]> git.proxmox.com Git - mirror_qemu.git/blame - hw/i386/intel_iommu.c
docs: update documentation considering PCIE-PCI bridge
[mirror_qemu.git] / hw / i386 / intel_iommu.c
CommitLineData
1da12ec4
LT
1/*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
b6a0aa05 22#include "qemu/osdep.h"
4684a204 23#include "qemu/error-report.h"
6333e93c 24#include "qapi/error.h"
1da12ec4
LT
25#include "hw/sysbus.h"
26#include "exec/address-spaces.h"
27#include "intel_iommu_internal.h"
7df953bd 28#include "hw/pci/pci.h"
3cb3b154 29#include "hw/pci/pci_bus.h"
621d983a 30#include "hw/i386/pc.h"
dea651a9 31#include "hw/i386/apic-msidef.h"
04af0e18
PX
32#include "hw/boards.h"
33#include "hw/i386/x86-iommu.h"
cb135f59 34#include "hw/pci-host/q35.h"
4684a204 35#include "sysemu/kvm.h"
32946019 36#include "hw/i386/apic_internal.h"
fb506e70 37#include "kvm_i386.h"
bc535e59 38#include "trace.h"
1da12ec4 39
1da12ec4
LT
40static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42{
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46}
47
48static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49{
50 stq_le_p(&s->womask[addr], mask);
51}
52
53static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55{
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59}
60
61static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62{
63 stl_le_p(&s->womask[addr], mask);
64}
65
66/* "External" get/set operations */
67static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68{
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74}
75
76static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77{
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83}
84
85static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86{
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90}
91
92static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93{
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97}
98
99/* "Internal" get/set operations */
100static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101{
102 return ldq_le_p(&s->csr[addr]);
103}
104
105static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106{
107 return ldl_le_p(&s->csr[addr]);
108}
109
110static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111{
112 stq_le_p(&s->csr[addr], val);
113}
114
115static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117{
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121}
122
123static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125{
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129}
130
b5a280c0
LT
131/* GHashTable functions */
132static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
133{
134 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
135}
136
137static guint vtd_uint64_hash(gconstpointer v)
138{
139 return (guint)*(const uint64_t *)v;
140}
141
142static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143 gpointer user_data)
144{
145 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146 uint16_t domain_id = *(uint16_t *)user_data;
147 return entry->domain_id == domain_id;
148}
149
d66b969b
JW
150/* The shift of an addr for a certain level of paging structure */
151static inline uint32_t vtd_slpt_level_shift(uint32_t level)
152{
7e58326a 153 assert(level != 0);
d66b969b
JW
154 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
155}
156
157static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
158{
159 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
160}
161
b5a280c0
LT
162static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163 gpointer user_data)
164{
165 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
d66b969b
JW
167 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
b5a280c0 169 return (entry->domain_id == info->domain_id) &&
d66b969b
JW
170 (((entry->gfn & info->mask) == gfn) ||
171 (entry->gfn == gfn_tlb));
b5a280c0
LT
172}
173
d92fa2dc
LT
174/* Reset all the gen of VTDAddressSpace to zero and set the gen of
175 * IntelIOMMUState to 1.
176 */
177static void vtd_reset_context_cache(IntelIOMMUState *s)
178{
d92fa2dc 179 VTDAddressSpace *vtd_as;
7df953bd
KO
180 VTDBus *vtd_bus;
181 GHashTableIter bus_it;
d92fa2dc
LT
182 uint32_t devfn_it;
183
7feb51b7
PX
184 trace_vtd_context_cache_reset();
185
7df953bd
KO
186 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
187
7df953bd 188 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
04af0e18 189 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 190 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc
LT
191 if (!vtd_as) {
192 continue;
193 }
194 vtd_as->context_cache_entry.context_cache_gen = 0;
195 }
196 }
197 s->context_cache_gen = 1;
198}
199
b5a280c0
LT
200static void vtd_reset_iotlb(IntelIOMMUState *s)
201{
202 assert(s->iotlb);
203 g_hash_table_remove_all(s->iotlb);
204}
205
bacabb0a 206static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
d66b969b
JW
207 uint32_t level)
208{
209 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
211}
212
213static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
214{
215 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
216}
217
b5a280c0
LT
218static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219 hwaddr addr)
220{
d66b969b 221 VTDIOTLBEntry *entry;
b5a280c0 222 uint64_t key;
d66b969b
JW
223 int level;
224
225 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227 source_id, level);
228 entry = g_hash_table_lookup(s->iotlb, &key);
229 if (entry) {
230 goto out;
231 }
232 }
b5a280c0 233
d66b969b
JW
234out:
235 return entry;
b5a280c0
LT
236}
237
238static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239 uint16_t domain_id, hwaddr addr, uint64_t slpte,
07f7b733 240 uint8_t access_flags, uint32_t level)
b5a280c0
LT
241{
242 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243 uint64_t *key = g_malloc(sizeof(*key));
d66b969b 244 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
b5a280c0 245
6c441e1d 246 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
b5a280c0 247 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
6c441e1d 248 trace_vtd_iotlb_reset("iotlb exceeds size limit");
b5a280c0
LT
249 vtd_reset_iotlb(s);
250 }
251
252 entry->gfn = gfn;
253 entry->domain_id = domain_id;
254 entry->slpte = slpte;
07f7b733 255 entry->access_flags = access_flags;
d66b969b
JW
256 entry->mask = vtd_slpt_level_page_mask(level);
257 *key = vtd_get_iotlb_key(gfn, source_id, level);
b5a280c0
LT
258 g_hash_table_replace(s->iotlb, key, entry);
259}
260
1da12ec4
LT
261/* Given the reg addr of both the message data and address, generate an
262 * interrupt via MSI.
263 */
264static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265 hwaddr mesg_data_reg)
266{
32946019 267 MSIMessage msi;
1da12ec4
LT
268
269 assert(mesg_data_reg < DMAR_REG_SIZE);
270 assert(mesg_addr_reg < DMAR_REG_SIZE);
271
32946019
RK
272 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273 msi.data = vtd_get_long_raw(s, mesg_data_reg);
1da12ec4 274
7feb51b7
PX
275 trace_vtd_irq_generate(msi.address, msi.data);
276
32946019 277 apic_get_class()->send_msi(&msi);
1da12ec4
LT
278}
279
280/* Generate a fault event to software via MSI if conditions are met.
281 * Notice that the value of FSTS_REG being passed to it should be the one
282 * before any update.
283 */
284static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
285{
286 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287 pre_fsts & VTD_FSTS_IQE) {
7feb51b7
PX
288 trace_vtd_err("There are previous interrupt conditions "
289 "to be serviced by software, fault event "
290 "is not generated.");
1da12ec4
LT
291 return;
292 }
293 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
7feb51b7 295 trace_vtd_err("Interrupt Mask set, irq is not generated.");
1da12ec4
LT
296 } else {
297 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
299 }
300}
301
302/* Check if the Fault (F) field of the Fault Recording Register referenced by
303 * @index is Set.
304 */
305static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
306{
307 /* Each reg is 128-bit */
308 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309 addr += 8; /* Access the high 64-bit half */
310
311 assert(index < DMAR_FRCD_REG_NR);
312
313 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
314}
315
316/* Update the PPF field of Fault Status Register.
317 * Should be called whenever change the F field of any fault recording
318 * registers.
319 */
320static void vtd_update_fsts_ppf(IntelIOMMUState *s)
321{
322 uint32_t i;
323 uint32_t ppf_mask = 0;
324
325 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326 if (vtd_is_frcd_set(s, i)) {
327 ppf_mask = VTD_FSTS_PPF;
328 break;
329 }
330 }
331 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
7feb51b7 332 trace_vtd_fsts_ppf(!!ppf_mask);
1da12ec4
LT
333}
334
335static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
336{
337 /* Each reg is 128-bit */
338 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339 addr += 8; /* Access the high 64-bit half */
340
341 assert(index < DMAR_FRCD_REG_NR);
342
343 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344 vtd_update_fsts_ppf(s);
345}
346
347/* Must not update F field now, should be done later */
348static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349 uint16_t source_id, hwaddr addr,
350 VTDFaultReason fault, bool is_write)
351{
352 uint64_t hi = 0, lo;
353 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
354
355 assert(index < DMAR_FRCD_REG_NR);
356
357 lo = VTD_FRCD_FI(addr);
358 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359 if (!is_write) {
360 hi |= VTD_FRCD_T;
361 }
362 vtd_set_quad_raw(s, frcd_reg_addr, lo);
363 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
7feb51b7
PX
364
365 trace_vtd_frr_new(index, hi, lo);
1da12ec4
LT
366}
367
368/* Try to collapse multiple pending faults from the same requester */
369static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
370{
371 uint32_t i;
372 uint64_t frcd_reg;
373 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
374
375 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376 frcd_reg = vtd_get_quad_raw(s, addr);
1da12ec4
LT
377 if ((frcd_reg & VTD_FRCD_F) &&
378 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379 return true;
380 }
381 addr += 16; /* 128-bit for each */
382 }
383 return false;
384}
385
386/* Log and report an DMAR (address translation) fault to software */
387static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388 hwaddr addr, VTDFaultReason fault,
389 bool is_write)
390{
391 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
392
393 assert(fault < VTD_FR_MAX);
394
395 if (fault == VTD_FR_RESERVED_ERR) {
396 /* This is not a normal fault reason case. Drop it. */
397 return;
398 }
7feb51b7
PX
399
400 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
401
1da12ec4 402 if (fsts_reg & VTD_FSTS_PFO) {
7feb51b7
PX
403 trace_vtd_err("New fault is not recorded due to "
404 "Primary Fault Overflow.");
1da12ec4
LT
405 return;
406 }
7feb51b7 407
1da12ec4 408 if (vtd_try_collapse_fault(s, source_id)) {
7feb51b7
PX
409 trace_vtd_err("New fault is not recorded due to "
410 "compression of faults.");
1da12ec4
LT
411 return;
412 }
7feb51b7 413
1da12ec4 414 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
7feb51b7
PX
415 trace_vtd_err("Next Fault Recording Reg is used, "
416 "new fault is not recorded, set PFO field.");
1da12ec4
LT
417 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418 return;
419 }
420
421 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
422
423 if (fsts_reg & VTD_FSTS_PPF) {
7feb51b7
PX
424 trace_vtd_err("There are pending faults already, "
425 "fault event is not generated.");
1da12ec4
LT
426 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427 s->next_frcd_reg++;
428 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429 s->next_frcd_reg = 0;
430 }
431 } else {
432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433 VTD_FSTS_FRI(s->next_frcd_reg));
434 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435 s->next_frcd_reg++;
436 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437 s->next_frcd_reg = 0;
438 }
439 /* This case actually cause the PPF to be Set.
440 * So generate fault event (interrupt).
441 */
442 vtd_generate_fault_event(s, fsts_reg);
443 }
444}
445
ed7b8fbc
LT
446/* Handle Invalidation Queue Errors of queued invalidation interface error
447 * conditions.
448 */
449static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
450{
451 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
452
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454 vtd_generate_fault_event(s, fsts_reg);
455}
456
457/* Set the IWC field and try to generate an invalidation completion interrupt */
458static void vtd_generate_completion_event(IntelIOMMUState *s)
459{
ed7b8fbc 460 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
bc535e59 461 trace_vtd_inv_desc_wait_irq("One pending, skip current");
ed7b8fbc
LT
462 return;
463 }
464 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
bc535e59
PX
467 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468 "new event not generated");
ed7b8fbc
LT
469 return;
470 } else {
471 /* Generate the interrupt event */
bc535e59 472 trace_vtd_inv_desc_wait_irq("Generating complete event");
ed7b8fbc
LT
473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
475 }
476}
477
1da12ec4
LT
478static inline bool vtd_root_entry_present(VTDRootEntry *root)
479{
480 return root->val & VTD_ROOT_ENTRY_P;
481}
482
483static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484 VTDRootEntry *re)
485{
486 dma_addr_t addr;
487
488 addr = s->root + index * sizeof(*re);
489 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
6c441e1d 490 trace_vtd_re_invalid(re->rsvd, re->val);
1da12ec4
LT
491 re->val = 0;
492 return -VTD_FR_ROOT_TABLE_INV;
493 }
494 re->val = le64_to_cpu(re->val);
495 return 0;
496}
497
8f7d7161 498static inline bool vtd_ce_present(VTDContextEntry *context)
1da12ec4
LT
499{
500 return context->lo & VTD_CONTEXT_ENTRY_P;
501}
502
503static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504 VTDContextEntry *ce)
505{
506 dma_addr_t addr;
507
6c441e1d 508 /* we have checked that root entry is present */
1da12ec4
LT
509 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
6c441e1d 511 trace_vtd_re_invalid(root->rsvd, root->val);
1da12ec4
LT
512 return -VTD_FR_CONTEXT_TABLE_INV;
513 }
514 ce->lo = le64_to_cpu(ce->lo);
515 ce->hi = le64_to_cpu(ce->hi);
516 return 0;
517}
518
8f7d7161 519static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
1da12ec4
LT
520{
521 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
522}
523
1da12ec4
LT
524static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
525{
526 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
527}
528
529/* Whether the pte indicates the address of the page frame */
530static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
531{
532 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
533}
534
535/* Get the content of a spte located in @base_addr[@index] */
536static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
537{
538 uint64_t slpte;
539
540 assert(index < VTD_SL_PT_ENTRY_NR);
541
542 if (dma_memory_read(&address_space_memory,
543 base_addr + index * sizeof(slpte), &slpte,
544 sizeof(slpte))) {
545 slpte = (uint64_t)-1;
546 return slpte;
547 }
548 slpte = le64_to_cpu(slpte);
549 return slpte;
550}
551
6e905564
PX
552/* Given an iova and the level of paging structure, return the offset
553 * of current level.
1da12ec4 554 */
6e905564 555static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
1da12ec4 556{
6e905564 557 return (iova >> vtd_slpt_level_shift(level)) &
1da12ec4
LT
558 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
559}
560
561/* Check Capability Register to see if the @level of page-table is supported */
562static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
563{
564 return VTD_CAP_SAGAW_MASK & s->cap &
565 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
566}
567
568/* Get the page-table level that hardware should use for the second-level
569 * page-table walk from the Address Width field of context-entry.
570 */
8f7d7161 571static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1da12ec4
LT
572{
573 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
574}
575
8f7d7161 576static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1da12ec4
LT
577{
578 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
579}
580
127ff5c3
PX
581static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
582{
583 return ce->lo & VTD_CONTEXT_ENTRY_TT;
584}
585
f80c9874
PX
586/* Return true if check passed, otherwise false */
587static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588 VTDContextEntry *ce)
589{
590 switch (vtd_ce_get_type(ce)) {
591 case VTD_CONTEXT_TT_MULTI_LEVEL:
592 /* Always supported */
593 break;
594 case VTD_CONTEXT_TT_DEV_IOTLB:
595 if (!x86_iommu->dt_supported) {
596 return false;
597 }
598 break;
dbaabb25
PX
599 case VTD_CONTEXT_TT_PASS_THROUGH:
600 if (!x86_iommu->pt_supported) {
601 return false;
602 }
603 break;
f80c9874
PX
604 default:
605 /* Unknwon type */
606 return false;
607 }
608 return true;
609}
610
f06a696d
PX
611static inline uint64_t vtd_iova_limit(VTDContextEntry *ce)
612{
8f7d7161 613 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
f06a696d
PX
614 return 1ULL << MIN(ce_agaw, VTD_MGAW);
615}
616
617/* Return true if IOVA passes range check, otherwise false. */
618static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce)
619{
620 /*
621 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
622 * in CAP_REG and AW in context-entry.
623 */
624 return !(iova & ~(vtd_iova_limit(ce) - 1));
625}
626
1da12ec4
LT
627static const uint64_t vtd_paging_entry_rsvd_field[] = {
628 [0] = ~0ULL,
629 /* For not large page */
630 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
631 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
632 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
633 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
634 /* For large page */
635 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
636 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
637 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
638 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
639};
640
641static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
642{
643 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
644 /* Maybe large page */
645 return slpte & vtd_paging_entry_rsvd_field[level + 4];
646 } else {
647 return slpte & vtd_paging_entry_rsvd_field[level];
648 }
649}
650
dbaabb25
PX
651/* Find the VTD address space associated with a given bus number */
652static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
653{
654 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
655 if (!vtd_bus) {
656 /*
657 * Iterate over the registered buses to find the one which
658 * currently hold this bus number, and update the bus_num
659 * lookup table:
660 */
661 GHashTableIter iter;
662
663 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
664 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
665 if (pci_bus_num(vtd_bus->bus) == bus_num) {
666 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
667 return vtd_bus;
668 }
669 }
670 }
671 return vtd_bus;
672}
673
6e905564 674/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1da12ec4
LT
675 * of the translation, can be used for deciding the size of large page.
676 */
6e905564
PX
677static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
678 uint64_t *slptep, uint32_t *slpte_level,
679 bool *reads, bool *writes)
1da12ec4 680{
8f7d7161
PX
681 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
682 uint32_t level = vtd_ce_get_level(ce);
1da12ec4
LT
683 uint32_t offset;
684 uint64_t slpte;
1da12ec4
LT
685 uint64_t access_right_check;
686
f06a696d 687 if (!vtd_iova_range_check(iova, ce)) {
7feb51b7 688 trace_vtd_err_dmar_iova_overflow(iova);
1da12ec4
LT
689 return -VTD_FR_ADDR_BEYOND_MGAW;
690 }
691
692 /* FIXME: what is the Atomics request here? */
693 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
694
695 while (true) {
6e905564 696 offset = vtd_iova_level_offset(iova, level);
1da12ec4
LT
697 slpte = vtd_get_slpte(addr, offset);
698
699 if (slpte == (uint64_t)-1) {
7feb51b7 700 trace_vtd_err_dmar_slpte_read_error(iova, level);
8f7d7161 701 if (level == vtd_ce_get_level(ce)) {
1da12ec4
LT
702 /* Invalid programming of context-entry */
703 return -VTD_FR_CONTEXT_ENTRY_INV;
704 } else {
705 return -VTD_FR_PAGING_ENTRY_INV;
706 }
707 }
708 *reads = (*reads) && (slpte & VTD_SL_R);
709 *writes = (*writes) && (slpte & VTD_SL_W);
710 if (!(slpte & access_right_check)) {
7feb51b7 711 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
1da12ec4
LT
712 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
713 }
714 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
7feb51b7 715 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
1da12ec4
LT
716 return -VTD_FR_PAGING_ENTRY_RSVD;
717 }
718
719 if (vtd_is_last_slpte(slpte, level)) {
720 *slptep = slpte;
721 *slpte_level = level;
722 return 0;
723 }
724 addr = vtd_get_slpte_addr(slpte);
725 level--;
726 }
727}
728
f06a696d
PX
729typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
730
731/**
732 * vtd_page_walk_level - walk over specific level for IOVA range
733 *
734 * @addr: base GPA addr to start the walk
735 * @start: IOVA range start address
736 * @end: IOVA range end address (start <= addr < end)
737 * @hook_fn: hook func to be called when detected page
738 * @private: private data to be passed into hook func
739 * @read: whether parent level has read permission
740 * @write: whether parent level has write permission
741 * @notify_unmap: whether we should notify invalid entries
742 */
743static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
744 uint64_t end, vtd_page_walk_hook hook_fn,
745 void *private, uint32_t level,
746 bool read, bool write, bool notify_unmap)
747{
748 bool read_cur, write_cur, entry_valid;
749 uint32_t offset;
750 uint64_t slpte;
751 uint64_t subpage_size, subpage_mask;
752 IOMMUTLBEntry entry;
753 uint64_t iova = start;
754 uint64_t iova_next;
755 int ret = 0;
756
757 trace_vtd_page_walk_level(addr, level, start, end);
758
759 subpage_size = 1ULL << vtd_slpt_level_shift(level);
760 subpage_mask = vtd_slpt_level_page_mask(level);
761
762 while (iova < end) {
763 iova_next = (iova & subpage_mask) + subpage_size;
764
765 offset = vtd_iova_level_offset(iova, level);
766 slpte = vtd_get_slpte(addr, offset);
767
768 if (slpte == (uint64_t)-1) {
769 trace_vtd_page_walk_skip_read(iova, iova_next);
770 goto next;
771 }
772
773 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
774 trace_vtd_page_walk_skip_reserve(iova, iova_next);
775 goto next;
776 }
777
778 /* Permissions are stacked with parents' */
779 read_cur = read && (slpte & VTD_SL_R);
780 write_cur = write && (slpte & VTD_SL_W);
781
782 /*
783 * As long as we have either read/write permission, this is a
784 * valid entry. The rule works for both page entries and page
785 * table entries.
786 */
787 entry_valid = read_cur | write_cur;
788
789 if (vtd_is_last_slpte(slpte, level)) {
790 entry.target_as = &address_space_memory;
791 entry.iova = iova & subpage_mask;
792 /* NOTE: this is only meaningful if entry_valid == true */
793 entry.translated_addr = vtd_get_slpte_addr(slpte);
794 entry.addr_mask = ~subpage_mask;
795 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
796 if (!entry_valid && !notify_unmap) {
797 trace_vtd_page_walk_skip_perm(iova, iova_next);
798 goto next;
799 }
800 trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
801 entry.addr_mask, entry.perm);
802 if (hook_fn) {
803 ret = hook_fn(&entry, private);
804 if (ret < 0) {
805 return ret;
806 }
807 }
808 } else {
809 if (!entry_valid) {
810 trace_vtd_page_walk_skip_perm(iova, iova_next);
811 goto next;
812 }
813 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova,
814 MIN(iova_next, end), hook_fn, private,
815 level - 1, read_cur, write_cur,
816 notify_unmap);
817 if (ret < 0) {
818 return ret;
819 }
820 }
821
822next:
823 iova = iova_next;
824 }
825
826 return 0;
827}
828
829/**
830 * vtd_page_walk - walk specific IOVA range, and call the hook
831 *
832 * @ce: context entry to walk upon
833 * @start: IOVA address to start the walk
834 * @end: IOVA range end address (start <= addr < end)
835 * @hook_fn: the hook that to be called for each detected area
836 * @private: private data for the hook function
837 */
838static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
dd4d607e
PX
839 vtd_page_walk_hook hook_fn, void *private,
840 bool notify_unmap)
f06a696d 841{
8f7d7161
PX
842 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
843 uint32_t level = vtd_ce_get_level(ce);
f06a696d
PX
844
845 if (!vtd_iova_range_check(start, ce)) {
846 return -VTD_FR_ADDR_BEYOND_MGAW;
847 }
848
849 if (!vtd_iova_range_check(end, ce)) {
850 /* Fix end so that it reaches the maximum */
851 end = vtd_iova_limit(ce);
852 }
853
854 return vtd_page_walk_level(addr, start, end, hook_fn, private,
dd4d607e 855 level, true, true, notify_unmap);
f06a696d
PX
856}
857
1da12ec4
LT
858/* Map a device to its corresponding domain (context-entry) */
859static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
860 uint8_t devfn, VTDContextEntry *ce)
861{
862 VTDRootEntry re;
863 int ret_fr;
f80c9874 864 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1da12ec4
LT
865
866 ret_fr = vtd_get_root_entry(s, bus_num, &re);
867 if (ret_fr) {
868 return ret_fr;
869 }
870
871 if (!vtd_root_entry_present(&re)) {
6c441e1d
PX
872 /* Not error - it's okay we don't have root entry. */
873 trace_vtd_re_not_present(bus_num);
1da12ec4 874 return -VTD_FR_ROOT_ENTRY_P;
f80c9874
PX
875 }
876
877 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
6c441e1d 878 trace_vtd_re_invalid(re.rsvd, re.val);
1da12ec4
LT
879 return -VTD_FR_ROOT_ENTRY_RSVD;
880 }
881
882 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
883 if (ret_fr) {
884 return ret_fr;
885 }
886
8f7d7161 887 if (!vtd_ce_present(ce)) {
6c441e1d
PX
888 /* Not error - it's okay we don't have context entry. */
889 trace_vtd_ce_not_present(bus_num, devfn);
1da12ec4 890 return -VTD_FR_CONTEXT_ENTRY_P;
f80c9874
PX
891 }
892
893 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
894 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
6c441e1d 895 trace_vtd_ce_invalid(ce->hi, ce->lo);
1da12ec4
LT
896 return -VTD_FR_CONTEXT_ENTRY_RSVD;
897 }
f80c9874 898
1da12ec4 899 /* Check if the programming of context-entry is valid */
8f7d7161 900 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
6c441e1d 901 trace_vtd_ce_invalid(ce->hi, ce->lo);
1da12ec4 902 return -VTD_FR_CONTEXT_ENTRY_INV;
1da12ec4 903 }
f80c9874
PX
904
905 /* Do translation type check */
906 if (!vtd_ce_type_check(x86_iommu, ce)) {
907 trace_vtd_ce_invalid(ce->hi, ce->lo);
908 return -VTD_FR_CONTEXT_ENTRY_INV;
909 }
910
1da12ec4
LT
911 return 0;
912}
913
dbaabb25
PX
914/*
915 * Fetch translation type for specific device. Returns <0 if error
916 * happens, otherwise return the shifted type to check against
917 * VTD_CONTEXT_TT_*.
918 */
919static int vtd_dev_get_trans_type(VTDAddressSpace *as)
920{
921 IntelIOMMUState *s;
922 VTDContextEntry ce;
923 int ret;
924
925 s = as->iommu_state;
926
927 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
928 as->devfn, &ce);
929 if (ret) {
930 return ret;
931 }
932
933 return vtd_ce_get_type(&ce);
934}
935
936static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
937{
938 int ret;
939
940 assert(as);
941
942 ret = vtd_dev_get_trans_type(as);
943 if (ret < 0) {
944 /*
945 * Possibly failed to parse the context entry for some reason
946 * (e.g., during init, or any guest configuration errors on
947 * context entries). We should assume PT not enabled for
948 * safety.
949 */
950 return false;
951 }
952
953 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
954}
955
956/* Return whether the device is using IOMMU translation. */
957static bool vtd_switch_address_space(VTDAddressSpace *as)
958{
959 bool use_iommu;
960
961 assert(as);
962
963 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
964
965 trace_vtd_switch_address_space(pci_bus_num(as->bus),
966 VTD_PCI_SLOT(as->devfn),
967 VTD_PCI_FUNC(as->devfn),
968 use_iommu);
969
970 /* Turn off first then on the other */
971 if (use_iommu) {
972 memory_region_set_enabled(&as->sys_alias, false);
3df9d748 973 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
dbaabb25 974 } else {
3df9d748 975 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
dbaabb25
PX
976 memory_region_set_enabled(&as->sys_alias, true);
977 }
978
979 return use_iommu;
980}
981
982static void vtd_switch_address_space_all(IntelIOMMUState *s)
983{
984 GHashTableIter iter;
985 VTDBus *vtd_bus;
986 int i;
987
988 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
989 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
990 for (i = 0; i < X86_IOMMU_PCI_DEVFN_MAX; i++) {
991 if (!vtd_bus->dev_as[i]) {
992 continue;
993 }
994 vtd_switch_address_space(vtd_bus->dev_as[i]);
995 }
996 }
997}
998
1da12ec4
LT
999static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1000{
1001 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1002}
1003
1004static const bool vtd_qualified_faults[] = {
1005 [VTD_FR_RESERVED] = false,
1006 [VTD_FR_ROOT_ENTRY_P] = false,
1007 [VTD_FR_CONTEXT_ENTRY_P] = true,
1008 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1009 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1010 [VTD_FR_WRITE] = true,
1011 [VTD_FR_READ] = true,
1012 [VTD_FR_PAGING_ENTRY_INV] = true,
1013 [VTD_FR_ROOT_TABLE_INV] = false,
1014 [VTD_FR_CONTEXT_TABLE_INV] = false,
1015 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1016 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1017 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1018 [VTD_FR_RESERVED_ERR] = false,
1019 [VTD_FR_MAX] = false,
1020};
1021
1022/* To see if a fault condition is "qualified", which is reported to software
1023 * only if the FPD field in the context-entry used to process the faulting
1024 * request is 0.
1025 */
1026static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1027{
1028 return vtd_qualified_faults[fault];
1029}
1030
1031static inline bool vtd_is_interrupt_addr(hwaddr addr)
1032{
1033 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1034}
1035
dbaabb25
PX
1036static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1037{
1038 VTDBus *vtd_bus;
1039 VTDAddressSpace *vtd_as;
1040 bool success = false;
1041
1042 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1043 if (!vtd_bus) {
1044 goto out;
1045 }
1046
1047 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1048 if (!vtd_as) {
1049 goto out;
1050 }
1051
1052 if (vtd_switch_address_space(vtd_as) == false) {
1053 /* We switched off IOMMU region successfully. */
1054 success = true;
1055 }
1056
1057out:
1058 trace_vtd_pt_enable_fast_path(source_id, success);
1059}
1060
1da12ec4
LT
1061/* Map dev to context-entry then do a paging-structures walk to do a iommu
1062 * translation.
79e2b9ae
PB
1063 *
1064 * Called from RCU critical section.
1065 *
1da12ec4
LT
1066 * @bus_num: The bus number
1067 * @devfn: The devfn, which is the combined of device and function number
1068 * @is_write: The access is a write operation
1069 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
b9313021
PX
1070 *
1071 * Returns true if translation is successful, otherwise false.
1da12ec4 1072 */
b9313021 1073static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1da12ec4
LT
1074 uint8_t devfn, hwaddr addr, bool is_write,
1075 IOMMUTLBEntry *entry)
1076{
d92fa2dc 1077 IntelIOMMUState *s = vtd_as->iommu_state;
1da12ec4 1078 VTDContextEntry ce;
7df953bd 1079 uint8_t bus_num = pci_bus_num(bus);
d92fa2dc 1080 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
d66b969b 1081 uint64_t slpte, page_mask;
1da12ec4
LT
1082 uint32_t level;
1083 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1084 int ret_fr;
1085 bool is_fpd_set = false;
1086 bool reads = true;
1087 bool writes = true;
07f7b733 1088 uint8_t access_flags;
b5a280c0 1089 VTDIOTLBEntry *iotlb_entry;
1da12ec4 1090
046ab7e9
PX
1091 /*
1092 * We have standalone memory region for interrupt addresses, we
1093 * should never receive translation requests in this region.
1094 */
1095 assert(!vtd_is_interrupt_addr(addr));
1096
b5a280c0
LT
1097 /* Try to fetch slpte form IOTLB */
1098 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1099 if (iotlb_entry) {
6c441e1d
PX
1100 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1101 iotlb_entry->domain_id);
b5a280c0 1102 slpte = iotlb_entry->slpte;
07f7b733 1103 access_flags = iotlb_entry->access_flags;
d66b969b 1104 page_mask = iotlb_entry->mask;
b5a280c0
LT
1105 goto out;
1106 }
b9313021 1107
d92fa2dc
LT
1108 /* Try to fetch context-entry from cache first */
1109 if (cc_entry->context_cache_gen == s->context_cache_gen) {
6c441e1d
PX
1110 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1111 cc_entry->context_entry.lo,
1112 cc_entry->context_cache_gen);
d92fa2dc
LT
1113 ce = cc_entry->context_entry;
1114 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1115 } else {
1116 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1117 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1118 if (ret_fr) {
1119 ret_fr = -ret_fr;
1120 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
6c441e1d 1121 trace_vtd_fault_disabled();
d92fa2dc
LT
1122 } else {
1123 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1124 }
b9313021 1125 goto error;
1da12ec4 1126 }
d92fa2dc 1127 /* Update context-cache */
6c441e1d
PX
1128 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1129 cc_entry->context_cache_gen,
1130 s->context_cache_gen);
d92fa2dc
LT
1131 cc_entry->context_entry = ce;
1132 cc_entry->context_cache_gen = s->context_cache_gen;
1da12ec4
LT
1133 }
1134
dbaabb25
PX
1135 /*
1136 * We don't need to translate for pass-through context entries.
1137 * Also, let's ignore IOTLB caching as well for PT devices.
1138 */
1139 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
892721d9 1140 entry->iova = addr & VTD_PAGE_MASK_4K;
dbaabb25 1141 entry->translated_addr = entry->iova;
892721d9 1142 entry->addr_mask = ~VTD_PAGE_MASK_4K;
dbaabb25
PX
1143 entry->perm = IOMMU_RW;
1144 trace_vtd_translate_pt(source_id, entry->iova);
1145
1146 /*
1147 * When this happens, it means firstly caching-mode is not
1148 * enabled, and this is the first passthrough translation for
1149 * the device. Let's enable the fast path for passthrough.
1150 *
1151 * When passthrough is disabled again for the device, we can
1152 * capture it via the context entry invalidation, then the
1153 * IOMMU region can be swapped back.
1154 */
1155 vtd_pt_enable_fast_path(s, source_id);
1156
b9313021 1157 return true;
dbaabb25
PX
1158 }
1159
6e905564
PX
1160 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1161 &reads, &writes);
1da12ec4
LT
1162 if (ret_fr) {
1163 ret_fr = -ret_fr;
1164 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
6c441e1d 1165 trace_vtd_fault_disabled();
1da12ec4
LT
1166 } else {
1167 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1168 }
b9313021 1169 goto error;
1da12ec4
LT
1170 }
1171
d66b969b 1172 page_mask = vtd_slpt_level_page_mask(level);
07f7b733 1173 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
b5a280c0 1174 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
07f7b733 1175 access_flags, level);
b5a280c0 1176out:
d66b969b
JW
1177 entry->iova = addr & page_mask;
1178 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
1179 entry->addr_mask = ~page_mask;
07f7b733 1180 entry->perm = access_flags;
b9313021
PX
1181 return true;
1182
1183error:
1184 entry->iova = 0;
1185 entry->translated_addr = 0;
1186 entry->addr_mask = 0;
1187 entry->perm = IOMMU_NONE;
1188 return false;
1da12ec4
LT
1189}
1190
1191static void vtd_root_table_setup(IntelIOMMUState *s)
1192{
1193 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1194 s->root_extended = s->root & VTD_RTADDR_RTT;
1195 s->root &= VTD_RTADDR_ADDR_MASK;
1196
7feb51b7 1197 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1da12ec4
LT
1198}
1199
02a2cbc8
PX
1200static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1201 uint32_t index, uint32_t mask)
1202{
1203 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1204}
1205
a5861439
PX
1206static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1207{
1208 uint64_t value = 0;
1209 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1210 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1211 s->intr_root = value & VTD_IRTA_ADDR_MASK;
28589311 1212 s->intr_eime = value & VTD_IRTA_EIME;
a5861439 1213
02a2cbc8
PX
1214 /* Notify global invalidation */
1215 vtd_iec_notify_all(s, true, 0, 0);
a5861439 1216
7feb51b7 1217 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
a5861439
PX
1218}
1219
dd4d607e
PX
1220static void vtd_iommu_replay_all(IntelIOMMUState *s)
1221{
1222 IntelIOMMUNotifierNode *node;
1223
1224 QLIST_FOREACH(node, &s->notifiers_list, next) {
1225 memory_region_iommu_replay_all(&node->vtd_as->iommu);
1226 }
1227}
1228
d92fa2dc
LT
1229static void vtd_context_global_invalidate(IntelIOMMUState *s)
1230{
bc535e59 1231 trace_vtd_inv_desc_cc_global();
d92fa2dc
LT
1232 s->context_cache_gen++;
1233 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1234 vtd_reset_context_cache(s);
1235 }
dbaabb25 1236 vtd_switch_address_space_all(s);
dd4d607e
PX
1237 /*
1238 * From VT-d spec 6.5.2.1, a global context entry invalidation
1239 * should be followed by a IOTLB global invalidation, so we should
1240 * be safe even without this. Hoewever, let's replay the region as
1241 * well to be safer, and go back here when we need finer tunes for
1242 * VT-d emulation codes.
1243 */
1244 vtd_iommu_replay_all(s);
d92fa2dc
LT
1245}
1246
1247/* Do a context-cache device-selective invalidation.
1248 * @func_mask: FM field after shifting
1249 */
1250static void vtd_context_device_invalidate(IntelIOMMUState *s,
1251 uint16_t source_id,
1252 uint16_t func_mask)
1253{
1254 uint16_t mask;
7df953bd 1255 VTDBus *vtd_bus;
d92fa2dc 1256 VTDAddressSpace *vtd_as;
bc535e59 1257 uint8_t bus_n, devfn;
d92fa2dc
LT
1258 uint16_t devfn_it;
1259
bc535e59
PX
1260 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1261
d92fa2dc
LT
1262 switch (func_mask & 3) {
1263 case 0:
1264 mask = 0; /* No bits in the SID field masked */
1265 break;
1266 case 1:
1267 mask = 4; /* Mask bit 2 in the SID field */
1268 break;
1269 case 2:
1270 mask = 6; /* Mask bit 2:1 in the SID field */
1271 break;
1272 case 3:
1273 mask = 7; /* Mask bit 2:0 in the SID field */
1274 break;
1275 }
6cb99acc 1276 mask = ~mask;
bc535e59
PX
1277
1278 bus_n = VTD_SID_TO_BUS(source_id);
1279 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
7df953bd 1280 if (vtd_bus) {
d92fa2dc 1281 devfn = VTD_SID_TO_DEVFN(source_id);
04af0e18 1282 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
7df953bd 1283 vtd_as = vtd_bus->dev_as[devfn_it];
d92fa2dc 1284 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
bc535e59
PX
1285 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1286 VTD_PCI_FUNC(devfn_it));
d92fa2dc 1287 vtd_as->context_cache_entry.context_cache_gen = 0;
dbaabb25
PX
1288 /*
1289 * Do switch address space when needed, in case if the
1290 * device passthrough bit is switched.
1291 */
1292 vtd_switch_address_space(vtd_as);
dd4d607e
PX
1293 /*
1294 * So a device is moving out of (or moving into) a
1295 * domain, a replay() suites here to notify all the
1296 * IOMMU_NOTIFIER_MAP registers about this change.
1297 * This won't bring bad even if we have no such
1298 * notifier registered - the IOMMU notification
1299 * framework will skip MAP notifications if that
1300 * happened.
1301 */
1302 memory_region_iommu_replay_all(&vtd_as->iommu);
d92fa2dc
LT
1303 }
1304 }
1305 }
1306}
1307
1da12ec4
LT
1308/* Context-cache invalidation
1309 * Returns the Context Actual Invalidation Granularity.
1310 * @val: the content of the CCMD_REG
1311 */
1312static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1313{
1314 uint64_t caig;
1315 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1316
1317 switch (type) {
d92fa2dc 1318 case VTD_CCMD_DOMAIN_INVL:
d92fa2dc 1319 /* Fall through */
1da12ec4 1320 case VTD_CCMD_GLOBAL_INVL:
1da12ec4 1321 caig = VTD_CCMD_GLOBAL_INVL_A;
d92fa2dc 1322 vtd_context_global_invalidate(s);
1da12ec4
LT
1323 break;
1324
1325 case VTD_CCMD_DEVICE_INVL:
1da12ec4 1326 caig = VTD_CCMD_DEVICE_INVL_A;
d92fa2dc 1327 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1da12ec4
LT
1328 break;
1329
1330 default:
7feb51b7 1331 trace_vtd_err("Context cache invalidate type error.");
1da12ec4
LT
1332 caig = 0;
1333 }
1334 return caig;
1335}
1336
b5a280c0
LT
1337static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1338{
7feb51b7 1339 trace_vtd_inv_desc_iotlb_global();
b5a280c0 1340 vtd_reset_iotlb(s);
dd4d607e 1341 vtd_iommu_replay_all(s);
b5a280c0
LT
1342}
1343
1344static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1345{
dd4d607e
PX
1346 IntelIOMMUNotifierNode *node;
1347 VTDContextEntry ce;
1348 VTDAddressSpace *vtd_as;
1349
7feb51b7
PX
1350 trace_vtd_inv_desc_iotlb_domain(domain_id);
1351
b5a280c0
LT
1352 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1353 &domain_id);
dd4d607e
PX
1354
1355 QLIST_FOREACH(node, &s->notifiers_list, next) {
1356 vtd_as = node->vtd_as;
1357 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1358 vtd_as->devfn, &ce) &&
1359 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1360 memory_region_iommu_replay_all(&vtd_as->iommu);
1361 }
1362 }
1363}
1364
1365static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1366 void *private)
1367{
3df9d748 1368 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
dd4d607e
PX
1369 return 0;
1370}
1371
1372static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1373 uint16_t domain_id, hwaddr addr,
1374 uint8_t am)
1375{
1376 IntelIOMMUNotifierNode *node;
1377 VTDContextEntry ce;
1378 int ret;
1379
1380 QLIST_FOREACH(node, &(s->notifiers_list), next) {
1381 VTDAddressSpace *vtd_as = node->vtd_as;
1382 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1383 vtd_as->devfn, &ce);
1384 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1385 vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1386 vtd_page_invalidate_notify_hook,
1387 (void *)&vtd_as->iommu, true);
1388 }
1389 }
b5a280c0
LT
1390}
1391
1392static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1393 hwaddr addr, uint8_t am)
1394{
1395 VTDIOTLBPageInvInfo info;
1396
7feb51b7
PX
1397 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1398
b5a280c0
LT
1399 assert(am <= VTD_MAMV);
1400 info.domain_id = domain_id;
d66b969b 1401 info.addr = addr;
b5a280c0
LT
1402 info.mask = ~((1 << am) - 1);
1403 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
dd4d607e 1404 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
b5a280c0
LT
1405}
1406
1da12ec4
LT
1407/* Flush IOTLB
1408 * Returns the IOTLB Actual Invalidation Granularity.
1409 * @val: the content of the IOTLB_REG
1410 */
1411static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1412{
1413 uint64_t iaig;
1414 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
b5a280c0
LT
1415 uint16_t domain_id;
1416 hwaddr addr;
1417 uint8_t am;
1da12ec4
LT
1418
1419 switch (type) {
1420 case VTD_TLB_GLOBAL_FLUSH:
1da12ec4 1421 iaig = VTD_TLB_GLOBAL_FLUSH_A;
b5a280c0 1422 vtd_iotlb_global_invalidate(s);
1da12ec4
LT
1423 break;
1424
1425 case VTD_TLB_DSI_FLUSH:
b5a280c0 1426 domain_id = VTD_TLB_DID(val);
1da12ec4 1427 iaig = VTD_TLB_DSI_FLUSH_A;
b5a280c0 1428 vtd_iotlb_domain_invalidate(s, domain_id);
1da12ec4
LT
1429 break;
1430
1431 case VTD_TLB_PSI_FLUSH:
b5a280c0
LT
1432 domain_id = VTD_TLB_DID(val);
1433 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1434 am = VTD_IVA_AM(addr);
1435 addr = VTD_IVA_ADDR(addr);
b5a280c0 1436 if (am > VTD_MAMV) {
7feb51b7 1437 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
b5a280c0
LT
1438 iaig = 0;
1439 break;
1440 }
1da12ec4 1441 iaig = VTD_TLB_PSI_FLUSH_A;
b5a280c0 1442 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1da12ec4
LT
1443 break;
1444
1445 default:
7feb51b7 1446 trace_vtd_err("IOTLB flush: invalid granularity.");
1da12ec4
LT
1447 iaig = 0;
1448 }
1449 return iaig;
1450}
1451
8991c460 1452static void vtd_fetch_inv_desc(IntelIOMMUState *s);
ed7b8fbc
LT
1453
1454static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1455{
1456 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1457 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1458}
1459
1460static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1461{
1462 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1463
7feb51b7
PX
1464 trace_vtd_inv_qi_enable(en);
1465
ed7b8fbc 1466 if (en) {
8991c460
LP
1467 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1468 /* 2^(x+8) entries */
1469 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1470 s->qi_enabled = true;
1471 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1472 /* Ok - report back to driver */
1473 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1474
1475 if (s->iq_tail != 0) {
1476 /*
1477 * This is a spec violation but Windows guests are known to set up
1478 * Queued Invalidation this way so we allow the write and process
1479 * Invalidation Descriptors right away.
1480 */
1481 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1482 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1483 vtd_fetch_inv_desc(s);
1484 }
ed7b8fbc
LT
1485 }
1486 } else {
1487 if (vtd_queued_inv_disable_check(s)) {
1488 /* disable Queued Invalidation */
1489 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1490 s->iq_head = 0;
1491 s->qi_enabled = false;
1492 /* Ok - report back to driver */
1493 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1494 } else {
7feb51b7 1495 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
ed7b8fbc
LT
1496 }
1497 }
1498}
1499
1da12ec4
LT
1500/* Set Root Table Pointer */
1501static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1502{
1da12ec4
LT
1503 vtd_root_table_setup(s);
1504 /* Ok - report back to driver */
1505 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1506}
1507
a5861439
PX
1508/* Set Interrupt Remap Table Pointer */
1509static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1510{
a5861439
PX
1511 vtd_interrupt_remap_table_setup(s);
1512 /* Ok - report back to driver */
1513 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1514}
1515
1da12ec4
LT
1516/* Handle Translation Enable/Disable */
1517static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1518{
558e0024
PX
1519 if (s->dmar_enabled == en) {
1520 return;
1521 }
1522
7feb51b7 1523 trace_vtd_dmar_enable(en);
1da12ec4
LT
1524
1525 if (en) {
1526 s->dmar_enabled = true;
1527 /* Ok - report back to driver */
1528 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1529 } else {
1530 s->dmar_enabled = false;
1531
1532 /* Clear the index of Fault Recording Register */
1533 s->next_frcd_reg = 0;
1534 /* Ok - report back to driver */
1535 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1536 }
558e0024
PX
1537
1538 vtd_switch_address_space_all(s);
1da12ec4
LT
1539}
1540
80de52ba
PX
1541/* Handle Interrupt Remap Enable/Disable */
1542static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1543{
7feb51b7 1544 trace_vtd_ir_enable(en);
80de52ba
PX
1545
1546 if (en) {
1547 s->intr_enabled = true;
1548 /* Ok - report back to driver */
1549 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1550 } else {
1551 s->intr_enabled = false;
1552 /* Ok - report back to driver */
1553 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1554 }
1555}
1556
1da12ec4
LT
1557/* Handle write to Global Command Register */
1558static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1559{
1560 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1561 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1562 uint32_t changed = status ^ val;
1563
7feb51b7 1564 trace_vtd_reg_write_gcmd(status, val);
1da12ec4
LT
1565 if (changed & VTD_GCMD_TE) {
1566 /* Translation enable/disable */
1567 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1568 }
1569 if (val & VTD_GCMD_SRTP) {
1570 /* Set/update the root-table pointer */
1571 vtd_handle_gcmd_srtp(s);
1572 }
ed7b8fbc
LT
1573 if (changed & VTD_GCMD_QIE) {
1574 /* Queued Invalidation Enable */
1575 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1576 }
a5861439
PX
1577 if (val & VTD_GCMD_SIRTP) {
1578 /* Set/update the interrupt remapping root-table pointer */
1579 vtd_handle_gcmd_sirtp(s);
1580 }
80de52ba
PX
1581 if (changed & VTD_GCMD_IRE) {
1582 /* Interrupt remap enable/disable */
1583 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1584 }
1da12ec4
LT
1585}
1586
1587/* Handle write to Context Command Register */
1588static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1589{
1590 uint64_t ret;
1591 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1592
1593 /* Context-cache invalidation request */
1594 if (val & VTD_CCMD_ICC) {
ed7b8fbc 1595 if (s->qi_enabled) {
7feb51b7
PX
1596 trace_vtd_err("Queued Invalidation enabled, "
1597 "should not use register-based invalidation");
ed7b8fbc
LT
1598 return;
1599 }
1da12ec4
LT
1600 ret = vtd_context_cache_invalidate(s, val);
1601 /* Invalidation completed. Change something to show */
1602 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1603 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1604 ret);
1da12ec4
LT
1605 }
1606}
1607
1608/* Handle write to IOTLB Invalidation Register */
1609static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1610{
1611 uint64_t ret;
1612 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1613
1614 /* IOTLB invalidation request */
1615 if (val & VTD_TLB_IVT) {
ed7b8fbc 1616 if (s->qi_enabled) {
7feb51b7
PX
1617 trace_vtd_err("Queued Invalidation enabled, "
1618 "should not use register-based invalidation.");
ed7b8fbc
LT
1619 return;
1620 }
1da12ec4
LT
1621 ret = vtd_iotlb_flush(s, val);
1622 /* Invalidation completed. Change something to show */
1623 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1624 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1625 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1da12ec4
LT
1626 }
1627}
1628
ed7b8fbc
LT
1629/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1630static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1631 VTDInvDesc *inv_desc)
1632{
1633 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1634 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1635 sizeof(*inv_desc))) {
7feb51b7 1636 trace_vtd_err("Read INV DESC failed.");
ed7b8fbc
LT
1637 inv_desc->lo = 0;
1638 inv_desc->hi = 0;
ed7b8fbc
LT
1639 return false;
1640 }
1641 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1642 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1643 return true;
1644}
1645
1646static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1647{
1648 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1649 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
bc535e59 1650 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1651 return false;
1652 }
1653 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1654 /* Status Write */
1655 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1656 VTD_INV_DESC_WAIT_DATA_SHIFT);
1657
1658 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1659
1660 /* FIXME: need to be masked with HAW? */
1661 dma_addr_t status_addr = inv_desc->hi;
bc535e59 1662 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
ed7b8fbc
LT
1663 status_data = cpu_to_le32(status_data);
1664 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1665 sizeof(status_data))) {
bc535e59 1666 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1667 return false;
1668 }
1669 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1670 /* Interrupt flag */
ed7b8fbc
LT
1671 vtd_generate_completion_event(s);
1672 } else {
bc535e59 1673 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
ed7b8fbc
LT
1674 return false;
1675 }
1676 return true;
1677}
1678
d92fa2dc
LT
1679static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1680 VTDInvDesc *inv_desc)
1681{
bc535e59
PX
1682 uint16_t sid, fmask;
1683
d92fa2dc 1684 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
bc535e59 1685 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
d92fa2dc
LT
1686 return false;
1687 }
1688 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1689 case VTD_INV_DESC_CC_DOMAIN:
bc535e59
PX
1690 trace_vtd_inv_desc_cc_domain(
1691 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
d92fa2dc
LT
1692 /* Fall through */
1693 case VTD_INV_DESC_CC_GLOBAL:
d92fa2dc
LT
1694 vtd_context_global_invalidate(s);
1695 break;
1696
1697 case VTD_INV_DESC_CC_DEVICE:
bc535e59
PX
1698 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1699 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1700 vtd_context_device_invalidate(s, sid, fmask);
d92fa2dc
LT
1701 break;
1702
1703 default:
bc535e59 1704 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
d92fa2dc
LT
1705 return false;
1706 }
1707 return true;
1708}
1709
b5a280c0
LT
1710static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1711{
1712 uint16_t domain_id;
1713 uint8_t am;
1714 hwaddr addr;
1715
1716 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1717 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
bc535e59 1718 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1719 return false;
1720 }
1721
1722 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1723 case VTD_INV_DESC_IOTLB_GLOBAL:
b5a280c0
LT
1724 vtd_iotlb_global_invalidate(s);
1725 break;
1726
1727 case VTD_INV_DESC_IOTLB_DOMAIN:
1728 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
b5a280c0
LT
1729 vtd_iotlb_domain_invalidate(s, domain_id);
1730 break;
1731
1732 case VTD_INV_DESC_IOTLB_PAGE:
1733 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1734 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1735 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
b5a280c0 1736 if (am > VTD_MAMV) {
bc535e59 1737 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1738 return false;
1739 }
1740 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1741 break;
1742
1743 default:
bc535e59 1744 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
b5a280c0
LT
1745 return false;
1746 }
1747 return true;
1748}
1749
02a2cbc8
PX
1750static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1751 VTDInvDesc *inv_desc)
1752{
7feb51b7
PX
1753 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1754 inv_desc->iec.index,
1755 inv_desc->iec.index_mask);
02a2cbc8
PX
1756
1757 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1758 inv_desc->iec.index,
1759 inv_desc->iec.index_mask);
554f5e16
JW
1760 return true;
1761}
1762
1763static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1764 VTDInvDesc *inv_desc)
1765{
1766 VTDAddressSpace *vtd_dev_as;
1767 IOMMUTLBEntry entry;
1768 struct VTDBus *vtd_bus;
1769 hwaddr addr;
1770 uint64_t sz;
1771 uint16_t sid;
1772 uint8_t devfn;
1773 bool size;
1774 uint8_t bus_num;
1775
1776 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1777 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1778 devfn = sid & 0xff;
1779 bus_num = sid >> 8;
1780 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1781
1782 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1783 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
7feb51b7 1784 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
554f5e16
JW
1785 return false;
1786 }
1787
1788 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1789 if (!vtd_bus) {
1790 goto done;
1791 }
1792
1793 vtd_dev_as = vtd_bus->dev_as[devfn];
1794 if (!vtd_dev_as) {
1795 goto done;
1796 }
1797
04eb6247
JW
1798 /* According to ATS spec table 2.4:
1799 * S = 0, bits 15:12 = xxxx range size: 4K
1800 * S = 1, bits 15:12 = xxx0 range size: 8K
1801 * S = 1, bits 15:12 = xx01 range size: 16K
1802 * S = 1, bits 15:12 = x011 range size: 32K
1803 * S = 1, bits 15:12 = 0111 range size: 64K
1804 * ...
1805 */
554f5e16 1806 if (size) {
04eb6247 1807 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
554f5e16
JW
1808 addr &= ~(sz - 1);
1809 } else {
1810 sz = VTD_PAGE_SIZE;
1811 }
02a2cbc8 1812
554f5e16
JW
1813 entry.target_as = &vtd_dev_as->as;
1814 entry.addr_mask = sz - 1;
1815 entry.iova = addr;
1816 entry.perm = IOMMU_NONE;
1817 entry.translated_addr = 0;
10315b9b 1818 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
554f5e16
JW
1819
1820done:
02a2cbc8
PX
1821 return true;
1822}
1823
ed7b8fbc
LT
1824static bool vtd_process_inv_desc(IntelIOMMUState *s)
1825{
1826 VTDInvDesc inv_desc;
1827 uint8_t desc_type;
1828
7feb51b7 1829 trace_vtd_inv_qi_head(s->iq_head);
ed7b8fbc
LT
1830 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1831 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1832 return false;
1833 }
1834 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1835 /* FIXME: should update at first or at last? */
1836 s->iq_last_desc_type = desc_type;
1837
1838 switch (desc_type) {
1839 case VTD_INV_DESC_CC:
bc535e59 1840 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
d92fa2dc
LT
1841 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1842 return false;
1843 }
ed7b8fbc
LT
1844 break;
1845
1846 case VTD_INV_DESC_IOTLB:
bc535e59 1847 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
b5a280c0
LT
1848 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1849 return false;
1850 }
ed7b8fbc
LT
1851 break;
1852
1853 case VTD_INV_DESC_WAIT:
bc535e59 1854 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
1855 if (!vtd_process_wait_desc(s, &inv_desc)) {
1856 return false;
1857 }
1858 break;
1859
b7910472 1860 case VTD_INV_DESC_IEC:
bc535e59 1861 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
02a2cbc8
PX
1862 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1863 return false;
1864 }
b7910472
PX
1865 break;
1866
554f5e16 1867 case VTD_INV_DESC_DEVICE:
7feb51b7 1868 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
554f5e16
JW
1869 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1870 return false;
1871 }
1872 break;
1873
ed7b8fbc 1874 default:
bc535e59 1875 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
ed7b8fbc
LT
1876 return false;
1877 }
1878 s->iq_head++;
1879 if (s->iq_head == s->iq_size) {
1880 s->iq_head = 0;
1881 }
1882 return true;
1883}
1884
1885/* Try to fetch and process more Invalidation Descriptors */
1886static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1887{
7feb51b7
PX
1888 trace_vtd_inv_qi_fetch();
1889
ed7b8fbc
LT
1890 if (s->iq_tail >= s->iq_size) {
1891 /* Detects an invalid Tail pointer */
7feb51b7 1892 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
ed7b8fbc
LT
1893 vtd_handle_inv_queue_error(s);
1894 return;
1895 }
1896 while (s->iq_head != s->iq_tail) {
1897 if (!vtd_process_inv_desc(s)) {
1898 /* Invalidation Queue Errors */
1899 vtd_handle_inv_queue_error(s);
1900 break;
1901 }
1902 /* Must update the IQH_REG in time */
1903 vtd_set_quad_raw(s, DMAR_IQH_REG,
1904 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1905 VTD_IQH_QH_MASK);
1906 }
1907}
1908
1909/* Handle write to Invalidation Queue Tail Register */
1910static void vtd_handle_iqt_write(IntelIOMMUState *s)
1911{
1912 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1913
1914 s->iq_tail = VTD_IQT_QT(val);
7feb51b7
PX
1915 trace_vtd_inv_qi_tail(s->iq_tail);
1916
ed7b8fbc
LT
1917 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1918 /* Process Invalidation Queue here */
1919 vtd_fetch_inv_desc(s);
1920 }
1921}
1922
1da12ec4
LT
1923static void vtd_handle_fsts_write(IntelIOMMUState *s)
1924{
1925 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1926 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1927 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1928
1929 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1930 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
7feb51b7 1931 trace_vtd_fsts_clear_ip();
1da12ec4 1932 }
ed7b8fbc
LT
1933 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1934 * Descriptors if there are any when Queued Invalidation is enabled?
1935 */
1da12ec4
LT
1936}
1937
1938static void vtd_handle_fectl_write(IntelIOMMUState *s)
1939{
1940 uint32_t fectl_reg;
1941 /* FIXME: when software clears the IM field, check the IP field. But do we
1942 * need to compare the old value and the new value to conclude that
1943 * software clears the IM field? Or just check if the IM field is zero?
1944 */
1945 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
7feb51b7
PX
1946
1947 trace_vtd_reg_write_fectl(fectl_reg);
1948
1da12ec4
LT
1949 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1950 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1951 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1da12ec4
LT
1952 }
1953}
1954
ed7b8fbc
LT
1955static void vtd_handle_ics_write(IntelIOMMUState *s)
1956{
1957 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1958 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1959
1960 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
7feb51b7 1961 trace_vtd_reg_ics_clear_ip();
ed7b8fbc 1962 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
1963 }
1964}
1965
1966static void vtd_handle_iectl_write(IntelIOMMUState *s)
1967{
1968 uint32_t iectl_reg;
1969 /* FIXME: when software clears the IM field, check the IP field. But do we
1970 * need to compare the old value and the new value to conclude that
1971 * software clears the IM field? Or just check if the IM field is zero?
1972 */
1973 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
7feb51b7
PX
1974
1975 trace_vtd_reg_write_iectl(iectl_reg);
1976
ed7b8fbc
LT
1977 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1978 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1979 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
ed7b8fbc
LT
1980 }
1981}
1982
1da12ec4
LT
1983static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1984{
1985 IntelIOMMUState *s = opaque;
1986 uint64_t val;
1987
7feb51b7
PX
1988 trace_vtd_reg_read(addr, size);
1989
1da12ec4 1990 if (addr + size > DMAR_REG_SIZE) {
7feb51b7 1991 trace_vtd_err("Read MMIO over range.");
1da12ec4
LT
1992 return (uint64_t)-1;
1993 }
1994
1995 switch (addr) {
1996 /* Root Table Address Register, 64-bit */
1997 case DMAR_RTADDR_REG:
1998 if (size == 4) {
1999 val = s->root & ((1ULL << 32) - 1);
2000 } else {
2001 val = s->root;
2002 }
2003 break;
2004
2005 case DMAR_RTADDR_REG_HI:
2006 assert(size == 4);
2007 val = s->root >> 32;
2008 break;
2009
ed7b8fbc
LT
2010 /* Invalidation Queue Address Register, 64-bit */
2011 case DMAR_IQA_REG:
2012 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2013 if (size == 4) {
2014 val = val & ((1ULL << 32) - 1);
2015 }
2016 break;
2017
2018 case DMAR_IQA_REG_HI:
2019 assert(size == 4);
2020 val = s->iq >> 32;
2021 break;
2022
1da12ec4
LT
2023 default:
2024 if (size == 4) {
2025 val = vtd_get_long(s, addr);
2026 } else {
2027 val = vtd_get_quad(s, addr);
2028 }
2029 }
7feb51b7 2030
1da12ec4
LT
2031 return val;
2032}
2033
2034static void vtd_mem_write(void *opaque, hwaddr addr,
2035 uint64_t val, unsigned size)
2036{
2037 IntelIOMMUState *s = opaque;
2038
7feb51b7
PX
2039 trace_vtd_reg_write(addr, size, val);
2040
1da12ec4 2041 if (addr + size > DMAR_REG_SIZE) {
7feb51b7 2042 trace_vtd_err("Write MMIO over range.");
1da12ec4
LT
2043 return;
2044 }
2045
2046 switch (addr) {
2047 /* Global Command Register, 32-bit */
2048 case DMAR_GCMD_REG:
1da12ec4
LT
2049 vtd_set_long(s, addr, val);
2050 vtd_handle_gcmd_write(s);
2051 break;
2052
2053 /* Context Command Register, 64-bit */
2054 case DMAR_CCMD_REG:
1da12ec4
LT
2055 if (size == 4) {
2056 vtd_set_long(s, addr, val);
2057 } else {
2058 vtd_set_quad(s, addr, val);
2059 vtd_handle_ccmd_write(s);
2060 }
2061 break;
2062
2063 case DMAR_CCMD_REG_HI:
1da12ec4
LT
2064 assert(size == 4);
2065 vtd_set_long(s, addr, val);
2066 vtd_handle_ccmd_write(s);
2067 break;
2068
2069 /* IOTLB Invalidation Register, 64-bit */
2070 case DMAR_IOTLB_REG:
1da12ec4
LT
2071 if (size == 4) {
2072 vtd_set_long(s, addr, val);
2073 } else {
2074 vtd_set_quad(s, addr, val);
2075 vtd_handle_iotlb_write(s);
2076 }
2077 break;
2078
2079 case DMAR_IOTLB_REG_HI:
1da12ec4
LT
2080 assert(size == 4);
2081 vtd_set_long(s, addr, val);
2082 vtd_handle_iotlb_write(s);
2083 break;
2084
b5a280c0
LT
2085 /* Invalidate Address Register, 64-bit */
2086 case DMAR_IVA_REG:
b5a280c0
LT
2087 if (size == 4) {
2088 vtd_set_long(s, addr, val);
2089 } else {
2090 vtd_set_quad(s, addr, val);
2091 }
2092 break;
2093
2094 case DMAR_IVA_REG_HI:
b5a280c0
LT
2095 assert(size == 4);
2096 vtd_set_long(s, addr, val);
2097 break;
2098
1da12ec4
LT
2099 /* Fault Status Register, 32-bit */
2100 case DMAR_FSTS_REG:
1da12ec4
LT
2101 assert(size == 4);
2102 vtd_set_long(s, addr, val);
2103 vtd_handle_fsts_write(s);
2104 break;
2105
2106 /* Fault Event Control Register, 32-bit */
2107 case DMAR_FECTL_REG:
1da12ec4
LT
2108 assert(size == 4);
2109 vtd_set_long(s, addr, val);
2110 vtd_handle_fectl_write(s);
2111 break;
2112
2113 /* Fault Event Data Register, 32-bit */
2114 case DMAR_FEDATA_REG:
1da12ec4
LT
2115 assert(size == 4);
2116 vtd_set_long(s, addr, val);
2117 break;
2118
2119 /* Fault Event Address Register, 32-bit */
2120 case DMAR_FEADDR_REG:
1da12ec4
LT
2121 assert(size == 4);
2122 vtd_set_long(s, addr, val);
2123 break;
2124
2125 /* Fault Event Upper Address Register, 32-bit */
2126 case DMAR_FEUADDR_REG:
1da12ec4
LT
2127 assert(size == 4);
2128 vtd_set_long(s, addr, val);
2129 break;
2130
2131 /* Protected Memory Enable Register, 32-bit */
2132 case DMAR_PMEN_REG:
1da12ec4
LT
2133 assert(size == 4);
2134 vtd_set_long(s, addr, val);
2135 break;
2136
2137 /* Root Table Address Register, 64-bit */
2138 case DMAR_RTADDR_REG:
1da12ec4
LT
2139 if (size == 4) {
2140 vtd_set_long(s, addr, val);
2141 } else {
2142 vtd_set_quad(s, addr, val);
2143 }
2144 break;
2145
2146 case DMAR_RTADDR_REG_HI:
1da12ec4
LT
2147 assert(size == 4);
2148 vtd_set_long(s, addr, val);
2149 break;
2150
ed7b8fbc
LT
2151 /* Invalidation Queue Tail Register, 64-bit */
2152 case DMAR_IQT_REG:
ed7b8fbc
LT
2153 if (size == 4) {
2154 vtd_set_long(s, addr, val);
2155 } else {
2156 vtd_set_quad(s, addr, val);
2157 }
2158 vtd_handle_iqt_write(s);
2159 break;
2160
2161 case DMAR_IQT_REG_HI:
ed7b8fbc
LT
2162 assert(size == 4);
2163 vtd_set_long(s, addr, val);
2164 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2165 break;
2166
2167 /* Invalidation Queue Address Register, 64-bit */
2168 case DMAR_IQA_REG:
ed7b8fbc
LT
2169 if (size == 4) {
2170 vtd_set_long(s, addr, val);
2171 } else {
2172 vtd_set_quad(s, addr, val);
2173 }
2174 break;
2175
2176 case DMAR_IQA_REG_HI:
ed7b8fbc
LT
2177 assert(size == 4);
2178 vtd_set_long(s, addr, val);
2179 break;
2180
2181 /* Invalidation Completion Status Register, 32-bit */
2182 case DMAR_ICS_REG:
ed7b8fbc
LT
2183 assert(size == 4);
2184 vtd_set_long(s, addr, val);
2185 vtd_handle_ics_write(s);
2186 break;
2187
2188 /* Invalidation Event Control Register, 32-bit */
2189 case DMAR_IECTL_REG:
ed7b8fbc
LT
2190 assert(size == 4);
2191 vtd_set_long(s, addr, val);
2192 vtd_handle_iectl_write(s);
2193 break;
2194
2195 /* Invalidation Event Data Register, 32-bit */
2196 case DMAR_IEDATA_REG:
ed7b8fbc
LT
2197 assert(size == 4);
2198 vtd_set_long(s, addr, val);
2199 break;
2200
2201 /* Invalidation Event Address Register, 32-bit */
2202 case DMAR_IEADDR_REG:
ed7b8fbc
LT
2203 assert(size == 4);
2204 vtd_set_long(s, addr, val);
2205 break;
2206
2207 /* Invalidation Event Upper Address Register, 32-bit */
2208 case DMAR_IEUADDR_REG:
ed7b8fbc
LT
2209 assert(size == 4);
2210 vtd_set_long(s, addr, val);
2211 break;
2212
1da12ec4
LT
2213 /* Fault Recording Registers, 128-bit */
2214 case DMAR_FRCD_REG_0_0:
1da12ec4
LT
2215 if (size == 4) {
2216 vtd_set_long(s, addr, val);
2217 } else {
2218 vtd_set_quad(s, addr, val);
2219 }
2220 break;
2221
2222 case DMAR_FRCD_REG_0_1:
1da12ec4
LT
2223 assert(size == 4);
2224 vtd_set_long(s, addr, val);
2225 break;
2226
2227 case DMAR_FRCD_REG_0_2:
1da12ec4
LT
2228 if (size == 4) {
2229 vtd_set_long(s, addr, val);
2230 } else {
2231 vtd_set_quad(s, addr, val);
2232 /* May clear bit 127 (Fault), update PPF */
2233 vtd_update_fsts_ppf(s);
2234 }
2235 break;
2236
2237 case DMAR_FRCD_REG_0_3:
1da12ec4
LT
2238 assert(size == 4);
2239 vtd_set_long(s, addr, val);
2240 /* May clear bit 127 (Fault), update PPF */
2241 vtd_update_fsts_ppf(s);
2242 break;
2243
a5861439 2244 case DMAR_IRTA_REG:
a5861439
PX
2245 if (size == 4) {
2246 vtd_set_long(s, addr, val);
2247 } else {
2248 vtd_set_quad(s, addr, val);
2249 }
2250 break;
2251
2252 case DMAR_IRTA_REG_HI:
a5861439
PX
2253 assert(size == 4);
2254 vtd_set_long(s, addr, val);
2255 break;
2256
1da12ec4 2257 default:
1da12ec4
LT
2258 if (size == 4) {
2259 vtd_set_long(s, addr, val);
2260 } else {
2261 vtd_set_quad(s, addr, val);
2262 }
2263 }
2264}
2265
3df9d748 2266static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
bf55b7af 2267 IOMMUAccessFlags flag)
1da12ec4
LT
2268{
2269 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2270 IntelIOMMUState *s = vtd_as->iommu_state;
b9313021
PX
2271 IOMMUTLBEntry iotlb = {
2272 /* We'll fill in the rest later. */
1da12ec4 2273 .target_as = &address_space_memory,
1da12ec4 2274 };
b9313021 2275 bool success;
1da12ec4 2276
b9313021
PX
2277 if (likely(s->dmar_enabled)) {
2278 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2279 addr, flag & IOMMU_WO, &iotlb);
2280 } else {
1da12ec4 2281 /* DMAR disabled, passthrough, use 4k-page*/
b9313021
PX
2282 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2283 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2284 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2285 iotlb.perm = IOMMU_RW;
2286 success = true;
1da12ec4
LT
2287 }
2288
b9313021
PX
2289 if (likely(success)) {
2290 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2291 VTD_PCI_SLOT(vtd_as->devfn),
2292 VTD_PCI_FUNC(vtd_as->devfn),
2293 iotlb.iova, iotlb.translated_addr,
2294 iotlb.addr_mask);
2295 } else {
2296 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2297 VTD_PCI_SLOT(vtd_as->devfn),
2298 VTD_PCI_FUNC(vtd_as->devfn),
2299 iotlb.iova);
2300 }
7feb51b7 2301
b9313021 2302 return iotlb;
1da12ec4
LT
2303}
2304
3df9d748 2305static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
5bf3d319
PX
2306 IOMMUNotifierFlag old,
2307 IOMMUNotifierFlag new)
3cb3b154
AW
2308{
2309 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
dd4d607e
PX
2310 IntelIOMMUState *s = vtd_as->iommu_state;
2311 IntelIOMMUNotifierNode *node = NULL;
2312 IntelIOMMUNotifierNode *next_node = NULL;
3cb3b154 2313
dd4d607e
PX
2314 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2315 error_report("We need to set cache_mode=1 for intel-iommu to enable "
2316 "device assignment with IOMMU protection.");
a3276f78
PX
2317 exit(1);
2318 }
dd4d607e
PX
2319
2320 if (old == IOMMU_NOTIFIER_NONE) {
2321 node = g_malloc0(sizeof(*node));
2322 node->vtd_as = vtd_as;
2323 QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2324 return;
2325 }
2326
2327 /* update notifier node with new flags */
2328 QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2329 if (node->vtd_as == vtd_as) {
2330 if (new == IOMMU_NOTIFIER_NONE) {
2331 QLIST_REMOVE(node, next);
2332 g_free(node);
2333 }
2334 return;
2335 }
2336 }
3cb3b154
AW
2337}
2338
552a1e01
PX
2339static int vtd_post_load(void *opaque, int version_id)
2340{
2341 IntelIOMMUState *iommu = opaque;
2342
2343 /*
2344 * Memory regions are dynamically turned on/off depending on
2345 * context entry configurations from the guest. After migration,
2346 * we need to make sure the memory regions are still correct.
2347 */
2348 vtd_switch_address_space_all(iommu);
2349
2350 return 0;
2351}
2352
1da12ec4
LT
2353static const VMStateDescription vtd_vmstate = {
2354 .name = "iommu-intel",
8cdcf3c1
PX
2355 .version_id = 1,
2356 .minimum_version_id = 1,
2357 .priority = MIG_PRI_IOMMU,
552a1e01 2358 .post_load = vtd_post_load,
8cdcf3c1
PX
2359 .fields = (VMStateField[]) {
2360 VMSTATE_UINT64(root, IntelIOMMUState),
2361 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2362 VMSTATE_UINT64(iq, IntelIOMMUState),
2363 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2364 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2365 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2366 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2367 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2368 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2369 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2370 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2371 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2372 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2373 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2374 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2375 VMSTATE_END_OF_LIST()
2376 }
1da12ec4
LT
2377};
2378
2379static const MemoryRegionOps vtd_mem_ops = {
2380 .read = vtd_mem_read,
2381 .write = vtd_mem_write,
2382 .endianness = DEVICE_LITTLE_ENDIAN,
2383 .impl = {
2384 .min_access_size = 4,
2385 .max_access_size = 8,
2386 },
2387 .valid = {
2388 .min_access_size = 4,
2389 .max_access_size = 8,
2390 },
2391};
2392
2393static Property vtd_properties[] = {
2394 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
e6b6af05
RK
2395 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2396 ON_OFF_AUTO_AUTO),
fb506e70 2397 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3b40f0e5 2398 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
1da12ec4
LT
2399 DEFINE_PROP_END_OF_LIST(),
2400};
2401
651e4cef
PX
2402/* Read IRTE entry with specific index */
2403static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
bc38ee10 2404 VTD_IR_TableEntry *entry, uint16_t sid)
651e4cef 2405{
ede9c94a
PX
2406 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2407 {0xffff, 0xfffb, 0xfff9, 0xfff8};
651e4cef 2408 dma_addr_t addr = 0x00;
ede9c94a
PX
2409 uint16_t mask, source_id;
2410 uint8_t bus, bus_max, bus_min;
651e4cef
PX
2411
2412 addr = iommu->intr_root + index * sizeof(*entry);
2413 if (dma_memory_read(&address_space_memory, addr, entry,
2414 sizeof(*entry))) {
7feb51b7 2415 trace_vtd_err("Memory read failed for IRTE.");
651e4cef
PX
2416 return -VTD_FR_IR_ROOT_INVAL;
2417 }
2418
7feb51b7
PX
2419 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2420 le64_to_cpu(entry->data[0]));
2421
bc38ee10 2422 if (!entry->irte.present) {
7feb51b7
PX
2423 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2424 le64_to_cpu(entry->data[0]));
651e4cef
PX
2425 return -VTD_FR_IR_ENTRY_P;
2426 }
2427
bc38ee10
MT
2428 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2429 entry->irte.__reserved_2) {
7feb51b7
PX
2430 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2431 le64_to_cpu(entry->data[0]));
651e4cef
PX
2432 return -VTD_FR_IR_IRTE_RSVD;
2433 }
2434
ede9c94a
PX
2435 if (sid != X86_IOMMU_SID_INVALID) {
2436 /* Validate IRTE SID */
bc38ee10
MT
2437 source_id = le32_to_cpu(entry->irte.source_id);
2438 switch (entry->irte.sid_vtype) {
ede9c94a 2439 case VTD_SVT_NONE:
ede9c94a
PX
2440 break;
2441
2442 case VTD_SVT_ALL:
bc38ee10 2443 mask = vtd_svt_mask[entry->irte.sid_q];
ede9c94a 2444 if ((source_id & mask) != (sid & mask)) {
7feb51b7 2445 trace_vtd_err_irte_sid(index, sid, source_id);
ede9c94a
PX
2446 return -VTD_FR_IR_SID_ERR;
2447 }
2448 break;
2449
2450 case VTD_SVT_BUS:
2451 bus_max = source_id >> 8;
2452 bus_min = source_id & 0xff;
2453 bus = sid >> 8;
2454 if (bus > bus_max || bus < bus_min) {
7feb51b7 2455 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
ede9c94a
PX
2456 return -VTD_FR_IR_SID_ERR;
2457 }
2458 break;
2459
2460 default:
7feb51b7 2461 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
ede9c94a
PX
2462 /* Take this as verification failure. */
2463 return -VTD_FR_IR_SID_ERR;
2464 break;
2465 }
2466 }
651e4cef
PX
2467
2468 return 0;
2469}
2470
2471/* Fetch IRQ information of specific IR index */
ede9c94a
PX
2472static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2473 VTDIrq *irq, uint16_t sid)
651e4cef 2474{
bc38ee10 2475 VTD_IR_TableEntry irte = {};
651e4cef
PX
2476 int ret = 0;
2477
ede9c94a 2478 ret = vtd_irte_get(iommu, index, &irte, sid);
651e4cef
PX
2479 if (ret) {
2480 return ret;
2481 }
2482
bc38ee10
MT
2483 irq->trigger_mode = irte.irte.trigger_mode;
2484 irq->vector = irte.irte.vector;
2485 irq->delivery_mode = irte.irte.delivery_mode;
2486 irq->dest = le32_to_cpu(irte.irte.dest_id);
28589311 2487 if (!iommu->intr_eime) {
651e4cef
PX
2488#define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2489#define VTD_IR_APIC_DEST_SHIFT (8)
28589311
JK
2490 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2491 VTD_IR_APIC_DEST_SHIFT;
2492 }
bc38ee10
MT
2493 irq->dest_mode = irte.irte.dest_mode;
2494 irq->redir_hint = irte.irte.redir_hint;
651e4cef 2495
7feb51b7
PX
2496 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2497 irq->delivery_mode, irq->dest, irq->dest_mode);
651e4cef
PX
2498
2499 return 0;
2500}
2501
2502/* Generate one MSI message from VTDIrq info */
2503static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2504{
2505 VTD_MSIMessage msg = {};
2506
2507 /* Generate address bits */
2508 msg.dest_mode = irq->dest_mode;
2509 msg.redir_hint = irq->redir_hint;
2510 msg.dest = irq->dest;
32946019 2511 msg.__addr_hi = irq->dest & 0xffffff00;
651e4cef
PX
2512 msg.__addr_head = cpu_to_le32(0xfee);
2513 /* Keep this from original MSI address bits */
2514 msg.__not_used = irq->msi_addr_last_bits;
2515
2516 /* Generate data bits */
2517 msg.vector = irq->vector;
2518 msg.delivery_mode = irq->delivery_mode;
2519 msg.level = 1;
2520 msg.trigger_mode = irq->trigger_mode;
2521
2522 msg_out->address = msg.msi_addr;
2523 msg_out->data = msg.msi_data;
2524}
2525
2526/* Interrupt remapping for MSI/MSI-X entry */
2527static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2528 MSIMessage *origin,
ede9c94a
PX
2529 MSIMessage *translated,
2530 uint16_t sid)
651e4cef
PX
2531{
2532 int ret = 0;
2533 VTD_IR_MSIAddress addr;
2534 uint16_t index;
09cd058a 2535 VTDIrq irq = {};
651e4cef
PX
2536
2537 assert(origin && translated);
2538
7feb51b7
PX
2539 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2540
651e4cef 2541 if (!iommu || !iommu->intr_enabled) {
e7a3b91f
PX
2542 memcpy(translated, origin, sizeof(*origin));
2543 goto out;
651e4cef
PX
2544 }
2545
2546 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
7feb51b7
PX
2547 trace_vtd_err("MSI address high 32 bits non-zero when "
2548 "Interrupt Remapping enabled.");
651e4cef
PX
2549 return -VTD_FR_IR_REQ_RSVD;
2550 }
2551
2552 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
1a43713b 2553 if (addr.addr.__head != 0xfee) {
7feb51b7 2554 trace_vtd_err("MSI addr low 32 bit invalid.");
651e4cef
PX
2555 return -VTD_FR_IR_REQ_RSVD;
2556 }
2557
2558 /* This is compatible mode. */
bc38ee10 2559 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
e7a3b91f
PX
2560 memcpy(translated, origin, sizeof(*origin));
2561 goto out;
651e4cef
PX
2562 }
2563
bc38ee10 2564 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
651e4cef
PX
2565
2566#define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2567#define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2568
bc38ee10 2569 if (addr.addr.sub_valid) {
651e4cef
PX
2570 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2571 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2572 }
2573
ede9c94a 2574 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
651e4cef
PX
2575 if (ret) {
2576 return ret;
2577 }
2578
bc38ee10 2579 if (addr.addr.sub_valid) {
7feb51b7 2580 trace_vtd_ir_remap_type("MSI");
651e4cef 2581 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
7feb51b7 2582 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
651e4cef
PX
2583 return -VTD_FR_IR_REQ_RSVD;
2584 }
2585 } else {
2586 uint8_t vector = origin->data & 0xff;
dea651a9
FW
2587 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2588
7feb51b7 2589 trace_vtd_ir_remap_type("IOAPIC");
651e4cef
PX
2590 /* IOAPIC entry vector should be aligned with IRTE vector
2591 * (see vt-d spec 5.1.5.1). */
2592 if (vector != irq.vector) {
7feb51b7 2593 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
651e4cef 2594 }
dea651a9
FW
2595
2596 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2597 * (see vt-d spec 5.1.5.1). */
2598 if (trigger_mode != irq.trigger_mode) {
7feb51b7
PX
2599 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2600 irq.trigger_mode);
dea651a9 2601 }
651e4cef
PX
2602 }
2603
2604 /*
2605 * We'd better keep the last two bits, assuming that guest OS
2606 * might modify it. Keep it does not hurt after all.
2607 */
bc38ee10 2608 irq.msi_addr_last_bits = addr.addr.__not_care;
651e4cef
PX
2609
2610 /* Translate VTDIrq to MSI message */
2611 vtd_generate_msi_message(&irq, translated);
2612
e7a3b91f 2613out:
7feb51b7
PX
2614 trace_vtd_ir_remap_msi(origin->address, origin->data,
2615 translated->address, translated->data);
651e4cef
PX
2616 return 0;
2617}
2618
8b5ed7df
PX
2619static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2620 MSIMessage *dst, uint16_t sid)
2621{
ede9c94a
PX
2622 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2623 src, dst, sid);
8b5ed7df
PX
2624}
2625
651e4cef
PX
2626static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2627 uint64_t *data, unsigned size,
2628 MemTxAttrs attrs)
2629{
2630 return MEMTX_OK;
2631}
2632
2633static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2634 uint64_t value, unsigned size,
2635 MemTxAttrs attrs)
2636{
2637 int ret = 0;
09cd058a 2638 MSIMessage from = {}, to = {};
ede9c94a 2639 uint16_t sid = X86_IOMMU_SID_INVALID;
651e4cef
PX
2640
2641 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2642 from.data = (uint32_t) value;
2643
ede9c94a
PX
2644 if (!attrs.unspecified) {
2645 /* We have explicit Source ID */
2646 sid = attrs.requester_id;
2647 }
2648
2649 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
651e4cef
PX
2650 if (ret) {
2651 /* TODO: report error */
651e4cef
PX
2652 /* Drop this interrupt */
2653 return MEMTX_ERROR;
2654 }
2655
32946019 2656 apic_get_class()->send_msi(&to);
651e4cef
PX
2657
2658 return MEMTX_OK;
2659}
2660
2661static const MemoryRegionOps vtd_mem_ir_ops = {
2662 .read_with_attrs = vtd_mem_ir_read,
2663 .write_with_attrs = vtd_mem_ir_write,
2664 .endianness = DEVICE_LITTLE_ENDIAN,
2665 .impl = {
2666 .min_access_size = 4,
2667 .max_access_size = 4,
2668 },
2669 .valid = {
2670 .min_access_size = 4,
2671 .max_access_size = 4,
2672 },
2673};
7df953bd
KO
2674
2675VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2676{
2677 uintptr_t key = (uintptr_t)bus;
2678 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2679 VTDAddressSpace *vtd_dev_as;
e0a3c8cc 2680 char name[128];
7df953bd
KO
2681
2682 if (!vtd_bus) {
2d3fc581
JW
2683 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2684 *new_key = (uintptr_t)bus;
7df953bd 2685 /* No corresponding free() */
04af0e18
PX
2686 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2687 X86_IOMMU_PCI_DEVFN_MAX);
7df953bd 2688 vtd_bus->bus = bus;
2d3fc581 2689 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
7df953bd
KO
2690 }
2691
2692 vtd_dev_as = vtd_bus->dev_as[devfn];
2693
2694 if (!vtd_dev_as) {
e0a3c8cc 2695 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
7df953bd
KO
2696 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2697
2698 vtd_dev_as->bus = bus;
2699 vtd_dev_as->devfn = (uint8_t)devfn;
2700 vtd_dev_as->iommu_state = s;
2701 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
558e0024
PX
2702
2703 /*
2704 * Memory region relationships looks like (Address range shows
2705 * only lower 32 bits to make it short in length...):
2706 *
2707 * |-----------------+-------------------+----------|
2708 * | Name | Address range | Priority |
2709 * |-----------------+-------------------+----------+
2710 * | vtd_root | 00000000-ffffffff | 0 |
2711 * | intel_iommu | 00000000-ffffffff | 1 |
2712 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2713 * | intel_iommu_ir | fee00000-feefffff | 64 |
2714 * |-----------------+-------------------+----------|
2715 *
2716 * We enable/disable DMAR by switching enablement for
2717 * vtd_sys_alias and intel_iommu regions. IR region is always
2718 * enabled.
2719 */
1221a474
AK
2720 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2721 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2722 "intel_iommu_dmar",
558e0024
PX
2723 UINT64_MAX);
2724 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2725 "vtd_sys_alias", get_system_memory(),
2726 0, memory_region_size(get_system_memory()));
651e4cef
PX
2727 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2728 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2729 VTD_INTERRUPT_ADDR_SIZE);
558e0024
PX
2730 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2731 "vtd_root", UINT64_MAX);
2732 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2733 VTD_INTERRUPT_ADDR_FIRST,
2734 &vtd_dev_as->iommu_ir, 64);
2735 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2736 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2737 &vtd_dev_as->sys_alias, 1);
2738 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3df9d748
AK
2739 MEMORY_REGION(&vtd_dev_as->iommu),
2740 1);
558e0024 2741 vtd_switch_address_space(vtd_dev_as);
7df953bd
KO
2742 }
2743 return vtd_dev_as;
2744}
2745
dd4d607e
PX
2746/* Unmap the whole range in the notifier's scope. */
2747static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2748{
2749 IOMMUTLBEntry entry;
2750 hwaddr size;
2751 hwaddr start = n->start;
2752 hwaddr end = n->end;
2753
2754 /*
2755 * Note: all the codes in this function has a assumption that IOVA
2756 * bits are no more than VTD_MGAW bits (which is restricted by
2757 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2758 */
2759
2760 if (end > VTD_ADDRESS_SIZE) {
2761 /*
2762 * Don't need to unmap regions that is bigger than the whole
2763 * VT-d supported address space size
2764 */
2765 end = VTD_ADDRESS_SIZE;
2766 }
2767
2768 assert(start <= end);
2769 size = end - start;
2770
2771 if (ctpop64(size) != 1) {
2772 /*
2773 * This size cannot format a correct mask. Let's enlarge it to
2774 * suite the minimum available mask.
2775 */
2776 int n = 64 - clz64(size);
2777 if (n > VTD_MGAW) {
2778 /* should not happen, but in case it happens, limit it */
2779 n = VTD_MGAW;
2780 }
2781 size = 1ULL << n;
2782 }
2783
2784 entry.target_as = &address_space_memory;
2785 /* Adjust iova for the size */
2786 entry.iova = n->start & ~(size - 1);
2787 /* This field is meaningless for unmap */
2788 entry.translated_addr = 0;
2789 entry.perm = IOMMU_NONE;
2790 entry.addr_mask = size - 1;
2791
2792 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2793 VTD_PCI_SLOT(as->devfn),
2794 VTD_PCI_FUNC(as->devfn),
2795 entry.iova, size);
2796
2797 memory_region_notify_one(n, &entry);
2798}
2799
2800static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2801{
2802 IntelIOMMUNotifierNode *node;
2803 VTDAddressSpace *vtd_as;
2804 IOMMUNotifier *n;
2805
2806 QLIST_FOREACH(node, &s->notifiers_list, next) {
2807 vtd_as = node->vtd_as;
2808 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2809 vtd_address_space_unmap(vtd_as, n);
2810 }
2811 }
2812}
2813
f06a696d
PX
2814static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2815{
2816 memory_region_notify_one((IOMMUNotifier *)private, entry);
2817 return 0;
2818}
2819
3df9d748 2820static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
f06a696d 2821{
3df9d748 2822 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
f06a696d
PX
2823 IntelIOMMUState *s = vtd_as->iommu_state;
2824 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2825 VTDContextEntry ce;
2826
dd4d607e
PX
2827 /*
2828 * The replay can be triggered by either a invalidation or a newly
2829 * created entry. No matter what, we release existing mappings
2830 * (it means flushing caches for UNMAP-only registers).
2831 */
2832 vtd_address_space_unmap(vtd_as, n);
2833
f06a696d 2834 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
f06a696d
PX
2835 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2836 PCI_FUNC(vtd_as->devfn),
2837 VTD_CONTEXT_ENTRY_DID(ce.hi),
2838 ce.hi, ce.lo);
dd4d607e 2839 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false);
f06a696d
PX
2840 } else {
2841 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2842 PCI_FUNC(vtd_as->devfn));
2843 }
2844
2845 return;
2846}
2847
1da12ec4
LT
2848/* Do the initialization. It will also be called when reset, so pay
2849 * attention when adding new initialization stuff.
2850 */
2851static void vtd_init(IntelIOMMUState *s)
2852{
d54bd7f8
PX
2853 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2854
1da12ec4
LT
2855 memset(s->csr, 0, DMAR_REG_SIZE);
2856 memset(s->wmask, 0, DMAR_REG_SIZE);
2857 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2858 memset(s->womask, 0, DMAR_REG_SIZE);
2859
1da12ec4
LT
2860 s->root = 0;
2861 s->root_extended = false;
2862 s->dmar_enabled = false;
2863 s->iq_head = 0;
2864 s->iq_tail = 0;
2865 s->iq = 0;
2866 s->iq_size = 0;
2867 s->qi_enabled = false;
2868 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2869 s->next_frcd_reg = 0;
2870 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
d66b969b 2871 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
ed7b8fbc 2872 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1da12ec4 2873
d54bd7f8 2874 if (x86_iommu->intr_supported) {
e6b6af05
RK
2875 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2876 if (s->intr_eim == ON_OFF_AUTO_ON) {
2877 s->ecap |= VTD_ECAP_EIM;
2878 }
2879 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
d54bd7f8
PX
2880 }
2881
554f5e16
JW
2882 if (x86_iommu->dt_supported) {
2883 s->ecap |= VTD_ECAP_DT;
2884 }
2885
dbaabb25
PX
2886 if (x86_iommu->pt_supported) {
2887 s->ecap |= VTD_ECAP_PT;
2888 }
2889
3b40f0e5
ABD
2890 if (s->caching_mode) {
2891 s->cap |= VTD_CAP_CM;
2892 }
2893
d92fa2dc 2894 vtd_reset_context_cache(s);
b5a280c0 2895 vtd_reset_iotlb(s);
d92fa2dc 2896
1da12ec4
LT
2897 /* Define registers with default values and bit semantics */
2898 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2899 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2900 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2901 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2902 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2903 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2904 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2905 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2906 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2907
2908 /* Advanced Fault Logging not supported */
2909 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2910 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2911 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2912 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2913
2914 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2915 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2916 */
2917 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2918
2919 /* Treated as RO for implementations that PLMR and PHMR fields reported
2920 * as Clear in the CAP_REG.
2921 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2922 */
2923 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2924
ed7b8fbc
LT
2925 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2926 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2927 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2928 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2929 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2930 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2931 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2932 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2933 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2934
1da12ec4
LT
2935 /* IOTLB registers */
2936 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2937 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2938 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2939
2940 /* Fault Recording Registers, 128-bit */
2941 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2942 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
a5861439
PX
2943
2944 /*
28589311 2945 * Interrupt remapping registers.
a5861439 2946 */
28589311 2947 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
1da12ec4
LT
2948}
2949
2950/* Should not reset address_spaces when reset because devices will still use
2951 * the address space they got at first (won't ask the bus again).
2952 */
2953static void vtd_reset(DeviceState *dev)
2954{
2955 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2956
1da12ec4 2957 vtd_init(s);
dd4d607e
PX
2958
2959 /*
2960 * When device reset, throw away all mappings and external caches
2961 */
2962 vtd_address_space_unmap_all(s);
1da12ec4
LT
2963}
2964
621d983a
MA
2965static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2966{
2967 IntelIOMMUState *s = opaque;
2968 VTDAddressSpace *vtd_as;
2969
8e7a0a16 2970 assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
621d983a
MA
2971
2972 vtd_as = vtd_find_add_as(s, bus, devfn);
2973 return &vtd_as->as;
2974}
2975
e6b6af05 2976static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
6333e93c 2977{
e6b6af05
RK
2978 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2979
6333e93c
RK
2980 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2981 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2982 !kvm_irqchip_is_split()) {
2983 error_setg(errp, "Intel Interrupt Remapping cannot work with "
2984 "kernel-irqchip=on, please use 'split|off'.");
2985 return false;
2986 }
e6b6af05
RK
2987 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2988 error_setg(errp, "eim=on cannot be selected without intremap=on");
2989 return false;
2990 }
2991
2992 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
fb506e70
RK
2993 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2994 && x86_iommu->intr_supported ?
e6b6af05
RK
2995 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2996 }
fb506e70
RK
2997 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2998 if (!kvm_irqchip_in_kernel()) {
2999 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3000 return false;
3001 }
3002 if (!kvm_enable_x2apic()) {
3003 error_setg(errp, "eim=on requires support on the KVM side"
3004 "(X2APIC_API, first shipped in v4.7)");
3005 return false;
3006 }
3007 }
e6b6af05 3008
6333e93c
RK
3009 return true;
3010}
3011
1da12ec4
LT
3012static void vtd_realize(DeviceState *dev, Error **errp)
3013{
ef0e8fc7
EH
3014 MachineState *ms = MACHINE(qdev_get_machine());
3015 MachineClass *mc = MACHINE_GET_CLASS(ms);
3016 PCMachineState *pcms =
3017 PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE));
3018 PCIBus *bus;
1da12ec4 3019 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4684a204 3020 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
1da12ec4 3021
ef0e8fc7
EH
3022 if (!pcms) {
3023 error_setg(errp, "Machine-type '%s' not supported by intel-iommu",
3024 mc->name);
3025 return;
3026 }
3027
3028 bus = pcms->bus;
fb9f5926 3029 x86_iommu->type = TYPE_INTEL;
6333e93c 3030
e6b6af05 3031 if (!vtd_decide_config(s, errp)) {
6333e93c
RK
3032 return;
3033 }
3034
dd4d607e 3035 QLIST_INIT(&s->notifiers_list);
7df953bd 3036 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1da12ec4
LT
3037 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3038 "intel_iommu", DMAR_REG_SIZE);
3039 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
b5a280c0
LT
3040 /* No corresponding destroy */
3041 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3042 g_free, g_free);
7df953bd
KO
3043 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3044 g_free, g_free);
1da12ec4 3045 vtd_init(s);
621d983a
MA
3046 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3047 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
cb135f59
PX
3048 /* Pseudo address space under root PCI bus. */
3049 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
1da12ec4
LT
3050}
3051
3052static void vtd_class_init(ObjectClass *klass, void *data)
3053{
3054 DeviceClass *dc = DEVICE_CLASS(klass);
1c7955c4 3055 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
1da12ec4
LT
3056
3057 dc->reset = vtd_reset;
1da12ec4
LT
3058 dc->vmsd = &vtd_vmstate;
3059 dc->props = vtd_properties;
621d983a 3060 dc->hotpluggable = false;
1c7955c4 3061 x86_class->realize = vtd_realize;
8b5ed7df 3062 x86_class->int_remap = vtd_int_remap;
8ab5700c 3063 /* Supported by the pc-q35-* machine types */
e4f4fb1e 3064 dc->user_creatable = true;
1da12ec4
LT
3065}
3066
3067static const TypeInfo vtd_info = {
3068 .name = TYPE_INTEL_IOMMU_DEVICE,
1c7955c4 3069 .parent = TYPE_X86_IOMMU_DEVICE,
1da12ec4
LT
3070 .instance_size = sizeof(IntelIOMMUState),
3071 .class_init = vtd_class_init,
3072};
3073
1221a474
AK
3074static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3075 void *data)
3076{
3077 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3078
3079 imrc->translate = vtd_iommu_translate;
3080 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3081 imrc->replay = vtd_iommu_replay;
3082}
3083
3084static const TypeInfo vtd_iommu_memory_region_info = {
3085 .parent = TYPE_IOMMU_MEMORY_REGION,
3086 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3087 .class_init = vtd_iommu_memory_region_class_init,
3088};
3089
1da12ec4
LT
3090static void vtd_register_types(void)
3091{
1da12ec4 3092 type_register_static(&vtd_info);
1221a474 3093 type_register_static(&vtd_iommu_memory_region_info);
1da12ec4
LT
3094}
3095
3096type_init(vtd_register_types)