]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
xfs: check for obviously bad level values in the bmbt root
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
d2921684
EB
30/* Maximum number of mounts in a mount namespace */
31unsigned int sysctl_mount_max __read_mostly = 100000;
32
0818bf27
AV
33static unsigned int m_hash_mask __read_mostly;
34static unsigned int m_hash_shift __read_mostly;
35static unsigned int mp_hash_mask __read_mostly;
36static unsigned int mp_hash_shift __read_mostly;
37
38static __initdata unsigned long mhash_entries;
39static int __init set_mhash_entries(char *str)
40{
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45}
46__setup("mhash_entries=", set_mhash_entries);
47
48static __initdata unsigned long mphash_entries;
49static int __init set_mphash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mphash_entries=", set_mphash_entries);
13f14b4d 57
c7999c36 58static u64 event;
73cd49ec 59static DEFINE_IDA(mnt_id_ida);
719f5d7f 60static DEFINE_IDA(mnt_group_ida);
99b7db7b 61static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
62static int mnt_id_start = 0;
63static int mnt_group_start = 1;
1da177e4 64
38129a13 65static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 66static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 67static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 68static DECLARE_RWSEM(namespace_sem);
1da177e4 69
f87fd4c2 70/* /sys/fs */
00d26666
GKH
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 73
99b7db7b
NP
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
48a066e7 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 83
38129a13 84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 85{
b58fed8b
RP
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
97}
98
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 105 spin_lock(&mnt_id_lock);
15169fe7 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 107 if (!res)
15169fe7 108 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 109 spin_unlock(&mnt_id_lock);
73cd49ec
MS
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
b105e270 116static void mnt_free_id(struct mount *mnt)
73cd49ec 117{
15169fe7 118 int id = mnt->mnt_id;
99b7db7b 119 spin_lock(&mnt_id_lock);
f21f6220
AV
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
99b7db7b 123 spin_unlock(&mnt_id_lock);
73cd49ec
MS
124}
125
719f5d7f
MS
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
4b8b21f4 131static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 132{
f21f6220
AV
133 int res;
134
719f5d7f
MS
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
f21f6220
AV
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
15169fe7 140 &mnt->mnt_group_id);
f21f6220 141 if (!res)
15169fe7 142 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
143
144 return res;
719f5d7f
MS
145}
146
147/*
148 * Release a peer group ID
149 */
4b8b21f4 150void mnt_release_group_id(struct mount *mnt)
719f5d7f 151{
15169fe7 152 int id = mnt->mnt_group_id;
f21f6220
AV
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
15169fe7 156 mnt->mnt_group_id = 0;
719f5d7f
MS
157}
158
b3e19d92
NP
159/*
160 * vfsmount lock must be held for read
161 */
83adc753 162static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
163{
164#ifdef CONFIG_SMP
68e8a9fe 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
166#else
167 preempt_disable();
68e8a9fe 168 mnt->mnt_count += n;
b3e19d92
NP
169 preempt_enable();
170#endif
171}
172
b3e19d92
NP
173/*
174 * vfsmount lock must be held for write
175 */
83adc753 176unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
177{
178#ifdef CONFIG_SMP
f03c6599 179 unsigned int count = 0;
b3e19d92
NP
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
68e8a9fe 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
184 }
185
186 return count;
187#else
68e8a9fe 188 return mnt->mnt_count;
b3e19d92
NP
189#endif
190}
191
87b95ce0
AV
192static void drop_mountpoint(struct fs_pin *p)
193{
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198}
199
b105e270 200static struct mount *alloc_vfsmnt(const char *name)
1da177e4 201{
c63181e6
AV
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
73cd49ec
MS
204 int err;
205
c63181e6 206 err = mnt_alloc_id(mnt);
88b38782
LZ
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
fcc139ae 211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 212 if (!mnt->mnt_devname)
88b38782 213 goto out_free_id;
73cd49ec
MS
214 }
215
b3e19d92 216#ifdef CONFIG_SMP
c63181e6
AV
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
b3e19d92
NP
219 goto out_free_devname;
220
c63181e6 221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 222#else
c63181e6
AV
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
b3e19d92
NP
225#endif
226
38129a13 227 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
236#ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 238#endif
87b95ce0 239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 240 }
c63181e6 241 return mnt;
88b38782 242
d3ef3d73 243#ifdef CONFIG_SMP
244out_free_devname:
fcc139ae 245 kfree_const(mnt->mnt_devname);
d3ef3d73 246#endif
88b38782 247out_free_id:
c63181e6 248 mnt_free_id(mnt);
88b38782 249out_free_cache:
c63181e6 250 kmem_cache_free(mnt_cache, mnt);
88b38782 251 return NULL;
1da177e4
LT
252}
253
3d733633
DH
254/*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262/*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273int __mnt_is_readonly(struct vfsmount *mnt)
274{
2e4b7fcd
DH
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
3d733633
DH
280}
281EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
83adc753 283static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 284{
285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers++;
d3ef3d73 289#endif
290}
3d733633 291
83adc753 292static inline void mnt_dec_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
68e8a9fe 295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 296#else
68e8a9fe 297 mnt->mnt_writers--;
d3ef3d73 298#endif
3d733633 299}
3d733633 300
83adc753 301static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 302{
d3ef3d73 303#ifdef CONFIG_SMP
304 unsigned int count = 0;
3d733633 305 int cpu;
3d733633
DH
306
307 for_each_possible_cpu(cpu) {
68e8a9fe 308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 309 }
3d733633 310
d3ef3d73 311 return count;
312#else
313 return mnt->mnt_writers;
314#endif
3d733633
DH
315}
316
4ed5e82f
MS
317static int mnt_is_readonly(struct vfsmount *mnt)
318{
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324}
325
8366025e 326/*
eb04c282
JK
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
8366025e
DH
331 */
332/**
eb04c282 333 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 334 * @m: the mount on which to take a write
8366025e 335 *
eb04c282
JK
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
8366025e 341 */
eb04c282 342int __mnt_want_write(struct vfsmount *m)
8366025e 343{
83adc753 344 struct mount *mnt = real_mount(m);
3d733633 345 int ret = 0;
3d733633 346
d3ef3d73 347 preempt_disable();
c6653a83 348 mnt_inc_writers(mnt);
d3ef3d73 349 /*
c6653a83 350 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
1e75529e 355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
4ed5e82f 363 if (mnt_is_readonly(m)) {
c6653a83 364 mnt_dec_writers(mnt);
3d733633 365 ret = -EROFS;
3d733633 366 }
d3ef3d73 367 preempt_enable();
eb04c282
JK
368
369 return ret;
370}
371
372/**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381int mnt_want_write(struct vfsmount *m)
382{
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
3d733633 389 return ret;
8366025e
DH
390}
391EXPORT_SYMBOL_GPL(mnt_want_write);
392
96029c4e 393/**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405int mnt_clone_write(struct vfsmount *mnt)
406{
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
83adc753 411 mnt_inc_writers(real_mount(mnt));
96029c4e 412 preempt_enable();
413 return 0;
414}
415EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417/**
eb04c282 418 * __mnt_want_write_file - get write access to a file's mount
96029c4e 419 * @file: the file who's mount on which to take a write
420 *
eb04c282 421 * This is like __mnt_want_write, but it takes a file and can
96029c4e 422 * do some optimisations if the file is open for write already
423 */
eb04c282 424int __mnt_want_write_file(struct file *file)
96029c4e 425{
83f936c7 426 if (!(file->f_mode & FMODE_WRITER))
eb04c282 427 return __mnt_want_write(file->f_path.mnt);
96029c4e 428 else
429 return mnt_clone_write(file->f_path.mnt);
430}
eb04c282
JK
431
432/**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439int mnt_want_write_file(struct file *file)
440{
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448}
96029c4e 449EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
8366025e 451/**
eb04c282 452 * __mnt_drop_write - give up write access to a mount
8366025e
DH
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
eb04c282 457 * __mnt_want_write() call above.
8366025e 458 */
eb04c282 459void __mnt_drop_write(struct vfsmount *mnt)
8366025e 460{
d3ef3d73 461 preempt_disable();
83adc753 462 mnt_dec_writers(real_mount(mnt));
d3ef3d73 463 preempt_enable();
8366025e 464}
e14748e8 465EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479}
8366025e
DH
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
eb04c282
JK
482void __mnt_drop_write_file(struct file *file)
483{
484 __mnt_drop_write(file->f_path.mnt);
485}
486
2a79f17e
AV
487void mnt_drop_write_file(struct file *file)
488{
489 mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
83adc753 493static int mnt_make_readonly(struct mount *mnt)
8366025e 494{
3d733633
DH
495 int ret = 0;
496
719ea2fb 497 lock_mount_hash();
83adc753 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 499 /*
d3ef3d73 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
3d733633 502 */
d3ef3d73 503 smp_mb();
504
3d733633 505 /*
d3ef3d73 506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
3d733633 520 */
c6653a83 521 if (mnt_get_writers(mnt) > 0)
d3ef3d73 522 ret = -EBUSY;
523 else
83adc753 524 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 531 unlock_mount_hash();
3d733633 532 return ret;
8366025e 533}
8366025e 534
83adc753 535static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 536{
719ea2fb 537 lock_mount_hash();
83adc753 538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 539 unlock_mount_hash();
2e4b7fcd
DH
540}
541
4ed5e82f
MS
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544 struct mount *mnt;
545 int err = 0;
546
8e8b8796
MS
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
719ea2fb 551 lock_mount_hash();
4ed5e82f
MS
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
8e8b8796
MS
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
4ed5e82f
MS
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
719ea2fb 573 unlock_mount_hash();
4ed5e82f
MS
574
575 return err;
576}
577
b105e270 578static void free_vfsmnt(struct mount *mnt)
1da177e4 579{
fcc139ae 580 kfree_const(mnt->mnt_devname);
d3ef3d73 581#ifdef CONFIG_SMP
68e8a9fe 582 free_percpu(mnt->mnt_pcp);
d3ef3d73 583#endif
b105e270 584 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
585}
586
8ffcb32e
DH
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
48a066e7 592/* call under rcu_read_lock */
294d71ff 593int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
594{
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
294d71ff 597 return 1;
48a066e7 598 if (bastard == NULL)
294d71ff 599 return 0;
48a066e7
AV
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 603 return 0;
48a066e7
AV
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
294d71ff
AV
606 return 1;
607 }
608 return -1;
609}
610
611/* call under rcu_read_lock */
612bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613{
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
48a066e7 621 }
48a066e7
AV
622 return false;
623}
624
1da177e4 625/*
474279dc 626 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 627 * call under rcu_read_lock()
1da177e4 628 */
474279dc 629struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 630{
38129a13 631 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
632 struct mount *p;
633
38129a13 634 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638}
639
a05964f3 640/*
f015f126
DH
641 * lookup_mnt - Return the first child mount mounted at path
642 *
643 * "First" means first mounted chronologically. If you create the
644 * following mounts:
645 *
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
649 *
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
653 *
654 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 655 */
ca71cf71 656struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 657{
c7105365 658 struct mount *child_mnt;
48a066e7
AV
659 struct vfsmount *m;
660 unsigned seq;
99b7db7b 661
48a066e7
AV
662 rcu_read_lock();
663 do {
664 seq = read_seqbegin(&mount_lock);
665 child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 m = child_mnt ? &child_mnt->mnt : NULL;
667 } while (!legitimize_mnt(m, seq));
668 rcu_read_unlock();
669 return m;
a05964f3
RP
670}
671
7af1364f
EB
672/*
673 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
674 * current mount namespace.
675 *
676 * The common case is dentries are not mountpoints at all and that
677 * test is handled inline. For the slow case when we are actually
678 * dealing with a mountpoint of some kind, walk through all of the
679 * mounts in the current mount namespace and test to see if the dentry
680 * is a mountpoint.
681 *
682 * The mount_hashtable is not usable in the context because we
683 * need to identify all mounts that may be in the current mount
684 * namespace not just a mount that happens to have some specified
685 * parent mount.
686 */
687bool __is_local_mountpoint(struct dentry *dentry)
688{
689 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
690 struct mount *mnt;
691 bool is_covered = false;
692
693 if (!d_mountpoint(dentry))
694 goto out;
695
696 down_read(&namespace_sem);
697 list_for_each_entry(mnt, &ns->list, mnt_list) {
698 is_covered = (mnt->mnt_mountpoint == dentry);
699 if (is_covered)
700 break;
701 }
702 up_read(&namespace_sem);
703out:
704 return is_covered;
705}
706
e2dfa935 707static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 708{
0818bf27 709 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
710 struct mountpoint *mp;
711
0818bf27 712 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
713 if (mp->m_dentry == dentry) {
714 /* might be worth a WARN_ON() */
715 if (d_unlinked(dentry))
716 return ERR_PTR(-ENOENT);
717 mp->m_count++;
718 return mp;
719 }
720 }
e2dfa935
EB
721 return NULL;
722}
723
3895dbf8 724static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 725{
3895dbf8 726 struct mountpoint *mp, *new = NULL;
e2dfa935 727 int ret;
84d17192 728
3895dbf8
EB
729 if (d_mountpoint(dentry)) {
730mountpoint:
731 read_seqlock_excl(&mount_lock);
732 mp = lookup_mountpoint(dentry);
733 read_sequnlock_excl(&mount_lock);
734 if (mp)
735 goto done;
736 }
737
738 if (!new)
739 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 if (!new)
84d17192
AV
741 return ERR_PTR(-ENOMEM);
742
3895dbf8
EB
743
744 /* Exactly one processes may set d_mounted */
eed81007 745 ret = d_set_mounted(dentry);
eed81007 746
3895dbf8
EB
747 /* Someone else set d_mounted? */
748 if (ret == -EBUSY)
749 goto mountpoint;
750
751 /* The dentry is not available as a mountpoint? */
752 mp = ERR_PTR(ret);
753 if (ret)
754 goto done;
755
756 /* Add the new mountpoint to the hash table */
757 read_seqlock_excl(&mount_lock);
758 new->m_dentry = dentry;
759 new->m_count = 1;
760 hlist_add_head(&new->m_hash, mp_hash(dentry));
761 INIT_HLIST_HEAD(&new->m_list);
762 read_sequnlock_excl(&mount_lock);
763
764 mp = new;
765 new = NULL;
766done:
767 kfree(new);
84d17192
AV
768 return mp;
769}
770
771static void put_mountpoint(struct mountpoint *mp)
772{
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 775 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
0818bf27 779 hlist_del(&mp->m_hash);
84d17192
AV
780 kfree(mp);
781 }
782}
783
143c8c91 784static inline int check_mnt(struct mount *mnt)
1da177e4 785{
6b3286ed 786 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
787}
788
99b7db7b
NP
789/*
790 * vfsmount lock must be held for write
791 */
6b3286ed 792static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
793{
794 if (ns) {
795 ns->event = ++event;
796 wake_up_interruptible(&ns->poll);
797 }
798}
799
99b7db7b
NP
800/*
801 * vfsmount lock must be held for write
802 */
6b3286ed 803static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
804{
805 if (ns && ns->event != event) {
806 ns->event = event;
807 wake_up_interruptible(&ns->poll);
808 }
809}
810
99b7db7b
NP
811/*
812 * vfsmount lock must be held for write
813 */
7bdb11de 814static void unhash_mnt(struct mount *mnt)
419148da 815{
0714a533 816 mnt->mnt_parent = mnt;
a73324da 817 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 818 list_del_init(&mnt->mnt_child);
38129a13 819 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 820 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
821 put_mountpoint(mnt->mnt_mp);
822 mnt->mnt_mp = NULL;
1da177e4
LT
823}
824
7bdb11de
EB
825/*
826 * vfsmount lock must be held for write
827 */
828static void detach_mnt(struct mount *mnt, struct path *old_path)
829{
830 old_path->dentry = mnt->mnt_mountpoint;
831 old_path->mnt = &mnt->mnt_parent->mnt;
832 unhash_mnt(mnt);
833}
834
6a46c573
EB
835/*
836 * vfsmount lock must be held for write
837 */
838static void umount_mnt(struct mount *mnt)
839{
840 /* old mountpoint will be dropped when we can do that */
841 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
842 unhash_mnt(mnt);
843}
844
99b7db7b
NP
845/*
846 * vfsmount lock must be held for write
847 */
84d17192
AV
848void mnt_set_mountpoint(struct mount *mnt,
849 struct mountpoint *mp,
44d964d6 850 struct mount *child_mnt)
b90fa9ae 851{
84d17192 852 mp->m_count++;
3a2393d7 853 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 854 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 855 child_mnt->mnt_parent = mnt;
84d17192 856 child_mnt->mnt_mp = mp;
0a5eb7c8 857 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
858}
859
12766daa
EB
860static void __attach_mnt(struct mount *mnt, struct mount *parent)
861{
862 hlist_add_head_rcu(&mnt->mnt_hash,
863 m_hash(&parent->mnt, mnt->mnt_mountpoint));
864 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
865}
866
99b7db7b
NP
867/*
868 * vfsmount lock must be held for write
869 */
84d17192
AV
870static void attach_mnt(struct mount *mnt,
871 struct mount *parent,
872 struct mountpoint *mp)
1da177e4 873{
84d17192 874 mnt_set_mountpoint(parent, mp, mnt);
12766daa 875 __attach_mnt(mnt, parent);
b90fa9ae
RP
876}
877
12766daa 878void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 879{
12766daa
EB
880 struct mountpoint *old_mp = mnt->mnt_mp;
881 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
882 struct mount *old_parent = mnt->mnt_parent;
883
884 list_del_init(&mnt->mnt_child);
885 hlist_del_init(&mnt->mnt_mp_list);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887
888 attach_mnt(mnt, parent, mp);
889
890 put_mountpoint(old_mp);
891
892 /*
893 * Safely avoid even the suggestion this code might sleep or
894 * lock the mount hash by taking advantage of the knowledge that
895 * mnt_change_mountpoint will not release the final reference
896 * to a mountpoint.
897 *
898 * During mounting, the mount passed in as the parent mount will
899 * continue to use the old mountpoint and during unmounting, the
900 * old mountpoint will continue to exist until namespace_unlock,
901 * which happens well after mnt_change_mountpoint.
902 */
903 spin_lock(&old_mountpoint->d_lock);
904 old_mountpoint->d_lockref.count--;
905 spin_unlock(&old_mountpoint->d_lock);
906
907 mnt_add_count(old_parent, -1);
12a5b529
AV
908}
909
b90fa9ae 910/*
99b7db7b 911 * vfsmount lock must be held for write
b90fa9ae 912 */
12766daa 913static void commit_tree(struct mount *mnt)
b90fa9ae 914{
0714a533 915 struct mount *parent = mnt->mnt_parent;
83adc753 916 struct mount *m;
b90fa9ae 917 LIST_HEAD(head);
143c8c91 918 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 919
0714a533 920 BUG_ON(parent == mnt);
b90fa9ae 921
1a4eeaf2 922 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 923 list_for_each_entry(m, &head, mnt_list)
143c8c91 924 m->mnt_ns = n;
f03c6599 925
b90fa9ae
RP
926 list_splice(&head, n->list.prev);
927
d2921684
EB
928 n->mounts += n->pending_mounts;
929 n->pending_mounts = 0;
930
12766daa 931 __attach_mnt(mnt, parent);
6b3286ed 932 touch_mnt_namespace(n);
1da177e4
LT
933}
934
909b0a88 935static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 936{
6b41d536
AV
937 struct list_head *next = p->mnt_mounts.next;
938 if (next == &p->mnt_mounts) {
1da177e4 939 while (1) {
909b0a88 940 if (p == root)
1da177e4 941 return NULL;
6b41d536
AV
942 next = p->mnt_child.next;
943 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 944 break;
0714a533 945 p = p->mnt_parent;
1da177e4
LT
946 }
947 }
6b41d536 948 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
949}
950
315fc83e 951static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 952{
6b41d536
AV
953 struct list_head *prev = p->mnt_mounts.prev;
954 while (prev != &p->mnt_mounts) {
955 p = list_entry(prev, struct mount, mnt_child);
956 prev = p->mnt_mounts.prev;
9676f0c6
RP
957 }
958 return p;
959}
960
9d412a43
AV
961struct vfsmount *
962vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
963{
b105e270 964 struct mount *mnt;
9d412a43
AV
965 struct dentry *root;
966
967 if (!type)
968 return ERR_PTR(-ENODEV);
969
970 mnt = alloc_vfsmnt(name);
971 if (!mnt)
972 return ERR_PTR(-ENOMEM);
973
974 if (flags & MS_KERNMOUNT)
b105e270 975 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
976
977 root = mount_fs(type, flags, name, data);
978 if (IS_ERR(root)) {
8ffcb32e 979 mnt_free_id(mnt);
9d412a43
AV
980 free_vfsmnt(mnt);
981 return ERR_CAST(root);
982 }
983
b105e270
AV
984 mnt->mnt.mnt_root = root;
985 mnt->mnt.mnt_sb = root->d_sb;
a73324da 986 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 987 mnt->mnt_parent = mnt;
719ea2fb 988 lock_mount_hash();
39f7c4db 989 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 990 unlock_mount_hash();
b105e270 991 return &mnt->mnt;
9d412a43
AV
992}
993EXPORT_SYMBOL_GPL(vfs_kern_mount);
994
c8d3e3d5
EB
995struct vfsmount *
996vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
997 const char *name, void *data)
998{
999 /* Until it is worked out how to pass the user namespace
1000 * through from the parent mount to the submount don't support
1001 * unprivileged mounts with submounts.
1002 */
1003 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1004 return ERR_PTR(-EPERM);
1005
1006 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1007}
1008EXPORT_SYMBOL_GPL(vfs_submount);
1009
87129cc0 1010static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1011 int flag)
1da177e4 1012{
87129cc0 1013 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1014 struct mount *mnt;
1015 int err;
1da177e4 1016
be34d1a3
DH
1017 mnt = alloc_vfsmnt(old->mnt_devname);
1018 if (!mnt)
1019 return ERR_PTR(-ENOMEM);
719f5d7f 1020
7a472ef4 1021 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1022 mnt->mnt_group_id = 0; /* not a peer of original */
1023 else
1024 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1025
be34d1a3
DH
1026 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1027 err = mnt_alloc_group_id(mnt);
1028 if (err)
1029 goto out_free;
1da177e4 1030 }
be34d1a3 1031
f2ebb3a9 1032 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1033 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1034 if (flag & CL_UNPRIVILEGED) {
1035 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036
1037 if (mnt->mnt.mnt_flags & MNT_READONLY)
1038 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039
1040 if (mnt->mnt.mnt_flags & MNT_NODEV)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042
1043 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045
1046 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1048 }
132c94e3 1049
5ff9d8a6 1050 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1051 if ((flag & CL_UNPRIVILEGED) &&
1052 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1053 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054
be34d1a3
DH
1055 atomic_inc(&sb->s_active);
1056 mnt->mnt.mnt_sb = sb;
1057 mnt->mnt.mnt_root = dget(root);
1058 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1059 mnt->mnt_parent = mnt;
719ea2fb 1060 lock_mount_hash();
be34d1a3 1061 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1062 unlock_mount_hash();
be34d1a3 1063
7a472ef4
EB
1064 if ((flag & CL_SLAVE) ||
1065 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1066 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1067 mnt->mnt_master = old;
1068 CLEAR_MNT_SHARED(mnt);
1069 } else if (!(flag & CL_PRIVATE)) {
1070 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1071 list_add(&mnt->mnt_share, &old->mnt_share);
1072 if (IS_MNT_SLAVE(old))
1073 list_add(&mnt->mnt_slave, &old->mnt_slave);
1074 mnt->mnt_master = old->mnt_master;
5235d448
AV
1075 } else {
1076 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1077 }
1078 if (flag & CL_MAKE_SHARED)
1079 set_mnt_shared(mnt);
1080
1081 /* stick the duplicate mount on the same expiry list
1082 * as the original if that was on one */
1083 if (flag & CL_EXPIRE) {
1084 if (!list_empty(&old->mnt_expire))
1085 list_add(&mnt->mnt_expire, &old->mnt_expire);
1086 }
1087
cb338d06 1088 return mnt;
719f5d7f
MS
1089
1090 out_free:
8ffcb32e 1091 mnt_free_id(mnt);
719f5d7f 1092 free_vfsmnt(mnt);
be34d1a3 1093 return ERR_PTR(err);
1da177e4
LT
1094}
1095
9ea459e1
AV
1096static void cleanup_mnt(struct mount *mnt)
1097{
1098 /*
1099 * This probably indicates that somebody messed
1100 * up a mnt_want/drop_write() pair. If this
1101 * happens, the filesystem was probably unable
1102 * to make r/w->r/o transitions.
1103 */
1104 /*
1105 * The locking used to deal with mnt_count decrement provides barriers,
1106 * so mnt_get_writers() below is safe.
1107 */
1108 WARN_ON(mnt_get_writers(mnt));
1109 if (unlikely(mnt->mnt_pins.first))
1110 mnt_pin_kill(mnt);
1111 fsnotify_vfsmount_delete(&mnt->mnt);
1112 dput(mnt->mnt.mnt_root);
1113 deactivate_super(mnt->mnt.mnt_sb);
1114 mnt_free_id(mnt);
1115 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1116}
1117
1118static void __cleanup_mnt(struct rcu_head *head)
1119{
1120 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1121}
1122
1123static LLIST_HEAD(delayed_mntput_list);
1124static void delayed_mntput(struct work_struct *unused)
1125{
1126 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1127 struct llist_node *next;
1128
1129 for (; node; node = next) {
1130 next = llist_next(node);
1131 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1132 }
1133}
1134static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
900148dc 1136static void mntput_no_expire(struct mount *mnt)
b3e19d92 1137{
48a066e7
AV
1138 rcu_read_lock();
1139 mnt_add_count(mnt, -1);
1140 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1141 rcu_read_unlock();
f03c6599 1142 return;
b3e19d92 1143 }
719ea2fb 1144 lock_mount_hash();
b3e19d92 1145 if (mnt_get_count(mnt)) {
48a066e7 1146 rcu_read_unlock();
719ea2fb 1147 unlock_mount_hash();
99b7db7b
NP
1148 return;
1149 }
48a066e7
AV
1150 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1151 rcu_read_unlock();
1152 unlock_mount_hash();
1153 return;
1154 }
1155 mnt->mnt.mnt_flags |= MNT_DOOMED;
1156 rcu_read_unlock();
962830df 1157
39f7c4db 1158 list_del(&mnt->mnt_instance);
ce07d891
EB
1159
1160 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1161 struct mount *p, *tmp;
1162 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1163 umount_mnt(p);
1164 }
1165 }
719ea2fb 1166 unlock_mount_hash();
649a795a 1167
9ea459e1
AV
1168 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1169 struct task_struct *task = current;
1170 if (likely(!(task->flags & PF_KTHREAD))) {
1171 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1172 if (!task_work_add(task, &mnt->mnt_rcu, true))
1173 return;
1174 }
1175 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1176 schedule_delayed_work(&delayed_mntput_work, 1);
1177 return;
1178 }
1179 cleanup_mnt(mnt);
b3e19d92 1180}
b3e19d92
NP
1181
1182void mntput(struct vfsmount *mnt)
1183{
1184 if (mnt) {
863d684f 1185 struct mount *m = real_mount(mnt);
b3e19d92 1186 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1187 if (unlikely(m->mnt_expiry_mark))
1188 m->mnt_expiry_mark = 0;
1189 mntput_no_expire(m);
b3e19d92
NP
1190 }
1191}
1192EXPORT_SYMBOL(mntput);
1193
1194struct vfsmount *mntget(struct vfsmount *mnt)
1195{
1196 if (mnt)
83adc753 1197 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1198 return mnt;
1199}
1200EXPORT_SYMBOL(mntget);
1201
c6609c0a
IK
1202/* path_is_mountpoint() - Check if path is a mount in the current
1203 * namespace.
1204 *
1205 * d_mountpoint() can only be used reliably to establish if a dentry is
1206 * not mounted in any namespace and that common case is handled inline.
1207 * d_mountpoint() isn't aware of the possibility there may be multiple
1208 * mounts using a given dentry in a different namespace. This function
1209 * checks if the passed in path is a mountpoint rather than the dentry
1210 * alone.
1211 */
1212bool path_is_mountpoint(const struct path *path)
1213{
1214 unsigned seq;
1215 bool res;
1216
1217 if (!d_mountpoint(path->dentry))
1218 return false;
1219
1220 rcu_read_lock();
1221 do {
1222 seq = read_seqbegin(&mount_lock);
1223 res = __path_is_mountpoint(path);
1224 } while (read_seqretry(&mount_lock, seq));
1225 rcu_read_unlock();
1226
1227 return res;
1228}
1229EXPORT_SYMBOL(path_is_mountpoint);
1230
ca71cf71 1231struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1232{
3064c356
AV
1233 struct mount *p;
1234 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1235 if (IS_ERR(p))
1236 return ERR_CAST(p);
1237 p->mnt.mnt_flags |= MNT_INTERNAL;
1238 return &p->mnt;
7b7b1ace 1239}
1da177e4 1240
b3b304a2
MS
1241static inline void mangle(struct seq_file *m, const char *s)
1242{
1243 seq_escape(m, s, " \t\n\\");
1244}
1245
1246/*
1247 * Simple .show_options callback for filesystems which don't want to
1248 * implement more complex mount option showing.
1249 *
1250 * See also save_mount_options().
1251 */
34c80b1d 1252int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1253{
2a32cebd
AV
1254 const char *options;
1255
1256 rcu_read_lock();
34c80b1d 1257 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1258
1259 if (options != NULL && options[0]) {
1260 seq_putc(m, ',');
1261 mangle(m, options);
1262 }
2a32cebd 1263 rcu_read_unlock();
b3b304a2
MS
1264
1265 return 0;
1266}
1267EXPORT_SYMBOL(generic_show_options);
1268
1269/*
1270 * If filesystem uses generic_show_options(), this function should be
1271 * called from the fill_super() callback.
1272 *
1273 * The .remount_fs callback usually needs to be handled in a special
1274 * way, to make sure, that previous options are not overwritten if the
1275 * remount fails.
1276 *
1277 * Also note, that if the filesystem's .remount_fs function doesn't
1278 * reset all options to their default value, but changes only newly
1279 * given options, then the displayed options will not reflect reality
1280 * any more.
1281 */
1282void save_mount_options(struct super_block *sb, char *options)
1283{
2a32cebd
AV
1284 BUG_ON(sb->s_options);
1285 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1286}
1287EXPORT_SYMBOL(save_mount_options);
1288
2a32cebd
AV
1289void replace_mount_options(struct super_block *sb, char *options)
1290{
1291 char *old = sb->s_options;
1292 rcu_assign_pointer(sb->s_options, options);
1293 if (old) {
1294 synchronize_rcu();
1295 kfree(old);
1296 }
1297}
1298EXPORT_SYMBOL(replace_mount_options);
1299
a1a2c409 1300#ifdef CONFIG_PROC_FS
0226f492 1301/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1302static void *m_start(struct seq_file *m, loff_t *pos)
1303{
ede1bf0d 1304 struct proc_mounts *p = m->private;
1da177e4 1305
390c6843 1306 down_read(&namespace_sem);
c7999c36
AV
1307 if (p->cached_event == p->ns->event) {
1308 void *v = p->cached_mount;
1309 if (*pos == p->cached_index)
1310 return v;
1311 if (*pos == p->cached_index + 1) {
1312 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 return p->cached_mount = v;
1314 }
1315 }
1316
1317 p->cached_event = p->ns->event;
1318 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 p->cached_index = *pos;
1320 return p->cached_mount;
1da177e4
LT
1321}
1322
1323static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324{
ede1bf0d 1325 struct proc_mounts *p = m->private;
b0765fb8 1326
c7999c36
AV
1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 p->cached_index = *pos;
1329 return p->cached_mount;
1da177e4
LT
1330}
1331
1332static void m_stop(struct seq_file *m, void *v)
1333{
390c6843 1334 up_read(&namespace_sem);
1da177e4
LT
1335}
1336
0226f492 1337static int m_show(struct seq_file *m, void *v)
2d4d4864 1338{
ede1bf0d 1339 struct proc_mounts *p = m->private;
1a4eeaf2 1340 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1341 return p->show(m, &r->mnt);
1da177e4
LT
1342}
1343
a1a2c409 1344const struct seq_operations mounts_op = {
1da177e4
LT
1345 .start = m_start,
1346 .next = m_next,
1347 .stop = m_stop,
0226f492 1348 .show = m_show,
b4629fe2 1349};
a1a2c409 1350#endif /* CONFIG_PROC_FS */
b4629fe2 1351
1da177e4
LT
1352/**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
909b0a88 1360int may_umount_tree(struct vfsmount *m)
1da177e4 1361{
909b0a88 1362 struct mount *mnt = real_mount(m);
36341f64
RP
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
315fc83e 1365 struct mount *p;
909b0a88 1366 BUG_ON(!m);
1da177e4 1367
b3e19d92 1368 /* write lock needed for mnt_get_count */
719ea2fb 1369 lock_mount_hash();
909b0a88 1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1371 actual_refs += mnt_get_count(p);
1da177e4 1372 minimum_refs += 2;
1da177e4 1373 }
719ea2fb 1374 unlock_mount_hash();
1da177e4
LT
1375
1376 if (actual_refs > minimum_refs)
e3474a8e 1377 return 0;
1da177e4 1378
e3474a8e 1379 return 1;
1da177e4
LT
1380}
1381
1382EXPORT_SYMBOL(may_umount_tree);
1383
1384/**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397int may_umount(struct vfsmount *mnt)
1398{
e3474a8e 1399 int ret = 1;
8ad08d8a 1400 down_read(&namespace_sem);
719ea2fb 1401 lock_mount_hash();
1ab59738 1402 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1403 ret = 0;
719ea2fb 1404 unlock_mount_hash();
8ad08d8a 1405 up_read(&namespace_sem);
a05964f3 1406 return ret;
1da177e4
LT
1407}
1408
1409EXPORT_SYMBOL(may_umount);
1410
38129a13 1411static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1412
97216be0 1413static void namespace_unlock(void)
70fbcdf4 1414{
a3b3c562 1415 struct hlist_head head;
97216be0 1416
a3b3c562 1417 hlist_move_list(&unmounted, &head);
97216be0 1418
97216be0
AV
1419 up_write(&namespace_sem);
1420
a3b3c562
EB
1421 if (likely(hlist_empty(&head)))
1422 return;
1423
48a066e7
AV
1424 synchronize_rcu();
1425
87b95ce0 1426 group_pin_kill(&head);
70fbcdf4
RP
1427}
1428
97216be0 1429static inline void namespace_lock(void)
e3197d83 1430{
97216be0 1431 down_write(&namespace_sem);
e3197d83
AV
1432}
1433
e819f152
EB
1434enum umount_tree_flags {
1435 UMOUNT_SYNC = 1,
1436 UMOUNT_PROPAGATE = 2,
e0c9c0af 1437 UMOUNT_CONNECTED = 4,
e819f152 1438};
f2d0a123
EB
1439
1440static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441{
1442 /* Leaving mounts connected is only valid for lazy umounts */
1443 if (how & UMOUNT_SYNC)
1444 return true;
1445
1446 /* A mount without a parent has nothing to be connected to */
1447 if (!mnt_has_parent(mnt))
1448 return true;
1449
1450 /* Because the reference counting rules change when mounts are
1451 * unmounted and connected, umounted mounts may not be
1452 * connected to mounted mounts.
1453 */
1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 return true;
1456
1457 /* Has it been requested that the mount remain connected? */
1458 if (how & UMOUNT_CONNECTED)
1459 return false;
1460
1461 /* Is the mount locked such that it needs to remain connected? */
1462 if (IS_MNT_LOCKED(mnt))
1463 return false;
1464
1465 /* By default disconnect the mount */
1466 return true;
1467}
1468
99b7db7b 1469/*
48a066e7 1470 * mount_lock must be held
99b7db7b
NP
1471 * namespace_sem must be held for write
1472 */
e819f152 1473static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1474{
c003b26f 1475 LIST_HEAD(tmp_list);
315fc83e 1476 struct mount *p;
1da177e4 1477
5d88457e
EB
1478 if (how & UMOUNT_PROPAGATE)
1479 propagate_mount_unlock(mnt);
1480
c003b26f 1481 /* Gather the mounts to umount */
590ce4bc
EB
1482 for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1484 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1485 }
1da177e4 1486
411a938b 1487 /* Hide the mounts from mnt_mounts */
c003b26f 1488 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1489 list_del_init(&p->mnt_child);
c003b26f 1490 }
88b368f2 1491
c003b26f 1492 /* Add propogated mounts to the tmp_list */
e819f152 1493 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1494 propagate_umount(&tmp_list);
a05964f3 1495
c003b26f 1496 while (!list_empty(&tmp_list)) {
d2921684 1497 struct mnt_namespace *ns;
ce07d891 1498 bool disconnect;
c003b26f 1499 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1500 list_del_init(&p->mnt_expire);
1a4eeaf2 1501 list_del_init(&p->mnt_list);
d2921684
EB
1502 ns = p->mnt_ns;
1503 if (ns) {
1504 ns->mounts--;
1505 __touch_mnt_namespace(ns);
1506 }
143c8c91 1507 p->mnt_ns = NULL;
e819f152 1508 if (how & UMOUNT_SYNC)
48a066e7 1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1510
f2d0a123 1511 disconnect = disconnect_mount(p, how);
ce07d891
EB
1512
1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 disconnect ? &unmounted : NULL);
676da58d 1515 if (mnt_has_parent(p)) {
81b6b061 1516 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1517 if (!disconnect) {
1518 /* Don't forget about p */
1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 } else {
1521 umount_mnt(p);
1522 }
7c4b93d8 1523 }
0f0afb1d 1524 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1525 }
1526}
1527
b54b9be7 1528static void shrink_submounts(struct mount *mnt);
c35038be 1529
1ab59738 1530static int do_umount(struct mount *mnt, int flags)
1da177e4 1531{
1ab59738 1532 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1533 int retval;
1534
1ab59738 1535 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1536 if (retval)
1537 return retval;
1538
1539 /*
1540 * Allow userspace to request a mountpoint be expired rather than
1541 * unmounting unconditionally. Unmount only happens if:
1542 * (1) the mark is already set (the mark is cleared by mntput())
1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 */
1545 if (flags & MNT_EXPIRE) {
1ab59738 1546 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1547 flags & (MNT_FORCE | MNT_DETACH))
1548 return -EINVAL;
1549
b3e19d92
NP
1550 /*
1551 * probably don't strictly need the lock here if we examined
1552 * all race cases, but it's a slowpath.
1553 */
719ea2fb 1554 lock_mount_hash();
83adc753 1555 if (mnt_get_count(mnt) != 2) {
719ea2fb 1556 unlock_mount_hash();
1da177e4 1557 return -EBUSY;
b3e19d92 1558 }
719ea2fb 1559 unlock_mount_hash();
1da177e4 1560
863d684f 1561 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1562 return -EAGAIN;
1563 }
1564
1565 /*
1566 * If we may have to abort operations to get out of this
1567 * mount, and they will themselves hold resources we must
1568 * allow the fs to do things. In the Unix tradition of
1569 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 * might fail to complete on the first run through as other tasks
1571 * must return, and the like. Thats for the mount program to worry
1572 * about for the moment.
1573 */
1574
42faad99 1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1576 sb->s_op->umount_begin(sb);
42faad99 1577 }
1da177e4
LT
1578
1579 /*
1580 * No sense to grab the lock for this test, but test itself looks
1581 * somewhat bogus. Suggestions for better replacement?
1582 * Ho-hum... In principle, we might treat that as umount + switch
1583 * to rootfs. GC would eventually take care of the old vfsmount.
1584 * Actually it makes sense, especially if rootfs would contain a
1585 * /reboot - static binary that would close all descriptors and
1586 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 */
1ab59738 1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1589 /*
1590 * Special case for "unmounting" root ...
1591 * we just try to remount it readonly.
1592 */
f17a3091 1593 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1594 return -EPERM;
1da177e4 1595 down_write(&sb->s_umount);
4aa98cf7 1596 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1597 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1598 up_write(&sb->s_umount);
1599 return retval;
1600 }
1601
97216be0 1602 namespace_lock();
719ea2fb 1603 lock_mount_hash();
5addc5dd 1604 event++;
1da177e4 1605
48a066e7 1606 if (flags & MNT_DETACH) {
1a4eeaf2 1607 if (!list_empty(&mnt->mnt_list))
e819f152 1608 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1609 retval = 0;
48a066e7
AV
1610 } else {
1611 shrink_submounts(mnt);
1612 retval = -EBUSY;
1613 if (!propagate_mount_busy(mnt, 2)) {
1614 if (!list_empty(&mnt->mnt_list))
e819f152 1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1616 retval = 0;
1617 }
1da177e4 1618 }
719ea2fb 1619 unlock_mount_hash();
e3197d83 1620 namespace_unlock();
1da177e4
LT
1621 return retval;
1622}
1623
80b5dce8
EB
1624/*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634void __detach_mounts(struct dentry *dentry)
1635{
1636 struct mountpoint *mp;
1637 struct mount *mnt;
1638
1639 namespace_lock();
3895dbf8 1640 lock_mount_hash();
80b5dce8 1641 mp = lookup_mountpoint(dentry);
f53e5797 1642 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1643 goto out_unlock;
1644
e06b933e 1645 event++;
80b5dce8
EB
1646 while (!hlist_empty(&mp->m_list)) {
1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 umount_mnt(mnt);
ce07d891 1651 }
e0c9c0af 1652 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1653 }
80b5dce8
EB
1654 put_mountpoint(mp);
1655out_unlock:
3895dbf8 1656 unlock_mount_hash();
80b5dce8
EB
1657 namespace_unlock();
1658}
1659
9b40bc90
AV
1660/*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663static inline bool may_mount(void)
1664{
1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666}
1667
9e8925b6
JL
1668static inline bool may_mandlock(void)
1669{
1670#ifndef CONFIG_MANDATORY_FILE_LOCKING
1671 return false;
1672#endif
95ace754 1673 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1674}
1675
1da177e4
LT
1676/*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
bdc480e3 1684SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1685{
2d8f3038 1686 struct path path;
900148dc 1687 struct mount *mnt;
1da177e4 1688 int retval;
db1f05bb 1689 int lookup_flags = 0;
1da177e4 1690
db1f05bb
MS
1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 return -EINVAL;
1693
9b40bc90
AV
1694 if (!may_mount())
1695 return -EPERM;
1696
db1f05bb
MS
1697 if (!(flags & UMOUNT_NOFOLLOW))
1698 lookup_flags |= LOOKUP_FOLLOW;
1699
197df04c 1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1701 if (retval)
1702 goto out;
900148dc 1703 mnt = real_mount(path.mnt);
1da177e4 1704 retval = -EINVAL;
2d8f3038 1705 if (path.dentry != path.mnt->mnt_root)
1da177e4 1706 goto dput_and_out;
143c8c91 1707 if (!check_mnt(mnt))
1da177e4 1708 goto dput_and_out;
5ff9d8a6
EB
1709 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 goto dput_and_out;
b2f5d4dc
EB
1711 retval = -EPERM;
1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 goto dput_and_out;
1da177e4 1714
900148dc 1715 retval = do_umount(mnt, flags);
1da177e4 1716dput_and_out:
429731b1 1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1718 dput(path.dentry);
900148dc 1719 mntput_no_expire(mnt);
1da177e4
LT
1720out:
1721 return retval;
1722}
1723
1724#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1725
1726/*
b58fed8b 1727 * The 2.0 compatible umount. No flags.
1da177e4 1728 */
bdc480e3 1729SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1730{
b58fed8b 1731 return sys_umount(name, 0);
1da177e4
LT
1732}
1733
1734#endif
1735
4ce5d2b1 1736static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1737{
4ce5d2b1 1738 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1739 return dentry->d_op == &ns_dentry_operations &&
1740 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1741}
1742
58be2825
AV
1743struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1744{
1745 return container_of(ns, struct mnt_namespace, ns);
1746}
1747
4ce5d2b1
EB
1748static bool mnt_ns_loop(struct dentry *dentry)
1749{
1750 /* Could bind mounting the mount namespace inode cause a
1751 * mount namespace loop?
1752 */
1753 struct mnt_namespace *mnt_ns;
1754 if (!is_mnt_ns_file(dentry))
1755 return false;
1756
f77c8014 1757 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1758 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1759}
1760
87129cc0 1761struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1762 int flag)
1da177e4 1763{
84d17192 1764 struct mount *res, *p, *q, *r, *parent;
1da177e4 1765
4ce5d2b1
EB
1766 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1767 return ERR_PTR(-EINVAL);
1768
1769 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1770 return ERR_PTR(-EINVAL);
9676f0c6 1771
36341f64 1772 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1773 if (IS_ERR(q))
1774 return q;
1775
a73324da 1776 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1777
1778 p = mnt;
6b41d536 1779 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1780 struct mount *s;
7ec02ef1 1781 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1782 continue;
1783
909b0a88 1784 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1785 if (!(flag & CL_COPY_UNBINDABLE) &&
1786 IS_MNT_UNBINDABLE(s)) {
1787 s = skip_mnt_tree(s);
1788 continue;
1789 }
1790 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1791 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1792 s = skip_mnt_tree(s);
1793 continue;
1794 }
0714a533
AV
1795 while (p != s->mnt_parent) {
1796 p = p->mnt_parent;
1797 q = q->mnt_parent;
1da177e4 1798 }
87129cc0 1799 p = s;
84d17192 1800 parent = q;
87129cc0 1801 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1802 if (IS_ERR(q))
1803 goto out;
719ea2fb 1804 lock_mount_hash();
1a4eeaf2 1805 list_add_tail(&q->mnt_list, &res->mnt_list);
12766daa 1806 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1807 unlock_mount_hash();
1da177e4
LT
1808 }
1809 }
1810 return res;
be34d1a3 1811out:
1da177e4 1812 if (res) {
719ea2fb 1813 lock_mount_hash();
e819f152 1814 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1815 unlock_mount_hash();
1da177e4 1816 }
be34d1a3 1817 return q;
1da177e4
LT
1818}
1819
be34d1a3
DH
1820/* Caller should check returned pointer for errors */
1821
ca71cf71 1822struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1823{
cb338d06 1824 struct mount *tree;
97216be0 1825 namespace_lock();
cd4a4017
EB
1826 if (!check_mnt(real_mount(path->mnt)))
1827 tree = ERR_PTR(-EINVAL);
1828 else
1829 tree = copy_tree(real_mount(path->mnt), path->dentry,
1830 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1831 namespace_unlock();
be34d1a3 1832 if (IS_ERR(tree))
52e220d3 1833 return ERR_CAST(tree);
be34d1a3 1834 return &tree->mnt;
8aec0809
AV
1835}
1836
1837void drop_collected_mounts(struct vfsmount *mnt)
1838{
97216be0 1839 namespace_lock();
719ea2fb 1840 lock_mount_hash();
e819f152 1841 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1842 unlock_mount_hash();
3ab6abee 1843 namespace_unlock();
8aec0809
AV
1844}
1845
c771d683
MS
1846/**
1847 * clone_private_mount - create a private clone of a path
1848 *
1849 * This creates a new vfsmount, which will be the clone of @path. The new will
1850 * not be attached anywhere in the namespace and will be private (i.e. changes
1851 * to the originating mount won't be propagated into this).
1852 *
1853 * Release with mntput().
1854 */
ca71cf71 1855struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1856{
1857 struct mount *old_mnt = real_mount(path->mnt);
1858 struct mount *new_mnt;
1859
1860 if (IS_MNT_UNBINDABLE(old_mnt))
1861 return ERR_PTR(-EINVAL);
1862
c771d683 1863 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1864 if (IS_ERR(new_mnt))
1865 return ERR_CAST(new_mnt);
1866
1867 return &new_mnt->mnt;
1868}
1869EXPORT_SYMBOL_GPL(clone_private_mount);
1870
1f707137
AV
1871int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1872 struct vfsmount *root)
1873{
1a4eeaf2 1874 struct mount *mnt;
1f707137
AV
1875 int res = f(root, arg);
1876 if (res)
1877 return res;
1a4eeaf2
AV
1878 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1879 res = f(&mnt->mnt, arg);
1f707137
AV
1880 if (res)
1881 return res;
1882 }
1883 return 0;
1884}
e14748e8 1885EXPORT_SYMBOL_GPL(iterate_mounts);
1f707137 1886
4b8b21f4 1887static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1888{
315fc83e 1889 struct mount *p;
719f5d7f 1890
909b0a88 1891 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1892 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1893 mnt_release_group_id(p);
719f5d7f
MS
1894 }
1895}
1896
4b8b21f4 1897static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1898{
315fc83e 1899 struct mount *p;
719f5d7f 1900
909b0a88 1901 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1902 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1903 int err = mnt_alloc_group_id(p);
719f5d7f 1904 if (err) {
4b8b21f4 1905 cleanup_group_ids(mnt, p);
719f5d7f
MS
1906 return err;
1907 }
1908 }
1909 }
1910
1911 return 0;
1912}
1913
d2921684
EB
1914int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1915{
1916 unsigned int max = READ_ONCE(sysctl_mount_max);
1917 unsigned int mounts = 0, old, pending, sum;
1918 struct mount *p;
1919
1920 for (p = mnt; p; p = next_mnt(p, mnt))
1921 mounts++;
1922
1923 old = ns->mounts;
1924 pending = ns->pending_mounts;
1925 sum = old + pending;
1926 if ((old > sum) ||
1927 (pending > sum) ||
1928 (max < sum) ||
1929 (mounts > (max - sum)))
1930 return -ENOSPC;
1931
1932 ns->pending_mounts = pending + mounts;
1933 return 0;
1934}
1935
b90fa9ae
RP
1936/*
1937 * @source_mnt : mount tree to be attached
21444403
RP
1938 * @nd : place the mount tree @source_mnt is attached
1939 * @parent_nd : if non-null, detach the source_mnt from its parent and
1940 * store the parent mount and mountpoint dentry.
1941 * (done when source_mnt is moved)
b90fa9ae
RP
1942 *
1943 * NOTE: in the table below explains the semantics when a source mount
1944 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1945 * ---------------------------------------------------------------------------
1946 * | BIND MOUNT OPERATION |
1947 * |**************************************************************************
1948 * | source-->| shared | private | slave | unbindable |
1949 * | dest | | | | |
1950 * | | | | | | |
1951 * | v | | | | |
1952 * |**************************************************************************
1953 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1954 * | | | | | |
1955 * |non-shared| shared (+) | private | slave (*) | invalid |
1956 * ***************************************************************************
b90fa9ae
RP
1957 * A bind operation clones the source mount and mounts the clone on the
1958 * destination mount.
1959 *
1960 * (++) the cloned mount is propagated to all the mounts in the propagation
1961 * tree of the destination mount and the cloned mount is added to
1962 * the peer group of the source mount.
1963 * (+) the cloned mount is created under the destination mount and is marked
1964 * as shared. The cloned mount is added to the peer group of the source
1965 * mount.
5afe0022
RP
1966 * (+++) the mount is propagated to all the mounts in the propagation tree
1967 * of the destination mount and the cloned mount is made slave
1968 * of the same master as that of the source mount. The cloned mount
1969 * is marked as 'shared and slave'.
1970 * (*) the cloned mount is made a slave of the same master as that of the
1971 * source mount.
1972 *
9676f0c6
RP
1973 * ---------------------------------------------------------------------------
1974 * | MOVE MOUNT OPERATION |
1975 * |**************************************************************************
1976 * | source-->| shared | private | slave | unbindable |
1977 * | dest | | | | |
1978 * | | | | | | |
1979 * | v | | | | |
1980 * |**************************************************************************
1981 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1982 * | | | | | |
1983 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1984 * ***************************************************************************
5afe0022
RP
1985 *
1986 * (+) the mount is moved to the destination. And is then propagated to
1987 * all the mounts in the propagation tree of the destination mount.
21444403 1988 * (+*) the mount is moved to the destination.
5afe0022
RP
1989 * (+++) the mount is moved to the destination and is then propagated to
1990 * all the mounts belonging to the destination mount's propagation tree.
1991 * the mount is marked as 'shared and slave'.
1992 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1993 *
1994 * if the source mount is a tree, the operations explained above is
1995 * applied to each mount in the tree.
1996 * Must be called without spinlocks held, since this function can sleep
1997 * in allocations.
1998 */
0fb54e50 1999static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2000 struct mount *dest_mnt,
2001 struct mountpoint *dest_mp,
2002 struct path *parent_path)
b90fa9ae 2003{
38129a13 2004 HLIST_HEAD(tree_list);
d2921684 2005 struct mnt_namespace *ns = dest_mnt->mnt_ns;
12766daa 2006 struct mountpoint *smp;
315fc83e 2007 struct mount *child, *p;
38129a13 2008 struct hlist_node *n;
719f5d7f 2009 int err;
b90fa9ae 2010
12766daa
EB
2011 /* Preallocate a mountpoint in case the new mounts need
2012 * to be tucked under other mounts.
2013 */
2014 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2015 if (IS_ERR(smp))
2016 return PTR_ERR(smp);
2017
d2921684
EB
2018 /* Is there space to add these mounts to the mount namespace? */
2019 if (!parent_path) {
2020 err = count_mounts(ns, source_mnt);
2021 if (err)
2022 goto out;
2023 }
2024
fc7be130 2025 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2026 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2027 if (err)
2028 goto out;
0b1b901b 2029 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2030 lock_mount_hash();
0b1b901b
AV
2031 if (err)
2032 goto out_cleanup_ids;
909b0a88 2033 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2034 set_mnt_shared(p);
0b1b901b
AV
2035 } else {
2036 lock_mount_hash();
b90fa9ae 2037 }
1a390689 2038 if (parent_path) {
0fb54e50 2039 detach_mnt(source_mnt, parent_path);
84d17192 2040 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2041 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2042 } else {
84d17192 2043 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
12766daa 2044 commit_tree(source_mnt);
21444403 2045 }
b90fa9ae 2046
38129a13 2047 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2048 struct mount *q;
38129a13 2049 hlist_del_init(&child->mnt_hash);
12766daa
EB
2050 q = __lookup_mnt(&child->mnt_parent->mnt,
2051 child->mnt_mountpoint);
2052 if (q)
2053 mnt_change_mountpoint(child, smp, q);
2054 commit_tree(child);
b90fa9ae 2055 }
12766daa 2056 put_mountpoint(smp);
719ea2fb 2057 unlock_mount_hash();
99b7db7b 2058
b90fa9ae 2059 return 0;
719f5d7f
MS
2060
2061 out_cleanup_ids:
f2ebb3a9
AV
2062 while (!hlist_empty(&tree_list)) {
2063 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2064 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2065 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2066 }
2067 unlock_mount_hash();
0b1b901b 2068 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2069 out:
d2921684 2070 ns->pending_mounts = 0;
12766daa
EB
2071
2072 read_seqlock_excl(&mount_lock);
2073 put_mountpoint(smp);
2074 read_sequnlock_excl(&mount_lock);
2075
719f5d7f 2076 return err;
b90fa9ae
RP
2077}
2078
84d17192 2079static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2080{
2081 struct vfsmount *mnt;
84d17192 2082 struct dentry *dentry = path->dentry;
b12cea91 2083retry:
5955102c 2084 inode_lock(dentry->d_inode);
84d17192 2085 if (unlikely(cant_mount(dentry))) {
5955102c 2086 inode_unlock(dentry->d_inode);
84d17192 2087 return ERR_PTR(-ENOENT);
b12cea91 2088 }
97216be0 2089 namespace_lock();
b12cea91 2090 mnt = lookup_mnt(path);
84d17192 2091 if (likely(!mnt)) {
3895dbf8 2092 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2093 if (IS_ERR(mp)) {
97216be0 2094 namespace_unlock();
5955102c 2095 inode_unlock(dentry->d_inode);
84d17192
AV
2096 return mp;
2097 }
2098 return mp;
2099 }
97216be0 2100 namespace_unlock();
5955102c 2101 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2102 path_put(path);
2103 path->mnt = mnt;
84d17192 2104 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2105 goto retry;
2106}
2107
84d17192 2108static void unlock_mount(struct mountpoint *where)
b12cea91 2109{
84d17192 2110 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2111
2112 read_seqlock_excl(&mount_lock);
84d17192 2113 put_mountpoint(where);
3895dbf8
EB
2114 read_sequnlock_excl(&mount_lock);
2115
328e6d90 2116 namespace_unlock();
5955102c 2117 inode_unlock(dentry->d_inode);
b12cea91
AV
2118}
2119
84d17192 2120static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2121{
95bc5f25 2122 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2123 return -EINVAL;
2124
e36cb0b8
DH
2125 if (d_is_dir(mp->m_dentry) !=
2126 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2127 return -ENOTDIR;
2128
84d17192 2129 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2130}
2131
7a2e8a8f
VA
2132/*
2133 * Sanity check the flags to change_mnt_propagation.
2134 */
2135
2136static int flags_to_propagation_type(int flags)
2137{
7c6e984d 2138 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2139
2140 /* Fail if any non-propagation flags are set */
2141 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2142 return 0;
2143 /* Only one propagation flag should be set */
2144 if (!is_power_of_2(type))
2145 return 0;
2146 return type;
2147}
2148
07b20889
RP
2149/*
2150 * recursively change the type of the mountpoint.
2151 */
0a0d8a46 2152static int do_change_type(struct path *path, int flag)
07b20889 2153{
315fc83e 2154 struct mount *m;
4b8b21f4 2155 struct mount *mnt = real_mount(path->mnt);
07b20889 2156 int recurse = flag & MS_REC;
7a2e8a8f 2157 int type;
719f5d7f 2158 int err = 0;
07b20889 2159
2d92ab3c 2160 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2161 return -EINVAL;
2162
7a2e8a8f
VA
2163 type = flags_to_propagation_type(flag);
2164 if (!type)
2165 return -EINVAL;
2166
97216be0 2167 namespace_lock();
719f5d7f
MS
2168 if (type == MS_SHARED) {
2169 err = invent_group_ids(mnt, recurse);
2170 if (err)
2171 goto out_unlock;
2172 }
2173
719ea2fb 2174 lock_mount_hash();
909b0a88 2175 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2176 change_mnt_propagation(m, type);
719ea2fb 2177 unlock_mount_hash();
719f5d7f
MS
2178
2179 out_unlock:
97216be0 2180 namespace_unlock();
719f5d7f 2181 return err;
07b20889
RP
2182}
2183
5ff9d8a6
EB
2184static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2185{
2186 struct mount *child;
2187 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2188 if (!is_subdir(child->mnt_mountpoint, dentry))
2189 continue;
2190
2191 if (child->mnt.mnt_flags & MNT_LOCKED)
2192 return true;
2193 }
2194 return false;
2195}
2196
1da177e4
LT
2197/*
2198 * do loopback mount.
2199 */
808d4e3c 2200static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2201 int recurse)
1da177e4 2202{
2d92ab3c 2203 struct path old_path;
84d17192
AV
2204 struct mount *mnt = NULL, *old, *parent;
2205 struct mountpoint *mp;
57eccb83 2206 int err;
1da177e4
LT
2207 if (!old_name || !*old_name)
2208 return -EINVAL;
815d405c 2209 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2210 if (err)
2211 return err;
2212
8823c079 2213 err = -EINVAL;
4ce5d2b1 2214 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2215 goto out;
2216
84d17192
AV
2217 mp = lock_mount(path);
2218 err = PTR_ERR(mp);
2219 if (IS_ERR(mp))
b12cea91
AV
2220 goto out;
2221
87129cc0 2222 old = real_mount(old_path.mnt);
84d17192 2223 parent = real_mount(path->mnt);
87129cc0 2224
1da177e4 2225 err = -EINVAL;
fc7be130 2226 if (IS_MNT_UNBINDABLE(old))
b12cea91 2227 goto out2;
9676f0c6 2228
e149ed2b
AV
2229 if (!check_mnt(parent))
2230 goto out2;
2231
2232 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2233 goto out2;
1da177e4 2234
5ff9d8a6
EB
2235 if (!recurse && has_locked_children(old, old_path.dentry))
2236 goto out2;
2237
ccd48bc7 2238 if (recurse)
4ce5d2b1 2239 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2240 else
87129cc0 2241 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2242
be34d1a3
DH
2243 if (IS_ERR(mnt)) {
2244 err = PTR_ERR(mnt);
e9c5d8a5 2245 goto out2;
be34d1a3 2246 }
ccd48bc7 2247
5ff9d8a6
EB
2248 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2249
84d17192 2250 err = graft_tree(mnt, parent, mp);
ccd48bc7 2251 if (err) {
719ea2fb 2252 lock_mount_hash();
e819f152 2253 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2254 unlock_mount_hash();
5b83d2c5 2255 }
b12cea91 2256out2:
84d17192 2257 unlock_mount(mp);
ccd48bc7 2258out:
2d92ab3c 2259 path_put(&old_path);
1da177e4
LT
2260 return err;
2261}
2262
2e4b7fcd
DH
2263static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2264{
2265 int error = 0;
2266 int readonly_request = 0;
2267
2268 if (ms_flags & MS_RDONLY)
2269 readonly_request = 1;
2270 if (readonly_request == __mnt_is_readonly(mnt))
2271 return 0;
2272
2273 if (readonly_request)
83adc753 2274 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2275 else
83adc753 2276 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2277 return error;
2278}
2279
1da177e4
LT
2280/*
2281 * change filesystem flags. dir should be a physical root of filesystem.
2282 * If you've mounted a non-root directory somewhere and want to do remount
2283 * on it - tough luck.
2284 */
0a0d8a46 2285static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2286 void *data)
2287{
2288 int err;
2d92ab3c 2289 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2290 struct mount *mnt = real_mount(path->mnt);
1da177e4 2291
143c8c91 2292 if (!check_mnt(mnt))
1da177e4
LT
2293 return -EINVAL;
2294
2d92ab3c 2295 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2296 return -EINVAL;
2297
07b64558
EB
2298 /* Don't allow changing of locked mnt flags.
2299 *
2300 * No locks need to be held here while testing the various
2301 * MNT_LOCK flags because those flags can never be cleared
2302 * once they are set.
2303 */
2304 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2305 !(mnt_flags & MNT_READONLY)) {
2306 return -EPERM;
2307 }
9566d674
EB
2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2309 !(mnt_flags & MNT_NODEV)) {
67690f93 2310 return -EPERM;
9566d674
EB
2311 }
2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2313 !(mnt_flags & MNT_NOSUID)) {
2314 return -EPERM;
2315 }
2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2317 !(mnt_flags & MNT_NOEXEC)) {
2318 return -EPERM;
2319 }
2320 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2321 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2322 return -EPERM;
2323 }
2324
ff36fe2c
EP
2325 err = security_sb_remount(sb, data);
2326 if (err)
2327 return err;
2328
1da177e4 2329 down_write(&sb->s_umount);
2e4b7fcd 2330 if (flags & MS_BIND)
2d92ab3c 2331 err = change_mount_flags(path->mnt, flags);
f17a3091 2332 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2333 err = -EPERM;
4aa98cf7 2334 else
2e4b7fcd 2335 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2336 if (!err) {
719ea2fb 2337 lock_mount_hash();
a6138db8 2338 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2339 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2340 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2341 unlock_mount_hash();
0e55a7cc 2342 }
6339dab8 2343 up_write(&sb->s_umount);
1da177e4
LT
2344 return err;
2345}
2346
cbbe362c 2347static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2348{
315fc83e 2349 struct mount *p;
909b0a88 2350 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2351 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2352 return 1;
2353 }
2354 return 0;
2355}
2356
808d4e3c 2357static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2358{
2d92ab3c 2359 struct path old_path, parent_path;
676da58d 2360 struct mount *p;
0fb54e50 2361 struct mount *old;
84d17192 2362 struct mountpoint *mp;
57eccb83 2363 int err;
1da177e4
LT
2364 if (!old_name || !*old_name)
2365 return -EINVAL;
2d92ab3c 2366 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2367 if (err)
2368 return err;
2369
84d17192
AV
2370 mp = lock_mount(path);
2371 err = PTR_ERR(mp);
2372 if (IS_ERR(mp))
cc53ce53
DH
2373 goto out;
2374
143c8c91 2375 old = real_mount(old_path.mnt);
fc7be130 2376 p = real_mount(path->mnt);
143c8c91 2377
1da177e4 2378 err = -EINVAL;
fc7be130 2379 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2380 goto out1;
2381
5ff9d8a6
EB
2382 if (old->mnt.mnt_flags & MNT_LOCKED)
2383 goto out1;
2384
1da177e4 2385 err = -EINVAL;
2d92ab3c 2386 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2387 goto out1;
1da177e4 2388
676da58d 2389 if (!mnt_has_parent(old))
21444403 2390 goto out1;
1da177e4 2391
e36cb0b8
DH
2392 if (d_is_dir(path->dentry) !=
2393 d_is_dir(old_path.dentry))
21444403
RP
2394 goto out1;
2395 /*
2396 * Don't move a mount residing in a shared parent.
2397 */
fc7be130 2398 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2399 goto out1;
9676f0c6
RP
2400 /*
2401 * Don't move a mount tree containing unbindable mounts to a destination
2402 * mount which is shared.
2403 */
fc7be130 2404 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2405 goto out1;
1da177e4 2406 err = -ELOOP;
fc7be130 2407 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2408 if (p == old)
21444403 2409 goto out1;
1da177e4 2410
84d17192 2411 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2412 if (err)
21444403 2413 goto out1;
1da177e4
LT
2414
2415 /* if the mount is moved, it should no longer be expire
2416 * automatically */
6776db3d 2417 list_del_init(&old->mnt_expire);
1da177e4 2418out1:
84d17192 2419 unlock_mount(mp);
1da177e4 2420out:
1da177e4 2421 if (!err)
1a390689 2422 path_put(&parent_path);
2d92ab3c 2423 path_put(&old_path);
1da177e4
LT
2424 return err;
2425}
2426
9d412a43
AV
2427static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2428{
2429 int err;
2430 const char *subtype = strchr(fstype, '.');
2431 if (subtype) {
2432 subtype++;
2433 err = -EINVAL;
2434 if (!subtype[0])
2435 goto err;
2436 } else
2437 subtype = "";
2438
2439 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2440 err = -ENOMEM;
2441 if (!mnt->mnt_sb->s_subtype)
2442 goto err;
2443 return mnt;
2444
2445 err:
2446 mntput(mnt);
2447 return ERR_PTR(err);
2448}
2449
9d412a43
AV
2450/*
2451 * add a mount into a namespace's mount tree
2452 */
95bc5f25 2453static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2454{
84d17192
AV
2455 struct mountpoint *mp;
2456 struct mount *parent;
9d412a43
AV
2457 int err;
2458
f2ebb3a9 2459 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2460
84d17192
AV
2461 mp = lock_mount(path);
2462 if (IS_ERR(mp))
2463 return PTR_ERR(mp);
9d412a43 2464
84d17192 2465 parent = real_mount(path->mnt);
9d412a43 2466 err = -EINVAL;
84d17192 2467 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2468 /* that's acceptable only for automounts done in private ns */
2469 if (!(mnt_flags & MNT_SHRINKABLE))
2470 goto unlock;
2471 /* ... and for those we'd better have mountpoint still alive */
84d17192 2472 if (!parent->mnt_ns)
156cacb1
AV
2473 goto unlock;
2474 }
9d412a43
AV
2475
2476 /* Refuse the same filesystem on the same mount point */
2477 err = -EBUSY;
95bc5f25 2478 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2479 path->mnt->mnt_root == path->dentry)
2480 goto unlock;
2481
2482 err = -EINVAL;
e36cb0b8 2483 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2484 goto unlock;
2485
95bc5f25 2486 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2487 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2488
2489unlock:
84d17192 2490 unlock_mount(mp);
9d412a43
AV
2491 return err;
2492}
b1e75df4 2493
8654df4e 2494static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2495
1da177e4
LT
2496/*
2497 * create a new mount for userspace and request it to be added into the
2498 * namespace's tree
2499 */
0c55cfc4 2500static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2501 int mnt_flags, const char *name, void *data)
1da177e4 2502{
0c55cfc4 2503 struct file_system_type *type;
1da177e4 2504 struct vfsmount *mnt;
15f9a3f3 2505 int err;
1da177e4 2506
0c55cfc4 2507 if (!fstype)
1da177e4
LT
2508 return -EINVAL;
2509
0c55cfc4
EB
2510 type = get_fs_type(fstype);
2511 if (!type)
2512 return -ENODEV;
2513
0c55cfc4
EB
2514 mnt = vfs_kern_mount(type, flags, name, data);
2515 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2516 !mnt->mnt_sb->s_subtype)
2517 mnt = fs_set_subtype(mnt, fstype);
2518
2519 put_filesystem(type);
1da177e4
LT
2520 if (IS_ERR(mnt))
2521 return PTR_ERR(mnt);
2522
8654df4e
EB
2523 if (mount_too_revealing(mnt, &mnt_flags)) {
2524 mntput(mnt);
2525 return -EPERM;
2526 }
2527
95bc5f25 2528 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2529 if (err)
2530 mntput(mnt);
2531 return err;
1da177e4
LT
2532}
2533
19a167af
AV
2534int finish_automount(struct vfsmount *m, struct path *path)
2535{
6776db3d 2536 struct mount *mnt = real_mount(m);
19a167af
AV
2537 int err;
2538 /* The new mount record should have at least 2 refs to prevent it being
2539 * expired before we get a chance to add it
2540 */
6776db3d 2541 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2542
2543 if (m->mnt_sb == path->mnt->mnt_sb &&
2544 m->mnt_root == path->dentry) {
b1e75df4
AV
2545 err = -ELOOP;
2546 goto fail;
19a167af
AV
2547 }
2548
95bc5f25 2549 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2550 if (!err)
2551 return 0;
2552fail:
2553 /* remove m from any expiration list it may be on */
6776db3d 2554 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2555 namespace_lock();
6776db3d 2556 list_del_init(&mnt->mnt_expire);
97216be0 2557 namespace_unlock();
19a167af 2558 }
b1e75df4
AV
2559 mntput(m);
2560 mntput(m);
19a167af
AV
2561 return err;
2562}
2563
ea5b778a
DH
2564/**
2565 * mnt_set_expiry - Put a mount on an expiration list
2566 * @mnt: The mount to list.
2567 * @expiry_list: The list to add the mount to.
2568 */
2569void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2570{
97216be0 2571 namespace_lock();
ea5b778a 2572
6776db3d 2573 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2574
97216be0 2575 namespace_unlock();
ea5b778a
DH
2576}
2577EXPORT_SYMBOL(mnt_set_expiry);
2578
1da177e4
LT
2579/*
2580 * process a list of expirable mountpoints with the intent of discarding any
2581 * mountpoints that aren't in use and haven't been touched since last we came
2582 * here
2583 */
2584void mark_mounts_for_expiry(struct list_head *mounts)
2585{
761d5c38 2586 struct mount *mnt, *next;
1da177e4
LT
2587 LIST_HEAD(graveyard);
2588
2589 if (list_empty(mounts))
2590 return;
2591
97216be0 2592 namespace_lock();
719ea2fb 2593 lock_mount_hash();
1da177e4
LT
2594
2595 /* extract from the expiration list every vfsmount that matches the
2596 * following criteria:
2597 * - only referenced by its parent vfsmount
2598 * - still marked for expiry (marked on the last call here; marks are
2599 * cleared by mntput())
2600 */
6776db3d 2601 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2602 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2603 propagate_mount_busy(mnt, 1))
1da177e4 2604 continue;
6776db3d 2605 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2606 }
bcc5c7d2 2607 while (!list_empty(&graveyard)) {
6776db3d 2608 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2609 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2610 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2611 }
719ea2fb 2612 unlock_mount_hash();
3ab6abee 2613 namespace_unlock();
5528f911
TM
2614}
2615
2616EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2617
2618/*
2619 * Ripoff of 'select_parent()'
2620 *
2621 * search the list of submounts for a given mountpoint, and move any
2622 * shrinkable submounts to the 'graveyard' list.
2623 */
692afc31 2624static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2625{
692afc31 2626 struct mount *this_parent = parent;
5528f911
TM
2627 struct list_head *next;
2628 int found = 0;
2629
2630repeat:
6b41d536 2631 next = this_parent->mnt_mounts.next;
5528f911 2632resume:
6b41d536 2633 while (next != &this_parent->mnt_mounts) {
5528f911 2634 struct list_head *tmp = next;
6b41d536 2635 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2636
2637 next = tmp->next;
692afc31 2638 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2639 continue;
5528f911
TM
2640 /*
2641 * Descend a level if the d_mounts list is non-empty.
2642 */
6b41d536 2643 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2644 this_parent = mnt;
2645 goto repeat;
2646 }
1da177e4 2647
1ab59738 2648 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2649 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2650 found++;
2651 }
1da177e4 2652 }
5528f911
TM
2653 /*
2654 * All done at this level ... ascend and resume the search
2655 */
2656 if (this_parent != parent) {
6b41d536 2657 next = this_parent->mnt_child.next;
0714a533 2658 this_parent = this_parent->mnt_parent;
5528f911
TM
2659 goto resume;
2660 }
2661 return found;
2662}
2663
2664/*
2665 * process a list of expirable mountpoints with the intent of discarding any
2666 * submounts of a specific parent mountpoint
99b7db7b 2667 *
48a066e7 2668 * mount_lock must be held for write
5528f911 2669 */
b54b9be7 2670static void shrink_submounts(struct mount *mnt)
5528f911
TM
2671{
2672 LIST_HEAD(graveyard);
761d5c38 2673 struct mount *m;
5528f911 2674
5528f911 2675 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2676 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2677 while (!list_empty(&graveyard)) {
761d5c38 2678 m = list_first_entry(&graveyard, struct mount,
6776db3d 2679 mnt_expire);
143c8c91 2680 touch_mnt_namespace(m->mnt_ns);
e819f152 2681 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2682 }
2683 }
1da177e4
LT
2684}
2685
1da177e4
LT
2686/*
2687 * Some copy_from_user() implementations do not return the exact number of
2688 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2689 * Note that this function differs from copy_from_user() in that it will oops
2690 * on bad values of `to', rather than returning a short copy.
2691 */
b58fed8b
RP
2692static long exact_copy_from_user(void *to, const void __user * from,
2693 unsigned long n)
1da177e4
LT
2694{
2695 char *t = to;
2696 const char __user *f = from;
2697 char c;
2698
2699 if (!access_ok(VERIFY_READ, from, n))
2700 return n;
2701
2702 while (n) {
2703 if (__get_user(c, f)) {
2704 memset(t, 0, n);
2705 break;
2706 }
2707 *t++ = c;
2708 f++;
2709 n--;
2710 }
2711 return n;
2712}
2713
b40ef869 2714void *copy_mount_options(const void __user * data)
1da177e4
LT
2715{
2716 int i;
1da177e4 2717 unsigned long size;
b40ef869 2718 char *copy;
b58fed8b 2719
1da177e4 2720 if (!data)
b40ef869 2721 return NULL;
1da177e4 2722
b40ef869
AV
2723 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2724 if (!copy)
2725 return ERR_PTR(-ENOMEM);
1da177e4
LT
2726
2727 /* We only care that *some* data at the address the user
2728 * gave us is valid. Just in case, we'll zero
2729 * the remainder of the page.
2730 */
2731 /* copy_from_user cannot cross TASK_SIZE ! */
2732 size = TASK_SIZE - (unsigned long)data;
2733 if (size > PAGE_SIZE)
2734 size = PAGE_SIZE;
2735
b40ef869 2736 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2737 if (!i) {
b40ef869
AV
2738 kfree(copy);
2739 return ERR_PTR(-EFAULT);
1da177e4
LT
2740 }
2741 if (i != PAGE_SIZE)
b40ef869
AV
2742 memset(copy + i, 0, PAGE_SIZE - i);
2743 return copy;
1da177e4
LT
2744}
2745
b8850d1f 2746char *copy_mount_string(const void __user *data)
eca6f534 2747{
b8850d1f 2748 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2749}
2750
1da177e4
LT
2751/*
2752 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2753 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2754 *
2755 * data is a (void *) that can point to any structure up to
2756 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2757 * information (or be NULL).
2758 *
2759 * Pre-0.97 versions of mount() didn't have a flags word.
2760 * When the flags word was introduced its top half was required
2761 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2762 * Therefore, if this magic number is present, it carries no information
2763 * and must be discarded.
2764 */
5e6123f3 2765long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2766 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2767{
2d92ab3c 2768 struct path path;
1da177e4
LT
2769 int retval = 0;
2770 int mnt_flags = 0;
2771
2772 /* Discard magic */
2773 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2774 flags &= ~MS_MGC_MSK;
2775
2776 /* Basic sanity checks */
1da177e4
LT
2777 if (data_page)
2778 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2779
a27ab9f2 2780 /* ... and get the mountpoint */
5e6123f3 2781 retval = user_path(dir_name, &path);
a27ab9f2
TH
2782 if (retval)
2783 return retval;
2784
2785 retval = security_sb_mount(dev_name, &path,
2786 type_page, flags, data_page);
0d5cadb8
AV
2787 if (!retval && !may_mount())
2788 retval = -EPERM;
9e8925b6
JL
2789 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2790 retval = -EPERM;
a27ab9f2
TH
2791 if (retval)
2792 goto dput_out;
2793
613cbe3d
AK
2794 /* Default to relatime unless overriden */
2795 if (!(flags & MS_NOATIME))
2796 mnt_flags |= MNT_RELATIME;
0a1c01c9 2797
1da177e4
LT
2798 /* Separate the per-mountpoint flags */
2799 if (flags & MS_NOSUID)
2800 mnt_flags |= MNT_NOSUID;
2801 if (flags & MS_NODEV)
2802 mnt_flags |= MNT_NODEV;
2803 if (flags & MS_NOEXEC)
2804 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2805 if (flags & MS_NOATIME)
2806 mnt_flags |= MNT_NOATIME;
2807 if (flags & MS_NODIRATIME)
2808 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2809 if (flags & MS_STRICTATIME)
2810 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2811 if (flags & MS_RDONLY)
2812 mnt_flags |= MNT_READONLY;
fc33a7bb 2813
ffbc6f0e
EB
2814 /* The default atime for remount is preservation */
2815 if ((flags & MS_REMOUNT) &&
2816 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2817 MS_STRICTATIME)) == 0)) {
2818 mnt_flags &= ~MNT_ATIME_MASK;
2819 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2820 }
2821
7a4dec53 2822 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2823 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
c8d3e3d5 2824 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
1da177e4 2825
1da177e4 2826 if (flags & MS_REMOUNT)
2d92ab3c 2827 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2828 data_page);
2829 else if (flags & MS_BIND)
2d92ab3c 2830 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2831 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2832 retval = do_change_type(&path, flags);
1da177e4 2833 else if (flags & MS_MOVE)
2d92ab3c 2834 retval = do_move_mount(&path, dev_name);
1da177e4 2835 else
2d92ab3c 2836 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2837 dev_name, data_page);
2838dput_out:
2d92ab3c 2839 path_put(&path);
1da177e4
LT
2840 return retval;
2841}
2842
537f7ccb
EB
2843static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2844{
2845 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2846}
2847
2848static void dec_mnt_namespaces(struct ucounts *ucounts)
2849{
2850 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2851}
2852
771b1371
EB
2853static void free_mnt_ns(struct mnt_namespace *ns)
2854{
6344c433 2855 ns_free_inum(&ns->ns);
537f7ccb 2856 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2857 put_user_ns(ns->user_ns);
2858 kfree(ns);
2859}
2860
8823c079
EB
2861/*
2862 * Assign a sequence number so we can detect when we attempt to bind
2863 * mount a reference to an older mount namespace into the current
2864 * mount namespace, preventing reference counting loops. A 64bit
2865 * number incrementing at 10Ghz will take 12,427 years to wrap which
2866 * is effectively never, so we can ignore the possibility.
2867 */
2868static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2869
771b1371 2870static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2871{
2872 struct mnt_namespace *new_ns;
537f7ccb 2873 struct ucounts *ucounts;
98f842e6 2874 int ret;
cf8d2c11 2875
537f7ccb
EB
2876 ucounts = inc_mnt_namespaces(user_ns);
2877 if (!ucounts)
df75e774 2878 return ERR_PTR(-ENOSPC);
537f7ccb 2879
cf8d2c11 2880 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2881 if (!new_ns) {
2882 dec_mnt_namespaces(ucounts);
cf8d2c11 2883 return ERR_PTR(-ENOMEM);
537f7ccb 2884 }
6344c433 2885 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2886 if (ret) {
2887 kfree(new_ns);
537f7ccb 2888 dec_mnt_namespaces(ucounts);
98f842e6
EB
2889 return ERR_PTR(ret);
2890 }
33c42940 2891 new_ns->ns.ops = &mntns_operations;
8823c079 2892 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2893 atomic_set(&new_ns->count, 1);
2894 new_ns->root = NULL;
2895 INIT_LIST_HEAD(&new_ns->list);
2896 init_waitqueue_head(&new_ns->poll);
2897 new_ns->event = 0;
771b1371 2898 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2899 new_ns->ucounts = ucounts;
d2921684
EB
2900 new_ns->mounts = 0;
2901 new_ns->pending_mounts = 0;
cf8d2c11
TM
2902 return new_ns;
2903}
2904
0766f788 2905__latent_entropy
9559f689
AV
2906struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2907 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2908{
6b3286ed 2909 struct mnt_namespace *new_ns;
7f2da1e7 2910 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2911 struct mount *p, *q;
9559f689 2912 struct mount *old;
cb338d06 2913 struct mount *new;
7a472ef4 2914 int copy_flags;
1da177e4 2915
9559f689
AV
2916 BUG_ON(!ns);
2917
2918 if (likely(!(flags & CLONE_NEWNS))) {
2919 get_mnt_ns(ns);
2920 return ns;
2921 }
2922
2923 old = ns->root;
2924
771b1371 2925 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2926 if (IS_ERR(new_ns))
2927 return new_ns;
1da177e4 2928
97216be0 2929 namespace_lock();
1da177e4 2930 /* First pass: copy the tree topology */
4ce5d2b1 2931 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2932 if (user_ns != ns->user_ns)
132c94e3 2933 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2934 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2935 if (IS_ERR(new)) {
328e6d90 2936 namespace_unlock();
771b1371 2937 free_mnt_ns(new_ns);
be34d1a3 2938 return ERR_CAST(new);
1da177e4 2939 }
be08d6d2 2940 new_ns->root = new;
1a4eeaf2 2941 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2942
2943 /*
2944 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2945 * as belonging to new namespace. We have already acquired a private
2946 * fs_struct, so tsk->fs->lock is not needed.
2947 */
909b0a88 2948 p = old;
cb338d06 2949 q = new;
1da177e4 2950 while (p) {
143c8c91 2951 q->mnt_ns = new_ns;
d2921684 2952 new_ns->mounts++;
9559f689
AV
2953 if (new_fs) {
2954 if (&p->mnt == new_fs->root.mnt) {
2955 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2956 rootmnt = &p->mnt;
1da177e4 2957 }
9559f689
AV
2958 if (&p->mnt == new_fs->pwd.mnt) {
2959 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2960 pwdmnt = &p->mnt;
1da177e4 2961 }
1da177e4 2962 }
909b0a88
AV
2963 p = next_mnt(p, old);
2964 q = next_mnt(q, new);
4ce5d2b1
EB
2965 if (!q)
2966 break;
2967 while (p->mnt.mnt_root != q->mnt.mnt_root)
2968 p = next_mnt(p, old);
1da177e4 2969 }
328e6d90 2970 namespace_unlock();
1da177e4 2971
1da177e4 2972 if (rootmnt)
f03c6599 2973 mntput(rootmnt);
1da177e4 2974 if (pwdmnt)
f03c6599 2975 mntput(pwdmnt);
1da177e4 2976
741a2951 2977 return new_ns;
1da177e4
LT
2978}
2979
cf8d2c11
TM
2980/**
2981 * create_mnt_ns - creates a private namespace and adds a root filesystem
2982 * @mnt: pointer to the new root filesystem mountpoint
2983 */
1a4eeaf2 2984static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2985{
771b1371 2986 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2987 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2988 struct mount *mnt = real_mount(m);
2989 mnt->mnt_ns = new_ns;
be08d6d2 2990 new_ns->root = mnt;
d2921684 2991 new_ns->mounts++;
b1983cd8 2992 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2993 } else {
1a4eeaf2 2994 mntput(m);
cf8d2c11
TM
2995 }
2996 return new_ns;
2997}
cf8d2c11 2998
ea441d11
AV
2999struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3000{
3001 struct mnt_namespace *ns;
d31da0f0 3002 struct super_block *s;
ea441d11
AV
3003 struct path path;
3004 int err;
3005
3006 ns = create_mnt_ns(mnt);
3007 if (IS_ERR(ns))
3008 return ERR_CAST(ns);
3009
3010 err = vfs_path_lookup(mnt->mnt_root, mnt,
3011 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3012
3013 put_mnt_ns(ns);
3014
3015 if (err)
3016 return ERR_PTR(err);
3017
3018 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3019 s = path.mnt->mnt_sb;
3020 atomic_inc(&s->s_active);
ea441d11
AV
3021 mntput(path.mnt);
3022 /* lock the sucker */
d31da0f0 3023 down_write(&s->s_umount);
ea441d11
AV
3024 /* ... and return the root of (sub)tree on it */
3025 return path.dentry;
3026}
3027EXPORT_SYMBOL(mount_subtree);
3028
bdc480e3
HC
3029SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3030 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3031{
eca6f534
VN
3032 int ret;
3033 char *kernel_type;
eca6f534 3034 char *kernel_dev;
b40ef869 3035 void *options;
1da177e4 3036
b8850d1f
TG
3037 kernel_type = copy_mount_string(type);
3038 ret = PTR_ERR(kernel_type);
3039 if (IS_ERR(kernel_type))
eca6f534 3040 goto out_type;
1da177e4 3041
b8850d1f
TG
3042 kernel_dev = copy_mount_string(dev_name);
3043 ret = PTR_ERR(kernel_dev);
3044 if (IS_ERR(kernel_dev))
eca6f534 3045 goto out_dev;
1da177e4 3046
b40ef869
AV
3047 options = copy_mount_options(data);
3048 ret = PTR_ERR(options);
3049 if (IS_ERR(options))
eca6f534 3050 goto out_data;
1da177e4 3051
b40ef869 3052 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3053
b40ef869 3054 kfree(options);
eca6f534
VN
3055out_data:
3056 kfree(kernel_dev);
3057out_dev:
eca6f534
VN
3058 kfree(kernel_type);
3059out_type:
3060 return ret;
1da177e4
LT
3061}
3062
afac7cba
AV
3063/*
3064 * Return true if path is reachable from root
3065 *
48a066e7 3066 * namespace_sem or mount_lock is held
afac7cba 3067 */
643822b4 3068bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3069 const struct path *root)
3070{
643822b4 3071 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3072 dentry = mnt->mnt_mountpoint;
0714a533 3073 mnt = mnt->mnt_parent;
afac7cba 3074 }
643822b4 3075 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3076}
3077
640eb7e7 3078bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3079{
25ab4c9b 3080 bool res;
48a066e7 3081 read_seqlock_excl(&mount_lock);
643822b4 3082 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3083 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3084 return res;
3085}
3086EXPORT_SYMBOL(path_is_under);
3087
1da177e4
LT
3088/*
3089 * pivot_root Semantics:
3090 * Moves the root file system of the current process to the directory put_old,
3091 * makes new_root as the new root file system of the current process, and sets
3092 * root/cwd of all processes which had them on the current root to new_root.
3093 *
3094 * Restrictions:
3095 * The new_root and put_old must be directories, and must not be on the
3096 * same file system as the current process root. The put_old must be
3097 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3098 * pointed to by put_old must yield the same directory as new_root. No other
3099 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3100 *
4a0d11fa
NB
3101 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3102 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3103 * in this situation.
3104 *
1da177e4
LT
3105 * Notes:
3106 * - we don't move root/cwd if they are not at the root (reason: if something
3107 * cared enough to change them, it's probably wrong to force them elsewhere)
3108 * - it's okay to pick a root that isn't the root of a file system, e.g.
3109 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3110 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3111 * first.
3112 */
3480b257
HC
3113SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3114 const char __user *, put_old)
1da177e4 3115{
2d8f3038 3116 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3117 struct mount *new_mnt, *root_mnt, *old_mnt;
3118 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3119 int error;
3120
9b40bc90 3121 if (!may_mount())
1da177e4
LT
3122 return -EPERM;
3123
2d8f3038 3124 error = user_path_dir(new_root, &new);
1da177e4
LT
3125 if (error)
3126 goto out0;
1da177e4 3127
2d8f3038 3128 error = user_path_dir(put_old, &old);
1da177e4
LT
3129 if (error)
3130 goto out1;
3131
2d8f3038 3132 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3133 if (error)
3134 goto out2;
1da177e4 3135
f7ad3c6b 3136 get_fs_root(current->fs, &root);
84d17192
AV
3137 old_mp = lock_mount(&old);
3138 error = PTR_ERR(old_mp);
3139 if (IS_ERR(old_mp))
b12cea91
AV
3140 goto out3;
3141
1da177e4 3142 error = -EINVAL;
419148da
AV
3143 new_mnt = real_mount(new.mnt);
3144 root_mnt = real_mount(root.mnt);
84d17192
AV
3145 old_mnt = real_mount(old.mnt);
3146 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3147 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3148 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3149 goto out4;
143c8c91 3150 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3151 goto out4;
5ff9d8a6
EB
3152 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3153 goto out4;
1da177e4 3154 error = -ENOENT;
f3da392e 3155 if (d_unlinked(new.dentry))
b12cea91 3156 goto out4;
1da177e4 3157 error = -EBUSY;
84d17192 3158 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3159 goto out4; /* loop, on the same file system */
1da177e4 3160 error = -EINVAL;
8c3ee42e 3161 if (root.mnt->mnt_root != root.dentry)
b12cea91 3162 goto out4; /* not a mountpoint */
676da58d 3163 if (!mnt_has_parent(root_mnt))
b12cea91 3164 goto out4; /* not attached */
84d17192 3165 root_mp = root_mnt->mnt_mp;
2d8f3038 3166 if (new.mnt->mnt_root != new.dentry)
b12cea91 3167 goto out4; /* not a mountpoint */
676da58d 3168 if (!mnt_has_parent(new_mnt))
b12cea91 3169 goto out4; /* not attached */
4ac91378 3170 /* make sure we can reach put_old from new_root */
84d17192 3171 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3172 goto out4;
0d082601
EB
3173 /* make certain new is below the root */
3174 if (!is_path_reachable(new_mnt, new.dentry, &root))
3175 goto out4;
84d17192 3176 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3177 lock_mount_hash();
419148da
AV
3178 detach_mnt(new_mnt, &parent_path);
3179 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3180 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3181 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3182 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3183 }
4ac91378 3184 /* mount old root on put_old */
84d17192 3185 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3186 /* mount new_root on / */
84d17192 3187 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3188 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3189 /* A moved mount should not expire automatically */
3190 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3191 put_mountpoint(root_mp);
719ea2fb 3192 unlock_mount_hash();
2d8f3038 3193 chroot_fs_refs(&root, &new);
1da177e4 3194 error = 0;
b12cea91 3195out4:
84d17192 3196 unlock_mount(old_mp);
b12cea91
AV
3197 if (!error) {
3198 path_put(&root_parent);
3199 path_put(&parent_path);
3200 }
3201out3:
8c3ee42e 3202 path_put(&root);
b12cea91 3203out2:
2d8f3038 3204 path_put(&old);
1da177e4 3205out1:
2d8f3038 3206 path_put(&new);
1da177e4 3207out0:
1da177e4 3208 return error;
1da177e4
LT
3209}
3210
3211static void __init init_mount_tree(void)
3212{
3213 struct vfsmount *mnt;
6b3286ed 3214 struct mnt_namespace *ns;
ac748a09 3215 struct path root;
0c55cfc4 3216 struct file_system_type *type;
1da177e4 3217
0c55cfc4
EB
3218 type = get_fs_type("rootfs");
3219 if (!type)
3220 panic("Can't find rootfs type");
3221 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3222 put_filesystem(type);
1da177e4
LT
3223 if (IS_ERR(mnt))
3224 panic("Can't create rootfs");
b3e19d92 3225
3b22edc5
TM
3226 ns = create_mnt_ns(mnt);
3227 if (IS_ERR(ns))
1da177e4 3228 panic("Can't allocate initial namespace");
6b3286ed
KK
3229
3230 init_task.nsproxy->mnt_ns = ns;
3231 get_mnt_ns(ns);
3232
be08d6d2
AV
3233 root.mnt = mnt;
3234 root.dentry = mnt->mnt_root;
da362b09 3235 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3236
3237 set_fs_pwd(current->fs, &root);
3238 set_fs_root(current->fs, &root);
1da177e4
LT
3239}
3240
74bf17cf 3241void __init mnt_init(void)
1da177e4 3242{
13f14b4d 3243 unsigned u;
15a67dd8 3244 int err;
1da177e4 3245
7d6fec45 3246 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3247 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3248
0818bf27 3249 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3250 sizeof(struct hlist_head),
0818bf27
AV
3251 mhash_entries, 19,
3252 0,
3253 &m_hash_shift, &m_hash_mask, 0, 0);
3254 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3255 sizeof(struct hlist_head),
3256 mphash_entries, 19,
3257 0,
3258 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3259
84d17192 3260 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3261 panic("Failed to allocate mount hash table\n");
3262
0818bf27 3263 for (u = 0; u <= m_hash_mask; u++)
38129a13 3264 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3265 for (u = 0; u <= mp_hash_mask; u++)
3266 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3267
4b93dc9b
TH
3268 kernfs_init();
3269
15a67dd8
RD
3270 err = sysfs_init();
3271 if (err)
3272 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3273 __func__, err);
00d26666
GKH
3274 fs_kobj = kobject_create_and_add("fs", NULL);
3275 if (!fs_kobj)
8e24eea7 3276 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3277 init_rootfs();
3278 init_mount_tree();
3279}
3280
616511d0 3281void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3282{
d498b25a 3283 if (!atomic_dec_and_test(&ns->count))
616511d0 3284 return;
7b00ed6f 3285 drop_collected_mounts(&ns->root->mnt);
771b1371 3286 free_mnt_ns(ns);
1da177e4 3287}
9d412a43
AV
3288
3289struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3290{
423e0ab0
TC
3291 struct vfsmount *mnt;
3292 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3293 if (!IS_ERR(mnt)) {
3294 /*
3295 * it is a longterm mount, don't release mnt until
3296 * we unmount before file sys is unregistered
3297 */
f7a99c5b 3298 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3299 }
3300 return mnt;
9d412a43
AV
3301}
3302EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3303
3304void kern_unmount(struct vfsmount *mnt)
3305{
3306 /* release long term mount so mount point can be released */
3307 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3308 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3309 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3310 mntput(mnt);
3311 }
3312}
3313EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3314
3315bool our_mnt(struct vfsmount *mnt)
3316{
143c8c91 3317 return check_mnt(real_mount(mnt));
02125a82 3318}
8823c079 3319
3151527e
EB
3320bool current_chrooted(void)
3321{
3322 /* Does the current process have a non-standard root */
3323 struct path ns_root;
3324 struct path fs_root;
3325 bool chrooted;
3326
3327 /* Find the namespace root */
3328 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3329 ns_root.dentry = ns_root.mnt->mnt_root;
3330 path_get(&ns_root);
3331 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3332 ;
3333
3334 get_fs_root(current->fs, &fs_root);
3335
3336 chrooted = !path_equal(&fs_root, &ns_root);
3337
3338 path_put(&fs_root);
3339 path_put(&ns_root);
3340
3341 return chrooted;
3342}
3343
8654df4e
EB
3344static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3345 int *new_mnt_flags)
87a8ebd6 3346{
8c6cf9cc 3347 int new_flags = *new_mnt_flags;
87a8ebd6 3348 struct mount *mnt;
e51db735 3349 bool visible = false;
87a8ebd6 3350
44bb4385 3351 down_read(&namespace_sem);
87a8ebd6 3352 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3353 struct mount *child;
77b1a97d
EB
3354 int mnt_flags;
3355
8654df4e 3356 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3357 continue;
3358
7e96c1b0
EB
3359 /* This mount is not fully visible if it's root directory
3360 * is not the root directory of the filesystem.
3361 */
3362 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3363 continue;
3364
a1935c17 3365 /* A local view of the mount flags */
77b1a97d 3366 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3367
695e9df0
EB
3368 /* Don't miss readonly hidden in the superblock flags */
3369 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3370 mnt_flags |= MNT_LOCK_READONLY;
3371
8c6cf9cc
EB
3372 /* Verify the mount flags are equal to or more permissive
3373 * than the proposed new mount.
3374 */
77b1a97d 3375 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3376 !(new_flags & MNT_READONLY))
3377 continue;
77b1a97d
EB
3378 if ((mnt_flags & MNT_LOCK_ATIME) &&
3379 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3380 continue;
3381
ceeb0e5d
EB
3382 /* This mount is not fully visible if there are any
3383 * locked child mounts that cover anything except for
3384 * empty directories.
e51db735
EB
3385 */
3386 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3387 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3388 /* Only worry about locked mounts */
d71ed6c9 3389 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3390 continue;
7236c85e
EB
3391 /* Is the directory permanetly empty? */
3392 if (!is_empty_dir_inode(inode))
e51db735 3393 goto next;
87a8ebd6 3394 }
8c6cf9cc 3395 /* Preserve the locked attributes */
77b1a97d 3396 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3397 MNT_LOCK_ATIME);
e51db735
EB
3398 visible = true;
3399 goto found;
3400 next: ;
87a8ebd6 3401 }
e51db735 3402found:
44bb4385 3403 up_read(&namespace_sem);
e51db735 3404 return visible;
87a8ebd6
EB
3405}
3406
8654df4e
EB
3407static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3408{
a1935c17 3409 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3410 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3411 unsigned long s_iflags;
3412
3413 if (ns->user_ns == &init_user_ns)
3414 return false;
3415
3416 /* Can this filesystem be too revealing? */
3417 s_iflags = mnt->mnt_sb->s_iflags;
3418 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3419 return false;
3420
a1935c17
EB
3421 if ((s_iflags & required_iflags) != required_iflags) {
3422 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3423 required_iflags);
3424 return true;
3425 }
3426
8654df4e
EB
3427 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3428}
3429
380cf5ba
AL
3430bool mnt_may_suid(struct vfsmount *mnt)
3431{
3432 /*
3433 * Foreign mounts (accessed via fchdir or through /proc
3434 * symlinks) are always treated as if they are nosuid. This
3435 * prevents namespaces from trusting potentially unsafe
3436 * suid/sgid bits, file caps, or security labels that originate
3437 * in other namespaces.
3438 */
3439 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3440 current_in_userns(mnt->mnt_sb->s_user_ns);
3441}
3442
64964528 3443static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3444{
58be2825 3445 struct ns_common *ns = NULL;
8823c079
EB
3446 struct nsproxy *nsproxy;
3447
728dba3a
EB
3448 task_lock(task);
3449 nsproxy = task->nsproxy;
8823c079 3450 if (nsproxy) {
58be2825
AV
3451 ns = &nsproxy->mnt_ns->ns;
3452 get_mnt_ns(to_mnt_ns(ns));
8823c079 3453 }
728dba3a 3454 task_unlock(task);
8823c079
EB
3455
3456 return ns;
3457}
3458
64964528 3459static void mntns_put(struct ns_common *ns)
8823c079 3460{
58be2825 3461 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3462}
3463
64964528 3464static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3465{
3466 struct fs_struct *fs = current->fs;
58be2825 3467 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3468 struct path root;
3469
0c55cfc4 3470 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3471 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3472 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3473 return -EPERM;
8823c079
EB
3474
3475 if (fs->users != 1)
3476 return -EINVAL;
3477
3478 get_mnt_ns(mnt_ns);
3479 put_mnt_ns(nsproxy->mnt_ns);
3480 nsproxy->mnt_ns = mnt_ns;
3481
3482 /* Find the root */
3483 root.mnt = &mnt_ns->root->mnt;
3484 root.dentry = mnt_ns->root->mnt.mnt_root;
3485 path_get(&root);
3486 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3487 ;
3488
3489 /* Update the pwd and root */
3490 set_fs_pwd(fs, &root);
3491 set_fs_root(fs, &root);
3492
3493 path_put(&root);
3494 return 0;
3495}
3496
bcac25a5
AV
3497static struct user_namespace *mntns_owner(struct ns_common *ns)
3498{
3499 return to_mnt_ns(ns)->user_ns;
3500}
3501
8823c079
EB
3502const struct proc_ns_operations mntns_operations = {
3503 .name = "mnt",
3504 .type = CLONE_NEWNS,
3505 .get = mntns_get,
3506 .put = mntns_put,
3507 .install = mntns_install,
bcac25a5 3508 .owner = mntns_owner,
8823c079 3509};