]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: make rmode_segment_valid() more strict.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
8f536b76 45#include <asm/kexec.h>
6aa8b732 46
229456fc
MT
47#include "trace.h"
48
4ecac3fd 49#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
50#define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 52
6aa8b732
AK
53MODULE_AUTHOR("Qumranet");
54MODULE_LICENSE("GPL");
55
e9bda3b3
JT
56static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59};
60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
476bc001 62static bool __read_mostly enable_vpid = 1;
736caefe 63module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 64
476bc001 65static bool __read_mostly flexpriority_enabled = 1;
736caefe 66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 67
476bc001 68static bool __read_mostly enable_ept = 1;
736caefe 69module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 70
476bc001 71static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
72module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
83c3a331
XH
75static bool __read_mostly enable_ept_ad_bits = 1;
76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
a27685c3 78static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 80
476bc001 81static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
82module_param(vmm_exclusive, bool, S_IRUGO);
83
476bc001 84static bool __read_mostly fasteoi = 1;
58fbbf26
KT
85module_param(fasteoi, bool, S_IRUGO);
86
801d3424
NHE
87/*
88 * If nested=1, nested virtualization is supported, i.e., guests may use
89 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
90 * use VMX instructions.
91 */
476bc001 92static bool __read_mostly nested = 0;
801d3424
NHE
93module_param(nested, bool, S_IRUGO);
94
cdc0e244
AK
95#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
96 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
97#define KVM_GUEST_CR0_MASK \
98 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
99#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 100 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
101#define KVM_VM_CR0_ALWAYS_ON \
102 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
103#define KVM_CR4_GUEST_OWNED_BITS \
104 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
105 | X86_CR4_OSXMMEXCPT)
106
cdc0e244
AK
107#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
108#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
109
78ac8b47
AK
110#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
111
4b8d54f9
ZE
112/*
113 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
114 * ple_gap: upper bound on the amount of time between two successive
115 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 116 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
117 * ple_window: upper bound on the amount of time a guest is allowed to execute
118 * in a PAUSE loop. Tests indicate that most spinlocks are held for
119 * less than 2^12 cycles
120 * Time is measured based on a counter that runs at the same rate as the TSC,
121 * refer SDM volume 3b section 21.6.13 & 22.1.3.
122 */
00c25bce 123#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
124#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
125static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
126module_param(ple_gap, int, S_IRUGO);
127
128static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
129module_param(ple_window, int, S_IRUGO);
130
83287ea4
AK
131extern const ulong vmx_return;
132
8bf00a52 133#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 134#define VMCS02_POOL_SIZE 1
61d2ef2c 135
a2fa3e9f
GH
136struct vmcs {
137 u32 revision_id;
138 u32 abort;
139 char data[0];
140};
141
d462b819
NHE
142/*
143 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
144 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
145 * loaded on this CPU (so we can clear them if the CPU goes down).
146 */
147struct loaded_vmcs {
148 struct vmcs *vmcs;
149 int cpu;
150 int launched;
151 struct list_head loaded_vmcss_on_cpu_link;
152};
153
26bb0981
AK
154struct shared_msr_entry {
155 unsigned index;
156 u64 data;
d5696725 157 u64 mask;
26bb0981
AK
158};
159
a9d30f33
NHE
160/*
161 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
162 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
163 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
164 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
165 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
166 * More than one of these structures may exist, if L1 runs multiple L2 guests.
167 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
168 * underlying hardware which will be used to run L2.
169 * This structure is packed to ensure that its layout is identical across
170 * machines (necessary for live migration).
171 * If there are changes in this struct, VMCS12_REVISION must be changed.
172 */
22bd0358 173typedef u64 natural_width;
a9d30f33
NHE
174struct __packed vmcs12 {
175 /* According to the Intel spec, a VMCS region must start with the
176 * following two fields. Then follow implementation-specific data.
177 */
178 u32 revision_id;
179 u32 abort;
22bd0358 180
27d6c865
NHE
181 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
182 u32 padding[7]; /* room for future expansion */
183
22bd0358
NHE
184 u64 io_bitmap_a;
185 u64 io_bitmap_b;
186 u64 msr_bitmap;
187 u64 vm_exit_msr_store_addr;
188 u64 vm_exit_msr_load_addr;
189 u64 vm_entry_msr_load_addr;
190 u64 tsc_offset;
191 u64 virtual_apic_page_addr;
192 u64 apic_access_addr;
193 u64 ept_pointer;
194 u64 guest_physical_address;
195 u64 vmcs_link_pointer;
196 u64 guest_ia32_debugctl;
197 u64 guest_ia32_pat;
198 u64 guest_ia32_efer;
199 u64 guest_ia32_perf_global_ctrl;
200 u64 guest_pdptr0;
201 u64 guest_pdptr1;
202 u64 guest_pdptr2;
203 u64 guest_pdptr3;
204 u64 host_ia32_pat;
205 u64 host_ia32_efer;
206 u64 host_ia32_perf_global_ctrl;
207 u64 padding64[8]; /* room for future expansion */
208 /*
209 * To allow migration of L1 (complete with its L2 guests) between
210 * machines of different natural widths (32 or 64 bit), we cannot have
211 * unsigned long fields with no explict size. We use u64 (aliased
212 * natural_width) instead. Luckily, x86 is little-endian.
213 */
214 natural_width cr0_guest_host_mask;
215 natural_width cr4_guest_host_mask;
216 natural_width cr0_read_shadow;
217 natural_width cr4_read_shadow;
218 natural_width cr3_target_value0;
219 natural_width cr3_target_value1;
220 natural_width cr3_target_value2;
221 natural_width cr3_target_value3;
222 natural_width exit_qualification;
223 natural_width guest_linear_address;
224 natural_width guest_cr0;
225 natural_width guest_cr3;
226 natural_width guest_cr4;
227 natural_width guest_es_base;
228 natural_width guest_cs_base;
229 natural_width guest_ss_base;
230 natural_width guest_ds_base;
231 natural_width guest_fs_base;
232 natural_width guest_gs_base;
233 natural_width guest_ldtr_base;
234 natural_width guest_tr_base;
235 natural_width guest_gdtr_base;
236 natural_width guest_idtr_base;
237 natural_width guest_dr7;
238 natural_width guest_rsp;
239 natural_width guest_rip;
240 natural_width guest_rflags;
241 natural_width guest_pending_dbg_exceptions;
242 natural_width guest_sysenter_esp;
243 natural_width guest_sysenter_eip;
244 natural_width host_cr0;
245 natural_width host_cr3;
246 natural_width host_cr4;
247 natural_width host_fs_base;
248 natural_width host_gs_base;
249 natural_width host_tr_base;
250 natural_width host_gdtr_base;
251 natural_width host_idtr_base;
252 natural_width host_ia32_sysenter_esp;
253 natural_width host_ia32_sysenter_eip;
254 natural_width host_rsp;
255 natural_width host_rip;
256 natural_width paddingl[8]; /* room for future expansion */
257 u32 pin_based_vm_exec_control;
258 u32 cpu_based_vm_exec_control;
259 u32 exception_bitmap;
260 u32 page_fault_error_code_mask;
261 u32 page_fault_error_code_match;
262 u32 cr3_target_count;
263 u32 vm_exit_controls;
264 u32 vm_exit_msr_store_count;
265 u32 vm_exit_msr_load_count;
266 u32 vm_entry_controls;
267 u32 vm_entry_msr_load_count;
268 u32 vm_entry_intr_info_field;
269 u32 vm_entry_exception_error_code;
270 u32 vm_entry_instruction_len;
271 u32 tpr_threshold;
272 u32 secondary_vm_exec_control;
273 u32 vm_instruction_error;
274 u32 vm_exit_reason;
275 u32 vm_exit_intr_info;
276 u32 vm_exit_intr_error_code;
277 u32 idt_vectoring_info_field;
278 u32 idt_vectoring_error_code;
279 u32 vm_exit_instruction_len;
280 u32 vmx_instruction_info;
281 u32 guest_es_limit;
282 u32 guest_cs_limit;
283 u32 guest_ss_limit;
284 u32 guest_ds_limit;
285 u32 guest_fs_limit;
286 u32 guest_gs_limit;
287 u32 guest_ldtr_limit;
288 u32 guest_tr_limit;
289 u32 guest_gdtr_limit;
290 u32 guest_idtr_limit;
291 u32 guest_es_ar_bytes;
292 u32 guest_cs_ar_bytes;
293 u32 guest_ss_ar_bytes;
294 u32 guest_ds_ar_bytes;
295 u32 guest_fs_ar_bytes;
296 u32 guest_gs_ar_bytes;
297 u32 guest_ldtr_ar_bytes;
298 u32 guest_tr_ar_bytes;
299 u32 guest_interruptibility_info;
300 u32 guest_activity_state;
301 u32 guest_sysenter_cs;
302 u32 host_ia32_sysenter_cs;
303 u32 padding32[8]; /* room for future expansion */
304 u16 virtual_processor_id;
305 u16 guest_es_selector;
306 u16 guest_cs_selector;
307 u16 guest_ss_selector;
308 u16 guest_ds_selector;
309 u16 guest_fs_selector;
310 u16 guest_gs_selector;
311 u16 guest_ldtr_selector;
312 u16 guest_tr_selector;
313 u16 host_es_selector;
314 u16 host_cs_selector;
315 u16 host_ss_selector;
316 u16 host_ds_selector;
317 u16 host_fs_selector;
318 u16 host_gs_selector;
319 u16 host_tr_selector;
a9d30f33
NHE
320};
321
322/*
323 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
324 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
325 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
326 */
327#define VMCS12_REVISION 0x11e57ed0
328
329/*
330 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
331 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
332 * current implementation, 4K are reserved to avoid future complications.
333 */
334#define VMCS12_SIZE 0x1000
335
ff2f6fe9
NHE
336/* Used to remember the last vmcs02 used for some recently used vmcs12s */
337struct vmcs02_list {
338 struct list_head list;
339 gpa_t vmptr;
340 struct loaded_vmcs vmcs02;
341};
342
ec378aee
NHE
343/*
344 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
345 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
346 */
347struct nested_vmx {
348 /* Has the level1 guest done vmxon? */
349 bool vmxon;
a9d30f33
NHE
350
351 /* The guest-physical address of the current VMCS L1 keeps for L2 */
352 gpa_t current_vmptr;
353 /* The host-usable pointer to the above */
354 struct page *current_vmcs12_page;
355 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
356
357 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
358 struct list_head vmcs02_pool;
359 int vmcs02_num;
fe3ef05c 360 u64 vmcs01_tsc_offset;
644d711a
NHE
361 /* L2 must run next, and mustn't decide to exit to L1. */
362 bool nested_run_pending;
fe3ef05c
NHE
363 /*
364 * Guest pages referred to in vmcs02 with host-physical pointers, so
365 * we must keep them pinned while L2 runs.
366 */
367 struct page *apic_access_page;
ec378aee
NHE
368};
369
a2fa3e9f 370struct vcpu_vmx {
fb3f0f51 371 struct kvm_vcpu vcpu;
313dbd49 372 unsigned long host_rsp;
29bd8a78 373 u8 fail;
69c73028 374 u8 cpl;
9d58b931 375 bool nmi_known_unmasked;
51aa01d1 376 u32 exit_intr_info;
1155f76a 377 u32 idt_vectoring_info;
6de12732 378 ulong rflags;
26bb0981 379 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
380 int nmsrs;
381 int save_nmsrs;
a2fa3e9f 382#ifdef CONFIG_X86_64
44ea2b17
AK
383 u64 msr_host_kernel_gs_base;
384 u64 msr_guest_kernel_gs_base;
a2fa3e9f 385#endif
d462b819
NHE
386 /*
387 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
388 * non-nested (L1) guest, it always points to vmcs01. For a nested
389 * guest (L2), it points to a different VMCS.
390 */
391 struct loaded_vmcs vmcs01;
392 struct loaded_vmcs *loaded_vmcs;
393 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
394 struct msr_autoload {
395 unsigned nr;
396 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
397 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
398 } msr_autoload;
a2fa3e9f
GH
399 struct {
400 int loaded;
401 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
402#ifdef CONFIG_X86_64
403 u16 ds_sel, es_sel;
404#endif
152d3f2f
LV
405 int gs_ldt_reload_needed;
406 int fs_reload_needed;
d77c26fc 407 } host_state;
9c8cba37 408 struct {
7ffd92c5 409 int vm86_active;
78ac8b47 410 ulong save_rflags;
f5f7b2fe
AK
411 struct kvm_segment segs[8];
412 } rmode;
413 struct {
414 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
415 struct kvm_save_segment {
416 u16 selector;
417 unsigned long base;
418 u32 limit;
419 u32 ar;
f5f7b2fe 420 } seg[8];
2fb92db1 421 } segment_cache;
2384d2b3 422 int vpid;
04fa4d32 423 bool emulation_required;
3b86cd99
JK
424
425 /* Support for vnmi-less CPUs */
426 int soft_vnmi_blocked;
427 ktime_t entry_time;
428 s64 vnmi_blocked_time;
a0861c02 429 u32 exit_reason;
4e47c7a6
SY
430
431 bool rdtscp_enabled;
ec378aee
NHE
432
433 /* Support for a guest hypervisor (nested VMX) */
434 struct nested_vmx nested;
a2fa3e9f
GH
435};
436
2fb92db1
AK
437enum segment_cache_field {
438 SEG_FIELD_SEL = 0,
439 SEG_FIELD_BASE = 1,
440 SEG_FIELD_LIMIT = 2,
441 SEG_FIELD_AR = 3,
442
443 SEG_FIELD_NR = 4
444};
445
a2fa3e9f
GH
446static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
447{
fb3f0f51 448 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
449}
450
22bd0358
NHE
451#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
452#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
453#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
454 [number##_HIGH] = VMCS12_OFFSET(name)+4
455
772e0318 456static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
457 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
458 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
459 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
460 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
461 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
462 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
463 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
464 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
465 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
466 FIELD(HOST_ES_SELECTOR, host_es_selector),
467 FIELD(HOST_CS_SELECTOR, host_cs_selector),
468 FIELD(HOST_SS_SELECTOR, host_ss_selector),
469 FIELD(HOST_DS_SELECTOR, host_ds_selector),
470 FIELD(HOST_FS_SELECTOR, host_fs_selector),
471 FIELD(HOST_GS_SELECTOR, host_gs_selector),
472 FIELD(HOST_TR_SELECTOR, host_tr_selector),
473 FIELD64(IO_BITMAP_A, io_bitmap_a),
474 FIELD64(IO_BITMAP_B, io_bitmap_b),
475 FIELD64(MSR_BITMAP, msr_bitmap),
476 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
477 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
478 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
479 FIELD64(TSC_OFFSET, tsc_offset),
480 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
481 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
482 FIELD64(EPT_POINTER, ept_pointer),
483 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
484 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
485 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
486 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
487 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
488 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
489 FIELD64(GUEST_PDPTR0, guest_pdptr0),
490 FIELD64(GUEST_PDPTR1, guest_pdptr1),
491 FIELD64(GUEST_PDPTR2, guest_pdptr2),
492 FIELD64(GUEST_PDPTR3, guest_pdptr3),
493 FIELD64(HOST_IA32_PAT, host_ia32_pat),
494 FIELD64(HOST_IA32_EFER, host_ia32_efer),
495 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
496 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
497 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
498 FIELD(EXCEPTION_BITMAP, exception_bitmap),
499 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
500 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
501 FIELD(CR3_TARGET_COUNT, cr3_target_count),
502 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
503 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
504 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
505 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
506 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
507 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
508 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
509 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
510 FIELD(TPR_THRESHOLD, tpr_threshold),
511 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
512 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
513 FIELD(VM_EXIT_REASON, vm_exit_reason),
514 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
515 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
516 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
517 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
518 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
519 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
520 FIELD(GUEST_ES_LIMIT, guest_es_limit),
521 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
522 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
523 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
524 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
525 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
526 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
527 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
528 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
529 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
530 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
531 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
532 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
533 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
534 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
535 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
536 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
537 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
538 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
539 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
540 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
541 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
542 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
543 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
544 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
545 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
546 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
547 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
548 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
549 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
550 FIELD(EXIT_QUALIFICATION, exit_qualification),
551 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
552 FIELD(GUEST_CR0, guest_cr0),
553 FIELD(GUEST_CR3, guest_cr3),
554 FIELD(GUEST_CR4, guest_cr4),
555 FIELD(GUEST_ES_BASE, guest_es_base),
556 FIELD(GUEST_CS_BASE, guest_cs_base),
557 FIELD(GUEST_SS_BASE, guest_ss_base),
558 FIELD(GUEST_DS_BASE, guest_ds_base),
559 FIELD(GUEST_FS_BASE, guest_fs_base),
560 FIELD(GUEST_GS_BASE, guest_gs_base),
561 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
562 FIELD(GUEST_TR_BASE, guest_tr_base),
563 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
564 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
565 FIELD(GUEST_DR7, guest_dr7),
566 FIELD(GUEST_RSP, guest_rsp),
567 FIELD(GUEST_RIP, guest_rip),
568 FIELD(GUEST_RFLAGS, guest_rflags),
569 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
570 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
571 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
572 FIELD(HOST_CR0, host_cr0),
573 FIELD(HOST_CR3, host_cr3),
574 FIELD(HOST_CR4, host_cr4),
575 FIELD(HOST_FS_BASE, host_fs_base),
576 FIELD(HOST_GS_BASE, host_gs_base),
577 FIELD(HOST_TR_BASE, host_tr_base),
578 FIELD(HOST_GDTR_BASE, host_gdtr_base),
579 FIELD(HOST_IDTR_BASE, host_idtr_base),
580 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
581 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
582 FIELD(HOST_RSP, host_rsp),
583 FIELD(HOST_RIP, host_rip),
584};
585static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
586
587static inline short vmcs_field_to_offset(unsigned long field)
588{
589 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
590 return -1;
591 return vmcs_field_to_offset_table[field];
592}
593
a9d30f33
NHE
594static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
595{
596 return to_vmx(vcpu)->nested.current_vmcs12;
597}
598
599static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
600{
601 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 602 if (is_error_page(page))
a9d30f33 603 return NULL;
32cad84f 604
a9d30f33
NHE
605 return page;
606}
607
608static void nested_release_page(struct page *page)
609{
610 kvm_release_page_dirty(page);
611}
612
613static void nested_release_page_clean(struct page *page)
614{
615 kvm_release_page_clean(page);
616}
617
4e1096d2 618static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
619static void kvm_cpu_vmxon(u64 addr);
620static void kvm_cpu_vmxoff(void);
aff48baa 621static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 622static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
623static void vmx_set_segment(struct kvm_vcpu *vcpu,
624 struct kvm_segment *var, int seg);
625static void vmx_get_segment(struct kvm_vcpu *vcpu,
626 struct kvm_segment *var, int seg);
75880a01 627
6aa8b732
AK
628static DEFINE_PER_CPU(struct vmcs *, vmxarea);
629static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
630/*
631 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
633 */
634static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 635static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 636
3e7c73e9
AK
637static unsigned long *vmx_io_bitmap_a;
638static unsigned long *vmx_io_bitmap_b;
5897297b
AK
639static unsigned long *vmx_msr_bitmap_legacy;
640static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 641
110312c8 642static bool cpu_has_load_ia32_efer;
8bf00a52 643static bool cpu_has_load_perf_global_ctrl;
110312c8 644
2384d2b3
SY
645static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
646static DEFINE_SPINLOCK(vmx_vpid_lock);
647
1c3d14fe 648static struct vmcs_config {
6aa8b732
AK
649 int size;
650 int order;
651 u32 revision_id;
1c3d14fe
YS
652 u32 pin_based_exec_ctrl;
653 u32 cpu_based_exec_ctrl;
f78e0e2e 654 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
655 u32 vmexit_ctrl;
656 u32 vmentry_ctrl;
657} vmcs_config;
6aa8b732 658
efff9e53 659static struct vmx_capability {
d56f546d
SY
660 u32 ept;
661 u32 vpid;
662} vmx_capability;
663
6aa8b732
AK
664#define VMX_SEGMENT_FIELD(seg) \
665 [VCPU_SREG_##seg] = { \
666 .selector = GUEST_##seg##_SELECTOR, \
667 .base = GUEST_##seg##_BASE, \
668 .limit = GUEST_##seg##_LIMIT, \
669 .ar_bytes = GUEST_##seg##_AR_BYTES, \
670 }
671
772e0318 672static const struct kvm_vmx_segment_field {
6aa8b732
AK
673 unsigned selector;
674 unsigned base;
675 unsigned limit;
676 unsigned ar_bytes;
677} kvm_vmx_segment_fields[] = {
678 VMX_SEGMENT_FIELD(CS),
679 VMX_SEGMENT_FIELD(DS),
680 VMX_SEGMENT_FIELD(ES),
681 VMX_SEGMENT_FIELD(FS),
682 VMX_SEGMENT_FIELD(GS),
683 VMX_SEGMENT_FIELD(SS),
684 VMX_SEGMENT_FIELD(TR),
685 VMX_SEGMENT_FIELD(LDTR),
686};
687
26bb0981
AK
688static u64 host_efer;
689
6de4f3ad
AK
690static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
691
4d56c8a7 692/*
8c06585d 693 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
694 * away by decrementing the array size.
695 */
6aa8b732 696static const u32 vmx_msr_index[] = {
05b3e0c2 697#ifdef CONFIG_X86_64
44ea2b17 698 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 699#endif
8c06585d 700 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 701};
9d8f549d 702#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 703
31299944 704static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
705{
706 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
707 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 708 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
709}
710
31299944 711static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
712{
713 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
714 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 715 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
716}
717
31299944 718static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
719{
720 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
721 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 722 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
723}
724
31299944 725static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
726{
727 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
728 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
729}
730
31299944 731static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
732{
733 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
734 INTR_INFO_VALID_MASK)) ==
735 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
736}
737
31299944 738static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 739{
04547156 740 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
741}
742
31299944 743static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 744{
04547156 745 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
746}
747
31299944 748static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 749{
04547156 750 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
751}
752
31299944 753static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 754{
04547156
SY
755 return vmcs_config.cpu_based_exec_ctrl &
756 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
757}
758
774ead3a 759static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 760{
04547156
SY
761 return vmcs_config.cpu_based_2nd_exec_ctrl &
762 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
763}
764
765static inline bool cpu_has_vmx_flexpriority(void)
766{
767 return cpu_has_vmx_tpr_shadow() &&
768 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
769}
770
e799794e
MT
771static inline bool cpu_has_vmx_ept_execute_only(void)
772{
31299944 773 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
774}
775
776static inline bool cpu_has_vmx_eptp_uncacheable(void)
777{
31299944 778 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
779}
780
781static inline bool cpu_has_vmx_eptp_writeback(void)
782{
31299944 783 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
784}
785
786static inline bool cpu_has_vmx_ept_2m_page(void)
787{
31299944 788 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
789}
790
878403b7
SY
791static inline bool cpu_has_vmx_ept_1g_page(void)
792{
31299944 793 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
794}
795
4bc9b982
SY
796static inline bool cpu_has_vmx_ept_4levels(void)
797{
798 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
799}
800
83c3a331
XH
801static inline bool cpu_has_vmx_ept_ad_bits(void)
802{
803 return vmx_capability.ept & VMX_EPT_AD_BIT;
804}
805
31299944 806static inline bool cpu_has_vmx_invept_context(void)
d56f546d 807{
31299944 808 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
809}
810
31299944 811static inline bool cpu_has_vmx_invept_global(void)
d56f546d 812{
31299944 813 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
814}
815
518c8aee
GJ
816static inline bool cpu_has_vmx_invvpid_single(void)
817{
818 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
819}
820
b9d762fa
GJ
821static inline bool cpu_has_vmx_invvpid_global(void)
822{
823 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
824}
825
31299944 826static inline bool cpu_has_vmx_ept(void)
d56f546d 827{
04547156
SY
828 return vmcs_config.cpu_based_2nd_exec_ctrl &
829 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
830}
831
31299944 832static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
833{
834 return vmcs_config.cpu_based_2nd_exec_ctrl &
835 SECONDARY_EXEC_UNRESTRICTED_GUEST;
836}
837
31299944 838static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
839{
840 return vmcs_config.cpu_based_2nd_exec_ctrl &
841 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
842}
843
31299944 844static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 845{
6d3e435e 846 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
847}
848
31299944 849static inline bool cpu_has_vmx_vpid(void)
2384d2b3 850{
04547156
SY
851 return vmcs_config.cpu_based_2nd_exec_ctrl &
852 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
853}
854
31299944 855static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
856{
857 return vmcs_config.cpu_based_2nd_exec_ctrl &
858 SECONDARY_EXEC_RDTSCP;
859}
860
ad756a16
MJ
861static inline bool cpu_has_vmx_invpcid(void)
862{
863 return vmcs_config.cpu_based_2nd_exec_ctrl &
864 SECONDARY_EXEC_ENABLE_INVPCID;
865}
866
31299944 867static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
868{
869 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
870}
871
f5f48ee1
SY
872static inline bool cpu_has_vmx_wbinvd_exit(void)
873{
874 return vmcs_config.cpu_based_2nd_exec_ctrl &
875 SECONDARY_EXEC_WBINVD_EXITING;
876}
877
04547156
SY
878static inline bool report_flexpriority(void)
879{
880 return flexpriority_enabled;
881}
882
fe3ef05c
NHE
883static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
884{
885 return vmcs12->cpu_based_vm_exec_control & bit;
886}
887
888static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
889{
890 return (vmcs12->cpu_based_vm_exec_control &
891 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
892 (vmcs12->secondary_vm_exec_control & bit);
893}
894
644d711a
NHE
895static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
896 struct kvm_vcpu *vcpu)
897{
898 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
899}
900
901static inline bool is_exception(u32 intr_info)
902{
903 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
904 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
905}
906
907static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
908static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
909 struct vmcs12 *vmcs12,
910 u32 reason, unsigned long qualification);
911
8b9cf98c 912static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
913{
914 int i;
915
a2fa3e9f 916 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 917 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
918 return i;
919 return -1;
920}
921
2384d2b3
SY
922static inline void __invvpid(int ext, u16 vpid, gva_t gva)
923{
924 struct {
925 u64 vpid : 16;
926 u64 rsvd : 48;
927 u64 gva;
928 } operand = { vpid, 0, gva };
929
4ecac3fd 930 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
931 /* CF==1 or ZF==1 --> rc = -1 */
932 "; ja 1f ; ud2 ; 1:"
933 : : "a"(&operand), "c"(ext) : "cc", "memory");
934}
935
1439442c
SY
936static inline void __invept(int ext, u64 eptp, gpa_t gpa)
937{
938 struct {
939 u64 eptp, gpa;
940 } operand = {eptp, gpa};
941
4ecac3fd 942 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
943 /* CF==1 or ZF==1 --> rc = -1 */
944 "; ja 1f ; ud2 ; 1:\n"
945 : : "a" (&operand), "c" (ext) : "cc", "memory");
946}
947
26bb0981 948static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
949{
950 int i;
951
8b9cf98c 952 i = __find_msr_index(vmx, msr);
a75beee6 953 if (i >= 0)
a2fa3e9f 954 return &vmx->guest_msrs[i];
8b6d44c7 955 return NULL;
7725f0ba
AK
956}
957
6aa8b732
AK
958static void vmcs_clear(struct vmcs *vmcs)
959{
960 u64 phys_addr = __pa(vmcs);
961 u8 error;
962
4ecac3fd 963 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 964 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
965 : "cc", "memory");
966 if (error)
967 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
968 vmcs, phys_addr);
969}
970
d462b819
NHE
971static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
972{
973 vmcs_clear(loaded_vmcs->vmcs);
974 loaded_vmcs->cpu = -1;
975 loaded_vmcs->launched = 0;
976}
977
7725b894
DX
978static void vmcs_load(struct vmcs *vmcs)
979{
980 u64 phys_addr = __pa(vmcs);
981 u8 error;
982
983 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 984 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
985 : "cc", "memory");
986 if (error)
2844d849 987 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
988 vmcs, phys_addr);
989}
990
8f536b76
ZY
991#ifdef CONFIG_KEXEC
992/*
993 * This bitmap is used to indicate whether the vmclear
994 * operation is enabled on all cpus. All disabled by
995 * default.
996 */
997static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
998
999static inline void crash_enable_local_vmclear(int cpu)
1000{
1001 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1002}
1003
1004static inline void crash_disable_local_vmclear(int cpu)
1005{
1006 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1007}
1008
1009static inline int crash_local_vmclear_enabled(int cpu)
1010{
1011 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1012}
1013
1014static void crash_vmclear_local_loaded_vmcss(void)
1015{
1016 int cpu = raw_smp_processor_id();
1017 struct loaded_vmcs *v;
1018
1019 if (!crash_local_vmclear_enabled(cpu))
1020 return;
1021
1022 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1023 loaded_vmcss_on_cpu_link)
1024 vmcs_clear(v->vmcs);
1025}
1026#else
1027static inline void crash_enable_local_vmclear(int cpu) { }
1028static inline void crash_disable_local_vmclear(int cpu) { }
1029#endif /* CONFIG_KEXEC */
1030
d462b819 1031static void __loaded_vmcs_clear(void *arg)
6aa8b732 1032{
d462b819 1033 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1034 int cpu = raw_smp_processor_id();
6aa8b732 1035
d462b819
NHE
1036 if (loaded_vmcs->cpu != cpu)
1037 return; /* vcpu migration can race with cpu offline */
1038 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1039 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1040 crash_disable_local_vmclear(cpu);
d462b819 1041 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1042
1043 /*
1044 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1045 * is before setting loaded_vmcs->vcpu to -1 which is done in
1046 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1047 * then adds the vmcs into percpu list before it is deleted.
1048 */
1049 smp_wmb();
1050
d462b819 1051 loaded_vmcs_init(loaded_vmcs);
8f536b76 1052 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1053}
1054
d462b819 1055static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1056{
e6c7d321
XG
1057 int cpu = loaded_vmcs->cpu;
1058
1059 if (cpu != -1)
1060 smp_call_function_single(cpu,
1061 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1062}
1063
1760dd49 1064static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1065{
1066 if (vmx->vpid == 0)
1067 return;
1068
518c8aee
GJ
1069 if (cpu_has_vmx_invvpid_single())
1070 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1071}
1072
b9d762fa
GJ
1073static inline void vpid_sync_vcpu_global(void)
1074{
1075 if (cpu_has_vmx_invvpid_global())
1076 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1077}
1078
1079static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1080{
1081 if (cpu_has_vmx_invvpid_single())
1760dd49 1082 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1083 else
1084 vpid_sync_vcpu_global();
1085}
1086
1439442c
SY
1087static inline void ept_sync_global(void)
1088{
1089 if (cpu_has_vmx_invept_global())
1090 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1091}
1092
1093static inline void ept_sync_context(u64 eptp)
1094{
089d034e 1095 if (enable_ept) {
1439442c
SY
1096 if (cpu_has_vmx_invept_context())
1097 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1098 else
1099 ept_sync_global();
1100 }
1101}
1102
96304217 1103static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1104{
5e520e62 1105 unsigned long value;
6aa8b732 1106
5e520e62
AK
1107 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1108 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1109 return value;
1110}
1111
96304217 1112static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1113{
1114 return vmcs_readl(field);
1115}
1116
96304217 1117static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1118{
1119 return vmcs_readl(field);
1120}
1121
96304217 1122static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1123{
05b3e0c2 1124#ifdef CONFIG_X86_64
6aa8b732
AK
1125 return vmcs_readl(field);
1126#else
1127 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1128#endif
1129}
1130
e52de1b8
AK
1131static noinline void vmwrite_error(unsigned long field, unsigned long value)
1132{
1133 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1134 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1135 dump_stack();
1136}
1137
6aa8b732
AK
1138static void vmcs_writel(unsigned long field, unsigned long value)
1139{
1140 u8 error;
1141
4ecac3fd 1142 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1143 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1144 if (unlikely(error))
1145 vmwrite_error(field, value);
6aa8b732
AK
1146}
1147
1148static void vmcs_write16(unsigned long field, u16 value)
1149{
1150 vmcs_writel(field, value);
1151}
1152
1153static void vmcs_write32(unsigned long field, u32 value)
1154{
1155 vmcs_writel(field, value);
1156}
1157
1158static void vmcs_write64(unsigned long field, u64 value)
1159{
6aa8b732 1160 vmcs_writel(field, value);
7682f2d0 1161#ifndef CONFIG_X86_64
6aa8b732
AK
1162 asm volatile ("");
1163 vmcs_writel(field+1, value >> 32);
1164#endif
1165}
1166
2ab455cc
AL
1167static void vmcs_clear_bits(unsigned long field, u32 mask)
1168{
1169 vmcs_writel(field, vmcs_readl(field) & ~mask);
1170}
1171
1172static void vmcs_set_bits(unsigned long field, u32 mask)
1173{
1174 vmcs_writel(field, vmcs_readl(field) | mask);
1175}
1176
2fb92db1
AK
1177static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1178{
1179 vmx->segment_cache.bitmask = 0;
1180}
1181
1182static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1183 unsigned field)
1184{
1185 bool ret;
1186 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1187
1188 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1189 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1190 vmx->segment_cache.bitmask = 0;
1191 }
1192 ret = vmx->segment_cache.bitmask & mask;
1193 vmx->segment_cache.bitmask |= mask;
1194 return ret;
1195}
1196
1197static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1198{
1199 u16 *p = &vmx->segment_cache.seg[seg].selector;
1200
1201 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1202 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1203 return *p;
1204}
1205
1206static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1207{
1208 ulong *p = &vmx->segment_cache.seg[seg].base;
1209
1210 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1211 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1212 return *p;
1213}
1214
1215static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1216{
1217 u32 *p = &vmx->segment_cache.seg[seg].limit;
1218
1219 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1220 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1221 return *p;
1222}
1223
1224static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1225{
1226 u32 *p = &vmx->segment_cache.seg[seg].ar;
1227
1228 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1229 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1230 return *p;
1231}
1232
abd3f2d6
AK
1233static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1234{
1235 u32 eb;
1236
fd7373cc
JK
1237 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1238 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1239 if ((vcpu->guest_debug &
1240 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1241 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1242 eb |= 1u << BP_VECTOR;
7ffd92c5 1243 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1244 eb = ~0;
089d034e 1245 if (enable_ept)
1439442c 1246 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1247 if (vcpu->fpu_active)
1248 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1249
1250 /* When we are running a nested L2 guest and L1 specified for it a
1251 * certain exception bitmap, we must trap the same exceptions and pass
1252 * them to L1. When running L2, we will only handle the exceptions
1253 * specified above if L1 did not want them.
1254 */
1255 if (is_guest_mode(vcpu))
1256 eb |= get_vmcs12(vcpu)->exception_bitmap;
1257
abd3f2d6
AK
1258 vmcs_write32(EXCEPTION_BITMAP, eb);
1259}
1260
8bf00a52
GN
1261static void clear_atomic_switch_msr_special(unsigned long entry,
1262 unsigned long exit)
1263{
1264 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1265 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1266}
1267
61d2ef2c
AK
1268static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1269{
1270 unsigned i;
1271 struct msr_autoload *m = &vmx->msr_autoload;
1272
8bf00a52
GN
1273 switch (msr) {
1274 case MSR_EFER:
1275 if (cpu_has_load_ia32_efer) {
1276 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1277 VM_EXIT_LOAD_IA32_EFER);
1278 return;
1279 }
1280 break;
1281 case MSR_CORE_PERF_GLOBAL_CTRL:
1282 if (cpu_has_load_perf_global_ctrl) {
1283 clear_atomic_switch_msr_special(
1284 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1285 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1286 return;
1287 }
1288 break;
110312c8
AK
1289 }
1290
61d2ef2c
AK
1291 for (i = 0; i < m->nr; ++i)
1292 if (m->guest[i].index == msr)
1293 break;
1294
1295 if (i == m->nr)
1296 return;
1297 --m->nr;
1298 m->guest[i] = m->guest[m->nr];
1299 m->host[i] = m->host[m->nr];
1300 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1301 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1302}
1303
8bf00a52
GN
1304static void add_atomic_switch_msr_special(unsigned long entry,
1305 unsigned long exit, unsigned long guest_val_vmcs,
1306 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1307{
1308 vmcs_write64(guest_val_vmcs, guest_val);
1309 vmcs_write64(host_val_vmcs, host_val);
1310 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1311 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1312}
1313
61d2ef2c
AK
1314static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1315 u64 guest_val, u64 host_val)
1316{
1317 unsigned i;
1318 struct msr_autoload *m = &vmx->msr_autoload;
1319
8bf00a52
GN
1320 switch (msr) {
1321 case MSR_EFER:
1322 if (cpu_has_load_ia32_efer) {
1323 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1324 VM_EXIT_LOAD_IA32_EFER,
1325 GUEST_IA32_EFER,
1326 HOST_IA32_EFER,
1327 guest_val, host_val);
1328 return;
1329 }
1330 break;
1331 case MSR_CORE_PERF_GLOBAL_CTRL:
1332 if (cpu_has_load_perf_global_ctrl) {
1333 add_atomic_switch_msr_special(
1334 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1335 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1336 GUEST_IA32_PERF_GLOBAL_CTRL,
1337 HOST_IA32_PERF_GLOBAL_CTRL,
1338 guest_val, host_val);
1339 return;
1340 }
1341 break;
110312c8
AK
1342 }
1343
61d2ef2c
AK
1344 for (i = 0; i < m->nr; ++i)
1345 if (m->guest[i].index == msr)
1346 break;
1347
e7fc6f93
GN
1348 if (i == NR_AUTOLOAD_MSRS) {
1349 printk_once(KERN_WARNING"Not enough mst switch entries. "
1350 "Can't add msr %x\n", msr);
1351 return;
1352 } else if (i == m->nr) {
61d2ef2c
AK
1353 ++m->nr;
1354 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1355 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1356 }
1357
1358 m->guest[i].index = msr;
1359 m->guest[i].value = guest_val;
1360 m->host[i].index = msr;
1361 m->host[i].value = host_val;
1362}
1363
33ed6329
AK
1364static void reload_tss(void)
1365{
33ed6329
AK
1366 /*
1367 * VT restores TR but not its size. Useless.
1368 */
d359192f 1369 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1370 struct desc_struct *descs;
33ed6329 1371
d359192f 1372 descs = (void *)gdt->address;
33ed6329
AK
1373 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1374 load_TR_desc();
33ed6329
AK
1375}
1376
92c0d900 1377static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1378{
3a34a881 1379 u64 guest_efer;
51c6cf66
AK
1380 u64 ignore_bits;
1381
f6801dff 1382 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1383
51c6cf66 1384 /*
0fa06071 1385 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1386 * outside long mode
1387 */
1388 ignore_bits = EFER_NX | EFER_SCE;
1389#ifdef CONFIG_X86_64
1390 ignore_bits |= EFER_LMA | EFER_LME;
1391 /* SCE is meaningful only in long mode on Intel */
1392 if (guest_efer & EFER_LMA)
1393 ignore_bits &= ~(u64)EFER_SCE;
1394#endif
51c6cf66
AK
1395 guest_efer &= ~ignore_bits;
1396 guest_efer |= host_efer & ignore_bits;
26bb0981 1397 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1398 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1399
1400 clear_atomic_switch_msr(vmx, MSR_EFER);
1401 /* On ept, can't emulate nx, and must switch nx atomically */
1402 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1403 guest_efer = vmx->vcpu.arch.efer;
1404 if (!(guest_efer & EFER_LMA))
1405 guest_efer &= ~EFER_LME;
1406 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1407 return false;
1408 }
1409
26bb0981 1410 return true;
51c6cf66
AK
1411}
1412
2d49ec72
GN
1413static unsigned long segment_base(u16 selector)
1414{
d359192f 1415 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1416 struct desc_struct *d;
1417 unsigned long table_base;
1418 unsigned long v;
1419
1420 if (!(selector & ~3))
1421 return 0;
1422
d359192f 1423 table_base = gdt->address;
2d49ec72
GN
1424
1425 if (selector & 4) { /* from ldt */
1426 u16 ldt_selector = kvm_read_ldt();
1427
1428 if (!(ldt_selector & ~3))
1429 return 0;
1430
1431 table_base = segment_base(ldt_selector);
1432 }
1433 d = (struct desc_struct *)(table_base + (selector & ~7));
1434 v = get_desc_base(d);
1435#ifdef CONFIG_X86_64
1436 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1437 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1438#endif
1439 return v;
1440}
1441
1442static inline unsigned long kvm_read_tr_base(void)
1443{
1444 u16 tr;
1445 asm("str %0" : "=g"(tr));
1446 return segment_base(tr);
1447}
1448
04d2cc77 1449static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1450{
04d2cc77 1451 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1452 int i;
04d2cc77 1453
a2fa3e9f 1454 if (vmx->host_state.loaded)
33ed6329
AK
1455 return;
1456
a2fa3e9f 1457 vmx->host_state.loaded = 1;
33ed6329
AK
1458 /*
1459 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1460 * allow segment selectors with cpl > 0 or ti == 1.
1461 */
d6e88aec 1462 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1463 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1464 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1465 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1466 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1467 vmx->host_state.fs_reload_needed = 0;
1468 } else {
33ed6329 1469 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1470 vmx->host_state.fs_reload_needed = 1;
33ed6329 1471 }
9581d442 1472 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1473 if (!(vmx->host_state.gs_sel & 7))
1474 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1475 else {
1476 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1477 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1478 }
1479
b2da15ac
AK
1480#ifdef CONFIG_X86_64
1481 savesegment(ds, vmx->host_state.ds_sel);
1482 savesegment(es, vmx->host_state.es_sel);
1483#endif
1484
33ed6329
AK
1485#ifdef CONFIG_X86_64
1486 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1487 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1488#else
a2fa3e9f
GH
1489 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1490 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1491#endif
707c0874
AK
1492
1493#ifdef CONFIG_X86_64
c8770e7b
AK
1494 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1495 if (is_long_mode(&vmx->vcpu))
44ea2b17 1496 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1497#endif
26bb0981
AK
1498 for (i = 0; i < vmx->save_nmsrs; ++i)
1499 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1500 vmx->guest_msrs[i].data,
1501 vmx->guest_msrs[i].mask);
33ed6329
AK
1502}
1503
a9b21b62 1504static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1505{
a2fa3e9f 1506 if (!vmx->host_state.loaded)
33ed6329
AK
1507 return;
1508
e1beb1d3 1509 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1510 vmx->host_state.loaded = 0;
c8770e7b
AK
1511#ifdef CONFIG_X86_64
1512 if (is_long_mode(&vmx->vcpu))
1513 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1514#endif
152d3f2f 1515 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1516 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1517#ifdef CONFIG_X86_64
9581d442 1518 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1519#else
1520 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1521#endif
33ed6329 1522 }
0a77fe4c
AK
1523 if (vmx->host_state.fs_reload_needed)
1524 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1525#ifdef CONFIG_X86_64
1526 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1527 loadsegment(ds, vmx->host_state.ds_sel);
1528 loadsegment(es, vmx->host_state.es_sel);
1529 }
b2da15ac 1530#endif
152d3f2f 1531 reload_tss();
44ea2b17 1532#ifdef CONFIG_X86_64
c8770e7b 1533 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1534#endif
b1a74bf8
SS
1535 /*
1536 * If the FPU is not active (through the host task or
1537 * the guest vcpu), then restore the cr0.TS bit.
1538 */
1539 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1540 stts();
3444d7da 1541 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1542}
1543
a9b21b62
AK
1544static void vmx_load_host_state(struct vcpu_vmx *vmx)
1545{
1546 preempt_disable();
1547 __vmx_load_host_state(vmx);
1548 preempt_enable();
1549}
1550
6aa8b732
AK
1551/*
1552 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1553 * vcpu mutex is already taken.
1554 */
15ad7146 1555static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1556{
a2fa3e9f 1557 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1558 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1559
4610c9cc
DX
1560 if (!vmm_exclusive)
1561 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1562 else if (vmx->loaded_vmcs->cpu != cpu)
1563 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1564
d462b819
NHE
1565 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1566 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1567 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1568 }
1569
d462b819 1570 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1571 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1572 unsigned long sysenter_esp;
1573
a8eeb04a 1574 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1575 local_irq_disable();
8f536b76 1576 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1577
1578 /*
1579 * Read loaded_vmcs->cpu should be before fetching
1580 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1581 * See the comments in __loaded_vmcs_clear().
1582 */
1583 smp_rmb();
1584
d462b819
NHE
1585 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1586 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1587 crash_enable_local_vmclear(cpu);
92fe13be
DX
1588 local_irq_enable();
1589
6aa8b732
AK
1590 /*
1591 * Linux uses per-cpu TSS and GDT, so set these when switching
1592 * processors.
1593 */
d6e88aec 1594 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1595 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1596
1597 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1598 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1599 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1600 }
6aa8b732
AK
1601}
1602
1603static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1604{
a9b21b62 1605 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1606 if (!vmm_exclusive) {
d462b819
NHE
1607 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1608 vcpu->cpu = -1;
4610c9cc
DX
1609 kvm_cpu_vmxoff();
1610 }
6aa8b732
AK
1611}
1612
5fd86fcf
AK
1613static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1614{
81231c69
AK
1615 ulong cr0;
1616
5fd86fcf
AK
1617 if (vcpu->fpu_active)
1618 return;
1619 vcpu->fpu_active = 1;
81231c69
AK
1620 cr0 = vmcs_readl(GUEST_CR0);
1621 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1622 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1623 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1624 update_exception_bitmap(vcpu);
edcafe3c 1625 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1626 if (is_guest_mode(vcpu))
1627 vcpu->arch.cr0_guest_owned_bits &=
1628 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1629 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1630}
1631
edcafe3c
AK
1632static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1633
fe3ef05c
NHE
1634/*
1635 * Return the cr0 value that a nested guest would read. This is a combination
1636 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1637 * its hypervisor (cr0_read_shadow).
1638 */
1639static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1640{
1641 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1642 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1643}
1644static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1645{
1646 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1647 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1648}
1649
5fd86fcf
AK
1650static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1651{
36cf24e0
NHE
1652 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1653 * set this *before* calling this function.
1654 */
edcafe3c 1655 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1656 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1657 update_exception_bitmap(vcpu);
edcafe3c
AK
1658 vcpu->arch.cr0_guest_owned_bits = 0;
1659 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1660 if (is_guest_mode(vcpu)) {
1661 /*
1662 * L1's specified read shadow might not contain the TS bit,
1663 * so now that we turned on shadowing of this bit, we need to
1664 * set this bit of the shadow. Like in nested_vmx_run we need
1665 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1666 * up-to-date here because we just decached cr0.TS (and we'll
1667 * only update vmcs12->guest_cr0 on nested exit).
1668 */
1669 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1670 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1671 (vcpu->arch.cr0 & X86_CR0_TS);
1672 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1673 } else
1674 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1675}
1676
6aa8b732
AK
1677static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1678{
78ac8b47 1679 unsigned long rflags, save_rflags;
345dcaa8 1680
6de12732
AK
1681 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1682 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1683 rflags = vmcs_readl(GUEST_RFLAGS);
1684 if (to_vmx(vcpu)->rmode.vm86_active) {
1685 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1686 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1687 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1688 }
1689 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1690 }
6de12732 1691 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1692}
1693
1694static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1695{
6de12732 1696 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1697 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1698 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1699 if (to_vmx(vcpu)->rmode.vm86_active) {
1700 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1701 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1702 }
6aa8b732
AK
1703 vmcs_writel(GUEST_RFLAGS, rflags);
1704}
1705
2809f5d2
GC
1706static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1707{
1708 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1709 int ret = 0;
1710
1711 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1712 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1713 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1714 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1715
1716 return ret & mask;
1717}
1718
1719static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1720{
1721 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1722 u32 interruptibility = interruptibility_old;
1723
1724 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1725
48005f64 1726 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1727 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1728 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1729 interruptibility |= GUEST_INTR_STATE_STI;
1730
1731 if ((interruptibility != interruptibility_old))
1732 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1733}
1734
6aa8b732
AK
1735static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1736{
1737 unsigned long rip;
6aa8b732 1738
5fdbf976 1739 rip = kvm_rip_read(vcpu);
6aa8b732 1740 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1741 kvm_rip_write(vcpu, rip);
6aa8b732 1742
2809f5d2
GC
1743 /* skipping an emulated instruction also counts */
1744 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1745}
1746
0b6ac343
NHE
1747/*
1748 * KVM wants to inject page-faults which it got to the guest. This function
1749 * checks whether in a nested guest, we need to inject them to L1 or L2.
1750 * This function assumes it is called with the exit reason in vmcs02 being
1751 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1752 * is running).
1753 */
1754static int nested_pf_handled(struct kvm_vcpu *vcpu)
1755{
1756 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1757
1758 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1759 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1760 return 0;
1761
1762 nested_vmx_vmexit(vcpu);
1763 return 1;
1764}
1765
298101da 1766static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1767 bool has_error_code, u32 error_code,
1768 bool reinject)
298101da 1769{
77ab6db0 1770 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1771 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1772
0b6ac343
NHE
1773 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1774 nested_pf_handled(vcpu))
1775 return;
1776
8ab2d2e2 1777 if (has_error_code) {
77ab6db0 1778 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1779 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1780 }
77ab6db0 1781
7ffd92c5 1782 if (vmx->rmode.vm86_active) {
71f9833b
SH
1783 int inc_eip = 0;
1784 if (kvm_exception_is_soft(nr))
1785 inc_eip = vcpu->arch.event_exit_inst_len;
1786 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1787 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1788 return;
1789 }
1790
66fd3f7f
GN
1791 if (kvm_exception_is_soft(nr)) {
1792 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1793 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1794 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1795 } else
1796 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1797
1798 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1799}
1800
4e47c7a6
SY
1801static bool vmx_rdtscp_supported(void)
1802{
1803 return cpu_has_vmx_rdtscp();
1804}
1805
ad756a16
MJ
1806static bool vmx_invpcid_supported(void)
1807{
1808 return cpu_has_vmx_invpcid() && enable_ept;
1809}
1810
a75beee6
ED
1811/*
1812 * Swap MSR entry in host/guest MSR entry array.
1813 */
8b9cf98c 1814static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1815{
26bb0981 1816 struct shared_msr_entry tmp;
a2fa3e9f
GH
1817
1818 tmp = vmx->guest_msrs[to];
1819 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1820 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1821}
1822
e38aea3e
AK
1823/*
1824 * Set up the vmcs to automatically save and restore system
1825 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1826 * mode, as fiddling with msrs is very expensive.
1827 */
8b9cf98c 1828static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1829{
26bb0981 1830 int save_nmsrs, index;
5897297b 1831 unsigned long *msr_bitmap;
e38aea3e 1832
a75beee6
ED
1833 save_nmsrs = 0;
1834#ifdef CONFIG_X86_64
8b9cf98c 1835 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1836 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1837 if (index >= 0)
8b9cf98c
RR
1838 move_msr_up(vmx, index, save_nmsrs++);
1839 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1840 if (index >= 0)
8b9cf98c
RR
1841 move_msr_up(vmx, index, save_nmsrs++);
1842 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1843 if (index >= 0)
8b9cf98c 1844 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1845 index = __find_msr_index(vmx, MSR_TSC_AUX);
1846 if (index >= 0 && vmx->rdtscp_enabled)
1847 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1848 /*
8c06585d 1849 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1850 * if efer.sce is enabled.
1851 */
8c06585d 1852 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1853 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1854 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1855 }
1856#endif
92c0d900
AK
1857 index = __find_msr_index(vmx, MSR_EFER);
1858 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1859 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1860
26bb0981 1861 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1862
1863 if (cpu_has_vmx_msr_bitmap()) {
1864 if (is_long_mode(&vmx->vcpu))
1865 msr_bitmap = vmx_msr_bitmap_longmode;
1866 else
1867 msr_bitmap = vmx_msr_bitmap_legacy;
1868
1869 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1870 }
e38aea3e
AK
1871}
1872
6aa8b732
AK
1873/*
1874 * reads and returns guest's timestamp counter "register"
1875 * guest_tsc = host_tsc + tsc_offset -- 21.3
1876 */
1877static u64 guest_read_tsc(void)
1878{
1879 u64 host_tsc, tsc_offset;
1880
1881 rdtscll(host_tsc);
1882 tsc_offset = vmcs_read64(TSC_OFFSET);
1883 return host_tsc + tsc_offset;
1884}
1885
d5c1785d
NHE
1886/*
1887 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1888 * counter, even if a nested guest (L2) is currently running.
1889 */
886b470c 1890u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 1891{
886b470c 1892 u64 tsc_offset;
d5c1785d 1893
d5c1785d
NHE
1894 tsc_offset = is_guest_mode(vcpu) ?
1895 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1896 vmcs_read64(TSC_OFFSET);
1897 return host_tsc + tsc_offset;
1898}
1899
4051b188 1900/*
cc578287
ZA
1901 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1902 * software catchup for faster rates on slower CPUs.
4051b188 1903 */
cc578287 1904static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1905{
cc578287
ZA
1906 if (!scale)
1907 return;
1908
1909 if (user_tsc_khz > tsc_khz) {
1910 vcpu->arch.tsc_catchup = 1;
1911 vcpu->arch.tsc_always_catchup = 1;
1912 } else
1913 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1914}
1915
ba904635
WA
1916static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
1917{
1918 return vmcs_read64(TSC_OFFSET);
1919}
1920
6aa8b732 1921/*
99e3e30a 1922 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1923 */
99e3e30a 1924static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1925{
27fc51b2 1926 if (is_guest_mode(vcpu)) {
7991825b 1927 /*
27fc51b2
NHE
1928 * We're here if L1 chose not to trap WRMSR to TSC. According
1929 * to the spec, this should set L1's TSC; The offset that L1
1930 * set for L2 remains unchanged, and still needs to be added
1931 * to the newly set TSC to get L2's TSC.
7991825b 1932 */
27fc51b2
NHE
1933 struct vmcs12 *vmcs12;
1934 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1935 /* recalculate vmcs02.TSC_OFFSET: */
1936 vmcs12 = get_vmcs12(vcpu);
1937 vmcs_write64(TSC_OFFSET, offset +
1938 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1939 vmcs12->tsc_offset : 0));
1940 } else {
1941 vmcs_write64(TSC_OFFSET, offset);
1942 }
6aa8b732
AK
1943}
1944
f1e2b260 1945static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1946{
1947 u64 offset = vmcs_read64(TSC_OFFSET);
1948 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1949 if (is_guest_mode(vcpu)) {
1950 /* Even when running L2, the adjustment needs to apply to L1 */
1951 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1952 }
e48672fa
ZA
1953}
1954
857e4099
JR
1955static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1956{
1957 return target_tsc - native_read_tsc();
1958}
1959
801d3424
NHE
1960static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1961{
1962 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1963 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1964}
1965
1966/*
1967 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1968 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1969 * all guests if the "nested" module option is off, and can also be disabled
1970 * for a single guest by disabling its VMX cpuid bit.
1971 */
1972static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1973{
1974 return nested && guest_cpuid_has_vmx(vcpu);
1975}
1976
b87a51ae
NHE
1977/*
1978 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1979 * returned for the various VMX controls MSRs when nested VMX is enabled.
1980 * The same values should also be used to verify that vmcs12 control fields are
1981 * valid during nested entry from L1 to L2.
1982 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1983 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1984 * bit in the high half is on if the corresponding bit in the control field
1985 * may be on. See also vmx_control_verify().
1986 * TODO: allow these variables to be modified (downgraded) by module options
1987 * or other means.
1988 */
1989static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1990static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1991static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1992static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1993static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1994static __init void nested_vmx_setup_ctls_msrs(void)
1995{
1996 /*
1997 * Note that as a general rule, the high half of the MSRs (bits in
1998 * the control fields which may be 1) should be initialized by the
1999 * intersection of the underlying hardware's MSR (i.e., features which
2000 * can be supported) and the list of features we want to expose -
2001 * because they are known to be properly supported in our code.
2002 * Also, usually, the low half of the MSRs (bits which must be 1) can
2003 * be set to 0, meaning that L1 may turn off any of these bits. The
2004 * reason is that if one of these bits is necessary, it will appear
2005 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2006 * fields of vmcs01 and vmcs02, will turn these bits off - and
2007 * nested_vmx_exit_handled() will not pass related exits to L1.
2008 * These rules have exceptions below.
2009 */
2010
2011 /* pin-based controls */
2012 /*
2013 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2014 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2015 */
2016 nested_vmx_pinbased_ctls_low = 0x16 ;
2017 nested_vmx_pinbased_ctls_high = 0x16 |
2018 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
2019 PIN_BASED_VIRTUAL_NMIS;
2020
2021 /* exit controls */
2022 nested_vmx_exit_ctls_low = 0;
b6f1250e 2023 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
2024#ifdef CONFIG_X86_64
2025 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2026#else
2027 nested_vmx_exit_ctls_high = 0;
2028#endif
2029
2030 /* entry controls */
2031 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2032 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2033 nested_vmx_entry_ctls_low = 0;
2034 nested_vmx_entry_ctls_high &=
2035 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2036
2037 /* cpu-based controls */
2038 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2039 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2040 nested_vmx_procbased_ctls_low = 0;
2041 nested_vmx_procbased_ctls_high &=
2042 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2043 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2044 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2045 CPU_BASED_CR3_STORE_EXITING |
2046#ifdef CONFIG_X86_64
2047 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2048#endif
2049 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2050 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2051 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
b87a51ae
NHE
2052 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2053 /*
2054 * We can allow some features even when not supported by the
2055 * hardware. For example, L1 can specify an MSR bitmap - and we
2056 * can use it to avoid exits to L1 - even when L0 runs L2
2057 * without MSR bitmaps.
2058 */
2059 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2060
2061 /* secondary cpu-based controls */
2062 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2063 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2064 nested_vmx_secondary_ctls_low = 0;
2065 nested_vmx_secondary_ctls_high &=
2066 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2067}
2068
2069static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2070{
2071 /*
2072 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2073 */
2074 return ((control & high) | low) == control;
2075}
2076
2077static inline u64 vmx_control_msr(u32 low, u32 high)
2078{
2079 return low | ((u64)high << 32);
2080}
2081
2082/*
2083 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2084 * also let it use VMX-specific MSRs.
2085 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2086 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2087 * like all other MSRs).
2088 */
2089static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2090{
2091 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2092 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2093 /*
2094 * According to the spec, processors which do not support VMX
2095 * should throw a #GP(0) when VMX capability MSRs are read.
2096 */
2097 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2098 return 1;
2099 }
2100
2101 switch (msr_index) {
2102 case MSR_IA32_FEATURE_CONTROL:
2103 *pdata = 0;
2104 break;
2105 case MSR_IA32_VMX_BASIC:
2106 /*
2107 * This MSR reports some information about VMX support. We
2108 * should return information about the VMX we emulate for the
2109 * guest, and the VMCS structure we give it - not about the
2110 * VMX support of the underlying hardware.
2111 */
2112 *pdata = VMCS12_REVISION |
2113 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2114 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2115 break;
2116 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2117 case MSR_IA32_VMX_PINBASED_CTLS:
2118 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2119 nested_vmx_pinbased_ctls_high);
2120 break;
2121 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2122 case MSR_IA32_VMX_PROCBASED_CTLS:
2123 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2124 nested_vmx_procbased_ctls_high);
2125 break;
2126 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2127 case MSR_IA32_VMX_EXIT_CTLS:
2128 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2129 nested_vmx_exit_ctls_high);
2130 break;
2131 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2132 case MSR_IA32_VMX_ENTRY_CTLS:
2133 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2134 nested_vmx_entry_ctls_high);
2135 break;
2136 case MSR_IA32_VMX_MISC:
2137 *pdata = 0;
2138 break;
2139 /*
2140 * These MSRs specify bits which the guest must keep fixed (on or off)
2141 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2142 * We picked the standard core2 setting.
2143 */
2144#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2145#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2146 case MSR_IA32_VMX_CR0_FIXED0:
2147 *pdata = VMXON_CR0_ALWAYSON;
2148 break;
2149 case MSR_IA32_VMX_CR0_FIXED1:
2150 *pdata = -1ULL;
2151 break;
2152 case MSR_IA32_VMX_CR4_FIXED0:
2153 *pdata = VMXON_CR4_ALWAYSON;
2154 break;
2155 case MSR_IA32_VMX_CR4_FIXED1:
2156 *pdata = -1ULL;
2157 break;
2158 case MSR_IA32_VMX_VMCS_ENUM:
2159 *pdata = 0x1f;
2160 break;
2161 case MSR_IA32_VMX_PROCBASED_CTLS2:
2162 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2163 nested_vmx_secondary_ctls_high);
2164 break;
2165 case MSR_IA32_VMX_EPT_VPID_CAP:
2166 /* Currently, no nested ept or nested vpid */
2167 *pdata = 0;
2168 break;
2169 default:
2170 return 0;
2171 }
2172
2173 return 1;
2174}
2175
2176static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2177{
2178 if (!nested_vmx_allowed(vcpu))
2179 return 0;
2180
2181 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2182 /* TODO: the right thing. */
2183 return 1;
2184 /*
2185 * No need to treat VMX capability MSRs specially: If we don't handle
2186 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2187 */
2188 return 0;
2189}
2190
6aa8b732
AK
2191/*
2192 * Reads an msr value (of 'msr_index') into 'pdata'.
2193 * Returns 0 on success, non-0 otherwise.
2194 * Assumes vcpu_load() was already called.
2195 */
2196static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2197{
2198 u64 data;
26bb0981 2199 struct shared_msr_entry *msr;
6aa8b732
AK
2200
2201 if (!pdata) {
2202 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2203 return -EINVAL;
2204 }
2205
2206 switch (msr_index) {
05b3e0c2 2207#ifdef CONFIG_X86_64
6aa8b732
AK
2208 case MSR_FS_BASE:
2209 data = vmcs_readl(GUEST_FS_BASE);
2210 break;
2211 case MSR_GS_BASE:
2212 data = vmcs_readl(GUEST_GS_BASE);
2213 break;
44ea2b17
AK
2214 case MSR_KERNEL_GS_BASE:
2215 vmx_load_host_state(to_vmx(vcpu));
2216 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2217 break;
26bb0981 2218#endif
6aa8b732 2219 case MSR_EFER:
3bab1f5d 2220 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2221 case MSR_IA32_TSC:
6aa8b732
AK
2222 data = guest_read_tsc();
2223 break;
2224 case MSR_IA32_SYSENTER_CS:
2225 data = vmcs_read32(GUEST_SYSENTER_CS);
2226 break;
2227 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2228 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2229 break;
2230 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2231 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2232 break;
4e47c7a6
SY
2233 case MSR_TSC_AUX:
2234 if (!to_vmx(vcpu)->rdtscp_enabled)
2235 return 1;
2236 /* Otherwise falls through */
6aa8b732 2237 default:
b87a51ae
NHE
2238 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2239 return 0;
8b9cf98c 2240 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2241 if (msr) {
2242 data = msr->data;
2243 break;
6aa8b732 2244 }
3bab1f5d 2245 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2246 }
2247
2248 *pdata = data;
2249 return 0;
2250}
2251
2252/*
2253 * Writes msr value into into the appropriate "register".
2254 * Returns 0 on success, non-0 otherwise.
2255 * Assumes vcpu_load() was already called.
2256 */
8fe8ab46 2257static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2258{
a2fa3e9f 2259 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2260 struct shared_msr_entry *msr;
2cc51560 2261 int ret = 0;
8fe8ab46
WA
2262 u32 msr_index = msr_info->index;
2263 u64 data = msr_info->data;
2cc51560 2264
6aa8b732 2265 switch (msr_index) {
3bab1f5d 2266 case MSR_EFER:
8fe8ab46 2267 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2268 break;
16175a79 2269#ifdef CONFIG_X86_64
6aa8b732 2270 case MSR_FS_BASE:
2fb92db1 2271 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2272 vmcs_writel(GUEST_FS_BASE, data);
2273 break;
2274 case MSR_GS_BASE:
2fb92db1 2275 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2276 vmcs_writel(GUEST_GS_BASE, data);
2277 break;
44ea2b17
AK
2278 case MSR_KERNEL_GS_BASE:
2279 vmx_load_host_state(vmx);
2280 vmx->msr_guest_kernel_gs_base = data;
2281 break;
6aa8b732
AK
2282#endif
2283 case MSR_IA32_SYSENTER_CS:
2284 vmcs_write32(GUEST_SYSENTER_CS, data);
2285 break;
2286 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2287 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2288 break;
2289 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2290 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2291 break;
af24a4e4 2292 case MSR_IA32_TSC:
8fe8ab46 2293 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2294 break;
468d472f
SY
2295 case MSR_IA32_CR_PAT:
2296 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2297 vmcs_write64(GUEST_IA32_PAT, data);
2298 vcpu->arch.pat = data;
2299 break;
2300 }
8fe8ab46 2301 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2302 break;
ba904635
WA
2303 case MSR_IA32_TSC_ADJUST:
2304 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6
SY
2305 break;
2306 case MSR_TSC_AUX:
2307 if (!vmx->rdtscp_enabled)
2308 return 1;
2309 /* Check reserved bit, higher 32 bits should be zero */
2310 if ((data >> 32) != 0)
2311 return 1;
2312 /* Otherwise falls through */
6aa8b732 2313 default:
b87a51ae
NHE
2314 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2315 break;
8b9cf98c 2316 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2317 if (msr) {
2318 msr->data = data;
2225fd56
AK
2319 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2320 preempt_disable();
9ee73970
AK
2321 kvm_set_shared_msr(msr->index, msr->data,
2322 msr->mask);
2225fd56
AK
2323 preempt_enable();
2324 }
3bab1f5d 2325 break;
6aa8b732 2326 }
8fe8ab46 2327 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2328 }
2329
2cc51560 2330 return ret;
6aa8b732
AK
2331}
2332
5fdbf976 2333static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2334{
5fdbf976
MT
2335 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2336 switch (reg) {
2337 case VCPU_REGS_RSP:
2338 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2339 break;
2340 case VCPU_REGS_RIP:
2341 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2342 break;
6de4f3ad
AK
2343 case VCPU_EXREG_PDPTR:
2344 if (enable_ept)
2345 ept_save_pdptrs(vcpu);
2346 break;
5fdbf976
MT
2347 default:
2348 break;
2349 }
6aa8b732
AK
2350}
2351
6aa8b732
AK
2352static __init int cpu_has_kvm_support(void)
2353{
6210e37b 2354 return cpu_has_vmx();
6aa8b732
AK
2355}
2356
2357static __init int vmx_disabled_by_bios(void)
2358{
2359 u64 msr;
2360
2361 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2362 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2363 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2364 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2365 && tboot_enabled())
2366 return 1;
23f3e991 2367 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2368 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2369 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2370 && !tboot_enabled()) {
2371 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2372 "activate TXT before enabling KVM\n");
cafd6659 2373 return 1;
f9335afe 2374 }
23f3e991
JC
2375 /* launched w/o TXT and VMX disabled */
2376 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2377 && !tboot_enabled())
2378 return 1;
cafd6659
SW
2379 }
2380
2381 return 0;
6aa8b732
AK
2382}
2383
7725b894
DX
2384static void kvm_cpu_vmxon(u64 addr)
2385{
2386 asm volatile (ASM_VMX_VMXON_RAX
2387 : : "a"(&addr), "m"(addr)
2388 : "memory", "cc");
2389}
2390
10474ae8 2391static int hardware_enable(void *garbage)
6aa8b732
AK
2392{
2393 int cpu = raw_smp_processor_id();
2394 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2395 u64 old, test_bits;
6aa8b732 2396
10474ae8
AG
2397 if (read_cr4() & X86_CR4_VMXE)
2398 return -EBUSY;
2399
d462b819 2400 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2401
2402 /*
2403 * Now we can enable the vmclear operation in kdump
2404 * since the loaded_vmcss_on_cpu list on this cpu
2405 * has been initialized.
2406 *
2407 * Though the cpu is not in VMX operation now, there
2408 * is no problem to enable the vmclear operation
2409 * for the loaded_vmcss_on_cpu list is empty!
2410 */
2411 crash_enable_local_vmclear(cpu);
2412
6aa8b732 2413 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2414
2415 test_bits = FEATURE_CONTROL_LOCKED;
2416 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2417 if (tboot_enabled())
2418 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2419
2420 if ((old & test_bits) != test_bits) {
6aa8b732 2421 /* enable and lock */
cafd6659
SW
2422 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2423 }
66aee91a 2424 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2425
4610c9cc
DX
2426 if (vmm_exclusive) {
2427 kvm_cpu_vmxon(phys_addr);
2428 ept_sync_global();
2429 }
10474ae8 2430
3444d7da
AK
2431 store_gdt(&__get_cpu_var(host_gdt));
2432
10474ae8 2433 return 0;
6aa8b732
AK
2434}
2435
d462b819 2436static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2437{
2438 int cpu = raw_smp_processor_id();
d462b819 2439 struct loaded_vmcs *v, *n;
543e4243 2440
d462b819
NHE
2441 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2442 loaded_vmcss_on_cpu_link)
2443 __loaded_vmcs_clear(v);
543e4243
AK
2444}
2445
710ff4a8
EH
2446
2447/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2448 * tricks.
2449 */
2450static void kvm_cpu_vmxoff(void)
6aa8b732 2451{
4ecac3fd 2452 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2453}
2454
710ff4a8
EH
2455static void hardware_disable(void *garbage)
2456{
4610c9cc 2457 if (vmm_exclusive) {
d462b819 2458 vmclear_local_loaded_vmcss();
4610c9cc
DX
2459 kvm_cpu_vmxoff();
2460 }
7725b894 2461 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2462}
2463
1c3d14fe 2464static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2465 u32 msr, u32 *result)
1c3d14fe
YS
2466{
2467 u32 vmx_msr_low, vmx_msr_high;
2468 u32 ctl = ctl_min | ctl_opt;
2469
2470 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2471
2472 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2473 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2474
2475 /* Ensure minimum (required) set of control bits are supported. */
2476 if (ctl_min & ~ctl)
002c7f7c 2477 return -EIO;
1c3d14fe
YS
2478
2479 *result = ctl;
2480 return 0;
2481}
2482
110312c8
AK
2483static __init bool allow_1_setting(u32 msr, u32 ctl)
2484{
2485 u32 vmx_msr_low, vmx_msr_high;
2486
2487 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2488 return vmx_msr_high & ctl;
2489}
2490
002c7f7c 2491static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2492{
2493 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2494 u32 min, opt, min2, opt2;
1c3d14fe
YS
2495 u32 _pin_based_exec_control = 0;
2496 u32 _cpu_based_exec_control = 0;
f78e0e2e 2497 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2498 u32 _vmexit_control = 0;
2499 u32 _vmentry_control = 0;
2500
2501 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2502 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2503 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2504 &_pin_based_exec_control) < 0)
002c7f7c 2505 return -EIO;
1c3d14fe 2506
10166744 2507 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2508#ifdef CONFIG_X86_64
2509 CPU_BASED_CR8_LOAD_EXITING |
2510 CPU_BASED_CR8_STORE_EXITING |
2511#endif
d56f546d
SY
2512 CPU_BASED_CR3_LOAD_EXITING |
2513 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2514 CPU_BASED_USE_IO_BITMAPS |
2515 CPU_BASED_MOV_DR_EXITING |
a7052897 2516 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2517 CPU_BASED_MWAIT_EXITING |
2518 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2519 CPU_BASED_INVLPG_EXITING |
2520 CPU_BASED_RDPMC_EXITING;
443381a8 2521
f78e0e2e 2522 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2523 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2524 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2525 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2526 &_cpu_based_exec_control) < 0)
002c7f7c 2527 return -EIO;
6e5d865c
YS
2528#ifdef CONFIG_X86_64
2529 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2530 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2531 ~CPU_BASED_CR8_STORE_EXITING;
2532#endif
f78e0e2e 2533 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2534 min2 = 0;
2535 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2536 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2537 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2538 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2539 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2540 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16
MJ
2541 SECONDARY_EXEC_RDTSCP |
2542 SECONDARY_EXEC_ENABLE_INVPCID;
d56f546d
SY
2543 if (adjust_vmx_controls(min2, opt2,
2544 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2545 &_cpu_based_2nd_exec_control) < 0)
2546 return -EIO;
2547 }
2548#ifndef CONFIG_X86_64
2549 if (!(_cpu_based_2nd_exec_control &
2550 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2551 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2552#endif
d56f546d 2553 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2554 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2555 enabled */
5fff7d27
GN
2556 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2557 CPU_BASED_CR3_STORE_EXITING |
2558 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2559 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2560 vmx_capability.ept, vmx_capability.vpid);
2561 }
1c3d14fe
YS
2562
2563 min = 0;
2564#ifdef CONFIG_X86_64
2565 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2566#endif
468d472f 2567 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2568 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2569 &_vmexit_control) < 0)
002c7f7c 2570 return -EIO;
1c3d14fe 2571
468d472f
SY
2572 min = 0;
2573 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2574 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2575 &_vmentry_control) < 0)
002c7f7c 2576 return -EIO;
6aa8b732 2577
c68876fd 2578 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2579
2580 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2582 return -EIO;
1c3d14fe
YS
2583
2584#ifdef CONFIG_X86_64
2585 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586 if (vmx_msr_high & (1u<<16))
002c7f7c 2587 return -EIO;
1c3d14fe
YS
2588#endif
2589
2590 /* Require Write-Back (WB) memory type for VMCS accesses. */
2591 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2592 return -EIO;
1c3d14fe 2593
002c7f7c
YS
2594 vmcs_conf->size = vmx_msr_high & 0x1fff;
2595 vmcs_conf->order = get_order(vmcs_config.size);
2596 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2597
002c7f7c
YS
2598 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2599 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2600 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2601 vmcs_conf->vmexit_ctrl = _vmexit_control;
2602 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2603
110312c8
AK
2604 cpu_has_load_ia32_efer =
2605 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2606 VM_ENTRY_LOAD_IA32_EFER)
2607 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2608 VM_EXIT_LOAD_IA32_EFER);
2609
8bf00a52
GN
2610 cpu_has_load_perf_global_ctrl =
2611 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2612 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2613 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2614 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2615
2616 /*
2617 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2618 * but due to arrata below it can't be used. Workaround is to use
2619 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2620 *
2621 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2622 *
2623 * AAK155 (model 26)
2624 * AAP115 (model 30)
2625 * AAT100 (model 37)
2626 * BC86,AAY89,BD102 (model 44)
2627 * BA97 (model 46)
2628 *
2629 */
2630 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2631 switch (boot_cpu_data.x86_model) {
2632 case 26:
2633 case 30:
2634 case 37:
2635 case 44:
2636 case 46:
2637 cpu_has_load_perf_global_ctrl = false;
2638 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2639 "does not work properly. Using workaround\n");
2640 break;
2641 default:
2642 break;
2643 }
2644 }
2645
1c3d14fe 2646 return 0;
c68876fd 2647}
6aa8b732
AK
2648
2649static struct vmcs *alloc_vmcs_cpu(int cpu)
2650{
2651 int node = cpu_to_node(cpu);
2652 struct page *pages;
2653 struct vmcs *vmcs;
2654
6484eb3e 2655 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2656 if (!pages)
2657 return NULL;
2658 vmcs = page_address(pages);
1c3d14fe
YS
2659 memset(vmcs, 0, vmcs_config.size);
2660 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2661 return vmcs;
2662}
2663
2664static struct vmcs *alloc_vmcs(void)
2665{
d3b2c338 2666 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2667}
2668
2669static void free_vmcs(struct vmcs *vmcs)
2670{
1c3d14fe 2671 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2672}
2673
d462b819
NHE
2674/*
2675 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2676 */
2677static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2678{
2679 if (!loaded_vmcs->vmcs)
2680 return;
2681 loaded_vmcs_clear(loaded_vmcs);
2682 free_vmcs(loaded_vmcs->vmcs);
2683 loaded_vmcs->vmcs = NULL;
2684}
2685
39959588 2686static void free_kvm_area(void)
6aa8b732
AK
2687{
2688 int cpu;
2689
3230bb47 2690 for_each_possible_cpu(cpu) {
6aa8b732 2691 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2692 per_cpu(vmxarea, cpu) = NULL;
2693 }
6aa8b732
AK
2694}
2695
6aa8b732
AK
2696static __init int alloc_kvm_area(void)
2697{
2698 int cpu;
2699
3230bb47 2700 for_each_possible_cpu(cpu) {
6aa8b732
AK
2701 struct vmcs *vmcs;
2702
2703 vmcs = alloc_vmcs_cpu(cpu);
2704 if (!vmcs) {
2705 free_kvm_area();
2706 return -ENOMEM;
2707 }
2708
2709 per_cpu(vmxarea, cpu) = vmcs;
2710 }
2711 return 0;
2712}
2713
2714static __init int hardware_setup(void)
2715{
002c7f7c
YS
2716 if (setup_vmcs_config(&vmcs_config) < 0)
2717 return -EIO;
50a37eb4
JR
2718
2719 if (boot_cpu_has(X86_FEATURE_NX))
2720 kvm_enable_efer_bits(EFER_NX);
2721
93ba03c2
SY
2722 if (!cpu_has_vmx_vpid())
2723 enable_vpid = 0;
2724
4bc9b982
SY
2725 if (!cpu_has_vmx_ept() ||
2726 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2727 enable_ept = 0;
3a624e29 2728 enable_unrestricted_guest = 0;
83c3a331 2729 enable_ept_ad_bits = 0;
3a624e29
NK
2730 }
2731
83c3a331
XH
2732 if (!cpu_has_vmx_ept_ad_bits())
2733 enable_ept_ad_bits = 0;
2734
3a624e29
NK
2735 if (!cpu_has_vmx_unrestricted_guest())
2736 enable_unrestricted_guest = 0;
93ba03c2
SY
2737
2738 if (!cpu_has_vmx_flexpriority())
2739 flexpriority_enabled = 0;
2740
95ba8273
GN
2741 if (!cpu_has_vmx_tpr_shadow())
2742 kvm_x86_ops->update_cr8_intercept = NULL;
2743
54dee993
MT
2744 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2745 kvm_disable_largepages();
2746
4b8d54f9
ZE
2747 if (!cpu_has_vmx_ple())
2748 ple_gap = 0;
2749
b87a51ae
NHE
2750 if (nested)
2751 nested_vmx_setup_ctls_msrs();
2752
6aa8b732
AK
2753 return alloc_kvm_area();
2754}
2755
2756static __exit void hardware_unsetup(void)
2757{
2758 free_kvm_area();
2759}
2760
f5f7b2fe 2761static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
6aa8b732 2762{
772e0318 2763 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
c865c43d 2764 struct kvm_segment tmp = *save;
6aa8b732 2765
c865c43d
AK
2766 if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
2767 tmp.base = vmcs_readl(sf->base);
2768 tmp.selector = vmcs_read16(sf->selector);
a4d3326c 2769 tmp.dpl = tmp.selector & SELECTOR_RPL_MASK;
c865c43d 2770 tmp.s = 1;
6aa8b732 2771 }
c865c43d 2772 vmx_set_segment(vcpu, &tmp, seg);
6aa8b732
AK
2773}
2774
2775static void enter_pmode(struct kvm_vcpu *vcpu)
2776{
2777 unsigned long flags;
a89a8fb9 2778 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2779
a89a8fb9 2780 vmx->emulation_required = 1;
7ffd92c5 2781 vmx->rmode.vm86_active = 0;
6aa8b732 2782
2fb92db1
AK
2783 vmx_segment_cache_clear(vmx);
2784
f5f7b2fe 2785 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
2786
2787 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2788 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2789 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2790 vmcs_writel(GUEST_RFLAGS, flags);
2791
66aee91a
RR
2792 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2793 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2794
2795 update_exception_bitmap(vcpu);
2796
a89a8fb9
MG
2797 if (emulate_invalid_guest_state)
2798 return;
2799
f5f7b2fe
AK
2800 fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2801 fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2802 fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2803 fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732 2804
2fb92db1
AK
2805 vmx_segment_cache_clear(vmx);
2806
6aa8b732
AK
2807 vmcs_write16(GUEST_SS_SELECTOR, 0);
2808 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2809
2810 vmcs_write16(GUEST_CS_SELECTOR,
2811 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2812 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2813}
2814
d77c26fc 2815static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2816{
bfc6d222 2817 if (!kvm->arch.tss_addr) {
bc6678a3 2818 struct kvm_memslots *slots;
28a37544 2819 struct kvm_memory_slot *slot;
bc6678a3
MT
2820 gfn_t base_gfn;
2821
90d83dc3 2822 slots = kvm_memslots(kvm);
28a37544
XG
2823 slot = id_to_memslot(slots, 0);
2824 base_gfn = slot->base_gfn + slot->npages - 3;
2825
cbc94022
IE
2826 return base_gfn << PAGE_SHIFT;
2827 }
bfc6d222 2828 return kvm->arch.tss_addr;
6aa8b732
AK
2829}
2830
f5f7b2fe 2831static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 2832{
772e0318 2833 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
6aa8b732 2834
15b00f32 2835 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2836 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2837 vmcs_write32(sf->limit, 0xffff);
2838 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2839 if (save->base & 0xf)
2840 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2841 " aligned when entering protected mode (seg=%d)",
2842 seg);
6aa8b732
AK
2843}
2844
2845static void enter_rmode(struct kvm_vcpu *vcpu)
2846{
2847 unsigned long flags;
a89a8fb9 2848 struct vcpu_vmx *vmx = to_vmx(vcpu);
b246dd5d 2849 struct kvm_segment var;
6aa8b732 2850
3a624e29
NK
2851 if (enable_unrestricted_guest)
2852 return;
2853
f5f7b2fe
AK
2854 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
2859 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2860 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 2861
a89a8fb9 2862 vmx->emulation_required = 1;
7ffd92c5 2863 vmx->rmode.vm86_active = 1;
6aa8b732 2864
baa7e81e 2865
776e58ea
GN
2866 /*
2867 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2868 * vcpu. Call it here with phys address pointing 16M below 4G.
2869 */
2870 if (!vcpu->kvm->arch.tss_addr) {
2871 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2872 "called before entering vcpu\n");
2873 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2874 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2875 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2876 }
2877
2fb92db1
AK
2878 vmx_segment_cache_clear(vmx);
2879
6aa8b732 2880 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
6aa8b732 2881 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
2882 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2883
2884 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2885 vmx->rmode.save_rflags = flags;
6aa8b732 2886
053de044 2887 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2888
2889 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2890 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2891 update_exception_bitmap(vcpu);
2892
a89a8fb9
MG
2893 if (emulate_invalid_guest_state)
2894 goto continue_rmode;
2895
b246dd5d
OW
2896 vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2897 vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2898
2899 vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2900 vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2901
2902 vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2903 vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2904
2905 vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2906 vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
6aa8b732 2907
b246dd5d
OW
2908 vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2909 vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
6aa8b732 2910
b246dd5d
OW
2911 vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2912 vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
75880a01 2913
a89a8fb9 2914continue_rmode:
8668a3c4 2915 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2916}
2917
401d10de
AS
2918static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2919{
2920 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2921 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2922
2923 if (!msr)
2924 return;
401d10de 2925
44ea2b17
AK
2926 /*
2927 * Force kernel_gs_base reloading before EFER changes, as control
2928 * of this msr depends on is_long_mode().
2929 */
2930 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2931 vcpu->arch.efer = efer;
401d10de
AS
2932 if (efer & EFER_LMA) {
2933 vmcs_write32(VM_ENTRY_CONTROLS,
2934 vmcs_read32(VM_ENTRY_CONTROLS) |
2935 VM_ENTRY_IA32E_MODE);
2936 msr->data = efer;
2937 } else {
2938 vmcs_write32(VM_ENTRY_CONTROLS,
2939 vmcs_read32(VM_ENTRY_CONTROLS) &
2940 ~VM_ENTRY_IA32E_MODE);
2941
2942 msr->data = efer & ~EFER_LME;
2943 }
2944 setup_msrs(vmx);
2945}
2946
05b3e0c2 2947#ifdef CONFIG_X86_64
6aa8b732
AK
2948
2949static void enter_lmode(struct kvm_vcpu *vcpu)
2950{
2951 u32 guest_tr_ar;
2952
2fb92db1
AK
2953 vmx_segment_cache_clear(to_vmx(vcpu));
2954
6aa8b732
AK
2955 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2956 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2957 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2958 __func__);
6aa8b732
AK
2959 vmcs_write32(GUEST_TR_AR_BYTES,
2960 (guest_tr_ar & ~AR_TYPE_MASK)
2961 | AR_TYPE_BUSY_64_TSS);
2962 }
da38f438 2963 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2964}
2965
2966static void exit_lmode(struct kvm_vcpu *vcpu)
2967{
6aa8b732
AK
2968 vmcs_write32(VM_ENTRY_CONTROLS,
2969 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2970 & ~VM_ENTRY_IA32E_MODE);
da38f438 2971 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2972}
2973
2974#endif
2975
2384d2b3
SY
2976static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2977{
b9d762fa 2978 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2979 if (enable_ept) {
2980 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2981 return;
4e1096d2 2982 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2983 }
2384d2b3
SY
2984}
2985
e8467fda
AK
2986static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2987{
2988 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2989
2990 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2991 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2992}
2993
aff48baa
AK
2994static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2995{
2996 if (enable_ept && is_paging(vcpu))
2997 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2998 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2999}
3000
25c4c276 3001static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3002{
fc78f519
AK
3003 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3004
3005 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3006 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3007}
3008
1439442c
SY
3009static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3010{
6de4f3ad
AK
3011 if (!test_bit(VCPU_EXREG_PDPTR,
3012 (unsigned long *)&vcpu->arch.regs_dirty))
3013 return;
3014
1439442c 3015 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3016 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3017 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3018 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3019 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
3020 }
3021}
3022
8f5d549f
AK
3023static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3024{
3025 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3026 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3027 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3028 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3029 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3030 }
6de4f3ad
AK
3031
3032 __set_bit(VCPU_EXREG_PDPTR,
3033 (unsigned long *)&vcpu->arch.regs_avail);
3034 __set_bit(VCPU_EXREG_PDPTR,
3035 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3036}
3037
5e1746d6 3038static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3039
3040static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3041 unsigned long cr0,
3042 struct kvm_vcpu *vcpu)
3043{
5233dd51
MT
3044 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3045 vmx_decache_cr3(vcpu);
1439442c
SY
3046 if (!(cr0 & X86_CR0_PG)) {
3047 /* From paging/starting to nonpaging */
3048 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3049 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3050 (CPU_BASED_CR3_LOAD_EXITING |
3051 CPU_BASED_CR3_STORE_EXITING));
3052 vcpu->arch.cr0 = cr0;
fc78f519 3053 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3054 } else if (!is_paging(vcpu)) {
3055 /* From nonpaging to paging */
3056 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3057 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3058 ~(CPU_BASED_CR3_LOAD_EXITING |
3059 CPU_BASED_CR3_STORE_EXITING));
3060 vcpu->arch.cr0 = cr0;
fc78f519 3061 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3062 }
95eb84a7
SY
3063
3064 if (!(cr0 & X86_CR0_WP))
3065 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3066}
3067
6aa8b732
AK
3068static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3069{
7ffd92c5 3070 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3071 unsigned long hw_cr0;
3072
3073 if (enable_unrestricted_guest)
3074 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3075 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3076 else
3077 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 3078
7ffd92c5 3079 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
3080 enter_pmode(vcpu);
3081
7ffd92c5 3082 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
3083 enter_rmode(vcpu);
3084
05b3e0c2 3085#ifdef CONFIG_X86_64
f6801dff 3086 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3087 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3088 enter_lmode(vcpu);
707d92fa 3089 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3090 exit_lmode(vcpu);
3091 }
3092#endif
3093
089d034e 3094 if (enable_ept)
1439442c
SY
3095 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3096
02daab21 3097 if (!vcpu->fpu_active)
81231c69 3098 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3099
6aa8b732 3100 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3101 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3102 vcpu->arch.cr0 = cr0;
69c73028 3103 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3104}
3105
1439442c
SY
3106static u64 construct_eptp(unsigned long root_hpa)
3107{
3108 u64 eptp;
3109
3110 /* TODO write the value reading from MSR */
3111 eptp = VMX_EPT_DEFAULT_MT |
3112 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3113 if (enable_ept_ad_bits)
3114 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3115 eptp |= (root_hpa & PAGE_MASK);
3116
3117 return eptp;
3118}
3119
6aa8b732
AK
3120static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3121{
1439442c
SY
3122 unsigned long guest_cr3;
3123 u64 eptp;
3124
3125 guest_cr3 = cr3;
089d034e 3126 if (enable_ept) {
1439442c
SY
3127 eptp = construct_eptp(cr3);
3128 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3129 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3130 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3131 ept_load_pdptrs(vcpu);
1439442c
SY
3132 }
3133
2384d2b3 3134 vmx_flush_tlb(vcpu);
1439442c 3135 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3136}
3137
5e1746d6 3138static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3139{
7ffd92c5 3140 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3141 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3142
5e1746d6
NHE
3143 if (cr4 & X86_CR4_VMXE) {
3144 /*
3145 * To use VMXON (and later other VMX instructions), a guest
3146 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3147 * So basically the check on whether to allow nested VMX
3148 * is here.
3149 */
3150 if (!nested_vmx_allowed(vcpu))
3151 return 1;
3152 } else if (to_vmx(vcpu)->nested.vmxon)
3153 return 1;
3154
ad312c7c 3155 vcpu->arch.cr4 = cr4;
bc23008b
AK
3156 if (enable_ept) {
3157 if (!is_paging(vcpu)) {
3158 hw_cr4 &= ~X86_CR4_PAE;
3159 hw_cr4 |= X86_CR4_PSE;
3160 } else if (!(cr4 & X86_CR4_PAE)) {
3161 hw_cr4 &= ~X86_CR4_PAE;
3162 }
3163 }
1439442c
SY
3164
3165 vmcs_writel(CR4_READ_SHADOW, cr4);
3166 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3167 return 0;
6aa8b732
AK
3168}
3169
6aa8b732
AK
3170static void vmx_get_segment(struct kvm_vcpu *vcpu,
3171 struct kvm_segment *var, int seg)
3172{
a9179499 3173 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3174 u32 ar;
3175
c6ad1153 3176 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3177 *var = vmx->rmode.segs[seg];
a9179499 3178 if (seg == VCPU_SREG_TR
2fb92db1 3179 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3180 return;
1390a28b
AK
3181 var->base = vmx_read_guest_seg_base(vmx, seg);
3182 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3183 return;
a9179499 3184 }
2fb92db1
AK
3185 var->base = vmx_read_guest_seg_base(vmx, seg);
3186 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3187 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3188 ar = vmx_read_guest_seg_ar(vmx, seg);
9fd4a3b7 3189 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3190 ar = 0;
3191 var->type = ar & 15;
3192 var->s = (ar >> 4) & 1;
3193 var->dpl = (ar >> 5) & 3;
3194 var->present = (ar >> 7) & 1;
3195 var->avl = (ar >> 12) & 1;
3196 var->l = (ar >> 13) & 1;
3197 var->db = (ar >> 14) & 1;
3198 var->g = (ar >> 15) & 1;
3199 var->unusable = (ar >> 16) & 1;
3200}
3201
a9179499
AK
3202static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3203{
a9179499
AK
3204 struct kvm_segment s;
3205
3206 if (to_vmx(vcpu)->rmode.vm86_active) {
3207 vmx_get_segment(vcpu, &s, seg);
3208 return s.base;
3209 }
2fb92db1 3210 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3211}
3212
69c73028 3213static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3214{
3eeb3288 3215 if (!is_protmode(vcpu))
2e4d2653
IE
3216 return 0;
3217
f4c63e5d
AK
3218 if (!is_long_mode(vcpu)
3219 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3220 return 3;
3221
2fb92db1 3222 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3223}
3224
69c73028
AK
3225static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3226{
d881e6f6
AK
3227 struct vcpu_vmx *vmx = to_vmx(vcpu);
3228
3229 /*
3230 * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3231 * fail; use the cache instead.
3232 */
3233 if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3234 return vmx->cpl;
3235 }
3236
69c73028
AK
3237 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3238 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
d881e6f6 3239 vmx->cpl = __vmx_get_cpl(vcpu);
69c73028 3240 }
d881e6f6
AK
3241
3242 return vmx->cpl;
69c73028
AK
3243}
3244
3245
653e3108 3246static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3247{
6aa8b732
AK
3248 u32 ar;
3249
f0495f9b 3250 if (var->unusable || !var->present)
6aa8b732
AK
3251 ar = 1 << 16;
3252 else {
3253 ar = var->type & 15;
3254 ar |= (var->s & 1) << 4;
3255 ar |= (var->dpl & 3) << 5;
3256 ar |= (var->present & 1) << 7;
3257 ar |= (var->avl & 1) << 12;
3258 ar |= (var->l & 1) << 13;
3259 ar |= (var->db & 1) << 14;
3260 ar |= (var->g & 1) << 15;
3261 }
653e3108
AK
3262
3263 return ar;
3264}
3265
3266static void vmx_set_segment(struct kvm_vcpu *vcpu,
3267 struct kvm_segment *var, int seg)
3268{
7ffd92c5 3269 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3270 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3271
2fb92db1 3272 vmx_segment_cache_clear(vmx);
1ecd50a9 3273 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3274
1ecd50a9
GN
3275 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3276 vmx->rmode.segs[seg] = *var;
3277 if (seg == VCPU_SREG_TR)
3278 vmcs_write16(sf->selector, var->selector);
3279 else if (var->s)
3280 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
653e3108
AK
3281 return;
3282 }
1ecd50a9 3283
653e3108
AK
3284 vmcs_writel(sf->base, var->base);
3285 vmcs_write32(sf->limit, var->limit);
3286 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3287
3288 /*
3289 * Fix the "Accessed" bit in AR field of segment registers for older
3290 * qemu binaries.
3291 * IA32 arch specifies that at the time of processor reset the
3292 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3293 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3294 * state vmexit when "unrestricted guest" mode is turned on.
3295 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3296 * tree. Newer qemu binaries with that qemu fix would not need this
3297 * kvm hack.
3298 */
3299 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3300 var->type |= 0x1; /* Accessed */
3a624e29 3301
f924d66d 3302 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
6aa8b732
AK
3303}
3304
6aa8b732
AK
3305static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3306{
2fb92db1 3307 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3308
3309 *db = (ar >> 14) & 1;
3310 *l = (ar >> 13) & 1;
3311}
3312
89a27f4d 3313static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3314{
89a27f4d
GN
3315 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3316 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3317}
3318
89a27f4d 3319static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3320{
89a27f4d
GN
3321 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3322 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3323}
3324
89a27f4d 3325static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3326{
89a27f4d
GN
3327 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3328 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3329}
3330
89a27f4d 3331static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3332{
89a27f4d
GN
3333 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3334 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3335}
3336
648dfaa7
MG
3337static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3338{
3339 struct kvm_segment var;
3340 u32 ar;
3341
3342 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3343 var.dpl = 0x3;
0647f4aa
GN
3344 if (seg == VCPU_SREG_CS)
3345 var.type = 0x3;
648dfaa7
MG
3346 ar = vmx_segment_access_rights(&var);
3347
3348 if (var.base != (var.selector << 4))
3349 return false;
89efbed0 3350 if (var.limit != 0xffff)
648dfaa7 3351 return false;
07f42f5f 3352 if (ar != 0xf3)
648dfaa7
MG
3353 return false;
3354
3355 return true;
3356}
3357
3358static bool code_segment_valid(struct kvm_vcpu *vcpu)
3359{
3360 struct kvm_segment cs;
3361 unsigned int cs_rpl;
3362
3363 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3364 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3365
1872a3f4
AK
3366 if (cs.unusable)
3367 return false;
648dfaa7
MG
3368 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3369 return false;
3370 if (!cs.s)
3371 return false;
1872a3f4 3372 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3373 if (cs.dpl > cs_rpl)
3374 return false;
1872a3f4 3375 } else {
648dfaa7
MG
3376 if (cs.dpl != cs_rpl)
3377 return false;
3378 }
3379 if (!cs.present)
3380 return false;
3381
3382 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3383 return true;
3384}
3385
3386static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3387{
3388 struct kvm_segment ss;
3389 unsigned int ss_rpl;
3390
3391 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3392 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3393
1872a3f4
AK
3394 if (ss.unusable)
3395 return true;
3396 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3397 return false;
3398 if (!ss.s)
3399 return false;
3400 if (ss.dpl != ss_rpl) /* DPL != RPL */
3401 return false;
3402 if (!ss.present)
3403 return false;
3404
3405 return true;
3406}
3407
3408static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3409{
3410 struct kvm_segment var;
3411 unsigned int rpl;
3412
3413 vmx_get_segment(vcpu, &var, seg);
3414 rpl = var.selector & SELECTOR_RPL_MASK;
3415
1872a3f4
AK
3416 if (var.unusable)
3417 return true;
648dfaa7
MG
3418 if (!var.s)
3419 return false;
3420 if (!var.present)
3421 return false;
3422 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3423 if (var.dpl < rpl) /* DPL < RPL */
3424 return false;
3425 }
3426
3427 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3428 * rights flags
3429 */
3430 return true;
3431}
3432
3433static bool tr_valid(struct kvm_vcpu *vcpu)
3434{
3435 struct kvm_segment tr;
3436
3437 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3438
1872a3f4
AK
3439 if (tr.unusable)
3440 return false;
648dfaa7
MG
3441 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3442 return false;
1872a3f4 3443 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3444 return false;
3445 if (!tr.present)
3446 return false;
3447
3448 return true;
3449}
3450
3451static bool ldtr_valid(struct kvm_vcpu *vcpu)
3452{
3453 struct kvm_segment ldtr;
3454
3455 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3456
1872a3f4
AK
3457 if (ldtr.unusable)
3458 return true;
648dfaa7
MG
3459 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3460 return false;
3461 if (ldtr.type != 2)
3462 return false;
3463 if (!ldtr.present)
3464 return false;
3465
3466 return true;
3467}
3468
3469static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3470{
3471 struct kvm_segment cs, ss;
3472
3473 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3474 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3475
3476 return ((cs.selector & SELECTOR_RPL_MASK) ==
3477 (ss.selector & SELECTOR_RPL_MASK));
3478}
3479
3480/*
3481 * Check if guest state is valid. Returns true if valid, false if
3482 * not.
3483 * We assume that registers are always usable
3484 */
3485static bool guest_state_valid(struct kvm_vcpu *vcpu)
3486{
3487 /* real mode guest state checks */
3eeb3288 3488 if (!is_protmode(vcpu)) {
648dfaa7
MG
3489 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3490 return false;
3491 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3492 return false;
3493 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3494 return false;
3495 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3496 return false;
3497 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3498 return false;
3499 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3500 return false;
3501 } else {
3502 /* protected mode guest state checks */
3503 if (!cs_ss_rpl_check(vcpu))
3504 return false;
3505 if (!code_segment_valid(vcpu))
3506 return false;
3507 if (!stack_segment_valid(vcpu))
3508 return false;
3509 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3510 return false;
3511 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3512 return false;
3513 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3514 return false;
3515 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3516 return false;
3517 if (!tr_valid(vcpu))
3518 return false;
3519 if (!ldtr_valid(vcpu))
3520 return false;
3521 }
3522 /* TODO:
3523 * - Add checks on RIP
3524 * - Add checks on RFLAGS
3525 */
3526
3527 return true;
3528}
3529
d77c26fc 3530static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3531{
40dcaa9f 3532 gfn_t fn;
195aefde 3533 u16 data = 0;
40dcaa9f 3534 int r, idx, ret = 0;
6aa8b732 3535
40dcaa9f
XG
3536 idx = srcu_read_lock(&kvm->srcu);
3537 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3538 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3539 if (r < 0)
10589a46 3540 goto out;
195aefde 3541 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3542 r = kvm_write_guest_page(kvm, fn++, &data,
3543 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3544 if (r < 0)
10589a46 3545 goto out;
195aefde
IE
3546 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3547 if (r < 0)
10589a46 3548 goto out;
195aefde
IE
3549 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3550 if (r < 0)
10589a46 3551 goto out;
195aefde 3552 data = ~0;
10589a46
MT
3553 r = kvm_write_guest_page(kvm, fn, &data,
3554 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3555 sizeof(u8));
195aefde 3556 if (r < 0)
10589a46
MT
3557 goto out;
3558
3559 ret = 1;
3560out:
40dcaa9f 3561 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3562 return ret;
6aa8b732
AK
3563}
3564
b7ebfb05
SY
3565static int init_rmode_identity_map(struct kvm *kvm)
3566{
40dcaa9f 3567 int i, idx, r, ret;
b7ebfb05
SY
3568 pfn_t identity_map_pfn;
3569 u32 tmp;
3570
089d034e 3571 if (!enable_ept)
b7ebfb05
SY
3572 return 1;
3573 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3574 printk(KERN_ERR "EPT: identity-mapping pagetable "
3575 "haven't been allocated!\n");
3576 return 0;
3577 }
3578 if (likely(kvm->arch.ept_identity_pagetable_done))
3579 return 1;
3580 ret = 0;
b927a3ce 3581 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3582 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3583 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3584 if (r < 0)
3585 goto out;
3586 /* Set up identity-mapping pagetable for EPT in real mode */
3587 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3588 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3589 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3590 r = kvm_write_guest_page(kvm, identity_map_pfn,
3591 &tmp, i * sizeof(tmp), sizeof(tmp));
3592 if (r < 0)
3593 goto out;
3594 }
3595 kvm->arch.ept_identity_pagetable_done = true;
3596 ret = 1;
3597out:
40dcaa9f 3598 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3599 return ret;
3600}
3601
6aa8b732
AK
3602static void seg_setup(int seg)
3603{
772e0318 3604 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3605 unsigned int ar;
6aa8b732
AK
3606
3607 vmcs_write16(sf->selector, 0);
3608 vmcs_writel(sf->base, 0);
3609 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3610 if (enable_unrestricted_guest) {
3611 ar = 0x93;
3612 if (seg == VCPU_SREG_CS)
3613 ar |= 0x08; /* code segment */
3614 } else
3615 ar = 0xf3;
3616
3617 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3618}
3619
f78e0e2e
SY
3620static int alloc_apic_access_page(struct kvm *kvm)
3621{
4484141a 3622 struct page *page;
f78e0e2e
SY
3623 struct kvm_userspace_memory_region kvm_userspace_mem;
3624 int r = 0;
3625
79fac95e 3626 mutex_lock(&kvm->slots_lock);
bfc6d222 3627 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3628 goto out;
3629 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3630 kvm_userspace_mem.flags = 0;
3631 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3632 kvm_userspace_mem.memory_size = PAGE_SIZE;
f82a8cfe 3633 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
f78e0e2e
SY
3634 if (r)
3635 goto out;
72dc67a6 3636
4484141a
XG
3637 page = gfn_to_page(kvm, 0xfee00);
3638 if (is_error_page(page)) {
3639 r = -EFAULT;
3640 goto out;
3641 }
3642
3643 kvm->arch.apic_access_page = page;
f78e0e2e 3644out:
79fac95e 3645 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3646 return r;
3647}
3648
b7ebfb05
SY
3649static int alloc_identity_pagetable(struct kvm *kvm)
3650{
4484141a 3651 struct page *page;
b7ebfb05
SY
3652 struct kvm_userspace_memory_region kvm_userspace_mem;
3653 int r = 0;
3654
79fac95e 3655 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3656 if (kvm->arch.ept_identity_pagetable)
3657 goto out;
3658 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3659 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3660 kvm_userspace_mem.guest_phys_addr =
3661 kvm->arch.ept_identity_map_addr;
b7ebfb05 3662 kvm_userspace_mem.memory_size = PAGE_SIZE;
f82a8cfe 3663 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
b7ebfb05
SY
3664 if (r)
3665 goto out;
3666
4484141a
XG
3667 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3668 if (is_error_page(page)) {
3669 r = -EFAULT;
3670 goto out;
3671 }
3672
3673 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3674out:
79fac95e 3675 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3676 return r;
3677}
3678
2384d2b3
SY
3679static void allocate_vpid(struct vcpu_vmx *vmx)
3680{
3681 int vpid;
3682
3683 vmx->vpid = 0;
919818ab 3684 if (!enable_vpid)
2384d2b3
SY
3685 return;
3686 spin_lock(&vmx_vpid_lock);
3687 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3688 if (vpid < VMX_NR_VPIDS) {
3689 vmx->vpid = vpid;
3690 __set_bit(vpid, vmx_vpid_bitmap);
3691 }
3692 spin_unlock(&vmx_vpid_lock);
3693}
3694
cdbecfc3
LJ
3695static void free_vpid(struct vcpu_vmx *vmx)
3696{
3697 if (!enable_vpid)
3698 return;
3699 spin_lock(&vmx_vpid_lock);
3700 if (vmx->vpid != 0)
3701 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3702 spin_unlock(&vmx_vpid_lock);
3703}
3704
5897297b 3705static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3706{
3e7c73e9 3707 int f = sizeof(unsigned long);
25c5f225
SY
3708
3709 if (!cpu_has_vmx_msr_bitmap())
3710 return;
3711
3712 /*
3713 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3714 * have the write-low and read-high bitmap offsets the wrong way round.
3715 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3716 */
25c5f225 3717 if (msr <= 0x1fff) {
3e7c73e9
AK
3718 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3719 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3720 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3721 msr &= 0x1fff;
3e7c73e9
AK
3722 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3723 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3724 }
25c5f225
SY
3725}
3726
5897297b
AK
3727static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3728{
3729 if (!longmode_only)
3730 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3731 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3732}
3733
a3a8ff8e
NHE
3734/*
3735 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3736 * will not change in the lifetime of the guest.
3737 * Note that host-state that does change is set elsewhere. E.g., host-state
3738 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3739 */
3740static void vmx_set_constant_host_state(void)
3741{
3742 u32 low32, high32;
3743 unsigned long tmpl;
3744 struct desc_ptr dt;
3745
b1a74bf8 3746 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
3747 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3748 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3749
3750 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
3751#ifdef CONFIG_X86_64
3752 /*
3753 * Load null selectors, so we can avoid reloading them in
3754 * __vmx_load_host_state(), in case userspace uses the null selectors
3755 * too (the expected case).
3756 */
3757 vmcs_write16(HOST_DS_SELECTOR, 0);
3758 vmcs_write16(HOST_ES_SELECTOR, 0);
3759#else
a3a8ff8e
NHE
3760 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3761 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 3762#endif
a3a8ff8e
NHE
3763 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3764 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3765
3766 native_store_idt(&dt);
3767 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3768
83287ea4 3769 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
3770
3771 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3772 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3773 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3774 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3775
3776 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3777 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3778 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3779 }
3780}
3781
bf8179a0
NHE
3782static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3783{
3784 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3785 if (enable_ept)
3786 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3787 if (is_guest_mode(&vmx->vcpu))
3788 vmx->vcpu.arch.cr4_guest_owned_bits &=
3789 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3790 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3791}
3792
3793static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3794{
3795 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3796 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3797 exec_control &= ~CPU_BASED_TPR_SHADOW;
3798#ifdef CONFIG_X86_64
3799 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3800 CPU_BASED_CR8_LOAD_EXITING;
3801#endif
3802 }
3803 if (!enable_ept)
3804 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3805 CPU_BASED_CR3_LOAD_EXITING |
3806 CPU_BASED_INVLPG_EXITING;
3807 return exec_control;
3808}
3809
3810static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3811{
3812 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3813 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3814 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3815 if (vmx->vpid == 0)
3816 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3817 if (!enable_ept) {
3818 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3819 enable_unrestricted_guest = 0;
ad756a16
MJ
3820 /* Enable INVPCID for non-ept guests may cause performance regression. */
3821 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
3822 }
3823 if (!enable_unrestricted_guest)
3824 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3825 if (!ple_gap)
3826 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3827 return exec_control;
3828}
3829
ce88decf
XG
3830static void ept_set_mmio_spte_mask(void)
3831{
3832 /*
3833 * EPT Misconfigurations can be generated if the value of bits 2:0
3834 * of an EPT paging-structure entry is 110b (write/execute).
3835 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3836 * spte.
3837 */
3838 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3839}
3840
6aa8b732
AK
3841/*
3842 * Sets up the vmcs for emulated real mode.
3843 */
8b9cf98c 3844static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3845{
2e4ce7f5 3846#ifdef CONFIG_X86_64
6aa8b732 3847 unsigned long a;
2e4ce7f5 3848#endif
6aa8b732 3849 int i;
6aa8b732 3850
6aa8b732 3851 /* I/O */
3e7c73e9
AK
3852 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3853 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3854
25c5f225 3855 if (cpu_has_vmx_msr_bitmap())
5897297b 3856 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3857
6aa8b732
AK
3858 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3859
6aa8b732 3860 /* Control */
1c3d14fe
YS
3861 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3862 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3863
bf8179a0 3864 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3865
83ff3b9d 3866 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3867 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3868 vmx_secondary_exec_control(vmx));
83ff3b9d 3869 }
f78e0e2e 3870
4b8d54f9
ZE
3871 if (ple_gap) {
3872 vmcs_write32(PLE_GAP, ple_gap);
3873 vmcs_write32(PLE_WINDOW, ple_window);
3874 }
3875
c3707958
XG
3876 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3877 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3878 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3879
9581d442
AK
3880 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3881 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3882 vmx_set_constant_host_state();
05b3e0c2 3883#ifdef CONFIG_X86_64
6aa8b732
AK
3884 rdmsrl(MSR_FS_BASE, a);
3885 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3886 rdmsrl(MSR_GS_BASE, a);
3887 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3888#else
3889 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3890 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3891#endif
3892
2cc51560
ED
3893 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3894 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3895 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3896 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3897 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3898
468d472f 3899 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3900 u32 msr_low, msr_high;
3901 u64 host_pat;
468d472f
SY
3902 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3903 host_pat = msr_low | ((u64) msr_high << 32);
3904 /* Write the default value follow host pat */
3905 vmcs_write64(GUEST_IA32_PAT, host_pat);
3906 /* Keep arch.pat sync with GUEST_IA32_PAT */
3907 vmx->vcpu.arch.pat = host_pat;
3908 }
3909
6aa8b732
AK
3910 for (i = 0; i < NR_VMX_MSR; ++i) {
3911 u32 index = vmx_msr_index[i];
3912 u32 data_low, data_high;
a2fa3e9f 3913 int j = vmx->nmsrs;
6aa8b732
AK
3914
3915 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3916 continue;
432bd6cb
AK
3917 if (wrmsr_safe(index, data_low, data_high) < 0)
3918 continue;
26bb0981
AK
3919 vmx->guest_msrs[j].index = i;
3920 vmx->guest_msrs[j].data = 0;
d5696725 3921 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3922 ++vmx->nmsrs;
6aa8b732 3923 }
6aa8b732 3924
1c3d14fe 3925 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3926
3927 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3928 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3929
e00c8cf2 3930 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3931 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
3932
3933 return 0;
3934}
3935
3936static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3937{
3938 struct vcpu_vmx *vmx = to_vmx(vcpu);
3939 u64 msr;
4b9d3a04 3940 int ret;
e00c8cf2 3941
7ffd92c5 3942 vmx->rmode.vm86_active = 0;
e00c8cf2 3943
3b86cd99
JK
3944 vmx->soft_vnmi_blocked = 0;
3945
ad312c7c 3946 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3947 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3948 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3949 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3950 msr |= MSR_IA32_APICBASE_BSP;
3951 kvm_set_apic_base(&vmx->vcpu, msr);
3952
2fb92db1
AK
3953 vmx_segment_cache_clear(vmx);
3954
5706be0d 3955 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3956 /*
3957 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3958 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3959 */
c5af89b6 3960 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3961 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3962 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3963 } else {
ad312c7c
ZX
3964 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3965 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3966 }
e00c8cf2
AK
3967
3968 seg_setup(VCPU_SREG_DS);
3969 seg_setup(VCPU_SREG_ES);
3970 seg_setup(VCPU_SREG_FS);
3971 seg_setup(VCPU_SREG_GS);
3972 seg_setup(VCPU_SREG_SS);
3973
3974 vmcs_write16(GUEST_TR_SELECTOR, 0);
3975 vmcs_writel(GUEST_TR_BASE, 0);
3976 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3977 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3978
3979 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3980 vmcs_writel(GUEST_LDTR_BASE, 0);
3981 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3982 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3983
3984 vmcs_write32(GUEST_SYSENTER_CS, 0);
3985 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3986 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3987
3988 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3989 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3990 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3991 else
5fdbf976 3992 kvm_rip_write(vcpu, 0);
e00c8cf2 3993
e00c8cf2
AK
3994 vmcs_writel(GUEST_GDTR_BASE, 0);
3995 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3996
3997 vmcs_writel(GUEST_IDTR_BASE, 0);
3998 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3999
443381a8 4000 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4001 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4002 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4003
e00c8cf2
AK
4004 /* Special registers */
4005 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4006
4007 setup_msrs(vmx);
4008
6aa8b732
AK
4009 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4010
f78e0e2e
SY
4011 if (cpu_has_vmx_tpr_shadow()) {
4012 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4013 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4014 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4015 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4016 vmcs_write32(TPR_THRESHOLD, 0);
4017 }
4018
4019 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4020 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4021 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4022
2384d2b3
SY
4023 if (vmx->vpid != 0)
4024 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4025
fa40052c 4026 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
7a4f5ad0 4027 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4d4ec087 4028 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
7a4f5ad0 4029 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8b9cf98c 4030 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4031 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4032 vmx_fpu_activate(&vmx->vcpu);
4033 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4034
b9d762fa 4035 vpid_sync_context(vmx);
2384d2b3 4036
3200f405 4037 ret = 0;
6aa8b732 4038
a89a8fb9
MG
4039 /* HACK: Don't enable emulation on guest boot/reset */
4040 vmx->emulation_required = 0;
4041
6aa8b732
AK
4042 return ret;
4043}
4044
b6f1250e
NHE
4045/*
4046 * In nested virtualization, check if L1 asked to exit on external interrupts.
4047 * For most existing hypervisors, this will always return true.
4048 */
4049static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4050{
4051 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4052 PIN_BASED_EXT_INTR_MASK;
4053}
4054
3b86cd99
JK
4055static void enable_irq_window(struct kvm_vcpu *vcpu)
4056{
4057 u32 cpu_based_vm_exec_control;
d6185f20
NHE
4058 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4059 /*
4060 * We get here if vmx_interrupt_allowed() said we can't
4061 * inject to L1 now because L2 must run. Ask L2 to exit
4062 * right after entry, so we can inject to L1 more promptly.
b6f1250e 4063 */
d6185f20 4064 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 4065 return;
d6185f20 4066 }
3b86cd99
JK
4067
4068 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4069 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4070 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4071}
4072
4073static void enable_nmi_window(struct kvm_vcpu *vcpu)
4074{
4075 u32 cpu_based_vm_exec_control;
4076
4077 if (!cpu_has_virtual_nmis()) {
4078 enable_irq_window(vcpu);
4079 return;
4080 }
4081
30bd0c4c
AK
4082 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4083 enable_irq_window(vcpu);
4084 return;
4085 }
3b86cd99
JK
4086 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4087 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4088 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4089}
4090
66fd3f7f 4091static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4092{
9c8cba37 4093 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4094 uint32_t intr;
4095 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4096
229456fc 4097 trace_kvm_inj_virq(irq);
2714d1d3 4098
fa89a817 4099 ++vcpu->stat.irq_injections;
7ffd92c5 4100 if (vmx->rmode.vm86_active) {
71f9833b
SH
4101 int inc_eip = 0;
4102 if (vcpu->arch.interrupt.soft)
4103 inc_eip = vcpu->arch.event_exit_inst_len;
4104 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4105 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4106 return;
4107 }
66fd3f7f
GN
4108 intr = irq | INTR_INFO_VALID_MASK;
4109 if (vcpu->arch.interrupt.soft) {
4110 intr |= INTR_TYPE_SOFT_INTR;
4111 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4112 vmx->vcpu.arch.event_exit_inst_len);
4113 } else
4114 intr |= INTR_TYPE_EXT_INTR;
4115 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4116}
4117
f08864b4
SY
4118static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4119{
66a5a347
JK
4120 struct vcpu_vmx *vmx = to_vmx(vcpu);
4121
0b6ac343
NHE
4122 if (is_guest_mode(vcpu))
4123 return;
4124
3b86cd99
JK
4125 if (!cpu_has_virtual_nmis()) {
4126 /*
4127 * Tracking the NMI-blocked state in software is built upon
4128 * finding the next open IRQ window. This, in turn, depends on
4129 * well-behaving guests: They have to keep IRQs disabled at
4130 * least as long as the NMI handler runs. Otherwise we may
4131 * cause NMI nesting, maybe breaking the guest. But as this is
4132 * highly unlikely, we can live with the residual risk.
4133 */
4134 vmx->soft_vnmi_blocked = 1;
4135 vmx->vnmi_blocked_time = 0;
4136 }
4137
487b391d 4138 ++vcpu->stat.nmi_injections;
9d58b931 4139 vmx->nmi_known_unmasked = false;
7ffd92c5 4140 if (vmx->rmode.vm86_active) {
71f9833b 4141 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4142 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4143 return;
4144 }
f08864b4
SY
4145 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4146 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4147}
4148
c4282df9 4149static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4150{
3b86cd99 4151 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4152 return 0;
33f089ca 4153
c4282df9 4154 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4155 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4156 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4157}
4158
3cfc3092
JK
4159static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4160{
4161 if (!cpu_has_virtual_nmis())
4162 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4163 if (to_vmx(vcpu)->nmi_known_unmasked)
4164 return false;
c332c83a 4165 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4166}
4167
4168static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4169{
4170 struct vcpu_vmx *vmx = to_vmx(vcpu);
4171
4172 if (!cpu_has_virtual_nmis()) {
4173 if (vmx->soft_vnmi_blocked != masked) {
4174 vmx->soft_vnmi_blocked = masked;
4175 vmx->vnmi_blocked_time = 0;
4176 }
4177 } else {
9d58b931 4178 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4179 if (masked)
4180 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4181 GUEST_INTR_STATE_NMI);
4182 else
4183 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4184 GUEST_INTR_STATE_NMI);
4185 }
4186}
4187
78646121
GN
4188static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4189{
b6f1250e 4190 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4191 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4192 if (to_vmx(vcpu)->nested.nested_run_pending ||
4193 (vmcs12->idt_vectoring_info_field &
4194 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4195 return 0;
4196 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4197 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4198 vmcs12->vm_exit_intr_info = 0;
4199 /* fall through to normal code, but now in L1, not L2 */
4200 }
4201
c4282df9
GN
4202 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4203 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4204 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4205}
4206
cbc94022
IE
4207static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4208{
4209 int ret;
4210 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4211 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4212 .guest_phys_addr = addr,
4213 .memory_size = PAGE_SIZE * 3,
4214 .flags = 0,
4215 };
4216
f82a8cfe 4217 ret = kvm_set_memory_region(kvm, &tss_mem, false);
cbc94022
IE
4218 if (ret)
4219 return ret;
bfc6d222 4220 kvm->arch.tss_addr = addr;
93ea5388
GN
4221 if (!init_rmode_tss(kvm))
4222 return -ENOMEM;
4223
cbc94022
IE
4224 return 0;
4225}
4226
6aa8b732
AK
4227static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4228 int vec, u32 err_code)
4229{
b3f37707
NK
4230 /*
4231 * Instruction with address size override prefix opcode 0x67
4232 * Cause the #SS fault with 0 error code in VM86 mode.
4233 */
4234 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4235 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4236 return 1;
77ab6db0
JK
4237 /*
4238 * Forward all other exceptions that are valid in real mode.
4239 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4240 * the required debugging infrastructure rework.
4241 */
4242 switch (vec) {
77ab6db0 4243 case DB_VECTOR:
d0bfb940
JK
4244 if (vcpu->guest_debug &
4245 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4246 return 0;
4247 kvm_queue_exception(vcpu, vec);
4248 return 1;
77ab6db0 4249 case BP_VECTOR:
c573cd22
JK
4250 /*
4251 * Update instruction length as we may reinject the exception
4252 * from user space while in guest debugging mode.
4253 */
4254 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4255 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4256 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4257 return 0;
4258 /* fall through */
4259 case DE_VECTOR:
77ab6db0
JK
4260 case OF_VECTOR:
4261 case BR_VECTOR:
4262 case UD_VECTOR:
4263 case DF_VECTOR:
4264 case SS_VECTOR:
4265 case GP_VECTOR:
4266 case MF_VECTOR:
4267 kvm_queue_exception(vcpu, vec);
4268 return 1;
4269 }
6aa8b732
AK
4270 return 0;
4271}
4272
a0861c02
AK
4273/*
4274 * Trigger machine check on the host. We assume all the MSRs are already set up
4275 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4276 * We pass a fake environment to the machine check handler because we want
4277 * the guest to be always treated like user space, no matter what context
4278 * it used internally.
4279 */
4280static void kvm_machine_check(void)
4281{
4282#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4283 struct pt_regs regs = {
4284 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4285 .flags = X86_EFLAGS_IF,
4286 };
4287
4288 do_machine_check(&regs, 0);
4289#endif
4290}
4291
851ba692 4292static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4293{
4294 /* already handled by vcpu_run */
4295 return 1;
4296}
4297
851ba692 4298static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4299{
1155f76a 4300 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4301 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4302 u32 intr_info, ex_no, error_code;
42dbaa5a 4303 unsigned long cr2, rip, dr6;
6aa8b732
AK
4304 u32 vect_info;
4305 enum emulation_result er;
4306
1155f76a 4307 vect_info = vmx->idt_vectoring_info;
88786475 4308 intr_info = vmx->exit_intr_info;
6aa8b732 4309
a0861c02 4310 if (is_machine_check(intr_info))
851ba692 4311 return handle_machine_check(vcpu);
a0861c02 4312
e4a41889 4313 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4314 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4315
4316 if (is_no_device(intr_info)) {
5fd86fcf 4317 vmx_fpu_activate(vcpu);
2ab455cc
AL
4318 return 1;
4319 }
4320
7aa81cc0 4321 if (is_invalid_opcode(intr_info)) {
51d8b661 4322 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4323 if (er != EMULATE_DONE)
7ee5d940 4324 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4325 return 1;
4326 }
4327
6aa8b732 4328 error_code = 0;
2e11384c 4329 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4330 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4331
4332 /*
4333 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4334 * MMIO, it is better to report an internal error.
4335 * See the comments in vmx_handle_exit.
4336 */
4337 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4338 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4339 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4340 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4341 vcpu->run->internal.ndata = 2;
4342 vcpu->run->internal.data[0] = vect_info;
4343 vcpu->run->internal.data[1] = intr_info;
4344 return 0;
4345 }
4346
6aa8b732 4347 if (is_page_fault(intr_info)) {
1439442c 4348 /* EPT won't cause page fault directly */
cf3ace79 4349 BUG_ON(enable_ept);
6aa8b732 4350 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4351 trace_kvm_page_fault(cr2, error_code);
4352
3298b75c 4353 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4354 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4355 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4356 }
4357
7ffd92c5 4358 if (vmx->rmode.vm86_active &&
6aa8b732 4359 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4360 error_code)) {
ad312c7c
ZX
4361 if (vcpu->arch.halt_request) {
4362 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4363 return kvm_emulate_halt(vcpu);
4364 }
6aa8b732 4365 return 1;
72d6e5a0 4366 }
6aa8b732 4367
d0bfb940 4368 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4369 switch (ex_no) {
4370 case DB_VECTOR:
4371 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4372 if (!(vcpu->guest_debug &
4373 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4374 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4375 kvm_queue_exception(vcpu, DB_VECTOR);
4376 return 1;
4377 }
4378 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4379 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4380 /* fall through */
4381 case BP_VECTOR:
c573cd22
JK
4382 /*
4383 * Update instruction length as we may reinject #BP from
4384 * user space while in guest debugging mode. Reading it for
4385 * #DB as well causes no harm, it is not used in that case.
4386 */
4387 vmx->vcpu.arch.event_exit_inst_len =
4388 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4389 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4390 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4391 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4392 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4393 break;
4394 default:
d0bfb940
JK
4395 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4396 kvm_run->ex.exception = ex_no;
4397 kvm_run->ex.error_code = error_code;
42dbaa5a 4398 break;
6aa8b732 4399 }
6aa8b732
AK
4400 return 0;
4401}
4402
851ba692 4403static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4404{
1165f5fe 4405 ++vcpu->stat.irq_exits;
6aa8b732
AK
4406 return 1;
4407}
4408
851ba692 4409static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4410{
851ba692 4411 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4412 return 0;
4413}
6aa8b732 4414
851ba692 4415static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4416{
bfdaab09 4417 unsigned long exit_qualification;
34c33d16 4418 int size, in, string;
039576c0 4419 unsigned port;
6aa8b732 4420
bfdaab09 4421 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4422 string = (exit_qualification & 16) != 0;
cf8f70bf 4423 in = (exit_qualification & 8) != 0;
e70669ab 4424
cf8f70bf 4425 ++vcpu->stat.io_exits;
e70669ab 4426
cf8f70bf 4427 if (string || in)
51d8b661 4428 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4429
cf8f70bf
GN
4430 port = exit_qualification >> 16;
4431 size = (exit_qualification & 7) + 1;
e93f36bc 4432 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4433
4434 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4435}
4436
102d8325
IM
4437static void
4438vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4439{
4440 /*
4441 * Patch in the VMCALL instruction:
4442 */
4443 hypercall[0] = 0x0f;
4444 hypercall[1] = 0x01;
4445 hypercall[2] = 0xc1;
102d8325
IM
4446}
4447
0fa06071 4448/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4449static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4450{
4451 if (to_vmx(vcpu)->nested.vmxon &&
4452 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4453 return 1;
4454
4455 if (is_guest_mode(vcpu)) {
4456 /*
4457 * We get here when L2 changed cr0 in a way that did not change
4458 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4459 * but did change L0 shadowed bits. This can currently happen
4460 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4461 * loading) while pretending to allow the guest to change it.
4462 */
4463 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4464 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4465 return 1;
4466 vmcs_writel(CR0_READ_SHADOW, val);
4467 return 0;
4468 } else
4469 return kvm_set_cr0(vcpu, val);
4470}
4471
4472static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4473{
4474 if (is_guest_mode(vcpu)) {
4475 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4476 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4477 return 1;
4478 vmcs_writel(CR4_READ_SHADOW, val);
4479 return 0;
4480 } else
4481 return kvm_set_cr4(vcpu, val);
4482}
4483
4484/* called to set cr0 as approriate for clts instruction exit. */
4485static void handle_clts(struct kvm_vcpu *vcpu)
4486{
4487 if (is_guest_mode(vcpu)) {
4488 /*
4489 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4490 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4491 * just pretend it's off (also in arch.cr0 for fpu_activate).
4492 */
4493 vmcs_writel(CR0_READ_SHADOW,
4494 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4495 vcpu->arch.cr0 &= ~X86_CR0_TS;
4496 } else
4497 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4498}
4499
851ba692 4500static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4501{
229456fc 4502 unsigned long exit_qualification, val;
6aa8b732
AK
4503 int cr;
4504 int reg;
49a9b07e 4505 int err;
6aa8b732 4506
bfdaab09 4507 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4508 cr = exit_qualification & 15;
4509 reg = (exit_qualification >> 8) & 15;
4510 switch ((exit_qualification >> 4) & 3) {
4511 case 0: /* mov to cr */
229456fc
MT
4512 val = kvm_register_read(vcpu, reg);
4513 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4514 switch (cr) {
4515 case 0:
eeadf9e7 4516 err = handle_set_cr0(vcpu, val);
db8fcefa 4517 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4518 return 1;
4519 case 3:
2390218b 4520 err = kvm_set_cr3(vcpu, val);
db8fcefa 4521 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4522 return 1;
4523 case 4:
eeadf9e7 4524 err = handle_set_cr4(vcpu, val);
db8fcefa 4525 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4526 return 1;
0a5fff19
GN
4527 case 8: {
4528 u8 cr8_prev = kvm_get_cr8(vcpu);
4529 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4530 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4531 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4532 if (irqchip_in_kernel(vcpu->kvm))
4533 return 1;
4534 if (cr8_prev <= cr8)
4535 return 1;
851ba692 4536 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4537 return 0;
4538 }
4b8073e4 4539 }
6aa8b732 4540 break;
25c4c276 4541 case 2: /* clts */
eeadf9e7 4542 handle_clts(vcpu);
4d4ec087 4543 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4544 skip_emulated_instruction(vcpu);
6b52d186 4545 vmx_fpu_activate(vcpu);
25c4c276 4546 return 1;
6aa8b732
AK
4547 case 1: /*mov from cr*/
4548 switch (cr) {
4549 case 3:
9f8fe504
AK
4550 val = kvm_read_cr3(vcpu);
4551 kvm_register_write(vcpu, reg, val);
4552 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4553 skip_emulated_instruction(vcpu);
4554 return 1;
4555 case 8:
229456fc
MT
4556 val = kvm_get_cr8(vcpu);
4557 kvm_register_write(vcpu, reg, val);
4558 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4559 skip_emulated_instruction(vcpu);
4560 return 1;
4561 }
4562 break;
4563 case 3: /* lmsw */
a1f83a74 4564 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4565 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4566 kvm_lmsw(vcpu, val);
6aa8b732
AK
4567
4568 skip_emulated_instruction(vcpu);
4569 return 1;
4570 default:
4571 break;
4572 }
851ba692 4573 vcpu->run->exit_reason = 0;
a737f256 4574 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4575 (int)(exit_qualification >> 4) & 3, cr);
4576 return 0;
4577}
4578
851ba692 4579static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4580{
bfdaab09 4581 unsigned long exit_qualification;
6aa8b732
AK
4582 int dr, reg;
4583
f2483415 4584 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4585 if (!kvm_require_cpl(vcpu, 0))
4586 return 1;
42dbaa5a
JK
4587 dr = vmcs_readl(GUEST_DR7);
4588 if (dr & DR7_GD) {
4589 /*
4590 * As the vm-exit takes precedence over the debug trap, we
4591 * need to emulate the latter, either for the host or the
4592 * guest debugging itself.
4593 */
4594 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4595 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4596 vcpu->run->debug.arch.dr7 = dr;
4597 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4598 vmcs_readl(GUEST_CS_BASE) +
4599 vmcs_readl(GUEST_RIP);
851ba692
AK
4600 vcpu->run->debug.arch.exception = DB_VECTOR;
4601 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4602 return 0;
4603 } else {
4604 vcpu->arch.dr7 &= ~DR7_GD;
4605 vcpu->arch.dr6 |= DR6_BD;
4606 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4607 kvm_queue_exception(vcpu, DB_VECTOR);
4608 return 1;
4609 }
4610 }
4611
bfdaab09 4612 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4613 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4614 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4615 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4616 unsigned long val;
4617 if (!kvm_get_dr(vcpu, dr, &val))
4618 kvm_register_write(vcpu, reg, val);
4619 } else
4620 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4621 skip_emulated_instruction(vcpu);
4622 return 1;
4623}
4624
020df079
GN
4625static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4626{
4627 vmcs_writel(GUEST_DR7, val);
4628}
4629
851ba692 4630static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4631{
06465c5a
AK
4632 kvm_emulate_cpuid(vcpu);
4633 return 1;
6aa8b732
AK
4634}
4635
851ba692 4636static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4637{
ad312c7c 4638 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4639 u64 data;
4640
4641 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4642 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4643 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4644 return 1;
4645 }
4646
229456fc 4647 trace_kvm_msr_read(ecx, data);
2714d1d3 4648
6aa8b732 4649 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4650 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4651 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4652 skip_emulated_instruction(vcpu);
4653 return 1;
4654}
4655
851ba692 4656static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4657{
8fe8ab46 4658 struct msr_data msr;
ad312c7c
ZX
4659 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4660 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4661 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 4662
8fe8ab46
WA
4663 msr.data = data;
4664 msr.index = ecx;
4665 msr.host_initiated = false;
4666 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 4667 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4668 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4669 return 1;
4670 }
4671
59200273 4672 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4673 skip_emulated_instruction(vcpu);
4674 return 1;
4675}
4676
851ba692 4677static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4678{
3842d135 4679 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4680 return 1;
4681}
4682
851ba692 4683static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4684{
85f455f7
ED
4685 u32 cpu_based_vm_exec_control;
4686
4687 /* clear pending irq */
4688 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4689 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4690 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4691
3842d135
AK
4692 kvm_make_request(KVM_REQ_EVENT, vcpu);
4693
a26bf12a 4694 ++vcpu->stat.irq_window_exits;
2714d1d3 4695
c1150d8c
DL
4696 /*
4697 * If the user space waits to inject interrupts, exit as soon as
4698 * possible
4699 */
8061823a 4700 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4701 vcpu->run->request_interrupt_window &&
8061823a 4702 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4703 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4704 return 0;
4705 }
6aa8b732
AK
4706 return 1;
4707}
4708
851ba692 4709static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4710{
4711 skip_emulated_instruction(vcpu);
d3bef15f 4712 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4713}
4714
851ba692 4715static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4716{
510043da 4717 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4718 kvm_emulate_hypercall(vcpu);
4719 return 1;
c21415e8
IM
4720}
4721
ec25d5e6
GN
4722static int handle_invd(struct kvm_vcpu *vcpu)
4723{
51d8b661 4724 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4725}
4726
851ba692 4727static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4728{
f9c617f6 4729 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4730
4731 kvm_mmu_invlpg(vcpu, exit_qualification);
4732 skip_emulated_instruction(vcpu);
4733 return 1;
4734}
4735
fee84b07
AK
4736static int handle_rdpmc(struct kvm_vcpu *vcpu)
4737{
4738 int err;
4739
4740 err = kvm_rdpmc(vcpu);
4741 kvm_complete_insn_gp(vcpu, err);
4742
4743 return 1;
4744}
4745
851ba692 4746static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4747{
4748 skip_emulated_instruction(vcpu);
f5f48ee1 4749 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4750 return 1;
4751}
4752
2acf923e
DC
4753static int handle_xsetbv(struct kvm_vcpu *vcpu)
4754{
4755 u64 new_bv = kvm_read_edx_eax(vcpu);
4756 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4757
4758 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4759 skip_emulated_instruction(vcpu);
4760 return 1;
4761}
4762
851ba692 4763static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4764{
58fbbf26
KT
4765 if (likely(fasteoi)) {
4766 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4767 int access_type, offset;
4768
4769 access_type = exit_qualification & APIC_ACCESS_TYPE;
4770 offset = exit_qualification & APIC_ACCESS_OFFSET;
4771 /*
4772 * Sane guest uses MOV to write EOI, with written value
4773 * not cared. So make a short-circuit here by avoiding
4774 * heavy instruction emulation.
4775 */
4776 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4777 (offset == APIC_EOI)) {
4778 kvm_lapic_set_eoi(vcpu);
4779 skip_emulated_instruction(vcpu);
4780 return 1;
4781 }
4782 }
51d8b661 4783 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4784}
4785
851ba692 4786static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4787{
60637aac 4788 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4789 unsigned long exit_qualification;
e269fb21
JK
4790 bool has_error_code = false;
4791 u32 error_code = 0;
37817f29 4792 u16 tss_selector;
7f3d35fd 4793 int reason, type, idt_v, idt_index;
64a7ec06
GN
4794
4795 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 4796 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 4797 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4798
4799 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4800
4801 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4802 if (reason == TASK_SWITCH_GATE && idt_v) {
4803 switch (type) {
4804 case INTR_TYPE_NMI_INTR:
4805 vcpu->arch.nmi_injected = false;
654f06fc 4806 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4807 break;
4808 case INTR_TYPE_EXT_INTR:
66fd3f7f 4809 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4810 kvm_clear_interrupt_queue(vcpu);
4811 break;
4812 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4813 if (vmx->idt_vectoring_info &
4814 VECTORING_INFO_DELIVER_CODE_MASK) {
4815 has_error_code = true;
4816 error_code =
4817 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4818 }
4819 /* fall through */
64a7ec06
GN
4820 case INTR_TYPE_SOFT_EXCEPTION:
4821 kvm_clear_exception_queue(vcpu);
4822 break;
4823 default:
4824 break;
4825 }
60637aac 4826 }
37817f29
IE
4827 tss_selector = exit_qualification;
4828
64a7ec06
GN
4829 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4830 type != INTR_TYPE_EXT_INTR &&
4831 type != INTR_TYPE_NMI_INTR))
4832 skip_emulated_instruction(vcpu);
4833
7f3d35fd
KW
4834 if (kvm_task_switch(vcpu, tss_selector,
4835 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4836 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
4837 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4838 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4839 vcpu->run->internal.ndata = 0;
42dbaa5a 4840 return 0;
acb54517 4841 }
42dbaa5a
JK
4842
4843 /* clear all local breakpoint enable flags */
4844 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4845
4846 /*
4847 * TODO: What about debug traps on tss switch?
4848 * Are we supposed to inject them and update dr6?
4849 */
4850
4851 return 1;
37817f29
IE
4852}
4853
851ba692 4854static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4855{
f9c617f6 4856 unsigned long exit_qualification;
1439442c 4857 gpa_t gpa;
4f5982a5 4858 u32 error_code;
1439442c 4859 int gla_validity;
1439442c 4860
f9c617f6 4861 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 4862
1439442c
SY
4863 gla_validity = (exit_qualification >> 7) & 0x3;
4864 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4865 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4866 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4867 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4868 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4869 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4870 (long unsigned int)exit_qualification);
851ba692
AK
4871 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4872 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4873 return 0;
1439442c
SY
4874 }
4875
4876 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4877 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
4878
4879 /* It is a write fault? */
4880 error_code = exit_qualification & (1U << 1);
4881 /* ept page table is present? */
4882 error_code |= (exit_qualification >> 3) & 0x1;
4883
4884 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
4885}
4886
68f89400
MT
4887static u64 ept_rsvd_mask(u64 spte, int level)
4888{
4889 int i;
4890 u64 mask = 0;
4891
4892 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4893 mask |= (1ULL << i);
4894
4895 if (level > 2)
4896 /* bits 7:3 reserved */
4897 mask |= 0xf8;
4898 else if (level == 2) {
4899 if (spte & (1ULL << 7))
4900 /* 2MB ref, bits 20:12 reserved */
4901 mask |= 0x1ff000;
4902 else
4903 /* bits 6:3 reserved */
4904 mask |= 0x78;
4905 }
4906
4907 return mask;
4908}
4909
4910static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4911 int level)
4912{
4913 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4914
4915 /* 010b (write-only) */
4916 WARN_ON((spte & 0x7) == 0x2);
4917
4918 /* 110b (write/execute) */
4919 WARN_ON((spte & 0x7) == 0x6);
4920
4921 /* 100b (execute-only) and value not supported by logical processor */
4922 if (!cpu_has_vmx_ept_execute_only())
4923 WARN_ON((spte & 0x7) == 0x4);
4924
4925 /* not 000b */
4926 if ((spte & 0x7)) {
4927 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4928
4929 if (rsvd_bits != 0) {
4930 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4931 __func__, rsvd_bits);
4932 WARN_ON(1);
4933 }
4934
4935 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4936 u64 ept_mem_type = (spte & 0x38) >> 3;
4937
4938 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4939 ept_mem_type == 7) {
4940 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4941 __func__, ept_mem_type);
4942 WARN_ON(1);
4943 }
4944 }
4945 }
4946}
4947
851ba692 4948static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4949{
4950 u64 sptes[4];
ce88decf 4951 int nr_sptes, i, ret;
68f89400
MT
4952 gpa_t gpa;
4953
4954 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4955
ce88decf
XG
4956 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4957 if (likely(ret == 1))
4958 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4959 EMULATE_DONE;
4960 if (unlikely(!ret))
4961 return 1;
4962
4963 /* It is the real ept misconfig */
68f89400
MT
4964 printk(KERN_ERR "EPT: Misconfiguration.\n");
4965 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4966
4967 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4968
4969 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4970 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4971
851ba692
AK
4972 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4973 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4974
4975 return 0;
4976}
4977
851ba692 4978static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4979{
4980 u32 cpu_based_vm_exec_control;
4981
4982 /* clear pending NMI */
4983 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4984 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4985 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4986 ++vcpu->stat.nmi_window_exits;
3842d135 4987 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4988
4989 return 1;
4990}
4991
80ced186 4992static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4993{
8b3079a5
AK
4994 struct vcpu_vmx *vmx = to_vmx(vcpu);
4995 enum emulation_result err = EMULATE_DONE;
80ced186 4996 int ret = 1;
49e9d557
AK
4997 u32 cpu_exec_ctrl;
4998 bool intr_window_requested;
b8405c18 4999 unsigned count = 130;
49e9d557
AK
5000
5001 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5002 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5003
b8405c18 5004 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5005 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5006 return handle_interrupt_window(&vmx->vcpu);
5007
de87dcdd
AK
5008 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5009 return 1;
5010
51d8b661 5011 err = emulate_instruction(vcpu, 0);
ea953ef0 5012
80ced186
MG
5013 if (err == EMULATE_DO_MMIO) {
5014 ret = 0;
5015 goto out;
5016 }
1d5a4d9b 5017
de5f70e0
AK
5018 if (err != EMULATE_DONE) {
5019 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5020 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5021 vcpu->run->internal.ndata = 0;
6d77dbfc 5022 return 0;
de5f70e0 5023 }
ea953ef0
MG
5024
5025 if (signal_pending(current))
80ced186 5026 goto out;
ea953ef0
MG
5027 if (need_resched())
5028 schedule();
5029 }
5030
7c068e45 5031 vmx->emulation_required = !guest_state_valid(vcpu);
80ced186
MG
5032out:
5033 return ret;
ea953ef0
MG
5034}
5035
4b8d54f9
ZE
5036/*
5037 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5038 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5039 */
9fb41ba8 5040static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5041{
5042 skip_emulated_instruction(vcpu);
5043 kvm_vcpu_on_spin(vcpu);
5044
5045 return 1;
5046}
5047
59708670
SY
5048static int handle_invalid_op(struct kvm_vcpu *vcpu)
5049{
5050 kvm_queue_exception(vcpu, UD_VECTOR);
5051 return 1;
5052}
5053
ff2f6fe9
NHE
5054/*
5055 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5056 * We could reuse a single VMCS for all the L2 guests, but we also want the
5057 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5058 * allows keeping them loaded on the processor, and in the future will allow
5059 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5060 * every entry if they never change.
5061 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5062 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5063 *
5064 * The following functions allocate and free a vmcs02 in this pool.
5065 */
5066
5067/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5068static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5069{
5070 struct vmcs02_list *item;
5071 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5072 if (item->vmptr == vmx->nested.current_vmptr) {
5073 list_move(&item->list, &vmx->nested.vmcs02_pool);
5074 return &item->vmcs02;
5075 }
5076
5077 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5078 /* Recycle the least recently used VMCS. */
5079 item = list_entry(vmx->nested.vmcs02_pool.prev,
5080 struct vmcs02_list, list);
5081 item->vmptr = vmx->nested.current_vmptr;
5082 list_move(&item->list, &vmx->nested.vmcs02_pool);
5083 return &item->vmcs02;
5084 }
5085
5086 /* Create a new VMCS */
5087 item = (struct vmcs02_list *)
5088 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5089 if (!item)
5090 return NULL;
5091 item->vmcs02.vmcs = alloc_vmcs();
5092 if (!item->vmcs02.vmcs) {
5093 kfree(item);
5094 return NULL;
5095 }
5096 loaded_vmcs_init(&item->vmcs02);
5097 item->vmptr = vmx->nested.current_vmptr;
5098 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5099 vmx->nested.vmcs02_num++;
5100 return &item->vmcs02;
5101}
5102
5103/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5104static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5105{
5106 struct vmcs02_list *item;
5107 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5108 if (item->vmptr == vmptr) {
5109 free_loaded_vmcs(&item->vmcs02);
5110 list_del(&item->list);
5111 kfree(item);
5112 vmx->nested.vmcs02_num--;
5113 return;
5114 }
5115}
5116
5117/*
5118 * Free all VMCSs saved for this vcpu, except the one pointed by
5119 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5120 * currently used, if running L2), and vmcs01 when running L2.
5121 */
5122static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5123{
5124 struct vmcs02_list *item, *n;
5125 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5126 if (vmx->loaded_vmcs != &item->vmcs02)
5127 free_loaded_vmcs(&item->vmcs02);
5128 list_del(&item->list);
5129 kfree(item);
5130 }
5131 vmx->nested.vmcs02_num = 0;
5132
5133 if (vmx->loaded_vmcs != &vmx->vmcs01)
5134 free_loaded_vmcs(&vmx->vmcs01);
5135}
5136
ec378aee
NHE
5137/*
5138 * Emulate the VMXON instruction.
5139 * Currently, we just remember that VMX is active, and do not save or even
5140 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5141 * do not currently need to store anything in that guest-allocated memory
5142 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5143 * argument is different from the VMXON pointer (which the spec says they do).
5144 */
5145static int handle_vmon(struct kvm_vcpu *vcpu)
5146{
5147 struct kvm_segment cs;
5148 struct vcpu_vmx *vmx = to_vmx(vcpu);
5149
5150 /* The Intel VMX Instruction Reference lists a bunch of bits that
5151 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5152 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5153 * Otherwise, we should fail with #UD. We test these now:
5154 */
5155 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5156 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5157 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5158 kvm_queue_exception(vcpu, UD_VECTOR);
5159 return 1;
5160 }
5161
5162 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5163 if (is_long_mode(vcpu) && !cs.l) {
5164 kvm_queue_exception(vcpu, UD_VECTOR);
5165 return 1;
5166 }
5167
5168 if (vmx_get_cpl(vcpu)) {
5169 kvm_inject_gp(vcpu, 0);
5170 return 1;
5171 }
5172
ff2f6fe9
NHE
5173 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5174 vmx->nested.vmcs02_num = 0;
5175
ec378aee
NHE
5176 vmx->nested.vmxon = true;
5177
5178 skip_emulated_instruction(vcpu);
5179 return 1;
5180}
5181
5182/*
5183 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5184 * for running VMX instructions (except VMXON, whose prerequisites are
5185 * slightly different). It also specifies what exception to inject otherwise.
5186 */
5187static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5188{
5189 struct kvm_segment cs;
5190 struct vcpu_vmx *vmx = to_vmx(vcpu);
5191
5192 if (!vmx->nested.vmxon) {
5193 kvm_queue_exception(vcpu, UD_VECTOR);
5194 return 0;
5195 }
5196
5197 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5198 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5199 (is_long_mode(vcpu) && !cs.l)) {
5200 kvm_queue_exception(vcpu, UD_VECTOR);
5201 return 0;
5202 }
5203
5204 if (vmx_get_cpl(vcpu)) {
5205 kvm_inject_gp(vcpu, 0);
5206 return 0;
5207 }
5208
5209 return 1;
5210}
5211
5212/*
5213 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5214 * just stops using VMX.
5215 */
5216static void free_nested(struct vcpu_vmx *vmx)
5217{
5218 if (!vmx->nested.vmxon)
5219 return;
5220 vmx->nested.vmxon = false;
a9d30f33
NHE
5221 if (vmx->nested.current_vmptr != -1ull) {
5222 kunmap(vmx->nested.current_vmcs12_page);
5223 nested_release_page(vmx->nested.current_vmcs12_page);
5224 vmx->nested.current_vmptr = -1ull;
5225 vmx->nested.current_vmcs12 = NULL;
5226 }
fe3ef05c
NHE
5227 /* Unpin physical memory we referred to in current vmcs02 */
5228 if (vmx->nested.apic_access_page) {
5229 nested_release_page(vmx->nested.apic_access_page);
5230 vmx->nested.apic_access_page = 0;
5231 }
ff2f6fe9
NHE
5232
5233 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5234}
5235
5236/* Emulate the VMXOFF instruction */
5237static int handle_vmoff(struct kvm_vcpu *vcpu)
5238{
5239 if (!nested_vmx_check_permission(vcpu))
5240 return 1;
5241 free_nested(to_vmx(vcpu));
5242 skip_emulated_instruction(vcpu);
5243 return 1;
5244}
5245
064aea77
NHE
5246/*
5247 * Decode the memory-address operand of a vmx instruction, as recorded on an
5248 * exit caused by such an instruction (run by a guest hypervisor).
5249 * On success, returns 0. When the operand is invalid, returns 1 and throws
5250 * #UD or #GP.
5251 */
5252static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5253 unsigned long exit_qualification,
5254 u32 vmx_instruction_info, gva_t *ret)
5255{
5256 /*
5257 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5258 * Execution", on an exit, vmx_instruction_info holds most of the
5259 * addressing components of the operand. Only the displacement part
5260 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5261 * For how an actual address is calculated from all these components,
5262 * refer to Vol. 1, "Operand Addressing".
5263 */
5264 int scaling = vmx_instruction_info & 3;
5265 int addr_size = (vmx_instruction_info >> 7) & 7;
5266 bool is_reg = vmx_instruction_info & (1u << 10);
5267 int seg_reg = (vmx_instruction_info >> 15) & 7;
5268 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5269 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5270 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5271 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5272
5273 if (is_reg) {
5274 kvm_queue_exception(vcpu, UD_VECTOR);
5275 return 1;
5276 }
5277
5278 /* Addr = segment_base + offset */
5279 /* offset = base + [index * scale] + displacement */
5280 *ret = vmx_get_segment_base(vcpu, seg_reg);
5281 if (base_is_valid)
5282 *ret += kvm_register_read(vcpu, base_reg);
5283 if (index_is_valid)
5284 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5285 *ret += exit_qualification; /* holds the displacement */
5286
5287 if (addr_size == 1) /* 32 bit */
5288 *ret &= 0xffffffff;
5289
5290 /*
5291 * TODO: throw #GP (and return 1) in various cases that the VM*
5292 * instructions require it - e.g., offset beyond segment limit,
5293 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5294 * address, and so on. Currently these are not checked.
5295 */
5296 return 0;
5297}
5298
0140caea
NHE
5299/*
5300 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5301 * set the success or error code of an emulated VMX instruction, as specified
5302 * by Vol 2B, VMX Instruction Reference, "Conventions".
5303 */
5304static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5305{
5306 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5307 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5308 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5309}
5310
5311static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5312{
5313 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5314 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5315 X86_EFLAGS_SF | X86_EFLAGS_OF))
5316 | X86_EFLAGS_CF);
5317}
5318
5319static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5320 u32 vm_instruction_error)
5321{
5322 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5323 /*
5324 * failValid writes the error number to the current VMCS, which
5325 * can't be done there isn't a current VMCS.
5326 */
5327 nested_vmx_failInvalid(vcpu);
5328 return;
5329 }
5330 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5331 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5332 X86_EFLAGS_SF | X86_EFLAGS_OF))
5333 | X86_EFLAGS_ZF);
5334 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5335}
5336
27d6c865
NHE
5337/* Emulate the VMCLEAR instruction */
5338static int handle_vmclear(struct kvm_vcpu *vcpu)
5339{
5340 struct vcpu_vmx *vmx = to_vmx(vcpu);
5341 gva_t gva;
5342 gpa_t vmptr;
5343 struct vmcs12 *vmcs12;
5344 struct page *page;
5345 struct x86_exception e;
5346
5347 if (!nested_vmx_check_permission(vcpu))
5348 return 1;
5349
5350 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5351 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5352 return 1;
5353
5354 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5355 sizeof(vmptr), &e)) {
5356 kvm_inject_page_fault(vcpu, &e);
5357 return 1;
5358 }
5359
5360 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5361 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5362 skip_emulated_instruction(vcpu);
5363 return 1;
5364 }
5365
5366 if (vmptr == vmx->nested.current_vmptr) {
5367 kunmap(vmx->nested.current_vmcs12_page);
5368 nested_release_page(vmx->nested.current_vmcs12_page);
5369 vmx->nested.current_vmptr = -1ull;
5370 vmx->nested.current_vmcs12 = NULL;
5371 }
5372
5373 page = nested_get_page(vcpu, vmptr);
5374 if (page == NULL) {
5375 /*
5376 * For accurate processor emulation, VMCLEAR beyond available
5377 * physical memory should do nothing at all. However, it is
5378 * possible that a nested vmx bug, not a guest hypervisor bug,
5379 * resulted in this case, so let's shut down before doing any
5380 * more damage:
5381 */
5382 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5383 return 1;
5384 }
5385 vmcs12 = kmap(page);
5386 vmcs12->launch_state = 0;
5387 kunmap(page);
5388 nested_release_page(page);
5389
5390 nested_free_vmcs02(vmx, vmptr);
5391
5392 skip_emulated_instruction(vcpu);
5393 nested_vmx_succeed(vcpu);
5394 return 1;
5395}
5396
cd232ad0
NHE
5397static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5398
5399/* Emulate the VMLAUNCH instruction */
5400static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5401{
5402 return nested_vmx_run(vcpu, true);
5403}
5404
5405/* Emulate the VMRESUME instruction */
5406static int handle_vmresume(struct kvm_vcpu *vcpu)
5407{
5408
5409 return nested_vmx_run(vcpu, false);
5410}
5411
49f705c5
NHE
5412enum vmcs_field_type {
5413 VMCS_FIELD_TYPE_U16 = 0,
5414 VMCS_FIELD_TYPE_U64 = 1,
5415 VMCS_FIELD_TYPE_U32 = 2,
5416 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5417};
5418
5419static inline int vmcs_field_type(unsigned long field)
5420{
5421 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5422 return VMCS_FIELD_TYPE_U32;
5423 return (field >> 13) & 0x3 ;
5424}
5425
5426static inline int vmcs_field_readonly(unsigned long field)
5427{
5428 return (((field >> 10) & 0x3) == 1);
5429}
5430
5431/*
5432 * Read a vmcs12 field. Since these can have varying lengths and we return
5433 * one type, we chose the biggest type (u64) and zero-extend the return value
5434 * to that size. Note that the caller, handle_vmread, might need to use only
5435 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5436 * 64-bit fields are to be returned).
5437 */
5438static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5439 unsigned long field, u64 *ret)
5440{
5441 short offset = vmcs_field_to_offset(field);
5442 char *p;
5443
5444 if (offset < 0)
5445 return 0;
5446
5447 p = ((char *)(get_vmcs12(vcpu))) + offset;
5448
5449 switch (vmcs_field_type(field)) {
5450 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5451 *ret = *((natural_width *)p);
5452 return 1;
5453 case VMCS_FIELD_TYPE_U16:
5454 *ret = *((u16 *)p);
5455 return 1;
5456 case VMCS_FIELD_TYPE_U32:
5457 *ret = *((u32 *)p);
5458 return 1;
5459 case VMCS_FIELD_TYPE_U64:
5460 *ret = *((u64 *)p);
5461 return 1;
5462 default:
5463 return 0; /* can never happen. */
5464 }
5465}
5466
5467/*
5468 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5469 * used before) all generate the same failure when it is missing.
5470 */
5471static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5472{
5473 struct vcpu_vmx *vmx = to_vmx(vcpu);
5474 if (vmx->nested.current_vmptr == -1ull) {
5475 nested_vmx_failInvalid(vcpu);
5476 skip_emulated_instruction(vcpu);
5477 return 0;
5478 }
5479 return 1;
5480}
5481
5482static int handle_vmread(struct kvm_vcpu *vcpu)
5483{
5484 unsigned long field;
5485 u64 field_value;
5486 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5487 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5488 gva_t gva = 0;
5489
5490 if (!nested_vmx_check_permission(vcpu) ||
5491 !nested_vmx_check_vmcs12(vcpu))
5492 return 1;
5493
5494 /* Decode instruction info and find the field to read */
5495 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5496 /* Read the field, zero-extended to a u64 field_value */
5497 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5498 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5499 skip_emulated_instruction(vcpu);
5500 return 1;
5501 }
5502 /*
5503 * Now copy part of this value to register or memory, as requested.
5504 * Note that the number of bits actually copied is 32 or 64 depending
5505 * on the guest's mode (32 or 64 bit), not on the given field's length.
5506 */
5507 if (vmx_instruction_info & (1u << 10)) {
5508 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5509 field_value);
5510 } else {
5511 if (get_vmx_mem_address(vcpu, exit_qualification,
5512 vmx_instruction_info, &gva))
5513 return 1;
5514 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5515 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5516 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5517 }
5518
5519 nested_vmx_succeed(vcpu);
5520 skip_emulated_instruction(vcpu);
5521 return 1;
5522}
5523
5524
5525static int handle_vmwrite(struct kvm_vcpu *vcpu)
5526{
5527 unsigned long field;
5528 gva_t gva;
5529 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5530 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5531 char *p;
5532 short offset;
5533 /* The value to write might be 32 or 64 bits, depending on L1's long
5534 * mode, and eventually we need to write that into a field of several
5535 * possible lengths. The code below first zero-extends the value to 64
5536 * bit (field_value), and then copies only the approriate number of
5537 * bits into the vmcs12 field.
5538 */
5539 u64 field_value = 0;
5540 struct x86_exception e;
5541
5542 if (!nested_vmx_check_permission(vcpu) ||
5543 !nested_vmx_check_vmcs12(vcpu))
5544 return 1;
5545
5546 if (vmx_instruction_info & (1u << 10))
5547 field_value = kvm_register_read(vcpu,
5548 (((vmx_instruction_info) >> 3) & 0xf));
5549 else {
5550 if (get_vmx_mem_address(vcpu, exit_qualification,
5551 vmx_instruction_info, &gva))
5552 return 1;
5553 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5554 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5555 kvm_inject_page_fault(vcpu, &e);
5556 return 1;
5557 }
5558 }
5559
5560
5561 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5562 if (vmcs_field_readonly(field)) {
5563 nested_vmx_failValid(vcpu,
5564 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5565 skip_emulated_instruction(vcpu);
5566 return 1;
5567 }
5568
5569 offset = vmcs_field_to_offset(field);
5570 if (offset < 0) {
5571 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5572 skip_emulated_instruction(vcpu);
5573 return 1;
5574 }
5575 p = ((char *) get_vmcs12(vcpu)) + offset;
5576
5577 switch (vmcs_field_type(field)) {
5578 case VMCS_FIELD_TYPE_U16:
5579 *(u16 *)p = field_value;
5580 break;
5581 case VMCS_FIELD_TYPE_U32:
5582 *(u32 *)p = field_value;
5583 break;
5584 case VMCS_FIELD_TYPE_U64:
5585 *(u64 *)p = field_value;
5586 break;
5587 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5588 *(natural_width *)p = field_value;
5589 break;
5590 default:
5591 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5592 skip_emulated_instruction(vcpu);
5593 return 1;
5594 }
5595
5596 nested_vmx_succeed(vcpu);
5597 skip_emulated_instruction(vcpu);
5598 return 1;
5599}
5600
63846663
NHE
5601/* Emulate the VMPTRLD instruction */
5602static int handle_vmptrld(struct kvm_vcpu *vcpu)
5603{
5604 struct vcpu_vmx *vmx = to_vmx(vcpu);
5605 gva_t gva;
5606 gpa_t vmptr;
5607 struct x86_exception e;
5608
5609 if (!nested_vmx_check_permission(vcpu))
5610 return 1;
5611
5612 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5613 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5614 return 1;
5615
5616 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5617 sizeof(vmptr), &e)) {
5618 kvm_inject_page_fault(vcpu, &e);
5619 return 1;
5620 }
5621
5622 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5623 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5624 skip_emulated_instruction(vcpu);
5625 return 1;
5626 }
5627
5628 if (vmx->nested.current_vmptr != vmptr) {
5629 struct vmcs12 *new_vmcs12;
5630 struct page *page;
5631 page = nested_get_page(vcpu, vmptr);
5632 if (page == NULL) {
5633 nested_vmx_failInvalid(vcpu);
5634 skip_emulated_instruction(vcpu);
5635 return 1;
5636 }
5637 new_vmcs12 = kmap(page);
5638 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5639 kunmap(page);
5640 nested_release_page_clean(page);
5641 nested_vmx_failValid(vcpu,
5642 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5643 skip_emulated_instruction(vcpu);
5644 return 1;
5645 }
5646 if (vmx->nested.current_vmptr != -1ull) {
5647 kunmap(vmx->nested.current_vmcs12_page);
5648 nested_release_page(vmx->nested.current_vmcs12_page);
5649 }
5650
5651 vmx->nested.current_vmptr = vmptr;
5652 vmx->nested.current_vmcs12 = new_vmcs12;
5653 vmx->nested.current_vmcs12_page = page;
5654 }
5655
5656 nested_vmx_succeed(vcpu);
5657 skip_emulated_instruction(vcpu);
5658 return 1;
5659}
5660
6a4d7550
NHE
5661/* Emulate the VMPTRST instruction */
5662static int handle_vmptrst(struct kvm_vcpu *vcpu)
5663{
5664 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5665 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5666 gva_t vmcs_gva;
5667 struct x86_exception e;
5668
5669 if (!nested_vmx_check_permission(vcpu))
5670 return 1;
5671
5672 if (get_vmx_mem_address(vcpu, exit_qualification,
5673 vmx_instruction_info, &vmcs_gva))
5674 return 1;
5675 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5676 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5677 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5678 sizeof(u64), &e)) {
5679 kvm_inject_page_fault(vcpu, &e);
5680 return 1;
5681 }
5682 nested_vmx_succeed(vcpu);
5683 skip_emulated_instruction(vcpu);
5684 return 1;
5685}
5686
6aa8b732
AK
5687/*
5688 * The exit handlers return 1 if the exit was handled fully and guest execution
5689 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5690 * to be done to userspace and return 0.
5691 */
772e0318 5692static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5693 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5694 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5695 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5696 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5697 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5698 [EXIT_REASON_CR_ACCESS] = handle_cr,
5699 [EXIT_REASON_DR_ACCESS] = handle_dr,
5700 [EXIT_REASON_CPUID] = handle_cpuid,
5701 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5702 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5703 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5704 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5705 [EXIT_REASON_INVD] = handle_invd,
a7052897 5706 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5707 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5708 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5709 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5710 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5711 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5712 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5713 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5714 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5715 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5716 [EXIT_REASON_VMOFF] = handle_vmoff,
5717 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5718 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5719 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5720 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5721 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5722 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5723 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5724 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5725 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5726 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5727 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5728 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5729};
5730
5731static const int kvm_vmx_max_exit_handlers =
50a3485c 5732 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5733
644d711a
NHE
5734/*
5735 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5736 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5737 * disinterest in the current event (read or write a specific MSR) by using an
5738 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5739 */
5740static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5741 struct vmcs12 *vmcs12, u32 exit_reason)
5742{
5743 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5744 gpa_t bitmap;
5745
5746 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5747 return 1;
5748
5749 /*
5750 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5751 * for the four combinations of read/write and low/high MSR numbers.
5752 * First we need to figure out which of the four to use:
5753 */
5754 bitmap = vmcs12->msr_bitmap;
5755 if (exit_reason == EXIT_REASON_MSR_WRITE)
5756 bitmap += 2048;
5757 if (msr_index >= 0xc0000000) {
5758 msr_index -= 0xc0000000;
5759 bitmap += 1024;
5760 }
5761
5762 /* Then read the msr_index'th bit from this bitmap: */
5763 if (msr_index < 1024*8) {
5764 unsigned char b;
5765 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5766 return 1 & (b >> (msr_index & 7));
5767 } else
5768 return 1; /* let L1 handle the wrong parameter */
5769}
5770
5771/*
5772 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5773 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5774 * intercept (via guest_host_mask etc.) the current event.
5775 */
5776static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5777 struct vmcs12 *vmcs12)
5778{
5779 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5780 int cr = exit_qualification & 15;
5781 int reg = (exit_qualification >> 8) & 15;
5782 unsigned long val = kvm_register_read(vcpu, reg);
5783
5784 switch ((exit_qualification >> 4) & 3) {
5785 case 0: /* mov to cr */
5786 switch (cr) {
5787 case 0:
5788 if (vmcs12->cr0_guest_host_mask &
5789 (val ^ vmcs12->cr0_read_shadow))
5790 return 1;
5791 break;
5792 case 3:
5793 if ((vmcs12->cr3_target_count >= 1 &&
5794 vmcs12->cr3_target_value0 == val) ||
5795 (vmcs12->cr3_target_count >= 2 &&
5796 vmcs12->cr3_target_value1 == val) ||
5797 (vmcs12->cr3_target_count >= 3 &&
5798 vmcs12->cr3_target_value2 == val) ||
5799 (vmcs12->cr3_target_count >= 4 &&
5800 vmcs12->cr3_target_value3 == val))
5801 return 0;
5802 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5803 return 1;
5804 break;
5805 case 4:
5806 if (vmcs12->cr4_guest_host_mask &
5807 (vmcs12->cr4_read_shadow ^ val))
5808 return 1;
5809 break;
5810 case 8:
5811 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5812 return 1;
5813 break;
5814 }
5815 break;
5816 case 2: /* clts */
5817 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5818 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5819 return 1;
5820 break;
5821 case 1: /* mov from cr */
5822 switch (cr) {
5823 case 3:
5824 if (vmcs12->cpu_based_vm_exec_control &
5825 CPU_BASED_CR3_STORE_EXITING)
5826 return 1;
5827 break;
5828 case 8:
5829 if (vmcs12->cpu_based_vm_exec_control &
5830 CPU_BASED_CR8_STORE_EXITING)
5831 return 1;
5832 break;
5833 }
5834 break;
5835 case 3: /* lmsw */
5836 /*
5837 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5838 * cr0. Other attempted changes are ignored, with no exit.
5839 */
5840 if (vmcs12->cr0_guest_host_mask & 0xe &
5841 (val ^ vmcs12->cr0_read_shadow))
5842 return 1;
5843 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5844 !(vmcs12->cr0_read_shadow & 0x1) &&
5845 (val & 0x1))
5846 return 1;
5847 break;
5848 }
5849 return 0;
5850}
5851
5852/*
5853 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5854 * should handle it ourselves in L0 (and then continue L2). Only call this
5855 * when in is_guest_mode (L2).
5856 */
5857static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5858{
5859 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5860 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5861 struct vcpu_vmx *vmx = to_vmx(vcpu);
5862 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5863
5864 if (vmx->nested.nested_run_pending)
5865 return 0;
5866
5867 if (unlikely(vmx->fail)) {
bd80158a
JK
5868 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5869 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5870 return 1;
5871 }
5872
5873 switch (exit_reason) {
5874 case EXIT_REASON_EXCEPTION_NMI:
5875 if (!is_exception(intr_info))
5876 return 0;
5877 else if (is_page_fault(intr_info))
5878 return enable_ept;
5879 return vmcs12->exception_bitmap &
5880 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5881 case EXIT_REASON_EXTERNAL_INTERRUPT:
5882 return 0;
5883 case EXIT_REASON_TRIPLE_FAULT:
5884 return 1;
5885 case EXIT_REASON_PENDING_INTERRUPT:
5886 case EXIT_REASON_NMI_WINDOW:
5887 /*
5888 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5889 * (aka Interrupt Window Exiting) only when L1 turned it on,
5890 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5891 * Same for NMI Window Exiting.
5892 */
5893 return 1;
5894 case EXIT_REASON_TASK_SWITCH:
5895 return 1;
5896 case EXIT_REASON_CPUID:
5897 return 1;
5898 case EXIT_REASON_HLT:
5899 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5900 case EXIT_REASON_INVD:
5901 return 1;
5902 case EXIT_REASON_INVLPG:
5903 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5904 case EXIT_REASON_RDPMC:
5905 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5906 case EXIT_REASON_RDTSC:
5907 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5908 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5909 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5910 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5911 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5912 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5913 /*
5914 * VMX instructions trap unconditionally. This allows L1 to
5915 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5916 */
5917 return 1;
5918 case EXIT_REASON_CR_ACCESS:
5919 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5920 case EXIT_REASON_DR_ACCESS:
5921 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5922 case EXIT_REASON_IO_INSTRUCTION:
5923 /* TODO: support IO bitmaps */
5924 return 1;
5925 case EXIT_REASON_MSR_READ:
5926 case EXIT_REASON_MSR_WRITE:
5927 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5928 case EXIT_REASON_INVALID_STATE:
5929 return 1;
5930 case EXIT_REASON_MWAIT_INSTRUCTION:
5931 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5932 case EXIT_REASON_MONITOR_INSTRUCTION:
5933 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5934 case EXIT_REASON_PAUSE_INSTRUCTION:
5935 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5936 nested_cpu_has2(vmcs12,
5937 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5938 case EXIT_REASON_MCE_DURING_VMENTRY:
5939 return 0;
5940 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5941 return 1;
5942 case EXIT_REASON_APIC_ACCESS:
5943 return nested_cpu_has2(vmcs12,
5944 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5945 case EXIT_REASON_EPT_VIOLATION:
5946 case EXIT_REASON_EPT_MISCONFIG:
5947 return 0;
5948 case EXIT_REASON_WBINVD:
5949 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5950 case EXIT_REASON_XSETBV:
5951 return 1;
5952 default:
5953 return 1;
5954 }
5955}
5956
586f9607
AK
5957static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5958{
5959 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5960 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5961}
5962
6aa8b732
AK
5963/*
5964 * The guest has exited. See if we can fix it or if we need userspace
5965 * assistance.
5966 */
851ba692 5967static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5968{
29bd8a78 5969 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5970 u32 exit_reason = vmx->exit_reason;
1155f76a 5971 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5972
80ced186
MG
5973 /* If guest state is invalid, start emulating */
5974 if (vmx->emulation_required && emulate_invalid_guest_state)
5975 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5976
b6f1250e
NHE
5977 /*
5978 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5979 * we did not inject a still-pending event to L1 now because of
5980 * nested_run_pending, we need to re-enable this bit.
5981 */
5982 if (vmx->nested.nested_run_pending)
5983 kvm_make_request(KVM_REQ_EVENT, vcpu);
5984
509c75ea
NHE
5985 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5986 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5987 vmx->nested.nested_run_pending = 1;
5988 else
5989 vmx->nested.nested_run_pending = 0;
5990
5991 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5992 nested_vmx_vmexit(vcpu);
5993 return 1;
5994 }
5995
5120702e
MG
5996 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5997 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5998 vcpu->run->fail_entry.hardware_entry_failure_reason
5999 = exit_reason;
6000 return 0;
6001 }
6002
29bd8a78 6003 if (unlikely(vmx->fail)) {
851ba692
AK
6004 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6005 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6006 = vmcs_read32(VM_INSTRUCTION_ERROR);
6007 return 0;
6008 }
6aa8b732 6009
b9bf6882
XG
6010 /*
6011 * Note:
6012 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6013 * delivery event since it indicates guest is accessing MMIO.
6014 * The vm-exit can be triggered again after return to guest that
6015 * will cause infinite loop.
6016 */
d77c26fc 6017 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6018 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6019 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6020 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6021 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6022 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6023 vcpu->run->internal.ndata = 2;
6024 vcpu->run->internal.data[0] = vectoring_info;
6025 vcpu->run->internal.data[1] = exit_reason;
6026 return 0;
6027 }
3b86cd99 6028
644d711a
NHE
6029 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6030 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6031 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6032 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6033 vmx->soft_vnmi_blocked = 0;
3b86cd99 6034 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6035 vcpu->arch.nmi_pending) {
3b86cd99
JK
6036 /*
6037 * This CPU don't support us in finding the end of an
6038 * NMI-blocked window if the guest runs with IRQs
6039 * disabled. So we pull the trigger after 1 s of
6040 * futile waiting, but inform the user about this.
6041 */
6042 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6043 "state on VCPU %d after 1 s timeout\n",
6044 __func__, vcpu->vcpu_id);
6045 vmx->soft_vnmi_blocked = 0;
3b86cd99 6046 }
3b86cd99
JK
6047 }
6048
6aa8b732
AK
6049 if (exit_reason < kvm_vmx_max_exit_handlers
6050 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6051 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6052 else {
851ba692
AK
6053 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6054 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6055 }
6056 return 0;
6057}
6058
95ba8273 6059static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6060{
95ba8273 6061 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6062 vmcs_write32(TPR_THRESHOLD, 0);
6063 return;
6064 }
6065
95ba8273 6066 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6067}
6068
51aa01d1 6069static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6070{
00eba012
AK
6071 u32 exit_intr_info;
6072
6073 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6074 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6075 return;
6076
c5ca8e57 6077 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6078 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6079
6080 /* Handle machine checks before interrupts are enabled */
00eba012 6081 if (is_machine_check(exit_intr_info))
a0861c02
AK
6082 kvm_machine_check();
6083
20f65983 6084 /* We need to handle NMIs before interrupts are enabled */
00eba012 6085 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6086 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6087 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6088 asm("int $2");
ff9d07a0
ZY
6089 kvm_after_handle_nmi(&vmx->vcpu);
6090 }
51aa01d1 6091}
20f65983 6092
51aa01d1
AK
6093static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6094{
c5ca8e57 6095 u32 exit_intr_info;
51aa01d1
AK
6096 bool unblock_nmi;
6097 u8 vector;
6098 bool idtv_info_valid;
6099
6100 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6101
cf393f75 6102 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6103 if (vmx->nmi_known_unmasked)
6104 return;
c5ca8e57
AK
6105 /*
6106 * Can't use vmx->exit_intr_info since we're not sure what
6107 * the exit reason is.
6108 */
6109 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6110 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6111 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6112 /*
7b4a25cb 6113 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6114 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6115 * a guest IRET fault.
7b4a25cb
GN
6116 * SDM 3: 23.2.2 (September 2008)
6117 * Bit 12 is undefined in any of the following cases:
6118 * If the VM exit sets the valid bit in the IDT-vectoring
6119 * information field.
6120 * If the VM exit is due to a double fault.
cf393f75 6121 */
7b4a25cb
GN
6122 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6123 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6124 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6125 GUEST_INTR_STATE_NMI);
9d58b931
AK
6126 else
6127 vmx->nmi_known_unmasked =
6128 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6129 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6130 } else if (unlikely(vmx->soft_vnmi_blocked))
6131 vmx->vnmi_blocked_time +=
6132 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6133}
6134
83422e17
AK
6135static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6136 u32 idt_vectoring_info,
6137 int instr_len_field,
6138 int error_code_field)
51aa01d1 6139{
51aa01d1
AK
6140 u8 vector;
6141 int type;
6142 bool idtv_info_valid;
6143
6144 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6145
37b96e98
GN
6146 vmx->vcpu.arch.nmi_injected = false;
6147 kvm_clear_exception_queue(&vmx->vcpu);
6148 kvm_clear_interrupt_queue(&vmx->vcpu);
6149
6150 if (!idtv_info_valid)
6151 return;
6152
3842d135
AK
6153 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6154
668f612f
AK
6155 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6156 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6157
64a7ec06 6158 switch (type) {
37b96e98
GN
6159 case INTR_TYPE_NMI_INTR:
6160 vmx->vcpu.arch.nmi_injected = true;
668f612f 6161 /*
7b4a25cb 6162 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6163 * Clear bit "block by NMI" before VM entry if a NMI
6164 * delivery faulted.
668f612f 6165 */
654f06fc 6166 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6167 break;
37b96e98 6168 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6169 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6170 vmcs_read32(instr_len_field);
66fd3f7f
GN
6171 /* fall through */
6172 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6173 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6174 u32 err = vmcs_read32(error_code_field);
37b96e98 6175 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6176 } else
6177 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6178 break;
66fd3f7f
GN
6179 case INTR_TYPE_SOFT_INTR:
6180 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6181 vmcs_read32(instr_len_field);
66fd3f7f 6182 /* fall through */
37b96e98 6183 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6184 kvm_queue_interrupt(&vmx->vcpu, vector,
6185 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6186 break;
6187 default:
6188 break;
f7d9238f 6189 }
cf393f75
AK
6190}
6191
83422e17
AK
6192static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6193{
66c78ae4
NHE
6194 if (is_guest_mode(&vmx->vcpu))
6195 return;
83422e17
AK
6196 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6197 VM_EXIT_INSTRUCTION_LEN,
6198 IDT_VECTORING_ERROR_CODE);
6199}
6200
b463a6f7
AK
6201static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6202{
66c78ae4
NHE
6203 if (is_guest_mode(vcpu))
6204 return;
b463a6f7
AK
6205 __vmx_complete_interrupts(to_vmx(vcpu),
6206 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6207 VM_ENTRY_INSTRUCTION_LEN,
6208 VM_ENTRY_EXCEPTION_ERROR_CODE);
6209
6210 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6211}
6212
d7cd9796
GN
6213static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6214{
6215 int i, nr_msrs;
6216 struct perf_guest_switch_msr *msrs;
6217
6218 msrs = perf_guest_get_msrs(&nr_msrs);
6219
6220 if (!msrs)
6221 return;
6222
6223 for (i = 0; i < nr_msrs; i++)
6224 if (msrs[i].host == msrs[i].guest)
6225 clear_atomic_switch_msr(vmx, msrs[i].msr);
6226 else
6227 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6228 msrs[i].host);
6229}
6230
a3b5ba49 6231static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6232{
a2fa3e9f 6233 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 6234 unsigned long debugctlmsr;
104f226b 6235
66c78ae4
NHE
6236 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6237 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6238 if (vmcs12->idt_vectoring_info_field &
6239 VECTORING_INFO_VALID_MASK) {
6240 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6241 vmcs12->idt_vectoring_info_field);
6242 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6243 vmcs12->vm_exit_instruction_len);
6244 if (vmcs12->idt_vectoring_info_field &
6245 VECTORING_INFO_DELIVER_CODE_MASK)
6246 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6247 vmcs12->idt_vectoring_error_code);
6248 }
6249 }
6250
104f226b
AK
6251 /* Record the guest's net vcpu time for enforced NMI injections. */
6252 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6253 vmx->entry_time = ktime_get();
6254
6255 /* Don't enter VMX if guest state is invalid, let the exit handler
6256 start emulation until we arrive back to a valid state */
6257 if (vmx->emulation_required && emulate_invalid_guest_state)
6258 return;
6259
6260 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6261 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6262 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6263 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6264
6265 /* When single-stepping over STI and MOV SS, we must clear the
6266 * corresponding interruptibility bits in the guest state. Otherwise
6267 * vmentry fails as it then expects bit 14 (BS) in pending debug
6268 * exceptions being set, but that's not correct for the guest debugging
6269 * case. */
6270 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6271 vmx_set_interrupt_shadow(vcpu, 0);
6272
d7cd9796 6273 atomic_switch_perf_msrs(vmx);
2a7921b7 6274 debugctlmsr = get_debugctlmsr();
d7cd9796 6275
d462b819 6276 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6277 asm(
6aa8b732 6278 /* Store host registers */
b188c81f
AK
6279 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6280 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6281 "push %%" _ASM_CX " \n\t"
6282 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 6283 "je 1f \n\t"
b188c81f 6284 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 6285 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6286 "1: \n\t"
d3edefc0 6287 /* Reload cr2 if changed */
b188c81f
AK
6288 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6289 "mov %%cr2, %%" _ASM_DX " \n\t"
6290 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 6291 "je 2f \n\t"
b188c81f 6292 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 6293 "2: \n\t"
6aa8b732 6294 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6295 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6296 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
6297 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6298 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6299 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6300 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6301 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6302 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 6303#ifdef CONFIG_X86_64
e08aa78a
AK
6304 "mov %c[r8](%0), %%r8 \n\t"
6305 "mov %c[r9](%0), %%r9 \n\t"
6306 "mov %c[r10](%0), %%r10 \n\t"
6307 "mov %c[r11](%0), %%r11 \n\t"
6308 "mov %c[r12](%0), %%r12 \n\t"
6309 "mov %c[r13](%0), %%r13 \n\t"
6310 "mov %c[r14](%0), %%r14 \n\t"
6311 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6312#endif
b188c81f 6313 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 6314
6aa8b732 6315 /* Enter guest mode */
83287ea4 6316 "jne 1f \n\t"
4ecac3fd 6317 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
6318 "jmp 2f \n\t"
6319 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6320 "2: "
6aa8b732 6321 /* Save guest registers, load host registers, keep flags */
b188c81f 6322 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 6323 "pop %0 \n\t"
b188c81f
AK
6324 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6325 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6326 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6327 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6328 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6329 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6330 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 6331#ifdef CONFIG_X86_64
e08aa78a
AK
6332 "mov %%r8, %c[r8](%0) \n\t"
6333 "mov %%r9, %c[r9](%0) \n\t"
6334 "mov %%r10, %c[r10](%0) \n\t"
6335 "mov %%r11, %c[r11](%0) \n\t"
6336 "mov %%r12, %c[r12](%0) \n\t"
6337 "mov %%r13, %c[r13](%0) \n\t"
6338 "mov %%r14, %c[r14](%0) \n\t"
6339 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6340#endif
b188c81f
AK
6341 "mov %%cr2, %%" _ASM_AX " \n\t"
6342 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 6343
b188c81f 6344 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 6345 "setbe %c[fail](%0) \n\t"
83287ea4
AK
6346 ".pushsection .rodata \n\t"
6347 ".global vmx_return \n\t"
6348 "vmx_return: " _ASM_PTR " 2b \n\t"
6349 ".popsection"
e08aa78a 6350 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6351 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6352 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6353 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6354 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6355 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6356 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6357 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6358 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6359 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6360 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6361#ifdef CONFIG_X86_64
ad312c7c
ZX
6362 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6363 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6364 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6365 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6366 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6367 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6368 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6369 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6370#endif
40712fae
AK
6371 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6372 [wordsize]"i"(sizeof(ulong))
c2036300
LV
6373 : "cc", "memory"
6374#ifdef CONFIG_X86_64
b188c81f 6375 , "rax", "rbx", "rdi", "rsi"
c2036300 6376 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
6377#else
6378 , "eax", "ebx", "edi", "esi"
c2036300
LV
6379#endif
6380 );
6aa8b732 6381
2a7921b7
GN
6382 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6383 if (debugctlmsr)
6384 update_debugctlmsr(debugctlmsr);
6385
aa67f609
AK
6386#ifndef CONFIG_X86_64
6387 /*
6388 * The sysexit path does not restore ds/es, so we must set them to
6389 * a reasonable value ourselves.
6390 *
6391 * We can't defer this to vmx_load_host_state() since that function
6392 * may be executed in interrupt context, which saves and restore segments
6393 * around it, nullifying its effect.
6394 */
6395 loadsegment(ds, __USER_DS);
6396 loadsegment(es, __USER_DS);
6397#endif
6398
6de4f3ad 6399 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6400 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6401 | (1 << VCPU_EXREG_CPL)
aff48baa 6402 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6403 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6404 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6405 vcpu->arch.regs_dirty = 0;
6406
1155f76a
AK
6407 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6408
66c78ae4
NHE
6409 if (is_guest_mode(vcpu)) {
6410 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6411 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6412 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6413 vmcs12->idt_vectoring_error_code =
6414 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6415 vmcs12->vm_exit_instruction_len =
6416 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6417 }
6418 }
6419
d462b819 6420 vmx->loaded_vmcs->launched = 1;
1b6269db 6421
51aa01d1 6422 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6423 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6424
6425 vmx_complete_atomic_exit(vmx);
6426 vmx_recover_nmi_blocking(vmx);
cf393f75 6427 vmx_complete_interrupts(vmx);
6aa8b732
AK
6428}
6429
6aa8b732
AK
6430static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6431{
fb3f0f51
RR
6432 struct vcpu_vmx *vmx = to_vmx(vcpu);
6433
cdbecfc3 6434 free_vpid(vmx);
ec378aee 6435 free_nested(vmx);
d462b819 6436 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6437 kfree(vmx->guest_msrs);
6438 kvm_vcpu_uninit(vcpu);
a4770347 6439 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6440}
6441
fb3f0f51 6442static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6443{
fb3f0f51 6444 int err;
c16f862d 6445 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6446 int cpu;
6aa8b732 6447
a2fa3e9f 6448 if (!vmx)
fb3f0f51
RR
6449 return ERR_PTR(-ENOMEM);
6450
2384d2b3
SY
6451 allocate_vpid(vmx);
6452
fb3f0f51
RR
6453 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6454 if (err)
6455 goto free_vcpu;
965b58a5 6456
a2fa3e9f 6457 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6458 err = -ENOMEM;
fb3f0f51 6459 if (!vmx->guest_msrs) {
fb3f0f51
RR
6460 goto uninit_vcpu;
6461 }
965b58a5 6462
d462b819
NHE
6463 vmx->loaded_vmcs = &vmx->vmcs01;
6464 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6465 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6466 goto free_msrs;
d462b819
NHE
6467 if (!vmm_exclusive)
6468 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6469 loaded_vmcs_init(vmx->loaded_vmcs);
6470 if (!vmm_exclusive)
6471 kvm_cpu_vmxoff();
a2fa3e9f 6472
15ad7146
AK
6473 cpu = get_cpu();
6474 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6475 vmx->vcpu.cpu = cpu;
8b9cf98c 6476 err = vmx_vcpu_setup(vmx);
fb3f0f51 6477 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6478 put_cpu();
fb3f0f51
RR
6479 if (err)
6480 goto free_vmcs;
5e4a0b3c 6481 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6482 err = alloc_apic_access_page(kvm);
6483 if (err)
5e4a0b3c 6484 goto free_vmcs;
fb3f0f51 6485
b927a3ce
SY
6486 if (enable_ept) {
6487 if (!kvm->arch.ept_identity_map_addr)
6488 kvm->arch.ept_identity_map_addr =
6489 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6490 err = -ENOMEM;
b7ebfb05
SY
6491 if (alloc_identity_pagetable(kvm) != 0)
6492 goto free_vmcs;
93ea5388
GN
6493 if (!init_rmode_identity_map(kvm))
6494 goto free_vmcs;
b927a3ce 6495 }
b7ebfb05 6496
a9d30f33
NHE
6497 vmx->nested.current_vmptr = -1ull;
6498 vmx->nested.current_vmcs12 = NULL;
6499
fb3f0f51
RR
6500 return &vmx->vcpu;
6501
6502free_vmcs:
5f3fbc34 6503 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 6504free_msrs:
fb3f0f51
RR
6505 kfree(vmx->guest_msrs);
6506uninit_vcpu:
6507 kvm_vcpu_uninit(&vmx->vcpu);
6508free_vcpu:
cdbecfc3 6509 free_vpid(vmx);
a4770347 6510 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6511 return ERR_PTR(err);
6aa8b732
AK
6512}
6513
002c7f7c
YS
6514static void __init vmx_check_processor_compat(void *rtn)
6515{
6516 struct vmcs_config vmcs_conf;
6517
6518 *(int *)rtn = 0;
6519 if (setup_vmcs_config(&vmcs_conf) < 0)
6520 *(int *)rtn = -EIO;
6521 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6522 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6523 smp_processor_id());
6524 *(int *)rtn = -EIO;
6525 }
6526}
6527
67253af5
SY
6528static int get_ept_level(void)
6529{
6530 return VMX_EPT_DEFAULT_GAW + 1;
6531}
6532
4b12f0de 6533static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6534{
4b12f0de
SY
6535 u64 ret;
6536
522c68c4
SY
6537 /* For VT-d and EPT combination
6538 * 1. MMIO: always map as UC
6539 * 2. EPT with VT-d:
6540 * a. VT-d without snooping control feature: can't guarantee the
6541 * result, try to trust guest.
6542 * b. VT-d with snooping control feature: snooping control feature of
6543 * VT-d engine can guarantee the cache correctness. Just set it
6544 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6545 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6546 * consistent with host MTRR
6547 */
4b12f0de
SY
6548 if (is_mmio)
6549 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6550 else if (vcpu->kvm->arch.iommu_domain &&
6551 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6552 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6553 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6554 else
522c68c4 6555 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6556 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6557
6558 return ret;
64d4d521
SY
6559}
6560
17cc3935 6561static int vmx_get_lpage_level(void)
344f414f 6562{
878403b7
SY
6563 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6564 return PT_DIRECTORY_LEVEL;
6565 else
6566 /* For shadow and EPT supported 1GB page */
6567 return PT_PDPE_LEVEL;
344f414f
JR
6568}
6569
0e851880
SY
6570static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6571{
4e47c7a6
SY
6572 struct kvm_cpuid_entry2 *best;
6573 struct vcpu_vmx *vmx = to_vmx(vcpu);
6574 u32 exec_control;
6575
6576 vmx->rdtscp_enabled = false;
6577 if (vmx_rdtscp_supported()) {
6578 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6579 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6580 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6581 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6582 vmx->rdtscp_enabled = true;
6583 else {
6584 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6585 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6586 exec_control);
6587 }
6588 }
6589 }
ad756a16 6590
ad756a16
MJ
6591 /* Exposing INVPCID only when PCID is exposed */
6592 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6593 if (vmx_invpcid_supported() &&
4f977045 6594 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 6595 guest_cpuid_has_pcid(vcpu)) {
29282fde 6596 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
6597 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6598 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6599 exec_control);
6600 } else {
29282fde
TI
6601 if (cpu_has_secondary_exec_ctrls()) {
6602 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6603 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6604 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6605 exec_control);
6606 }
ad756a16 6607 if (best)
4f977045 6608 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 6609 }
0e851880
SY
6610}
6611
d4330ef2
JR
6612static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6613{
7b8050f5
NHE
6614 if (func == 1 && nested)
6615 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6616}
6617
fe3ef05c
NHE
6618/*
6619 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6620 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6621 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6622 * guest in a way that will both be appropriate to L1's requests, and our
6623 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6624 * function also has additional necessary side-effects, like setting various
6625 * vcpu->arch fields.
6626 */
6627static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6628{
6629 struct vcpu_vmx *vmx = to_vmx(vcpu);
6630 u32 exec_control;
6631
6632 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6633 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6634 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6635 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6636 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6637 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6638 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6639 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6640 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6641 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6642 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6643 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6644 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6645 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6646 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6647 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6648 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6649 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6650 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6651 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6652 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6653 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6654 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6655 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6656 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6657 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6658 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6659 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6660 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6661 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6662 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6663 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6664 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6665 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6666 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6667 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6668
6669 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6670 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6671 vmcs12->vm_entry_intr_info_field);
6672 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6673 vmcs12->vm_entry_exception_error_code);
6674 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6675 vmcs12->vm_entry_instruction_len);
6676 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6677 vmcs12->guest_interruptibility_info);
6678 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6679 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6680 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6681 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6682 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6683 vmcs12->guest_pending_dbg_exceptions);
6684 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6685 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6686
6687 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6688
6689 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6690 (vmcs_config.pin_based_exec_ctrl |
6691 vmcs12->pin_based_vm_exec_control));
6692
6693 /*
6694 * Whether page-faults are trapped is determined by a combination of
6695 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6696 * If enable_ept, L0 doesn't care about page faults and we should
6697 * set all of these to L1's desires. However, if !enable_ept, L0 does
6698 * care about (at least some) page faults, and because it is not easy
6699 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6700 * to exit on each and every L2 page fault. This is done by setting
6701 * MASK=MATCH=0 and (see below) EB.PF=1.
6702 * Note that below we don't need special code to set EB.PF beyond the
6703 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6704 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6705 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6706 *
6707 * A problem with this approach (when !enable_ept) is that L1 may be
6708 * injected with more page faults than it asked for. This could have
6709 * caused problems, but in practice existing hypervisors don't care.
6710 * To fix this, we will need to emulate the PFEC checking (on the L1
6711 * page tables), using walk_addr(), when injecting PFs to L1.
6712 */
6713 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6714 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6715 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6716 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6717
6718 if (cpu_has_secondary_exec_ctrls()) {
6719 u32 exec_control = vmx_secondary_exec_control(vmx);
6720 if (!vmx->rdtscp_enabled)
6721 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6722 /* Take the following fields only from vmcs12 */
6723 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6724 if (nested_cpu_has(vmcs12,
6725 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6726 exec_control |= vmcs12->secondary_vm_exec_control;
6727
6728 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6729 /*
6730 * Translate L1 physical address to host physical
6731 * address for vmcs02. Keep the page pinned, so this
6732 * physical address remains valid. We keep a reference
6733 * to it so we can release it later.
6734 */
6735 if (vmx->nested.apic_access_page) /* shouldn't happen */
6736 nested_release_page(vmx->nested.apic_access_page);
6737 vmx->nested.apic_access_page =
6738 nested_get_page(vcpu, vmcs12->apic_access_addr);
6739 /*
6740 * If translation failed, no matter: This feature asks
6741 * to exit when accessing the given address, and if it
6742 * can never be accessed, this feature won't do
6743 * anything anyway.
6744 */
6745 if (!vmx->nested.apic_access_page)
6746 exec_control &=
6747 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6748 else
6749 vmcs_write64(APIC_ACCESS_ADDR,
6750 page_to_phys(vmx->nested.apic_access_page));
6751 }
6752
6753 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6754 }
6755
6756
6757 /*
6758 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6759 * Some constant fields are set here by vmx_set_constant_host_state().
6760 * Other fields are different per CPU, and will be set later when
6761 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6762 */
6763 vmx_set_constant_host_state();
6764
6765 /*
6766 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6767 * entry, but only if the current (host) sp changed from the value
6768 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6769 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6770 * here we just force the write to happen on entry.
6771 */
6772 vmx->host_rsp = 0;
6773
6774 exec_control = vmx_exec_control(vmx); /* L0's desires */
6775 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6776 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6777 exec_control &= ~CPU_BASED_TPR_SHADOW;
6778 exec_control |= vmcs12->cpu_based_vm_exec_control;
6779 /*
6780 * Merging of IO and MSR bitmaps not currently supported.
6781 * Rather, exit every time.
6782 */
6783 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6784 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6785 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6786
6787 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6788
6789 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6790 * bitwise-or of what L1 wants to trap for L2, and what we want to
6791 * trap. Note that CR0.TS also needs updating - we do this later.
6792 */
6793 update_exception_bitmap(vcpu);
6794 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6795 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6796
6797 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6798 vmcs_write32(VM_EXIT_CONTROLS,
6799 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6800 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6801 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6802
6803 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6804 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6805 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6806 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6807
6808
6809 set_cr4_guest_host_mask(vmx);
6810
27fc51b2
NHE
6811 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6812 vmcs_write64(TSC_OFFSET,
6813 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6814 else
6815 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6816
6817 if (enable_vpid) {
6818 /*
6819 * Trivially support vpid by letting L2s share their parent
6820 * L1's vpid. TODO: move to a more elaborate solution, giving
6821 * each L2 its own vpid and exposing the vpid feature to L1.
6822 */
6823 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6824 vmx_flush_tlb(vcpu);
6825 }
6826
6827 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6828 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6829 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6830 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6831 else
6832 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6833 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6834 vmx_set_efer(vcpu, vcpu->arch.efer);
6835
6836 /*
6837 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6838 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6839 * The CR0_READ_SHADOW is what L2 should have expected to read given
6840 * the specifications by L1; It's not enough to take
6841 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6842 * have more bits than L1 expected.
6843 */
6844 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6845 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6846
6847 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6848 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6849
6850 /* shadow page tables on either EPT or shadow page tables */
6851 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6852 kvm_mmu_reset_context(vcpu);
6853
6854 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6855 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6856}
6857
cd232ad0
NHE
6858/*
6859 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6860 * for running an L2 nested guest.
6861 */
6862static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6863{
6864 struct vmcs12 *vmcs12;
6865 struct vcpu_vmx *vmx = to_vmx(vcpu);
6866 int cpu;
6867 struct loaded_vmcs *vmcs02;
6868
6869 if (!nested_vmx_check_permission(vcpu) ||
6870 !nested_vmx_check_vmcs12(vcpu))
6871 return 1;
6872
6873 skip_emulated_instruction(vcpu);
6874 vmcs12 = get_vmcs12(vcpu);
6875
7c177938
NHE
6876 /*
6877 * The nested entry process starts with enforcing various prerequisites
6878 * on vmcs12 as required by the Intel SDM, and act appropriately when
6879 * they fail: As the SDM explains, some conditions should cause the
6880 * instruction to fail, while others will cause the instruction to seem
6881 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6882 * To speed up the normal (success) code path, we should avoid checking
6883 * for misconfigurations which will anyway be caught by the processor
6884 * when using the merged vmcs02.
6885 */
6886 if (vmcs12->launch_state == launch) {
6887 nested_vmx_failValid(vcpu,
6888 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6889 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6890 return 1;
6891 }
6892
6893 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6894 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6895 /*TODO: Also verify bits beyond physical address width are 0*/
6896 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6897 return 1;
6898 }
6899
6900 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6901 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6902 /*TODO: Also verify bits beyond physical address width are 0*/
6903 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6904 return 1;
6905 }
6906
6907 if (vmcs12->vm_entry_msr_load_count > 0 ||
6908 vmcs12->vm_exit_msr_load_count > 0 ||
6909 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6910 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6911 __func__);
7c177938
NHE
6912 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6913 return 1;
6914 }
6915
6916 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6917 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6918 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6919 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6920 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6921 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6922 !vmx_control_verify(vmcs12->vm_exit_controls,
6923 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6924 !vmx_control_verify(vmcs12->vm_entry_controls,
6925 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6926 {
6927 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6928 return 1;
6929 }
6930
6931 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6932 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6933 nested_vmx_failValid(vcpu,
6934 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6935 return 1;
6936 }
6937
6938 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6939 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6940 nested_vmx_entry_failure(vcpu, vmcs12,
6941 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6942 return 1;
6943 }
6944 if (vmcs12->vmcs_link_pointer != -1ull) {
6945 nested_vmx_entry_failure(vcpu, vmcs12,
6946 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6947 return 1;
6948 }
6949
6950 /*
6951 * We're finally done with prerequisite checking, and can start with
6952 * the nested entry.
6953 */
6954
cd232ad0
NHE
6955 vmcs02 = nested_get_current_vmcs02(vmx);
6956 if (!vmcs02)
6957 return -ENOMEM;
6958
6959 enter_guest_mode(vcpu);
6960
6961 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6962
6963 cpu = get_cpu();
6964 vmx->loaded_vmcs = vmcs02;
6965 vmx_vcpu_put(vcpu);
6966 vmx_vcpu_load(vcpu, cpu);
6967 vcpu->cpu = cpu;
6968 put_cpu();
6969
6970 vmcs12->launch_state = 1;
6971
6972 prepare_vmcs02(vcpu, vmcs12);
6973
6974 /*
6975 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6976 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6977 * returned as far as L1 is concerned. It will only return (and set
6978 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6979 */
6980 return 1;
6981}
6982
4704d0be
NHE
6983/*
6984 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6985 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6986 * This function returns the new value we should put in vmcs12.guest_cr0.
6987 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6988 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6989 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6990 * didn't trap the bit, because if L1 did, so would L0).
6991 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6992 * been modified by L2, and L1 knows it. So just leave the old value of
6993 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6994 * isn't relevant, because if L0 traps this bit it can set it to anything.
6995 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6996 * changed these bits, and therefore they need to be updated, but L0
6997 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6998 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6999 */
7000static inline unsigned long
7001vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7002{
7003 return
7004 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7005 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7006 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7007 vcpu->arch.cr0_guest_owned_bits));
7008}
7009
7010static inline unsigned long
7011vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7012{
7013 return
7014 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7015 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7016 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7017 vcpu->arch.cr4_guest_owned_bits));
7018}
7019
7020/*
7021 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7022 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7023 * and this function updates it to reflect the changes to the guest state while
7024 * L2 was running (and perhaps made some exits which were handled directly by L0
7025 * without going back to L1), and to reflect the exit reason.
7026 * Note that we do not have to copy here all VMCS fields, just those that
7027 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7028 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7029 * which already writes to vmcs12 directly.
7030 */
7031void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7032{
7033 /* update guest state fields: */
7034 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7035 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7036
7037 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7038 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7039 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7040 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7041
7042 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7043 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7044 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7045 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7046 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7047 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7048 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7049 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7050 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7051 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7052 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7053 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7054 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7055 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7056 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7057 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7058 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7059 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7060 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7061 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7062 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7063 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7064 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7065 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7066 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7067 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7068 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7069 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7070 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7071 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7072 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7073 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7074 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7075 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7076 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7077 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7078
7079 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7080 vmcs12->guest_interruptibility_info =
7081 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7082 vmcs12->guest_pending_dbg_exceptions =
7083 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7084
7085 /* TODO: These cannot have changed unless we have MSR bitmaps and
7086 * the relevant bit asks not to trap the change */
7087 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7088 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7089 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7090 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7091 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7092 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7093
7094 /* update exit information fields: */
7095
7096 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7097 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7098
7099 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7100 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7101 vmcs12->idt_vectoring_info_field =
7102 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7103 vmcs12->idt_vectoring_error_code =
7104 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7105 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7106 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7107
7108 /* clear vm-entry fields which are to be cleared on exit */
7109 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7110 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7111}
7112
7113/*
7114 * A part of what we need to when the nested L2 guest exits and we want to
7115 * run its L1 parent, is to reset L1's guest state to the host state specified
7116 * in vmcs12.
7117 * This function is to be called not only on normal nested exit, but also on
7118 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7119 * Failures During or After Loading Guest State").
7120 * This function should be called when the active VMCS is L1's (vmcs01).
7121 */
7122void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7123{
7124 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7125 vcpu->arch.efer = vmcs12->host_ia32_efer;
7126 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7127 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7128 else
7129 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7130 vmx_set_efer(vcpu, vcpu->arch.efer);
7131
7132 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7133 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7134 /*
7135 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7136 * actually changed, because it depends on the current state of
7137 * fpu_active (which may have changed).
7138 * Note that vmx_set_cr0 refers to efer set above.
7139 */
7140 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7141 /*
7142 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7143 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7144 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7145 */
7146 update_exception_bitmap(vcpu);
7147 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7148 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7149
7150 /*
7151 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7152 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7153 */
7154 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7155 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7156
7157 /* shadow page tables on either EPT or shadow page tables */
7158 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7159 kvm_mmu_reset_context(vcpu);
7160
7161 if (enable_vpid) {
7162 /*
7163 * Trivially support vpid by letting L2s share their parent
7164 * L1's vpid. TODO: move to a more elaborate solution, giving
7165 * each L2 its own vpid and exposing the vpid feature to L1.
7166 */
7167 vmx_flush_tlb(vcpu);
7168 }
7169
7170
7171 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7172 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7173 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7174 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7175 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7176 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7177 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7178 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7179 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7180 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7181 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7182 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7183 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7184 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7185 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7186
7187 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7188 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7189 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7190 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7191 vmcs12->host_ia32_perf_global_ctrl);
7192}
7193
7194/*
7195 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7196 * and modify vmcs12 to make it see what it would expect to see there if
7197 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7198 */
7199static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7200{
7201 struct vcpu_vmx *vmx = to_vmx(vcpu);
7202 int cpu;
7203 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7204
7205 leave_guest_mode(vcpu);
7206 prepare_vmcs12(vcpu, vmcs12);
7207
7208 cpu = get_cpu();
7209 vmx->loaded_vmcs = &vmx->vmcs01;
7210 vmx_vcpu_put(vcpu);
7211 vmx_vcpu_load(vcpu, cpu);
7212 vcpu->cpu = cpu;
7213 put_cpu();
7214
7215 /* if no vmcs02 cache requested, remove the one we used */
7216 if (VMCS02_POOL_SIZE == 0)
7217 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7218
7219 load_vmcs12_host_state(vcpu, vmcs12);
7220
27fc51b2 7221 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7222 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7223
7224 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7225 vmx->host_rsp = 0;
7226
7227 /* Unpin physical memory we referred to in vmcs02 */
7228 if (vmx->nested.apic_access_page) {
7229 nested_release_page(vmx->nested.apic_access_page);
7230 vmx->nested.apic_access_page = 0;
7231 }
7232
7233 /*
7234 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7235 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7236 * success or failure flag accordingly.
7237 */
7238 if (unlikely(vmx->fail)) {
7239 vmx->fail = 0;
7240 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7241 } else
7242 nested_vmx_succeed(vcpu);
7243}
7244
7c177938
NHE
7245/*
7246 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7247 * 23.7 "VM-entry failures during or after loading guest state" (this also
7248 * lists the acceptable exit-reason and exit-qualification parameters).
7249 * It should only be called before L2 actually succeeded to run, and when
7250 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7251 */
7252static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7253 struct vmcs12 *vmcs12,
7254 u32 reason, unsigned long qualification)
7255{
7256 load_vmcs12_host_state(vcpu, vmcs12);
7257 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7258 vmcs12->exit_qualification = qualification;
7259 nested_vmx_succeed(vcpu);
7260}
7261
8a76d7f2
JR
7262static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7263 struct x86_instruction_info *info,
7264 enum x86_intercept_stage stage)
7265{
7266 return X86EMUL_CONTINUE;
7267}
7268
cbdd1bea 7269static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7270 .cpu_has_kvm_support = cpu_has_kvm_support,
7271 .disabled_by_bios = vmx_disabled_by_bios,
7272 .hardware_setup = hardware_setup,
7273 .hardware_unsetup = hardware_unsetup,
002c7f7c 7274 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7275 .hardware_enable = hardware_enable,
7276 .hardware_disable = hardware_disable,
04547156 7277 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7278
7279 .vcpu_create = vmx_create_vcpu,
7280 .vcpu_free = vmx_free_vcpu,
04d2cc77 7281 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7282
04d2cc77 7283 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7284 .vcpu_load = vmx_vcpu_load,
7285 .vcpu_put = vmx_vcpu_put,
7286
c8639010 7287 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
7288 .get_msr = vmx_get_msr,
7289 .set_msr = vmx_set_msr,
7290 .get_segment_base = vmx_get_segment_base,
7291 .get_segment = vmx_get_segment,
7292 .set_segment = vmx_set_segment,
2e4d2653 7293 .get_cpl = vmx_get_cpl,
6aa8b732 7294 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7295 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7296 .decache_cr3 = vmx_decache_cr3,
25c4c276 7297 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7298 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7299 .set_cr3 = vmx_set_cr3,
7300 .set_cr4 = vmx_set_cr4,
6aa8b732 7301 .set_efer = vmx_set_efer,
6aa8b732
AK
7302 .get_idt = vmx_get_idt,
7303 .set_idt = vmx_set_idt,
7304 .get_gdt = vmx_get_gdt,
7305 .set_gdt = vmx_set_gdt,
020df079 7306 .set_dr7 = vmx_set_dr7,
5fdbf976 7307 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7308 .get_rflags = vmx_get_rflags,
7309 .set_rflags = vmx_set_rflags,
ebcbab4c 7310 .fpu_activate = vmx_fpu_activate,
02daab21 7311 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7312
7313 .tlb_flush = vmx_flush_tlb,
6aa8b732 7314
6aa8b732 7315 .run = vmx_vcpu_run,
6062d012 7316 .handle_exit = vmx_handle_exit,
6aa8b732 7317 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7318 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7319 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7320 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7321 .set_irq = vmx_inject_irq,
95ba8273 7322 .set_nmi = vmx_inject_nmi,
298101da 7323 .queue_exception = vmx_queue_exception,
b463a6f7 7324 .cancel_injection = vmx_cancel_injection,
78646121 7325 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7326 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7327 .get_nmi_mask = vmx_get_nmi_mask,
7328 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7329 .enable_nmi_window = enable_nmi_window,
7330 .enable_irq_window = enable_irq_window,
7331 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7332
cbc94022 7333 .set_tss_addr = vmx_set_tss_addr,
67253af5 7334 .get_tdp_level = get_ept_level,
4b12f0de 7335 .get_mt_mask = vmx_get_mt_mask,
229456fc 7336
586f9607 7337 .get_exit_info = vmx_get_exit_info,
586f9607 7338
17cc3935 7339 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7340
7341 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7342
7343 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 7344 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
7345
7346 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7347
7348 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7349
4051b188 7350 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 7351 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 7352 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7353 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7354 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7355 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7356
7357 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7358
7359 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7360};
7361
7362static int __init vmx_init(void)
7363{
26bb0981
AK
7364 int r, i;
7365
7366 rdmsrl_safe(MSR_EFER, &host_efer);
7367
7368 for (i = 0; i < NR_VMX_MSR; ++i)
7369 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7370
3e7c73e9 7371 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7372 if (!vmx_io_bitmap_a)
7373 return -ENOMEM;
7374
2106a548
GC
7375 r = -ENOMEM;
7376
3e7c73e9 7377 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7378 if (!vmx_io_bitmap_b)
fdef3ad1 7379 goto out;
fdef3ad1 7380
5897297b 7381 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7382 if (!vmx_msr_bitmap_legacy)
25c5f225 7383 goto out1;
2106a548 7384
25c5f225 7385
5897297b 7386 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7387 if (!vmx_msr_bitmap_longmode)
5897297b 7388 goto out2;
2106a548 7389
5897297b 7390
fdef3ad1
HQ
7391 /*
7392 * Allow direct access to the PC debug port (it is often used for I/O
7393 * delays, but the vmexits simply slow things down).
7394 */
3e7c73e9
AK
7395 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7396 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7397
3e7c73e9 7398 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7399
5897297b
AK
7400 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7401 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7402
2384d2b3
SY
7403 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7404
0ee75bea
AK
7405 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7406 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7407 if (r)
5897297b 7408 goto out3;
25c5f225 7409
8f536b76
ZY
7410#ifdef CONFIG_KEXEC
7411 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7412 crash_vmclear_local_loaded_vmcss);
7413#endif
7414
5897297b
AK
7415 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7416 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7417 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7418 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7419 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7420 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7421
089d034e 7422 if (enable_ept) {
3f6d8c8a
XH
7423 kvm_mmu_set_mask_ptes(0ull,
7424 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7425 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7426 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 7427 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7428 kvm_enable_tdp();
7429 } else
7430 kvm_disable_tdp();
1439442c 7431
fdef3ad1
HQ
7432 return 0;
7433
5897297b
AK
7434out3:
7435 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7436out2:
5897297b 7437 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7438out1:
3e7c73e9 7439 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7440out:
3e7c73e9 7441 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7442 return r;
6aa8b732
AK
7443}
7444
7445static void __exit vmx_exit(void)
7446{
5897297b
AK
7447 free_page((unsigned long)vmx_msr_bitmap_legacy);
7448 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7449 free_page((unsigned long)vmx_io_bitmap_b);
7450 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7451
8f536b76
ZY
7452#ifdef CONFIG_KEXEC
7453 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
7454 synchronize_rcu();
7455#endif
7456
cb498ea2 7457 kvm_exit();
6aa8b732
AK
7458}
7459
7460module_init(vmx_init)
7461module_exit(vmx_exit)