]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
linux-user: adapt uname machine to emulated CPU
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
1e8b27ca
JR
195#ifdef WIN32
196static const char *logfilename = "qemu.log";
197#else
d9b630fd 198static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 199#endif
34865134
FB
200FILE *logfile;
201int loglevel;
e735b91c 202static int log_append = 0;
34865134 203
e3db7226
FB
204/* statistics */
205static int tlb_flush_count;
206static int tb_flush_count;
207static int tb_phys_invalidate_count;
208
db7b5426 209#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
210typedef struct subpage_t {
211 target_phys_addr_t base;
d60efc6b
BS
212 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
213 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 214 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
215 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
216} subpage_t;
db7b5426 217
7cb69cae
FB
218#ifdef _WIN32
219static void map_exec(void *addr, long size)
220{
221 DWORD old_protect;
222 VirtualProtect(addr, size,
223 PAGE_EXECUTE_READWRITE, &old_protect);
224
225}
226#else
227static void map_exec(void *addr, long size)
228{
4369415f 229 unsigned long start, end, page_size;
7cb69cae 230
4369415f 231 page_size = getpagesize();
7cb69cae 232 start = (unsigned long)addr;
4369415f 233 start &= ~(page_size - 1);
7cb69cae
FB
234
235 end = (unsigned long)addr + size;
4369415f
FB
236 end += page_size - 1;
237 end &= ~(page_size - 1);
7cb69cae
FB
238
239 mprotect((void *)start, end - start,
240 PROT_READ | PROT_WRITE | PROT_EXEC);
241}
242#endif
243
b346ff46 244static void page_init(void)
54936004 245{
83fb7adf 246 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 247 TARGET_PAGE_SIZE */
c2b48b69
AL
248#ifdef _WIN32
249 {
250 SYSTEM_INFO system_info;
251
252 GetSystemInfo(&system_info);
253 qemu_real_host_page_size = system_info.dwPageSize;
254 }
255#else
256 qemu_real_host_page_size = getpagesize();
257#endif
83fb7adf
FB
258 if (qemu_host_page_size == 0)
259 qemu_host_page_size = qemu_real_host_page_size;
260 if (qemu_host_page_size < TARGET_PAGE_SIZE)
261 qemu_host_page_size = TARGET_PAGE_SIZE;
262 qemu_host_page_bits = 0;
263 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
264 qemu_host_page_bits++;
265 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
266 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
267 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
268
269#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
271 long long startaddr, endaddr;
272 FILE *f;
273 int n;
274
c8a706fe 275 mmap_lock();
0776590d 276 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
277 f = fopen("/proc/self/maps", "r");
278 if (f) {
279 do {
280 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
281 if (n == 2) {
e0b8d65a
BS
282 startaddr = MIN(startaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
284 endaddr = MIN(endaddr,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 286 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
287 TARGET_PAGE_ALIGN(endaddr),
288 PAGE_RESERVED);
289 }
290 } while (!feof(f));
291 fclose(f);
292 }
c8a706fe 293 mmap_unlock();
50a9569b
AZ
294 }
295#endif
54936004
FB
296}
297
434929bf 298static inline PageDesc **page_l1_map(target_ulong index)
54936004 299{
17e2377a
PB
300#if TARGET_LONG_BITS > 32
301 /* Host memory outside guest VM. For 32-bit targets we have already
302 excluded high addresses. */
d8173e0f 303 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
304 return NULL;
305#endif
434929bf
AL
306 return &l1_map[index >> L2_BITS];
307}
308
309static inline PageDesc *page_find_alloc(target_ulong index)
310{
311 PageDesc **lp, *p;
312 lp = page_l1_map(index);
313 if (!lp)
314 return NULL;
315
54936004
FB
316 p = *lp;
317 if (!p) {
318 /* allocate if not found */
17e2377a 319#if defined(CONFIG_USER_ONLY)
17e2377a
PB
320 size_t len = sizeof(PageDesc) * L2_SIZE;
321 /* Don't use qemu_malloc because it may recurse. */
660f11be 322 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 323 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 324 *lp = p;
fb1c2cd7
AJ
325 if (h2g_valid(p)) {
326 unsigned long addr = h2g(p);
17e2377a
PB
327 page_set_flags(addr & TARGET_PAGE_MASK,
328 TARGET_PAGE_ALIGN(addr + len),
329 PAGE_RESERVED);
330 }
331#else
332 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
333 *lp = p;
334#endif
54936004
FB
335 }
336 return p + (index & (L2_SIZE - 1));
337}
338
00f82b8a 339static inline PageDesc *page_find(target_ulong index)
54936004 340{
434929bf
AL
341 PageDesc **lp, *p;
342 lp = page_l1_map(index);
343 if (!lp)
344 return NULL;
54936004 345
434929bf 346 p = *lp;
660f11be
BS
347 if (!p) {
348 return NULL;
349 }
fd6ce8f6
FB
350 return p + (index & (L2_SIZE - 1));
351}
352
c227f099 353static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 354{
108c49b8 355 void **lp, **p;
e3f4e2a4 356 PhysPageDesc *pd;
92e873b9 357
108c49b8
FB
358 p = (void **)l1_phys_map;
359#if TARGET_PHYS_ADDR_SPACE_BITS > 32
360
361#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
362#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
363#endif
364 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
365 p = *lp;
366 if (!p) {
367 /* allocate if not found */
108c49b8
FB
368 if (!alloc)
369 return NULL;
370 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
371 memset(p, 0, sizeof(void *) * L1_SIZE);
372 *lp = p;
373 }
374#endif
375 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
376 pd = *lp;
377 if (!pd) {
378 int i;
108c49b8
FB
379 /* allocate if not found */
380 if (!alloc)
381 return NULL;
e3f4e2a4
PB
382 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
383 *lp = pd;
67c4d23c 384 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 385 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
386 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
387 }
92e873b9 388 }
e3f4e2a4 389 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
390}
391
c227f099 392static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 393{
108c49b8 394 return phys_page_find_alloc(index, 0);
92e873b9
FB
395}
396
9fa3e853 397#if !defined(CONFIG_USER_ONLY)
c227f099
AL
398static void tlb_protect_code(ram_addr_t ram_addr);
399static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 400 target_ulong vaddr);
c8a706fe
PB
401#define mmap_lock() do { } while(0)
402#define mmap_unlock() do { } while(0)
9fa3e853 403#endif
fd6ce8f6 404
4369415f
FB
405#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
406
407#if defined(CONFIG_USER_ONLY)
ccbb4d44 408/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
409 user mode. It will change when a dedicated libc will be used */
410#define USE_STATIC_CODE_GEN_BUFFER
411#endif
412
413#ifdef USE_STATIC_CODE_GEN_BUFFER
414static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
415#endif
416
8fcd3692 417static void code_gen_alloc(unsigned long tb_size)
26a5f13b 418{
4369415f
FB
419#ifdef USE_STATIC_CODE_GEN_BUFFER
420 code_gen_buffer = static_code_gen_buffer;
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 map_exec(code_gen_buffer, code_gen_buffer_size);
423#else
26a5f13b
FB
424 code_gen_buffer_size = tb_size;
425 if (code_gen_buffer_size == 0) {
4369415f
FB
426#if defined(CONFIG_USER_ONLY)
427 /* in user mode, phys_ram_size is not meaningful */
428 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
429#else
ccbb4d44 430 /* XXX: needs adjustments */
94a6b54f 431 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 432#endif
26a5f13b
FB
433 }
434 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
435 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
436 /* The code gen buffer location may have constraints depending on
437 the host cpu and OS */
438#if defined(__linux__)
439 {
440 int flags;
141ac468
BS
441 void *start = NULL;
442
26a5f13b
FB
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444#if defined(__x86_64__)
445 flags |= MAP_32BIT;
446 /* Cannot map more than that */
447 if (code_gen_buffer_size > (800 * 1024 * 1024))
448 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
449#elif defined(__sparc_v9__)
450 // Map the buffer below 2G, so we can use direct calls and branches
451 flags |= MAP_FIXED;
452 start = (void *) 0x60000000UL;
453 if (code_gen_buffer_size > (512 * 1024 * 1024))
454 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 455#elif defined(__arm__)
63d41246 456 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
457 flags |= MAP_FIXED;
458 start = (void *) 0x01000000UL;
459 if (code_gen_buffer_size > 16 * 1024 * 1024)
460 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 461#endif
141ac468
BS
462 code_gen_buffer = mmap(start, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
a167ba50 470#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
471 {
472 int flags;
473 void *addr = NULL;
474 flags = MAP_PRIVATE | MAP_ANONYMOUS;
475#if defined(__x86_64__)
476 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
477 * 0x40000000 is free */
478 flags |= MAP_FIXED;
479 addr = (void *)0x40000000;
480 /* Cannot map more than that */
481 if (code_gen_buffer_size > (800 * 1024 * 1024))
482 code_gen_buffer_size = (800 * 1024 * 1024);
483#endif
484 code_gen_buffer = mmap(addr, code_gen_buffer_size,
485 PROT_WRITE | PROT_READ | PROT_EXEC,
486 flags, -1, 0);
487 if (code_gen_buffer == MAP_FAILED) {
488 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
489 exit(1);
490 }
491 }
26a5f13b
FB
492#else
493 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
494 map_exec(code_gen_buffer, code_gen_buffer_size);
495#endif
4369415f 496#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
497 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
498 code_gen_buffer_max_size = code_gen_buffer_size -
499 code_gen_max_block_size();
500 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
501 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
502}
503
504/* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
506 size. */
507void cpu_exec_init_all(unsigned long tb_size)
508{
26a5f13b
FB
509 cpu_gen_init();
510 code_gen_alloc(tb_size);
511 code_gen_ptr = code_gen_buffer;
4369415f 512 page_init();
e2eef170 513#if !defined(CONFIG_USER_ONLY)
26a5f13b 514 io_mem_init();
e2eef170 515#endif
26a5f13b
FB
516}
517
9656f324
PB
518#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
519
d4bfa4d7 520static void cpu_common_pre_save(void *opaque)
9656f324 521{
d4bfa4d7 522 CPUState *env = opaque;
9656f324 523
4c0960c0 524 cpu_synchronize_state(env);
9656f324
PB
525}
526
e7f4eff7 527static int cpu_common_pre_load(void *opaque)
9656f324
PB
528{
529 CPUState *env = opaque;
530
4c0960c0 531 cpu_synchronize_state(env);
e7f4eff7
JQ
532 return 0;
533}
534
e59fb374 535static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
536{
537 CPUState *env = opaque;
9656f324 538
3098dba0
AJ
539 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
540 version_id is increased. */
541 env->interrupt_request &= ~0x01;
9656f324
PB
542 tlb_flush(env, 1);
543
544 return 0;
545}
e7f4eff7
JQ
546
547static const VMStateDescription vmstate_cpu_common = {
548 .name = "cpu_common",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .minimum_version_id_old = 1,
552 .pre_save = cpu_common_pre_save,
553 .pre_load = cpu_common_pre_load,
554 .post_load = cpu_common_post_load,
555 .fields = (VMStateField []) {
556 VMSTATE_UINT32(halted, CPUState),
557 VMSTATE_UINT32(interrupt_request, CPUState),
558 VMSTATE_END_OF_LIST()
559 }
560};
9656f324
PB
561#endif
562
950f1472
GC
563CPUState *qemu_get_cpu(int cpu)
564{
565 CPUState *env = first_cpu;
566
567 while (env) {
568 if (env->cpu_index == cpu)
569 break;
570 env = env->next_cpu;
571 }
572
573 return env;
574}
575
6a00d601 576void cpu_exec_init(CPUState *env)
fd6ce8f6 577{
6a00d601
FB
578 CPUState **penv;
579 int cpu_index;
580
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_lock();
583#endif
6a00d601
FB
584 env->next_cpu = NULL;
585 penv = &first_cpu;
586 cpu_index = 0;
587 while (*penv != NULL) {
1e9fa730 588 penv = &(*penv)->next_cpu;
6a00d601
FB
589 cpu_index++;
590 }
591 env->cpu_index = cpu_index;
268a362c 592 env->numa_node = 0;
72cf2d4f
BS
593 QTAILQ_INIT(&env->breakpoints);
594 QTAILQ_INIT(&env->watchpoints);
6a00d601 595 *penv = env;
c2764719
PB
596#if defined(CONFIG_USER_ONLY)
597 cpu_list_unlock();
598#endif
b3c7724c 599#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 600 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
601 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
602 cpu_save, cpu_load, env);
603#endif
fd6ce8f6
FB
604}
605
9fa3e853
FB
606static inline void invalidate_page_bitmap(PageDesc *p)
607{
608 if (p->code_bitmap) {
59817ccb 609 qemu_free(p->code_bitmap);
9fa3e853
FB
610 p->code_bitmap = NULL;
611 }
612 p->code_write_count = 0;
613}
614
fd6ce8f6
FB
615/* set to NULL all the 'first_tb' fields in all PageDescs */
616static void page_flush_tb(void)
617{
618 int i, j;
619 PageDesc *p;
620
621 for(i = 0; i < L1_SIZE; i++) {
622 p = l1_map[i];
623 if (p) {
9fa3e853
FB
624 for(j = 0; j < L2_SIZE; j++) {
625 p->first_tb = NULL;
626 invalidate_page_bitmap(p);
627 p++;
628 }
fd6ce8f6
FB
629 }
630 }
631}
632
633/* flush all the translation blocks */
d4e8164f 634/* XXX: tb_flush is currently not thread safe */
6a00d601 635void tb_flush(CPUState *env1)
fd6ce8f6 636{
6a00d601 637 CPUState *env;
0124311e 638#if defined(DEBUG_FLUSH)
ab3d1727
BS
639 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
640 (unsigned long)(code_gen_ptr - code_gen_buffer),
641 nb_tbs, nb_tbs > 0 ?
642 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 643#endif
26a5f13b 644 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
645 cpu_abort(env1, "Internal error: code buffer overflow\n");
646
fd6ce8f6 647 nb_tbs = 0;
3b46e624 648
6a00d601
FB
649 for(env = first_cpu; env != NULL; env = env->next_cpu) {
650 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
651 }
9fa3e853 652
8a8a608f 653 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 654 page_flush_tb();
9fa3e853 655
fd6ce8f6 656 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
657 /* XXX: flush processor icache at this point if cache flush is
658 expensive */
e3db7226 659 tb_flush_count++;
fd6ce8f6
FB
660}
661
662#ifdef DEBUG_TB_CHECK
663
bc98a7ef 664static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
665{
666 TranslationBlock *tb;
667 int i;
668 address &= TARGET_PAGE_MASK;
99773bd4
PB
669 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
670 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
671 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
672 address >= tb->pc + tb->size)) {
0bf9e31a
BS
673 printf("ERROR invalidate: address=" TARGET_FMT_lx
674 " PC=%08lx size=%04x\n",
99773bd4 675 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
676 }
677 }
678 }
679}
680
681/* verify that all the pages have correct rights for code */
682static void tb_page_check(void)
683{
684 TranslationBlock *tb;
685 int i, flags1, flags2;
3b46e624 686
99773bd4
PB
687 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
688 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
689 flags1 = page_get_flags(tb->pc);
690 flags2 = page_get_flags(tb->pc + tb->size - 1);
691 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
692 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 693 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
694 }
695 }
696 }
697}
698
699#endif
700
701/* invalidate one TB */
702static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
703 int next_offset)
704{
705 TranslationBlock *tb1;
706 for(;;) {
707 tb1 = *ptb;
708 if (tb1 == tb) {
709 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
710 break;
711 }
712 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
713 }
714}
715
9fa3e853
FB
716static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
717{
718 TranslationBlock *tb1;
719 unsigned int n1;
720
721 for(;;) {
722 tb1 = *ptb;
723 n1 = (long)tb1 & 3;
724 tb1 = (TranslationBlock *)((long)tb1 & ~3);
725 if (tb1 == tb) {
726 *ptb = tb1->page_next[n1];
727 break;
728 }
729 ptb = &tb1->page_next[n1];
730 }
731}
732
d4e8164f
FB
733static inline void tb_jmp_remove(TranslationBlock *tb, int n)
734{
735 TranslationBlock *tb1, **ptb;
736 unsigned int n1;
737
738 ptb = &tb->jmp_next[n];
739 tb1 = *ptb;
740 if (tb1) {
741 /* find tb(n) in circular list */
742 for(;;) {
743 tb1 = *ptb;
744 n1 = (long)tb1 & 3;
745 tb1 = (TranslationBlock *)((long)tb1 & ~3);
746 if (n1 == n && tb1 == tb)
747 break;
748 if (n1 == 2) {
749 ptb = &tb1->jmp_first;
750 } else {
751 ptb = &tb1->jmp_next[n1];
752 }
753 }
754 /* now we can suppress tb(n) from the list */
755 *ptb = tb->jmp_next[n];
756
757 tb->jmp_next[n] = NULL;
758 }
759}
760
761/* reset the jump entry 'n' of a TB so that it is not chained to
762 another TB */
763static inline void tb_reset_jump(TranslationBlock *tb, int n)
764{
765 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
766}
767
2e70f6ef 768void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 769{
6a00d601 770 CPUState *env;
8a40a180 771 PageDesc *p;
d4e8164f 772 unsigned int h, n1;
c227f099 773 target_phys_addr_t phys_pc;
8a40a180 774 TranslationBlock *tb1, *tb2;
3b46e624 775
8a40a180
FB
776 /* remove the TB from the hash list */
777 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
778 h = tb_phys_hash_func(phys_pc);
5fafdf24 779 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
780 offsetof(TranslationBlock, phys_hash_next));
781
782 /* remove the TB from the page list */
783 if (tb->page_addr[0] != page_addr) {
784 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
789 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
792 }
793
36bdbe54 794 tb_invalidated_flag = 1;
59817ccb 795
fd6ce8f6 796 /* remove the TB from the hash list */
8a40a180 797 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
799 if (env->tb_jmp_cache[h] == tb)
800 env->tb_jmp_cache[h] = NULL;
801 }
d4e8164f
FB
802
803 /* suppress this TB from the two jump lists */
804 tb_jmp_remove(tb, 0);
805 tb_jmp_remove(tb, 1);
806
807 /* suppress any remaining jumps to this TB */
808 tb1 = tb->jmp_first;
809 for(;;) {
810 n1 = (long)tb1 & 3;
811 if (n1 == 2)
812 break;
813 tb1 = (TranslationBlock *)((long)tb1 & ~3);
814 tb2 = tb1->jmp_next[n1];
815 tb_reset_jump(tb1, n1);
816 tb1->jmp_next[n1] = NULL;
817 tb1 = tb2;
818 }
819 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 820
e3db7226 821 tb_phys_invalidate_count++;
9fa3e853
FB
822}
823
824static inline void set_bits(uint8_t *tab, int start, int len)
825{
826 int end, mask, end1;
827
828 end = start + len;
829 tab += start >> 3;
830 mask = 0xff << (start & 7);
831 if ((start & ~7) == (end & ~7)) {
832 if (start < end) {
833 mask &= ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 } else {
837 *tab++ |= mask;
838 start = (start + 8) & ~7;
839 end1 = end & ~7;
840 while (start < end1) {
841 *tab++ = 0xff;
842 start += 8;
843 }
844 if (start < end) {
845 mask = ~(0xff << (end & 7));
846 *tab |= mask;
847 }
848 }
849}
850
851static void build_page_bitmap(PageDesc *p)
852{
853 int n, tb_start, tb_end;
854 TranslationBlock *tb;
3b46e624 855
b2a7081a 856 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
857
858 tb = p->first_tb;
859 while (tb != NULL) {
860 n = (long)tb & 3;
861 tb = (TranslationBlock *)((long)tb & ~3);
862 /* NOTE: this is subtle as a TB may span two physical pages */
863 if (n == 0) {
864 /* NOTE: tb_end may be after the end of the page, but
865 it is not a problem */
866 tb_start = tb->pc & ~TARGET_PAGE_MASK;
867 tb_end = tb_start + tb->size;
868 if (tb_end > TARGET_PAGE_SIZE)
869 tb_end = TARGET_PAGE_SIZE;
870 } else {
871 tb_start = 0;
872 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
873 }
874 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
875 tb = tb->page_next[n];
876 }
877}
878
2e70f6ef
PB
879TranslationBlock *tb_gen_code(CPUState *env,
880 target_ulong pc, target_ulong cs_base,
881 int flags, int cflags)
d720b93d
FB
882{
883 TranslationBlock *tb;
884 uint8_t *tc_ptr;
885 target_ulong phys_pc, phys_page2, virt_page2;
886 int code_gen_size;
887
c27004ec
FB
888 phys_pc = get_phys_addr_code(env, pc);
889 tb = tb_alloc(pc);
d720b93d
FB
890 if (!tb) {
891 /* flush must be done */
892 tb_flush(env);
893 /* cannot fail at this point */
c27004ec 894 tb = tb_alloc(pc);
2e70f6ef
PB
895 /* Don't forget to invalidate previous TB info. */
896 tb_invalidated_flag = 1;
d720b93d
FB
897 }
898 tc_ptr = code_gen_ptr;
899 tb->tc_ptr = tc_ptr;
900 tb->cs_base = cs_base;
901 tb->flags = flags;
902 tb->cflags = cflags;
d07bde88 903 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 904 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 905
d720b93d 906 /* check next page if needed */
c27004ec 907 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 908 phys_page2 = -1;
c27004ec 909 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
910 phys_page2 = get_phys_addr_code(env, virt_page2);
911 }
912 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 913 return tb;
d720b93d 914}
3b46e624 915
9fa3e853
FB
916/* invalidate all TBs which intersect with the target physical page
917 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
918 the same physical page. 'is_cpu_write_access' should be true if called
919 from a real cpu write access: the virtual CPU will exit the current
920 TB if code is modified inside this TB. */
c227f099 921void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
922 int is_cpu_write_access)
923{
6b917547 924 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 925 CPUState *env = cpu_single_env;
9fa3e853 926 target_ulong tb_start, tb_end;
6b917547
AL
927 PageDesc *p;
928 int n;
929#ifdef TARGET_HAS_PRECISE_SMC
930 int current_tb_not_found = is_cpu_write_access;
931 TranslationBlock *current_tb = NULL;
932 int current_tb_modified = 0;
933 target_ulong current_pc = 0;
934 target_ulong current_cs_base = 0;
935 int current_flags = 0;
936#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
937
938 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 939 if (!p)
9fa3e853 940 return;
5fafdf24 941 if (!p->code_bitmap &&
d720b93d
FB
942 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
943 is_cpu_write_access) {
9fa3e853
FB
944 /* build code bitmap */
945 build_page_bitmap(p);
946 }
947
948 /* we remove all the TBs in the range [start, end[ */
949 /* XXX: see if in some cases it could be faster to invalidate all the code */
950 tb = p->first_tb;
951 while (tb != NULL) {
952 n = (long)tb & 3;
953 tb = (TranslationBlock *)((long)tb & ~3);
954 tb_next = tb->page_next[n];
955 /* NOTE: this is subtle as a TB may span two physical pages */
956 if (n == 0) {
957 /* NOTE: tb_end may be after the end of the page, but
958 it is not a problem */
959 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
960 tb_end = tb_start + tb->size;
961 } else {
962 tb_start = tb->page_addr[1];
963 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
964 }
965 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
966#ifdef TARGET_HAS_PRECISE_SMC
967 if (current_tb_not_found) {
968 current_tb_not_found = 0;
969 current_tb = NULL;
2e70f6ef 970 if (env->mem_io_pc) {
d720b93d 971 /* now we have a real cpu fault */
2e70f6ef 972 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
973 }
974 }
975 if (current_tb == tb &&
2e70f6ef 976 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
977 /* If we are modifying the current TB, we must stop
978 its execution. We could be more precise by checking
979 that the modification is after the current PC, but it
980 would require a specialized function to partially
981 restore the CPU state */
3b46e624 982
d720b93d 983 current_tb_modified = 1;
5fafdf24 984 cpu_restore_state(current_tb, env,
2e70f6ef 985 env->mem_io_pc, NULL);
6b917547
AL
986 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
987 &current_flags);
d720b93d
FB
988 }
989#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
990 /* we need to do that to handle the case where a signal
991 occurs while doing tb_phys_invalidate() */
992 saved_tb = NULL;
993 if (env) {
994 saved_tb = env->current_tb;
995 env->current_tb = NULL;
996 }
9fa3e853 997 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
998 if (env) {
999 env->current_tb = saved_tb;
1000 if (env->interrupt_request && env->current_tb)
1001 cpu_interrupt(env, env->interrupt_request);
1002 }
9fa3e853
FB
1003 }
1004 tb = tb_next;
1005 }
1006#if !defined(CONFIG_USER_ONLY)
1007 /* if no code remaining, no need to continue to use slow writes */
1008 if (!p->first_tb) {
1009 invalidate_page_bitmap(p);
d720b93d 1010 if (is_cpu_write_access) {
2e70f6ef 1011 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1012 }
1013 }
1014#endif
1015#ifdef TARGET_HAS_PRECISE_SMC
1016 if (current_tb_modified) {
1017 /* we generate a block containing just the instruction
1018 modifying the memory. It will ensure that it cannot modify
1019 itself */
ea1c1802 1020 env->current_tb = NULL;
2e70f6ef 1021 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1022 cpu_resume_from_signal(env, NULL);
9fa3e853 1023 }
fd6ce8f6 1024#endif
9fa3e853 1025}
fd6ce8f6 1026
9fa3e853 1027/* len must be <= 8 and start must be a multiple of len */
c227f099 1028static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1029{
1030 PageDesc *p;
1031 int offset, b;
59817ccb 1032#if 0
a4193c8a 1033 if (1) {
93fcfe39
AL
1034 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1035 cpu_single_env->mem_io_vaddr, len,
1036 cpu_single_env->eip,
1037 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1038 }
1039#endif
9fa3e853 1040 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1041 if (!p)
9fa3e853
FB
1042 return;
1043 if (p->code_bitmap) {
1044 offset = start & ~TARGET_PAGE_MASK;
1045 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1046 if (b & ((1 << len) - 1))
1047 goto do_invalidate;
1048 } else {
1049 do_invalidate:
d720b93d 1050 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1051 }
1052}
1053
9fa3e853 1054#if !defined(CONFIG_SOFTMMU)
c227f099 1055static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1056 unsigned long pc, void *puc)
9fa3e853 1057{
6b917547 1058 TranslationBlock *tb;
9fa3e853 1059 PageDesc *p;
6b917547 1060 int n;
d720b93d 1061#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1062 TranslationBlock *current_tb = NULL;
d720b93d 1063 CPUState *env = cpu_single_env;
6b917547
AL
1064 int current_tb_modified = 0;
1065 target_ulong current_pc = 0;
1066 target_ulong current_cs_base = 0;
1067 int current_flags = 0;
d720b93d 1068#endif
9fa3e853
FB
1069
1070 addr &= TARGET_PAGE_MASK;
1071 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1072 if (!p)
9fa3e853
FB
1073 return;
1074 tb = p->first_tb;
d720b93d
FB
1075#ifdef TARGET_HAS_PRECISE_SMC
1076 if (tb && pc != 0) {
1077 current_tb = tb_find_pc(pc);
1078 }
1079#endif
9fa3e853
FB
1080 while (tb != NULL) {
1081 n = (long)tb & 3;
1082 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1083#ifdef TARGET_HAS_PRECISE_SMC
1084 if (current_tb == tb &&
2e70f6ef 1085 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1086 /* If we are modifying the current TB, we must stop
1087 its execution. We could be more precise by checking
1088 that the modification is after the current PC, but it
1089 would require a specialized function to partially
1090 restore the CPU state */
3b46e624 1091
d720b93d
FB
1092 current_tb_modified = 1;
1093 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1094 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1095 &current_flags);
d720b93d
FB
1096 }
1097#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1098 tb_phys_invalidate(tb, addr);
1099 tb = tb->page_next[n];
1100 }
fd6ce8f6 1101 p->first_tb = NULL;
d720b93d
FB
1102#ifdef TARGET_HAS_PRECISE_SMC
1103 if (current_tb_modified) {
1104 /* we generate a block containing just the instruction
1105 modifying the memory. It will ensure that it cannot modify
1106 itself */
ea1c1802 1107 env->current_tb = NULL;
2e70f6ef 1108 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1109 cpu_resume_from_signal(env, puc);
1110 }
1111#endif
fd6ce8f6 1112}
9fa3e853 1113#endif
fd6ce8f6
FB
1114
1115/* add the tb in the target page and protect it if necessary */
5fafdf24 1116static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1117 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1118{
1119 PageDesc *p;
9fa3e853
FB
1120 TranslationBlock *last_first_tb;
1121
1122 tb->page_addr[n] = page_addr;
3a7d929e 1123 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1124 tb->page_next[n] = p->first_tb;
1125 last_first_tb = p->first_tb;
1126 p->first_tb = (TranslationBlock *)((long)tb | n);
1127 invalidate_page_bitmap(p);
fd6ce8f6 1128
107db443 1129#if defined(TARGET_HAS_SMC) || 1
d720b93d 1130
9fa3e853 1131#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1132 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1133 target_ulong addr;
1134 PageDesc *p2;
9fa3e853
FB
1135 int prot;
1136
fd6ce8f6
FB
1137 /* force the host page as non writable (writes will have a
1138 page fault + mprotect overhead) */
53a5960a 1139 page_addr &= qemu_host_page_mask;
fd6ce8f6 1140 prot = 0;
53a5960a
PB
1141 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1142 addr += TARGET_PAGE_SIZE) {
1143
1144 p2 = page_find (addr >> TARGET_PAGE_BITS);
1145 if (!p2)
1146 continue;
1147 prot |= p2->flags;
1148 p2->flags &= ~PAGE_WRITE;
1149 page_get_flags(addr);
1150 }
5fafdf24 1151 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1152 (prot & PAGE_BITS) & ~PAGE_WRITE);
1153#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1154 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1155 page_addr);
fd6ce8f6 1156#endif
fd6ce8f6 1157 }
9fa3e853
FB
1158#else
1159 /* if some code is already present, then the pages are already
1160 protected. So we handle the case where only the first TB is
1161 allocated in a physical page */
1162 if (!last_first_tb) {
6a00d601 1163 tlb_protect_code(page_addr);
9fa3e853
FB
1164 }
1165#endif
d720b93d
FB
1166
1167#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1168}
1169
1170/* Allocate a new translation block. Flush the translation buffer if
1171 too many translation blocks or too much generated code. */
c27004ec 1172TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1173{
1174 TranslationBlock *tb;
fd6ce8f6 1175
26a5f13b
FB
1176 if (nb_tbs >= code_gen_max_blocks ||
1177 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1178 return NULL;
fd6ce8f6
FB
1179 tb = &tbs[nb_tbs++];
1180 tb->pc = pc;
b448f2f3 1181 tb->cflags = 0;
d4e8164f
FB
1182 return tb;
1183}
1184
2e70f6ef
PB
1185void tb_free(TranslationBlock *tb)
1186{
bf20dc07 1187 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1188 Ignore the hard cases and just back up if this TB happens to
1189 be the last one generated. */
1190 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1191 code_gen_ptr = tb->tc_ptr;
1192 nb_tbs--;
1193 }
1194}
1195
9fa3e853
FB
1196/* add a new TB and link it to the physical page tables. phys_page2 is
1197 (-1) to indicate that only one page contains the TB. */
5fafdf24 1198void tb_link_phys(TranslationBlock *tb,
9fa3e853 1199 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1200{
9fa3e853
FB
1201 unsigned int h;
1202 TranslationBlock **ptb;
1203
c8a706fe
PB
1204 /* Grab the mmap lock to stop another thread invalidating this TB
1205 before we are done. */
1206 mmap_lock();
9fa3e853
FB
1207 /* add in the physical hash table */
1208 h = tb_phys_hash_func(phys_pc);
1209 ptb = &tb_phys_hash[h];
1210 tb->phys_hash_next = *ptb;
1211 *ptb = tb;
fd6ce8f6
FB
1212
1213 /* add in the page list */
9fa3e853
FB
1214 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1215 if (phys_page2 != -1)
1216 tb_alloc_page(tb, 1, phys_page2);
1217 else
1218 tb->page_addr[1] = -1;
9fa3e853 1219
d4e8164f
FB
1220 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1221 tb->jmp_next[0] = NULL;
1222 tb->jmp_next[1] = NULL;
1223
1224 /* init original jump addresses */
1225 if (tb->tb_next_offset[0] != 0xffff)
1226 tb_reset_jump(tb, 0);
1227 if (tb->tb_next_offset[1] != 0xffff)
1228 tb_reset_jump(tb, 1);
8a40a180
FB
1229
1230#ifdef DEBUG_TB_CHECK
1231 tb_page_check();
1232#endif
c8a706fe 1233 mmap_unlock();
fd6ce8f6
FB
1234}
1235
9fa3e853
FB
1236/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1237 tb[1].tc_ptr. Return NULL if not found */
1238TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1239{
9fa3e853
FB
1240 int m_min, m_max, m;
1241 unsigned long v;
1242 TranslationBlock *tb;
a513fe19
FB
1243
1244 if (nb_tbs <= 0)
1245 return NULL;
1246 if (tc_ptr < (unsigned long)code_gen_buffer ||
1247 tc_ptr >= (unsigned long)code_gen_ptr)
1248 return NULL;
1249 /* binary search (cf Knuth) */
1250 m_min = 0;
1251 m_max = nb_tbs - 1;
1252 while (m_min <= m_max) {
1253 m = (m_min + m_max) >> 1;
1254 tb = &tbs[m];
1255 v = (unsigned long)tb->tc_ptr;
1256 if (v == tc_ptr)
1257 return tb;
1258 else if (tc_ptr < v) {
1259 m_max = m - 1;
1260 } else {
1261 m_min = m + 1;
1262 }
5fafdf24 1263 }
a513fe19
FB
1264 return &tbs[m_max];
1265}
7501267e 1266
ea041c0e
FB
1267static void tb_reset_jump_recursive(TranslationBlock *tb);
1268
1269static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1270{
1271 TranslationBlock *tb1, *tb_next, **ptb;
1272 unsigned int n1;
1273
1274 tb1 = tb->jmp_next[n];
1275 if (tb1 != NULL) {
1276 /* find head of list */
1277 for(;;) {
1278 n1 = (long)tb1 & 3;
1279 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1280 if (n1 == 2)
1281 break;
1282 tb1 = tb1->jmp_next[n1];
1283 }
1284 /* we are now sure now that tb jumps to tb1 */
1285 tb_next = tb1;
1286
1287 /* remove tb from the jmp_first list */
1288 ptb = &tb_next->jmp_first;
1289 for(;;) {
1290 tb1 = *ptb;
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == n && tb1 == tb)
1294 break;
1295 ptb = &tb1->jmp_next[n1];
1296 }
1297 *ptb = tb->jmp_next[n];
1298 tb->jmp_next[n] = NULL;
3b46e624 1299
ea041c0e
FB
1300 /* suppress the jump to next tb in generated code */
1301 tb_reset_jump(tb, n);
1302
0124311e 1303 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1304 tb_reset_jump_recursive(tb_next);
1305 }
1306}
1307
1308static void tb_reset_jump_recursive(TranslationBlock *tb)
1309{
1310 tb_reset_jump_recursive2(tb, 0);
1311 tb_reset_jump_recursive2(tb, 1);
1312}
1313
1fddef4b 1314#if defined(TARGET_HAS_ICE)
d720b93d
FB
1315static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1316{
c227f099 1317 target_phys_addr_t addr;
9b3c35e0 1318 target_ulong pd;
c227f099 1319 ram_addr_t ram_addr;
c2f07f81 1320 PhysPageDesc *p;
d720b93d 1321
c2f07f81
PB
1322 addr = cpu_get_phys_page_debug(env, pc);
1323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 pd = IO_MEM_UNASSIGNED;
1326 } else {
1327 pd = p->phys_offset;
1328 }
1329 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1330 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1331}
c27004ec 1332#endif
d720b93d 1333
6658ffb8 1334/* Add a watchpoint. */
a1d1bb31
AL
1335int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1337{
b4051334 1338 target_ulong len_mask = ~(len - 1);
c0ce998e 1339 CPUWatchpoint *wp;
6658ffb8 1340
b4051334
AL
1341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1342 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1343 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1344 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1345 return -EINVAL;
1346 }
a1d1bb31 1347 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1348
1349 wp->vaddr = addr;
b4051334 1350 wp->len_mask = len_mask;
a1d1bb31
AL
1351 wp->flags = flags;
1352
2dc9f411 1353 /* keep all GDB-injected watchpoints in front */
c0ce998e 1354 if (flags & BP_GDB)
72cf2d4f 1355 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1356 else
72cf2d4f 1357 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1358
6658ffb8 1359 tlb_flush_page(env, addr);
a1d1bb31
AL
1360
1361 if (watchpoint)
1362 *watchpoint = wp;
1363 return 0;
6658ffb8
PB
1364}
1365
a1d1bb31
AL
1366/* Remove a specific watchpoint. */
1367int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1368 int flags)
6658ffb8 1369{
b4051334 1370 target_ulong len_mask = ~(len - 1);
a1d1bb31 1371 CPUWatchpoint *wp;
6658ffb8 1372
72cf2d4f 1373 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1374 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1375 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1376 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1377 return 0;
1378 }
1379 }
a1d1bb31 1380 return -ENOENT;
6658ffb8
PB
1381}
1382
a1d1bb31
AL
1383/* Remove a specific watchpoint by reference. */
1384void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1385{
72cf2d4f 1386 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1387
a1d1bb31
AL
1388 tlb_flush_page(env, watchpoint->vaddr);
1389
1390 qemu_free(watchpoint);
1391}
1392
1393/* Remove all matching watchpoints. */
1394void cpu_watchpoint_remove_all(CPUState *env, int mask)
1395{
c0ce998e 1396 CPUWatchpoint *wp, *next;
a1d1bb31 1397
72cf2d4f 1398 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1399 if (wp->flags & mask)
1400 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1401 }
7d03f82f
EI
1402}
1403
a1d1bb31
AL
1404/* Add a breakpoint. */
1405int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1406 CPUBreakpoint **breakpoint)
4c3a88a2 1407{
1fddef4b 1408#if defined(TARGET_HAS_ICE)
c0ce998e 1409 CPUBreakpoint *bp;
3b46e624 1410
a1d1bb31 1411 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1412
a1d1bb31
AL
1413 bp->pc = pc;
1414 bp->flags = flags;
1415
2dc9f411 1416 /* keep all GDB-injected breakpoints in front */
c0ce998e 1417 if (flags & BP_GDB)
72cf2d4f 1418 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1419 else
72cf2d4f 1420 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1421
d720b93d 1422 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1423
1424 if (breakpoint)
1425 *breakpoint = bp;
4c3a88a2
FB
1426 return 0;
1427#else
a1d1bb31 1428 return -ENOSYS;
4c3a88a2
FB
1429#endif
1430}
1431
a1d1bb31
AL
1432/* Remove a specific breakpoint. */
1433int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1434{
7d03f82f 1435#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1436 CPUBreakpoint *bp;
1437
72cf2d4f 1438 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1439 if (bp->pc == pc && bp->flags == flags) {
1440 cpu_breakpoint_remove_by_ref(env, bp);
1441 return 0;
1442 }
7d03f82f 1443 }
a1d1bb31
AL
1444 return -ENOENT;
1445#else
1446 return -ENOSYS;
7d03f82f
EI
1447#endif
1448}
1449
a1d1bb31
AL
1450/* Remove a specific breakpoint by reference. */
1451void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1452{
1fddef4b 1453#if defined(TARGET_HAS_ICE)
72cf2d4f 1454 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1455
a1d1bb31
AL
1456 breakpoint_invalidate(env, breakpoint->pc);
1457
1458 qemu_free(breakpoint);
1459#endif
1460}
1461
1462/* Remove all matching breakpoints. */
1463void cpu_breakpoint_remove_all(CPUState *env, int mask)
1464{
1465#if defined(TARGET_HAS_ICE)
c0ce998e 1466 CPUBreakpoint *bp, *next;
a1d1bb31 1467
72cf2d4f 1468 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1469 if (bp->flags & mask)
1470 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1471 }
4c3a88a2
FB
1472#endif
1473}
1474
c33a346e
FB
1475/* enable or disable single step mode. EXCP_DEBUG is returned by the
1476 CPU loop after each instruction */
1477void cpu_single_step(CPUState *env, int enabled)
1478{
1fddef4b 1479#if defined(TARGET_HAS_ICE)
c33a346e
FB
1480 if (env->singlestep_enabled != enabled) {
1481 env->singlestep_enabled = enabled;
e22a25c9
AL
1482 if (kvm_enabled())
1483 kvm_update_guest_debug(env, 0);
1484 else {
ccbb4d44 1485 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1486 /* XXX: only flush what is necessary */
1487 tb_flush(env);
1488 }
c33a346e
FB
1489 }
1490#endif
1491}
1492
34865134
FB
1493/* enable or disable low levels log */
1494void cpu_set_log(int log_flags)
1495{
1496 loglevel = log_flags;
1497 if (loglevel && !logfile) {
11fcfab4 1498 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1499 if (!logfile) {
1500 perror(logfilename);
1501 _exit(1);
1502 }
9fa3e853
FB
1503#if !defined(CONFIG_SOFTMMU)
1504 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1505 {
b55266b5 1506 static char logfile_buf[4096];
9fa3e853
FB
1507 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1508 }
bf65f53f
FN
1509#elif !defined(_WIN32)
1510 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1511 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1512#endif
e735b91c
PB
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
34865134
FB
1518 }
1519}
1520
1521void cpu_set_log_filename(const char *filename)
1522{
1523 logfilename = strdup(filename);
e735b91c
PB
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
34865134 1529}
c33a346e 1530
3098dba0 1531static void cpu_unlink_tb(CPUState *env)
ea041c0e 1532{
3098dba0
AJ
1533 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1534 problem and hope the cpu will stop of its own accord. For userspace
1535 emulation this often isn't actually as bad as it sounds. Often
1536 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1537 TranslationBlock *tb;
c227f099 1538 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1539
3098dba0
AJ
1540 tb = env->current_tb;
1541 /* if the cpu is currently executing code, we must unlink it and
1542 all the potentially executing TB */
f76cfe56
RV
1543 if (tb) {
1544 spin_lock(&interrupt_lock);
3098dba0
AJ
1545 env->current_tb = NULL;
1546 tb_reset_jump_recursive(tb);
f76cfe56 1547 spin_unlock(&interrupt_lock);
be214e6c 1548 }
3098dba0
AJ
1549}
1550
1551/* mask must never be zero, except for A20 change call */
1552void cpu_interrupt(CPUState *env, int mask)
1553{
1554 int old_mask;
be214e6c 1555
2e70f6ef 1556 old_mask = env->interrupt_request;
68a79315 1557 env->interrupt_request |= mask;
3098dba0 1558
8edac960
AL
1559#ifndef CONFIG_USER_ONLY
1560 /*
1561 * If called from iothread context, wake the target cpu in
1562 * case its halted.
1563 */
1564 if (!qemu_cpu_self(env)) {
1565 qemu_cpu_kick(env);
1566 return;
1567 }
1568#endif
1569
2e70f6ef 1570 if (use_icount) {
266910c4 1571 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1572#ifndef CONFIG_USER_ONLY
2e70f6ef 1573 if (!can_do_io(env)
be214e6c 1574 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1575 cpu_abort(env, "Raised interrupt while not in I/O function");
1576 }
1577#endif
1578 } else {
3098dba0 1579 cpu_unlink_tb(env);
ea041c0e
FB
1580 }
1581}
1582
b54ad049
FB
1583void cpu_reset_interrupt(CPUState *env, int mask)
1584{
1585 env->interrupt_request &= ~mask;
1586}
1587
3098dba0
AJ
1588void cpu_exit(CPUState *env)
1589{
1590 env->exit_request = 1;
1591 cpu_unlink_tb(env);
1592}
1593
c7cd6a37 1594const CPULogItem cpu_log_items[] = {
5fafdf24 1595 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1596 "show generated host assembly code for each compiled TB" },
1597 { CPU_LOG_TB_IN_ASM, "in_asm",
1598 "show target assembly code for each compiled TB" },
5fafdf24 1599 { CPU_LOG_TB_OP, "op",
57fec1fe 1600 "show micro ops for each compiled TB" },
f193c797 1601 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1602 "show micro ops "
1603#ifdef TARGET_I386
1604 "before eflags optimization and "
f193c797 1605#endif
e01a1157 1606 "after liveness analysis" },
f193c797
FB
1607 { CPU_LOG_INT, "int",
1608 "show interrupts/exceptions in short format" },
1609 { CPU_LOG_EXEC, "exec",
1610 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1611 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1612 "show CPU state before block translation" },
f193c797
FB
1613#ifdef TARGET_I386
1614 { CPU_LOG_PCALL, "pcall",
1615 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1616 { CPU_LOG_RESET, "cpu_reset",
1617 "show CPU state before CPU resets" },
f193c797 1618#endif
8e3a9fd2 1619#ifdef DEBUG_IOPORT
fd872598
FB
1620 { CPU_LOG_IOPORT, "ioport",
1621 "show all i/o ports accesses" },
8e3a9fd2 1622#endif
f193c797
FB
1623 { 0, NULL, NULL },
1624};
1625
1626static int cmp1(const char *s1, int n, const char *s2)
1627{
1628 if (strlen(s2) != n)
1629 return 0;
1630 return memcmp(s1, s2, n) == 0;
1631}
3b46e624 1632
f193c797
FB
1633/* takes a comma separated list of log masks. Return 0 if error. */
1634int cpu_str_to_log_mask(const char *str)
1635{
c7cd6a37 1636 const CPULogItem *item;
f193c797
FB
1637 int mask;
1638 const char *p, *p1;
1639
1640 p = str;
1641 mask = 0;
1642 for(;;) {
1643 p1 = strchr(p, ',');
1644 if (!p1)
1645 p1 = p + strlen(p);
8e3a9fd2
FB
1646 if(cmp1(p,p1-p,"all")) {
1647 for(item = cpu_log_items; item->mask != 0; item++) {
1648 mask |= item->mask;
1649 }
1650 } else {
f193c797
FB
1651 for(item = cpu_log_items; item->mask != 0; item++) {
1652 if (cmp1(p, p1 - p, item->name))
1653 goto found;
1654 }
1655 return 0;
8e3a9fd2 1656 }
f193c797
FB
1657 found:
1658 mask |= item->mask;
1659 if (*p1 != ',')
1660 break;
1661 p = p1 + 1;
1662 }
1663 return mask;
1664}
ea041c0e 1665
7501267e
FB
1666void cpu_abort(CPUState *env, const char *fmt, ...)
1667{
1668 va_list ap;
493ae1f0 1669 va_list ap2;
7501267e
FB
1670
1671 va_start(ap, fmt);
493ae1f0 1672 va_copy(ap2, ap);
7501267e
FB
1673 fprintf(stderr, "qemu: fatal: ");
1674 vfprintf(stderr, fmt, ap);
1675 fprintf(stderr, "\n");
1676#ifdef TARGET_I386
7fe48483
FB
1677 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1678#else
1679 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1680#endif
93fcfe39
AL
1681 if (qemu_log_enabled()) {
1682 qemu_log("qemu: fatal: ");
1683 qemu_log_vprintf(fmt, ap2);
1684 qemu_log("\n");
f9373291 1685#ifdef TARGET_I386
93fcfe39 1686 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1687#else
93fcfe39 1688 log_cpu_state(env, 0);
f9373291 1689#endif
31b1a7b4 1690 qemu_log_flush();
93fcfe39 1691 qemu_log_close();
924edcae 1692 }
493ae1f0 1693 va_end(ap2);
f9373291 1694 va_end(ap);
7501267e
FB
1695 abort();
1696}
1697
c5be9f08
TS
1698CPUState *cpu_copy(CPUState *env)
1699{
01ba9816 1700 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1701 CPUState *next_cpu = new_env->next_cpu;
1702 int cpu_index = new_env->cpu_index;
5a38f081
AL
1703#if defined(TARGET_HAS_ICE)
1704 CPUBreakpoint *bp;
1705 CPUWatchpoint *wp;
1706#endif
1707
c5be9f08 1708 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1709
1710 /* Preserve chaining and index. */
c5be9f08
TS
1711 new_env->next_cpu = next_cpu;
1712 new_env->cpu_index = cpu_index;
5a38f081
AL
1713
1714 /* Clone all break/watchpoints.
1715 Note: Once we support ptrace with hw-debug register access, make sure
1716 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1717 QTAILQ_INIT(&env->breakpoints);
1718 QTAILQ_INIT(&env->watchpoints);
5a38f081 1719#if defined(TARGET_HAS_ICE)
72cf2d4f 1720 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1721 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1722 }
72cf2d4f 1723 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1724 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1725 wp->flags, NULL);
1726 }
1727#endif
1728
c5be9f08
TS
1729 return new_env;
1730}
1731
0124311e
FB
1732#if !defined(CONFIG_USER_ONLY)
1733
5c751e99
EI
1734static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1735{
1736 unsigned int i;
1737
1738 /* Discard jump cache entries for any tb which might potentially
1739 overlap the flushed page. */
1740 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1741 memset (&env->tb_jmp_cache[i], 0,
1742 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1743
1744 i = tb_jmp_cache_hash_page(addr);
1745 memset (&env->tb_jmp_cache[i], 0,
1746 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1747}
1748
08738984
IK
1749static CPUTLBEntry s_cputlb_empty_entry = {
1750 .addr_read = -1,
1751 .addr_write = -1,
1752 .addr_code = -1,
1753 .addend = -1,
1754};
1755
ee8b7021
FB
1756/* NOTE: if flush_global is true, also flush global entries (not
1757 implemented yet) */
1758void tlb_flush(CPUState *env, int flush_global)
33417e70 1759{
33417e70 1760 int i;
0124311e 1761
9fa3e853
FB
1762#if defined(DEBUG_TLB)
1763 printf("tlb_flush:\n");
1764#endif
0124311e
FB
1765 /* must reset current TB so that interrupts cannot modify the
1766 links while we are modifying them */
1767 env->current_tb = NULL;
1768
33417e70 1769 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1770 int mmu_idx;
1771 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1772 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1773 }
33417e70 1774 }
9fa3e853 1775
8a40a180 1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1777
e3db7226 1778 tlb_flush_count++;
33417e70
FB
1779}
1780
274da6b2 1781static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1782{
5fafdf24 1783 if (addr == (tlb_entry->addr_read &
84b7b8e7 1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1785 addr == (tlb_entry->addr_write &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1787 addr == (tlb_entry->addr_code &
84b7b8e7 1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1789 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1790 }
61382a50
FB
1791}
1792
2e12669a 1793void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1794{
8a40a180 1795 int i;
cfde4bd9 1796 int mmu_idx;
0124311e 1797
9fa3e853 1798#if defined(DEBUG_TLB)
108c49b8 1799 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1800#endif
0124311e
FB
1801 /* must reset current TB so that interrupts cannot modify the
1802 links while we are modifying them */
1803 env->current_tb = NULL;
61382a50
FB
1804
1805 addr &= TARGET_PAGE_MASK;
1806 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1807 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1808 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1809
5c751e99 1810 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1811}
1812
9fa3e853
FB
1813/* update the TLBs so that writes to code in the virtual page 'addr'
1814 can be detected */
c227f099 1815static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1816{
5fafdf24 1817 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1818 ram_addr + TARGET_PAGE_SIZE,
1819 CODE_DIRTY_FLAG);
9fa3e853
FB
1820}
1821
9fa3e853 1822/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1823 tested for self modifying code */
c227f099 1824static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1825 target_ulong vaddr)
9fa3e853 1826{
3a7d929e 1827 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1828}
1829
5fafdf24 1830static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1831 unsigned long start, unsigned long length)
1832{
1833 unsigned long addr;
84b7b8e7
FB
1834 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1835 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1836 if ((addr - start) < length) {
0f459d16 1837 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1838 }
1839 }
1840}
1841
5579c7f3 1842/* Note: start and end must be within the same ram block. */
c227f099 1843void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1844 int dirty_flags)
1ccde1cb
FB
1845{
1846 CPUState *env;
4f2ac237 1847 unsigned long length, start1;
0a962c02
FB
1848 int i, mask, len;
1849 uint8_t *p;
1ccde1cb
FB
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
0a962c02 1857 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1858 mask = ~dirty_flags;
1859 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1860 for(i = 0; i < len; i++)
1861 p[i] &= mask;
1862
1ccde1cb
FB
1863 /* we modify the TLB cache so that the dirty bit will be set again
1864 when accessing the range */
5579c7f3
PB
1865 start1 = (unsigned long)qemu_get_ram_ptr(start);
1866 /* Chek that we don't span multiple blocks - this breaks the
1867 address comparisons below. */
1868 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1869 != (end - 1) - start) {
1870 abort();
1871 }
1872
6a00d601 1873 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1876 for(i = 0; i < CPU_TLB_SIZE; i++)
1877 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1878 start1, length);
1879 }
6a00d601 1880 }
1ccde1cb
FB
1881}
1882
74576198
AL
1883int cpu_physical_memory_set_dirty_tracking(int enable)
1884{
1885 in_migration = enable;
b0a46a33
JK
1886 if (kvm_enabled()) {
1887 return kvm_set_migration_log(enable);
1888 }
74576198
AL
1889 return 0;
1890}
1891
1892int cpu_physical_memory_get_dirty_tracking(void)
1893{
1894 return in_migration;
1895}
1896
c227f099
AL
1897int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1898 target_phys_addr_t end_addr)
2bec46dc 1899{
151f7749
JK
1900 int ret = 0;
1901
2bec46dc 1902 if (kvm_enabled())
151f7749
JK
1903 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1904 return ret;
2bec46dc
AL
1905}
1906
3a7d929e
FB
1907static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1908{
c227f099 1909 ram_addr_t ram_addr;
5579c7f3 1910 void *p;
3a7d929e 1911
84b7b8e7 1912 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1913 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1914 + tlb_entry->addend);
1915 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1916 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1917 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1918 }
1919 }
1920}
1921
1922/* update the TLB according to the current state of the dirty bits */
1923void cpu_tlb_update_dirty(CPUState *env)
1924{
1925 int i;
cfde4bd9
IY
1926 int mmu_idx;
1927 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1928 for(i = 0; i < CPU_TLB_SIZE; i++)
1929 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1930 }
3a7d929e
FB
1931}
1932
0f459d16 1933static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1934{
0f459d16
PB
1935 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1936 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1937}
1938
0f459d16
PB
1939/* update the TLB corresponding to virtual page vaddr
1940 so that it is no longer dirty */
1941static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1942{
1ccde1cb 1943 int i;
cfde4bd9 1944 int mmu_idx;
1ccde1cb 1945
0f459d16 1946 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1947 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1948 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1949 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1950}
1951
59817ccb
FB
1952/* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
5fafdf24 1956int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 1957 target_phys_addr_t paddr, int prot,
6ebbf390 1958 int mmu_idx, int is_softmmu)
9fa3e853 1959{
92e873b9 1960 PhysPageDesc *p;
4f2ac237 1961 unsigned long pd;
9fa3e853 1962 unsigned int index;
4f2ac237 1963 target_ulong address;
0f459d16 1964 target_ulong code_address;
c227f099 1965 target_phys_addr_t addend;
9fa3e853 1966 int ret;
84b7b8e7 1967 CPUTLBEntry *te;
a1d1bb31 1968 CPUWatchpoint *wp;
c227f099 1969 target_phys_addr_t iotlb;
9fa3e853 1970
92e873b9 1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1974 } else {
1975 pd = p->phys_offset;
9fa3e853
FB
1976 }
1977#if defined(DEBUG_TLB)
6ebbf390
JM
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1980#endif
1981
1982 ret = 0;
0f459d16
PB
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1987 }
5579c7f3 1988 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
ccbb4d44 1997 /* IO handlers are currently passed a physical address.
0f459d16
PB
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
8da3ff18
PB
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2008 }
0f459d16
PB
2009 }
2010
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
72cf2d4f 2014 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
6658ffb8 2020 }
0f459d16 2021 }
d79acba4 2022
0f459d16
PB
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2031 }
5c751e99 2032
0f459d16
PB
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2037 }
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2046 } else {
0f459d16 2047 te->addr_write = address;
9fa3e853 2048 }
0f459d16
PB
2049 } else {
2050 te->addr_write = -1;
9fa3e853 2051 }
9fa3e853
FB
2052 return ret;
2053}
2054
0124311e
FB
2055#else
2056
ee8b7021 2057void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2058{
2059}
2060
2e12669a 2061void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2062{
2063}
2064
5fafdf24 2065int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2066 target_phys_addr_t paddr, int prot,
6ebbf390 2067 int mmu_idx, int is_softmmu)
9fa3e853
FB
2068{
2069 return 0;
2070}
0124311e 2071
edf8e2af
MW
2072/*
2073 * Walks guest process memory "regions" one by one
2074 * and calls callback function 'fn' for each region.
2075 */
2076int walk_memory_regions(void *priv,
2077 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2078{
9fa3e853 2079 unsigned long start, end;
edf8e2af 2080 PageDesc *p = NULL;
9fa3e853 2081 int i, j, prot, prot1;
edf8e2af 2082 int rc = 0;
33417e70 2083
edf8e2af 2084 start = end = -1;
9fa3e853 2085 prot = 0;
edf8e2af
MW
2086
2087 for (i = 0; i <= L1_SIZE; i++) {
2088 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2089 for (j = 0; j < L2_SIZE; j++) {
2090 prot1 = (p == NULL) ? 0 : p[j].flags;
2091 /*
2092 * "region" is one continuous chunk of memory
2093 * that has same protection flags set.
2094 */
9fa3e853
FB
2095 if (prot1 != prot) {
2096 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2097 if (start != -1) {
edf8e2af
MW
2098 rc = (*fn)(priv, start, end, prot);
2099 /* callback can stop iteration by returning != 0 */
2100 if (rc != 0)
2101 return (rc);
9fa3e853
FB
2102 }
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2108 }
edf8e2af 2109 if (p == NULL)
9fa3e853
FB
2110 break;
2111 }
33417e70 2112 }
edf8e2af
MW
2113 return (rc);
2114}
2115
2116static int dump_region(void *priv, unsigned long start,
2117 unsigned long end, unsigned long prot)
2118{
2119 FILE *f = (FILE *)priv;
2120
2121 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2122 start, end, end - start,
2123 ((prot & PAGE_READ) ? 'r' : '-'),
2124 ((prot & PAGE_WRITE) ? 'w' : '-'),
2125 ((prot & PAGE_EXEC) ? 'x' : '-'));
2126
2127 return (0);
2128}
2129
2130/* dump memory mappings */
2131void page_dump(FILE *f)
2132{
2133 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2134 "start", "end", "size", "prot");
2135 walk_memory_regions(f, dump_region);
33417e70
FB
2136}
2137
53a5960a 2138int page_get_flags(target_ulong address)
33417e70 2139{
9fa3e853
FB
2140 PageDesc *p;
2141
2142 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2143 if (!p)
9fa3e853
FB
2144 return 0;
2145 return p->flags;
2146}
2147
2148/* modify the flags of a page and invalidate the code if
ccbb4d44 2149 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2150 depending on PAGE_WRITE */
53a5960a 2151void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2152{
2153 PageDesc *p;
53a5960a 2154 target_ulong addr;
9fa3e853 2155
c8a706fe 2156 /* mmap_lock should already be held. */
9fa3e853
FB
2157 start = start & TARGET_PAGE_MASK;
2158 end = TARGET_PAGE_ALIGN(end);
2159 if (flags & PAGE_WRITE)
2160 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2161 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2162 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2163 /* We may be called for host regions that are outside guest
2164 address space. */
2165 if (!p)
2166 return;
9fa3e853
FB
2167 /* if the write protection is set, then we invalidate the code
2168 inside */
5fafdf24 2169 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2170 (flags & PAGE_WRITE) &&
2171 p->first_tb) {
d720b93d 2172 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2173 }
2174 p->flags = flags;
2175 }
33417e70
FB
2176}
2177
3d97b40b
TS
2178int page_check_range(target_ulong start, target_ulong len, int flags)
2179{
2180 PageDesc *p;
2181 target_ulong end;
2182 target_ulong addr;
2183
55f280c9
AZ
2184 if (start + len < start)
2185 /* we've wrapped around */
2186 return -1;
2187
3d97b40b
TS
2188 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2189 start = start & TARGET_PAGE_MASK;
2190
3d97b40b
TS
2191 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2192 p = page_find(addr >> TARGET_PAGE_BITS);
2193 if( !p )
2194 return -1;
2195 if( !(p->flags & PAGE_VALID) )
2196 return -1;
2197
dae3270c 2198 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2199 return -1;
dae3270c
FB
2200 if (flags & PAGE_WRITE) {
2201 if (!(p->flags & PAGE_WRITE_ORG))
2202 return -1;
2203 /* unprotect the page if it was put read-only because it
2204 contains translated code */
2205 if (!(p->flags & PAGE_WRITE)) {
2206 if (!page_unprotect(addr, 0, NULL))
2207 return -1;
2208 }
2209 return 0;
2210 }
3d97b40b
TS
2211 }
2212 return 0;
2213}
2214
9fa3e853 2215/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2216 page. Return TRUE if the fault was successfully handled. */
53a5960a 2217int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2218{
2219 unsigned int page_index, prot, pindex;
2220 PageDesc *p, *p1;
53a5960a 2221 target_ulong host_start, host_end, addr;
9fa3e853 2222
c8a706fe
PB
2223 /* Technically this isn't safe inside a signal handler. However we
2224 know this only ever happens in a synchronous SEGV handler, so in
2225 practice it seems to be ok. */
2226 mmap_lock();
2227
83fb7adf 2228 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2229 page_index = host_start >> TARGET_PAGE_BITS;
2230 p1 = page_find(page_index);
c8a706fe
PB
2231 if (!p1) {
2232 mmap_unlock();
9fa3e853 2233 return 0;
c8a706fe 2234 }
83fb7adf 2235 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2236 p = p1;
2237 prot = 0;
2238 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2239 prot |= p->flags;
2240 p++;
2241 }
2242 /* if the page was really writable, then we change its
2243 protection back to writable */
2244 if (prot & PAGE_WRITE_ORG) {
2245 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2246 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2247 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2248 (prot & PAGE_BITS) | PAGE_WRITE);
2249 p1[pindex].flags |= PAGE_WRITE;
2250 /* and since the content will be modified, we must invalidate
2251 the corresponding translated code. */
d720b93d 2252 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2253#ifdef DEBUG_TB_CHECK
2254 tb_invalidate_check(address);
2255#endif
c8a706fe 2256 mmap_unlock();
9fa3e853
FB
2257 return 1;
2258 }
2259 }
c8a706fe 2260 mmap_unlock();
9fa3e853
FB
2261 return 0;
2262}
2263
6a00d601
FB
2264static inline void tlb_set_dirty(CPUState *env,
2265 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2266{
2267}
9fa3e853
FB
2268#endif /* defined(CONFIG_USER_ONLY) */
2269
e2eef170 2270#if !defined(CONFIG_USER_ONLY)
8da3ff18 2271
c227f099
AL
2272static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2273 ram_addr_t memory, ram_addr_t region_offset);
2274static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2275 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2276#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2277 need_subpage) \
2278 do { \
2279 if (addr > start_addr) \
2280 start_addr2 = 0; \
2281 else { \
2282 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2283 if (start_addr2 > 0) \
2284 need_subpage = 1; \
2285 } \
2286 \
49e9fba2 2287 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2288 end_addr2 = TARGET_PAGE_SIZE - 1; \
2289 else { \
2290 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2291 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2292 need_subpage = 1; \
2293 } \
2294 } while (0)
2295
8f2498f9
MT
2296/* register physical memory.
2297 For RAM, 'size' must be a multiple of the target page size.
2298 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2299 io memory page. The address used when calling the IO function is
2300 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2301 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2302 before calculating this offset. This should not be a problem unless
2303 the low bits of start_addr and region_offset differ. */
c227f099
AL
2304void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2305 ram_addr_t size,
2306 ram_addr_t phys_offset,
2307 ram_addr_t region_offset)
33417e70 2308{
c227f099 2309 target_phys_addr_t addr, end_addr;
92e873b9 2310 PhysPageDesc *p;
9d42037b 2311 CPUState *env;
c227f099 2312 ram_addr_t orig_size = size;
db7b5426 2313 void *subpage;
33417e70 2314
7ba1e619
AL
2315 if (kvm_enabled())
2316 kvm_set_phys_mem(start_addr, size, phys_offset);
2317
67c4d23c
PB
2318 if (phys_offset == IO_MEM_UNASSIGNED) {
2319 region_offset = start_addr;
2320 }
8da3ff18 2321 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2322 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2323 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2324 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2325 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2326 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2327 ram_addr_t orig_memory = p->phys_offset;
2328 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2329 int need_subpage = 0;
2330
2331 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2332 need_subpage);
4254fab8 2333 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2334 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2335 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2336 &p->phys_offset, orig_memory,
2337 p->region_offset);
db7b5426
BS
2338 } else {
2339 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2340 >> IO_MEM_SHIFT];
2341 }
8da3ff18
PB
2342 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2343 region_offset);
2344 p->region_offset = 0;
db7b5426
BS
2345 } else {
2346 p->phys_offset = phys_offset;
2347 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2348 (phys_offset & IO_MEM_ROMD))
2349 phys_offset += TARGET_PAGE_SIZE;
2350 }
2351 } else {
2352 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2353 p->phys_offset = phys_offset;
8da3ff18 2354 p->region_offset = region_offset;
db7b5426 2355 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2356 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2357 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2358 } else {
c227f099 2359 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2360 int need_subpage = 0;
2361
2362 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2363 end_addr2, need_subpage);
2364
4254fab8 2365 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2366 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2367 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2368 addr & TARGET_PAGE_MASK);
db7b5426 2369 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2370 phys_offset, region_offset);
2371 p->region_offset = 0;
db7b5426
BS
2372 }
2373 }
2374 }
8da3ff18 2375 region_offset += TARGET_PAGE_SIZE;
33417e70 2376 }
3b46e624 2377
9d42037b
FB
2378 /* since each CPU stores ram addresses in its TLB cache, we must
2379 reset the modified entries */
2380 /* XXX: slow ! */
2381 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2382 tlb_flush(env, 1);
2383 }
33417e70
FB
2384}
2385
ba863458 2386/* XXX: temporary until new memory mapping API */
c227f099 2387ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2388{
2389 PhysPageDesc *p;
2390
2391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2392 if (!p)
2393 return IO_MEM_UNASSIGNED;
2394 return p->phys_offset;
2395}
2396
c227f099 2397void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2398{
2399 if (kvm_enabled())
2400 kvm_coalesce_mmio_region(addr, size);
2401}
2402
c227f099 2403void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2404{
2405 if (kvm_enabled())
2406 kvm_uncoalesce_mmio_region(addr, size);
2407}
2408
c227f099 2409ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2410{
2411 RAMBlock *new_block;
2412
94a6b54f
PB
2413 size = TARGET_PAGE_ALIGN(size);
2414 new_block = qemu_malloc(sizeof(*new_block));
2415
6b02494d
AG
2416#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2417 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2418 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2419 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2420#else
94a6b54f 2421 new_block->host = qemu_vmalloc(size);
6b02494d 2422#endif
ccb167e9
IE
2423#ifdef MADV_MERGEABLE
2424 madvise(new_block->host, size, MADV_MERGEABLE);
2425#endif
94a6b54f
PB
2426 new_block->offset = last_ram_offset;
2427 new_block->length = size;
2428
2429 new_block->next = ram_blocks;
2430 ram_blocks = new_block;
2431
2432 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2433 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2434 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2435 0xff, size >> TARGET_PAGE_BITS);
2436
2437 last_ram_offset += size;
2438
6f0437e8
JK
2439 if (kvm_enabled())
2440 kvm_setup_guest_memory(new_block->host, size);
2441
94a6b54f
PB
2442 return new_block->offset;
2443}
e9a1ab19 2444
c227f099 2445void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2446{
94a6b54f 2447 /* TODO: implement this. */
e9a1ab19
FB
2448}
2449
dc828ca1 2450/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2451 With the exception of the softmmu code in this file, this should
2452 only be used for local memory (e.g. video ram) that the device owns,
2453 and knows it isn't going to access beyond the end of the block.
2454
2455 It should not be used for general purpose DMA.
2456 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2457 */
c227f099 2458void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2459{
94a6b54f
PB
2460 RAMBlock *prev;
2461 RAMBlock **prevp;
2462 RAMBlock *block;
2463
94a6b54f
PB
2464 prev = NULL;
2465 prevp = &ram_blocks;
2466 block = ram_blocks;
2467 while (block && (block->offset > addr
2468 || block->offset + block->length <= addr)) {
2469 if (prev)
2470 prevp = &prev->next;
2471 prev = block;
2472 block = block->next;
2473 }
2474 if (!block) {
2475 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2476 abort();
2477 }
2478 /* Move this entry to to start of the list. */
2479 if (prev) {
2480 prev->next = block->next;
2481 block->next = *prevp;
2482 *prevp = block;
2483 }
2484 return block->host + (addr - block->offset);
dc828ca1
PB
2485}
2486
5579c7f3
PB
2487/* Some of the softmmu routines need to translate from a host pointer
2488 (typically a TLB entry) back to a ram offset. */
c227f099 2489ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2490{
94a6b54f 2491 RAMBlock *prev;
94a6b54f
PB
2492 RAMBlock *block;
2493 uint8_t *host = ptr;
2494
94a6b54f 2495 prev = NULL;
94a6b54f
PB
2496 block = ram_blocks;
2497 while (block && (block->host > host
2498 || block->host + block->length <= host)) {
94a6b54f
PB
2499 prev = block;
2500 block = block->next;
2501 }
2502 if (!block) {
2503 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2504 abort();
2505 }
2506 return block->offset + (host - block->host);
5579c7f3
PB
2507}
2508
c227f099 2509static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2510{
67d3b957 2511#ifdef DEBUG_UNASSIGNED
ab3d1727 2512 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2513#endif
faed1c2a 2514#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2515 do_unassigned_access(addr, 0, 0, 0, 1);
2516#endif
2517 return 0;
2518}
2519
c227f099 2520static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2521{
2522#ifdef DEBUG_UNASSIGNED
2523 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2524#endif
faed1c2a 2525#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2526 do_unassigned_access(addr, 0, 0, 0, 2);
2527#endif
2528 return 0;
2529}
2530
c227f099 2531static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2532{
2533#ifdef DEBUG_UNASSIGNED
2534 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2535#endif
faed1c2a 2536#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2537 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2538#endif
33417e70
FB
2539 return 0;
2540}
2541
c227f099 2542static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2543{
67d3b957 2544#ifdef DEBUG_UNASSIGNED
ab3d1727 2545 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2546#endif
faed1c2a 2547#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2548 do_unassigned_access(addr, 1, 0, 0, 1);
2549#endif
2550}
2551
c227f099 2552static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2553{
2554#ifdef DEBUG_UNASSIGNED
2555 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2556#endif
faed1c2a 2557#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2558 do_unassigned_access(addr, 1, 0, 0, 2);
2559#endif
2560}
2561
c227f099 2562static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2563{
2564#ifdef DEBUG_UNASSIGNED
2565 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2566#endif
faed1c2a 2567#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2568 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2569#endif
33417e70
FB
2570}
2571
d60efc6b 2572static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2573 unassigned_mem_readb,
e18231a3
BS
2574 unassigned_mem_readw,
2575 unassigned_mem_readl,
33417e70
FB
2576};
2577
d60efc6b 2578static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2579 unassigned_mem_writeb,
e18231a3
BS
2580 unassigned_mem_writew,
2581 unassigned_mem_writel,
33417e70
FB
2582};
2583
c227f099 2584static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2585 uint32_t val)
9fa3e853 2586{
3a7d929e 2587 int dirty_flags;
3a7d929e
FB
2588 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2589 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2590#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2591 tb_invalidate_phys_page_fast(ram_addr, 1);
2592 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2593#endif
3a7d929e 2594 }
5579c7f3 2595 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2596 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2597 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2598 /* we remove the notdirty callback only if the code has been
2599 flushed */
2600 if (dirty_flags == 0xff)
2e70f6ef 2601 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2602}
2603
c227f099 2604static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2605 uint32_t val)
9fa3e853 2606{
3a7d929e 2607 int dirty_flags;
3a7d929e
FB
2608 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2609 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2610#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2611 tb_invalidate_phys_page_fast(ram_addr, 2);
2612 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2613#endif
3a7d929e 2614 }
5579c7f3 2615 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2616 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2617 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2618 /* we remove the notdirty callback only if the code has been
2619 flushed */
2620 if (dirty_flags == 0xff)
2e70f6ef 2621 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2622}
2623
c227f099 2624static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2625 uint32_t val)
9fa3e853 2626{
3a7d929e 2627 int dirty_flags;
3a7d929e
FB
2628 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2629 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2630#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2631 tb_invalidate_phys_page_fast(ram_addr, 4);
2632 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2633#endif
3a7d929e 2634 }
5579c7f3 2635 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2636 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2637 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2638 /* we remove the notdirty callback only if the code has been
2639 flushed */
2640 if (dirty_flags == 0xff)
2e70f6ef 2641 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2642}
2643
d60efc6b 2644static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2645 NULL, /* never used */
2646 NULL, /* never used */
2647 NULL, /* never used */
2648};
2649
d60efc6b 2650static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2651 notdirty_mem_writeb,
2652 notdirty_mem_writew,
2653 notdirty_mem_writel,
2654};
2655
0f459d16 2656/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2657static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2658{
2659 CPUState *env = cpu_single_env;
06d55cc1
AL
2660 target_ulong pc, cs_base;
2661 TranslationBlock *tb;
0f459d16 2662 target_ulong vaddr;
a1d1bb31 2663 CPUWatchpoint *wp;
06d55cc1 2664 int cpu_flags;
0f459d16 2665
06d55cc1
AL
2666 if (env->watchpoint_hit) {
2667 /* We re-entered the check after replacing the TB. Now raise
2668 * the debug interrupt so that is will trigger after the
2669 * current instruction. */
2670 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2671 return;
2672 }
2e70f6ef 2673 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2674 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2675 if ((vaddr == (wp->vaddr & len_mask) ||
2676 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2677 wp->flags |= BP_WATCHPOINT_HIT;
2678 if (!env->watchpoint_hit) {
2679 env->watchpoint_hit = wp;
2680 tb = tb_find_pc(env->mem_io_pc);
2681 if (!tb) {
2682 cpu_abort(env, "check_watchpoint: could not find TB for "
2683 "pc=%p", (void *)env->mem_io_pc);
2684 }
2685 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2686 tb_phys_invalidate(tb, -1);
2687 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2688 env->exception_index = EXCP_DEBUG;
2689 } else {
2690 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2691 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2692 }
2693 cpu_resume_from_signal(env, NULL);
06d55cc1 2694 }
6e140f28
AL
2695 } else {
2696 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2697 }
2698 }
2699}
2700
6658ffb8
PB
2701/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2702 so these check for a hit then pass through to the normal out-of-line
2703 phys routines. */
c227f099 2704static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2705{
b4051334 2706 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2707 return ldub_phys(addr);
2708}
2709
c227f099 2710static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2711{
b4051334 2712 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2713 return lduw_phys(addr);
2714}
2715
c227f099 2716static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2717{
b4051334 2718 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2719 return ldl_phys(addr);
2720}
2721
c227f099 2722static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2723 uint32_t val)
2724{
b4051334 2725 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2726 stb_phys(addr, val);
2727}
2728
c227f099 2729static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2730 uint32_t val)
2731{
b4051334 2732 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2733 stw_phys(addr, val);
2734}
2735
c227f099 2736static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2737 uint32_t val)
2738{
b4051334 2739 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2740 stl_phys(addr, val);
2741}
2742
d60efc6b 2743static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2744 watch_mem_readb,
2745 watch_mem_readw,
2746 watch_mem_readl,
2747};
2748
d60efc6b 2749static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2750 watch_mem_writeb,
2751 watch_mem_writew,
2752 watch_mem_writel,
2753};
6658ffb8 2754
c227f099 2755static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2756 unsigned int len)
2757{
db7b5426
BS
2758 uint32_t ret;
2759 unsigned int idx;
2760
8da3ff18 2761 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2762#if defined(DEBUG_SUBPAGE)
2763 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2764 mmio, len, addr, idx);
2765#endif
8da3ff18
PB
2766 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2767 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2768
2769 return ret;
2770}
2771
c227f099 2772static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2773 uint32_t value, unsigned int len)
2774{
db7b5426
BS
2775 unsigned int idx;
2776
8da3ff18 2777 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2778#if defined(DEBUG_SUBPAGE)
2779 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2780 mmio, len, addr, idx, value);
2781#endif
8da3ff18
PB
2782 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2783 addr + mmio->region_offset[idx][1][len],
2784 value);
db7b5426
BS
2785}
2786
c227f099 2787static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2788{
2789#if defined(DEBUG_SUBPAGE)
2790 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2791#endif
2792
2793 return subpage_readlen(opaque, addr, 0);
2794}
2795
c227f099 2796static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2797 uint32_t value)
2798{
2799#if defined(DEBUG_SUBPAGE)
2800 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2801#endif
2802 subpage_writelen(opaque, addr, value, 0);
2803}
2804
c227f099 2805static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2806{
2807#if defined(DEBUG_SUBPAGE)
2808 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2809#endif
2810
2811 return subpage_readlen(opaque, addr, 1);
2812}
2813
c227f099 2814static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2815 uint32_t value)
2816{
2817#if defined(DEBUG_SUBPAGE)
2818 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2819#endif
2820 subpage_writelen(opaque, addr, value, 1);
2821}
2822
c227f099 2823static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2824{
2825#if defined(DEBUG_SUBPAGE)
2826 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2827#endif
2828
2829 return subpage_readlen(opaque, addr, 2);
2830}
2831
2832static void subpage_writel (void *opaque,
c227f099 2833 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2834{
2835#if defined(DEBUG_SUBPAGE)
2836 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2837#endif
2838 subpage_writelen(opaque, addr, value, 2);
2839}
2840
d60efc6b 2841static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2842 &subpage_readb,
2843 &subpage_readw,
2844 &subpage_readl,
2845};
2846
d60efc6b 2847static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2848 &subpage_writeb,
2849 &subpage_writew,
2850 &subpage_writel,
2851};
2852
c227f099
AL
2853static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2854 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2855{
2856 int idx, eidx;
4254fab8 2857 unsigned int i;
db7b5426
BS
2858
2859 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2860 return -1;
2861 idx = SUBPAGE_IDX(start);
2862 eidx = SUBPAGE_IDX(end);
2863#if defined(DEBUG_SUBPAGE)
0bf9e31a 2864 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2865 mmio, start, end, idx, eidx, memory);
2866#endif
2867 memory >>= IO_MEM_SHIFT;
2868 for (; idx <= eidx; idx++) {
4254fab8 2869 for (i = 0; i < 4; i++) {
3ee89922
BS
2870 if (io_mem_read[memory][i]) {
2871 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2872 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2873 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2874 }
2875 if (io_mem_write[memory][i]) {
2876 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2877 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2878 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2879 }
4254fab8 2880 }
db7b5426
BS
2881 }
2882
2883 return 0;
2884}
2885
c227f099
AL
2886static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2887 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 2888{
c227f099 2889 subpage_t *mmio;
db7b5426
BS
2890 int subpage_memory;
2891
c227f099 2892 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2893
2894 mmio->base = base;
1eed09cb 2895 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2896#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2897 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2898 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2899#endif
1eec614b
AL
2900 *phys = subpage_memory | IO_MEM_SUBPAGE;
2901 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2902 region_offset);
db7b5426
BS
2903
2904 return mmio;
2905}
2906
88715657
AL
2907static int get_free_io_mem_idx(void)
2908{
2909 int i;
2910
2911 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2912 if (!io_mem_used[i]) {
2913 io_mem_used[i] = 1;
2914 return i;
2915 }
c6703b47 2916 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
2917 return -1;
2918}
2919
33417e70
FB
2920/* mem_read and mem_write are arrays of functions containing the
2921 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2922 2). Functions can be omitted with a NULL function pointer.
3ee89922 2923 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2924 modified. If it is zero, a new io zone is allocated. The return
2925 value can be used with cpu_register_physical_memory(). (-1) is
2926 returned if error. */
1eed09cb 2927static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2928 CPUReadMemoryFunc * const *mem_read,
2929 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2930 void *opaque)
33417e70 2931{
4254fab8 2932 int i, subwidth = 0;
33417e70
FB
2933
2934 if (io_index <= 0) {
88715657
AL
2935 io_index = get_free_io_mem_idx();
2936 if (io_index == -1)
2937 return io_index;
33417e70 2938 } else {
1eed09cb 2939 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2940 if (io_index >= IO_MEM_NB_ENTRIES)
2941 return -1;
2942 }
b5ff1b31 2943
33417e70 2944 for(i = 0;i < 3; i++) {
4254fab8
BS
2945 if (!mem_read[i] || !mem_write[i])
2946 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2947 io_mem_read[io_index][i] = mem_read[i];
2948 io_mem_write[io_index][i] = mem_write[i];
2949 }
a4193c8a 2950 io_mem_opaque[io_index] = opaque;
4254fab8 2951 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2952}
61382a50 2953
d60efc6b
BS
2954int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2955 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2956 void *opaque)
2957{
2958 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2959}
2960
88715657
AL
2961void cpu_unregister_io_memory(int io_table_address)
2962{
2963 int i;
2964 int io_index = io_table_address >> IO_MEM_SHIFT;
2965
2966 for (i=0;i < 3; i++) {
2967 io_mem_read[io_index][i] = unassigned_mem_read[i];
2968 io_mem_write[io_index][i] = unassigned_mem_write[i];
2969 }
2970 io_mem_opaque[io_index] = NULL;
2971 io_mem_used[io_index] = 0;
2972}
2973
e9179ce1
AK
2974static void io_mem_init(void)
2975{
2976 int i;
2977
2978 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2979 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2980 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2981 for (i=0; i<5; i++)
2982 io_mem_used[i] = 1;
2983
2984 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2985 watch_mem_write, NULL);
e9179ce1
AK
2986}
2987
e2eef170
PB
2988#endif /* !defined(CONFIG_USER_ONLY) */
2989
13eb76e0
FB
2990/* physical memory access (slow version, mainly for debug) */
2991#if defined(CONFIG_USER_ONLY)
c227f099 2992void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2993 int len, int is_write)
2994{
2995 int l, flags;
2996 target_ulong page;
53a5960a 2997 void * p;
13eb76e0
FB
2998
2999 while (len > 0) {
3000 page = addr & TARGET_PAGE_MASK;
3001 l = (page + TARGET_PAGE_SIZE) - addr;
3002 if (l > len)
3003 l = len;
3004 flags = page_get_flags(page);
3005 if (!(flags & PAGE_VALID))
3006 return;
3007 if (is_write) {
3008 if (!(flags & PAGE_WRITE))
3009 return;
579a97f7 3010 /* XXX: this code should not depend on lock_user */
72fb7daa 3011 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3012 /* FIXME - should this return an error rather than just fail? */
3013 return;
72fb7daa
AJ
3014 memcpy(p, buf, l);
3015 unlock_user(p, addr, l);
13eb76e0
FB
3016 } else {
3017 if (!(flags & PAGE_READ))
3018 return;
579a97f7 3019 /* XXX: this code should not depend on lock_user */
72fb7daa 3020 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3021 /* FIXME - should this return an error rather than just fail? */
3022 return;
72fb7daa 3023 memcpy(buf, p, l);
5b257578 3024 unlock_user(p, addr, 0);
13eb76e0
FB
3025 }
3026 len -= l;
3027 buf += l;
3028 addr += l;
3029 }
3030}
8df1cd07 3031
13eb76e0 3032#else
c227f099 3033void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3034 int len, int is_write)
3035{
3036 int l, io_index;
3037 uint8_t *ptr;
3038 uint32_t val;
c227f099 3039 target_phys_addr_t page;
2e12669a 3040 unsigned long pd;
92e873b9 3041 PhysPageDesc *p;
3b46e624 3042
13eb76e0
FB
3043 while (len > 0) {
3044 page = addr & TARGET_PAGE_MASK;
3045 l = (page + TARGET_PAGE_SIZE) - addr;
3046 if (l > len)
3047 l = len;
92e873b9 3048 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3049 if (!p) {
3050 pd = IO_MEM_UNASSIGNED;
3051 } else {
3052 pd = p->phys_offset;
3053 }
3b46e624 3054
13eb76e0 3055 if (is_write) {
3a7d929e 3056 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3057 target_phys_addr_t addr1 = addr;
13eb76e0 3058 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3059 if (p)
6c2934db 3060 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3061 /* XXX: could force cpu_single_env to NULL to avoid
3062 potential bugs */
6c2934db 3063 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3064 /* 32 bit write access */
c27004ec 3065 val = ldl_p(buf);
6c2934db 3066 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3067 l = 4;
6c2934db 3068 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3069 /* 16 bit write access */
c27004ec 3070 val = lduw_p(buf);
6c2934db 3071 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3072 l = 2;
3073 } else {
1c213d19 3074 /* 8 bit write access */
c27004ec 3075 val = ldub_p(buf);
6c2934db 3076 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3077 l = 1;
3078 }
3079 } else {
b448f2f3
FB
3080 unsigned long addr1;
3081 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3082 /* RAM case */
5579c7f3 3083 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3084 memcpy(ptr, buf, l);
3a7d929e
FB
3085 if (!cpu_physical_memory_is_dirty(addr1)) {
3086 /* invalidate code */
3087 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3088 /* set dirty bit */
5fafdf24 3089 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3090 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3091 }
13eb76e0
FB
3092 }
3093 } else {
5fafdf24 3094 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3095 !(pd & IO_MEM_ROMD)) {
c227f099 3096 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3097 /* I/O case */
3098 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3099 if (p)
6c2934db
AJ
3100 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3101 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3102 /* 32 bit read access */
6c2934db 3103 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3104 stl_p(buf, val);
13eb76e0 3105 l = 4;
6c2934db 3106 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3107 /* 16 bit read access */
6c2934db 3108 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3109 stw_p(buf, val);
13eb76e0
FB
3110 l = 2;
3111 } else {
1c213d19 3112 /* 8 bit read access */
6c2934db 3113 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3114 stb_p(buf, val);
13eb76e0
FB
3115 l = 1;
3116 }
3117 } else {
3118 /* RAM case */
5579c7f3 3119 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3120 (addr & ~TARGET_PAGE_MASK);
3121 memcpy(buf, ptr, l);
3122 }
3123 }
3124 len -= l;
3125 buf += l;
3126 addr += l;
3127 }
3128}
8df1cd07 3129
d0ecd2aa 3130/* used for ROM loading : can write in RAM and ROM */
c227f099 3131void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3132 const uint8_t *buf, int len)
3133{
3134 int l;
3135 uint8_t *ptr;
c227f099 3136 target_phys_addr_t page;
d0ecd2aa
FB
3137 unsigned long pd;
3138 PhysPageDesc *p;
3b46e624 3139
d0ecd2aa
FB
3140 while (len > 0) {
3141 page = addr & TARGET_PAGE_MASK;
3142 l = (page + TARGET_PAGE_SIZE) - addr;
3143 if (l > len)
3144 l = len;
3145 p = phys_page_find(page >> TARGET_PAGE_BITS);
3146 if (!p) {
3147 pd = IO_MEM_UNASSIGNED;
3148 } else {
3149 pd = p->phys_offset;
3150 }
3b46e624 3151
d0ecd2aa 3152 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3153 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3154 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3155 /* do nothing */
3156 } else {
3157 unsigned long addr1;
3158 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3159 /* ROM/RAM case */
5579c7f3 3160 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3161 memcpy(ptr, buf, l);
3162 }
3163 len -= l;
3164 buf += l;
3165 addr += l;
3166 }
3167}
3168
6d16c2f8
AL
3169typedef struct {
3170 void *buffer;
c227f099
AL
3171 target_phys_addr_t addr;
3172 target_phys_addr_t len;
6d16c2f8
AL
3173} BounceBuffer;
3174
3175static BounceBuffer bounce;
3176
ba223c29
AL
3177typedef struct MapClient {
3178 void *opaque;
3179 void (*callback)(void *opaque);
72cf2d4f 3180 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3181} MapClient;
3182
72cf2d4f
BS
3183static QLIST_HEAD(map_client_list, MapClient) map_client_list
3184 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3185
3186void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3187{
3188 MapClient *client = qemu_malloc(sizeof(*client));
3189
3190 client->opaque = opaque;
3191 client->callback = callback;
72cf2d4f 3192 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3193 return client;
3194}
3195
3196void cpu_unregister_map_client(void *_client)
3197{
3198 MapClient *client = (MapClient *)_client;
3199
72cf2d4f 3200 QLIST_REMOVE(client, link);
34d5e948 3201 qemu_free(client);
ba223c29
AL
3202}
3203
3204static void cpu_notify_map_clients(void)
3205{
3206 MapClient *client;
3207
72cf2d4f
BS
3208 while (!QLIST_EMPTY(&map_client_list)) {
3209 client = QLIST_FIRST(&map_client_list);
ba223c29 3210 client->callback(client->opaque);
34d5e948 3211 cpu_unregister_map_client(client);
ba223c29
AL
3212 }
3213}
3214
6d16c2f8
AL
3215/* Map a physical memory region into a host virtual address.
3216 * May map a subset of the requested range, given by and returned in *plen.
3217 * May return NULL if resources needed to perform the mapping are exhausted.
3218 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3219 * Use cpu_register_map_client() to know when retrying the map operation is
3220 * likely to succeed.
6d16c2f8 3221 */
c227f099
AL
3222void *cpu_physical_memory_map(target_phys_addr_t addr,
3223 target_phys_addr_t *plen,
6d16c2f8
AL
3224 int is_write)
3225{
c227f099
AL
3226 target_phys_addr_t len = *plen;
3227 target_phys_addr_t done = 0;
6d16c2f8
AL
3228 int l;
3229 uint8_t *ret = NULL;
3230 uint8_t *ptr;
c227f099 3231 target_phys_addr_t page;
6d16c2f8
AL
3232 unsigned long pd;
3233 PhysPageDesc *p;
3234 unsigned long addr1;
3235
3236 while (len > 0) {
3237 page = addr & TARGET_PAGE_MASK;
3238 l = (page + TARGET_PAGE_SIZE) - addr;
3239 if (l > len)
3240 l = len;
3241 p = phys_page_find(page >> TARGET_PAGE_BITS);
3242 if (!p) {
3243 pd = IO_MEM_UNASSIGNED;
3244 } else {
3245 pd = p->phys_offset;
3246 }
3247
3248 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3249 if (done || bounce.buffer) {
3250 break;
3251 }
3252 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3253 bounce.addr = addr;
3254 bounce.len = l;
3255 if (!is_write) {
3256 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3257 }
3258 ptr = bounce.buffer;
3259 } else {
3260 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3261 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3262 }
3263 if (!done) {
3264 ret = ptr;
3265 } else if (ret + done != ptr) {
3266 break;
3267 }
3268
3269 len -= l;
3270 addr += l;
3271 done += l;
3272 }
3273 *plen = done;
3274 return ret;
3275}
3276
3277/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3278 * Will also mark the memory as dirty if is_write == 1. access_len gives
3279 * the amount of memory that was actually read or written by the caller.
3280 */
c227f099
AL
3281void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3282 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3283{
3284 if (buffer != bounce.buffer) {
3285 if (is_write) {
c227f099 3286 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3287 while (access_len) {
3288 unsigned l;
3289 l = TARGET_PAGE_SIZE;
3290 if (l > access_len)
3291 l = access_len;
3292 if (!cpu_physical_memory_is_dirty(addr1)) {
3293 /* invalidate code */
3294 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3295 /* set dirty bit */
3296 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3297 (0xff & ~CODE_DIRTY_FLAG);
3298 }
3299 addr1 += l;
3300 access_len -= l;
3301 }
3302 }
3303 return;
3304 }
3305 if (is_write) {
3306 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3307 }
f8a83245 3308 qemu_vfree(bounce.buffer);
6d16c2f8 3309 bounce.buffer = NULL;
ba223c29 3310 cpu_notify_map_clients();
6d16c2f8 3311}
d0ecd2aa 3312
8df1cd07 3313/* warning: addr must be aligned */
c227f099 3314uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3315{
3316 int io_index;
3317 uint8_t *ptr;
3318 uint32_t val;
3319 unsigned long pd;
3320 PhysPageDesc *p;
3321
3322 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3323 if (!p) {
3324 pd = IO_MEM_UNASSIGNED;
3325 } else {
3326 pd = p->phys_offset;
3327 }
3b46e624 3328
5fafdf24 3329 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3330 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3331 /* I/O case */
3332 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3333 if (p)
3334 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3335 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3336 } else {
3337 /* RAM case */
5579c7f3 3338 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3339 (addr & ~TARGET_PAGE_MASK);
3340 val = ldl_p(ptr);
3341 }
3342 return val;
3343}
3344
84b7b8e7 3345/* warning: addr must be aligned */
c227f099 3346uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3347{
3348 int io_index;
3349 uint8_t *ptr;
3350 uint64_t val;
3351 unsigned long pd;
3352 PhysPageDesc *p;
3353
3354 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3355 if (!p) {
3356 pd = IO_MEM_UNASSIGNED;
3357 } else {
3358 pd = p->phys_offset;
3359 }
3b46e624 3360
2a4188a3
FB
3361 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3362 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3363 /* I/O case */
3364 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3365 if (p)
3366 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3367#ifdef TARGET_WORDS_BIGENDIAN
3368 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3369 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3370#else
3371 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3372 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3373#endif
3374 } else {
3375 /* RAM case */
5579c7f3 3376 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3377 (addr & ~TARGET_PAGE_MASK);
3378 val = ldq_p(ptr);
3379 }
3380 return val;
3381}
3382
aab33094 3383/* XXX: optimize */
c227f099 3384uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3385{
3386 uint8_t val;
3387 cpu_physical_memory_read(addr, &val, 1);
3388 return val;
3389}
3390
3391/* XXX: optimize */
c227f099 3392uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3393{
3394 uint16_t val;
3395 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3396 return tswap16(val);
3397}
3398
8df1cd07
FB
3399/* warning: addr must be aligned. The ram page is not masked as dirty
3400 and the code inside is not invalidated. It is useful if the dirty
3401 bits are used to track modified PTEs */
c227f099 3402void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3403{
3404 int io_index;
3405 uint8_t *ptr;
3406 unsigned long pd;
3407 PhysPageDesc *p;
3408
3409 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3410 if (!p) {
3411 pd = IO_MEM_UNASSIGNED;
3412 } else {
3413 pd = p->phys_offset;
3414 }
3b46e624 3415
3a7d929e 3416 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3417 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3418 if (p)
3419 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3420 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3421 } else {
74576198 3422 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3423 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3424 stl_p(ptr, val);
74576198
AL
3425
3426 if (unlikely(in_migration)) {
3427 if (!cpu_physical_memory_is_dirty(addr1)) {
3428 /* invalidate code */
3429 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3430 /* set dirty bit */
3431 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3432 (0xff & ~CODE_DIRTY_FLAG);
3433 }
3434 }
8df1cd07
FB
3435 }
3436}
3437
c227f099 3438void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3439{
3440 int io_index;
3441 uint8_t *ptr;
3442 unsigned long pd;
3443 PhysPageDesc *p;
3444
3445 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3446 if (!p) {
3447 pd = IO_MEM_UNASSIGNED;
3448 } else {
3449 pd = p->phys_offset;
3450 }
3b46e624 3451
bc98a7ef
JM
3452 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3453 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3454 if (p)
3455 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3456#ifdef TARGET_WORDS_BIGENDIAN
3457 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3458 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3459#else
3460 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3461 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3462#endif
3463 } else {
5579c7f3 3464 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3465 (addr & ~TARGET_PAGE_MASK);
3466 stq_p(ptr, val);
3467 }
3468}
3469
8df1cd07 3470/* warning: addr must be aligned */
c227f099 3471void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3472{
3473 int io_index;
3474 uint8_t *ptr;
3475 unsigned long pd;
3476 PhysPageDesc *p;
3477
3478 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3479 if (!p) {
3480 pd = IO_MEM_UNASSIGNED;
3481 } else {
3482 pd = p->phys_offset;
3483 }
3b46e624 3484
3a7d929e 3485 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3486 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3487 if (p)
3488 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3489 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3490 } else {
3491 unsigned long addr1;
3492 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3493 /* RAM case */
5579c7f3 3494 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3495 stl_p(ptr, val);
3a7d929e
FB
3496 if (!cpu_physical_memory_is_dirty(addr1)) {
3497 /* invalidate code */
3498 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3499 /* set dirty bit */
f23db169
FB
3500 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3501 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3502 }
8df1cd07
FB
3503 }
3504}
3505
aab33094 3506/* XXX: optimize */
c227f099 3507void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3508{
3509 uint8_t v = val;
3510 cpu_physical_memory_write(addr, &v, 1);
3511}
3512
3513/* XXX: optimize */
c227f099 3514void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3515{
3516 uint16_t v = tswap16(val);
3517 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3518}
3519
3520/* XXX: optimize */
c227f099 3521void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3522{
3523 val = tswap64(val);
3524 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3525}
3526
13eb76e0
FB
3527#endif
3528
5e2972fd 3529/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3530int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3531 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3532{
3533 int l;
c227f099 3534 target_phys_addr_t phys_addr;
9b3c35e0 3535 target_ulong page;
13eb76e0
FB
3536
3537 while (len > 0) {
3538 page = addr & TARGET_PAGE_MASK;
3539 phys_addr = cpu_get_phys_page_debug(env, page);
3540 /* if no physical page mapped, return an error */
3541 if (phys_addr == -1)
3542 return -1;
3543 l = (page + TARGET_PAGE_SIZE) - addr;
3544 if (l > len)
3545 l = len;
5e2972fd
AL
3546 phys_addr += (addr & ~TARGET_PAGE_MASK);
3547#if !defined(CONFIG_USER_ONLY)
3548 if (is_write)
3549 cpu_physical_memory_write_rom(phys_addr, buf, l);
3550 else
3551#endif
3552 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3553 len -= l;
3554 buf += l;
3555 addr += l;
3556 }
3557 return 0;
3558}
3559
2e70f6ef
PB
3560/* in deterministic execution mode, instructions doing device I/Os
3561 must be at the end of the TB */
3562void cpu_io_recompile(CPUState *env, void *retaddr)
3563{
3564 TranslationBlock *tb;
3565 uint32_t n, cflags;
3566 target_ulong pc, cs_base;
3567 uint64_t flags;
3568
3569 tb = tb_find_pc((unsigned long)retaddr);
3570 if (!tb) {
3571 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3572 retaddr);
3573 }
3574 n = env->icount_decr.u16.low + tb->icount;
3575 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3576 /* Calculate how many instructions had been executed before the fault
bf20dc07 3577 occurred. */
2e70f6ef
PB
3578 n = n - env->icount_decr.u16.low;
3579 /* Generate a new TB ending on the I/O insn. */
3580 n++;
3581 /* On MIPS and SH, delay slot instructions can only be restarted if
3582 they were already the first instruction in the TB. If this is not
bf20dc07 3583 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3584 branch. */
3585#if defined(TARGET_MIPS)
3586 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3587 env->active_tc.PC -= 4;
3588 env->icount_decr.u16.low++;
3589 env->hflags &= ~MIPS_HFLAG_BMASK;
3590 }
3591#elif defined(TARGET_SH4)
3592 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3593 && n > 1) {
3594 env->pc -= 2;
3595 env->icount_decr.u16.low++;
3596 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3597 }
3598#endif
3599 /* This should never happen. */
3600 if (n > CF_COUNT_MASK)
3601 cpu_abort(env, "TB too big during recompile");
3602
3603 cflags = n | CF_LAST_IO;
3604 pc = tb->pc;
3605 cs_base = tb->cs_base;
3606 flags = tb->flags;
3607 tb_phys_invalidate(tb, -1);
3608 /* FIXME: In theory this could raise an exception. In practice
3609 we have already translated the block once so it's probably ok. */
3610 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3611 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3612 the first in the TB) then we end up generating a whole new TB and
3613 repeating the fault, which is horribly inefficient.
3614 Better would be to execute just this insn uncached, or generate a
3615 second new TB. */
3616 cpu_resume_from_signal(env, NULL);
3617}
3618
e3db7226
FB
3619void dump_exec_info(FILE *f,
3620 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3621{
3622 int i, target_code_size, max_target_code_size;
3623 int direct_jmp_count, direct_jmp2_count, cross_page;
3624 TranslationBlock *tb;
3b46e624 3625
e3db7226
FB
3626 target_code_size = 0;
3627 max_target_code_size = 0;
3628 cross_page = 0;
3629 direct_jmp_count = 0;
3630 direct_jmp2_count = 0;
3631 for(i = 0; i < nb_tbs; i++) {
3632 tb = &tbs[i];
3633 target_code_size += tb->size;
3634 if (tb->size > max_target_code_size)
3635 max_target_code_size = tb->size;
3636 if (tb->page_addr[1] != -1)
3637 cross_page++;
3638 if (tb->tb_next_offset[0] != 0xffff) {
3639 direct_jmp_count++;
3640 if (tb->tb_next_offset[1] != 0xffff) {
3641 direct_jmp2_count++;
3642 }
3643 }
3644 }
3645 /* XXX: avoid using doubles ? */
57fec1fe 3646 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3647 cpu_fprintf(f, "gen code size %ld/%ld\n",
3648 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3649 cpu_fprintf(f, "TB count %d/%d\n",
3650 nb_tbs, code_gen_max_blocks);
5fafdf24 3651 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3652 nb_tbs ? target_code_size / nb_tbs : 0,
3653 max_target_code_size);
5fafdf24 3654 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3655 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3656 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3657 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3658 cross_page,
e3db7226
FB
3659 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3660 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3661 direct_jmp_count,
e3db7226
FB
3662 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3663 direct_jmp2_count,
3664 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3665 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3666 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3667 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3668 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3669 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3670}
3671
5fafdf24 3672#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3673
3674#define MMUSUFFIX _cmmu
3675#define GETPC() NULL
3676#define env cpu_single_env
b769d8fe 3677#define SOFTMMU_CODE_ACCESS
61382a50
FB
3678
3679#define SHIFT 0
3680#include "softmmu_template.h"
3681
3682#define SHIFT 1
3683#include "softmmu_template.h"
3684
3685#define SHIFT 2
3686#include "softmmu_template.h"
3687
3688#define SHIFT 3
3689#include "softmmu_template.h"
3690
3691#undef env
3692
3693#endif