a
MT
1389/* Only legal before guest might have detected the memory size: e.g. on
1390 * incoming migration, or right after reset.
1391 *
1392 * As memory core doesn't know how is memory accessed, it is up to
1393 * resize callback to update device state and/or add assertions to detect
1394 * misuse, if necessary.
1395 */
1396int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1397{
1398 RAMBlock *block = find_ram_block(base);
1399
1400 assert(block);
1401
129ddaf3
MT
1402 newsize = TARGET_PAGE_ALIGN(newsize);
1403
62be4e3a
MT
1404 if (block->used_length == newsize) {
1405 return 0;
1406 }
1407
1408 if (!(block->flags & RAM_RESIZEABLE)) {
1409 error_setg_errno(errp, EINVAL,
1410 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1411 " in != 0x" RAM_ADDR_FMT, block->idstr,
1412 newsize, block->used_length);
1413 return -EINVAL;
1414 }
1415
1416 if (block->max_length < newsize) {
1417 error_setg_errno(errp, EINVAL,
1418 "Length too large: %s: 0x" RAM_ADDR_FMT
1419 " > 0x" RAM_ADDR_FMT, block->idstr,
1420 newsize, block->max_length);
1421 return -EINVAL;
1422 }
1423
1424 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1425 block->used_length = newsize;
58d2707e
PB
1426 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1427 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1428 memory_region_set_size(block->mr, newsize);
1429 if (block->resized) {
1430 block->resized(block->idstr, newsize, block->host);
1431 }
1432 return 0;
1433}
1434
ef701d7b 1435static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1436{
e1c57ab8 1437 RAMBlock *block;
0d53d9fe 1438 RAMBlock *last_block = NULL;
2152f5ca
JQ
1439 ram_addr_t old_ram_size, new_ram_size;
1440
1441 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1442
b2a8658e 1443 qemu_mutex_lock_ramlist();
9b8424d5 1444 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1445
1446 if (!new_block->host) {
1447 if (xen_enabled()) {
9b8424d5
MT
1448 xen_ram_alloc(new_block->offset, new_block->max_length,
1449 new_block->mr);
e1c57ab8 1450 } else {
9b8424d5 1451 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1452 &new_block->mr->align);
39228250 1453 if (!new_block->host) {
ef701d7b
HT
1454 error_setg_errno(errp, errno,
1455 "cannot set up guest memory '%s'",
1456 memory_region_name(new_block->mr));
1457 qemu_mutex_unlock_ramlist();
1458 return -1;
39228250 1459 }
9b8424d5 1460 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1461 }
c902760f 1462 }
94a6b54f 1463
dd631697
LZ
1464 new_ram_size = MAX(old_ram_size,
1465 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1466 if (new_ram_size > old_ram_size) {
1467 migration_bitmap_extend(old_ram_size, new_ram_size);
1468 }
0d53d9fe
MD
1469 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1470 * QLIST (which has an RCU-friendly variant) does not have insertion at
1471 * tail, so save the last element in last_block.
1472 */
0dc3f44a 1473 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1474 last_block = block;
9b8424d5 1475 if (block->max_length < new_block->max_length) {
abb26d63
PB
1476 break;
1477 }
1478 }
1479 if (block) {
0dc3f44a 1480 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1481 } else if (last_block) {
0dc3f44a 1482 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1483 } else { /* list is empty */
0dc3f44a 1484 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1485 }
0d6d3c87 1486 ram_list.mru_block = NULL;
94a6b54f 1487
0dc3f44a
MD
1488 /* Write list before version */
1489 smp_wmb();
f798b07f 1490 ram_list.version++;
b2a8658e 1491 qemu_mutex_unlock_ramlist();
f798b07f 1492
2152f5ca
JQ
1493 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1494
1495 if (new_ram_size > old_ram_size) {
1ab4c8ce 1496 int i;
ae3a7047
MD
1497
1498 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1499 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1500 ram_list.dirty_memory[i] =
1501 bitmap_zero_extend(ram_list.dirty_memory[i],
1502 old_ram_size, new_ram_size);
1503 }
2152f5ca 1504 }
9b8424d5 1505 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1506 new_block->used_length,
1507 DIRTY_CLIENTS_ALL);
94a6b54f 1508
a904c911
PB
1509 if (new_block->host) {
1510 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1511 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1512 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1513 if (kvm_enabled()) {
1514 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1515 }
e1c57ab8 1516 }
6f0437e8 1517
94a6b54f
PB
1518 return new_block->offset;
1519}
e9a1ab19 1520
0b183fc8 1521#ifdef __linux__
e1c57ab8 1522ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1523 bool share, const char *mem_path,
7f56e740 1524 Error **errp)
e1c57ab8
PB
1525{
1526 RAMBlock *new_block;
ef701d7b
HT
1527 ram_addr_t addr;
1528 Error *local_err = NULL;
e1c57ab8
PB
1529
1530 if (xen_enabled()) {
7f56e740
PB
1531 error_setg(errp, "-mem-path not supported with Xen");
1532 return -1;
e1c57ab8
PB
1533 }
1534
1535 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1536 /*
1537 * file_ram_alloc() needs to allocate just like
1538 * phys_mem_alloc, but we haven't bothered to provide
1539 * a hook there.
1540 */
7f56e740
PB
1541 error_setg(errp,
1542 "-mem-path not supported with this accelerator");
1543 return -1;
e1c57ab8
PB
1544 }
1545
1546 size = TARGET_PAGE_ALIGN(size);
1547 new_block = g_malloc0(sizeof(*new_block));
1548 new_block->mr = mr;
9b8424d5
MT
1549 new_block->used_length = size;
1550 new_block->max_length = size;
dbcb8981 1551 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1552 new_block->host = file_ram_alloc(new_block, size,
1553 mem_path, errp);
1554 if (!new_block->host) {
1555 g_free(new_block);
1556 return -1;
1557 }
1558
ef701d7b
HT
1559 addr = ram_block_add(new_block, &local_err);
1560 if (local_err) {
1561 g_free(new_block);
1562 error_propagate(errp, local_err);
1563 return -1;
1564 }
1565 return addr;
e1c57ab8 1566}
0b183fc8 1567#endif
e1c57ab8 1568
62be4e3a
MT
1569static
1570ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1571 void (*resized)(const char*,
1572 uint64_t length,
1573 void *host),
1574 void *host, bool resizeable,
ef701d7b 1575 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1576{
1577 RAMBlock *new_block;
ef701d7b
HT
1578 ram_addr_t addr;
1579 Error *local_err = NULL;
e1c57ab8
PB
1580
1581 size = TARGET_PAGE_ALIGN(size);
62be4e3a 1582 max_size = TARGET_PAGE_ALIGN(max_size);
e1c57ab8
PB
1583 new_block = g_malloc0(sizeof(*new_block));
1584 new_block->mr = mr;
62be4e3a 1585 new_block->resized = resized;
9b8424d5
MT
1586 new_block->used_length = size;
1587 new_block->max_length = max_size;
62be4e3a 1588 assert(max_size >= size);
e1c57ab8
PB
1589 new_block->fd = -1;
1590 new_block->host = host;
1591 if (host) {
7bd4f430 1592 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1593 }
62be4e3a
MT
1594 if (resizeable) {
1595 new_block->flags |= RAM_RESIZEABLE;
1596 }
ef701d7b
HT
1597 addr = ram_block_add(new_block, &local_err);
1598 if (local_err) {
1599 g_free(new_block);
1600 error_propagate(errp, local_err);
1601 return -1;
1602 }
1603 return addr;
e1c57ab8
PB
1604}
1605
62be4e3a
MT
1606ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1607 MemoryRegion *mr, Error **errp)
1608{
1609 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1610}
1611
ef701d7b 1612ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1613{
62be4e3a
MT
1614 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1615}
1616
1617ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1618 void (*resized)(const char*,
1619 uint64_t length,
1620 void *host),
1621 MemoryRegion *mr, Error **errp)
1622{
1623 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1624}
1625
1f2e98b6
AW
1626void qemu_ram_free_from_ptr(ram_addr_t addr)
1627{
1628 RAMBlock *block;
1629
b2a8658e 1630 qemu_mutex_lock_ramlist();
0dc3f44a 1631 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1f2e98b6 1632 if (addr == block->offset) {
0dc3f44a 1633 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1634 ram_list.mru_block = NULL;
0dc3f44a
MD
1635 /* Write list before version */
1636 smp_wmb();
f798b07f 1637 ram_list.version++;
43771539 1638 g_free_rcu(block, rcu);
b2a8658e 1639 break;
1f2e98b6
AW
1640 }
1641 }
b2a8658e 1642 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1643}
1644
43771539
PB
1645static void reclaim_ramblock(RAMBlock *block)
1646{
1647 if (block->flags & RAM_PREALLOC) {
1648 ;
1649 } else if (xen_enabled()) {
1650 xen_invalidate_map_cache_entry(block->host);
1651#ifndef _WIN32
1652 } else if (block->fd >= 0) {
1653 munmap(block->host, block->max_length);
1654 close(block->fd);
1655#endif
1656 } else {
1657 qemu_anon_ram_free(block->host, block->max_length);
1658 }
1659 g_free(block);
1660}
1661
c227f099 1662void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1663{
04b16653
AW
1664 RAMBlock *block;
1665
b2a8658e 1666 qemu_mutex_lock_ramlist();
0dc3f44a 1667 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1668 if (addr == block->offset) {
0dc3f44a 1669 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1670 ram_list.mru_block = NULL;
0dc3f44a
MD
1671 /* Write list before version */
1672 smp_wmb();
f798b07f 1673 ram_list.version++;
43771539 1674 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1675 break;
04b16653
AW
1676 }
1677 }
b2a8658e 1678 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1679}
1680
cd19cfa2
HY
1681#ifndef _WIN32
1682void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1683{
1684 RAMBlock *block;
1685 ram_addr_t offset;
1686 int flags;
1687 void *area, *vaddr;
1688
0dc3f44a 1689 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1690 offset = addr - block->offset;
9b8424d5 1691 if (offset < block->max_length) {
1240be24 1692 vaddr = ramblock_ptr(block, offset);
7bd4f430 1693 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1694 ;
dfeaf2ab
MA
1695 } else if (xen_enabled()) {
1696 abort();
cd19cfa2
HY
1697 } else {
1698 flags = MAP_FIXED;
3435f395 1699 if (block->fd >= 0) {
dbcb8981
PB
1700 flags |= (block->flags & RAM_SHARED ?
1701 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1702 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1703 flags, block->fd, offset);
cd19cfa2 1704 } else {
2eb9fbaa
MA
1705 /*
1706 * Remap needs to match alloc. Accelerators that
1707 * set phys_mem_alloc never remap. If they did,
1708 * we'd need a remap hook here.
1709 */
1710 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1711
cd19cfa2
HY
1712 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1713 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1714 flags, -1, 0);
cd19cfa2
HY
1715 }
1716 if (area != vaddr) {
f15fbc4b
AP
1717 fprintf(stderr, "Could not remap addr: "
1718 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1719 length, addr);
1720 exit(1);
1721 }
8490fc78 1722 memory_try_enable_merging(vaddr, length);
ddb97f1d 1723 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1724 }
cd19cfa2
HY
1725 }
1726 }
1727}
1728#endif /* !_WIN32 */
1729
a35ba7be
PB
1730int qemu_get_ram_fd(ram_addr_t addr)
1731{
ae3a7047
MD
1732 RAMBlock *block;
1733 int fd;
a35ba7be 1734
0dc3f44a 1735 rcu_read_lock();
ae3a7047
MD
1736 block = qemu_get_ram_block(addr);
1737 fd = block->fd;
0dc3f44a 1738 rcu_read_unlock();
ae3a7047 1739 return fd;
a35ba7be
PB
1740}
1741
3fd74b84
DM
1742void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1743{
ae3a7047
MD
1744 RAMBlock *block;
1745 void *ptr;
3fd74b84 1746
0dc3f44a 1747 rcu_read_lock();
ae3a7047
MD
1748 block = qemu_get_ram_block(addr);
1749 ptr = ramblock_ptr(block, 0);
0dc3f44a 1750 rcu_read_unlock();
ae3a7047 1751 return ptr;
3fd74b84
DM
1752}
1753
1b5ec234 1754/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1755 * This should not be used for general purpose DMA. Use address_space_map
1756 * or address_space_rw instead. For local memory (e.g. video ram) that the
1757 * device owns, use memory_region_get_ram_ptr.
0dc3f44a
MD
1758 *
1759 * By the time this function returns, the returned pointer is not protected
1760 * by RCU anymore. If the caller is not within an RCU critical section and
1761 * does not hold the iothread lock, it must have other means of protecting the
1762 * pointer, such as a reference to the region that includes the incoming
1763 * ram_addr_t.
1b5ec234
PB
1764 */
1765void *qemu_get_ram_ptr(ram_addr_t addr)
1766{
ae3a7047
MD
1767 RAMBlock *block;
1768 void *ptr;
1b5ec234 1769
0dc3f44a 1770 rcu_read_lock();
ae3a7047
MD
1771 block = qemu_get_ram_block(addr);
1772
1773 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1774 /* We need to check if the requested address is in the RAM
1775 * because we don't want to map the entire memory in QEMU.
1776 * In that case just map until the end of the page.
1777 */
1778 if (block->offset == 0) {
ae3a7047 1779 ptr = xen_map_cache(addr, 0, 0);
0dc3f44a 1780 goto unlock;
0d6d3c87 1781 }
ae3a7047
MD
1782
1783 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1784 }
ae3a7047
MD
1785 ptr = ramblock_ptr(block, addr - block->offset);
1786
0dc3f44a
MD
1787unlock:
1788 rcu_read_unlock();
ae3a7047 1789 return ptr;
dc828ca1
PB
1790}
1791
38bee5dc 1792/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1793 * but takes a size argument.
0dc3f44a
MD
1794 *
1795 * By the time this function returns, the returned pointer is not protected
1796 * by RCU anymore. If the caller is not within an RCU critical section and
1797 * does not hold the iothread lock, it must have other means of protecting the
1798 * pointer, such as a reference to the region that includes the incoming
1799 * ram_addr_t.
ae3a7047 1800 */
cb85f7ab 1801static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1802{
ae3a7047 1803 void *ptr;
8ab934f9
SS
1804 if (*size == 0) {
1805 return NULL;
1806 }
868bb33f 1807 if (xen_enabled()) {
e41d7c69 1808 return xen_map_cache(addr, *size, 1);
868bb33f 1809 } else {
38bee5dc 1810 RAMBlock *block;
0dc3f44a
MD
1811 rcu_read_lock();
1812 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5
MT
1813 if (addr - block->offset < block->max_length) {
1814 if (addr - block->offset + *size > block->max_length)
1815 *size = block->max_length - addr + block->offset;
ae3a7047 1816 ptr = ramblock_ptr(block, addr - block->offset);
0dc3f44a 1817 rcu_read_unlock();
ae3a7047 1818 return ptr;
38bee5dc
SS
1819 }
1820 }
1821
1822 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1823 abort();
38bee5dc
SS
1824 }
1825}
1826
7443b437 1827/* Some of the softmmu routines need to translate from a host pointer
ae3a7047
MD
1828 * (typically a TLB entry) back to a ram offset.
1829 *
1830 * By the time this function returns, the returned pointer is not protected
1831 * by RCU anymore. If the caller is not within an RCU critical section and
1832 * does not hold the iothread lock, it must have other means of protecting the
1833 * pointer, such as a reference to the region that includes the incoming
1834 * ram_addr_t.
1835 */
1b5ec234 1836MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1837{
94a6b54f
PB
1838 RAMBlock *block;
1839 uint8_t *host = ptr;
ae3a7047 1840 MemoryRegion *mr;
94a6b54f 1841
868bb33f 1842 if (xen_enabled()) {
0dc3f44a 1843 rcu_read_lock();
e41d7c69 1844 *ram_addr = xen_ram_addr_from_mapcache(ptr);
ae3a7047 1845 mr = qemu_get_ram_block(*ram_addr)->mr;
0dc3f44a 1846 rcu_read_unlock();
ae3a7047 1847 return mr;
712c2b41
SS
1848 }
1849
0dc3f44a
MD
1850 rcu_read_lock();
1851 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1852 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1853 goto found;
1854 }
1855
0dc3f44a 1856 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1857 /* This case append when the block is not mapped. */
1858 if (block->host == NULL) {
1859 continue;
1860 }
9b8424d5 1861 if (host - block->host < block->max_length) {
23887b79 1862 goto found;
f471a17e 1863 }
94a6b54f 1864 }
432d268c 1865
0dc3f44a 1866 rcu_read_unlock();
1b5ec234 1867 return NULL;
23887b79
PB
1868
1869found:
1870 *ram_addr = block->offset + (host - block->host);
ae3a7047 1871 mr = block->mr;
0dc3f44a 1872 rcu_read_unlock();
ae3a7047 1873 return mr;
e890261f 1874}
f471a17e 1875
a8170e5e 1876static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1877 uint64_t val, unsigned size)
9fa3e853 1878{
52159192 1879 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1880 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1881 }
0e0df1e2
AK
1882 switch (size) {
1883 case 1:
1884 stb_p(qemu_get_ram_ptr(ram_addr), val);
1885 break;
1886 case 2:
1887 stw_p(qemu_get_ram_ptr(ram_addr), val);
1888 break;
1889 case 4:
1890 stl_p(qemu_get_ram_ptr(ram_addr), val);
1891 break;
1892 default:
1893 abort();
3a7d929e 1894 }
58d2707e
PB
1895 /* Set both VGA and migration bits for simplicity and to remove
1896 * the notdirty callback faster.
1897 */
1898 cpu_physical_memory_set_dirty_range(ram_addr, size,
1899 DIRTY_CLIENTS_NOCODE);
f23db169
FB
1900 /* we remove the notdirty callback only if the code has been
1901 flushed */
a2cd8c85 1902 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44 1903 CPUArchState *env = current_cpu->env_ptr;
93afeade 1904 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
4917cf44 1905 }
9fa3e853
FB
1906}
1907
b018ddf6
PB
1908static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1909 unsigned size, bool is_write)
1910{
1911 return is_write;
1912}
1913
0e0df1e2 1914static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1915 .write = notdirty_mem_write,
b018ddf6 1916 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1917 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1918};
1919
0f459d16 1920/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 1921static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 1922{
93afeade
AF
1923 CPUState *cpu = current_cpu;
1924 CPUArchState *env = cpu->env_ptr;
06d55cc1 1925 target_ulong pc, cs_base;
0f459d16 1926 target_ulong vaddr;
a1d1bb31 1927 CPUWatchpoint *wp;
06d55cc1 1928 int cpu_flags;
0f459d16 1929
ff4700b0 1930 if (cpu->watchpoint_hit) {
06d55cc1
AL
1931 /* We re-entered the check after replacing the TB. Now raise
1932 * the debug interrupt so that is will trigger after the
1933 * current instruction. */
93afeade 1934 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1935 return;
1936 }
93afeade 1937 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 1938 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
1939 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1940 && (wp->flags & flags)) {
08225676
PM
1941 if (flags == BP_MEM_READ) {
1942 wp->flags |= BP_WATCHPOINT_HIT_READ;
1943 } else {
1944 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1945 }
1946 wp->hitaddr = vaddr;
66b9b43c 1947 wp->hitattrs = attrs;
ff4700b0
AF
1948 if (!cpu->watchpoint_hit) {
1949 cpu->watchpoint_hit = wp;
239c51a5 1950 tb_check_watchpoint(cpu);
6e140f28 1951 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 1952 cpu->exception_index = EXCP_DEBUG;
5638d180 1953 cpu_loop_exit(cpu);
6e140f28
AL
1954 } else {
1955 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 1956 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 1957 cpu_resume_from_signal(cpu, NULL);
6e140f28 1958 }
06d55cc1 1959 }
6e140f28
AL
1960 } else {
1961 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1962 }
1963 }
1964}
1965
6658ffb8
PB
1966/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1967 so these check for a hit then pass through to the normal out-of-line
1968 phys routines. */
66b9b43c
PM
1969static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
1970 unsigned size, MemTxAttrs attrs)
6658ffb8 1971{
66b9b43c
PM
1972 MemTxResult res;
1973 uint64_t data;
1974
1975 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 1976 switch (size) {
66b9b43c
PM
1977 case 1:
1978 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
1979 break;
1980 case 2:
1981 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
1982 break;
1983 case 4:
1984 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
1985 break;
1ec9b909
AK
1986 default: abort();
1987 }
66b9b43c
PM
1988 *pdata = data;
1989 return res;
6658ffb8
PB
1990}
1991
66b9b43c
PM
1992static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
1993 uint64_t val, unsigned size,
1994 MemTxAttrs attrs)
6658ffb8 1995{
66b9b43c
PM
1996 MemTxResult res;
1997
1998 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 1999 switch (size) {
67364150 2000 case 1:
66b9b43c 2001 address_space_stb(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2002 break;
2003 case 2:
66b9b43c 2004 address_space_stw(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2005 break;
2006 case 4:
66b9b43c 2007 address_space_stl(&address_space_memory, addr, val, attrs, &res);
67364150 2008 break;
1ec9b909
AK
2009 default: abort();
2010 }
66b9b43c 2011 return res;
6658ffb8
PB
2012}
2013
1ec9b909 2014static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2015 .read_with_attrs = watch_mem_read,
2016 .write_with_attrs = watch_mem_write,
1ec9b909 2017 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2018};
6658ffb8 2019
f25a49e0
PM
2020static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2021 unsigned len, MemTxAttrs attrs)
db7b5426 2022{
acc9d80b 2023 subpage_t *subpage = opaque;
ff6cff75 2024 uint8_t buf[8];
5c9eb028 2025 MemTxResult res;
791af8c8 2026
db7b5426 2027#if defined(DEBUG_SUBPAGE)
016e9d62 2028 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2029 subpage, len, addr);
db7b5426 2030#endif
5c9eb028
PM
2031 res = address_space_read(subpage->as, addr + subpage->base,
2032 attrs, buf, len);
2033 if (res) {
2034 return res;
f25a49e0 2035 }
acc9d80b
JK
2036 switch (len) {
2037 case 1:
f25a49e0
PM
2038 *data = ldub_p(buf);
2039 return MEMTX_OK;
acc9d80b 2040 case 2:
f25a49e0
PM
2041 *data = lduw_p(buf);
2042 return MEMTX_OK;
acc9d80b 2043 case 4:
f25a49e0
PM
2044 *data = ldl_p(buf);
2045 return MEMTX_OK;
ff6cff75 2046 case 8:
f25a49e0
PM
2047 *data = ldq_p(buf);
2048 return MEMTX_OK;
acc9d80b
JK
2049 default:
2050 abort();
2051 }
db7b5426
BS
2052}
2053
f25a49e0
PM
2054static MemTxResult subpage_write(void *opaque, hwaddr addr,
2055 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2056{
acc9d80b 2057 subpage_t *subpage = opaque;
ff6cff75 2058 uint8_t buf[8];
acc9d80b 2059
db7b5426 2060#if defined(DEBUG_SUBPAGE)
016e9d62 2061 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2062 " value %"PRIx64"\n",
2063 __func__, subpage, len, addr, value);
db7b5426 2064#endif
acc9d80b
JK
2065 switch (len) {
2066 case 1:
2067 stb_p(buf, value);
2068 break;
2069 case 2:
2070 stw_p(buf, value);
2071 break;
2072 case 4:
2073 stl_p(buf, value);
2074 break;
ff6cff75
PB
2075 case 8:
2076 stq_p(buf, value);
2077 break;
acc9d80b
JK
2078 default:
2079 abort();
2080 }
5c9eb028
PM
2081 return address_space_write(subpage->as, addr + subpage->base,
2082 attrs, buf, len);
db7b5426
BS
2083}
2084
c353e4cc 2085static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2086 unsigned len, bool is_write)
c353e4cc 2087{
acc9d80b 2088 subpage_t *subpage = opaque;
c353e4cc 2089#if defined(DEBUG_SUBPAGE)
016e9d62 2090 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2091 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2092#endif
2093
acc9d80b 2094 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2095 len, is_write);
c353e4cc
PB
2096}
2097
70c68e44 2098static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2099 .read_with_attrs = subpage_read,
2100 .write_with_attrs = subpage_write,
ff6cff75
PB
2101 .impl.min_access_size = 1,
2102 .impl.max_access_size = 8,
2103 .valid.min_access_size = 1,
2104 .valid.max_access_size = 8,
c353e4cc 2105 .valid.accepts = subpage_accepts,
70c68e44 2106 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2107};
2108
c227f099 2109static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2110 uint16_t section)
db7b5426
BS
2111{
2112 int idx, eidx;
2113
2114 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2115 return -1;
2116 idx = SUBPAGE_IDX(start);
2117 eidx = SUBPAGE_IDX(end);
2118#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2119 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2120 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2121#endif
db7b5426 2122 for (; idx <= eidx; idx++) {
5312bd8b 2123 mmio->sub_section[idx] = section;
db7b5426
BS
2124 }
2125
2126 return 0;
2127}
2128
acc9d80b 2129static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2130{
c227f099 2131 subpage_t *mmio;
db7b5426 2132
7267c094 2133 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2134
acc9d80b 2135 mmio->as = as;
1eec614b 2136 mmio->base = base;
2c9b15ca 2137 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2138 NULL, TARGET_PAGE_SIZE);
b3b00c78 2139 mmio->iomem.subpage = true;
db7b5426 2140#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2141 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2142 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2143#endif
b41aac4f 2144 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2145
2146 return mmio;
2147}
2148
a656e22f
PC
2149static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2150 MemoryRegion *mr)
5312bd8b 2151{
a656e22f 2152 assert(as);
5312bd8b 2153 MemoryRegionSection section = {
a656e22f 2154 .address_space = as,
5312bd8b
AK
2155 .mr = mr,
2156 .offset_within_address_space = 0,
2157 .offset_within_region = 0,
052e87b0 2158 .size = int128_2_64(),
5312bd8b
AK
2159 };
2160
53cb28cb 2161 return phys_section_add(map, &section);
5312bd8b
AK
2162}
2163
9d82b5a7 2164MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
aa102231 2165{
79e2b9ae
PB
2166 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2167 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2168
2169 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2170}
2171
e9179ce1
AK
2172static void io_mem_init(void)
2173{
1f6245e5 2174 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2175 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2176 NULL, UINT64_MAX);
2c9b15ca 2177 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2178 NULL, UINT64_MAX);
2c9b15ca 2179 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2180 NULL, UINT64_MAX);
e9179ce1
AK
2181}
2182
ac1970fb 2183static void mem_begin(MemoryListener *listener)
00752703
PB
2184{
2185 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2186 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2187 uint16_t n;
2188
a656e22f 2189 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2190 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2191 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2192 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2193 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2194 assert(n == PHYS_SECTION_ROM);
a656e22f 2195 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2196 assert(n == PHYS_SECTION_WATCH);
00752703 2197
9736e55b 2198 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2199 d->as = as;
2200 as->next_dispatch = d;
2201}
2202
79e2b9ae
PB
2203static void address_space_dispatch_free(AddressSpaceDispatch *d)
2204{
2205 phys_sections_free(&d->map);
2206 g_free(d);
2207}
2208
00752703 2209static void mem_commit(MemoryListener *listener)
ac1970fb 2210{
89ae337a 2211 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2212 AddressSpaceDispatch *cur = as->dispatch;
2213 AddressSpaceDispatch *next = as->next_dispatch;
2214
53cb28cb 2215 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2216
79e2b9ae 2217 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2218 if (cur) {
79e2b9ae 2219 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2220 }
9affd6fc
PB
2221}
2222
1d71148e 2223static void tcg_commit(MemoryListener *listener)
50c1e149 2224{
182735ef 2225 CPUState *cpu;
117712c3
AK
2226
2227 /* since each CPU stores ram addresses in its TLB cache, we must
2228 reset the modified entries */
2229 /* XXX: slow ! */
bdc44640 2230 CPU_FOREACH(cpu) {
33bde2e1
EI
2231 /* FIXME: Disentangle the cpu.h circular files deps so we can
2232 directly get the right CPU from listener. */
2233 if (cpu->tcg_as_listener != listener) {
2234 continue;
2235 }
76e5c76f 2236 cpu_reload_memory_map(cpu);
117712c3 2237 }
50c1e149
AK
2238}
2239
ac1970fb
AK
2240void address_space_init_dispatch(AddressSpace *as)
2241{
00752703 2242 as->dispatch = NULL;
89ae337a 2243 as->dispatch_listener = (MemoryListener) {
ac1970fb 2244 .begin = mem_begin,
00752703 2245 .commit = mem_commit,
ac1970fb
AK
2246 .region_add = mem_add,
2247 .region_nop = mem_add,
2248 .priority = 0,
2249 };
89ae337a 2250 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2251}
2252
6e48e8f9
PB
2253void address_space_unregister(AddressSpace *as)
2254{
2255 memory_listener_unregister(&as->dispatch_listener);
2256}
2257
83f3c251
AK
2258void address_space_destroy_dispatch(AddressSpace *as)
2259{
2260 AddressSpaceDispatch *d = as->dispatch;
2261
79e2b9ae
PB
2262 atomic_rcu_set(&as->dispatch, NULL);
2263 if (d) {
2264 call_rcu(d, address_space_dispatch_free, rcu);
2265 }
83f3c251
AK
2266}
2267
62152b8a
AK
2268static void memory_map_init(void)
2269{
7267c094 2270 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2271
57271d63 2272 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2273 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2274
7267c094 2275 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2276 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2277 65536);
7dca8043 2278 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2279}
2280
2281MemoryRegion *get_system_memory(void)
2282{
2283 return system_memory;
2284}
2285
309cb471
AK
2286MemoryRegion *get_system_io(void)
2287{
2288 return system_io;
2289}
2290
e2eef170
PB
2291#endif /* !defined(CONFIG_USER_ONLY) */
2292
13eb76e0
FB
2293/* physical memory access (slow version, mainly for debug) */
2294#if defined(CONFIG_USER_ONLY)
f17ec444 2295int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2296 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2297{
2298 int l, flags;
2299 target_ulong page;
53a5960a 2300 void * p;
13eb76e0
FB
2301
2302 while (len > 0) {
2303 page = addr & TARGET_PAGE_MASK;
2304 l = (page + TARGET_PAGE_SIZE) - addr;
2305 if (l > len)
2306 l = len;
2307 flags = page_get_flags(page);
2308 if (!(flags & PAGE_VALID))
a68fe89c 2309 return -1;
13eb76e0
FB
2310 if (is_write) {
2311 if (!(flags & PAGE_WRITE))
a68fe89c 2312 return -1;
579a97f7 2313 /* XXX: this code should not depend on lock_user */
72fb7daa 2314 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2315 return -1;
72fb7daa
AJ
2316 memcpy(p, buf, l);
2317 unlock_user(p, addr, l);
13eb76e0
FB
2318 } else {
2319 if (!(flags & PAGE_READ))
a68fe89c 2320 return -1;
579a97f7 2321 /* XXX: this code should not depend on lock_user */
72fb7daa 2322 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2323 return -1;
72fb7daa 2324 memcpy(buf, p, l);
5b257578 2325 unlock_user(p, addr, 0);
13eb76e0
FB
2326 }
2327 len -= l;
2328 buf += l;
2329 addr += l;
2330 }
a68fe89c 2331 return 0;
13eb76e0 2332}
8df1cd07 2333
13eb76e0 2334#else
51d7a9eb 2335
845b6214 2336static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2337 hwaddr length)
51d7a9eb 2338{
e87f7778
PB
2339 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2340 /* No early return if dirty_log_mask is or becomes 0, because
2341 * cpu_physical_memory_set_dirty_range will still call
2342 * xen_modified_memory.
2343 */
2344 if (dirty_log_mask) {
2345 dirty_log_mask =
2346 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2347 }
2348 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2349 tb_invalidate_phys_range(addr, addr + length);
2350 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2351 }
e87f7778 2352 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2353}
2354
23326164 2355static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2356{
e1622f4b 2357 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2358
2359 /* Regions are assumed to support 1-4 byte accesses unless
2360 otherwise specified. */
23326164
RH
2361 if (access_size_max == 0) {
2362 access_size_max = 4;
2363 }
2364
2365 /* Bound the maximum access by the alignment of the address. */
2366 if (!mr->ops->impl.unaligned) {
2367 unsigned align_size_max = addr & -addr;
2368 if (align_size_max != 0 && align_size_max < access_size_max) {
2369 access_size_max = align_size_max;
2370 }
82f2563f 2371 }
23326164
RH
2372
2373 /* Don't attempt accesses larger than the maximum. */
2374 if (l > access_size_max) {
2375 l = access_size_max;
82f2563f 2376 }
098178f2
PB
2377 if (l & (l - 1)) {
2378 l = 1 << (qemu_fls(l) - 1);
2379 }
23326164
RH
2380
2381 return l;
82f2563f
PB
2382}
2383
4840f10e 2384static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2385{
4840f10e
JK
2386 bool unlocked = !qemu_mutex_iothread_locked();
2387 bool release_lock = false;
2388
2389 if (unlocked && mr->global_locking) {
2390 qemu_mutex_lock_iothread();
2391 unlocked = false;
2392 release_lock = true;
2393 }
125b3806 2394 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2395 if (unlocked) {
2396 qemu_mutex_lock_iothread();
2397 }
125b3806 2398 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2399 if (unlocked) {
2400 qemu_mutex_unlock_iothread();
2401 }
125b3806 2402 }
4840f10e
JK
2403
2404 return release_lock;
125b3806
PB
2405}
2406
5c9eb028
PM
2407MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2408 uint8_t *buf, int len, bool is_write)
13eb76e0 2409{
149f54b5 2410 hwaddr l;
13eb76e0 2411 uint8_t *ptr;
791af8c8 2412 uint64_t val;
149f54b5 2413 hwaddr addr1;
5c8a00ce 2414 MemoryRegion *mr;
3b643495 2415 MemTxResult result = MEMTX_OK;
4840f10e 2416 bool release_lock = false;
3b46e624 2417
41063e1e 2418 rcu_read_lock();
13eb76e0 2419 while (len > 0) {
149f54b5 2420 l = len;
5c8a00ce 2421 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2422
13eb76e0 2423 if (is_write) {
5c8a00ce 2424 if (!memory_access_is_direct(mr, is_write)) {
4840f10e 2425 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2426 l = memory_access_size(mr, l, addr1);
4917cf44 2427 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2428 potential bugs */
23326164
RH
2429 switch (l) {
2430 case 8:
2431 /* 64 bit write access */
2432 val = ldq_p(buf);
3b643495
PM
2433 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2434 attrs);
23326164
RH
2435 break;
2436 case 4:
1c213d19 2437 /* 32 bit write access */
c27004ec 2438 val = ldl_p(buf);
3b643495
PM
2439 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2440 attrs);
23326164
RH
2441 break;
2442 case 2:
1c213d19 2443 /* 16 bit write access */
c27004ec 2444 val = lduw_p(buf);
3b643495
PM
2445 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2446 attrs);
23326164
RH
2447 break;
2448 case 1:
1c213d19 2449 /* 8 bit write access */
c27004ec 2450 val = ldub_p(buf);
3b643495
PM
2451 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2452 attrs);
23326164
RH
2453 break;
2454 default:
2455 abort();
13eb76e0 2456 }
2bbfa05d 2457 } else {
5c8a00ce 2458 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2459 /* RAM case */
5579c7f3 2460 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2461 memcpy(ptr, buf, l);
845b6214 2462 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0
FB
2463 }
2464 } else {
5c8a00ce 2465 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2466 /* I/O case */
4840f10e 2467 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2468 l = memory_access_size(mr, l, addr1);
23326164
RH
2469 switch (l) {
2470 case 8:
2471 /* 64 bit read access */
3b643495
PM
2472 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2473 attrs);
23326164
RH
2474 stq_p(buf, val);
2475 break;
2476 case 4:
13eb76e0 2477 /* 32 bit read access */
3b643495
PM
2478 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2479 attrs);
c27004ec 2480 stl_p(buf, val);
23326164
RH
2481 break;
2482 case 2:
13eb76e0 2483 /* 16 bit read access */
3b643495
PM
2484 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2485 attrs);
c27004ec 2486 stw_p(buf, val);
23326164
RH
2487 break;
2488 case 1:
1c213d19 2489 /* 8 bit read access */
3b643495
PM
2490 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2491 attrs);
c27004ec 2492 stb_p(buf, val);
23326164
RH
2493 break;
2494 default:
2495 abort();
13eb76e0
FB
2496 }
2497 } else {
2498 /* RAM case */
5c8a00ce 2499 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2500 memcpy(buf, ptr, l);
13eb76e0
FB
2501 }
2502 }
4840f10e
JK
2503
2504 if (release_lock) {
2505 qemu_mutex_unlock_iothread();
2506 release_lock = false;
2507 }
2508
13eb76e0
FB
2509 len -= l;
2510 buf += l;
2511 addr += l;
2512 }
41063e1e 2513 rcu_read_unlock();
fd8aaa76 2514
3b643495 2515 return result;
13eb76e0 2516}
8df1cd07 2517
5c9eb028
PM
2518MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2519 const uint8_t *buf, int len)
ac1970fb 2520{
5c9eb028 2521 return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
ac1970fb
AK
2522}
2523
5c9eb028
PM
2524MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2525 uint8_t *buf, int len)
ac1970fb 2526{
5c9eb028 2527 return address_space_rw(as, addr, attrs, buf, len, false);
ac1970fb
AK
2528}
2529
2530
a8170e5e 2531void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2532 int len, int is_write)
2533{
5c9eb028
PM
2534 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2535 buf, len, is_write);
ac1970fb
AK
2536}
2537
582b55a9
AG
2538enum write_rom_type {
2539 WRITE_DATA,
2540 FLUSH_CACHE,
2541};
2542
2a221651 2543static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2544 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2545{
149f54b5 2546 hwaddr l;
d0ecd2aa 2547 uint8_t *ptr;
149f54b5 2548 hwaddr addr1;
5c8a00ce 2549 MemoryRegion *mr;
3b46e624 2550
41063e1e 2551 rcu_read_lock();
d0ecd2aa 2552 while (len > 0) {
149f54b5 2553 l = len;
2a221651 2554 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2555
5c8a00ce
PB
2556 if (!(memory_region_is_ram(mr) ||
2557 memory_region_is_romd(mr))) {
b242e0e0 2558 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2559 } else {
5c8a00ce 2560 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2561 /* ROM/RAM case */
5579c7f3 2562 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2563 switch (type) {
2564 case WRITE_DATA:
2565 memcpy(ptr, buf, l);
845b6214 2566 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2567 break;
2568 case FLUSH_CACHE:
2569 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2570 break;
2571 }
d0ecd2aa
FB
2572 }
2573 len -= l;
2574 buf += l;
2575 addr += l;
2576 }
41063e1e 2577 rcu_read_unlock();
d0ecd2aa
FB
2578}
2579
582b55a9 2580/* used for ROM loading : can write in RAM and ROM */
2a221651 2581void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2582 const uint8_t *buf, int len)
2583{
2a221651 2584 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2585}
2586
2587void cpu_flush_icache_range(hwaddr start, int len)
2588{
2589 /*
2590 * This function should do the same thing as an icache flush that was
2591 * triggered from within the guest. For TCG we are always cache coherent,
2592 * so there is no need to flush anything. For KVM / Xen we need to flush
2593 * the host's instruction cache at least.
2594 */
2595 if (tcg_enabled()) {
2596 return;
2597 }
2598
2a221651
EI
2599 cpu_physical_memory_write_rom_internal(&address_space_memory,
2600 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2601}
2602
6d16c2f8 2603typedef struct {
d3e71559 2604 MemoryRegion *mr;
6d16c2f8 2605 void *buffer;
a8170e5e
AK
2606 hwaddr addr;
2607 hwaddr len;
c2cba0ff 2608 bool in_use;
6d16c2f8
AL
2609} BounceBuffer;
2610
2611static BounceBuffer bounce;
2612
ba223c29 2613typedef struct MapClient {
e95205e1 2614 QEMUBH *bh;
72cf2d4f 2615 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2616} MapClient;
2617
38e047b5 2618QemuMutex map_client_list_lock;
72cf2d4f
BS
2619static QLIST_HEAD(map_client_list, MapClient) map_client_list
2620 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2621
e95205e1
FZ
2622static void cpu_unregister_map_client_do(MapClient *client)
2623{
2624 QLIST_REMOVE(client, link);
2625 g_free(client);
2626}
2627
33b6c2ed
FZ
2628static void cpu_notify_map_clients_locked(void)
2629{
2630 MapClient *client;
2631
2632 while (!QLIST_EMPTY(&map_client_list)) {
2633 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2634 qemu_bh_schedule(client->bh);
2635 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2636 }
2637}
2638
e95205e1 2639void cpu_register_map_client(QEMUBH *bh)
ba223c29 2640{
7267c094 2641 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2642
38e047b5 2643 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2644 client->bh = bh;
72cf2d4f 2645 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2646 if (!atomic_read(&bounce.in_use)) {
2647 cpu_notify_map_clients_locked();
2648 }
38e047b5 2649 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2650}
2651
38e047b5 2652void cpu_exec_init_all(void)
ba223c29 2653{
38e047b5
FZ
2654 qemu_mutex_init(&ram_list.mutex);
2655 memory_map_init();
2656 io_mem_init();
2657 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2658}
2659
e95205e1 2660void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2661{
2662 MapClient *client;
2663
e95205e1
FZ
2664 qemu_mutex_lock(&map_client_list_lock);
2665 QLIST_FOREACH(client, &map_client_list, link) {
2666 if (client->bh == bh) {
2667 cpu_unregister_map_client_do(client);
2668 break;
2669 }
ba223c29 2670 }
e95205e1 2671 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2672}
2673
2674static void cpu_notify_map_clients(void)
2675{
38e047b5 2676 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2677 cpu_notify_map_clients_locked();
38e047b5 2678 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2679}
2680
51644ab7
PB
2681bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2682{
5c8a00ce 2683 MemoryRegion *mr;
51644ab7
PB
2684 hwaddr l, xlat;
2685
41063e1e 2686 rcu_read_lock();
51644ab7
PB
2687 while (len > 0) {
2688 l = len;
5c8a00ce
PB
2689 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2690 if (!memory_access_is_direct(mr, is_write)) {
2691 l = memory_access_size(mr, l, addr);
2692 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2693 return false;
2694 }
2695 }
2696
2697 len -= l;
2698 addr += l;
2699 }
41063e1e 2700 rcu_read_unlock();
51644ab7
PB
2701 return true;
2702}
2703
6d16c2f8
AL
2704/* Map a physical memory region into a host virtual address.
2705 * May map a subset of the requested range, given by and returned in *plen.
2706 * May return NULL if resources needed to perform the mapping are exhausted.
2707 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2708 * Use cpu_register_map_client() to know when retrying the map operation is
2709 * likely to succeed.
6d16c2f8 2710 */
ac1970fb 2711void *address_space_map(AddressSpace *as,
a8170e5e
AK
2712 hwaddr addr,
2713 hwaddr *plen,
ac1970fb 2714 bool is_write)
6d16c2f8 2715{
a8170e5e 2716 hwaddr len = *plen;
e3127ae0
PB
2717 hwaddr done = 0;
2718 hwaddr l, xlat, base;
2719 MemoryRegion *mr, *this_mr;
2720 ram_addr_t raddr;
6d16c2f8 2721
e3127ae0
PB
2722 if (len == 0) {
2723 return NULL;
2724 }
38bee5dc 2725
e3127ae0 2726 l = len;
41063e1e 2727 rcu_read_lock();
e3127ae0 2728 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2729
e3127ae0 2730 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2731 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2732 rcu_read_unlock();
e3127ae0 2733 return NULL;
6d16c2f8 2734 }
e85d9db5
KW
2735 /* Avoid unbounded allocations */
2736 l = MIN(l, TARGET_PAGE_SIZE);
2737 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2738 bounce.addr = addr;
2739 bounce.len = l;
d3e71559
PB
2740
2741 memory_region_ref(mr);
2742 bounce.mr = mr;
e3127ae0 2743 if (!is_write) {
5c9eb028
PM
2744 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2745 bounce.buffer, l);
8ab934f9 2746 }
6d16c2f8 2747
41063e1e 2748 rcu_read_unlock();
e3127ae0
PB
2749 *plen = l;
2750 return bounce.buffer;
2751 }
2752
2753 base = xlat;
2754 raddr = memory_region_get_ram_addr(mr);
2755
2756 for (;;) {
6d16c2f8
AL
2757 len -= l;
2758 addr += l;
e3127ae0
PB
2759 done += l;
2760 if (len == 0) {
2761 break;
2762 }
2763
2764 l = len;
2765 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2766 if (this_mr != mr || xlat != base + done) {
2767 break;
2768 }
6d16c2f8 2769 }
e3127ae0 2770
d3e71559 2771 memory_region_ref(mr);
41063e1e 2772 rcu_read_unlock();
e3127ae0
PB
2773 *plen = done;
2774 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2775}
2776
ac1970fb 2777/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2778 * Will also mark the memory as dirty if is_write == 1. access_len gives
2779 * the amount of memory that was actually read or written by the caller.
2780 */
a8170e5e
AK
2781void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2782 int is_write, hwaddr access_len)
6d16c2f8
AL
2783{
2784 if (buffer != bounce.buffer) {
d3e71559
PB
2785 MemoryRegion *mr;
2786 ram_addr_t addr1;
2787
2788 mr = qemu_ram_addr_from_host(buffer, &addr1);
2789 assert(mr != NULL);
6d16c2f8 2790 if (is_write) {
845b6214 2791 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2792 }
868bb33f 2793 if (xen_enabled()) {
e41d7c69 2794 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2795 }
d3e71559 2796 memory_region_unref(mr);
6d16c2f8
AL
2797 return;
2798 }
2799 if (is_write) {
5c9eb028
PM
2800 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2801 bounce.buffer, access_len);
6d16c2f8 2802 }
f8a83245 2803 qemu_vfree(bounce.buffer);
6d16c2f8 2804 bounce.buffer = NULL;
d3e71559 2805 memory_region_unref(bounce.mr);
c2cba0ff 2806 atomic_mb_set(&bounce.in_use, false);
ba223c29 2807 cpu_notify_map_clients();
6d16c2f8 2808}
d0ecd2aa 2809
a8170e5e
AK
2810void *cpu_physical_memory_map(hwaddr addr,
2811 hwaddr *plen,
ac1970fb
AK
2812 int is_write)
2813{
2814 return address_space_map(&address_space_memory, addr, plen, is_write);
2815}
2816
a8170e5e
AK
2817void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2818 int is_write, hwaddr access_len)
ac1970fb
AK
2819{
2820 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2821}
2822
8df1cd07 2823/* warning: addr must be aligned */
50013115
PM
2824static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2825 MemTxAttrs attrs,
2826 MemTxResult *result,
2827 enum device_endian endian)
8df1cd07 2828{
8df1cd07 2829 uint8_t *ptr;
791af8c8 2830 uint64_t val;
5c8a00ce 2831 MemoryRegion *mr;
149f54b5
PB
2832 hwaddr l = 4;
2833 hwaddr addr1;
50013115 2834 MemTxResult r;
4840f10e 2835 bool release_lock = false;
8df1cd07 2836
41063e1e 2837 rcu_read_lock();
fdfba1a2 2838 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2839 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 2840 release_lock |= prepare_mmio_access(mr);
125b3806 2841
8df1cd07 2842 /* I/O case */
50013115 2843 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
2844#if defined(TARGET_WORDS_BIGENDIAN)
2845 if (endian == DEVICE_LITTLE_ENDIAN) {
2846 val = bswap32(val);
2847 }
2848#else
2849 if (endian == DEVICE_BIG_ENDIAN) {
2850 val = bswap32(val);
2851 }
2852#endif
8df1cd07
FB
2853 } else {
2854 /* RAM case */
5c8a00ce 2855 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2856 & TARGET_PAGE_MASK)
149f54b5 2857 + addr1);
1e78bcc1
AG
2858 switch (endian) {
2859 case DEVICE_LITTLE_ENDIAN:
2860 val = ldl_le_p(ptr);
2861 break;
2862 case DEVICE_BIG_ENDIAN:
2863 val = ldl_be_p(ptr);
2864 break;
2865 default:
2866 val = ldl_p(ptr);
2867 break;
2868 }
50013115
PM
2869 r = MEMTX_OK;
2870 }
2871 if (result) {
2872 *result = r;
8df1cd07 2873 }
4840f10e
JK
2874 if (release_lock) {
2875 qemu_mutex_unlock_iothread();
2876 }
41063e1e 2877 rcu_read_unlock();
8df1cd07
FB
2878 return val;
2879}
2880
50013115
PM
2881uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
2882 MemTxAttrs attrs, MemTxResult *result)
2883{
2884 return address_space_ldl_internal(as, addr, attrs, result,
2885 DEVICE_NATIVE_ENDIAN);
2886}
2887
2888uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
2889 MemTxAttrs attrs, MemTxResult *result)
2890{
2891 return address_space_ldl_internal(as, addr, attrs, result,
2892 DEVICE_LITTLE_ENDIAN);
2893}
2894
2895uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
2896 MemTxAttrs attrs, MemTxResult *result)
2897{
2898 return address_space_ldl_internal(as, addr, attrs, result,
2899 DEVICE_BIG_ENDIAN);
2900}
2901
fdfba1a2 2902uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2903{
50013115 2904 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2905}
2906
fdfba1a2 2907uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2908{
50013115 2909 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2910}
2911
fdfba1a2 2912uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2913{
50013115 2914 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2915}
2916
84b7b8e7 2917/* warning: addr must be aligned */
50013115
PM
2918static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
2919 MemTxAttrs attrs,
2920 MemTxResult *result,
2921 enum device_endian endian)
84b7b8e7 2922{
84b7b8e7
FB
2923 uint8_t *ptr;
2924 uint64_t val;
5c8a00ce 2925 MemoryRegion *mr;
149f54b5
PB
2926 hwaddr l = 8;
2927 hwaddr addr1;
50013115 2928 MemTxResult r;
4840f10e 2929 bool release_lock = false;
84b7b8e7 2930
41063e1e 2931 rcu_read_lock();
2c17449b 2932 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2933 false);
2934 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 2935 release_lock |= prepare_mmio_access(mr);
125b3806 2936
84b7b8e7 2937 /* I/O case */
50013115 2938 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
2939#if defined(TARGET_WORDS_BIGENDIAN)
2940 if (endian == DEVICE_LITTLE_ENDIAN) {
2941 val = bswap64(val);
2942 }
2943#else
2944 if (endian == DEVICE_BIG_ENDIAN) {
2945 val = bswap64(val);
2946 }
84b7b8e7
FB
2947#endif
2948 } else {
2949 /* RAM case */
5c8a00ce 2950 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2951 & TARGET_PAGE_MASK)
149f54b5 2952 + addr1);
1e78bcc1
AG
2953 switch (endian) {
2954 case DEVICE_LITTLE_ENDIAN:
2955 val = ldq_le_p(ptr);
2956 break;
2957 case DEVICE_BIG_ENDIAN:
2958 val = ldq_be_p(ptr);
2959 break;
2960 default:
2961 val = ldq_p(ptr);
2962 break;
2963 }
50013115
PM
2964 r = MEMTX_OK;
2965 }
2966 if (result) {
2967 *result = r;
84b7b8e7 2968 }
4840f10e
JK
2969 if (release_lock) {
2970 qemu_mutex_unlock_iothread();
2971 }
41063e1e 2972 rcu_read_unlock();
84b7b8e7
FB
2973 return val;
2974}
2975
50013115
PM
2976uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
2977 MemTxAttrs attrs, MemTxResult *result)
2978{
2979 return address_space_ldq_internal(as, addr, attrs, result,
2980 DEVICE_NATIVE_ENDIAN);
2981}
2982
2983uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
2984 MemTxAttrs attrs, MemTxResult *result)
2985{
2986 return address_space_ldq_internal(as, addr, attrs, result,
2987 DEVICE_LITTLE_ENDIAN);
2988}
2989
2990uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
2991 MemTxAttrs attrs, MemTxResult *result)
2992{
2993 return address_space_ldq_internal(as, addr, attrs, result,
2994 DEVICE_BIG_ENDIAN);
2995}
2996
2c17449b 2997uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2998{
50013115 2999 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3000}
3001
2c17449b 3002uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3003{
50013115 3004 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3005}
3006
2c17449b 3007uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3008{
50013115 3009 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3010}
3011
aab33094 3012/* XXX: optimize */
50013115
PM
3013uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3014 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3015{
3016 uint8_t val;
50013115
PM
3017 MemTxResult r;
3018
3019 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3020 if (result) {
3021 *result = r;
3022 }
aab33094
FB
3023 return val;
3024}
3025
50013115
PM
3026uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3027{
3028 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3029}
3030
733f0b02 3031/* warning: addr must be aligned */
50013115
PM
3032static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3033 hwaddr addr,
3034 MemTxAttrs attrs,
3035 MemTxResult *result,
3036 enum device_endian endian)
aab33094 3037{
733f0b02
MT
3038 uint8_t *ptr;
3039 uint64_t val;
5c8a00ce 3040 MemoryRegion *mr;
149f54b5
PB
3041 hwaddr l = 2;
3042 hwaddr addr1;
50013115 3043 MemTxResult r;
4840f10e 3044 bool release_lock = false;
733f0b02 3045
41063e1e 3046 rcu_read_lock();
41701aa4 3047 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3048 false);
3049 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3050 release_lock |= prepare_mmio_access(mr);
125b3806 3051
733f0b02 3052 /* I/O case */
50013115 3053 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3054#if defined(TARGET_WORDS_BIGENDIAN)
3055 if (endian == DEVICE_LITTLE_ENDIAN) {
3056 val = bswap16(val);
3057 }
3058#else
3059 if (endian == DEVICE_BIG_ENDIAN) {
3060 val = bswap16(val);
3061 }
3062#endif
733f0b02
MT
3063 } else {
3064 /* RAM case */
5c8a00ce 3065 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3066 & TARGET_PAGE_MASK)
149f54b5 3067 + addr1);
1e78bcc1
AG
3068 switch (endian) {
3069 case DEVICE_LITTLE_ENDIAN:
3070 val = lduw_le_p(ptr);
3071 break;
3072 case DEVICE_BIG_ENDIAN:
3073 val = lduw_be_p(ptr);
3074 break;
3075 default:
3076 val = lduw_p(ptr);
3077 break;
3078 }
50013115
PM
3079 r = MEMTX_OK;
3080 }
3081 if (result) {
3082 *result = r;
733f0b02 3083 }
4840f10e
JK
3084 if (release_lock) {
3085 qemu_mutex_unlock_iothread();
3086 }
41063e1e 3087 rcu_read_unlock();
733f0b02 3088 return val;
aab33094
FB
3089}
3090
50013115
PM
3091uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3092 MemTxAttrs attrs, MemTxResult *result)
3093{
3094 return address_space_lduw_internal(as, addr, attrs, result,
3095 DEVICE_NATIVE_ENDIAN);
3096}
3097
3098uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3099 MemTxAttrs attrs, MemTxResult *result)
3100{
3101 return address_space_lduw_internal(as, addr, attrs, result,
3102 DEVICE_LITTLE_ENDIAN);
3103}
3104
3105uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3106 MemTxAttrs attrs, MemTxResult *result)
3107{
3108 return address_space_lduw_internal(as, addr, attrs, result,
3109 DEVICE_BIG_ENDIAN);
3110}
3111
41701aa4 3112uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3113{
50013115 3114 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3115}
3116
41701aa4 3117uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3118{
50013115 3119 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3120}
3121
41701aa4 3122uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3123{
50013115 3124 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3125}
3126
8df1cd07
FB
3127/* warning: addr must be aligned. The ram page is not masked as dirty
3128 and the code inside is not invalidated. It is useful if the dirty
3129 bits are used to track modified PTEs */
50013115
PM
3130void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3131 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3132{
8df1cd07 3133 uint8_t *ptr;
5c8a00ce 3134 MemoryRegion *mr;
149f54b5
PB
3135 hwaddr l = 4;
3136 hwaddr addr1;
50013115 3137 MemTxResult r;
845b6214 3138 uint8_t dirty_log_mask;
4840f10e 3139 bool release_lock = false;
8df1cd07 3140
41063e1e 3141 rcu_read_lock();
2198a121 3142 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3143 true);
3144 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3145 release_lock |= prepare_mmio_access(mr);
125b3806 3146
50013115 3147 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3148 } else {
5c8a00ce 3149 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3150 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3151 stl_p(ptr, val);
74576198 3152
845b6214
PB
3153 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3154 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3155 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3156 r = MEMTX_OK;
3157 }
3158 if (result) {
3159 *result = r;
8df1cd07 3160 }
4840f10e
JK
3161 if (release_lock) {
3162 qemu_mutex_unlock_iothread();
3163 }
41063e1e 3164 rcu_read_unlock();
8df1cd07
FB
3165}
3166
50013115
PM
3167void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3168{
3169 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3170}
3171
8df1cd07 3172/* warning: addr must be aligned */
50013115
PM
3173static inline void address_space_stl_internal(AddressSpace *as,
3174 hwaddr addr, uint32_t val,
3175 MemTxAttrs attrs,
3176 MemTxResult *result,
3177 enum device_endian endian)
8df1cd07 3178{
8df1cd07 3179 uint8_t *ptr;
5c8a00ce 3180 MemoryRegion *mr;
149f54b5
PB
3181 hwaddr l = 4;
3182 hwaddr addr1;
50013115 3183 MemTxResult r;
4840f10e 3184 bool release_lock = false;
8df1cd07 3185
41063e1e 3186 rcu_read_lock();
ab1da857 3187 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3188 true);
3189 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3190 release_lock |= prepare_mmio_access(mr);
125b3806 3191
1e78bcc1
AG
3192#if defined(TARGET_WORDS_BIGENDIAN)
3193 if (endian == DEVICE_LITTLE_ENDIAN) {
3194 val = bswap32(val);
3195 }
3196#else
3197 if (endian == DEVICE_BIG_ENDIAN) {
3198 val = bswap32(val);
3199 }
3200#endif
50013115 3201 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3202 } else {
8df1cd07 3203 /* RAM case */
5c8a00ce 3204 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3205 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3206 switch (endian) {
3207 case DEVICE_LITTLE_ENDIAN:
3208 stl_le_p(ptr, val);
3209 break;
3210 case DEVICE_BIG_ENDIAN:
3211 stl_be_p(ptr, val);
3212 break;
3213 default:
3214 stl_p(ptr, val);
3215 break;
3216 }
845b6214 3217 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3218 r = MEMTX_OK;
3219 }
3220 if (result) {
3221 *result = r;
8df1cd07 3222 }
4840f10e
JK
3223 if (release_lock) {
3224 qemu_mutex_unlock_iothread();
3225 }
41063e1e 3226 rcu_read_unlock();
8df1cd07
FB
3227}
3228
50013115
PM
3229void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3230 MemTxAttrs attrs, MemTxResult *result)
3231{
3232 address_space_stl_internal(as, addr, val, attrs, result,
3233 DEVICE_NATIVE_ENDIAN);
3234}
3235
3236void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3237 MemTxAttrs attrs, MemTxResult *result)
3238{
3239 address_space_stl_internal(as, addr, val, attrs, result,
3240 DEVICE_LITTLE_ENDIAN);
3241}
3242
3243void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3244 MemTxAttrs attrs, MemTxResult *result)
3245{
3246 address_space_stl_internal(as, addr, val, attrs, result,
3247 DEVICE_BIG_ENDIAN);
3248}
3249
ab1da857 3250void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3251{
50013115 3252 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3253}
3254
ab1da857 3255void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3256{
50013115 3257 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3258}
3259
ab1da857 3260void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3261{
50013115 3262 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3263}
3264
aab33094 3265/* XXX: optimize */
50013115
PM
3266void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3267 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3268{
3269 uint8_t v = val;
50013115
PM
3270 MemTxResult r;
3271
3272 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3273 if (result) {
3274 *result = r;
3275 }
3276}
3277
3278void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3279{
3280 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3281}
3282
733f0b02 3283/* warning: addr must be aligned */
50013115
PM
3284static inline void address_space_stw_internal(AddressSpace *as,
3285 hwaddr addr, uint32_t val,
3286 MemTxAttrs attrs,
3287 MemTxResult *result,
3288 enum device_endian endian)
aab33094 3289{
733f0b02 3290 uint8_t *ptr;
5c8a00ce 3291 MemoryRegion *mr;
149f54b5
PB
3292 hwaddr l = 2;
3293 hwaddr addr1;
50013115 3294 MemTxResult r;
4840f10e 3295 bool release_lock = false;
733f0b02 3296
41063e1e 3297 rcu_read_lock();
5ce5944d 3298 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3299 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3300 release_lock |= prepare_mmio_access(mr);
125b3806 3301
1e78bcc1
AG
3302#if defined(TARGET_WORDS_BIGENDIAN)
3303 if (endian == DEVICE_LITTLE_ENDIAN) {
3304 val = bswap16(val);
3305 }
3306#else
3307 if (endian == DEVICE_BIG_ENDIAN) {
3308 val = bswap16(val);
3309 }
3310#endif
50013115 3311 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3312 } else {
733f0b02 3313 /* RAM case */
5c8a00ce 3314 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3315 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3316 switch (endian) {
3317 case DEVICE_LITTLE_ENDIAN:
3318 stw_le_p(ptr, val);
3319 break;
3320 case DEVICE_BIG_ENDIAN:
3321 stw_be_p(ptr, val);
3322 break;
3323 default:
3324 stw_p(ptr, val);
3325 break;
3326 }
845b6214 3327 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3328 r = MEMTX_OK;
3329 }
3330 if (result) {
3331 *result = r;
733f0b02 3332 }
4840f10e
JK
3333 if (release_lock) {
3334 qemu_mutex_unlock_iothread();
3335 }
41063e1e 3336 rcu_read_unlock();
aab33094
FB
3337}
3338
50013115
PM
3339void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3340 MemTxAttrs attrs, MemTxResult *result)
3341{
3342 address_space_stw_internal(as, addr, val, attrs, result,
3343 DEVICE_NATIVE_ENDIAN);
3344}
3345
3346void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3347 MemTxAttrs attrs, MemTxResult *result)
3348{
3349 address_space_stw_internal(as, addr, val, attrs, result,
3350 DEVICE_LITTLE_ENDIAN);
3351}
3352
3353void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3354 MemTxAttrs attrs, MemTxResult *result)
3355{
3356 address_space_stw_internal(as, addr, val, attrs, result,
3357 DEVICE_BIG_ENDIAN);
3358}
3359
5ce5944d 3360void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3361{
50013115 3362 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3363}
3364
5ce5944d 3365void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3366{
50013115 3367 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3368}
3369
5ce5944d 3370void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3371{
50013115 3372 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3373}
3374
aab33094 3375/* XXX: optimize */
50013115
PM
3376void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3377 MemTxAttrs attrs, MemTxResult *result)
aab33094 3378{
50013115 3379 MemTxResult r;
aab33094 3380 val = tswap64(val);
50013115
PM
3381 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3382 if (result) {
3383 *result = r;
3384 }
aab33094
FB
3385}
3386
50013115
PM
3387void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3388 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3389{
50013115 3390 MemTxResult r;
1e78bcc1 3391 val = cpu_to_le64(val);
50013115
PM
3392 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3393 if (result) {
3394 *result = r;
3395 }
3396}
3397void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3398 MemTxAttrs attrs, MemTxResult *result)
3399{
3400 MemTxResult r;
3401 val = cpu_to_be64(val);
3402 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3403 if (result) {
3404 *result = r;
3405 }
3406}
3407
3408void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3409{
3410 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3411}
3412
3413void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3414{
3415 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3416}
3417
f606604f 3418void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3419{
50013115 3420 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3421}
3422
5e2972fd 3423/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3424int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3425 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3426{
3427 int l;
a8170e5e 3428 hwaddr phys_addr;
9b3c35e0 3429 target_ulong page;
13eb76e0
FB
3430
3431 while (len > 0) {
3432 page = addr & TARGET_PAGE_MASK;
f17ec444 3433 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
3434 /* if no physical page mapped, return an error */
3435 if (phys_addr == -1)
3436 return -1;
3437 l = (page + TARGET_PAGE_SIZE) - addr;
3438 if (l > len)
3439 l = len;
5e2972fd 3440 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b
EI
3441 if (is_write) {
3442 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3443 } else {
5c9eb028
PM
3444 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3445 buf, l, 0);
2e38847b 3446 }
13eb76e0
FB
3447 len -= l;
3448 buf += l;
3449 addr += l;
3450 }
3451 return 0;
3452}
a68fe89c 3453#endif
13eb76e0 3454
8e4a424b
BS
3455/*
3456 * A helper function for the _utterly broken_ virtio device model to find out if
3457 * it's running on a big endian machine. Don't do this at home kids!
3458 */
98ed8ecf
GK
3459bool target_words_bigendian(void);
3460bool target_words_bigendian(void)
8e4a424b
BS
3461{
3462#if defined(TARGET_WORDS_BIGENDIAN)
3463 return true;
3464#else
3465 return false;
3466#endif
3467}
3468
76f35538 3469#ifndef CONFIG_USER_ONLY
a8170e5e 3470bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3471{
5c8a00ce 3472 MemoryRegion*mr;
149f54b5 3473 hwaddr l = 1;
41063e1e 3474 bool res;
76f35538 3475
41063e1e 3476 rcu_read_lock();
5c8a00ce
PB
3477 mr = address_space_translate(&address_space_memory,
3478 phys_addr, &phys_addr, &l, false);
76f35538 3479
41063e1e
PB
3480 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3481 rcu_read_unlock();
3482 return res;
76f35538 3483}
bd2fa51f 3484
e3807054 3485int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3486{
3487 RAMBlock *block;
e3807054 3488 int ret = 0;
bd2fa51f 3489
0dc3f44a
MD
3490 rcu_read_lock();
3491 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3492 ret = func(block->idstr, block->host, block->offset,
3493 block->used_length, opaque);
3494 if (ret) {
3495 break;
3496 }
bd2fa51f 3497 }
0dc3f44a 3498 rcu_read_unlock();
e3807054 3499 return ret;
bd2fa51f 3500}
ec3f8c99 3501#endif