]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Revert "vl: Fix to create migration object before block backends again"
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
483c6ad4 40* System requirements::
78e87797 41* Implementation notes::
eb22aeca 42* Deprecated features::
45b47130 43* Supported build platforms::
7544a042 44* License::
debc7065
FB
45* Index::
46@end menu
47@end ifnottex
48
49@contents
50
51@node Introduction
386405f7
FB
52@chapter Introduction
53
debc7065
FB
54@menu
55* intro_features:: Features
56@end menu
57
58@node intro_features
322d0c66 59@section Features
386405f7 60
1f673135
FB
61QEMU is a FAST! processor emulator using dynamic translation to
62achieve good emulation speed.
1eb20527 63
1f3e7e41 64@cindex operating modes
1eb20527 65QEMU has two operating modes:
0806e3f6 66
d7e5edca 67@itemize
7544a042 68@cindex system emulation
1f3e7e41 69@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
70example a PC), including one or several processors and various
71peripherals. It can be used to launch different Operating Systems
72without rebooting the PC or to debug system code.
1eb20527 73
7544a042 74@cindex user mode emulation
1f3e7e41 75@item User mode emulation. In this mode, QEMU can launch
83195237 76processes compiled for one CPU on another CPU. It can be used to
70b7fba9 77launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 78to ease cross-compilation and cross-debugging.
1eb20527
FB
79
80@end itemize
81
1f3e7e41
PB
82QEMU has the following features:
83
84@itemize
85@item QEMU can run without a host kernel driver and yet gives acceptable
86performance. It uses dynamic translation to native code for reasonable speed,
87with support for self-modifying code and precise exceptions.
88
89@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
90Windows) and architectures.
91
92@item It performs accurate software emulation of the FPU.
93@end itemize
322d0c66 94
1f3e7e41 95QEMU user mode emulation has the following features:
52c00a5f 96@itemize
1f3e7e41
PB
97@item Generic Linux system call converter, including most ioctls.
98
99@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
100
101@item Accurate signal handling by remapping host signals to target signals.
102@end itemize
103
104QEMU full system emulation has the following features:
105@itemize
106@item
107QEMU uses a full software MMU for maximum portability.
108
109@item
326c4c3c 110QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
111execute most of the guest code natively, while
112continuing to emulate the rest of the machine.
113
114@item
115Various hardware devices can be emulated and in some cases, host
116devices (e.g. serial and parallel ports, USB, drives) can be used
117transparently by the guest Operating System. Host device passthrough
118can be used for talking to external physical peripherals (e.g. a
119webcam, modem or tape drive).
120
121@item
122Symmetric multiprocessing (SMP) support. Currently, an in-kernel
123accelerator is required to use more than one host CPU for emulation.
124
52c00a5f 125@end itemize
386405f7 126
0806e3f6 127
debc7065 128@node QEMU PC System emulator
3f9f3aa1 129@chapter QEMU PC System emulator
7544a042 130@cindex system emulation (PC)
1eb20527 131
debc7065
FB
132@menu
133* pcsys_introduction:: Introduction
134* pcsys_quickstart:: Quick Start
135* sec_invocation:: Invocation
a40db1b3
PM
136* pcsys_keys:: Keys in the graphical frontends
137* mux_keys:: Keys in the character backend multiplexer
debc7065 138* pcsys_monitor:: QEMU Monitor
2544e9e4 139* cpu_models:: CPU models
debc7065
FB
140* disk_images:: Disk Images
141* pcsys_network:: Network emulation
576fd0a1 142* pcsys_other_devs:: Other Devices
debc7065
FB
143* direct_linux_boot:: Direct Linux Boot
144* pcsys_usb:: USB emulation
f858dcae 145* vnc_security:: VNC security
5d19a6ea 146* network_tls:: TLS setup for network services
debc7065
FB
147* gdb_usage:: GDB usage
148* pcsys_os_specific:: Target OS specific information
149@end menu
150
151@node pcsys_introduction
0806e3f6
FB
152@section Introduction
153
154@c man begin DESCRIPTION
155
3f9f3aa1
FB
156The QEMU PC System emulator simulates the
157following peripherals:
0806e3f6
FB
158
159@itemize @minus
5fafdf24 160@item
15a34c63 161i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 162@item
15a34c63
FB
163Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
164extensions (hardware level, including all non standard modes).
0806e3f6
FB
165@item
166PS/2 mouse and keyboard
5fafdf24 167@item
15a34c63 1682 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
169@item
170Floppy disk
5fafdf24 171@item
3a2eeac0 172PCI and ISA network adapters
0806e3f6 173@item
05d5818c
FB
174Serial ports
175@item
23076bb3
CM
176IPMI BMC, either and internal or external one
177@item
c0fe3827
FB
178Creative SoundBlaster 16 sound card
179@item
180ENSONIQ AudioPCI ES1370 sound card
181@item
e5c9a13e
AZ
182Intel 82801AA AC97 Audio compatible sound card
183@item
7d72e762
GH
184Intel HD Audio Controller and HDA codec
185@item
2d983446 186Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 187@item
26463dbc
AZ
188Gravis Ultrasound GF1 sound card
189@item
cc53d26d 190CS4231A compatible sound card
191@item
a92ff8c1 192PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
193@end itemize
194
3f9f3aa1
FB
195SMP is supported with up to 255 CPUs.
196
a8ad4159 197QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
198VGA BIOS.
199
c0fe3827
FB
200QEMU uses YM3812 emulation by Tatsuyuki Satoh.
201
2d983446 202QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 203by Tibor "TS" Schütz.
423d65f4 204
1a1a0e20 205Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 206QEMU must be told to not have parallel ports to have working GUS.
720036a5 207
208@example
3804da9d 209qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 210@end example
211
212Alternatively:
213@example
3804da9d 214qemu-system-i386 dos.img -device gus,irq=5
720036a5 215@end example
216
217Or some other unclaimed IRQ.
218
cc53d26d 219CS4231A is the chip used in Windows Sound System and GUSMAX products
220
0806e3f6
FB
221@c man end
222
debc7065 223@node pcsys_quickstart
1eb20527 224@section Quick Start
7544a042 225@cindex quick start
1eb20527 226
285dc330 227Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
228
229@example
3804da9d 230qemu-system-i386 linux.img
0806e3f6
FB
231@end example
232
233Linux should boot and give you a prompt.
234
6cc721cf 235@node sec_invocation
ec410fc9
FB
236@section Invocation
237
238@example
0806e3f6 239@c man begin SYNOPSIS
8485140f 240@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 241@c man end
ec410fc9
FB
242@end example
243
0806e3f6 244@c man begin OPTIONS
d2c639d6
BS
245@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
246targets do not need a disk image.
ec410fc9 247
5824d651 248@include qemu-options.texi
ec410fc9 249
3e11db9a
FB
250@c man end
251
e896d0f9
MA
252@subsection Device URL Syntax
253@c TODO merge this with section Disk Images
254
255@c man begin NOTES
256
257In addition to using normal file images for the emulated storage devices,
258QEMU can also use networked resources such as iSCSI devices. These are
259specified using a special URL syntax.
260
261@table @option
262@item iSCSI
263iSCSI support allows QEMU to access iSCSI resources directly and use as
264images for the guest storage. Both disk and cdrom images are supported.
265
266Syntax for specifying iSCSI LUNs is
267``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
268
269By default qemu will use the iSCSI initiator-name
270'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
271line or a configuration file.
272
273Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
274stalled requests and force a reestablishment of the session. The timeout
275is specified in seconds. The default is 0 which means no timeout. Libiscsi
2761.15.0 or greater is required for this feature.
277
278Example (without authentication):
279@example
280qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
281 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
282 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
283@end example
284
285Example (CHAP username/password via URL):
286@example
287qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
288@end example
289
290Example (CHAP username/password via environment variables):
291@example
292LIBISCSI_CHAP_USERNAME="user" \
293LIBISCSI_CHAP_PASSWORD="password" \
294qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
295@end example
296
297@item NBD
298QEMU supports NBD (Network Block Devices) both using TCP protocol as well
299as Unix Domain Sockets.
300
301Syntax for specifying a NBD device using TCP
302``nbd:<server-ip>:<port>[:exportname=<export>]''
303
304Syntax for specifying a NBD device using Unix Domain Sockets
305``nbd:unix:<domain-socket>[:exportname=<export>]''
306
307Example for TCP
308@example
309qemu-system-i386 --drive file=nbd:192.0.2.1:30000
310@end example
311
312Example for Unix Domain Sockets
313@example
314qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
315@end example
316
317@item SSH
318QEMU supports SSH (Secure Shell) access to remote disks.
319
320Examples:
321@example
322qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
323qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
324@end example
325
326Currently authentication must be done using ssh-agent. Other
327authentication methods may be supported in future.
328
329@item Sheepdog
330Sheepdog is a distributed storage system for QEMU.
331QEMU supports using either local sheepdog devices or remote networked
332devices.
333
334Syntax for specifying a sheepdog device
335@example
336sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
337@end example
338
339Example
340@example
341qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
342@end example
343
344See also @url{https://sheepdog.github.io/sheepdog/}.
345
346@item GlusterFS
347GlusterFS is a user space distributed file system.
348QEMU supports the use of GlusterFS volumes for hosting VM disk images using
349TCP, Unix Domain Sockets and RDMA transport protocols.
350
351Syntax for specifying a VM disk image on GlusterFS volume is
352@example
353
354URI:
355gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
356
357JSON:
358'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
359@ "server":[@{"type":"tcp","host":"...","port":"..."@},
360@ @{"type":"unix","socket":"..."@}]@}@}'
361@end example
362
363
364Example
365@example
366URI:
367qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
368@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
369
370JSON:
371qemu-system-x86_64 'json:@{"driver":"qcow2",
372@ "file":@{"driver":"gluster",
373@ "volume":"testvol","path":"a.img",
374@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
375@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
376@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
377qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
378@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
379@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
380@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
381@end example
382
383See also @url{http://www.gluster.org}.
384
385@item HTTP/HTTPS/FTP/FTPS
386QEMU supports read-only access to files accessed over http(s) and ftp(s).
387
388Syntax using a single filename:
389@example
390<protocol>://[<username>[:<password>]@@]<host>/<path>
391@end example
392
393where:
394@table @option
395@item protocol
396'http', 'https', 'ftp', or 'ftps'.
397
398@item username
399Optional username for authentication to the remote server.
400
401@item password
402Optional password for authentication to the remote server.
403
404@item host
405Address of the remote server.
406
407@item path
408Path on the remote server, including any query string.
409@end table
410
411The following options are also supported:
412@table @option
413@item url
414The full URL when passing options to the driver explicitly.
415
416@item readahead
417The amount of data to read ahead with each range request to the remote server.
418This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
419does not have a suffix, it will be assumed to be in bytes. The value must be a
420multiple of 512 bytes. It defaults to 256k.
421
422@item sslverify
423Whether to verify the remote server's certificate when connecting over SSL. It
424can have the value 'on' or 'off'. It defaults to 'on'.
425
426@item cookie
427Send this cookie (it can also be a list of cookies separated by ';') with
428each outgoing request. Only supported when using protocols such as HTTP
429which support cookies, otherwise ignored.
430
431@item timeout
432Set the timeout in seconds of the CURL connection. This timeout is the time
433that CURL waits for a response from the remote server to get the size of the
434image to be downloaded. If not set, the default timeout of 5 seconds is used.
435@end table
436
437Note that when passing options to qemu explicitly, @option{driver} is the value
438of <protocol>.
439
440Example: boot from a remote Fedora 20 live ISO image
441@example
442qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
443
444qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
445@end example
446
447Example: boot from a remote Fedora 20 cloud image using a local overlay for
448writes, copy-on-read, and a readahead of 64k
449@example
450qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
451
452qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
453@end example
454
455Example: boot from an image stored on a VMware vSphere server with a self-signed
456certificate using a local overlay for writes, a readahead of 64k and a timeout
457of 10 seconds.
458@example
459qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
460
461qemu-system-x86_64 -drive file=/tmp/test.qcow2
462@end example
463
464@end table
465
466@c man end
467
debc7065 468@node pcsys_keys
a40db1b3 469@section Keys in the graphical frontends
3e11db9a
FB
470
471@c man begin OPTIONS
472
de1db2a1
BH
473During the graphical emulation, you can use special key combinations to change
474modes. The default key mappings are shown below, but if you use @code{-alt-grab}
475then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
476@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
477
a1b74fe8 478@table @key
f9859310 479@item Ctrl-Alt-f
7544a042 480@kindex Ctrl-Alt-f
a1b74fe8 481Toggle full screen
a0a821a4 482
d6a65ba3
JK
483@item Ctrl-Alt-+
484@kindex Ctrl-Alt-+
485Enlarge the screen
486
487@item Ctrl-Alt--
488@kindex Ctrl-Alt--
489Shrink the screen
490
c4a735f9 491@item Ctrl-Alt-u
7544a042 492@kindex Ctrl-Alt-u
c4a735f9 493Restore the screen's un-scaled dimensions
494
f9859310 495@item Ctrl-Alt-n
7544a042 496@kindex Ctrl-Alt-n
a0a821a4
FB
497Switch to virtual console 'n'. Standard console mappings are:
498@table @emph
499@item 1
500Target system display
501@item 2
502Monitor
503@item 3
504Serial port
a1b74fe8
FB
505@end table
506
f9859310 507@item Ctrl-Alt
7544a042 508@kindex Ctrl-Alt
a0a821a4
FB
509Toggle mouse and keyboard grab.
510@end table
511
7544a042
SW
512@kindex Ctrl-Up
513@kindex Ctrl-Down
514@kindex Ctrl-PageUp
515@kindex Ctrl-PageDown
3e11db9a
FB
516In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
517@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
518
a40db1b3
PM
519@c man end
520
521@node mux_keys
522@section Keys in the character backend multiplexer
523
524@c man begin OPTIONS
525
526During emulation, if you are using a character backend multiplexer
527(which is the default if you are using @option{-nographic}) then
528several commands are available via an escape sequence. These
529key sequences all start with an escape character, which is @key{Ctrl-a}
530by default, but can be changed with @option{-echr}. The list below assumes
531you're using the default.
ec410fc9
FB
532
533@table @key
a1b74fe8 534@item Ctrl-a h
7544a042 535@kindex Ctrl-a h
ec410fc9 536Print this help
3b46e624 537@item Ctrl-a x
7544a042 538@kindex Ctrl-a x
366dfc52 539Exit emulator
3b46e624 540@item Ctrl-a s
7544a042 541@kindex Ctrl-a s
1f47a922 542Save disk data back to file (if -snapshot)
20d8a3ed 543@item Ctrl-a t
7544a042 544@kindex Ctrl-a t
d2c639d6 545Toggle console timestamps
a1b74fe8 546@item Ctrl-a b
7544a042 547@kindex Ctrl-a b
1f673135 548Send break (magic sysrq in Linux)
a1b74fe8 549@item Ctrl-a c
7544a042 550@kindex Ctrl-a c
a40db1b3
PM
551Rotate between the frontends connected to the multiplexer (usually
552this switches between the monitor and the console)
a1b74fe8 553@item Ctrl-a Ctrl-a
a40db1b3
PM
554@kindex Ctrl-a Ctrl-a
555Send the escape character to the frontend
ec410fc9 556@end table
0806e3f6
FB
557@c man end
558
559@ignore
560
1f673135
FB
561@c man begin SEEALSO
562The HTML documentation of QEMU for more precise information and Linux
563user mode emulator invocation.
564@c man end
565
566@c man begin AUTHOR
567Fabrice Bellard
568@c man end
569
570@end ignore
571
debc7065 572@node pcsys_monitor
1f673135 573@section QEMU Monitor
7544a042 574@cindex QEMU monitor
1f673135
FB
575
576The QEMU monitor is used to give complex commands to the QEMU
577emulator. You can use it to:
578
579@itemize @minus
580
581@item
e598752a 582Remove or insert removable media images
89dfe898 583(such as CD-ROM or floppies).
1f673135 584
5fafdf24 585@item
1f673135
FB
586Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
587from a disk file.
588
589@item Inspect the VM state without an external debugger.
590
591@end itemize
592
593@subsection Commands
594
595The following commands are available:
596
2313086a 597@include qemu-monitor.texi
0806e3f6 598
2cd8af2d
PB
599@include qemu-monitor-info.texi
600
1f673135
FB
601@subsection Integer expressions
602
603The monitor understands integers expressions for every integer
604argument. You can use register names to get the value of specifics
605CPU registers by prefixing them with @emph{$}.
ec410fc9 606
2544e9e4
DB
607@node cpu_models
608@section CPU models
609
610@include docs/qemu-cpu-models.texi
611
1f47a922
FB
612@node disk_images
613@section Disk Images
614
ee29bdb6
PB
615QEMU supports many disk image formats, including growable disk images
616(their size increase as non empty sectors are written), compressed and
617encrypted disk images.
1f47a922 618
debc7065
FB
619@menu
620* disk_images_quickstart:: Quick start for disk image creation
621* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 622* vm_snapshots:: VM snapshots
debc7065 623* qemu_img_invocation:: qemu-img Invocation
975b092b 624* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 625* disk_images_formats:: Disk image file formats
19cb3738 626* host_drives:: Using host drives
debc7065 627* disk_images_fat_images:: Virtual FAT disk images
75818250 628* disk_images_nbd:: NBD access
42af9c30 629* disk_images_sheepdog:: Sheepdog disk images
00984e39 630* disk_images_iscsi:: iSCSI LUNs
8809e289 631* disk_images_gluster:: GlusterFS disk images
0a12ec87 632* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 633* disk_images_nvme:: NVMe userspace driver
b1d1cb27 634* disk_image_locking:: Disk image file locking
debc7065
FB
635@end menu
636
637@node disk_images_quickstart
acd935ef
FB
638@subsection Quick start for disk image creation
639
640You can create a disk image with the command:
1f47a922 641@example
acd935ef 642qemu-img create myimage.img mysize
1f47a922 643@end example
acd935ef
FB
644where @var{myimage.img} is the disk image filename and @var{mysize} is its
645size in kilobytes. You can add an @code{M} suffix to give the size in
646megabytes and a @code{G} suffix for gigabytes.
647
debc7065 648See @ref{qemu_img_invocation} for more information.
1f47a922 649
debc7065 650@node disk_images_snapshot_mode
1f47a922
FB
651@subsection Snapshot mode
652
653If you use the option @option{-snapshot}, all disk images are
654considered as read only. When sectors in written, they are written in
655a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
656write back to the raw disk images by using the @code{commit} monitor
657command (or @key{C-a s} in the serial console).
1f47a922 658
13a2e80f
FB
659@node vm_snapshots
660@subsection VM snapshots
661
662VM snapshots are snapshots of the complete virtual machine including
663CPU state, RAM, device state and the content of all the writable
664disks. In order to use VM snapshots, you must have at least one non
665removable and writable block device using the @code{qcow2} disk image
666format. Normally this device is the first virtual hard drive.
667
668Use the monitor command @code{savevm} to create a new VM snapshot or
669replace an existing one. A human readable name can be assigned to each
19d36792 670snapshot in addition to its numerical ID.
13a2e80f
FB
671
672Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
673a VM snapshot. @code{info snapshots} lists the available snapshots
674with their associated information:
675
676@example
677(qemu) info snapshots
678Snapshot devices: hda
679Snapshot list (from hda):
680ID TAG VM SIZE DATE VM CLOCK
6811 start 41M 2006-08-06 12:38:02 00:00:14.954
6822 40M 2006-08-06 12:43:29 00:00:18.633
6833 msys 40M 2006-08-06 12:44:04 00:00:23.514
684@end example
685
686A VM snapshot is made of a VM state info (its size is shown in
687@code{info snapshots}) and a snapshot of every writable disk image.
688The VM state info is stored in the first @code{qcow2} non removable
689and writable block device. The disk image snapshots are stored in
690every disk image. The size of a snapshot in a disk image is difficult
691to evaluate and is not shown by @code{info snapshots} because the
692associated disk sectors are shared among all the snapshots to save
19d36792
FB
693disk space (otherwise each snapshot would need a full copy of all the
694disk images).
13a2e80f
FB
695
696When using the (unrelated) @code{-snapshot} option
697(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
698but they are deleted as soon as you exit QEMU.
699
700VM snapshots currently have the following known limitations:
701@itemize
5fafdf24 702@item
13a2e80f
FB
703They cannot cope with removable devices if they are removed or
704inserted after a snapshot is done.
5fafdf24 705@item
13a2e80f
FB
706A few device drivers still have incomplete snapshot support so their
707state is not saved or restored properly (in particular USB).
708@end itemize
709
acd935ef
FB
710@node qemu_img_invocation
711@subsection @code{qemu-img} Invocation
1f47a922 712
acd935ef 713@include qemu-img.texi
05efe46e 714
975b092b
TS
715@node qemu_nbd_invocation
716@subsection @code{qemu-nbd} Invocation
717
718@include qemu-nbd.texi
719
78aa8aa0 720@include docs/qemu-block-drivers.texi
0a12ec87 721
debc7065 722@node pcsys_network
9d4fb82e
FB
723@section Network emulation
724
0e0266c2
TH
725QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
726target) and can connect them to a network backend on the host or an emulated
727hub. The various host network backends can either be used to connect the NIC of
728the guest to a real network (e.g. by using a TAP devices or the non-privileged
729user mode network stack), or to other guest instances running in another QEMU
730process (e.g. by using the socket host network backend).
9d4fb82e 731
41d03949
FB
732@subsection Using TAP network interfaces
733
734This is the standard way to connect QEMU to a real network. QEMU adds
735a virtual network device on your host (called @code{tapN}), and you
736can then configure it as if it was a real ethernet card.
9d4fb82e 737
8f40c388
FB
738@subsubsection Linux host
739
9d4fb82e
FB
740As an example, you can download the @file{linux-test-xxx.tar.gz}
741archive and copy the script @file{qemu-ifup} in @file{/etc} and
742configure properly @code{sudo} so that the command @code{ifconfig}
743contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 744that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
745device @file{/dev/net/tun} must be present.
746
ee0f4751
FB
747See @ref{sec_invocation} to have examples of command lines using the
748TAP network interfaces.
9d4fb82e 749
8f40c388
FB
750@subsubsection Windows host
751
752There is a virtual ethernet driver for Windows 2000/XP systems, called
753TAP-Win32. But it is not included in standard QEMU for Windows,
754so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 755so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 756
9d4fb82e
FB
757@subsection Using the user mode network stack
758
41d03949
FB
759By using the option @option{-net user} (default configuration if no
760@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 761network stack (you don't need root privilege to use the virtual
41d03949 762network). The virtual network configuration is the following:
9d4fb82e
FB
763
764@example
765
0e0266c2 766 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 767 | (10.0.2.2)
9d4fb82e 768 |
2518bd0d 769 ----> DNS server (10.0.2.3)
3b46e624 770 |
2518bd0d 771 ----> SMB server (10.0.2.4)
9d4fb82e
FB
772@end example
773
774The QEMU VM behaves as if it was behind a firewall which blocks all
775incoming connections. You can use a DHCP client to automatically
41d03949
FB
776configure the network in the QEMU VM. The DHCP server assign addresses
777to the hosts starting from 10.0.2.15.
9d4fb82e
FB
778
779In order to check that the user mode network is working, you can ping
780the address 10.0.2.2 and verify that you got an address in the range
78110.0.2.x from the QEMU virtual DHCP server.
782
37cbfcce
GH
783Note that ICMP traffic in general does not work with user mode networking.
784@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
785however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
786ping sockets to allow @code{ping} to the Internet. The host admin has to set
787the ping_group_range in order to grant access to those sockets. To allow ping
788for GID 100 (usually users group):
789
790@example
791echo 100 100 > /proc/sys/net/ipv4/ping_group_range
792@end example
b415a407 793
9bf05444
FB
794When using the built-in TFTP server, the router is also the TFTP
795server.
796
c8c6afa8
TH
797When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
798connections can be redirected from the host to the guest. It allows for
799example to redirect X11, telnet or SSH connections.
443f1376 800
0e0266c2
TH
801@subsection Hubs
802
803QEMU can simulate several hubs. A hub can be thought of as a virtual connection
804between several network devices. These devices can be for example QEMU virtual
805ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
806guest NICs or host network backends to such a hub using the @option{-netdev
807hubport} or @option{-nic hubport} options. The legacy @option{-net} option
808also connects the given device to the emulated hub with ID 0 (i.e. the default
809hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 810
0e0266c2 811@subsection Connecting emulated networks between QEMU instances
41d03949 812
0e0266c2
TH
813Using the @option{-netdev socket} (or @option{-nic socket} or
814@option{-net socket}) option, it is possible to create emulated
815networks that span several QEMU instances.
816See the description of the @option{-netdev socket} option in the
817@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 818
576fd0a1 819@node pcsys_other_devs
6cbf4c8c
CM
820@section Other Devices
821
822@subsection Inter-VM Shared Memory device
823
5400c02b
MA
824On Linux hosts, a shared memory device is available. The basic syntax
825is:
6cbf4c8c
CM
826
827@example
5400c02b
MA
828qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
829@end example
830
831where @var{hostmem} names a host memory backend. For a POSIX shared
832memory backend, use something like
833
834@example
835-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
836@end example
837
838If desired, interrupts can be sent between guest VMs accessing the same shared
839memory region. Interrupt support requires using a shared memory server and
840using a chardev socket to connect to it. The code for the shared memory server
841is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
842memory server is:
843
844@example
a75eb03b 845# First start the ivshmem server once and for all
50d34c4e 846ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
847
848# Then start your qemu instances with matching arguments
5400c02b 849qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 850 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
851@end example
852
853When using the server, the guest will be assigned a VM ID (>=0) that allows guests
854using the same server to communicate via interrupts. Guests can read their
1309cf44 855VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 856
62a830b6
MA
857@subsubsection Migration with ivshmem
858
5400c02b
MA
859With device property @option{master=on}, the guest will copy the shared
860memory on migration to the destination host. With @option{master=off},
861the guest will not be able to migrate with the device attached. In the
862latter case, the device should be detached and then reattached after
863migration using the PCI hotplug support.
6cbf4c8c 864
62a830b6
MA
865At most one of the devices sharing the same memory can be master. The
866master must complete migration before you plug back the other devices.
867
7d4f4bda
MAL
868@subsubsection ivshmem and hugepages
869
870Instead of specifying the <shm size> using POSIX shm, you may specify
871a memory backend that has hugepage support:
872
873@example
5400c02b
MA
874qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
875 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
876@end example
877
878ivshmem-server also supports hugepages mount points with the
879@option{-m} memory path argument.
880
9d4fb82e
FB
881@node direct_linux_boot
882@section Direct Linux Boot
1f673135
FB
883
884This section explains how to launch a Linux kernel inside QEMU without
885having to make a full bootable image. It is very useful for fast Linux
ee0f4751 886kernel testing.
1f673135 887
ee0f4751 888The syntax is:
1f673135 889@example
3804da9d 890qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
891@end example
892
ee0f4751
FB
893Use @option{-kernel} to provide the Linux kernel image and
894@option{-append} to give the kernel command line arguments. The
895@option{-initrd} option can be used to provide an INITRD image.
1f673135 896
ee0f4751
FB
897When using the direct Linux boot, a disk image for the first hard disk
898@file{hda} is required because its boot sector is used to launch the
899Linux kernel.
1f673135 900
ee0f4751
FB
901If you do not need graphical output, you can disable it and redirect
902the virtual serial port and the QEMU monitor to the console with the
903@option{-nographic} option. The typical command line is:
1f673135 904@example
3804da9d
SW
905qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
906 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
907@end example
908
ee0f4751
FB
909Use @key{Ctrl-a c} to switch between the serial console and the
910monitor (@pxref{pcsys_keys}).
1f673135 911
debc7065 912@node pcsys_usb
b389dbfb
FB
913@section USB emulation
914
a92ff8c1
TH
915QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
916plug virtual USB devices or real host USB devices (only works with certain
917host operating systems). QEMU will automatically create and connect virtual
918USB hubs as necessary to connect multiple USB devices.
b389dbfb 919
0aff66b5
PB
920@menu
921* usb_devices::
922* host_usb_devices::
923@end menu
924@node usb_devices
925@subsection Connecting USB devices
b389dbfb 926
a92ff8c1
TH
927USB devices can be connected with the @option{-device usb-...} command line
928option or the @code{device_add} monitor command. Available devices are:
b389dbfb 929
db380c06 930@table @code
a92ff8c1 931@item usb-mouse
0aff66b5 932Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 933@item usb-tablet
c6d46c20 934Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 935This means QEMU is able to report the mouse position without having
0aff66b5 936to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
937@item usb-storage,drive=@var{drive_id}
938Mass storage device backed by @var{drive_id} (@pxref{disk_images})
939@item usb-uas
940USB attached SCSI device, see
70b7fba9 941@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
942for details
943@item usb-bot
944Bulk-only transport storage device, see
70b7fba9 945@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 946for details here, too
1ee53067 947@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
948Media transfer protocol device, using @var{dir} as root of the file tree
949that is presented to the guest.
950@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
951Pass through the host device identified by @var{bus} and @var{addr}
952@item usb-host,vendorid=@var{vendor},productid=@var{product}
953Pass through the host device identified by @var{vendor} and @var{product} ID
954@item usb-wacom-tablet
f6d2a316
AZ
955Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
956above but it can be used with the tslib library because in addition to touch
957coordinates it reports touch pressure.
a92ff8c1 958@item usb-kbd
47b2d338 959Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 960@item usb-serial,chardev=@var{id}
db380c06 961Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
962device @var{id}.
963@item usb-braille,chardev=@var{id}
2e4d9fb1 964Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
965or fake device referenced by @var{id}.
966@item usb-net[,netdev=@var{id}]
967Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
968specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 969For instance, user-mode networking can be used with
6c9f886c 970@example
a92ff8c1 971qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 972@end example
a92ff8c1
TH
973@item usb-ccid
974Smartcard reader device
975@item usb-audio
976USB audio device
977@item usb-bt-dongle
978Bluetooth dongle for the transport layer of HCI. It is connected to HCI
979scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
980Note that the syntax for the @code{-device usb-bt-dongle} option is not as
981useful yet as it was with the legacy @code{-usbdevice} option. So to
982configure an USB bluetooth device, you might need to use
983"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
984bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
985the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
986no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
987This USB device implements the USB Transport Layer of HCI. Example
988usage:
989@example
8485140f 990@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 991@end example
0aff66b5 992@end table
b389dbfb 993
0aff66b5 994@node host_usb_devices
b389dbfb
FB
995@subsection Using host USB devices on a Linux host
996
997WARNING: this is an experimental feature. QEMU will slow down when
998using it. USB devices requiring real time streaming (i.e. USB Video
999Cameras) are not supported yet.
1000
1001@enumerate
5fafdf24 1002@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1003is actually using the USB device. A simple way to do that is simply to
1004disable the corresponding kernel module by renaming it from @file{mydriver.o}
1005to @file{mydriver.o.disabled}.
1006
1007@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1008@example
1009ls /proc/bus/usb
1010001 devices drivers
1011@end example
1012
1013@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1014@example
1015chown -R myuid /proc/bus/usb
1016@end example
1017
1018@item Launch QEMU and do in the monitor:
5fafdf24 1019@example
b389dbfb
FB
1020info usbhost
1021 Device 1.2, speed 480 Mb/s
1022 Class 00: USB device 1234:5678, USB DISK
1023@end example
1024You should see the list of the devices you can use (Never try to use
1025hubs, it won't work).
1026
1027@item Add the device in QEMU by using:
5fafdf24 1028@example
a92ff8c1 1029device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1030@end example
1031
a92ff8c1
TH
1032Normally the guest OS should report that a new USB device is plugged.
1033You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1034
1035@item Now you can try to use the host USB device in QEMU.
1036
1037@end enumerate
1038
1039When relaunching QEMU, you may have to unplug and plug again the USB
1040device to make it work again (this is a bug).
1041
f858dcae
TS
1042@node vnc_security
1043@section VNC security
1044
1045The VNC server capability provides access to the graphical console
1046of the guest VM across the network. This has a number of security
1047considerations depending on the deployment scenarios.
1048
1049@menu
1050* vnc_sec_none::
1051* vnc_sec_password::
1052* vnc_sec_certificate::
1053* vnc_sec_certificate_verify::
1054* vnc_sec_certificate_pw::
2f9606b3
AL
1055* vnc_sec_sasl::
1056* vnc_sec_certificate_sasl::
2f9606b3 1057* vnc_setup_sasl::
f858dcae
TS
1058@end menu
1059@node vnc_sec_none
1060@subsection Without passwords
1061
1062The simplest VNC server setup does not include any form of authentication.
1063For this setup it is recommended to restrict it to listen on a UNIX domain
1064socket only. For example
1065
1066@example
3804da9d 1067qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1068@end example
1069
1070This ensures that only users on local box with read/write access to that
1071path can access the VNC server. To securely access the VNC server from a
1072remote machine, a combination of netcat+ssh can be used to provide a secure
1073tunnel.
1074
1075@node vnc_sec_password
1076@subsection With passwords
1077
1078The VNC protocol has limited support for password based authentication. Since
1079the protocol limits passwords to 8 characters it should not be considered
1080to provide high security. The password can be fairly easily brute-forced by
1081a client making repeat connections. For this reason, a VNC server using password
1082authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1083or UNIX domain sockets. Password authentication is not supported when operating
1084in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1085authentication is requested with the @code{password} option, and then once QEMU
1086is running the password is set with the monitor. Until the monitor is used to
1087set the password all clients will be rejected.
f858dcae
TS
1088
1089@example
3804da9d 1090qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1091(qemu) change vnc password
1092Password: ********
1093(qemu)
1094@end example
1095
1096@node vnc_sec_certificate
1097@subsection With x509 certificates
1098
1099The QEMU VNC server also implements the VeNCrypt extension allowing use of
1100TLS for encryption of the session, and x509 certificates for authentication.
1101The use of x509 certificates is strongly recommended, because TLS on its
1102own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1103support provides a secure session, but no authentication. This allows any
1104client to connect, and provides an encrypted session.
1105
1106@example
756b9da7
DB
1107qemu-system-i386 [...OPTIONS...] \
1108 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1109 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1110@end example
1111
1112In the above example @code{/etc/pki/qemu} should contain at least three files,
1113@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1114users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1115NB the @code{server-key.pem} file should be protected with file mode 0600 to
1116only be readable by the user owning it.
1117
1118@node vnc_sec_certificate_verify
1119@subsection With x509 certificates and client verification
1120
1121Certificates can also provide a means to authenticate the client connecting.
1122The server will request that the client provide a certificate, which it will
1123then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1124in an environment with a private internal certificate authority. It uses the
1125same syntax as previously, but with @code{verify-peer} set to @code{yes}
1126instead.
f858dcae
TS
1127
1128@example
756b9da7
DB
1129qemu-system-i386 [...OPTIONS...] \
1130 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1131 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1132@end example
1133
1134
1135@node vnc_sec_certificate_pw
1136@subsection With x509 certificates, client verification and passwords
1137
1138Finally, the previous method can be combined with VNC password authentication
1139to provide two layers of authentication for clients.
1140
1141@example
756b9da7
DB
1142qemu-system-i386 [...OPTIONS...] \
1143 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1144 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1145(qemu) change vnc password
1146Password: ********
1147(qemu)
1148@end example
1149
2f9606b3
AL
1150
1151@node vnc_sec_sasl
1152@subsection With SASL authentication
1153
1154The SASL authentication method is a VNC extension, that provides an
1155easily extendable, pluggable authentication method. This allows for
1156integration with a wide range of authentication mechanisms, such as
1157PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1158The strength of the authentication depends on the exact mechanism
1159configured. If the chosen mechanism also provides a SSF layer, then
1160it will encrypt the datastream as well.
1161
1162Refer to the later docs on how to choose the exact SASL mechanism
1163used for authentication, but assuming use of one supporting SSF,
1164then QEMU can be launched with:
1165
1166@example
3804da9d 1167qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1168@end example
1169
1170@node vnc_sec_certificate_sasl
1171@subsection With x509 certificates and SASL authentication
1172
1173If the desired SASL authentication mechanism does not supported
1174SSF layers, then it is strongly advised to run it in combination
1175with TLS and x509 certificates. This provides securely encrypted
1176data stream, avoiding risk of compromising of the security
1177credentials. This can be enabled, by combining the 'sasl' option
1178with the aforementioned TLS + x509 options:
1179
1180@example
756b9da7
DB
1181qemu-system-i386 [...OPTIONS...] \
1182 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1183 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1184@end example
1185
5d19a6ea
DB
1186@node vnc_setup_sasl
1187
1188@subsection Configuring SASL mechanisms
1189
1190The following documentation assumes use of the Cyrus SASL implementation on a
1191Linux host, but the principles should apply to any other SASL implementation
1192or host. When SASL is enabled, the mechanism configuration will be loaded from
1193system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1194unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1195it search alternate locations for the service config file.
1196
1197If the TLS option is enabled for VNC, then it will provide session encryption,
1198otherwise the SASL mechanism will have to provide encryption. In the latter
1199case the list of possible plugins that can be used is drastically reduced. In
1200fact only the GSSAPI SASL mechanism provides an acceptable level of security
1201by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1202mechanism, however, it has multiple serious flaws described in detail in
1203RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1204provides a simple username/password auth facility similar to DIGEST-MD5, but
1205does not support session encryption, so can only be used in combination with
1206TLS.
2f9606b3 1207
5d19a6ea 1208When not using TLS the recommended configuration is
f858dcae 1209
5d19a6ea
DB
1210@example
1211mech_list: gssapi
1212keytab: /etc/qemu/krb5.tab
1213@end example
1214
1215This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1216the server principal stored in /etc/qemu/krb5.tab. For this to work the
1217administrator of your KDC must generate a Kerberos principal for the server,
1218with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1219'somehost.example.com' with the fully qualified host name of the machine
1220running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1221
1222When using TLS, if username+password authentication is desired, then a
1223reasonable configuration is
1224
1225@example
1226mech_list: scram-sha-1
1227sasldb_path: /etc/qemu/passwd.db
1228@end example
1229
1230The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1231file with accounts.
1232
1233Other SASL configurations will be left as an exercise for the reader. Note that
1234all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1235secure data channel.
1236
1237
1238@node network_tls
1239@section TLS setup for network services
1240
1241Almost all network services in QEMU have the ability to use TLS for
1242session data encryption, along with x509 certificates for simple
1243client authentication. What follows is a description of how to
1244generate certificates suitable for usage with QEMU, and applies to
1245the VNC server, character devices with the TCP backend, NBD server
1246and client, and migration server and client.
1247
1248At a high level, QEMU requires certificates and private keys to be
1249provided in PEM format. Aside from the core fields, the certificates
1250should include various extension data sets, including v3 basic
1251constraints data, key purpose, key usage and subject alt name.
1252
1253The GnuTLS package includes a command called @code{certtool} which can
1254be used to easily generate certificates and keys in the required format
1255with expected data present. Alternatively a certificate management
1256service may be used.
1257
1258At a minimum it is necessary to setup a certificate authority, and
1259issue certificates to each server. If using x509 certificates for
1260authentication, then each client will also need to be issued a
1261certificate.
1262
1263Assuming that the QEMU network services will only ever be exposed to
1264clients on a private intranet, there is no need to use a commercial
1265certificate authority to create certificates. A self-signed CA is
1266sufficient, and in fact likely to be more secure since it removes
1267the ability of malicious 3rd parties to trick the CA into mis-issuing
1268certs for impersonating your services. The only likely exception
1269where a commercial CA might be desirable is if enabling the VNC
1270websockets server and exposing it directly to remote browser clients.
1271In such a case it might be useful to use a commercial CA to avoid
1272needing to install custom CA certs in the web browsers.
1273
1274The recommendation is for the server to keep its certificates in either
1275@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1276
1277@menu
5d19a6ea
DB
1278* tls_generate_ca::
1279* tls_generate_server::
1280* tls_generate_client::
1281* tls_creds_setup::
e1a6dc91 1282* tls_psk::
f858dcae 1283@end menu
5d19a6ea
DB
1284@node tls_generate_ca
1285@subsection Setup the Certificate Authority
f858dcae
TS
1286
1287This step only needs to be performed once per organization / organizational
1288unit. First the CA needs a private key. This key must be kept VERY secret
1289and secure. If this key is compromised the entire trust chain of the certificates
1290issued with it is lost.
1291
1292@example
1293# certtool --generate-privkey > ca-key.pem
1294@end example
1295
5d19a6ea
DB
1296To generate a self-signed certificate requires one core piece of information,
1297the name of the organization. A template file @code{ca.info} should be
1298populated with the desired data to avoid having to deal with interactive
1299prompts from certtool:
f858dcae
TS
1300@example
1301# cat > ca.info <<EOF
1302cn = Name of your organization
1303ca
1304cert_signing_key
1305EOF
1306# certtool --generate-self-signed \
1307 --load-privkey ca-key.pem
1308 --template ca.info \
1309 --outfile ca-cert.pem
1310@end example
1311
5d19a6ea
DB
1312The @code{ca} keyword in the template sets the v3 basic constraints extension
1313to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1314the key usage extension to indicate this will be used for signing other keys.
1315The generated @code{ca-cert.pem} file should be copied to all servers and
1316clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1317must not be disclosed/copied anywhere except the host responsible for issuing
1318certificates.
f858dcae 1319
5d19a6ea
DB
1320@node tls_generate_server
1321@subsection Issuing server certificates
f858dcae
TS
1322
1323Each server (or host) needs to be issued with a key and certificate. When connecting
1324the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1325The core pieces of information for a server certificate are the hostnames and/or IP
1326addresses that will be used by clients when connecting. The hostname / IP address
1327that the client specifies when connecting will be validated against the hostname(s)
1328and IP address(es) recorded in the server certificate, and if no match is found
1329the client will close the connection.
1330
1331Thus it is recommended that the server certificate include both the fully qualified
1332and unqualified hostnames. If the server will have permanently assigned IP address(es),
1333and clients are likely to use them when connecting, they may also be included in the
1334certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1335only included 1 hostname in the @code{CN} field, however, usage of this field for
1336validation is now deprecated. Instead modern TLS clients will validate against the
1337Subject Alt Name extension data, which allows for multiple entries. In the future
1338usage of the @code{CN} field may be discontinued entirely, so providing SAN
1339extension data is strongly recommended.
1340
1341On the host holding the CA, create template files containing the information
1342for each server, and use it to issue server certificates.
f858dcae
TS
1343
1344@example
5d19a6ea 1345# cat > server-hostNNN.info <<EOF
f858dcae 1346organization = Name of your organization
5d19a6ea
DB
1347cn = hostNNN.foo.example.com
1348dns_name = hostNNN
1349dns_name = hostNNN.foo.example.com
1350ip_address = 10.0.1.87
1351ip_address = 192.8.0.92
1352ip_address = 2620:0:cafe::87
1353ip_address = 2001:24::92
f858dcae
TS
1354tls_www_server
1355encryption_key
1356signing_key
1357EOF
5d19a6ea 1358# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1359# certtool --generate-certificate \
1360 --load-ca-certificate ca-cert.pem \
1361 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1362 --load-privkey server-hostNNN-key.pem \
1363 --template server-hostNNN.info \
1364 --outfile server-hostNNN-cert.pem
f858dcae
TS
1365@end example
1366
5d19a6ea
DB
1367The @code{dns_name} and @code{ip_address} fields in the template are setting
1368the subject alt name extension data. The @code{tls_www_server} keyword is the
1369key purpose extension to indicate this certificate is intended for usage in
1370a web server. Although QEMU network services are not in fact HTTP servers
1371(except for VNC websockets), setting this key purpose is still recommended.
1372The @code{encryption_key} and @code{signing_key} keyword is the key usage
1373extension to indicate this certificate is intended for usage in the data
1374session.
1375
1376The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1377should now be securely copied to the server for which they were generated,
1378and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1379to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1380file is security sensitive and should be kept protected with file mode 0600
1381to prevent disclosure.
1382
1383@node tls_generate_client
1384@subsection Issuing client certificates
f858dcae 1385
5d19a6ea
DB
1386The QEMU x509 TLS credential setup defaults to enabling client verification
1387using certificates, providing a simple authentication mechanism. If this
1388default is used, each client also needs to be issued a certificate. The client
1389certificate contains enough metadata to uniquely identify the client with the
1390scope of the certificate authority. The client certificate would typically
1391include fields for organization, state, city, building, etc.
1392
1393Once again on the host holding the CA, create template files containing the
1394information for each client, and use it to issue client certificates.
f858dcae 1395
f858dcae
TS
1396
1397@example
5d19a6ea 1398# cat > client-hostNNN.info <<EOF
f858dcae
TS
1399country = GB
1400state = London
5d19a6ea 1401locality = City Of London
63c693f8 1402organization = Name of your organization
5d19a6ea 1403cn = hostNNN.foo.example.com
f858dcae
TS
1404tls_www_client
1405encryption_key
1406signing_key
1407EOF
5d19a6ea 1408# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1409# certtool --generate-certificate \
1410 --load-ca-certificate ca-cert.pem \
1411 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1412 --load-privkey client-hostNNN-key.pem \
1413 --template client-hostNNN.info \
1414 --outfile client-hostNNN-cert.pem
f858dcae
TS
1415@end example
1416
5d19a6ea
DB
1417The subject alt name extension data is not required for clients, so the
1418the @code{dns_name} and @code{ip_address} fields are not included.
1419The @code{tls_www_client} keyword is the key purpose extension to indicate
1420this certificate is intended for usage in a web client. Although QEMU
1421network clients are not in fact HTTP clients, setting this key purpose is
1422still recommended. The @code{encryption_key} and @code{signing_key} keyword
1423is the key usage extension to indicate this certificate is intended for
1424usage in the data session.
1425
1426The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1427should now be securely copied to the client for which they were generated,
1428and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1429to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1430file is security sensitive and should be kept protected with file mode 0600
1431to prevent disclosure.
1432
1433If a single host is going to be using TLS in both a client and server
1434role, it is possible to create a single certificate to cover both roles.
1435This would be quite common for the migration and NBD services, where a
1436QEMU process will be started by accepting a TLS protected incoming migration,
1437and later itself be migrated out to another host. To generate a single
1438certificate, simply include the template data from both the client and server
1439instructions in one.
2f9606b3 1440
5d19a6ea
DB
1441@example
1442# cat > both-hostNNN.info <<EOF
1443country = GB
1444state = London
1445locality = City Of London
1446organization = Name of your organization
1447cn = hostNNN.foo.example.com
1448dns_name = hostNNN
1449dns_name = hostNNN.foo.example.com
1450ip_address = 10.0.1.87
1451ip_address = 192.8.0.92
1452ip_address = 2620:0:cafe::87
1453ip_address = 2001:24::92
1454tls_www_server
1455tls_www_client
1456encryption_key
1457signing_key
1458EOF
1459# certtool --generate-privkey > both-hostNNN-key.pem
1460# certtool --generate-certificate \
1461 --load-ca-certificate ca-cert.pem \
1462 --load-ca-privkey ca-key.pem \
1463 --load-privkey both-hostNNN-key.pem \
1464 --template both-hostNNN.info \
1465 --outfile both-hostNNN-cert.pem
1466@end example
c6a9a9f5 1467
5d19a6ea
DB
1468When copying the PEM files to the target host, save them twice,
1469once as @code{server-cert.pem} and @code{server-key.pem}, and
1470again as @code{client-cert.pem} and @code{client-key.pem}.
1471
1472@node tls_creds_setup
1473@subsection TLS x509 credential configuration
1474
1475QEMU has a standard mechanism for loading x509 credentials that will be
1476used for network services and clients. It requires specifying the
1477@code{tls-creds-x509} class name to the @code{--object} command line
1478argument for the system emulators. Each set of credentials loaded should
1479be given a unique string identifier via the @code{id} parameter. A single
1480set of TLS credentials can be used for multiple network backends, so VNC,
1481migration, NBD, character devices can all share the same credentials. Note,
1482however, that credentials for use in a client endpoint must be loaded
1483separately from those used in a server endpoint.
1484
1485When specifying the object, the @code{dir} parameters specifies which
1486directory contains the credential files. This directory is expected to
1487contain files with the names mentioned previously, @code{ca-cert.pem},
1488@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1489and @code{client-cert.pem} as appropriate. It is also possible to
1490include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1491@code{dh-params.pem}, which can be created using the
1492@code{certtool --generate-dh-params} command. If omitted, QEMU will
1493dynamically generate DH parameters when loading the credentials.
1494
1495The @code{endpoint} parameter indicates whether the credentials will
1496be used for a network client or server, and determines which PEM
1497files are loaded.
1498
1499The @code{verify} parameter determines whether x509 certificate
1500validation should be performed. This defaults to enabled, meaning
1501clients will always validate the server hostname against the
1502certificate subject alt name fields and/or CN field. It also
1503means that servers will request that clients provide a certificate
1504and validate them. Verification should never be turned off for
1505client endpoints, however, it may be turned off for server endpoints
1506if an alternative mechanism is used to authenticate clients. For
1507example, the VNC server can use SASL to authenticate clients
1508instead.
1509
1510To load server credentials with client certificate validation
1511enabled
2f9606b3
AL
1512
1513@example
5d19a6ea 1514$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1515@end example
1516
5d19a6ea 1517while to load client credentials use
2f9606b3
AL
1518
1519@example
5d19a6ea 1520$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1521@end example
1522
5d19a6ea
DB
1523Network services which support TLS will all have a @code{tls-creds}
1524parameter which expects the ID of the TLS credentials object. For
1525example with VNC:
2f9606b3 1526
5d19a6ea
DB
1527@example
1528$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1529@end example
2f9606b3 1530
e1a6dc91
RJ
1531@node tls_psk
1532@subsection TLS Pre-Shared Keys (PSK)
1533
1534Instead of using certificates, you may also use TLS Pre-Shared Keys
1535(TLS-PSK). This can be simpler to set up than certificates but is
1536less scalable.
1537
1538Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1539file containing one or more usernames and random keys:
1540
1541@example
1542mkdir -m 0700 /tmp/keys
1543psktool -u rich -p /tmp/keys/keys.psk
1544@end example
1545
1546TLS-enabled servers such as qemu-nbd can use this directory like so:
1547
1548@example
1549qemu-nbd \
1550 -t -x / \
1551 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1552 --tls-creds tls0 \
1553 image.qcow2
1554@end example
1555
1556When connecting from a qemu-based client you must specify the
1557directory containing @code{keys.psk} and an optional @var{username}
1558(defaults to ``qemu''):
1559
1560@example
1561qemu-img info \
1562 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1563 --image-opts \
1564 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1565@end example
1566
0806e3f6 1567@node gdb_usage
da415d54
FB
1568@section GDB usage
1569
1570QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1571'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1572
b65ee4fa 1573In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1574gdb connection:
1575@example
3804da9d
SW
1576qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1577 -append "root=/dev/hda"
da415d54
FB
1578Connected to host network interface: tun0
1579Waiting gdb connection on port 1234
1580@end example
1581
1582Then launch gdb on the 'vmlinux' executable:
1583@example
1584> gdb vmlinux
1585@end example
1586
1587In gdb, connect to QEMU:
1588@example
6c9bf893 1589(gdb) target remote localhost:1234
da415d54
FB
1590@end example
1591
1592Then you can use gdb normally. For example, type 'c' to launch the kernel:
1593@example
1594(gdb) c
1595@end example
1596
0806e3f6
FB
1597Here are some useful tips in order to use gdb on system code:
1598
1599@enumerate
1600@item
1601Use @code{info reg} to display all the CPU registers.
1602@item
1603Use @code{x/10i $eip} to display the code at the PC position.
1604@item
1605Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1606@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1607@end enumerate
1608
60897d36
EI
1609Advanced debugging options:
1610
b6af0975 1611The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1612@table @code
60897d36
EI
1613@item maintenance packet qqemu.sstepbits
1614
1615This will display the MASK bits used to control the single stepping IE:
1616@example
1617(gdb) maintenance packet qqemu.sstepbits
1618sending: "qqemu.sstepbits"
1619received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1620@end example
1621@item maintenance packet qqemu.sstep
1622
1623This will display the current value of the mask used when single stepping IE:
1624@example
1625(gdb) maintenance packet qqemu.sstep
1626sending: "qqemu.sstep"
1627received: "0x7"
1628@end example
1629@item maintenance packet Qqemu.sstep=HEX_VALUE
1630
1631This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1632@example
1633(gdb) maintenance packet Qqemu.sstep=0x5
1634sending: "qemu.sstep=0x5"
1635received: "OK"
1636@end example
94d45e44 1637@end table
60897d36 1638
debc7065 1639@node pcsys_os_specific
1a084f3d
FB
1640@section Target OS specific information
1641
1642@subsection Linux
1643
15a34c63
FB
1644To have access to SVGA graphic modes under X11, use the @code{vesa} or
1645the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1646color depth in the guest and the host OS.
1a084f3d 1647
e3371e62
FB
1648When using a 2.6 guest Linux kernel, you should add the option
1649@code{clock=pit} on the kernel command line because the 2.6 Linux
1650kernels make very strict real time clock checks by default that QEMU
1651cannot simulate exactly.
1652
7c3fc84d
FB
1653When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1654not activated because QEMU is slower with this patch. The QEMU
1655Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1656Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1657patch by default. Newer kernels don't have it.
1658
1a084f3d
FB
1659@subsection Windows
1660
1661If you have a slow host, using Windows 95 is better as it gives the
1662best speed. Windows 2000 is also a good choice.
1663
e3371e62
FB
1664@subsubsection SVGA graphic modes support
1665
1666QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1667card. All Windows versions starting from Windows 95 should recognize
1668and use this graphic card. For optimal performances, use 16 bit color
1669depth in the guest and the host OS.
1a084f3d 1670
3cb0853a
FB
1671If you are using Windows XP as guest OS and if you want to use high
1672resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16731280x1024x16), then you should use the VESA VBE virtual graphic card
1674(option @option{-std-vga}).
1675
e3371e62
FB
1676@subsubsection CPU usage reduction
1677
1678Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1679instruction. The result is that it takes host CPU cycles even when
1680idle. You can install the utility from
70b7fba9 1681@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1682to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1683
9d0a8e6f 1684@subsubsection Windows 2000 disk full problem
e3371e62 1685
9d0a8e6f
FB
1686Windows 2000 has a bug which gives a disk full problem during its
1687installation. When installing it, use the @option{-win2k-hack} QEMU
1688option to enable a specific workaround. After Windows 2000 is
1689installed, you no longer need this option (this option slows down the
1690IDE transfers).
e3371e62 1691
6cc721cf
FB
1692@subsubsection Windows 2000 shutdown
1693
1694Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1695can. It comes from the fact that Windows 2000 does not automatically
1696use the APM driver provided by the BIOS.
1697
1698In order to correct that, do the following (thanks to Struan
1699Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1700Add/Troubleshoot a device => Add a new device & Next => No, select the
1701hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1702(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1703correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1704
1705@subsubsection Share a directory between Unix and Windows
1706
c8c6afa8
TH
1707See @ref{sec_invocation} about the help of the option
1708@option{'-netdev user,smb=...'}.
6cc721cf 1709
2192c332 1710@subsubsection Windows XP security problem
e3371e62
FB
1711
1712Some releases of Windows XP install correctly but give a security
1713error when booting:
1714@example
1715A problem is preventing Windows from accurately checking the
1716license for this computer. Error code: 0x800703e6.
1717@end example
e3371e62 1718
2192c332
FB
1719The workaround is to install a service pack for XP after a boot in safe
1720mode. Then reboot, and the problem should go away. Since there is no
1721network while in safe mode, its recommended to download the full
1722installation of SP1 or SP2 and transfer that via an ISO or using the
1723vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1724
a0a821a4
FB
1725@subsection MS-DOS and FreeDOS
1726
1727@subsubsection CPU usage reduction
1728
1729DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1730it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1731@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1732to solve this problem.
a0a821a4 1733
debc7065 1734@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1735@chapter QEMU System emulator for non PC targets
1736
1737QEMU is a generic emulator and it emulates many non PC
1738machines. Most of the options are similar to the PC emulator. The
4be456f1 1739differences are mentioned in the following sections.
3f9f3aa1 1740
debc7065 1741@menu
7544a042 1742* PowerPC System emulator::
24d4de45
TS
1743* Sparc32 System emulator::
1744* Sparc64 System emulator::
1745* MIPS System emulator::
1746* ARM System emulator::
1747* ColdFire System emulator::
7544a042
SW
1748* Cris System emulator::
1749* Microblaze System emulator::
1750* SH4 System emulator::
3aeaea65 1751* Xtensa System emulator::
debc7065
FB
1752@end menu
1753
7544a042
SW
1754@node PowerPC System emulator
1755@section PowerPC System emulator
1756@cindex system emulation (PowerPC)
1a084f3d 1757
15a34c63
FB
1758Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1759or PowerMac PowerPC system.
1a084f3d 1760
b671f9ed 1761QEMU emulates the following PowerMac peripherals:
1a084f3d 1762
15a34c63 1763@itemize @minus
5fafdf24 1764@item
006f3a48 1765UniNorth or Grackle PCI Bridge
15a34c63
FB
1766@item
1767PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1768@item
15a34c63 17692 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1770@item
15a34c63
FB
1771NE2000 PCI adapters
1772@item
1773Non Volatile RAM
1774@item
1775VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1776@end itemize
1777
b671f9ed 1778QEMU emulates the following PREP peripherals:
52c00a5f
FB
1779
1780@itemize @minus
5fafdf24 1781@item
15a34c63
FB
1782PCI Bridge
1783@item
1784PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1785@item
52c00a5f
FB
17862 IDE interfaces with hard disk and CD-ROM support
1787@item
1788Floppy disk
5fafdf24 1789@item
15a34c63 1790NE2000 network adapters
52c00a5f
FB
1791@item
1792Serial port
1793@item
1794PREP Non Volatile RAM
15a34c63
FB
1795@item
1796PC compatible keyboard and mouse.
52c00a5f
FB
1797@end itemize
1798
15a34c63 1799QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1800@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1801
70b7fba9 1802Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1803for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1804v2) portable firmware implementation. The goal is to implement a 100%
1805IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1806
15a34c63
FB
1807@c man begin OPTIONS
1808
1809The following options are specific to the PowerPC emulation:
1810
1811@table @option
1812
4e257e5e 1813@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1814
340fb41b 1815Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1816
4e257e5e 1817@item -prom-env @var{string}
95efd11c
BS
1818
1819Set OpenBIOS variables in NVRAM, for example:
1820
1821@example
1822qemu-system-ppc -prom-env 'auto-boot?=false' \
1823 -prom-env 'boot-device=hd:2,\yaboot' \
1824 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1825@end example
1826
1827These variables are not used by Open Hack'Ware.
1828
15a34c63
FB
1829@end table
1830
5fafdf24 1831@c man end
15a34c63
FB
1832
1833
52c00a5f 1834More information is available at
3f9f3aa1 1835@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1836
24d4de45
TS
1837@node Sparc32 System emulator
1838@section Sparc32 System emulator
7544a042 1839@cindex system emulation (Sparc32)
e80cfcfc 1840
34a3d239
BS
1841Use the executable @file{qemu-system-sparc} to simulate the following
1842Sun4m architecture machines:
1843@itemize @minus
1844@item
1845SPARCstation 4
1846@item
1847SPARCstation 5
1848@item
1849SPARCstation 10
1850@item
1851SPARCstation 20
1852@item
1853SPARCserver 600MP
1854@item
1855SPARCstation LX
1856@item
1857SPARCstation Voyager
1858@item
1859SPARCclassic
1860@item
1861SPARCbook
1862@end itemize
1863
1864The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1865but Linux limits the number of usable CPUs to 4.
e80cfcfc 1866
6a4e1771 1867QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1868
1869@itemize @minus
3475187d 1870@item
6a4e1771 1871IOMMU
e80cfcfc 1872@item
33632788 1873TCX or cgthree Frame buffer
5fafdf24 1874@item
e80cfcfc
FB
1875Lance (Am7990) Ethernet
1876@item
34a3d239 1877Non Volatile RAM M48T02/M48T08
e80cfcfc 1878@item
3475187d
FB
1879Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1880and power/reset logic
1881@item
1882ESP SCSI controller with hard disk and CD-ROM support
1883@item
6a3b9cc9 1884Floppy drive (not on SS-600MP)
a2502b58
BS
1885@item
1886CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1887@end itemize
1888
6a3b9cc9
BS
1889The number of peripherals is fixed in the architecture. Maximum
1890memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1891others 2047MB.
3475187d 1892
30a604f3 1893Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1894@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1895firmware implementation. The goal is to implement a 100% IEEE
18961275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1897
1898A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1899the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1900most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1901don't work probably due to interface issues between OpenBIOS and
1902Solaris.
3475187d
FB
1903
1904@c man begin OPTIONS
1905
a2502b58 1906The following options are specific to the Sparc32 emulation:
3475187d
FB
1907
1908@table @option
1909
4e257e5e 1910@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1911
33632788
MCA
1912Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1913option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1914of 1152x900x8 for people who wish to use OBP.
3475187d 1915
4e257e5e 1916@item -prom-env @var{string}
66508601
BS
1917
1918Set OpenBIOS variables in NVRAM, for example:
1919
1920@example
1921qemu-system-sparc -prom-env 'auto-boot?=false' \
1922 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1923@end example
1924
6a4e1771 1925@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1926
1927Set the emulated machine type. Default is SS-5.
1928
3475187d
FB
1929@end table
1930
5fafdf24 1931@c man end
3475187d 1932
24d4de45
TS
1933@node Sparc64 System emulator
1934@section Sparc64 System emulator
7544a042 1935@cindex system emulation (Sparc64)
e80cfcfc 1936
34a3d239
BS
1937Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1938(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1939Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1940able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1941Sun4v emulator is still a work in progress.
1942
1943The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1944of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1945and is able to boot the disk.s10hw2 Solaris image.
1946@example
1947qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1948 -nographic -m 256 \
1949 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1950@end example
1951
b756921a 1952
c7ba218d 1953QEMU emulates the following peripherals:
83469015
FB
1954
1955@itemize @minus
1956@item
5fafdf24 1957UltraSparc IIi APB PCI Bridge
83469015
FB
1958@item
1959PCI VGA compatible card with VESA Bochs Extensions
1960@item
34a3d239
BS
1961PS/2 mouse and keyboard
1962@item
83469015
FB
1963Non Volatile RAM M48T59
1964@item
1965PC-compatible serial ports
c7ba218d
BS
1966@item
19672 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1968@item
1969Floppy disk
83469015
FB
1970@end itemize
1971
c7ba218d
BS
1972@c man begin OPTIONS
1973
1974The following options are specific to the Sparc64 emulation:
1975
1976@table @option
1977
4e257e5e 1978@item -prom-env @var{string}
34a3d239
BS
1979
1980Set OpenBIOS variables in NVRAM, for example:
1981
1982@example
1983qemu-system-sparc64 -prom-env 'auto-boot?=false'
1984@end example
1985
a2664ca0 1986@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1987
1988Set the emulated machine type. The default is sun4u.
1989
1990@end table
1991
1992@c man end
1993
24d4de45
TS
1994@node MIPS System emulator
1995@section MIPS System emulator
7544a042 1996@cindex system emulation (MIPS)
9d0a8e6f 1997
f7d257cb
SM
1998@menu
1999* nanoMIPS System emulator ::
2000@end menu
2001
d9aedc32
TS
2002Four executables cover simulation of 32 and 64-bit MIPS systems in
2003both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2004@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2005Five different machine types are emulated:
24d4de45
TS
2006
2007@itemize @minus
2008@item
2009A generic ISA PC-like machine "mips"
2010@item
2011The MIPS Malta prototype board "malta"
2012@item
d9aedc32 2013An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2014@item
f0fc6f8f 2015MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2016@item
2017A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2018@end itemize
2019
2020The generic emulation is supported by Debian 'Etch' and is able to
2021install Debian into a virtual disk image. The following devices are
2022emulated:
3f9f3aa1
FB
2023
2024@itemize @minus
5fafdf24 2025@item
6bf5b4e8 2026A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2027@item
2028PC style serial port
2029@item
24d4de45
TS
2030PC style IDE disk
2031@item
3f9f3aa1
FB
2032NE2000 network card
2033@end itemize
2034
24d4de45
TS
2035The Malta emulation supports the following devices:
2036
2037@itemize @minus
2038@item
0b64d008 2039Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2040@item
2041PIIX4 PCI/USB/SMbus controller
2042@item
2043The Multi-I/O chip's serial device
2044@item
3a2eeac0 2045PCI network cards (PCnet32 and others)
24d4de45
TS
2046@item
2047Malta FPGA serial device
2048@item
1f605a76 2049Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2050@end itemize
2051
ba182a18
AM
2052The Boston board emulation supports the following devices:
2053
2054@itemize @minus
2055@item
2056Xilinx FPGA, which includes a PCIe root port and an UART
2057@item
2058Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2059@end itemize
2060
24d4de45
TS
2061The ACER Pica emulation supports:
2062
2063@itemize @minus
2064@item
2065MIPS R4000 CPU
2066@item
2067PC-style IRQ and DMA controllers
2068@item
2069PC Keyboard
2070@item
2071IDE controller
2072@end itemize
3f9f3aa1 2073
88cb0a02
AJ
2074The MIPS Magnum R4000 emulation supports:
2075
2076@itemize @minus
2077@item
2078MIPS R4000 CPU
2079@item
2080PC-style IRQ controller
2081@item
2082PC Keyboard
2083@item
2084SCSI controller
2085@item
2086G364 framebuffer
2087@end itemize
2088
3a1b94d9
AM
2089The Fulong 2E emulation supports:
2090
2091@itemize @minus
2092@item
2093Loongson 2E CPU
2094@item
2095Bonito64 system controller as North Bridge
2096@item
2097VT82C686 chipset as South Bridge
2098@item
2099RTL8139D as a network card chipset
2100@end itemize
2101
53d21e7b
AM
2102The mipssim pseudo board emulation provides an environment similar
2103to what the proprietary MIPS emulator uses for running Linux.
2104It supports:
2105
2106@itemize @minus
2107@item
2108A range of MIPS CPUs, default is the 24Kf
2109@item
2110PC style serial port
2111@item
2112MIPSnet network emulation
2113@end itemize
2114
f7d257cb
SM
2115@node nanoMIPS System emulator
2116@subsection nanoMIPS System emulator
2117@cindex system emulation (nanoMIPS)
2118
2119Executable @file{qemu-system-mipsel} also covers simulation of
212032-bit nanoMIPS system in little endian mode:
2121
2122@itemize @minus
2123@item
2124nanoMIPS I7200 CPU
2125@end itemize
2126
2127Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2128
2129Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2130
2131Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2132
2133Start system emulation of Malta board with nanoMIPS I7200 CPU:
2134@example
2135qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2136 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2137 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2138@end example
2139
88cb0a02 2140
24d4de45
TS
2141@node ARM System emulator
2142@section ARM System emulator
7544a042 2143@cindex system emulation (ARM)
3f9f3aa1
FB
2144
2145Use the executable @file{qemu-system-arm} to simulate a ARM
2146machine. The ARM Integrator/CP board is emulated with the following
2147devices:
2148
2149@itemize @minus
2150@item
9ee6e8bb 2151ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2152@item
2153Two PL011 UARTs
5fafdf24 2154@item
3f9f3aa1 2155SMC 91c111 Ethernet adapter
00a9bf19
PB
2156@item
2157PL110 LCD controller
2158@item
2159PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2160@item
2161PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2162@end itemize
2163
2164The ARM Versatile baseboard is emulated with the following devices:
2165
2166@itemize @minus
2167@item
9ee6e8bb 2168ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2169@item
2170PL190 Vectored Interrupt Controller
2171@item
2172Four PL011 UARTs
5fafdf24 2173@item
00a9bf19
PB
2174SMC 91c111 Ethernet adapter
2175@item
2176PL110 LCD controller
2177@item
2178PL050 KMI with PS/2 keyboard and mouse.
2179@item
2180PCI host bridge. Note the emulated PCI bridge only provides access to
2181PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2182This means some devices (eg. ne2k_pci NIC) are not usable, and others
2183(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2184mapped control registers.
e6de1bad
PB
2185@item
2186PCI OHCI USB controller.
2187@item
2188LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2189@item
2190PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2191@end itemize
2192
21a88941
PB
2193Several variants of the ARM RealView baseboard are emulated,
2194including the EB, PB-A8 and PBX-A9. Due to interactions with the
2195bootloader, only certain Linux kernel configurations work out
2196of the box on these boards.
2197
2198Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2199enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2200should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2201disabled and expect 1024M RAM.
2202
40c5c6cd 2203The following devices are emulated:
d7739d75
PB
2204
2205@itemize @minus
2206@item
f7c70325 2207ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2208@item
2209ARM AMBA Generic/Distributed Interrupt Controller
2210@item
2211Four PL011 UARTs
5fafdf24 2212@item
0ef849d7 2213SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2214@item
2215PL110 LCD controller
2216@item
2217PL050 KMI with PS/2 keyboard and mouse
2218@item
2219PCI host bridge
2220@item
2221PCI OHCI USB controller
2222@item
2223LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2224@item
2225PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2226@end itemize
2227
b00052e4
AZ
2228The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2229and "Terrier") emulation includes the following peripherals:
2230
2231@itemize @minus
2232@item
2233Intel PXA270 System-on-chip (ARM V5TE core)
2234@item
2235NAND Flash memory
2236@item
2237IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2238@item
2239On-chip OHCI USB controller
2240@item
2241On-chip LCD controller
2242@item
2243On-chip Real Time Clock
2244@item
2245TI ADS7846 touchscreen controller on SSP bus
2246@item
2247Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2248@item
2249GPIO-connected keyboard controller and LEDs
2250@item
549444e1 2251Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2252@item
2253Three on-chip UARTs
2254@item
2255WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2256@end itemize
2257
02645926
AZ
2258The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2259following elements:
2260
2261@itemize @minus
2262@item
2263Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2264@item
2265ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2266@item
2267On-chip LCD controller
2268@item
2269On-chip Real Time Clock
2270@item
2271TI TSC2102i touchscreen controller / analog-digital converter / Audio
2272CODEC, connected through MicroWire and I@math{^2}S busses
2273@item
2274GPIO-connected matrix keypad
2275@item
2276Secure Digital card connected to OMAP MMC/SD host
2277@item
2278Three on-chip UARTs
2279@end itemize
2280
c30bb264
AZ
2281Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2282emulation supports the following elements:
2283
2284@itemize @minus
2285@item
2286Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2287@item
2288RAM and non-volatile OneNAND Flash memories
2289@item
2290Display connected to EPSON remote framebuffer chip and OMAP on-chip
2291display controller and a LS041y3 MIPI DBI-C controller
2292@item
2293TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2294driven through SPI bus
2295@item
2296National Semiconductor LM8323-controlled qwerty keyboard driven
2297through I@math{^2}C bus
2298@item
2299Secure Digital card connected to OMAP MMC/SD host
2300@item
2301Three OMAP on-chip UARTs and on-chip STI debugging console
2302@item
40c5c6cd 2303A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2304@item
c30bb264
AZ
2305Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2306TUSB6010 chip - only USB host mode is supported
2307@item
2308TI TMP105 temperature sensor driven through I@math{^2}C bus
2309@item
2310TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2311@item
2312Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2313through CBUS
2314@end itemize
2315
9ee6e8bb
PB
2316The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2317devices:
2318
2319@itemize @minus
2320@item
2321Cortex-M3 CPU core.
2322@item
232364k Flash and 8k SRAM.
2324@item
2325Timers, UARTs, ADC and I@math{^2}C interface.
2326@item
2327OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2328@end itemize
2329
2330The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2331devices:
2332
2333@itemize @minus
2334@item
2335Cortex-M3 CPU core.
2336@item
2337256k Flash and 64k SRAM.
2338@item
2339Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2340@item
2341OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2342@end itemize
2343
57cd6e97
AZ
2344The Freecom MusicPal internet radio emulation includes the following
2345elements:
2346
2347@itemize @minus
2348@item
2349Marvell MV88W8618 ARM core.
2350@item
235132 MB RAM, 256 KB SRAM, 8 MB flash.
2352@item
2353Up to 2 16550 UARTs
2354@item
2355MV88W8xx8 Ethernet controller
2356@item
2357MV88W8618 audio controller, WM8750 CODEC and mixer
2358@item
e080e785 2359128×64 display with brightness control
57cd6e97
AZ
2360@item
23612 buttons, 2 navigation wheels with button function
2362@end itemize
2363
997641a8 2364The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2365The emulation includes the following elements:
997641a8
AZ
2366
2367@itemize @minus
2368@item
2369Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2370@item
2371ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2372V1
23731 Flash of 16MB and 1 Flash of 8MB
2374V2
23751 Flash of 32MB
2376@item
2377On-chip LCD controller
2378@item
2379On-chip Real Time Clock
2380@item
2381Secure Digital card connected to OMAP MMC/SD host
2382@item
2383Three on-chip UARTs
2384@end itemize
2385
3f9f3aa1
FB
2386A Linux 2.6 test image is available on the QEMU web site. More
2387information is available in the QEMU mailing-list archive.
9d0a8e6f 2388
d2c639d6
BS
2389@c man begin OPTIONS
2390
2391The following options are specific to the ARM emulation:
2392
2393@table @option
2394
2395@item -semihosting
2396Enable semihosting syscall emulation.
2397
2398On ARM this implements the "Angel" interface.
2399
2400Note that this allows guest direct access to the host filesystem,
2401so should only be used with trusted guest OS.
2402
2403@end table
2404
abc67eb6
TH
2405@c man end
2406
24d4de45
TS
2407@node ColdFire System emulator
2408@section ColdFire System emulator
7544a042
SW
2409@cindex system emulation (ColdFire)
2410@cindex system emulation (M68K)
209a4e69
PB
2411
2412Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2413The emulator is able to boot a uClinux kernel.
707e011b
PB
2414
2415The M5208EVB emulation includes the following devices:
2416
2417@itemize @minus
5fafdf24 2418@item
707e011b
PB
2419MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2420@item
2421Three Two on-chip UARTs.
2422@item
2423Fast Ethernet Controller (FEC)
2424@end itemize
2425
2426The AN5206 emulation includes the following devices:
209a4e69
PB
2427
2428@itemize @minus
5fafdf24 2429@item
209a4e69
PB
2430MCF5206 ColdFire V2 Microprocessor.
2431@item
2432Two on-chip UARTs.
2433@end itemize
2434
d2c639d6
BS
2435@c man begin OPTIONS
2436
7544a042 2437The following options are specific to the ColdFire emulation:
d2c639d6
BS
2438
2439@table @option
2440
2441@item -semihosting
2442Enable semihosting syscall emulation.
2443
2444On M68K this implements the "ColdFire GDB" interface used by libgloss.
2445
2446Note that this allows guest direct access to the host filesystem,
2447so should only be used with trusted guest OS.
2448
2449@end table
2450
abc67eb6
TH
2451@c man end
2452
7544a042
SW
2453@node Cris System emulator
2454@section Cris System emulator
2455@cindex system emulation (Cris)
2456
2457TODO
2458
2459@node Microblaze System emulator
2460@section Microblaze System emulator
2461@cindex system emulation (Microblaze)
2462
2463TODO
2464
2465@node SH4 System emulator
2466@section SH4 System emulator
2467@cindex system emulation (SH4)
2468
2469TODO
2470
3aeaea65
MF
2471@node Xtensa System emulator
2472@section Xtensa System emulator
2473@cindex system emulation (Xtensa)
2474
2475Two executables cover simulation of both Xtensa endian options,
2476@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2477Two different machine types are emulated:
2478
2479@itemize @minus
2480@item
2481Xtensa emulator pseudo board "sim"
2482@item
2483Avnet LX60/LX110/LX200 board
2484@end itemize
2485
b5e4946f 2486The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2487to one provided by the proprietary Tensilica ISS.
2488It supports:
2489
2490@itemize @minus
2491@item
2492A range of Xtensa CPUs, default is the DC232B
2493@item
2494Console and filesystem access via semihosting calls
2495@end itemize
2496
2497The Avnet LX60/LX110/LX200 emulation supports:
2498
2499@itemize @minus
2500@item
2501A range of Xtensa CPUs, default is the DC232B
2502@item
250316550 UART
2504@item
2505OpenCores 10/100 Mbps Ethernet MAC
2506@end itemize
2507
2508@c man begin OPTIONS
2509
2510The following options are specific to the Xtensa emulation:
2511
2512@table @option
2513
2514@item -semihosting
2515Enable semihosting syscall emulation.
2516
2517Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2518Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2519
2520Note that this allows guest direct access to the host filesystem,
2521so should only be used with trusted guest OS.
2522
2523@end table
3f2ce724 2524
abc67eb6
TH
2525@c man end
2526
3f2ce724
TH
2527@node QEMU Guest Agent
2528@chapter QEMU Guest Agent invocation
2529
2530@include qemu-ga.texi
2531
5fafdf24
TS
2532@node QEMU User space emulator
2533@chapter QEMU User space emulator
83195237
FB
2534
2535@menu
2536* Supported Operating Systems ::
0722cc42 2537* Features::
83195237 2538* Linux User space emulator::
84778508 2539* BSD User space emulator ::
83195237
FB
2540@end menu
2541
2542@node Supported Operating Systems
2543@section Supported Operating Systems
2544
2545The following OS are supported in user space emulation:
2546
2547@itemize @minus
2548@item
4be456f1 2549Linux (referred as qemu-linux-user)
83195237 2550@item
84778508 2551BSD (referred as qemu-bsd-user)
83195237
FB
2552@end itemize
2553
0722cc42
PB
2554@node Features
2555@section Features
2556
2557QEMU user space emulation has the following notable features:
2558
2559@table @strong
2560@item System call translation:
2561QEMU includes a generic system call translator. This means that
2562the parameters of the system calls can be converted to fix
2563endianness and 32/64-bit mismatches between hosts and targets.
2564IOCTLs can be converted too.
2565
2566@item POSIX signal handling:
2567QEMU can redirect to the running program all signals coming from
2568the host (such as @code{SIGALRM}), as well as synthesize signals from
2569virtual CPU exceptions (for example @code{SIGFPE} when the program
2570executes a division by zero).
2571
2572QEMU relies on the host kernel to emulate most signal system
2573calls, for example to emulate the signal mask. On Linux, QEMU
2574supports both normal and real-time signals.
2575
2576@item Threading:
2577On Linux, QEMU can emulate the @code{clone} syscall and create a real
2578host thread (with a separate virtual CPU) for each emulated thread.
2579Note that not all targets currently emulate atomic operations correctly.
2580x86 and ARM use a global lock in order to preserve their semantics.
2581@end table
2582
2583QEMU was conceived so that ultimately it can emulate itself. Although
2584it is not very useful, it is an important test to show the power of the
2585emulator.
2586
83195237
FB
2587@node Linux User space emulator
2588@section Linux User space emulator
386405f7 2589
debc7065
FB
2590@menu
2591* Quick Start::
2592* Wine launch::
2593* Command line options::
79737e4a 2594* Other binaries::
debc7065
FB
2595@end menu
2596
2597@node Quick Start
83195237 2598@subsection Quick Start
df0f11a0 2599
1f673135 2600In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2601itself and all the target (x86) dynamic libraries used by it.
386405f7 2602
1f673135 2603@itemize
386405f7 2604
1f673135
FB
2605@item On x86, you can just try to launch any process by using the native
2606libraries:
386405f7 2607
5fafdf24 2608@example
1f673135
FB
2609qemu-i386 -L / /bin/ls
2610@end example
386405f7 2611
1f673135
FB
2612@code{-L /} tells that the x86 dynamic linker must be searched with a
2613@file{/} prefix.
386405f7 2614
b65ee4fa
SW
2615@item Since QEMU is also a linux process, you can launch QEMU with
2616QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2617
5fafdf24 2618@example
1f673135
FB
2619qemu-i386 -L / qemu-i386 -L / /bin/ls
2620@end example
386405f7 2621
1f673135
FB
2622@item On non x86 CPUs, you need first to download at least an x86 glibc
2623(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2624@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2625
1f673135 2626@example
5fafdf24 2627unset LD_LIBRARY_PATH
1f673135 2628@end example
1eb87257 2629
1f673135 2630Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2631
1f673135
FB
2632@example
2633qemu-i386 tests/i386/ls
2634@end example
4c3b5a48 2635You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2636QEMU is automatically launched by the Linux kernel when you try to
2637launch x86 executables. It requires the @code{binfmt_misc} module in the
2638Linux kernel.
1eb87257 2639
1f673135
FB
2640@item The x86 version of QEMU is also included. You can try weird things such as:
2641@example
debc7065
FB
2642qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2643 /usr/local/qemu-i386/bin/ls-i386
1f673135 2644@end example
1eb20527 2645
1f673135 2646@end itemize
1eb20527 2647
debc7065 2648@node Wine launch
83195237 2649@subsection Wine launch
1eb20527 2650
1f673135 2651@itemize
386405f7 2652
1f673135
FB
2653@item Ensure that you have a working QEMU with the x86 glibc
2654distribution (see previous section). In order to verify it, you must be
2655able to do:
386405f7 2656
1f673135
FB
2657@example
2658qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2659@end example
386405f7 2660
1f673135 2661@item Download the binary x86 Wine install
5fafdf24 2662(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2663
1f673135 2664@item Configure Wine on your account. Look at the provided script
debc7065 2665@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2666@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2667
1f673135 2668@item Then you can try the example @file{putty.exe}:
386405f7 2669
1f673135 2670@example
debc7065
FB
2671qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2672 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2673@end example
386405f7 2674
1f673135 2675@end itemize
fd429f2f 2676
debc7065 2677@node Command line options
83195237 2678@subsection Command line options
1eb20527 2679
1f673135 2680@example
8485140f 2681@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2682@end example
1eb20527 2683
1f673135
FB
2684@table @option
2685@item -h
2686Print the help
3b46e624 2687@item -L path
1f673135
FB
2688Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2689@item -s size
2690Set the x86 stack size in bytes (default=524288)
34a3d239 2691@item -cpu model
c8057f95 2692Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2693@item -E @var{var}=@var{value}
2694Set environment @var{var} to @var{value}.
2695@item -U @var{var}
2696Remove @var{var} from the environment.
379f6698
PB
2697@item -B offset
2698Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2699the address region required by guest applications is reserved on the host.
2700This option is currently only supported on some hosts.
68a1c816
PB
2701@item -R size
2702Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2703"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2704@end table
2705
1f673135 2706Debug options:
386405f7 2707
1f673135 2708@table @option
989b697d
PM
2709@item -d item1,...
2710Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2711@item -p pagesize
2712Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2713@item -g port
2714Wait gdb connection to port
1b530a6d
AJ
2715@item -singlestep
2716Run the emulation in single step mode.
1f673135 2717@end table
386405f7 2718
b01bcae6
AZ
2719Environment variables:
2720
2721@table @env
2722@item QEMU_STRACE
2723Print system calls and arguments similar to the 'strace' program
2724(NOTE: the actual 'strace' program will not work because the user
2725space emulator hasn't implemented ptrace). At the moment this is
2726incomplete. All system calls that don't have a specific argument
2727format are printed with information for six arguments. Many
2728flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2729@end table
b01bcae6 2730
79737e4a 2731@node Other binaries
83195237 2732@subsection Other binaries
79737e4a 2733
7544a042
SW
2734@cindex user mode (Alpha)
2735@command{qemu-alpha} TODO.
2736
2737@cindex user mode (ARM)
2738@command{qemu-armeb} TODO.
2739
2740@cindex user mode (ARM)
79737e4a
PB
2741@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2742binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2743configurations), and arm-uclinux bFLT format binaries.
2744
7544a042
SW
2745@cindex user mode (ColdFire)
2746@cindex user mode (M68K)
e6e5906b
PB
2747@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2748(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2749coldfire uClinux bFLT format binaries.
2750
79737e4a
PB
2751The binary format is detected automatically.
2752
7544a042
SW
2753@cindex user mode (Cris)
2754@command{qemu-cris} TODO.
2755
2756@cindex user mode (i386)
2757@command{qemu-i386} TODO.
2758@command{qemu-x86_64} TODO.
2759
2760@cindex user mode (Microblaze)
2761@command{qemu-microblaze} TODO.
2762
2763@cindex user mode (MIPS)
8639c5c9
AM
2764@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2765
2766@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2767
2768@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2769
2770@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2771
2772@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2773
2774@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2775
e671711c
MV
2776@cindex user mode (NiosII)
2777@command{qemu-nios2} TODO.
2778
7544a042
SW
2779@cindex user mode (PowerPC)
2780@command{qemu-ppc64abi32} TODO.
2781@command{qemu-ppc64} TODO.
2782@command{qemu-ppc} TODO.
2783
2784@cindex user mode (SH4)
2785@command{qemu-sh4eb} TODO.
2786@command{qemu-sh4} TODO.
2787
2788@cindex user mode (SPARC)
34a3d239
BS
2789@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2790
a785e42e
BS
2791@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2792(Sparc64 CPU, 32 bit ABI).
2793
2794@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2795SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2796
84778508
BS
2797@node BSD User space emulator
2798@section BSD User space emulator
2799
2800@menu
2801* BSD Status::
2802* BSD Quick Start::
2803* BSD Command line options::
2804@end menu
2805
2806@node BSD Status
2807@subsection BSD Status
2808
2809@itemize @minus
2810@item
2811target Sparc64 on Sparc64: Some trivial programs work.
2812@end itemize
2813
2814@node BSD Quick Start
2815@subsection Quick Start
2816
2817In order to launch a BSD process, QEMU needs the process executable
2818itself and all the target dynamic libraries used by it.
2819
2820@itemize
2821
2822@item On Sparc64, you can just try to launch any process by using the native
2823libraries:
2824
2825@example
2826qemu-sparc64 /bin/ls
2827@end example
2828
2829@end itemize
2830
2831@node BSD Command line options
2832@subsection Command line options
2833
2834@example
8485140f 2835@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2836@end example
2837
2838@table @option
2839@item -h
2840Print the help
2841@item -L path
2842Set the library root path (default=/)
2843@item -s size
2844Set the stack size in bytes (default=524288)
f66724c9
SW
2845@item -ignore-environment
2846Start with an empty environment. Without this option,
40c5c6cd 2847the initial environment is a copy of the caller's environment.
f66724c9
SW
2848@item -E @var{var}=@var{value}
2849Set environment @var{var} to @var{value}.
2850@item -U @var{var}
2851Remove @var{var} from the environment.
84778508
BS
2852@item -bsd type
2853Set the type of the emulated BSD Operating system. Valid values are
2854FreeBSD, NetBSD and OpenBSD (default).
2855@end table
2856
2857Debug options:
2858
2859@table @option
989b697d
PM
2860@item -d item1,...
2861Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2862@item -p pagesize
2863Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2864@item -singlestep
2865Run the emulation in single step mode.
84778508
BS
2866@end table
2867
483c6ad4
BP
2868@node System requirements
2869@chapter System requirements
2870
2871@section KVM kernel module
2872
2873On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2874require the host to be running Linux v4.5 or newer.
2875
2876The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2877added with Linux 4.5 which is supported by the major distros. And even
2878if RHEL7 has kernel 3.10, KVM there has the required functionality there
2879to make it close to a 4.5 or newer kernel.
47eacb4f 2880
78e87797
PB
2881@include qemu-tech.texi
2882
44c67847 2883@include qemu-deprecated.texi
efe2add7 2884
45b47130
DB
2885@node Supported build platforms
2886@appendix Supported build platforms
2887
2888QEMU aims to support building and executing on multiple host OS platforms.
2889This appendix outlines which platforms are the major build targets. These
2890platforms are used as the basis for deciding upon the minimum required
2891versions of 3rd party software QEMU depends on. The supported platforms
2892are the targets for automated testing performed by the project when patches
2893are submitted for review, and tested before and after merge.
2894
2895If a platform is not listed here, it does not imply that QEMU won't work.
2896If an unlisted platform has comparable software versions to a listed platform,
2897there is every expectation that it will work. Bug reports are welcome for
2898problems encountered on unlisted platforms unless they are clearly older
2899vintage than what is described here.
2900
2901Note that when considering software versions shipped in distros as support
2902targets, QEMU considers only the version number, and assumes the features in
2903that distro match the upstream release with the same version. In other words,
2904if a distro backports extra features to the software in their distro, QEMU
2905upstream code will not add explicit support for those backports, unless the
2906feature is auto-detectable in a manner that works for the upstream releases
2907too.
2908
2909The Repology site @url{https://repology.org} is a useful resource to identify
2910currently shipped versions of software in various operating systems, though
2911it does not cover all distros listed below.
2912
2913@section Linux OS
2914
2915For distributions with frequent, short-lifetime releases, the project will
2916aim to support all versions that are not end of life by their respective
2917vendors. For the purposes of identifying supported software versions, the
2918project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2919lifetime distros will be assumed to ship similar software versions.
2920
2921For distributions with long-lifetime releases, the project will aim to support
2922the most recent major version at all times. Support for the previous major
2923version will be dropped 2 years after the new major version is released. For
2924the purposes of identifying supported software versions, the project will look
2925at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2926be assumed to ship similar software versions.
2927
2928@section Windows
2929
2930The project supports building with current versions of the MinGW toolchain,
2931hosted on Linux.
2932
2933@section macOS
2934
2935The project supports building with the two most recent versions of macOS, with
2936the current homebrew package set available.
2937
2938@section FreeBSD
2939
2940The project aims to support the all the versions which are not end of life.
2941
2942@section NetBSD
2943
2944The project aims to support the most recent major version at all times. Support
2945for the previous major version will be dropped 2 years after the new major
2946version is released.
2947
2948@section OpenBSD
2949
2950The project aims to support the all the versions which are not end of life.
2951
7544a042
SW
2952@node License
2953@appendix License
2954
2955QEMU is a trademark of Fabrice Bellard.
2956
2f8d8f01
TH
2957QEMU is released under the
2958@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2959version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2960@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2961
debc7065 2962@node Index
7544a042
SW
2963@appendix Index
2964@menu
2965* Concept Index::
2966* Function Index::
2967* Keystroke Index::
2968* Program Index::
2969* Data Type Index::
2970* Variable Index::
2971@end menu
2972
2973@node Concept Index
2974@section Concept Index
2975This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2976@printindex cp
2977
7544a042
SW
2978@node Function Index
2979@section Function Index
2980This index could be used for command line options and monitor functions.
2981@printindex fn
2982
2983@node Keystroke Index
2984@section Keystroke Index
2985
2986This is a list of all keystrokes which have a special function
2987in system emulation.
2988
2989@printindex ky
2990
2991@node Program Index
2992@section Program Index
2993@printindex pg
2994
2995@node Data Type Index
2996@section Data Type Index
2997
2998This index could be used for qdev device names and options.
2999
3000@printindex tp
3001
3002@node Variable Index
3003@section Variable Index
3004@printindex vr
3005
debc7065 3006@bye