]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
nfsd: handle vfs_getattr errors in acl protocol
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
b3d9b7a3 221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
b7ab39f6 232 BUG_ON(dentry->d_count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
b3d9b7a3 270 hlist_del_init(&dentry->d_alias);
1da177e4 271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
b3d9b7a3 294 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
f0023bc6
SW
340/*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345static void dentry_lru_prune(struct dentry *dentry)
346{
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355}
356
b48f03b3 357static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 358{
23044507 359 spin_lock(&dcache_lru_lock);
a4633357 360 if (list_empty(&dentry->d_lru)) {
b48f03b3 361 list_add_tail(&dentry->d_lru, list);
a4633357 362 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 363 dentry_stat.nr_unused++;
a4633357 364 } else {
b48f03b3 365 list_move_tail(&dentry->d_lru, list);
da3bbdd4 366 }
23044507 367 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
368}
369
d52b9086
MS
370/**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
ff5fdb61 373 * @parent: parent dentry
d52b9086 374 *
31f3e0b3 375 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
376 *
377 * If this is the root of the dentry tree, return NULL.
23044507 378 *
b5c84bf6
NP
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
d52b9086 381 */
2fd6b7f5 382static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 383 __releases(dentry->d_lock)
2fd6b7f5 384 __releases(parent->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
d52b9086 386{
d52b9086 387 list_del(&dentry->d_u.d_child);
c83ce989
TM
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
b161dfa6 392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
393 if (parent)
394 spin_unlock(&parent->d_lock);
d52b9086 395 dentry_iput(dentry);
b7ab39f6
NP
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
d52b9086 400 d_free(dentry);
871c0067 401 return parent;
d52b9086
MS
402}
403
c6627c60
DH
404/*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409static void __d_shrink(struct dentry *dentry)
410{
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423}
424
789680d1
NP
425/**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440void __d_drop(struct dentry *dentry)
441{
dea3667b 442 if (!d_unhashed(dentry)) {
c6627c60 443 __d_shrink(dentry);
dea3667b 444 dentry_rcuwalk_barrier(dentry);
789680d1
NP
445 }
446}
447EXPORT_SYMBOL(__d_drop);
448
449void d_drop(struct dentry *dentry)
450{
789680d1
NP
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
789680d1
NP
454}
455EXPORT_SYMBOL(d_drop);
456
77812a1e
NP
457/*
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
462 */
463static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 __releases(dentry->d_lock)
465{
873feea0 466 struct inode *inode;
77812a1e
NP
467 struct dentry *parent;
468
873feea0
NP
469 inode = dentry->d_inode;
470 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
471relock:
472 spin_unlock(&dentry->d_lock);
473 cpu_relax();
474 return dentry; /* try again with same dentry */
475 }
476 if (IS_ROOT(dentry))
477 parent = NULL;
478 else
479 parent = dentry->d_parent;
480 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
481 if (inode)
482 spin_unlock(&inode->i_lock);
77812a1e
NP
483 goto relock;
484 }
31e6b01f 485
77812a1e
NP
486 if (ref)
487 dentry->d_count--;
f0023bc6
SW
488 /*
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
492 */
493 dentry_lru_prune(dentry);
77812a1e
NP
494 /* if it was on the hash then remove it */
495 __d_drop(dentry);
496 return d_kill(dentry, parent);
497}
498
1da177e4
LT
499/*
500 * This is dput
501 *
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
505 *
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
510 *
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
514 */
515
516/*
517 * dput - release a dentry
518 * @dentry: dentry to release
519 *
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
1da177e4 524 */
1da177e4
LT
525void dput(struct dentry *dentry)
526{
527 if (!dentry)
528 return;
529
530repeat:
b7ab39f6 531 if (dentry->d_count == 1)
1da177e4 532 might_sleep();
1da177e4 533 spin_lock(&dentry->d_lock);
61f3dee4
NP
534 BUG_ON(!dentry->d_count);
535 if (dentry->d_count > 1) {
536 dentry->d_count--;
1da177e4 537 spin_unlock(&dentry->d_lock);
1da177e4
LT
538 return;
539 }
540
fb045adb 541 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 542 if (dentry->d_op->d_delete(dentry))
61f3dee4 543 goto kill_it;
1da177e4 544 }
265ac902 545
1da177e4
LT
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry))
548 goto kill_it;
265ac902 549
39e3c955 550 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 551 dentry_lru_add(dentry);
265ac902 552
61f3dee4
NP
553 dentry->d_count--;
554 spin_unlock(&dentry->d_lock);
1da177e4
LT
555 return;
556
d52b9086 557kill_it:
77812a1e 558 dentry = dentry_kill(dentry, 1);
d52b9086
MS
559 if (dentry)
560 goto repeat;
1da177e4 561}
ec4f8605 562EXPORT_SYMBOL(dput);
1da177e4
LT
563
564/**
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
567 *
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
572 *
573 * no dcache lock.
574 */
575
576int d_invalidate(struct dentry * dentry)
577{
578 /*
579 * If it's already been dropped, return OK.
580 */
da502956 581 spin_lock(&dentry->d_lock);
1da177e4 582 if (d_unhashed(dentry)) {
da502956 583 spin_unlock(&dentry->d_lock);
1da177e4
LT
584 return 0;
585 }
586 /*
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
589 */
590 if (!list_empty(&dentry->d_subdirs)) {
da502956 591 spin_unlock(&dentry->d_lock);
1da177e4 592 shrink_dcache_parent(dentry);
da502956 593 spin_lock(&dentry->d_lock);
1da177e4
LT
594 }
595
596 /*
597 * Somebody else still using it?
598 *
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
50e69630
AV
605 * We also need to leave mountpoints alone,
606 * directory or not.
1da177e4 607 */
50e69630
AV
608 if (dentry->d_count > 1 && dentry->d_inode) {
609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 610 spin_unlock(&dentry->d_lock);
1da177e4
LT
611 return -EBUSY;
612 }
613 }
614
615 __d_drop(dentry);
616 spin_unlock(&dentry->d_lock);
1da177e4
LT
617 return 0;
618}
ec4f8605 619EXPORT_SYMBOL(d_invalidate);
1da177e4 620
b5c84bf6 621/* This must be called with d_lock held */
dc0474be 622static inline void __dget_dlock(struct dentry *dentry)
23044507 623{
b7ab39f6 624 dentry->d_count++;
23044507
NP
625}
626
dc0474be 627static inline void __dget(struct dentry *dentry)
1da177e4 628{
23044507 629 spin_lock(&dentry->d_lock);
dc0474be 630 __dget_dlock(dentry);
23044507 631 spin_unlock(&dentry->d_lock);
1da177e4
LT
632}
633
b7ab39f6
NP
634struct dentry *dget_parent(struct dentry *dentry)
635{
636 struct dentry *ret;
637
638repeat:
a734eb45
NP
639 /*
640 * Don't need rcu_dereference because we re-check it was correct under
641 * the lock.
642 */
643 rcu_read_lock();
b7ab39f6 644 ret = dentry->d_parent;
a734eb45
NP
645 spin_lock(&ret->d_lock);
646 if (unlikely(ret != dentry->d_parent)) {
647 spin_unlock(&ret->d_lock);
648 rcu_read_unlock();
b7ab39f6
NP
649 goto repeat;
650 }
a734eb45 651 rcu_read_unlock();
b7ab39f6
NP
652 BUG_ON(!ret->d_count);
653 ret->d_count++;
654 spin_unlock(&ret->d_lock);
b7ab39f6
NP
655 return ret;
656}
657EXPORT_SYMBOL(dget_parent);
658
1da177e4
LT
659/**
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
32ba9c3f
LT
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
1da177e4
LT
664 *
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
669 * of a filesystem.
670 *
21c0d8fd 671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 674 */
32ba9c3f 675static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 676{
da502956 677 struct dentry *alias, *discon_alias;
b3d9b7a3 678 struct hlist_node *p;
1da177e4 679
da502956
NP
680again:
681 discon_alias = NULL;
b3d9b7a3 682 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
da502956 683 spin_lock(&alias->d_lock);
1da177e4 684 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 685 if (IS_ROOT(alias) &&
da502956 686 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 687 discon_alias = alias;
32ba9c3f 688 } else if (!want_discon) {
dc0474be 689 __dget_dlock(alias);
da502956
NP
690 spin_unlock(&alias->d_lock);
691 return alias;
692 }
693 }
694 spin_unlock(&alias->d_lock);
695 }
696 if (discon_alias) {
697 alias = discon_alias;
698 spin_lock(&alias->d_lock);
699 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 if (IS_ROOT(alias) &&
701 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 702 __dget_dlock(alias);
da502956 703 spin_unlock(&alias->d_lock);
1da177e4
LT
704 return alias;
705 }
706 }
da502956
NP
707 spin_unlock(&alias->d_lock);
708 goto again;
1da177e4 709 }
da502956 710 return NULL;
1da177e4
LT
711}
712
da502956 713struct dentry *d_find_alias(struct inode *inode)
1da177e4 714{
214fda1f
DH
715 struct dentry *de = NULL;
716
b3d9b7a3 717 if (!hlist_empty(&inode->i_dentry)) {
873feea0 718 spin_lock(&inode->i_lock);
32ba9c3f 719 de = __d_find_alias(inode, 0);
873feea0 720 spin_unlock(&inode->i_lock);
214fda1f 721 }
1da177e4
LT
722 return de;
723}
ec4f8605 724EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
725
726/*
727 * Try to kill dentries associated with this inode.
728 * WARNING: you must own a reference to inode.
729 */
730void d_prune_aliases(struct inode *inode)
731{
0cdca3f9 732 struct dentry *dentry;
b3d9b7a3 733 struct hlist_node *p;
1da177e4 734restart:
873feea0 735 spin_lock(&inode->i_lock);
b3d9b7a3 736 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
1da177e4 737 spin_lock(&dentry->d_lock);
b7ab39f6 738 if (!dentry->d_count) {
dc0474be 739 __dget_dlock(dentry);
1da177e4
LT
740 __d_drop(dentry);
741 spin_unlock(&dentry->d_lock);
873feea0 742 spin_unlock(&inode->i_lock);
1da177e4
LT
743 dput(dentry);
744 goto restart;
745 }
746 spin_unlock(&dentry->d_lock);
747 }
873feea0 748 spin_unlock(&inode->i_lock);
1da177e4 749}
ec4f8605 750EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
751
752/*
77812a1e
NP
753 * Try to throw away a dentry - free the inode, dput the parent.
754 * Requires dentry->d_lock is held, and dentry->d_count == 0.
755 * Releases dentry->d_lock.
d702ccb3 756 *
77812a1e 757 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 758 */
77812a1e 759static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 760 __releases(dentry->d_lock)
1da177e4 761{
77812a1e 762 struct dentry *parent;
d52b9086 763
77812a1e 764 parent = dentry_kill(dentry, 0);
d52b9086 765 /*
77812a1e
NP
766 * If dentry_kill returns NULL, we have nothing more to do.
767 * if it returns the same dentry, trylocks failed. In either
768 * case, just loop again.
769 *
770 * Otherwise, we need to prune ancestors too. This is necessary
771 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 * is also expected to be beneficial in reducing dentry cache
773 * fragmentation.
d52b9086 774 */
77812a1e
NP
775 if (!parent)
776 return;
777 if (parent == dentry)
778 return;
779
780 /* Prune ancestors. */
781 dentry = parent;
d52b9086 782 while (dentry) {
b7ab39f6 783 spin_lock(&dentry->d_lock);
89e60548
NP
784 if (dentry->d_count > 1) {
785 dentry->d_count--;
786 spin_unlock(&dentry->d_lock);
787 return;
788 }
77812a1e 789 dentry = dentry_kill(dentry, 1);
d52b9086 790 }
1da177e4
LT
791}
792
3049cfe2 793static void shrink_dentry_list(struct list_head *list)
1da177e4 794{
da3bbdd4 795 struct dentry *dentry;
da3bbdd4 796
ec33679d
NP
797 rcu_read_lock();
798 for (;;) {
ec33679d
NP
799 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 if (&dentry->d_lru == list)
801 break; /* empty */
802 spin_lock(&dentry->d_lock);
803 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 spin_unlock(&dentry->d_lock);
23044507
NP
805 continue;
806 }
807
1da177e4
LT
808 /*
809 * We found an inuse dentry which was not removed from
da3bbdd4
KM
810 * the LRU because of laziness during lookup. Do not free
811 * it - just keep it off the LRU list.
1da177e4 812 */
b7ab39f6 813 if (dentry->d_count) {
ec33679d 814 dentry_lru_del(dentry);
da3bbdd4 815 spin_unlock(&dentry->d_lock);
1da177e4
LT
816 continue;
817 }
ec33679d 818
ec33679d 819 rcu_read_unlock();
77812a1e
NP
820
821 try_prune_one_dentry(dentry);
822
ec33679d 823 rcu_read_lock();
da3bbdd4 824 }
ec33679d 825 rcu_read_unlock();
3049cfe2
CH
826}
827
828/**
b48f03b3
DC
829 * prune_dcache_sb - shrink the dcache
830 * @sb: superblock
831 * @count: number of entries to try to free
832 *
833 * Attempt to shrink the superblock dcache LRU by @count entries. This is
834 * done when we need more memory an called from the superblock shrinker
835 * function.
3049cfe2 836 *
b48f03b3
DC
837 * This function may fail to free any resources if all the dentries are in
838 * use.
3049cfe2 839 */
b48f03b3 840void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 841{
3049cfe2
CH
842 struct dentry *dentry;
843 LIST_HEAD(referenced);
844 LIST_HEAD(tmp);
3049cfe2 845
23044507
NP
846relock:
847 spin_lock(&dcache_lru_lock);
3049cfe2
CH
848 while (!list_empty(&sb->s_dentry_lru)) {
849 dentry = list_entry(sb->s_dentry_lru.prev,
850 struct dentry, d_lru);
851 BUG_ON(dentry->d_sb != sb);
852
23044507
NP
853 if (!spin_trylock(&dentry->d_lock)) {
854 spin_unlock(&dcache_lru_lock);
855 cpu_relax();
856 goto relock;
857 }
858
b48f03b3 859 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
860 dentry->d_flags &= ~DCACHE_REFERENCED;
861 list_move(&dentry->d_lru, &referenced);
3049cfe2 862 spin_unlock(&dentry->d_lock);
23044507
NP
863 } else {
864 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 865 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 866 spin_unlock(&dentry->d_lock);
b0d40c92 867 if (!--count)
23044507 868 break;
3049cfe2 869 }
ec33679d 870 cond_resched_lock(&dcache_lru_lock);
3049cfe2 871 }
da3bbdd4
KM
872 if (!list_empty(&referenced))
873 list_splice(&referenced, &sb->s_dentry_lru);
23044507 874 spin_unlock(&dcache_lru_lock);
ec33679d
NP
875
876 shrink_dentry_list(&tmp);
da3bbdd4
KM
877}
878
1da177e4
LT
879/**
880 * shrink_dcache_sb - shrink dcache for a superblock
881 * @sb: superblock
882 *
3049cfe2
CH
883 * Shrink the dcache for the specified super block. This is used to free
884 * the dcache before unmounting a file system.
1da177e4 885 */
3049cfe2 886void shrink_dcache_sb(struct super_block *sb)
1da177e4 887{
3049cfe2
CH
888 LIST_HEAD(tmp);
889
23044507 890 spin_lock(&dcache_lru_lock);
3049cfe2
CH
891 while (!list_empty(&sb->s_dentry_lru)) {
892 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 893 spin_unlock(&dcache_lru_lock);
3049cfe2 894 shrink_dentry_list(&tmp);
ec33679d 895 spin_lock(&dcache_lru_lock);
3049cfe2 896 }
23044507 897 spin_unlock(&dcache_lru_lock);
1da177e4 898}
ec4f8605 899EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 900
c636ebdb
DH
901/*
902 * destroy a single subtree of dentries for unmount
903 * - see the comments on shrink_dcache_for_umount() for a description of the
904 * locking
905 */
906static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
907{
908 struct dentry *parent;
909
910 BUG_ON(!IS_ROOT(dentry));
911
c636ebdb
DH
912 for (;;) {
913 /* descend to the first leaf in the current subtree */
43c1c9cd 914 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
915 dentry = list_entry(dentry->d_subdirs.next,
916 struct dentry, d_u.d_child);
c636ebdb
DH
917
918 /* consume the dentries from this leaf up through its parents
919 * until we find one with children or run out altogether */
920 do {
921 struct inode *inode;
922
f0023bc6
SW
923 /*
924 * remove the dentry from the lru, and inform
925 * the fs that this dentry is about to be
926 * unhashed and destroyed.
927 */
928 dentry_lru_prune(dentry);
43c1c9cd
DH
929 __d_shrink(dentry);
930
b7ab39f6 931 if (dentry->d_count != 0) {
c636ebdb
DH
932 printk(KERN_ERR
933 "BUG: Dentry %p{i=%lx,n=%s}"
934 " still in use (%d)"
935 " [unmount of %s %s]\n",
936 dentry,
937 dentry->d_inode ?
938 dentry->d_inode->i_ino : 0UL,
939 dentry->d_name.name,
b7ab39f6 940 dentry->d_count,
c636ebdb
DH
941 dentry->d_sb->s_type->name,
942 dentry->d_sb->s_id);
943 BUG();
944 }
945
2fd6b7f5 946 if (IS_ROOT(dentry)) {
c636ebdb 947 parent = NULL;
2fd6b7f5
NP
948 list_del(&dentry->d_u.d_child);
949 } else {
871c0067 950 parent = dentry->d_parent;
b7ab39f6 951 parent->d_count--;
2fd6b7f5 952 list_del(&dentry->d_u.d_child);
871c0067 953 }
c636ebdb 954
c636ebdb
DH
955 inode = dentry->d_inode;
956 if (inode) {
957 dentry->d_inode = NULL;
b3d9b7a3 958 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
959 if (dentry->d_op && dentry->d_op->d_iput)
960 dentry->d_op->d_iput(dentry, inode);
961 else
962 iput(inode);
963 }
964
965 d_free(dentry);
966
967 /* finished when we fall off the top of the tree,
968 * otherwise we ascend to the parent and move to the
969 * next sibling if there is one */
970 if (!parent)
312d3ca8 971 return;
c636ebdb 972 dentry = parent;
c636ebdb
DH
973 } while (list_empty(&dentry->d_subdirs));
974
975 dentry = list_entry(dentry->d_subdirs.next,
976 struct dentry, d_u.d_child);
977 }
978}
979
980/*
981 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 982 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
983 * - the superblock is detached from all mountings and open files, so the
984 * dentry trees will not be rearranged by the VFS
985 * - s_umount is write-locked, so the memory pressure shrinker will ignore
986 * any dentries belonging to this superblock that it comes across
987 * - the filesystem itself is no longer permitted to rearrange the dentries
988 * in this superblock
989 */
990void shrink_dcache_for_umount(struct super_block *sb)
991{
992 struct dentry *dentry;
993
994 if (down_read_trylock(&sb->s_umount))
995 BUG();
996
997 dentry = sb->s_root;
998 sb->s_root = NULL;
b7ab39f6 999 dentry->d_count--;
c636ebdb
DH
1000 shrink_dcache_for_umount_subtree(dentry);
1001
ceb5bdc2
NP
1002 while (!hlist_bl_empty(&sb->s_anon)) {
1003 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1004 shrink_dcache_for_umount_subtree(dentry);
1005 }
1006}
1007
c826cb7d
LT
1008/*
1009 * This tries to ascend one level of parenthood, but
1010 * we can race with renaming, so we need to re-check
1011 * the parenthood after dropping the lock and check
1012 * that the sequence number still matches.
1013 */
1014static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1015{
1016 struct dentry *new = old->d_parent;
1017
1018 rcu_read_lock();
1019 spin_unlock(&old->d_lock);
1020 spin_lock(&new->d_lock);
1021
1022 /*
1023 * might go back up the wrong parent if we have had a rename
1024 * or deletion
1025 */
1026 if (new != old->d_parent ||
b161dfa6 1027 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1028 (!locked && read_seqretry(&rename_lock, seq))) {
1029 spin_unlock(&new->d_lock);
1030 new = NULL;
1031 }
1032 rcu_read_unlock();
1033 return new;
1034}
1035
1036
1da177e4
LT
1037/*
1038 * Search for at least 1 mount point in the dentry's subdirs.
1039 * We descend to the next level whenever the d_subdirs
1040 * list is non-empty and continue searching.
1041 */
1042
1043/**
1044 * have_submounts - check for mounts over a dentry
1045 * @parent: dentry to check.
1046 *
1047 * Return true if the parent or its subdirectories contain
1048 * a mount point
1049 */
1da177e4
LT
1050int have_submounts(struct dentry *parent)
1051{
949854d0 1052 struct dentry *this_parent;
1da177e4 1053 struct list_head *next;
949854d0 1054 unsigned seq;
58db63d0 1055 int locked = 0;
949854d0 1056
949854d0 1057 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1058again:
1059 this_parent = parent;
1da177e4 1060
1da177e4
LT
1061 if (d_mountpoint(parent))
1062 goto positive;
2fd6b7f5 1063 spin_lock(&this_parent->d_lock);
1da177e4
LT
1064repeat:
1065 next = this_parent->d_subdirs.next;
1066resume:
1067 while (next != &this_parent->d_subdirs) {
1068 struct list_head *tmp = next;
5160ee6f 1069 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1070 next = tmp->next;
2fd6b7f5
NP
1071
1072 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1073 /* Have we found a mount point ? */
2fd6b7f5
NP
1074 if (d_mountpoint(dentry)) {
1075 spin_unlock(&dentry->d_lock);
1076 spin_unlock(&this_parent->d_lock);
1da177e4 1077 goto positive;
2fd6b7f5 1078 }
1da177e4 1079 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1080 spin_unlock(&this_parent->d_lock);
1081 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1082 this_parent = dentry;
2fd6b7f5 1083 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1084 goto repeat;
1085 }
2fd6b7f5 1086 spin_unlock(&dentry->d_lock);
1da177e4
LT
1087 }
1088 /*
1089 * All done at this level ... ascend and resume the search.
1090 */
1091 if (this_parent != parent) {
c826cb7d
LT
1092 struct dentry *child = this_parent;
1093 this_parent = try_to_ascend(this_parent, locked, seq);
1094 if (!this_parent)
949854d0 1095 goto rename_retry;
949854d0 1096 next = child->d_u.d_child.next;
1da177e4
LT
1097 goto resume;
1098 }
2fd6b7f5 1099 spin_unlock(&this_parent->d_lock);
58db63d0 1100 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1101 goto rename_retry;
58db63d0
NP
1102 if (locked)
1103 write_sequnlock(&rename_lock);
1da177e4
LT
1104 return 0; /* No mount points found in tree */
1105positive:
58db63d0 1106 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1107 goto rename_retry;
58db63d0
NP
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1da177e4 1110 return 1;
58db63d0
NP
1111
1112rename_retry:
8110e16d
MS
1113 if (locked)
1114 goto again;
58db63d0
NP
1115 locked = 1;
1116 write_seqlock(&rename_lock);
1117 goto again;
1da177e4 1118}
ec4f8605 1119EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1120
1121/*
fd517909 1122 * Search the dentry child list of the specified parent,
1da177e4
LT
1123 * and move any unused dentries to the end of the unused
1124 * list for prune_dcache(). We descend to the next level
1125 * whenever the d_subdirs list is non-empty and continue
1126 * searching.
1127 *
1128 * It returns zero iff there are no unused children,
1129 * otherwise it returns the number of children moved to
1130 * the end of the unused list. This may not be the total
1131 * number of unused children, because select_parent can
1132 * drop the lock and return early due to latency
1133 * constraints.
1134 */
b48f03b3 1135static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1136{
949854d0 1137 struct dentry *this_parent;
1da177e4 1138 struct list_head *next;
949854d0 1139 unsigned seq;
1da177e4 1140 int found = 0;
58db63d0 1141 int locked = 0;
1da177e4 1142
949854d0 1143 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1144again:
1145 this_parent = parent;
2fd6b7f5 1146 spin_lock(&this_parent->d_lock);
1da177e4
LT
1147repeat:
1148 next = this_parent->d_subdirs.next;
1149resume:
1150 while (next != &this_parent->d_subdirs) {
1151 struct list_head *tmp = next;
5160ee6f 1152 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1153 next = tmp->next;
1154
2fd6b7f5 1155 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1156
b48f03b3
DC
1157 /*
1158 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1159 *
1160 * Those which are presently on the shrink list, being processed
1161 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1162 * loop in shrink_dcache_parent() might not make any progress
1163 * and loop forever.
1da177e4 1164 */
eaf5f907
MS
1165 if (dentry->d_count) {
1166 dentry_lru_del(dentry);
1167 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1168 dentry_lru_move_list(dentry, dispose);
eaf5f907 1169 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1170 found++;
1171 }
1da177e4
LT
1172 /*
1173 * We can return to the caller if we have found some (this
1174 * ensures forward progress). We'll be coming back to find
1175 * the rest.
1176 */
2fd6b7f5
NP
1177 if (found && need_resched()) {
1178 spin_unlock(&dentry->d_lock);
1da177e4 1179 goto out;
2fd6b7f5 1180 }
1da177e4
LT
1181
1182 /*
1183 * Descend a level if the d_subdirs list is non-empty.
1184 */
1185 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1186 spin_unlock(&this_parent->d_lock);
1187 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1188 this_parent = dentry;
2fd6b7f5 1189 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1190 goto repeat;
1191 }
2fd6b7f5
NP
1192
1193 spin_unlock(&dentry->d_lock);
1da177e4
LT
1194 }
1195 /*
1196 * All done at this level ... ascend and resume the search.
1197 */
1198 if (this_parent != parent) {
c826cb7d
LT
1199 struct dentry *child = this_parent;
1200 this_parent = try_to_ascend(this_parent, locked, seq);
1201 if (!this_parent)
949854d0 1202 goto rename_retry;
949854d0 1203 next = child->d_u.d_child.next;
1da177e4
LT
1204 goto resume;
1205 }
1206out:
2fd6b7f5 1207 spin_unlock(&this_parent->d_lock);
58db63d0 1208 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1209 goto rename_retry;
58db63d0
NP
1210 if (locked)
1211 write_sequnlock(&rename_lock);
1da177e4 1212 return found;
58db63d0
NP
1213
1214rename_retry:
1215 if (found)
1216 return found;
8110e16d
MS
1217 if (locked)
1218 goto again;
58db63d0
NP
1219 locked = 1;
1220 write_seqlock(&rename_lock);
1221 goto again;
1da177e4
LT
1222}
1223
1224/**
1225 * shrink_dcache_parent - prune dcache
1226 * @parent: parent of entries to prune
1227 *
1228 * Prune the dcache to remove unused children of the parent dentry.
1229 */
1da177e4
LT
1230void shrink_dcache_parent(struct dentry * parent)
1231{
b48f03b3 1232 LIST_HEAD(dispose);
1da177e4
LT
1233 int found;
1234
b48f03b3
DC
1235 while ((found = select_parent(parent, &dispose)) != 0)
1236 shrink_dentry_list(&dispose);
1da177e4 1237}
ec4f8605 1238EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1239
1da177e4 1240/**
a4464dbc
AV
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1da177e4
LT
1243 * @name: qstr of the name
1244 *
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1248 */
1249
a4464dbc 1250struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1251{
1252 struct dentry *dentry;
1253 char *dname;
1254
e12ba74d 1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1256 if (!dentry)
1257 return NULL;
1258
6326c71f
LT
1259 /*
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1264 */
1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1266 if (name->len > DNAME_INLINE_LEN-1) {
1267 dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 if (!dname) {
1269 kmem_cache_free(dentry_cache, dentry);
1270 return NULL;
1271 }
1272 } else {
1273 dname = dentry->d_iname;
1274 }
1da177e4
LT
1275
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1280
6326c71f
LT
1281 /* Make sure we always see the terminating NUL character */
1282 smp_wmb();
1283 dentry->d_name.name = dname;
1284
b7ab39f6 1285 dentry->d_count = 1;
dea3667b 1286 dentry->d_flags = 0;
1da177e4 1287 spin_lock_init(&dentry->d_lock);
31e6b01f 1288 seqcount_init(&dentry->d_seq);
1da177e4 1289 dentry->d_inode = NULL;
a4464dbc
AV
1290 dentry->d_parent = dentry;
1291 dentry->d_sb = sb;
1da177e4
LT
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
ceb5bdc2 1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1297 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1299 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1300
3e880fb5 1301 this_cpu_inc(nr_dentry);
312d3ca8 1302
1da177e4
LT
1303 return dentry;
1304}
a4464dbc
AV
1305
1306/**
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1310 *
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1314 */
1315struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316{
1317 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 if (!dentry)
1319 return NULL;
1320
1321 spin_lock(&parent->d_lock);
1322 /*
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1325 */
1326 __dget_dlock(parent);
1327 dentry->d_parent = parent;
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1330
1331 return dentry;
1332}
ec4f8605 1333EXPORT_SYMBOL(d_alloc);
1da177e4 1334
4b936885
NP
1335struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336{
a4464dbc
AV
1337 struct dentry *dentry = __d_alloc(sb, name);
1338 if (dentry)
4b936885 1339 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1340 return dentry;
1341}
1342EXPORT_SYMBOL(d_alloc_pseudo);
1343
1da177e4
LT
1344struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345{
1346 struct qstr q;
1347
1348 q.name = name;
1349 q.len = strlen(name);
1350 q.hash = full_name_hash(q.name, q.len);
1351 return d_alloc(parent, &q);
1352}
ef26ca97 1353EXPORT_SYMBOL(d_alloc_name);
1da177e4 1354
fb045adb
NP
1355void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356{
6f7f7caa
LT
1357 WARN_ON_ONCE(dentry->d_op);
1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1359 DCACHE_OP_COMPARE |
1360 DCACHE_OP_REVALIDATE |
1361 DCACHE_OP_DELETE ));
1362 dentry->d_op = op;
1363 if (!op)
1364 return;
1365 if (op->d_hash)
1366 dentry->d_flags |= DCACHE_OP_HASH;
1367 if (op->d_compare)
1368 dentry->d_flags |= DCACHE_OP_COMPARE;
1369 if (op->d_revalidate)
1370 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1371 if (op->d_delete)
1372 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1373 if (op->d_prune)
1374 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1375
1376}
1377EXPORT_SYMBOL(d_set_d_op);
1378
360da900
OH
1379static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1380{
b23fb0a6 1381 spin_lock(&dentry->d_lock);
9875cf80
DH
1382 if (inode) {
1383 if (unlikely(IS_AUTOMOUNT(inode)))
1384 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1385 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1386 }
360da900 1387 dentry->d_inode = inode;
31e6b01f 1388 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1389 spin_unlock(&dentry->d_lock);
360da900
OH
1390 fsnotify_d_instantiate(dentry, inode);
1391}
1392
1da177e4
LT
1393/**
1394 * d_instantiate - fill in inode information for a dentry
1395 * @entry: dentry to complete
1396 * @inode: inode to attach to this dentry
1397 *
1398 * Fill in inode information in the entry.
1399 *
1400 * This turns negative dentries into productive full members
1401 * of society.
1402 *
1403 * NOTE! This assumes that the inode count has been incremented
1404 * (or otherwise set) by the caller to indicate that it is now
1405 * in use by the dcache.
1406 */
1407
1408void d_instantiate(struct dentry *entry, struct inode * inode)
1409{
b3d9b7a3 1410 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1411 if (inode)
1412 spin_lock(&inode->i_lock);
360da900 1413 __d_instantiate(entry, inode);
873feea0
NP
1414 if (inode)
1415 spin_unlock(&inode->i_lock);
1da177e4
LT
1416 security_d_instantiate(entry, inode);
1417}
ec4f8605 1418EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1419
1420/**
1421 * d_instantiate_unique - instantiate a non-aliased dentry
1422 * @entry: dentry to instantiate
1423 * @inode: inode to attach to this dentry
1424 *
1425 * Fill in inode information in the entry. On success, it returns NULL.
1426 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1427 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1428 *
1429 * Note that in order to avoid conflicts with rename() etc, the caller
1430 * had better be holding the parent directory semaphore.
e866cfa9
OD
1431 *
1432 * This also assumes that the inode count has been incremented
1433 * (or otherwise set) by the caller to indicate that it is now
1434 * in use by the dcache.
1da177e4 1435 */
770bfad8
DH
1436static struct dentry *__d_instantiate_unique(struct dentry *entry,
1437 struct inode *inode)
1da177e4
LT
1438{
1439 struct dentry *alias;
1440 int len = entry->d_name.len;
1441 const char *name = entry->d_name.name;
1442 unsigned int hash = entry->d_name.hash;
b3d9b7a3 1443 struct hlist_node *p;
1da177e4 1444
770bfad8 1445 if (!inode) {
360da900 1446 __d_instantiate(entry, NULL);
770bfad8
DH
1447 return NULL;
1448 }
1449
b3d9b7a3 1450 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
9abca360
NP
1451 /*
1452 * Don't need alias->d_lock here, because aliases with
1453 * d_parent == entry->d_parent are not subject to name or
1454 * parent changes, because the parent inode i_mutex is held.
1455 */
12f8ad4b 1456 if (alias->d_name.hash != hash)
1da177e4
LT
1457 continue;
1458 if (alias->d_parent != entry->d_parent)
1459 continue;
ee983e89
LT
1460 if (alias->d_name.len != len)
1461 continue;
12f8ad4b 1462 if (dentry_cmp(alias, name, len))
1da177e4 1463 continue;
dc0474be 1464 __dget(alias);
1da177e4
LT
1465 return alias;
1466 }
770bfad8 1467
360da900 1468 __d_instantiate(entry, inode);
1da177e4
LT
1469 return NULL;
1470}
770bfad8
DH
1471
1472struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1473{
1474 struct dentry *result;
1475
b3d9b7a3 1476 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1477
873feea0
NP
1478 if (inode)
1479 spin_lock(&inode->i_lock);
770bfad8 1480 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1481 if (inode)
1482 spin_unlock(&inode->i_lock);
770bfad8
DH
1483
1484 if (!result) {
1485 security_d_instantiate(entry, inode);
1486 return NULL;
1487 }
1488
1489 BUG_ON(!d_unhashed(result));
1490 iput(inode);
1491 return result;
1492}
1493
1da177e4
LT
1494EXPORT_SYMBOL(d_instantiate_unique);
1495
adc0e91a
AV
1496struct dentry *d_make_root(struct inode *root_inode)
1497{
1498 struct dentry *res = NULL;
1499
1500 if (root_inode) {
26fe5750 1501 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1502
1503 res = __d_alloc(root_inode->i_sb, &name);
1504 if (res)
1505 d_instantiate(res, root_inode);
1506 else
1507 iput(root_inode);
1508 }
1509 return res;
1510}
1511EXPORT_SYMBOL(d_make_root);
1512
d891eedb
BF
1513static struct dentry * __d_find_any_alias(struct inode *inode)
1514{
1515 struct dentry *alias;
1516
b3d9b7a3 1517 if (hlist_empty(&inode->i_dentry))
d891eedb 1518 return NULL;
b3d9b7a3 1519 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1520 __dget(alias);
1521 return alias;
1522}
1523
46f72b34
SW
1524/**
1525 * d_find_any_alias - find any alias for a given inode
1526 * @inode: inode to find an alias for
1527 *
1528 * If any aliases exist for the given inode, take and return a
1529 * reference for one of them. If no aliases exist, return %NULL.
1530 */
1531struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1532{
1533 struct dentry *de;
1534
1535 spin_lock(&inode->i_lock);
1536 de = __d_find_any_alias(inode);
1537 spin_unlock(&inode->i_lock);
1538 return de;
1539}
46f72b34 1540EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1541
4ea3ada2
CH
1542/**
1543 * d_obtain_alias - find or allocate a dentry for a given inode
1544 * @inode: inode to allocate the dentry for
1545 *
1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547 * similar open by handle operations. The returned dentry may be anonymous,
1548 * or may have a full name (if the inode was already in the cache).
1549 *
1550 * When called on a directory inode, we must ensure that the inode only ever
1551 * has one dentry. If a dentry is found, that is returned instead of
1552 * allocating a new one.
1553 *
1554 * On successful return, the reference to the inode has been transferred
44003728
CH
1555 * to the dentry. In case of an error the reference on the inode is released.
1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557 * be passed in and will be the error will be propagate to the return value,
1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1559 */
1560struct dentry *d_obtain_alias(struct inode *inode)
1561{
b911a6bd 1562 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1563 struct dentry *tmp;
1564 struct dentry *res;
4ea3ada2
CH
1565
1566 if (!inode)
44003728 1567 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1568 if (IS_ERR(inode))
1569 return ERR_CAST(inode);
1570
d891eedb 1571 res = d_find_any_alias(inode);
9308a612
CH
1572 if (res)
1573 goto out_iput;
1574
a4464dbc 1575 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1576 if (!tmp) {
1577 res = ERR_PTR(-ENOMEM);
1578 goto out_iput;
4ea3ada2 1579 }
b5c84bf6 1580
873feea0 1581 spin_lock(&inode->i_lock);
d891eedb 1582 res = __d_find_any_alias(inode);
9308a612 1583 if (res) {
873feea0 1584 spin_unlock(&inode->i_lock);
9308a612
CH
1585 dput(tmp);
1586 goto out_iput;
1587 }
1588
1589 /* attach a disconnected dentry */
1590 spin_lock(&tmp->d_lock);
9308a612
CH
1591 tmp->d_inode = inode;
1592 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1593 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1594 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1595 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1596 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1597 spin_unlock(&tmp->d_lock);
873feea0 1598 spin_unlock(&inode->i_lock);
24ff6663 1599 security_d_instantiate(tmp, inode);
9308a612 1600
9308a612
CH
1601 return tmp;
1602
1603 out_iput:
24ff6663
JB
1604 if (res && !IS_ERR(res))
1605 security_d_instantiate(res, inode);
9308a612
CH
1606 iput(inode);
1607 return res;
4ea3ada2 1608}
adc48720 1609EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1610
1611/**
1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613 * @inode: the inode which may have a disconnected dentry
1614 * @dentry: a negative dentry which we want to point to the inode.
1615 *
1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618 * and return it, else simply d_add the inode to the dentry and return NULL.
1619 *
1620 * This is needed in the lookup routine of any filesystem that is exportable
1621 * (via knfsd) so that we can build dcache paths to directories effectively.
1622 *
1623 * If a dentry was found and moved, then it is returned. Otherwise NULL
1624 * is returned. This matches the expected return value of ->lookup.
1625 *
1626 */
1627struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1628{
1629 struct dentry *new = NULL;
1630
a9049376
AV
1631 if (IS_ERR(inode))
1632 return ERR_CAST(inode);
1633
21c0d8fd 1634 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1635 spin_lock(&inode->i_lock);
32ba9c3f 1636 new = __d_find_alias(inode, 1);
1da177e4 1637 if (new) {
32ba9c3f 1638 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1639 spin_unlock(&inode->i_lock);
1da177e4 1640 security_d_instantiate(new, inode);
1da177e4
LT
1641 d_move(new, dentry);
1642 iput(inode);
1643 } else {
873feea0 1644 /* already taking inode->i_lock, so d_add() by hand */
360da900 1645 __d_instantiate(dentry, inode);
873feea0 1646 spin_unlock(&inode->i_lock);
1da177e4
LT
1647 security_d_instantiate(dentry, inode);
1648 d_rehash(dentry);
1649 }
1650 } else
1651 d_add(dentry, inode);
1652 return new;
1653}
ec4f8605 1654EXPORT_SYMBOL(d_splice_alias);
1da177e4 1655
9403540c
BN
1656/**
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1661 *
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1665 *
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1668 *
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1671 */
e45b590b 1672struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1673 struct qstr *name)
1674{
9403540c
BN
1675 struct dentry *found;
1676 struct dentry *new;
1677
b6520c81
CH
1678 /*
1679 * First check if a dentry matching the name already exists,
1680 * if not go ahead and create it now.
1681 */
9403540c 1682 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1683 if (unlikely(IS_ERR(found)))
1684 goto err_out;
9403540c
BN
1685 if (!found) {
1686 new = d_alloc(dentry->d_parent, name);
1687 if (!new) {
4f522a24 1688 found = ERR_PTR(-ENOMEM);
9403540c
BN
1689 goto err_out;
1690 }
b6520c81 1691
9403540c
BN
1692 found = d_splice_alias(inode, new);
1693 if (found) {
1694 dput(new);
1695 return found;
1696 }
1697 return new;
1698 }
b6520c81
CH
1699
1700 /*
1701 * If a matching dentry exists, and it's not negative use it.
1702 *
1703 * Decrement the reference count to balance the iget() done
1704 * earlier on.
1705 */
9403540c
BN
1706 if (found->d_inode) {
1707 if (unlikely(found->d_inode != inode)) {
1708 /* This can't happen because bad inodes are unhashed. */
1709 BUG_ON(!is_bad_inode(inode));
1710 BUG_ON(!is_bad_inode(found->d_inode));
1711 }
9403540c
BN
1712 iput(inode);
1713 return found;
1714 }
b6520c81 1715
9403540c 1716 /*
9403540c 1717 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1718 * already has a dentry.
9403540c 1719 */
4513d899
AV
1720 new = d_splice_alias(inode, found);
1721 if (new) {
1722 dput(found);
1723 found = new;
9403540c 1724 }
4513d899 1725 return found;
9403540c
BN
1726
1727err_out:
1728 iput(inode);
4f522a24 1729 return found;
9403540c 1730}
ec4f8605 1731EXPORT_SYMBOL(d_add_ci);
1da177e4 1732
12f8ad4b
LT
1733/*
1734 * Do the slow-case of the dentry name compare.
1735 *
1736 * Unlike the dentry_cmp() function, we need to atomically
1737 * load the name, length and inode information, so that the
1738 * filesystem can rely on them, and can use the 'name' and
1739 * 'len' information without worrying about walking off the
1740 * end of memory etc.
1741 *
1742 * Thus the read_seqcount_retry() and the "duplicate" info
1743 * in arguments (the low-level filesystem should not look
1744 * at the dentry inode or name contents directly, since
1745 * rename can change them while we're in RCU mode).
1746 */
1747enum slow_d_compare {
1748 D_COMP_OK,
1749 D_COMP_NOMATCH,
1750 D_COMP_SEQRETRY,
1751};
1752
1753static noinline enum slow_d_compare slow_dentry_cmp(
1754 const struct dentry *parent,
1755 struct inode *inode,
1756 struct dentry *dentry,
1757 unsigned int seq,
1758 const struct qstr *name)
1759{
1760 int tlen = dentry->d_name.len;
1761 const char *tname = dentry->d_name.name;
1762 struct inode *i = dentry->d_inode;
1763
1764 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1765 cpu_relax();
1766 return D_COMP_SEQRETRY;
1767 }
1768 if (parent->d_op->d_compare(parent, inode,
1769 dentry, i,
1770 tlen, tname, name))
1771 return D_COMP_NOMATCH;
1772 return D_COMP_OK;
1773}
1774
31e6b01f
NP
1775/**
1776 * __d_lookup_rcu - search for a dentry (racy, store-free)
1777 * @parent: parent dentry
1778 * @name: qstr of name we wish to find
1f1e6e52 1779 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1780 * @inode: returns dentry->d_inode when the inode was found valid.
1781 * Returns: dentry, or NULL
1782 *
1783 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1784 * resolution (store-free path walking) design described in
1785 * Documentation/filesystems/path-lookup.txt.
1786 *
1787 * This is not to be used outside core vfs.
1788 *
1789 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1790 * held, and rcu_read_lock held. The returned dentry must not be stored into
1791 * without taking d_lock and checking d_seq sequence count against @seq
1792 * returned here.
1793 *
1794 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1795 * function.
1796 *
1797 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1798 * the returned dentry, so long as its parent's seqlock is checked after the
1799 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1800 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1801 *
1802 * NOTE! The caller *has* to check the resulting dentry against the sequence
1803 * number we've returned before using any of the resulting dentry state!
31e6b01f 1804 */
8966be90
LT
1805struct dentry *__d_lookup_rcu(const struct dentry *parent,
1806 const struct qstr *name,
12f8ad4b 1807 unsigned *seqp, struct inode *inode)
31e6b01f 1808{
26fe5750 1809 u64 hashlen = name->hash_len;
31e6b01f 1810 const unsigned char *str = name->name;
26fe5750 1811 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1812 struct hlist_bl_node *node;
31e6b01f
NP
1813 struct dentry *dentry;
1814
1815 /*
1816 * Note: There is significant duplication with __d_lookup_rcu which is
1817 * required to prevent single threaded performance regressions
1818 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 * Keep the two functions in sync.
1820 */
1821
1822 /*
1823 * The hash list is protected using RCU.
1824 *
1825 * Carefully use d_seq when comparing a candidate dentry, to avoid
1826 * races with d_move().
1827 *
1828 * It is possible that concurrent renames can mess up our list
1829 * walk here and result in missing our dentry, resulting in the
1830 * false-negative result. d_lookup() protects against concurrent
1831 * renames using rename_lock seqlock.
1832 *
b0a4bb83 1833 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1834 */
b07ad996 1835 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1836 unsigned seq;
31e6b01f 1837
31e6b01f 1838seqretry:
12f8ad4b
LT
1839 /*
1840 * The dentry sequence count protects us from concurrent
1841 * renames, and thus protects inode, parent and name fields.
1842 *
1843 * The caller must perform a seqcount check in order
1844 * to do anything useful with the returned dentry,
1845 * including using the 'd_inode' pointer.
1846 *
1847 * NOTE! We do a "raw" seqcount_begin here. That means that
1848 * we don't wait for the sequence count to stabilize if it
1849 * is in the middle of a sequence change. If we do the slow
1850 * dentry compare, we will do seqretries until it is stable,
1851 * and if we end up with a successful lookup, we actually
1852 * want to exit RCU lookup anyway.
1853 */
1854 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1855 if (dentry->d_parent != parent)
1856 continue;
2e321806
LT
1857 if (d_unhashed(dentry))
1858 continue;
12f8ad4b
LT
1859 *seqp = seq;
1860
830c0f0e 1861 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1862 if (dentry->d_name.hash != hashlen_hash(hashlen))
1863 continue;
12f8ad4b
LT
1864 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1865 case D_COMP_OK:
1866 return dentry;
1867 case D_COMP_NOMATCH:
31e6b01f 1868 continue;
12f8ad4b
LT
1869 default:
1870 goto seqretry;
1871 }
31e6b01f 1872 }
12f8ad4b 1873
26fe5750 1874 if (dentry->d_name.hash_len != hashlen)
ee983e89 1875 continue;
26fe5750 1876 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1877 return dentry;
31e6b01f
NP
1878 }
1879 return NULL;
1880}
1881
1da177e4
LT
1882/**
1883 * d_lookup - search for a dentry
1884 * @parent: parent dentry
1885 * @name: qstr of name we wish to find
b04f784e 1886 * Returns: dentry, or NULL
1da177e4 1887 *
b04f784e
NP
1888 * d_lookup searches the children of the parent dentry for the name in
1889 * question. If the dentry is found its reference count is incremented and the
1890 * dentry is returned. The caller must use dput to free the entry when it has
1891 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1892 */
da2d8455 1893struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 1894{
31e6b01f 1895 struct dentry *dentry;
949854d0 1896 unsigned seq;
1da177e4
LT
1897
1898 do {
1899 seq = read_seqbegin(&rename_lock);
1900 dentry = __d_lookup(parent, name);
1901 if (dentry)
1902 break;
1903 } while (read_seqretry(&rename_lock, seq));
1904 return dentry;
1905}
ec4f8605 1906EXPORT_SYMBOL(d_lookup);
1da177e4 1907
31e6b01f 1908/**
b04f784e
NP
1909 * __d_lookup - search for a dentry (racy)
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
1912 * Returns: dentry, or NULL
1913 *
1914 * __d_lookup is like d_lookup, however it may (rarely) return a
1915 * false-negative result due to unrelated rename activity.
1916 *
1917 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1918 * however it must be used carefully, eg. with a following d_lookup in
1919 * the case of failure.
1920 *
1921 * __d_lookup callers must be commented.
1922 */
a713ca2a 1923struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
1924{
1925 unsigned int len = name->len;
1926 unsigned int hash = name->hash;
1927 const unsigned char *str = name->name;
b07ad996 1928 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1929 struct hlist_bl_node *node;
31e6b01f 1930 struct dentry *found = NULL;
665a7583 1931 struct dentry *dentry;
1da177e4 1932
31e6b01f
NP
1933 /*
1934 * Note: There is significant duplication with __d_lookup_rcu which is
1935 * required to prevent single threaded performance regressions
1936 * especially on architectures where smp_rmb (in seqcounts) are costly.
1937 * Keep the two functions in sync.
1938 */
1939
b04f784e
NP
1940 /*
1941 * The hash list is protected using RCU.
1942 *
1943 * Take d_lock when comparing a candidate dentry, to avoid races
1944 * with d_move().
1945 *
1946 * It is possible that concurrent renames can mess up our list
1947 * walk here and result in missing our dentry, resulting in the
1948 * false-negative result. d_lookup() protects against concurrent
1949 * renames using rename_lock seqlock.
1950 *
b0a4bb83 1951 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1952 */
1da177e4
LT
1953 rcu_read_lock();
1954
b07ad996 1955 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1956
1da177e4
LT
1957 if (dentry->d_name.hash != hash)
1958 continue;
1da177e4
LT
1959
1960 spin_lock(&dentry->d_lock);
1da177e4
LT
1961 if (dentry->d_parent != parent)
1962 goto next;
d0185c08
LT
1963 if (d_unhashed(dentry))
1964 goto next;
1965
1da177e4
LT
1966 /*
1967 * It is safe to compare names since d_move() cannot
1968 * change the qstr (protected by d_lock).
1969 */
fb045adb 1970 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1971 int tlen = dentry->d_name.len;
1972 const char *tname = dentry->d_name.name;
621e155a
NP
1973 if (parent->d_op->d_compare(parent, parent->d_inode,
1974 dentry, dentry->d_inode,
31e6b01f 1975 tlen, tname, name))
1da177e4
LT
1976 goto next;
1977 } else {
ee983e89
LT
1978 if (dentry->d_name.len != len)
1979 goto next;
12f8ad4b 1980 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1981 goto next;
1982 }
1983
b7ab39f6 1984 dentry->d_count++;
d0185c08 1985 found = dentry;
1da177e4
LT
1986 spin_unlock(&dentry->d_lock);
1987 break;
1988next:
1989 spin_unlock(&dentry->d_lock);
1990 }
1991 rcu_read_unlock();
1992
1993 return found;
1994}
1995
3e7e241f
EB
1996/**
1997 * d_hash_and_lookup - hash the qstr then search for a dentry
1998 * @dir: Directory to search in
1999 * @name: qstr of name we wish to find
2000 *
4f522a24 2001 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2002 */
2003struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2004{
3e7e241f
EB
2005 /*
2006 * Check for a fs-specific hash function. Note that we must
2007 * calculate the standard hash first, as the d_op->d_hash()
2008 * routine may choose to leave the hash value unchanged.
2009 */
2010 name->hash = full_name_hash(name->name, name->len);
fb045adb 2011 if (dir->d_flags & DCACHE_OP_HASH) {
4f522a24
AV
2012 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2013 if (unlikely(err < 0))
2014 return ERR_PTR(err);
3e7e241f 2015 }
4f522a24 2016 return d_lookup(dir, name);
3e7e241f 2017}
4f522a24 2018EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2019
1da177e4 2020/**
786a5e15 2021 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2022 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2023 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2024 *
2025 * An insecure source has sent us a dentry, here we verify it and dget() it.
2026 * This is used by ncpfs in its readdir implementation.
2027 * Zero is returned in the dentry is invalid.
786a5e15
NP
2028 *
2029 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2030 */
d3a23e16 2031int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2032{
786a5e15 2033 struct dentry *child;
d3a23e16 2034
2fd6b7f5 2035 spin_lock(&dparent->d_lock);
786a5e15
NP
2036 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2037 if (dentry == child) {
2fd6b7f5 2038 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2039 __dget_dlock(dentry);
2fd6b7f5
NP
2040 spin_unlock(&dentry->d_lock);
2041 spin_unlock(&dparent->d_lock);
1da177e4
LT
2042 return 1;
2043 }
2044 }
2fd6b7f5 2045 spin_unlock(&dparent->d_lock);
786a5e15 2046
1da177e4
LT
2047 return 0;
2048}
ec4f8605 2049EXPORT_SYMBOL(d_validate);
1da177e4
LT
2050
2051/*
2052 * When a file is deleted, we have two options:
2053 * - turn this dentry into a negative dentry
2054 * - unhash this dentry and free it.
2055 *
2056 * Usually, we want to just turn this into
2057 * a negative dentry, but if anybody else is
2058 * currently using the dentry or the inode
2059 * we can't do that and we fall back on removing
2060 * it from the hash queues and waiting for
2061 * it to be deleted later when it has no users
2062 */
2063
2064/**
2065 * d_delete - delete a dentry
2066 * @dentry: The dentry to delete
2067 *
2068 * Turn the dentry into a negative dentry if possible, otherwise
2069 * remove it from the hash queues so it can be deleted later
2070 */
2071
2072void d_delete(struct dentry * dentry)
2073{
873feea0 2074 struct inode *inode;
7a91bf7f 2075 int isdir = 0;
1da177e4
LT
2076 /*
2077 * Are we the only user?
2078 */
357f8e65 2079again:
1da177e4 2080 spin_lock(&dentry->d_lock);
873feea0
NP
2081 inode = dentry->d_inode;
2082 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2083 if (dentry->d_count == 1) {
1fe0c023 2084 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2085 spin_unlock(&dentry->d_lock);
2086 cpu_relax();
2087 goto again;
2088 }
13e3c5e5 2089 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2090 dentry_unlink_inode(dentry);
7a91bf7f 2091 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2092 return;
2093 }
2094
2095 if (!d_unhashed(dentry))
2096 __d_drop(dentry);
2097
2098 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2099
2100 fsnotify_nameremove(dentry, isdir);
1da177e4 2101}
ec4f8605 2102EXPORT_SYMBOL(d_delete);
1da177e4 2103
b07ad996 2104static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2105{
ceb5bdc2 2106 BUG_ON(!d_unhashed(entry));
1879fd6a 2107 hlist_bl_lock(b);
dea3667b 2108 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2109 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2110 hlist_bl_unlock(b);
1da177e4
LT
2111}
2112
770bfad8
DH
2113static void _d_rehash(struct dentry * entry)
2114{
2115 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2116}
2117
1da177e4
LT
2118/**
2119 * d_rehash - add an entry back to the hash
2120 * @entry: dentry to add to the hash
2121 *
2122 * Adds a dentry to the hash according to its name.
2123 */
2124
2125void d_rehash(struct dentry * entry)
2126{
1da177e4 2127 spin_lock(&entry->d_lock);
770bfad8 2128 _d_rehash(entry);
1da177e4 2129 spin_unlock(&entry->d_lock);
1da177e4 2130}
ec4f8605 2131EXPORT_SYMBOL(d_rehash);
1da177e4 2132
fb2d5b86
NP
2133/**
2134 * dentry_update_name_case - update case insensitive dentry with a new name
2135 * @dentry: dentry to be updated
2136 * @name: new name
2137 *
2138 * Update a case insensitive dentry with new case of name.
2139 *
2140 * dentry must have been returned by d_lookup with name @name. Old and new
2141 * name lengths must match (ie. no d_compare which allows mismatched name
2142 * lengths).
2143 *
2144 * Parent inode i_mutex must be held over d_lookup and into this call (to
2145 * keep renames and concurrent inserts, and readdir(2) away).
2146 */
2147void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2148{
7ebfa57f 2149 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2150 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2151
fb2d5b86 2152 spin_lock(&dentry->d_lock);
31e6b01f 2153 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2154 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2155 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2156 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2157}
2158EXPORT_SYMBOL(dentry_update_name_case);
2159
1da177e4
LT
2160static void switch_names(struct dentry *dentry, struct dentry *target)
2161{
2162 if (dname_external(target)) {
2163 if (dname_external(dentry)) {
2164 /*
2165 * Both external: swap the pointers
2166 */
9a8d5bb4 2167 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2168 } else {
2169 /*
2170 * dentry:internal, target:external. Steal target's
2171 * storage and make target internal.
2172 */
321bcf92
BF
2173 memcpy(target->d_iname, dentry->d_name.name,
2174 dentry->d_name.len + 1);
1da177e4
LT
2175 dentry->d_name.name = target->d_name.name;
2176 target->d_name.name = target->d_iname;
2177 }
2178 } else {
2179 if (dname_external(dentry)) {
2180 /*
2181 * dentry:external, target:internal. Give dentry's
2182 * storage to target and make dentry internal
2183 */
2184 memcpy(dentry->d_iname, target->d_name.name,
2185 target->d_name.len + 1);
2186 target->d_name.name = dentry->d_name.name;
2187 dentry->d_name.name = dentry->d_iname;
2188 } else {
2189 /*
2190 * Both are internal. Just copy target to dentry
2191 */
2192 memcpy(dentry->d_iname, target->d_name.name,
2193 target->d_name.len + 1);
dc711ca3
AV
2194 dentry->d_name.len = target->d_name.len;
2195 return;
1da177e4
LT
2196 }
2197 }
9a8d5bb4 2198 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2199}
2200
2fd6b7f5
NP
2201static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2202{
2203 /*
2204 * XXXX: do we really need to take target->d_lock?
2205 */
2206 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2207 spin_lock(&target->d_parent->d_lock);
2208 else {
2209 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2210 spin_lock(&dentry->d_parent->d_lock);
2211 spin_lock_nested(&target->d_parent->d_lock,
2212 DENTRY_D_LOCK_NESTED);
2213 } else {
2214 spin_lock(&target->d_parent->d_lock);
2215 spin_lock_nested(&dentry->d_parent->d_lock,
2216 DENTRY_D_LOCK_NESTED);
2217 }
2218 }
2219 if (target < dentry) {
2220 spin_lock_nested(&target->d_lock, 2);
2221 spin_lock_nested(&dentry->d_lock, 3);
2222 } else {
2223 spin_lock_nested(&dentry->d_lock, 2);
2224 spin_lock_nested(&target->d_lock, 3);
2225 }
2226}
2227
2228static void dentry_unlock_parents_for_move(struct dentry *dentry,
2229 struct dentry *target)
2230{
2231 if (target->d_parent != dentry->d_parent)
2232 spin_unlock(&dentry->d_parent->d_lock);
2233 if (target->d_parent != target)
2234 spin_unlock(&target->d_parent->d_lock);
2235}
2236
1da177e4 2237/*
2fd6b7f5
NP
2238 * When switching names, the actual string doesn't strictly have to
2239 * be preserved in the target - because we're dropping the target
2240 * anyway. As such, we can just do a simple memcpy() to copy over
2241 * the new name before we switch.
2242 *
2243 * Note that we have to be a lot more careful about getting the hash
2244 * switched - we have to switch the hash value properly even if it
2245 * then no longer matches the actual (corrupted) string of the target.
2246 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2247 */
9eaef27b 2248/*
18367501 2249 * __d_move - move a dentry
1da177e4
LT
2250 * @dentry: entry to move
2251 * @target: new dentry
2252 *
2253 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2254 * dcache entries should not be moved in this way. Caller must hold
2255 * rename_lock, the i_mutex of the source and target directories,
2256 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2257 */
18367501 2258static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2259{
1da177e4
LT
2260 if (!dentry->d_inode)
2261 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2262
2fd6b7f5
NP
2263 BUG_ON(d_ancestor(dentry, target));
2264 BUG_ON(d_ancestor(target, dentry));
2265
2fd6b7f5 2266 dentry_lock_for_move(dentry, target);
1da177e4 2267
31e6b01f
NP
2268 write_seqcount_begin(&dentry->d_seq);
2269 write_seqcount_begin(&target->d_seq);
2270
ceb5bdc2
NP
2271 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2272
2273 /*
2274 * Move the dentry to the target hash queue. Don't bother checking
2275 * for the same hash queue because of how unlikely it is.
2276 */
2277 __d_drop(dentry);
789680d1 2278 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2279
2280 /* Unhash the target: dput() will then get rid of it */
2281 __d_drop(target);
2282
5160ee6f
ED
2283 list_del(&dentry->d_u.d_child);
2284 list_del(&target->d_u.d_child);
1da177e4
LT
2285
2286 /* Switch the names.. */
2287 switch_names(dentry, target);
9a8d5bb4 2288 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2289
2290 /* ... and switch the parents */
2291 if (IS_ROOT(dentry)) {
2292 dentry->d_parent = target->d_parent;
2293 target->d_parent = target;
5160ee6f 2294 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2295 } else {
9a8d5bb4 2296 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2297
2298 /* And add them back to the (new) parent lists */
5160ee6f 2299 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2300 }
2301
5160ee6f 2302 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2303
31e6b01f
NP
2304 write_seqcount_end(&target->d_seq);
2305 write_seqcount_end(&dentry->d_seq);
2306
2fd6b7f5 2307 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2308 spin_unlock(&target->d_lock);
c32ccd87 2309 fsnotify_d_move(dentry);
1da177e4 2310 spin_unlock(&dentry->d_lock);
18367501
AV
2311}
2312
2313/*
2314 * d_move - move a dentry
2315 * @dentry: entry to move
2316 * @target: new dentry
2317 *
2318 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2319 * dcache entries should not be moved in this way. See the locking
2320 * requirements for __d_move.
18367501
AV
2321 */
2322void d_move(struct dentry *dentry, struct dentry *target)
2323{
2324 write_seqlock(&rename_lock);
2325 __d_move(dentry, target);
1da177e4 2326 write_sequnlock(&rename_lock);
9eaef27b 2327}
ec4f8605 2328EXPORT_SYMBOL(d_move);
1da177e4 2329
e2761a11
OH
2330/**
2331 * d_ancestor - search for an ancestor
2332 * @p1: ancestor dentry
2333 * @p2: child dentry
2334 *
2335 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2336 * an ancestor of p2, else NULL.
9eaef27b 2337 */
e2761a11 2338struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2339{
2340 struct dentry *p;
2341
871c0067 2342 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2343 if (p->d_parent == p1)
e2761a11 2344 return p;
9eaef27b 2345 }
e2761a11 2346 return NULL;
9eaef27b
TM
2347}
2348
2349/*
2350 * This helper attempts to cope with remotely renamed directories
2351 *
2352 * It assumes that the caller is already holding
18367501 2353 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2354 *
2355 * Note: If ever the locking in lock_rename() changes, then please
2356 * remember to update this too...
9eaef27b 2357 */
873feea0
NP
2358static struct dentry *__d_unalias(struct inode *inode,
2359 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2360{
2361 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2362 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2363
2364 /* If alias and dentry share a parent, then no extra locks required */
2365 if (alias->d_parent == dentry->d_parent)
2366 goto out_unalias;
2367
9eaef27b 2368 /* See lock_rename() */
9eaef27b
TM
2369 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2370 goto out_err;
2371 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2372 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2373 goto out_err;
2374 m2 = &alias->d_parent->d_inode->i_mutex;
2375out_unalias:
ee3efa91
AV
2376 if (likely(!d_mountpoint(alias))) {
2377 __d_move(alias, dentry);
2378 ret = alias;
2379 }
9eaef27b 2380out_err:
873feea0 2381 spin_unlock(&inode->i_lock);
9eaef27b
TM
2382 if (m2)
2383 mutex_unlock(m2);
2384 if (m1)
2385 mutex_unlock(m1);
2386 return ret;
2387}
2388
770bfad8
DH
2389/*
2390 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2391 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2392 * returns with anon->d_lock held!
770bfad8
DH
2393 */
2394static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2395{
740da42e 2396 struct dentry *dparent;
770bfad8 2397
2fd6b7f5 2398 dentry_lock_for_move(anon, dentry);
770bfad8 2399
31e6b01f
NP
2400 write_seqcount_begin(&dentry->d_seq);
2401 write_seqcount_begin(&anon->d_seq);
2402
770bfad8 2403 dparent = dentry->d_parent;
770bfad8 2404
2fd6b7f5
NP
2405 switch_names(dentry, anon);
2406 swap(dentry->d_name.hash, anon->d_name.hash);
2407
740da42e
AV
2408 dentry->d_parent = dentry;
2409 list_del_init(&dentry->d_u.d_child);
2410 anon->d_parent = dparent;
770bfad8 2411 list_del(&anon->d_u.d_child);
740da42e 2412 list_add(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2413
31e6b01f
NP
2414 write_seqcount_end(&dentry->d_seq);
2415 write_seqcount_end(&anon->d_seq);
2416
2fd6b7f5
NP
2417 dentry_unlock_parents_for_move(anon, dentry);
2418 spin_unlock(&dentry->d_lock);
2419
2420 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2421 anon->d_flags &= ~DCACHE_DISCONNECTED;
2422}
2423
2424/**
2425 * d_materialise_unique - introduce an inode into the tree
2426 * @dentry: candidate dentry
2427 * @inode: inode to bind to the dentry, to which aliases may be attached
2428 *
2429 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2430 * root directory alias in its place if there is one. Caller must hold the
2431 * i_mutex of the parent directory.
770bfad8
DH
2432 */
2433struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2434{
9eaef27b 2435 struct dentry *actual;
770bfad8
DH
2436
2437 BUG_ON(!d_unhashed(dentry));
2438
770bfad8
DH
2439 if (!inode) {
2440 actual = dentry;
360da900 2441 __d_instantiate(dentry, NULL);
357f8e65
NP
2442 d_rehash(actual);
2443 goto out_nolock;
770bfad8
DH
2444 }
2445
873feea0 2446 spin_lock(&inode->i_lock);
357f8e65 2447
9eaef27b
TM
2448 if (S_ISDIR(inode->i_mode)) {
2449 struct dentry *alias;
2450
2451 /* Does an aliased dentry already exist? */
32ba9c3f 2452 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2453 if (alias) {
2454 actual = alias;
18367501
AV
2455 write_seqlock(&rename_lock);
2456
2457 if (d_ancestor(alias, dentry)) {
2458 /* Check for loops */
2459 actual = ERR_PTR(-ELOOP);
b18dafc8 2460 spin_unlock(&inode->i_lock);
18367501
AV
2461 } else if (IS_ROOT(alias)) {
2462 /* Is this an anonymous mountpoint that we
2463 * could splice into our tree? */
9eaef27b 2464 __d_materialise_dentry(dentry, alias);
18367501 2465 write_sequnlock(&rename_lock);
9eaef27b
TM
2466 __d_drop(alias);
2467 goto found;
18367501
AV
2468 } else {
2469 /* Nope, but we must(!) avoid directory
b18dafc8 2470 * aliasing. This drops inode->i_lock */
18367501 2471 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2472 }
18367501 2473 write_sequnlock(&rename_lock);
dd179946
DH
2474 if (IS_ERR(actual)) {
2475 if (PTR_ERR(actual) == -ELOOP)
2476 pr_warn_ratelimited(
2477 "VFS: Lookup of '%s' in %s %s"
2478 " would have caused loop\n",
2479 dentry->d_name.name,
2480 inode->i_sb->s_type->name,
2481 inode->i_sb->s_id);
9eaef27b 2482 dput(alias);
dd179946 2483 }
9eaef27b
TM
2484 goto out_nolock;
2485 }
770bfad8
DH
2486 }
2487
2488 /* Add a unique reference */
2489 actual = __d_instantiate_unique(dentry, inode);
2490 if (!actual)
2491 actual = dentry;
357f8e65
NP
2492 else
2493 BUG_ON(!d_unhashed(actual));
770bfad8 2494
770bfad8
DH
2495 spin_lock(&actual->d_lock);
2496found:
2497 _d_rehash(actual);
2498 spin_unlock(&actual->d_lock);
873feea0 2499 spin_unlock(&inode->i_lock);
9eaef27b 2500out_nolock:
770bfad8
DH
2501 if (actual == dentry) {
2502 security_d_instantiate(dentry, inode);
2503 return NULL;
2504 }
2505
2506 iput(inode);
2507 return actual;
770bfad8 2508}
ec4f8605 2509EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2510
cdd16d02 2511static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2512{
2513 *buflen -= namelen;
2514 if (*buflen < 0)
2515 return -ENAMETOOLONG;
2516 *buffer -= namelen;
2517 memcpy(*buffer, str, namelen);
2518 return 0;
2519}
2520
cdd16d02
MS
2521static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2522{
2523 return prepend(buffer, buflen, name->name, name->len);
2524}
2525
1da177e4 2526/**
208898c1 2527 * prepend_path - Prepend path string to a buffer
9d1bc601 2528 * @path: the dentry/vfsmount to report
02125a82 2529 * @root: root vfsmnt/dentry
f2eb6575
MS
2530 * @buffer: pointer to the end of the buffer
2531 * @buflen: pointer to buffer length
552ce544 2532 *
949854d0 2533 * Caller holds the rename_lock.
1da177e4 2534 */
02125a82
AV
2535static int prepend_path(const struct path *path,
2536 const struct path *root,
f2eb6575 2537 char **buffer, int *buflen)
1da177e4 2538{
9d1bc601
MS
2539 struct dentry *dentry = path->dentry;
2540 struct vfsmount *vfsmnt = path->mnt;
0714a533 2541 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2542 bool slash = false;
2543 int error = 0;
6092d048 2544
962830df 2545 br_read_lock(&vfsmount_lock);
f2eb6575 2546 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2547 struct dentry * parent;
2548
1da177e4 2549 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2550 /* Global root? */
676da58d 2551 if (!mnt_has_parent(mnt))
1da177e4 2552 goto global_root;
a73324da 2553 dentry = mnt->mnt_mountpoint;
0714a533
AV
2554 mnt = mnt->mnt_parent;
2555 vfsmnt = &mnt->mnt;
1da177e4
LT
2556 continue;
2557 }
2558 parent = dentry->d_parent;
2559 prefetch(parent);
9abca360 2560 spin_lock(&dentry->d_lock);
f2eb6575 2561 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2562 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2563 if (!error)
2564 error = prepend(buffer, buflen, "/", 1);
2565 if (error)
2566 break;
2567
2568 slash = true;
1da177e4
LT
2569 dentry = parent;
2570 }
2571
f2eb6575
MS
2572 if (!error && !slash)
2573 error = prepend(buffer, buflen, "/", 1);
2574
02125a82 2575out:
962830df 2576 br_read_unlock(&vfsmount_lock);
f2eb6575 2577 return error;
1da177e4
LT
2578
2579global_root:
98dc568b
MS
2580 /*
2581 * Filesystems needing to implement special "root names"
2582 * should do so with ->d_dname()
2583 */
2584 if (IS_ROOT(dentry) &&
2585 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2586 WARN(1, "Root dentry has weird name <%.*s>\n",
2587 (int) dentry->d_name.len, dentry->d_name.name);
2588 }
02125a82
AV
2589 if (!slash)
2590 error = prepend(buffer, buflen, "/", 1);
2591 if (!error)
f7a99c5b 2592 error = is_mounted(vfsmnt) ? 1 : 2;
be285c71 2593 goto out;
f2eb6575 2594}
be285c71 2595
f2eb6575
MS
2596/**
2597 * __d_path - return the path of a dentry
2598 * @path: the dentry/vfsmount to report
02125a82 2599 * @root: root vfsmnt/dentry
cd956a1c 2600 * @buf: buffer to return value in
f2eb6575
MS
2601 * @buflen: buffer length
2602 *
ffd1f4ed 2603 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2604 *
2605 * Returns a pointer into the buffer or an error code if the
2606 * path was too long.
2607 *
be148247 2608 * "buflen" should be positive.
f2eb6575 2609 *
02125a82 2610 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2611 */
02125a82
AV
2612char *__d_path(const struct path *path,
2613 const struct path *root,
f2eb6575
MS
2614 char *buf, int buflen)
2615{
2616 char *res = buf + buflen;
2617 int error;
2618
2619 prepend(&res, &buflen, "\0", 1);
949854d0 2620 write_seqlock(&rename_lock);
f2eb6575 2621 error = prepend_path(path, root, &res, &buflen);
949854d0 2622 write_sequnlock(&rename_lock);
be148247 2623
02125a82
AV
2624 if (error < 0)
2625 return ERR_PTR(error);
2626 if (error > 0)
2627 return NULL;
2628 return res;
2629}
2630
2631char *d_absolute_path(const struct path *path,
2632 char *buf, int buflen)
2633{
2634 struct path root = {};
2635 char *res = buf + buflen;
2636 int error;
2637
2638 prepend(&res, &buflen, "\0", 1);
2639 write_seqlock(&rename_lock);
2640 error = prepend_path(path, &root, &res, &buflen);
2641 write_sequnlock(&rename_lock);
2642
2643 if (error > 1)
2644 error = -EINVAL;
2645 if (error < 0)
f2eb6575 2646 return ERR_PTR(error);
f2eb6575 2647 return res;
1da177e4
LT
2648}
2649
ffd1f4ed
MS
2650/*
2651 * same as __d_path but appends "(deleted)" for unlinked files.
2652 */
02125a82
AV
2653static int path_with_deleted(const struct path *path,
2654 const struct path *root,
2655 char **buf, int *buflen)
ffd1f4ed
MS
2656{
2657 prepend(buf, buflen, "\0", 1);
2658 if (d_unlinked(path->dentry)) {
2659 int error = prepend(buf, buflen, " (deleted)", 10);
2660 if (error)
2661 return error;
2662 }
2663
2664 return prepend_path(path, root, buf, buflen);
2665}
2666
8df9d1a4
MS
2667static int prepend_unreachable(char **buffer, int *buflen)
2668{
2669 return prepend(buffer, buflen, "(unreachable)", 13);
2670}
2671
a03a8a70
JB
2672/**
2673 * d_path - return the path of a dentry
cf28b486 2674 * @path: path to report
a03a8a70
JB
2675 * @buf: buffer to return value in
2676 * @buflen: buffer length
2677 *
2678 * Convert a dentry into an ASCII path name. If the entry has been deleted
2679 * the string " (deleted)" is appended. Note that this is ambiguous.
2680 *
52afeefb
AV
2681 * Returns a pointer into the buffer or an error code if the path was
2682 * too long. Note: Callers should use the returned pointer, not the passed
2683 * in buffer, to use the name! The implementation often starts at an offset
2684 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2685 *
31f3e0b3 2686 * "buflen" should be positive.
a03a8a70 2687 */
20d4fdc1 2688char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2689{
ffd1f4ed 2690 char *res = buf + buflen;
6ac08c39 2691 struct path root;
ffd1f4ed 2692 int error;
1da177e4 2693
c23fbb6b
ED
2694 /*
2695 * We have various synthetic filesystems that never get mounted. On
2696 * these filesystems dentries are never used for lookup purposes, and
2697 * thus don't need to be hashed. They also don't need a name until a
2698 * user wants to identify the object in /proc/pid/fd/. The little hack
2699 * below allows us to generate a name for these objects on demand:
2700 */
cf28b486
JB
2701 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2702 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2703
f7ad3c6b 2704 get_fs_root(current->fs, &root);
949854d0 2705 write_seqlock(&rename_lock);
02125a82
AV
2706 error = path_with_deleted(path, &root, &res, &buflen);
2707 if (error < 0)
ffd1f4ed 2708 res = ERR_PTR(error);
949854d0 2709 write_sequnlock(&rename_lock);
6ac08c39 2710 path_put(&root);
1da177e4
LT
2711 return res;
2712}
ec4f8605 2713EXPORT_SYMBOL(d_path);
1da177e4 2714
c23fbb6b
ED
2715/*
2716 * Helper function for dentry_operations.d_dname() members
2717 */
2718char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2719 const char *fmt, ...)
2720{
2721 va_list args;
2722 char temp[64];
2723 int sz;
2724
2725 va_start(args, fmt);
2726 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2727 va_end(args);
2728
2729 if (sz > sizeof(temp) || sz > buflen)
2730 return ERR_PTR(-ENAMETOOLONG);
2731
2732 buffer += buflen - sz;
2733 return memcpy(buffer, temp, sz);
2734}
2735
6092d048
RP
2736/*
2737 * Write full pathname from the root of the filesystem into the buffer.
2738 */
ec2447c2 2739static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2740{
2741 char *end = buf + buflen;
2742 char *retval;
2743
6092d048 2744 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2745 if (buflen < 1)
2746 goto Elong;
2747 /* Get '/' right */
2748 retval = end-1;
2749 *retval = '/';
2750
cdd16d02
MS
2751 while (!IS_ROOT(dentry)) {
2752 struct dentry *parent = dentry->d_parent;
9abca360 2753 int error;
6092d048 2754
6092d048 2755 prefetch(parent);
9abca360
NP
2756 spin_lock(&dentry->d_lock);
2757 error = prepend_name(&end, &buflen, &dentry->d_name);
2758 spin_unlock(&dentry->d_lock);
2759 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2760 goto Elong;
2761
2762 retval = end;
2763 dentry = parent;
2764 }
c103135c
AV
2765 return retval;
2766Elong:
2767 return ERR_PTR(-ENAMETOOLONG);
2768}
ec2447c2
NP
2769
2770char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2771{
2772 char *retval;
2773
949854d0 2774 write_seqlock(&rename_lock);
ec2447c2 2775 retval = __dentry_path(dentry, buf, buflen);
949854d0 2776 write_sequnlock(&rename_lock);
ec2447c2
NP
2777
2778 return retval;
2779}
2780EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2781
2782char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2783{
2784 char *p = NULL;
2785 char *retval;
2786
949854d0 2787 write_seqlock(&rename_lock);
c103135c
AV
2788 if (d_unlinked(dentry)) {
2789 p = buf + buflen;
2790 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2791 goto Elong;
2792 buflen++;
2793 }
2794 retval = __dentry_path(dentry, buf, buflen);
949854d0 2795 write_sequnlock(&rename_lock);
c103135c
AV
2796 if (!IS_ERR(retval) && p)
2797 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2798 return retval;
2799Elong:
6092d048
RP
2800 return ERR_PTR(-ENAMETOOLONG);
2801}
2802
1da177e4
LT
2803/*
2804 * NOTE! The user-level library version returns a
2805 * character pointer. The kernel system call just
2806 * returns the length of the buffer filled (which
2807 * includes the ending '\0' character), or a negative
2808 * error value. So libc would do something like
2809 *
2810 * char *getcwd(char * buf, size_t size)
2811 * {
2812 * int retval;
2813 *
2814 * retval = sys_getcwd(buf, size);
2815 * if (retval >= 0)
2816 * return buf;
2817 * errno = -retval;
2818 * return NULL;
2819 * }
2820 */
3cdad428 2821SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2822{
552ce544 2823 int error;
6ac08c39 2824 struct path pwd, root;
552ce544 2825 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2826
2827 if (!page)
2828 return -ENOMEM;
2829
f7ad3c6b 2830 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2831
552ce544 2832 error = -ENOENT;
949854d0 2833 write_seqlock(&rename_lock);
f3da392e 2834 if (!d_unlinked(pwd.dentry)) {
552ce544 2835 unsigned long len;
8df9d1a4
MS
2836 char *cwd = page + PAGE_SIZE;
2837 int buflen = PAGE_SIZE;
1da177e4 2838
8df9d1a4 2839 prepend(&cwd, &buflen, "\0", 1);
02125a82 2840 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2841 write_sequnlock(&rename_lock);
552ce544 2842
02125a82 2843 if (error < 0)
552ce544
LT
2844 goto out;
2845
8df9d1a4 2846 /* Unreachable from current root */
02125a82 2847 if (error > 0) {
8df9d1a4
MS
2848 error = prepend_unreachable(&cwd, &buflen);
2849 if (error)
2850 goto out;
2851 }
2852
552ce544
LT
2853 error = -ERANGE;
2854 len = PAGE_SIZE + page - cwd;
2855 if (len <= size) {
2856 error = len;
2857 if (copy_to_user(buf, cwd, len))
2858 error = -EFAULT;
2859 }
949854d0
NP
2860 } else {
2861 write_sequnlock(&rename_lock);
949854d0 2862 }
1da177e4
LT
2863
2864out:
6ac08c39
JB
2865 path_put(&pwd);
2866 path_put(&root);
1da177e4
LT
2867 free_page((unsigned long) page);
2868 return error;
2869}
2870
2871/*
2872 * Test whether new_dentry is a subdirectory of old_dentry.
2873 *
2874 * Trivially implemented using the dcache structure
2875 */
2876
2877/**
2878 * is_subdir - is new dentry a subdirectory of old_dentry
2879 * @new_dentry: new dentry
2880 * @old_dentry: old dentry
2881 *
2882 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2883 * Returns 0 otherwise.
2884 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2885 */
2886
e2761a11 2887int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2888{
2889 int result;
949854d0 2890 unsigned seq;
1da177e4 2891
e2761a11
OH
2892 if (new_dentry == old_dentry)
2893 return 1;
2894
e2761a11 2895 do {
1da177e4 2896 /* for restarting inner loop in case of seq retry */
1da177e4 2897 seq = read_seqbegin(&rename_lock);
949854d0
NP
2898 /*
2899 * Need rcu_readlock to protect against the d_parent trashing
2900 * due to d_move
2901 */
2902 rcu_read_lock();
e2761a11 2903 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2904 result = 1;
e2761a11
OH
2905 else
2906 result = 0;
949854d0 2907 rcu_read_unlock();
1da177e4 2908 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2909
2910 return result;
2911}
2912
2913void d_genocide(struct dentry *root)
2914{
949854d0 2915 struct dentry *this_parent;
1da177e4 2916 struct list_head *next;
949854d0 2917 unsigned seq;
58db63d0 2918 int locked = 0;
1da177e4 2919
949854d0 2920 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2921again:
2922 this_parent = root;
2fd6b7f5 2923 spin_lock(&this_parent->d_lock);
1da177e4
LT
2924repeat:
2925 next = this_parent->d_subdirs.next;
2926resume:
2927 while (next != &this_parent->d_subdirs) {
2928 struct list_head *tmp = next;
5160ee6f 2929 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2930 next = tmp->next;
949854d0 2931
da502956
NP
2932 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2933 if (d_unhashed(dentry) || !dentry->d_inode) {
2934 spin_unlock(&dentry->d_lock);
1da177e4 2935 continue;
da502956 2936 }
1da177e4 2937 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2938 spin_unlock(&this_parent->d_lock);
2939 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2940 this_parent = dentry;
2fd6b7f5 2941 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2942 goto repeat;
2943 }
949854d0
NP
2944 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2945 dentry->d_flags |= DCACHE_GENOCIDE;
2946 dentry->d_count--;
2947 }
b7ab39f6 2948 spin_unlock(&dentry->d_lock);
1da177e4
LT
2949 }
2950 if (this_parent != root) {
c826cb7d 2951 struct dentry *child = this_parent;
949854d0
NP
2952 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2953 this_parent->d_flags |= DCACHE_GENOCIDE;
2954 this_parent->d_count--;
2955 }
c826cb7d
LT
2956 this_parent = try_to_ascend(this_parent, locked, seq);
2957 if (!this_parent)
949854d0 2958 goto rename_retry;
949854d0 2959 next = child->d_u.d_child.next;
1da177e4
LT
2960 goto resume;
2961 }
2fd6b7f5 2962 spin_unlock(&this_parent->d_lock);
58db63d0 2963 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2964 goto rename_retry;
58db63d0
NP
2965 if (locked)
2966 write_sequnlock(&rename_lock);
2967 return;
2968
2969rename_retry:
8110e16d
MS
2970 if (locked)
2971 goto again;
58db63d0
NP
2972 locked = 1;
2973 write_seqlock(&rename_lock);
2974 goto again;
1da177e4
LT
2975}
2976
2977/**
2978 * find_inode_number - check for dentry with name
2979 * @dir: directory to check
2980 * @name: Name to find.
2981 *
2982 * Check whether a dentry already exists for the given name,
2983 * and return the inode number if it has an inode. Otherwise
2984 * 0 is returned.
2985 *
2986 * This routine is used to post-process directory listings for
2987 * filesystems using synthetic inode numbers, and is necessary
2988 * to keep getcwd() working.
2989 */
2990
2991ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2992{
2993 struct dentry * dentry;
2994 ino_t ino = 0;
2995
3e7e241f 2996 dentry = d_hash_and_lookup(dir, name);
4f522a24 2997 if (!IS_ERR_OR_NULL(dentry)) {
1da177e4
LT
2998 if (dentry->d_inode)
2999 ino = dentry->d_inode->i_ino;
3000 dput(dentry);
3001 }
1da177e4
LT
3002 return ino;
3003}
ec4f8605 3004EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3005
3006static __initdata unsigned long dhash_entries;
3007static int __init set_dhash_entries(char *str)
3008{
3009 if (!str)
3010 return 0;
3011 dhash_entries = simple_strtoul(str, &str, 0);
3012 return 1;
3013}
3014__setup("dhash_entries=", set_dhash_entries);
3015
3016static void __init dcache_init_early(void)
3017{
074b8517 3018 unsigned int loop;
1da177e4
LT
3019
3020 /* If hashes are distributed across NUMA nodes, defer
3021 * hash allocation until vmalloc space is available.
3022 */
3023 if (hashdist)
3024 return;
3025
3026 dentry_hashtable =
3027 alloc_large_system_hash("Dentry cache",
b07ad996 3028 sizeof(struct hlist_bl_head),
1da177e4
LT
3029 dhash_entries,
3030 13,
3031 HASH_EARLY,
3032 &d_hash_shift,
3033 &d_hash_mask,
31fe62b9 3034 0,
1da177e4
LT
3035 0);
3036
074b8517 3037 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3038 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3039}
3040
74bf17cf 3041static void __init dcache_init(void)
1da177e4 3042{
074b8517 3043 unsigned int loop;
1da177e4
LT
3044
3045 /*
3046 * A constructor could be added for stable state like the lists,
3047 * but it is probably not worth it because of the cache nature
3048 * of the dcache.
3049 */
0a31bd5f
CL
3050 dentry_cache = KMEM_CACHE(dentry,
3051 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3052
3053 /* Hash may have been set up in dcache_init_early */
3054 if (!hashdist)
3055 return;
3056
3057 dentry_hashtable =
3058 alloc_large_system_hash("Dentry cache",
b07ad996 3059 sizeof(struct hlist_bl_head),
1da177e4
LT
3060 dhash_entries,
3061 13,
3062 0,
3063 &d_hash_shift,
3064 &d_hash_mask,
31fe62b9 3065 0,
1da177e4
LT
3066 0);
3067
074b8517 3068 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3069 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3070}
3071
3072/* SLAB cache for __getname() consumers */
e18b890b 3073struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3074EXPORT_SYMBOL(names_cachep);
1da177e4 3075
1da177e4
LT
3076EXPORT_SYMBOL(d_genocide);
3077
1da177e4
LT
3078void __init vfs_caches_init_early(void)
3079{
3080 dcache_init_early();
3081 inode_init_early();
3082}
3083
3084void __init vfs_caches_init(unsigned long mempages)
3085{
3086 unsigned long reserve;
3087
3088 /* Base hash sizes on available memory, with a reserve equal to
3089 150% of current kernel size */
3090
3091 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3092 mempages -= reserve;
3093
3094 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3095 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3096
74bf17cf
DC
3097 dcache_init();
3098 inode_init();
1da177e4 3099 files_init(mempages);
74bf17cf 3100 mnt_init();
1da177e4
LT
3101 bdev_cache_init();
3102 chrdev_init();
3103}