]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/process.c
sched/x86/64, kgdb: Clear GDB_PS on 64-bit
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
61c4628b
SS
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
389d1fb1 7#include <linux/prctl.h>
61c4628b
SS
8#include <linux/slab.h>
9#include <linux/sched.h>
186f4360
PG
10#include <linux/init.h>
11#include <linux/export.h>
7f424a8b 12#include <linux/pm.h>
162a688e 13#include <linux/tick.h>
9d62dcdf 14#include <linux/random.h>
7c68af6e 15#include <linux/user-return-notifier.h>
814e2c84
AI
16#include <linux/dmi.h>
17#include <linux/utsname.h>
90e24014
RW
18#include <linux/stackprotector.h>
19#include <linux/tick.h>
20#include <linux/cpuidle.h>
61613521 21#include <trace/events/power.h>
24f1e32c 22#include <linux/hw_breakpoint.h>
93789b32 23#include <asm/cpu.h>
d3ec5cae 24#include <asm/apic.h>
2c1b284e 25#include <asm/syscalls.h>
389d1fb1
JF
26#include <asm/idle.h>
27#include <asm/uaccess.h>
b253149b 28#include <asm/mwait.h>
78f7f1e5 29#include <asm/fpu/internal.h>
66cb5917 30#include <asm/debugreg.h>
90e24014 31#include <asm/nmi.h>
375074cc 32#include <asm/tlbflush.h>
8838eb6c 33#include <asm/mce.h>
9fda6a06 34#include <asm/vm86.h>
90e24014 35
45046892
TG
36/*
37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
39 * so they are allowed to end up in the .data..cacheline_aligned
40 * section. Since TSS's are completely CPU-local, we want them
41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 */
d0a0de21
AL
43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 .x86_tss = {
d9e05cc5 45 .sp0 = TOP_OF_INIT_STACK,
d0a0de21
AL
46#ifdef CONFIG_X86_32
47 .ss0 = __KERNEL_DS,
48 .ss1 = __KERNEL_CS,
49 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
50#endif
51 },
52#ifdef CONFIG_X86_32
53 /*
54 * Note that the .io_bitmap member must be extra-big. This is because
55 * the CPU will access an additional byte beyond the end of the IO
56 * permission bitmap. The extra byte must be all 1 bits, and must
57 * be within the limit.
58 */
59 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
60#endif
2a41aa4f
AL
61#ifdef CONFIG_X86_32
62 .SYSENTER_stack_canary = STACK_END_MAGIC,
63#endif
d0a0de21 64};
de71ad2c 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
45046892 66
90e24014
RW
67#ifdef CONFIG_X86_64
68static DEFINE_PER_CPU(unsigned char, is_idle);
69static ATOMIC_NOTIFIER_HEAD(idle_notifier);
70
71void idle_notifier_register(struct notifier_block *n)
72{
73 atomic_notifier_chain_register(&idle_notifier, n);
74}
75EXPORT_SYMBOL_GPL(idle_notifier_register);
76
77void idle_notifier_unregister(struct notifier_block *n)
78{
79 atomic_notifier_chain_unregister(&idle_notifier, n);
80}
81EXPORT_SYMBOL_GPL(idle_notifier_unregister);
82#endif
c1e3b377 83
55ccf3fe
SS
84/*
85 * this gets called so that we can store lazy state into memory and copy the
86 * current task into the new thread.
87 */
61c4628b
SS
88int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
89{
5aaeb5c0 90 memcpy(dst, src, arch_task_struct_size);
2459ee86
AL
91#ifdef CONFIG_VM86
92 dst->thread.vm86 = NULL;
93#endif
f1853505 94
c69e098b 95 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
61c4628b 96}
7f424a8b 97
389d1fb1
JF
98/*
99 * Free current thread data structures etc..
100 */
e6464694 101void exit_thread(struct task_struct *tsk)
389d1fb1 102{
e6464694 103 struct thread_struct *t = &tsk->thread;
250981e6 104 unsigned long *bp = t->io_bitmap_ptr;
ca6787ba 105 struct fpu *fpu = &t->fpu;
389d1fb1 106
250981e6 107 if (bp) {
24933b82 108 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
389d1fb1 109
389d1fb1
JF
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
250981e6 118 kfree(bp);
389d1fb1 119 }
1dcc8d7b 120
9fda6a06
BG
121 free_vm86(t);
122
50338615 123 fpu__drop(fpu);
389d1fb1
JF
124}
125
126void flush_thread(void)
127{
128 struct task_struct *tsk = current;
129
24f1e32c 130 flush_ptrace_hw_breakpoint(tsk);
389d1fb1 131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110d7f75 132
04c8e01d 133 fpu__clear(&tsk->thread.fpu);
389d1fb1
JF
134}
135
136static void hard_disable_TSC(void)
137{
375074cc 138 cr4_set_bits(X86_CR4_TSD);
389d1fb1
JF
139}
140
141void disable_TSC(void)
142{
143 preempt_disable();
144 if (!test_and_set_thread_flag(TIF_NOTSC))
145 /*
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
148 */
149 hard_disable_TSC();
150 preempt_enable();
151}
152
153static void hard_enable_TSC(void)
154{
375074cc 155 cr4_clear_bits(X86_CR4_TSD);
389d1fb1
JF
156}
157
158static void enable_TSC(void)
159{
160 preempt_disable();
161 if (test_and_clear_thread_flag(TIF_NOTSC))
162 /*
163 * Must flip the CPU state synchronously with
164 * TIF_NOTSC in the current running context.
165 */
166 hard_enable_TSC();
167 preempt_enable();
168}
169
170int get_tsc_mode(unsigned long adr)
171{
172 unsigned int val;
173
174 if (test_thread_flag(TIF_NOTSC))
175 val = PR_TSC_SIGSEGV;
176 else
177 val = PR_TSC_ENABLE;
178
179 return put_user(val, (unsigned int __user *)adr);
180}
181
182int set_tsc_mode(unsigned int val)
183{
184 if (val == PR_TSC_SIGSEGV)
185 disable_TSC();
186 else if (val == PR_TSC_ENABLE)
187 enable_TSC();
188 else
189 return -EINVAL;
190
191 return 0;
192}
193
194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 struct tss_struct *tss)
196{
197 struct thread_struct *prev, *next;
198
199 prev = &prev_p->thread;
200 next = &next_p->thread;
201
ea8e61b7
PZ
202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 unsigned long debugctl = get_debugctlmsr();
205
206 debugctl &= ~DEBUGCTLMSR_BTF;
207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 debugctl |= DEBUGCTLMSR_BTF;
209
210 update_debugctlmsr(debugctl);
211 }
389d1fb1 212
389d1fb1
JF
213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 /* prev and next are different */
216 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217 hard_disable_TSC();
218 else
219 hard_enable_TSC();
220 }
221
222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223 /*
224 * Copy the relevant range of the IO bitmap.
225 * Normally this is 128 bytes or less:
226 */
227 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 max(prev->io_bitmap_max, next->io_bitmap_max));
229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230 /*
231 * Clear any possible leftover bits:
232 */
233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234 }
7c68af6e 235 propagate_user_return_notify(prev_p, next_p);
389d1fb1
JF
236}
237
00dba564
TG
238/*
239 * Idle related variables and functions
240 */
d1896049 241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
00dba564
TG
242EXPORT_SYMBOL(boot_option_idle_override);
243
a476bda3 244static void (*x86_idle)(void);
00dba564 245
90e24014
RW
246#ifndef CONFIG_SMP
247static inline void play_dead(void)
248{
249 BUG();
250}
251#endif
252
253#ifdef CONFIG_X86_64
254void enter_idle(void)
255{
c6ae41e7 256 this_cpu_write(is_idle, 1);
90e24014
RW
257 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
258}
259
260static void __exit_idle(void)
261{
262 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263 return;
264 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
265}
266
267/* Called from interrupts to signify idle end */
268void exit_idle(void)
269{
270 /* idle loop has pid 0 */
271 if (current->pid)
272 return;
273 __exit_idle();
274}
275#endif
276
7d1a9417
TG
277void arch_cpu_idle_enter(void)
278{
279 local_touch_nmi();
280 enter_idle();
281}
90e24014 282
7d1a9417
TG
283void arch_cpu_idle_exit(void)
284{
285 __exit_idle();
286}
90e24014 287
7d1a9417
TG
288void arch_cpu_idle_dead(void)
289{
290 play_dead();
291}
90e24014 292
7d1a9417
TG
293/*
294 * Called from the generic idle code.
295 */
296void arch_cpu_idle(void)
297{
16f8b05a 298 x86_idle();
90e24014
RW
299}
300
00dba564 301/*
7d1a9417 302 * We use this if we don't have any better idle routine..
00dba564
TG
303 */
304void default_idle(void)
305{
4d0e42cc 306 trace_cpu_idle_rcuidle(1, smp_processor_id());
7d1a9417 307 safe_halt();
4d0e42cc 308 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
00dba564 309}
60b8b1de 310#ifdef CONFIG_APM_MODULE
00dba564
TG
311EXPORT_SYMBOL(default_idle);
312#endif
313
6a377ddc
LB
314#ifdef CONFIG_XEN
315bool xen_set_default_idle(void)
e5fd47bf 316{
a476bda3 317 bool ret = !!x86_idle;
e5fd47bf 318
a476bda3 319 x86_idle = default_idle;
e5fd47bf
KRW
320
321 return ret;
322}
6a377ddc 323#endif
d3ec5cae
IV
324void stop_this_cpu(void *dummy)
325{
326 local_irq_disable();
327 /*
328 * Remove this CPU:
329 */
4f062896 330 set_cpu_online(smp_processor_id(), false);
d3ec5cae 331 disable_local_APIC();
8838eb6c 332 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
d3ec5cae 333
27be4570
LB
334 for (;;)
335 halt();
7f424a8b
PZ
336}
337
02c68a02
LB
338bool amd_e400_c1e_detected;
339EXPORT_SYMBOL(amd_e400_c1e_detected);
aa276e1c 340
02c68a02 341static cpumask_var_t amd_e400_c1e_mask;
4faac97d 342
02c68a02 343void amd_e400_remove_cpu(int cpu)
4faac97d 344{
02c68a02
LB
345 if (amd_e400_c1e_mask != NULL)
346 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
4faac97d
TG
347}
348
aa276e1c 349/*
02c68a02 350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
aa276e1c
TG
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
353 */
02c68a02 354static void amd_e400_idle(void)
aa276e1c 355{
02c68a02 356 if (!amd_e400_c1e_detected) {
aa276e1c
TG
357 u32 lo, hi;
358
359 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
e8c534ec 360
aa276e1c 361 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
02c68a02 362 amd_e400_c1e_detected = true;
40fb1715 363 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
09bfeea1 364 mark_tsc_unstable("TSC halt in AMD C1E");
c767a54b 365 pr_info("System has AMD C1E enabled\n");
aa276e1c
TG
366 }
367 }
368
02c68a02 369 if (amd_e400_c1e_detected) {
aa276e1c
TG
370 int cpu = smp_processor_id();
371
02c68a02
LB
372 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
162a688e
TG
374 /* Force broadcast so ACPI can not interfere. */
375 tick_broadcast_force();
c767a54b 376 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
aa276e1c 377 }
435c350e 378 tick_broadcast_enter();
0beefa20 379
aa276e1c 380 default_idle();
0beefa20
TG
381
382 /*
383 * The switch back from broadcast mode needs to be
384 * called with interrupts disabled.
385 */
ea811747 386 local_irq_disable();
435c350e 387 tick_broadcast_exit();
ea811747 388 local_irq_enable();
aa276e1c
TG
389 } else
390 default_idle();
391}
392
b253149b
LB
393/*
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
397 *
398 * Some AMD machines are the opposite, they depend on using HALT.
399 *
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
402 */
403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404{
405 if (c->x86_vendor != X86_VENDOR_INTEL)
406 return 0;
407
08e237fa 408 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
b253149b
LB
409 return 0;
410
411 return 1;
412}
413
414/*
0fb0328d
HR
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
b253149b 418 */
b253149b
LB
419static void mwait_idle(void)
420{
f8e617f4 421 if (!current_set_polling_and_test()) {
e43d0189 422 trace_cpu_idle_rcuidle(1, smp_processor_id());
f8e617f4 423 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
ca59809f 424 mb(); /* quirk */
b253149b 425 clflush((void *)&current_thread_info()->flags);
ca59809f 426 mb(); /* quirk */
f8e617f4 427 }
b253149b
LB
428
429 __monitor((void *)&current_thread_info()->flags, 0, 0);
b253149b
LB
430 if (!need_resched())
431 __sti_mwait(0, 0);
432 else
433 local_irq_enable();
e43d0189 434 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
f8e617f4 435 } else {
b253149b 436 local_irq_enable();
f8e617f4
MG
437 }
438 __current_clr_polling();
b253149b
LB
439}
440
148f9bb8 441void select_idle_routine(const struct cpuinfo_x86 *c)
7f424a8b 442{
3e5095d1 443#ifdef CONFIG_SMP
7d1a9417 444 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
c767a54b 445 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
7f424a8b 446#endif
7d1a9417 447 if (x86_idle || boot_option_idle_override == IDLE_POLL)
6ddd2a27
TG
448 return;
449
7d7dc116 450 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
9d8888c2 451 /* E400: APIC timer interrupt does not wake up CPU from C1e */
c767a54b 452 pr_info("using AMD E400 aware idle routine\n");
a476bda3 453 x86_idle = amd_e400_idle;
b253149b
LB
454 } else if (prefer_mwait_c1_over_halt(c)) {
455 pr_info("using mwait in idle threads\n");
456 x86_idle = mwait_idle;
6ddd2a27 457 } else
a476bda3 458 x86_idle = default_idle;
7f424a8b
PZ
459}
460
02c68a02 461void __init init_amd_e400_c1e_mask(void)
30e1e6d1 462{
02c68a02 463 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
a476bda3 464 if (x86_idle == amd_e400_idle)
02c68a02 465 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
30e1e6d1
RR
466}
467
7f424a8b
PZ
468static int __init idle_setup(char *str)
469{
ab6bc3e3
CG
470 if (!str)
471 return -EINVAL;
472
7f424a8b 473 if (!strcmp(str, "poll")) {
c767a54b 474 pr_info("using polling idle threads\n");
d1896049 475 boot_option_idle_override = IDLE_POLL;
7d1a9417 476 cpu_idle_poll_ctrl(true);
d1896049 477 } else if (!strcmp(str, "halt")) {
c1e3b377
ZY
478 /*
479 * When the boot option of idle=halt is added, halt is
480 * forced to be used for CPU idle. In such case CPU C2/C3
481 * won't be used again.
482 * To continue to load the CPU idle driver, don't touch
483 * the boot_option_idle_override.
484 */
a476bda3 485 x86_idle = default_idle;
d1896049 486 boot_option_idle_override = IDLE_HALT;
da5e09a1
ZY
487 } else if (!strcmp(str, "nomwait")) {
488 /*
489 * If the boot option of "idle=nomwait" is added,
490 * it means that mwait will be disabled for CPU C2/C3
491 * states. In such case it won't touch the variable
492 * of boot_option_idle_override.
493 */
d1896049 494 boot_option_idle_override = IDLE_NOMWAIT;
c1e3b377 495 } else
7f424a8b
PZ
496 return -1;
497
7f424a8b
PZ
498 return 0;
499}
500early_param("idle", idle_setup);
501
9d62dcdf
AW
502unsigned long arch_align_stack(unsigned long sp)
503{
504 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505 sp -= get_random_int() % 8192;
506 return sp & ~0xf;
507}
508
509unsigned long arch_randomize_brk(struct mm_struct *mm)
510{
511 unsigned long range_end = mm->brk + 0x02000000;
512 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
513}
514
7ba78053
TG
515/*
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
520 */
521unsigned long get_wchan(struct task_struct *p)
522{
523 unsigned long start, bottom, top, sp, fp, ip;
524 int count = 0;
525
526 if (!p || p == current || p->state == TASK_RUNNING)
527 return 0;
528
529 start = (unsigned long)task_stack_page(p);
530 if (!start)
531 return 0;
532
533 /*
534 * Layout of the stack page:
535 *
536 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537 * PADDING
538 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539 * stack
540 * ----------- bottom = start + sizeof(thread_info)
541 * thread_info
542 * ----------- start
543 *
544 * The tasks stack pointer points at the location where the
545 * framepointer is stored. The data on the stack is:
546 * ... IP FP ... IP FP
547 *
548 * We need to read FP and IP, so we need to adjust the upper
549 * bound by another unsigned long.
550 */
551 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552 top -= 2 * sizeof(unsigned long);
553 bottom = start + sizeof(struct thread_info);
554
555 sp = READ_ONCE(p->thread.sp);
556 if (sp < bottom || sp > top)
557 return 0;
558
f7d27c35 559 fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
7ba78053
TG
560 do {
561 if (fp < bottom || fp > top)
562 return 0;
f7d27c35 563 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
7ba78053
TG
564 if (!in_sched_functions(ip))
565 return ip;
f7d27c35 566 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
7ba78053
TG
567 } while (count++ < 16 && p->state != TASK_RUNNING);
568 return 0;
569}