]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP] FRTO: Update sysctl documentation
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself (reports
1031 * SACK reneging when it should advance SND.UNA).
1032 *
1033 * Implements also blockage to start_seq wrap-around. Problem lies in the
1034 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1035 * there's no guarantee that it will be before snd_nxt (n). The problem
1036 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1037 * wrap (s_w):
1038 *
1039 * <- outs wnd -> <- wrapzone ->
1040 * u e n u_w e_w s n_w
1041 * | | | | | | |
1042 * |<------------+------+----- TCP seqno space --------------+---------->|
1043 * ...-- <2^31 ->| |<--------...
1044 * ...---- >2^31 ------>| |<--------...
1045 *
1046 * Current code wouldn't be vulnerable but it's better still to discard such
1047 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1048 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1049 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1050 * equal to the ideal case (infinite seqno space without wrap caused issues).
1051 *
1052 * With D-SACK the lower bound is extended to cover sequence space below
1053 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1054 * again, DSACK block must not to go across snd_una (for the same reason as
1055 * for the normal SACK blocks, explained above). But there all simplicity
1056 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1057 * fully below undo_marker they do not affect behavior in anyway and can
1058 * therefore be safely ignored. In rare cases (which are more or less
1059 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1060 * fragmentation and packet reordering past skb's retransmission. To consider
1061 * them correctly, the acceptable range must be extended even more though
1062 * the exact amount is rather hard to quantify. However, tp->max_window can
1063 * be used as an exaggerated estimate.
1da177e4 1064 */
5b3c9882
IJ
1065static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1066 u32 start_seq, u32 end_seq)
1067{
1068 /* Too far in future, or reversed (interpretation is ambiguous) */
1069 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1070 return 0;
1071
1072 /* Nasty start_seq wrap-around check (see comments above) */
1073 if (!before(start_seq, tp->snd_nxt))
1074 return 0;
1075
1076 /* In outstanding window? ...This is valid exit for DSACKs too.
1077 * start_seq == snd_una is non-sensical (see comments above)
1078 */
1079 if (after(start_seq, tp->snd_una))
1080 return 1;
1081
1082 if (!is_dsack || !tp->undo_marker)
1083 return 0;
1084
1085 /* ...Then it's D-SACK, and must reside below snd_una completely */
1086 if (!after(end_seq, tp->snd_una))
1087 return 0;
1088
1089 if (!before(start_seq, tp->undo_marker))
1090 return 1;
1091
1092 /* Too old */
1093 if (!after(end_seq, tp->undo_marker))
1094 return 0;
1095
1096 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1097 * start_seq < undo_marker and end_seq >= undo_marker.
1098 */
1099 return !before(start_seq, end_seq - tp->max_window);
1100}
1101
1102
d06e021d
DM
1103static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1104 struct tcp_sack_block_wire *sp, int num_sacks,
1105 u32 prior_snd_una)
1106{
1107 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1108 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1109 int dup_sack = 0;
1110
1111 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1112 dup_sack = 1;
e60402d0 1113 tcp_dsack_seen(tp);
d06e021d
DM
1114 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1115 } else if (num_sacks > 1) {
1116 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1117 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1118
1119 if (!after(end_seq_0, end_seq_1) &&
1120 !before(start_seq_0, start_seq_1)) {
1121 dup_sack = 1;
e60402d0 1122 tcp_dsack_seen(tp);
d06e021d
DM
1123 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1124 }
1125 }
1126
1127 /* D-SACK for already forgotten data... Do dumb counting. */
1128 if (dup_sack &&
1129 !after(end_seq_0, prior_snd_una) &&
1130 after(end_seq_0, tp->undo_marker))
1131 tp->undo_retrans--;
1132
1133 return dup_sack;
1134}
1135
1da177e4
LT
1136static int
1137tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1138{
6687e988 1139 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1140 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1141 unsigned char *ptr = (skb_transport_header(ack_skb) +
1142 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1143 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1144 struct sk_buff *cached_skb;
1da177e4
LT
1145 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1146 int reord = tp->packets_out;
1147 int prior_fackets;
1148 u32 lost_retrans = 0;
1149 int flag = 0;
7769f406 1150 int found_dup_sack = 0;
fda03fbb 1151 int cached_fack_count;
1da177e4 1152 int i;
fda03fbb 1153 int first_sack_index;
1da177e4 1154
d738cd8f 1155 if (!tp->sacked_out) {
1da177e4 1156 tp->fackets_out = 0;
d738cd8f
IJ
1157 tp->highest_sack = tp->snd_una;
1158 }
1da177e4
LT
1159 prior_fackets = tp->fackets_out;
1160
d06e021d
DM
1161 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1162 num_sacks, prior_snd_una);
1163 if (found_dup_sack)
49ff4bb4 1164 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1165
1166 /* Eliminate too old ACKs, but take into
1167 * account more or less fresh ones, they can
1168 * contain valid SACK info.
1169 */
1170 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1171 return 0;
1172
6a438bbe
SH
1173 /* SACK fastpath:
1174 * if the only SACK change is the increase of the end_seq of
1175 * the first block then only apply that SACK block
1176 * and use retrans queue hinting otherwise slowpath */
1177 flag = 1;
6f74651a
BE
1178 for (i = 0; i < num_sacks; i++) {
1179 __be32 start_seq = sp[i].start_seq;
1180 __be32 end_seq = sp[i].end_seq;
6a438bbe 1181
6f74651a 1182 if (i == 0) {
6a438bbe
SH
1183 if (tp->recv_sack_cache[i].start_seq != start_seq)
1184 flag = 0;
1185 } else {
1186 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1187 (tp->recv_sack_cache[i].end_seq != end_seq))
1188 flag = 0;
1189 }
1190 tp->recv_sack_cache[i].start_seq = start_seq;
1191 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1192 }
8a3c3a97
BE
1193 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1194 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1195 tp->recv_sack_cache[i].start_seq = 0;
1196 tp->recv_sack_cache[i].end_seq = 0;
1197 }
6a438bbe 1198
fda03fbb 1199 first_sack_index = 0;
6a438bbe
SH
1200 if (flag)
1201 num_sacks = 1;
1202 else {
1203 int j;
1204 tp->fastpath_skb_hint = NULL;
1205
1206 /* order SACK blocks to allow in order walk of the retrans queue */
1207 for (i = num_sacks-1; i > 0; i--) {
1208 for (j = 0; j < i; j++){
1209 if (after(ntohl(sp[j].start_seq),
1210 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1211 struct tcp_sack_block_wire tmp;
1212
1213 tmp = sp[j];
1214 sp[j] = sp[j+1];
1215 sp[j+1] = tmp;
fda03fbb
BE
1216
1217 /* Track where the first SACK block goes to */
1218 if (j == first_sack_index)
1219 first_sack_index = j+1;
6a438bbe
SH
1220 }
1221
1222 }
1223 }
1224 }
1225
1226 /* clear flag as used for different purpose in following code */
1227 flag = 0;
1228
fda03fbb
BE
1229 /* Use SACK fastpath hint if valid */
1230 cached_skb = tp->fastpath_skb_hint;
1231 cached_fack_count = tp->fastpath_cnt_hint;
1232 if (!cached_skb) {
fe067e8a 1233 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1234 cached_fack_count = 0;
1235 }
1236
6a438bbe
SH
1237 for (i=0; i<num_sacks; i++, sp++) {
1238 struct sk_buff *skb;
1239 __u32 start_seq = ntohl(sp->start_seq);
1240 __u32 end_seq = ntohl(sp->end_seq);
1241 int fack_count;
7769f406 1242 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1243
18f02545
IJ
1244 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1245 if (dup_sack) {
1246 if (!tp->undo_marker)
1247 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1248 else
1249 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1250 } else
1251 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
5b3c9882 1252 continue;
18f02545 1253 }
5b3c9882 1254
fda03fbb
BE
1255 skb = cached_skb;
1256 fack_count = cached_fack_count;
1da177e4
LT
1257
1258 /* Event "B" in the comment above. */
1259 if (after(end_seq, tp->high_seq))
1260 flag |= FLAG_DATA_LOST;
1261
fe067e8a 1262 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1263 int in_sack, pcount;
1264 u8 sacked;
1da177e4 1265
fe067e8a
DM
1266 if (skb == tcp_send_head(sk))
1267 break;
1268
fda03fbb
BE
1269 cached_skb = skb;
1270 cached_fack_count = fack_count;
1271 if (i == first_sack_index) {
1272 tp->fastpath_skb_hint = skb;
1273 tp->fastpath_cnt_hint = fack_count;
1274 }
6a438bbe 1275
1da177e4
LT
1276 /* The retransmission queue is always in order, so
1277 * we can short-circuit the walk early.
1278 */
6475be16 1279 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1280 break;
1281
3c05d92e
HX
1282 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1283 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1284
6475be16
DM
1285 pcount = tcp_skb_pcount(skb);
1286
3c05d92e
HX
1287 if (pcount > 1 && !in_sack &&
1288 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1289 unsigned int pkt_len;
1290
3c05d92e
HX
1291 in_sack = !after(start_seq,
1292 TCP_SKB_CB(skb)->seq);
1293
1294 if (!in_sack)
6475be16
DM
1295 pkt_len = (start_seq -
1296 TCP_SKB_CB(skb)->seq);
1297 else
1298 pkt_len = (end_seq -
1299 TCP_SKB_CB(skb)->seq);
7967168c 1300 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1301 break;
1302 pcount = tcp_skb_pcount(skb);
1303 }
1304
1305 fack_count += pcount;
1da177e4 1306
6475be16
DM
1307 sacked = TCP_SKB_CB(skb)->sacked;
1308
1da177e4
LT
1309 /* Account D-SACK for retransmitted packet. */
1310 if ((dup_sack && in_sack) &&
1311 (sacked & TCPCB_RETRANS) &&
1312 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1313 tp->undo_retrans--;
1314
1315 /* The frame is ACKed. */
1316 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1317 if (sacked&TCPCB_RETRANS) {
1318 if ((dup_sack && in_sack) &&
1319 (sacked&TCPCB_SACKED_ACKED))
1320 reord = min(fack_count, reord);
1321 } else {
1322 /* If it was in a hole, we detected reordering. */
1323 if (fack_count < prior_fackets &&
1324 !(sacked&TCPCB_SACKED_ACKED))
1325 reord = min(fack_count, reord);
1326 }
1327
1328 /* Nothing to do; acked frame is about to be dropped. */
1329 continue;
1330 }
1331
1332 if ((sacked&TCPCB_SACKED_RETRANS) &&
1333 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1334 (!lost_retrans || after(end_seq, lost_retrans)))
1335 lost_retrans = end_seq;
1336
1337 if (!in_sack)
1338 continue;
1339
1340 if (!(sacked&TCPCB_SACKED_ACKED)) {
1341 if (sacked & TCPCB_SACKED_RETRANS) {
1342 /* If the segment is not tagged as lost,
1343 * we do not clear RETRANS, believing
1344 * that retransmission is still in flight.
1345 */
1346 if (sacked & TCPCB_LOST) {
1347 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1348 tp->lost_out -= tcp_skb_pcount(skb);
1349 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1350
1351 /* clear lost hint */
1352 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1353 }
1354 } else {
1355 /* New sack for not retransmitted frame,
1356 * which was in hole. It is reordering.
1357 */
1358 if (!(sacked & TCPCB_RETRANS) &&
1359 fack_count < prior_fackets)
1360 reord = min(fack_count, reord);
1361
1362 if (sacked & TCPCB_LOST) {
1363 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1364 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1365
1366 /* clear lost hint */
1367 tp->retransmit_skb_hint = NULL;
1da177e4 1368 }
4dc2665e
IJ
1369 /* SACK enhanced F-RTO detection.
1370 * Set flag if and only if non-rexmitted
1371 * segments below frto_highmark are
1372 * SACKed (RFC4138; Appendix B).
1373 * Clearing correct due to in-order walk
1374 */
1375 if (after(end_seq, tp->frto_highmark)) {
1376 flag &= ~FLAG_ONLY_ORIG_SACKED;
1377 } else {
1378 if (!(sacked & TCPCB_RETRANS))
1379 flag |= FLAG_ONLY_ORIG_SACKED;
1380 }
1da177e4
LT
1381 }
1382
1383 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1384 flag |= FLAG_DATA_SACKED;
1385 tp->sacked_out += tcp_skb_pcount(skb);
1386
1387 if (fack_count > tp->fackets_out)
1388 tp->fackets_out = fack_count;
d738cd8f
IJ
1389
1390 if (after(TCP_SKB_CB(skb)->seq,
1391 tp->highest_sack))
1392 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1393 } else {
1394 if (dup_sack && (sacked&TCPCB_RETRANS))
1395 reord = min(fack_count, reord);
1396 }
1397
1398 /* D-SACK. We can detect redundant retransmission
1399 * in S|R and plain R frames and clear it.
1400 * undo_retrans is decreased above, L|R frames
1401 * are accounted above as well.
1402 */
1403 if (dup_sack &&
1404 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1405 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1406 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1407 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1408 }
1409 }
1410 }
1411
1412 /* Check for lost retransmit. This superb idea is
1413 * borrowed from "ratehalving". Event "C".
1414 * Later note: FACK people cheated me again 8),
1415 * we have to account for reordering! Ugly,
1416 * but should help.
1417 */
6687e988 1418 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1419 struct sk_buff *skb;
1420
fe067e8a
DM
1421 tcp_for_write_queue(skb, sk) {
1422 if (skb == tcp_send_head(sk))
1423 break;
1da177e4
LT
1424 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1425 break;
1426 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1427 continue;
1428 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1429 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
e60402d0 1430 (tcp_is_fack(tp) ||
1da177e4
LT
1431 !before(lost_retrans,
1432 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1433 tp->mss_cache))) {
1da177e4
LT
1434 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1435 tp->retrans_out -= tcp_skb_pcount(skb);
1436
6a438bbe
SH
1437 /* clear lost hint */
1438 tp->retransmit_skb_hint = NULL;
1439
1da177e4
LT
1440 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1441 tp->lost_out += tcp_skb_pcount(skb);
1442 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1443 flag |= FLAG_DATA_SACKED;
1444 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1445 }
1446 }
1447 }
1448 }
1449
86426c22
IJ
1450 tcp_verify_left_out(tp);
1451
288035f9 1452 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1453 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1454 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1455
1456#if FASTRETRANS_DEBUG > 0
1457 BUG_TRAP((int)tp->sacked_out >= 0);
1458 BUG_TRAP((int)tp->lost_out >= 0);
1459 BUG_TRAP((int)tp->retrans_out >= 0);
1460 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1461#endif
1462 return flag;
1463}
1464
575ee714
IJ
1465/* F-RTO can only be used if TCP has never retransmitted anything other than
1466 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
30935cf4 1467 */
4ddf6676
IJ
1468static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1469{
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 u32 holes;
1472
1473 holes = max(tp->lost_out, 1U);
1474 holes = min(holes, tp->packets_out);
1475
1476 if ((tp->sacked_out + holes) > tp->packets_out) {
1477 tp->sacked_out = tp->packets_out - holes;
1478 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1479 }
1480}
1481
1482/* Emulate SACKs for SACKless connection: account for a new dupack. */
1483
1484static void tcp_add_reno_sack(struct sock *sk)
1485{
1486 struct tcp_sock *tp = tcp_sk(sk);
1487 tp->sacked_out++;
1488 tcp_check_reno_reordering(sk, 0);
005903bc 1489 tcp_verify_left_out(tp);
4ddf6676
IJ
1490}
1491
1492/* Account for ACK, ACKing some data in Reno Recovery phase. */
1493
1494static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1495{
1496 struct tcp_sock *tp = tcp_sk(sk);
1497
1498 if (acked > 0) {
1499 /* One ACK acked hole. The rest eat duplicate ACKs. */
1500 if (acked-1 >= tp->sacked_out)
1501 tp->sacked_out = 0;
1502 else
1503 tp->sacked_out -= acked-1;
1504 }
1505 tcp_check_reno_reordering(sk, acked);
005903bc 1506 tcp_verify_left_out(tp);
4ddf6676
IJ
1507}
1508
1509static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1510{
1511 tp->sacked_out = 0;
4ddf6676
IJ
1512}
1513
46d0de4e 1514int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1515{
1516 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1517 struct sk_buff *skb;
1518
575ee714 1519 if (!sysctl_tcp_frto)
46d0de4e 1520 return 0;
bdaae17d 1521
4dc2665e
IJ
1522 if (IsSackFrto())
1523 return 1;
1524
46d0de4e
IJ
1525 /* Avoid expensive walking of rexmit queue if possible */
1526 if (tp->retrans_out > 1)
1527 return 0;
1528
fe067e8a
DM
1529 skb = tcp_write_queue_head(sk);
1530 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1531 tcp_for_write_queue_from(skb, sk) {
1532 if (skb == tcp_send_head(sk))
1533 break;
46d0de4e
IJ
1534 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1535 return 0;
1536 /* Short-circuit when first non-SACKed skb has been checked */
1537 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1538 break;
1539 }
1540 return 1;
bdaae17d
IJ
1541}
1542
30935cf4
IJ
1543/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1544 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1545 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1546 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1547 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1548 * bits are handled if the Loss state is really to be entered (in
1549 * tcp_enter_frto_loss).
7487c48c
IJ
1550 *
1551 * Do like tcp_enter_loss() would; when RTO expires the second time it
1552 * does:
1553 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1554 */
1555void tcp_enter_frto(struct sock *sk)
1556{
6687e988 1557 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1558 struct tcp_sock *tp = tcp_sk(sk);
1559 struct sk_buff *skb;
1560
7487c48c 1561 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1562 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1563 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1564 !icsk->icsk_retransmits)) {
6687e988 1565 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1566 /* Our state is too optimistic in ssthresh() call because cwnd
1567 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1568 * recovery has not yet completed. Pattern would be this: RTO,
1569 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1570 * up here twice).
1571 * RFC4138 should be more specific on what to do, even though
1572 * RTO is quite unlikely to occur after the first Cumulative ACK
1573 * due to back-off and complexity of triggering events ...
1574 */
1575 if (tp->frto_counter) {
1576 u32 stored_cwnd;
1577 stored_cwnd = tp->snd_cwnd;
1578 tp->snd_cwnd = 2;
1579 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1580 tp->snd_cwnd = stored_cwnd;
1581 } else {
1582 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1583 }
1584 /* ... in theory, cong.control module could do "any tricks" in
1585 * ssthresh(), which means that ca_state, lost bits and lost_out
1586 * counter would have to be faked before the call occurs. We
1587 * consider that too expensive, unlikely and hacky, so modules
1588 * using these in ssthresh() must deal these incompatibility
1589 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1590 */
6687e988 1591 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1592 }
1593
1da177e4
LT
1594 tp->undo_marker = tp->snd_una;
1595 tp->undo_retrans = 0;
1596
fe067e8a 1597 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1598 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1599 tp->undo_marker = 0;
d1a54c6a 1600 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1601 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1602 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1603 }
005903bc 1604 tcp_verify_left_out(tp);
1da177e4 1605
4dc2665e
IJ
1606 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1607 * The last condition is necessary at least in tp->frto_counter case.
1608 */
1609 if (IsSackFrto() && (tp->frto_counter ||
1610 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1611 after(tp->high_seq, tp->snd_una)) {
1612 tp->frto_highmark = tp->high_seq;
1613 } else {
1614 tp->frto_highmark = tp->snd_nxt;
1615 }
7b0eb22b
IJ
1616 tcp_set_ca_state(sk, TCP_CA_Disorder);
1617 tp->high_seq = tp->snd_nxt;
7487c48c 1618 tp->frto_counter = 1;
1da177e4
LT
1619}
1620
1621/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1622 * which indicates that we should follow the traditional RTO recovery,
1623 * i.e. mark everything lost and do go-back-N retransmission.
1624 */
d1a54c6a 1625static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1626{
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 struct sk_buff *skb;
1da177e4 1629
1da177e4 1630 tp->lost_out = 0;
d1a54c6a 1631 tp->retrans_out = 0;
e60402d0 1632 if (tcp_is_reno(tp))
9bff40fd 1633 tcp_reset_reno_sack(tp);
1da177e4 1634
fe067e8a
DM
1635 tcp_for_write_queue(skb, sk) {
1636 if (skb == tcp_send_head(sk))
1637 break;
d1a54c6a
IJ
1638 /*
1639 * Count the retransmission made on RTO correctly (only when
1640 * waiting for the first ACK and did not get it)...
1641 */
1642 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1643 /* For some reason this R-bit might get cleared? */
1644 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1645 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1646 /* ...enter this if branch just for the first segment */
1647 flag |= FLAG_DATA_ACKED;
1648 } else {
009a2e3e
IJ
1649 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1650 tp->undo_marker = 0;
d1a54c6a
IJ
1651 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1652 }
1da177e4 1653
9bff40fd
IJ
1654 /* Don't lost mark skbs that were fwd transmitted after RTO */
1655 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1656 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1657 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1658 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1659 }
1660 }
005903bc 1661 tcp_verify_left_out(tp);
1da177e4 1662
95c4922b 1663 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1664 tp->snd_cwnd_cnt = 0;
1665 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
1666 tp->frto_counter = 0;
1667
1668 tp->reordering = min_t(unsigned int, tp->reordering,
1669 sysctl_tcp_reordering);
6687e988 1670 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1671 tp->high_seq = tp->frto_highmark;
1672 TCP_ECN_queue_cwr(tp);
6a438bbe 1673
5af4ec23 1674 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
1675}
1676
1677void tcp_clear_retrans(struct tcp_sock *tp)
1678{
1da177e4
LT
1679 tp->retrans_out = 0;
1680
1681 tp->fackets_out = 0;
1682 tp->sacked_out = 0;
1683 tp->lost_out = 0;
1684
1685 tp->undo_marker = 0;
1686 tp->undo_retrans = 0;
1687}
1688
1689/* Enter Loss state. If "how" is not zero, forget all SACK information
1690 * and reset tags completely, otherwise preserve SACKs. If receiver
1691 * dropped its ofo queue, we will know this due to reneging detection.
1692 */
1693void tcp_enter_loss(struct sock *sk, int how)
1694{
6687e988 1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1696 struct tcp_sock *tp = tcp_sk(sk);
1697 struct sk_buff *skb;
1698 int cnt = 0;
1699
1700 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1701 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1702 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1703 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1704 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1705 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1706 }
1707 tp->snd_cwnd = 1;
1708 tp->snd_cwnd_cnt = 0;
1709 tp->snd_cwnd_stamp = tcp_time_stamp;
1710
9772efb9 1711 tp->bytes_acked = 0;
1da177e4
LT
1712 tcp_clear_retrans(tp);
1713
1714 /* Push undo marker, if it was plain RTO and nothing
1715 * was retransmitted. */
1716 if (!how)
1717 tp->undo_marker = tp->snd_una;
1718
fe067e8a
DM
1719 tcp_for_write_queue(skb, sk) {
1720 if (skb == tcp_send_head(sk))
1721 break;
1da177e4
LT
1722 cnt += tcp_skb_pcount(skb);
1723 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1724 tp->undo_marker = 0;
1725 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1726 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1727 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1728 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1729 tp->lost_out += tcp_skb_pcount(skb);
1730 } else {
1731 tp->sacked_out += tcp_skb_pcount(skb);
1732 tp->fackets_out = cnt;
1733 }
1734 }
005903bc 1735 tcp_verify_left_out(tp);
1da177e4
LT
1736
1737 tp->reordering = min_t(unsigned int, tp->reordering,
1738 sysctl_tcp_reordering);
6687e988 1739 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1740 tp->high_seq = tp->snd_nxt;
1741 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1742 /* Abort FRTO algorithm if one is in progress */
1743 tp->frto_counter = 0;
6a438bbe 1744
5af4ec23 1745 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
1746}
1747
463c84b9 1748static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1749{
1750 struct sk_buff *skb;
1751
1752 /* If ACK arrived pointing to a remembered SACK,
1753 * it means that our remembered SACKs do not reflect
1754 * real state of receiver i.e.
1755 * receiver _host_ is heavily congested (or buggy).
1756 * Do processing similar to RTO timeout.
1757 */
fe067e8a 1758 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1759 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1760 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1761 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1762
1763 tcp_enter_loss(sk, 1);
6687e988 1764 icsk->icsk_retransmits++;
fe067e8a 1765 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1766 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1767 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1768 return 1;
1769 }
1770 return 0;
1771}
1772
1773static inline int tcp_fackets_out(struct tcp_sock *tp)
1774{
e60402d0 1775 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1776}
1777
463c84b9 1778static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1779{
463c84b9 1780 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1781}
1782
9e412ba7 1783static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1784{
9e412ba7
IJ
1785 struct tcp_sock *tp = tcp_sk(sk);
1786
1da177e4 1787 return tp->packets_out &&
fe067e8a 1788 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1789}
1790
1791/* Linux NewReno/SACK/FACK/ECN state machine.
1792 * --------------------------------------
1793 *
1794 * "Open" Normal state, no dubious events, fast path.
1795 * "Disorder" In all the respects it is "Open",
1796 * but requires a bit more attention. It is entered when
1797 * we see some SACKs or dupacks. It is split of "Open"
1798 * mainly to move some processing from fast path to slow one.
1799 * "CWR" CWND was reduced due to some Congestion Notification event.
1800 * It can be ECN, ICMP source quench, local device congestion.
1801 * "Recovery" CWND was reduced, we are fast-retransmitting.
1802 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1803 *
1804 * tcp_fastretrans_alert() is entered:
1805 * - each incoming ACK, if state is not "Open"
1806 * - when arrived ACK is unusual, namely:
1807 * * SACK
1808 * * Duplicate ACK.
1809 * * ECN ECE.
1810 *
1811 * Counting packets in flight is pretty simple.
1812 *
1813 * in_flight = packets_out - left_out + retrans_out
1814 *
1815 * packets_out is SND.NXT-SND.UNA counted in packets.
1816 *
1817 * retrans_out is number of retransmitted segments.
1818 *
1819 * left_out is number of segments left network, but not ACKed yet.
1820 *
1821 * left_out = sacked_out + lost_out
1822 *
1823 * sacked_out: Packets, which arrived to receiver out of order
1824 * and hence not ACKed. With SACKs this number is simply
1825 * amount of SACKed data. Even without SACKs
1826 * it is easy to give pretty reliable estimate of this number,
1827 * counting duplicate ACKs.
1828 *
1829 * lost_out: Packets lost by network. TCP has no explicit
1830 * "loss notification" feedback from network (for now).
1831 * It means that this number can be only _guessed_.
1832 * Actually, it is the heuristics to predict lossage that
1833 * distinguishes different algorithms.
1834 *
1835 * F.e. after RTO, when all the queue is considered as lost,
1836 * lost_out = packets_out and in_flight = retrans_out.
1837 *
1838 * Essentially, we have now two algorithms counting
1839 * lost packets.
1840 *
1841 * FACK: It is the simplest heuristics. As soon as we decided
1842 * that something is lost, we decide that _all_ not SACKed
1843 * packets until the most forward SACK are lost. I.e.
1844 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1845 * It is absolutely correct estimate, if network does not reorder
1846 * packets. And it loses any connection to reality when reordering
1847 * takes place. We use FACK by default until reordering
1848 * is suspected on the path to this destination.
1849 *
1850 * NewReno: when Recovery is entered, we assume that one segment
1851 * is lost (classic Reno). While we are in Recovery and
1852 * a partial ACK arrives, we assume that one more packet
1853 * is lost (NewReno). This heuristics are the same in NewReno
1854 * and SACK.
1855 *
1856 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1857 * deflation etc. CWND is real congestion window, never inflated, changes
1858 * only according to classic VJ rules.
1859 *
1860 * Really tricky (and requiring careful tuning) part of algorithm
1861 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1862 * The first determines the moment _when_ we should reduce CWND and,
1863 * hence, slow down forward transmission. In fact, it determines the moment
1864 * when we decide that hole is caused by loss, rather than by a reorder.
1865 *
1866 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1867 * holes, caused by lost packets.
1868 *
1869 * And the most logically complicated part of algorithm is undo
1870 * heuristics. We detect false retransmits due to both too early
1871 * fast retransmit (reordering) and underestimated RTO, analyzing
1872 * timestamps and D-SACKs. When we detect that some segments were
1873 * retransmitted by mistake and CWND reduction was wrong, we undo
1874 * window reduction and abort recovery phase. This logic is hidden
1875 * inside several functions named tcp_try_undo_<something>.
1876 */
1877
1878/* This function decides, when we should leave Disordered state
1879 * and enter Recovery phase, reducing congestion window.
1880 *
1881 * Main question: may we further continue forward transmission
1882 * with the same cwnd?
1883 */
9e412ba7 1884static int tcp_time_to_recover(struct sock *sk)
1da177e4 1885{
9e412ba7 1886 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1887 __u32 packets_out;
1888
52c63f1e
IJ
1889 /* Do not perform any recovery during FRTO algorithm */
1890 if (tp->frto_counter)
1891 return 0;
1892
1da177e4
LT
1893 /* Trick#1: The loss is proven. */
1894 if (tp->lost_out)
1895 return 1;
1896
1897 /* Not-A-Trick#2 : Classic rule... */
1898 if (tcp_fackets_out(tp) > tp->reordering)
1899 return 1;
1900
1901 /* Trick#3 : when we use RFC2988 timer restart, fast
1902 * retransmit can be triggered by timeout of queue head.
1903 */
9e412ba7 1904 if (tcp_head_timedout(sk))
1da177e4
LT
1905 return 1;
1906
1907 /* Trick#4: It is still not OK... But will it be useful to delay
1908 * recovery more?
1909 */
1910 packets_out = tp->packets_out;
1911 if (packets_out <= tp->reordering &&
1912 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1913 !tcp_may_send_now(sk)) {
1da177e4
LT
1914 /* We have nothing to send. This connection is limited
1915 * either by receiver window or by application.
1916 */
1917 return 1;
1918 }
1919
1920 return 0;
1921}
1922
d8f4f223
IJ
1923/* RFC: This is from the original, I doubt that this is necessary at all:
1924 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1925 * retransmitted past LOST markings in the first place? I'm not fully sure
1926 * about undo and end of connection cases, which can cause R without L?
1927 */
1928static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1929 struct sk_buff *skb)
1930{
1931 if ((tp->retransmit_skb_hint != NULL) &&
1932 before(TCP_SKB_CB(skb)->seq,
1933 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1934 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1935}
1936
1da177e4 1937/* Mark head of queue up as lost. */
9e412ba7 1938static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1939 int packets, u32 high_seq)
1940{
9e412ba7 1941 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1942 struct sk_buff *skb;
6a438bbe 1943 int cnt;
1da177e4 1944
6a438bbe
SH
1945 BUG_TRAP(packets <= tp->packets_out);
1946 if (tp->lost_skb_hint) {
1947 skb = tp->lost_skb_hint;
1948 cnt = tp->lost_cnt_hint;
1949 } else {
fe067e8a 1950 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1951 cnt = 0;
1952 }
1da177e4 1953
fe067e8a
DM
1954 tcp_for_write_queue_from(skb, sk) {
1955 if (skb == tcp_send_head(sk))
1956 break;
6a438bbe
SH
1957 /* TODO: do this better */
1958 /* this is not the most efficient way to do this... */
1959 tp->lost_skb_hint = skb;
1960 tp->lost_cnt_hint = cnt;
1961 cnt += tcp_skb_pcount(skb);
1962 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1963 break;
1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1966 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1967 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1968 }
1969 }
005903bc 1970 tcp_verify_left_out(tp);
1da177e4
LT
1971}
1972
1973/* Account newly detected lost packet(s) */
1974
9e412ba7 1975static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1976{
9e412ba7
IJ
1977 struct tcp_sock *tp = tcp_sk(sk);
1978
e60402d0 1979 if (tcp_is_fack(tp)) {
1da177e4
LT
1980 int lost = tp->fackets_out - tp->reordering;
1981 if (lost <= 0)
1982 lost = 1;
9e412ba7 1983 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1984 } else {
9e412ba7 1985 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1986 }
1987
1988 /* New heuristics: it is possible only after we switched
1989 * to restart timer each time when something is ACKed.
1990 * Hence, we can detect timed out packets during fast
1991 * retransmit without falling to slow start.
1992 */
e60402d0 1993 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
1994 struct sk_buff *skb;
1995
6a438bbe 1996 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 1997 : tcp_write_queue_head(sk);
6a438bbe 1998
fe067e8a
DM
1999 tcp_for_write_queue_from(skb, sk) {
2000 if (skb == tcp_send_head(sk))
2001 break;
6a438bbe
SH
2002 if (!tcp_skb_timedout(sk, skb))
2003 break;
2004
2005 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2007 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2008 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2009 }
2010 }
6a438bbe
SH
2011
2012 tp->scoreboard_skb_hint = skb;
2013
005903bc 2014 tcp_verify_left_out(tp);
1da177e4
LT
2015 }
2016}
2017
2018/* CWND moderation, preventing bursts due to too big ACKs
2019 * in dubious situations.
2020 */
2021static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2022{
2023 tp->snd_cwnd = min(tp->snd_cwnd,
2024 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2025 tp->snd_cwnd_stamp = tcp_time_stamp;
2026}
2027
72dc5b92
SH
2028/* Lower bound on congestion window is slow start threshold
2029 * unless congestion avoidance choice decides to overide it.
2030 */
2031static inline u32 tcp_cwnd_min(const struct sock *sk)
2032{
2033 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2034
2035 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2036}
2037
1da177e4 2038/* Decrease cwnd each second ack. */
1e757f99 2039static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2040{
6687e988 2041 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2042 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2043
49ff4bb4 2044 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2045 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2046 tp->snd_cwnd_cnt = decr&1;
2047 decr >>= 1;
1da177e4 2048
1e757f99
IJ
2049 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2050 tp->snd_cwnd -= decr;
1da177e4 2051
1e757f99
IJ
2052 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2053 tp->snd_cwnd_stamp = tcp_time_stamp;
2054 }
1da177e4
LT
2055}
2056
2057/* Nothing was retransmitted or returned timestamp is less
2058 * than timestamp of the first retransmission.
2059 */
2060static inline int tcp_packet_delayed(struct tcp_sock *tp)
2061{
2062 return !tp->retrans_stamp ||
2063 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2064 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2065}
2066
2067/* Undo procedures. */
2068
2069#if FASTRETRANS_DEBUG > 1
9e412ba7 2070static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2071{
9e412ba7 2072 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2073 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2074
1da177e4
LT
2075 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2076 msg,
2077 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2078 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2079 tp->snd_ssthresh, tp->prior_ssthresh,
2080 tp->packets_out);
2081}
2082#else
2083#define DBGUNDO(x...) do { } while (0)
2084#endif
2085
6687e988 2086static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2087{
6687e988
ACM
2088 struct tcp_sock *tp = tcp_sk(sk);
2089
1da177e4 2090 if (tp->prior_ssthresh) {
6687e988
ACM
2091 const struct inet_connection_sock *icsk = inet_csk(sk);
2092
2093 if (icsk->icsk_ca_ops->undo_cwnd)
2094 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2095 else
2096 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2097
2098 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2099 tp->snd_ssthresh = tp->prior_ssthresh;
2100 TCP_ECN_withdraw_cwr(tp);
2101 }
2102 } else {
2103 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2104 }
2105 tcp_moderate_cwnd(tp);
2106 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2107
2108 /* There is something screwy going on with the retrans hints after
2109 an undo */
5af4ec23 2110 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2111}
2112
2113static inline int tcp_may_undo(struct tcp_sock *tp)
2114{
2115 return tp->undo_marker &&
2116 (!tp->undo_retrans || tcp_packet_delayed(tp));
2117}
2118
2119/* People celebrate: "We love our President!" */
9e412ba7 2120static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2121{
9e412ba7
IJ
2122 struct tcp_sock *tp = tcp_sk(sk);
2123
1da177e4
LT
2124 if (tcp_may_undo(tp)) {
2125 /* Happy end! We did not retransmit anything
2126 * or our original transmission succeeded.
2127 */
9e412ba7 2128 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2129 tcp_undo_cwr(sk, 1);
2130 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2131 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2132 else
2133 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2134 tp->undo_marker = 0;
2135 }
e60402d0 2136 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2137 /* Hold old state until something *above* high_seq
2138 * is ACKed. For Reno it is MUST to prevent false
2139 * fast retransmits (RFC2582). SACK TCP is safe. */
2140 tcp_moderate_cwnd(tp);
2141 return 1;
2142 }
6687e988 2143 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2144 return 0;
2145}
2146
2147/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2148static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2149{
9e412ba7
IJ
2150 struct tcp_sock *tp = tcp_sk(sk);
2151
1da177e4 2152 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2153 DBGUNDO(sk, "D-SACK");
6687e988 2154 tcp_undo_cwr(sk, 1);
1da177e4
LT
2155 tp->undo_marker = 0;
2156 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2157 }
2158}
2159
2160/* Undo during fast recovery after partial ACK. */
2161
9e412ba7 2162static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2163{
9e412ba7 2164 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2165 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2166 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2167
2168 if (tcp_may_undo(tp)) {
2169 /* Plain luck! Hole if filled with delayed
2170 * packet, rather than with a retransmit.
2171 */
2172 if (tp->retrans_out == 0)
2173 tp->retrans_stamp = 0;
2174
6687e988 2175 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2176
9e412ba7 2177 DBGUNDO(sk, "Hoe");
6687e988 2178 tcp_undo_cwr(sk, 0);
1da177e4
LT
2179 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2180
2181 /* So... Do not make Hoe's retransmit yet.
2182 * If the first packet was delayed, the rest
2183 * ones are most probably delayed as well.
2184 */
2185 failed = 0;
2186 }
2187 return failed;
2188}
2189
2190/* Undo during loss recovery after partial ACK. */
9e412ba7 2191static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2192{
9e412ba7
IJ
2193 struct tcp_sock *tp = tcp_sk(sk);
2194
1da177e4
LT
2195 if (tcp_may_undo(tp)) {
2196 struct sk_buff *skb;
fe067e8a
DM
2197 tcp_for_write_queue(skb, sk) {
2198 if (skb == tcp_send_head(sk))
2199 break;
1da177e4
LT
2200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2201 }
6a438bbe 2202
5af4ec23 2203 tcp_clear_all_retrans_hints(tp);
6a438bbe 2204
9e412ba7 2205 DBGUNDO(sk, "partial loss");
1da177e4 2206 tp->lost_out = 0;
6687e988 2207 tcp_undo_cwr(sk, 1);
1da177e4 2208 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2209 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2210 tp->undo_marker = 0;
e60402d0 2211 if (tcp_is_sack(tp))
6687e988 2212 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2213 return 1;
2214 }
2215 return 0;
2216}
2217
6687e988 2218static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2219{
6687e988 2220 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2221 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2222 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2223 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2224}
2225
9e412ba7 2226static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2227{
9e412ba7
IJ
2228 struct tcp_sock *tp = tcp_sk(sk);
2229
86426c22
IJ
2230 tcp_verify_left_out(tp);
2231
1da177e4
LT
2232 if (tp->retrans_out == 0)
2233 tp->retrans_stamp = 0;
2234
2235 if (flag&FLAG_ECE)
3cfe3baa 2236 tcp_enter_cwr(sk, 1);
1da177e4 2237
6687e988 2238 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2239 int state = TCP_CA_Open;
2240
d02596e3 2241 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2242 state = TCP_CA_Disorder;
2243
6687e988
ACM
2244 if (inet_csk(sk)->icsk_ca_state != state) {
2245 tcp_set_ca_state(sk, state);
1da177e4
LT
2246 tp->high_seq = tp->snd_nxt;
2247 }
2248 tcp_moderate_cwnd(tp);
2249 } else {
1e757f99 2250 tcp_cwnd_down(sk, flag);
1da177e4
LT
2251 }
2252}
2253
5d424d5a
JH
2254static void tcp_mtup_probe_failed(struct sock *sk)
2255{
2256 struct inet_connection_sock *icsk = inet_csk(sk);
2257
2258 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2259 icsk->icsk_mtup.probe_size = 0;
2260}
2261
2262static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2263{
2264 struct tcp_sock *tp = tcp_sk(sk);
2265 struct inet_connection_sock *icsk = inet_csk(sk);
2266
2267 /* FIXME: breaks with very large cwnd */
2268 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2269 tp->snd_cwnd = tp->snd_cwnd *
2270 tcp_mss_to_mtu(sk, tp->mss_cache) /
2271 icsk->icsk_mtup.probe_size;
2272 tp->snd_cwnd_cnt = 0;
2273 tp->snd_cwnd_stamp = tcp_time_stamp;
2274 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2275
2276 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2277 icsk->icsk_mtup.probe_size = 0;
2278 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2279}
2280
2281
1da177e4
LT
2282/* Process an event, which can update packets-in-flight not trivially.
2283 * Main goal of this function is to calculate new estimate for left_out,
2284 * taking into account both packets sitting in receiver's buffer and
2285 * packets lost by network.
2286 *
2287 * Besides that it does CWND reduction, when packet loss is detected
2288 * and changes state of machine.
2289 *
2290 * It does _not_ decide what to send, it is made in function
2291 * tcp_xmit_retransmit_queue().
2292 */
2293static void
1b6d427b 2294tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2295{
6687e988 2296 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2297 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2298 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2299 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2300 (tp->fackets_out > tp->reordering));
1da177e4
LT
2301
2302 /* Some technical things:
2303 * 1. Reno does not count dupacks (sacked_out) automatically. */
2304 if (!tp->packets_out)
2305 tp->sacked_out = 0;
91fed7a1
IJ
2306
2307 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2308 tp->fackets_out = 0;
2309
e905a9ed 2310 /* Now state machine starts.
1da177e4
LT
2311 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2312 if (flag&FLAG_ECE)
2313 tp->prior_ssthresh = 0;
2314
2315 /* B. In all the states check for reneging SACKs. */
463c84b9 2316 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2317 return;
2318
2319 /* C. Process data loss notification, provided it is valid. */
2320 if ((flag&FLAG_DATA_LOST) &&
2321 before(tp->snd_una, tp->high_seq) &&
6687e988 2322 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2323 tp->fackets_out > tp->reordering) {
9e412ba7 2324 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2325 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2326 }
2327
005903bc
IJ
2328 /* D. Check consistency of the current state. */
2329 tcp_verify_left_out(tp);
1da177e4
LT
2330
2331 /* E. Check state exit conditions. State can be terminated
2332 * when high_seq is ACKed. */
6687e988 2333 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2334 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2335 tp->retrans_stamp = 0;
2336 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2337 switch (icsk->icsk_ca_state) {
1da177e4 2338 case TCP_CA_Loss:
6687e988 2339 icsk->icsk_retransmits = 0;
9e412ba7 2340 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2341 return;
2342 break;
2343
2344 case TCP_CA_CWR:
2345 /* CWR is to be held something *above* high_seq
2346 * is ACKed for CWR bit to reach receiver. */
2347 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2348 tcp_complete_cwr(sk);
2349 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2350 }
2351 break;
2352
2353 case TCP_CA_Disorder:
9e412ba7 2354 tcp_try_undo_dsack(sk);
1da177e4
LT
2355 if (!tp->undo_marker ||
2356 /* For SACK case do not Open to allow to undo
2357 * catching for all duplicate ACKs. */
e60402d0 2358 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2359 tp->undo_marker = 0;
6687e988 2360 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2361 }
2362 break;
2363
2364 case TCP_CA_Recovery:
e60402d0 2365 if (tcp_is_reno(tp))
1da177e4 2366 tcp_reset_reno_sack(tp);
9e412ba7 2367 if (tcp_try_undo_recovery(sk))
1da177e4 2368 return;
6687e988 2369 tcp_complete_cwr(sk);
1da177e4
LT
2370 break;
2371 }
2372 }
2373
2374 /* F. Process state. */
6687e988 2375 switch (icsk->icsk_ca_state) {
1da177e4 2376 case TCP_CA_Recovery:
2e605294 2377 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2378 if (tcp_is_reno(tp) && is_dupack)
6687e988 2379 tcp_add_reno_sack(sk);
1b6d427b
IJ
2380 } else
2381 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2382 break;
2383 case TCP_CA_Loss:
2384 if (flag&FLAG_DATA_ACKED)
6687e988 2385 icsk->icsk_retransmits = 0;
9e412ba7 2386 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2387 tcp_moderate_cwnd(tp);
2388 tcp_xmit_retransmit_queue(sk);
2389 return;
2390 }
6687e988 2391 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2392 return;
2393 /* Loss is undone; fall through to processing in Open state. */
2394 default:
e60402d0 2395 if (tcp_is_reno(tp)) {
2e605294 2396 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2397 tcp_reset_reno_sack(tp);
2398 if (is_dupack)
6687e988 2399 tcp_add_reno_sack(sk);
1da177e4
LT
2400 }
2401
6687e988 2402 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2403 tcp_try_undo_dsack(sk);
1da177e4 2404
9e412ba7
IJ
2405 if (!tcp_time_to_recover(sk)) {
2406 tcp_try_to_open(sk, flag);
1da177e4
LT
2407 return;
2408 }
2409
5d424d5a
JH
2410 /* MTU probe failure: don't reduce cwnd */
2411 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2412 icsk->icsk_mtup.probe_size &&
0e7b1368 2413 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2414 tcp_mtup_probe_failed(sk);
2415 /* Restores the reduction we did in tcp_mtup_probe() */
2416 tp->snd_cwnd++;
2417 tcp_simple_retransmit(sk);
2418 return;
2419 }
2420
1da177e4
LT
2421 /* Otherwise enter Recovery state */
2422
e60402d0 2423 if (tcp_is_reno(tp))
1da177e4
LT
2424 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2425 else
2426 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2427
2428 tp->high_seq = tp->snd_nxt;
2429 tp->prior_ssthresh = 0;
2430 tp->undo_marker = tp->snd_una;
2431 tp->undo_retrans = tp->retrans_out;
2432
6687e988 2433 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2434 if (!(flag&FLAG_ECE))
6687e988
ACM
2435 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2436 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2437 TCP_ECN_queue_cwr(tp);
2438 }
2439
9772efb9 2440 tp->bytes_acked = 0;
1da177e4 2441 tp->snd_cwnd_cnt = 0;
6687e988 2442 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2443 }
2444
2e605294 2445 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2446 tcp_update_scoreboard(sk);
1e757f99 2447 tcp_cwnd_down(sk, flag);
1da177e4
LT
2448 tcp_xmit_retransmit_queue(sk);
2449}
2450
2451/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2452 * with this code. (Supersedes RFC1323)
1da177e4 2453 */
2d2abbab 2454static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2455{
1da177e4
LT
2456 /* RTTM Rule: A TSecr value received in a segment is used to
2457 * update the averaged RTT measurement only if the segment
2458 * acknowledges some new data, i.e., only if it advances the
2459 * left edge of the send window.
2460 *
2461 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2462 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2463 *
2464 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2465 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2466 * samples are accepted even from very old segments: f.e., when rtt=1
2467 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2468 * answer arrives rto becomes 120 seconds! If at least one of segments
2469 * in window is lost... Voila. --ANK (010210)
2470 */
463c84b9
ACM
2471 struct tcp_sock *tp = tcp_sk(sk);
2472 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2473 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2474 tcp_set_rto(sk);
2475 inet_csk(sk)->icsk_backoff = 0;
2476 tcp_bound_rto(sk);
1da177e4
LT
2477}
2478
2d2abbab 2479static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2480{
2481 /* We don't have a timestamp. Can only use
2482 * packets that are not retransmitted to determine
2483 * rtt estimates. Also, we must not reset the
2484 * backoff for rto until we get a non-retransmitted
2485 * packet. This allows us to deal with a situation
2486 * where the network delay has increased suddenly.
2487 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2488 */
2489
2490 if (flag & FLAG_RETRANS_DATA_ACKED)
2491 return;
2492
2d2abbab 2493 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2494 tcp_set_rto(sk);
2495 inet_csk(sk)->icsk_backoff = 0;
2496 tcp_bound_rto(sk);
1da177e4
LT
2497}
2498
463c84b9 2499static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2500 const s32 seq_rtt)
1da177e4 2501{
463c84b9 2502 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2503 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2504 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2505 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2506 else if (seq_rtt >= 0)
2d2abbab 2507 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2508}
2509
16751347 2510static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2511 u32 in_flight, int good)
1da177e4 2512{
6687e988 2513 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2514 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2515 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2516}
2517
1da177e4
LT
2518/* Restart timer after forward progress on connection.
2519 * RFC2988 recommends to restart timer to now+rto.
2520 */
6728e7dc 2521static void tcp_rearm_rto(struct sock *sk)
1da177e4 2522{
9e412ba7
IJ
2523 struct tcp_sock *tp = tcp_sk(sk);
2524
1da177e4 2525 if (!tp->packets_out) {
463c84b9 2526 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2527 } else {
3f421baa 2528 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2529 }
2530}
2531
7c46a03e 2532/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2533static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2534{
2535 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2536 u32 packets_acked;
1da177e4 2537
7c46a03e 2538 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2539
2540 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2541 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2542 return 0;
2543 packets_acked -= tcp_skb_pcount(skb);
2544
2545 if (packets_acked) {
1da177e4 2546 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2547 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2548 }
2549
13fcf850 2550 return packets_acked;
1da177e4
LT
2551}
2552
7c46a03e
IJ
2553/* Remove acknowledged frames from the retransmission queue. If our packet
2554 * is before the ack sequence we can discard it as it's confirmed to have
2555 * arrived at the other end.
2556 */
2557static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2558{
2559 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2560 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2561 struct sk_buff *skb;
7c46a03e 2562 u32 now = tcp_time_stamp;
13fcf850 2563 int fully_acked = 1;
7c46a03e 2564 int flag = 0;
6418204f 2565 int prior_packets = tp->packets_out;
7c46a03e 2566 s32 seq_rtt = -1;
b9ce204f 2567 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2568
7c46a03e 2569 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2570 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2571 u32 end_seq;
2572 u32 packets_acked;
7c46a03e 2573 u8 sacked = scb->sacked;
1da177e4 2574
1da177e4 2575 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2576 if (tcp_skb_pcount(skb) == 1 ||
2577 !after(tp->snd_una, scb->seq))
2578 break;
2579
2580 packets_acked = tcp_tso_acked(sk, skb);
2581 if (!packets_acked)
2582 break;
2583
2584 fully_acked = 0;
2585 end_seq = tp->snd_una;
2586 } else {
2587 packets_acked = tcp_skb_pcount(skb);
2588 end_seq = scb->end_seq;
1da177e4
LT
2589 }
2590
5d424d5a 2591 /* MTU probing checks */
7c46a03e
IJ
2592 if (fully_acked && icsk->icsk_mtup.probe_size &&
2593 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2594 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2595 }
2596
1da177e4
LT
2597 if (sacked) {
2598 if (sacked & TCPCB_RETRANS) {
2de979bd 2599 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2600 tp->retrans_out -= packets_acked;
7c46a03e 2601 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2602 seq_rtt = -1;
009a2e3e
IJ
2603 if ((flag & FLAG_DATA_ACKED) ||
2604 (packets_acked > 1))
2605 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2606 } else if (seq_rtt < 0) {
1da177e4 2607 seq_rtt = now - scb->when;
13fcf850
IJ
2608 if (fully_acked)
2609 last_ackt = skb->tstamp;
a61bbcf2 2610 }
7c46a03e 2611
1da177e4 2612 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2613 tp->sacked_out -= packets_acked;
1da177e4 2614 if (sacked & TCPCB_LOST)
13fcf850 2615 tp->lost_out -= packets_acked;
7c46a03e
IJ
2616
2617 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2618 !before(end_seq, tp->snd_up))
2619 tp->urg_mode = 0;
2d2abbab 2620 } else if (seq_rtt < 0) {
1da177e4 2621 seq_rtt = now - scb->when;
13fcf850
IJ
2622 if (fully_acked)
2623 last_ackt = skb->tstamp;
2d2abbab 2624 }
13fcf850
IJ
2625 tp->packets_out -= packets_acked;
2626
009a2e3e
IJ
2627 /* Initial outgoing SYN's get put onto the write_queue
2628 * just like anything else we transmit. It is not
2629 * true data, and if we misinform our callers that
2630 * this ACK acks real data, we will erroneously exit
2631 * connection startup slow start one packet too
2632 * quickly. This is severely frowned upon behavior.
2633 */
2634 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2635 flag |= FLAG_DATA_ACKED;
2636 } else {
2637 flag |= FLAG_SYN_ACKED;
2638 tp->retrans_stamp = 0;
2639 }
2640
13fcf850
IJ
2641 if (!fully_acked)
2642 break;
2643
fe067e8a 2644 tcp_unlink_write_queue(skb, sk);
1da177e4 2645 sk_stream_free_skb(sk, skb);
5af4ec23 2646 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2647 }
2648
7c46a03e 2649 if (flag & FLAG_ACKED) {
6418204f 2650 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2651 const struct tcp_congestion_ops *ca_ops
2652 = inet_csk(sk)->icsk_ca_ops;
2653
7c46a03e 2654 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2655 tcp_rearm_rto(sk);
317a76f9 2656
91fed7a1 2657 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2658 /* hint's skb might be NULL but we don't need to care */
2659 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2660 tp->fastpath_cnt_hint);
e60402d0 2661 if (tcp_is_reno(tp))
1b6d427b
IJ
2662 tcp_remove_reno_sacks(sk, pkts_acked);
2663
30cfd0ba
SH
2664 if (ca_ops->pkts_acked) {
2665 s32 rtt_us = -1;
2666
2667 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2668 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2669 /* High resolution needed and available? */
2670 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2671 !ktime_equal(last_ackt,
2672 net_invalid_timestamp()))
2673 rtt_us = ktime_us_delta(ktime_get_real(),
2674 last_ackt);
2675 else if (seq_rtt > 0)
2676 rtt_us = jiffies_to_usecs(seq_rtt);
2677 }
b9ce204f 2678
30cfd0ba
SH
2679 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2680 }
1da177e4
LT
2681 }
2682
2683#if FASTRETRANS_DEBUG > 0
2684 BUG_TRAP((int)tp->sacked_out >= 0);
2685 BUG_TRAP((int)tp->lost_out >= 0);
2686 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2687 if (!tp->packets_out && tcp_is_sack(tp)) {
6687e988 2688 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2689 if (tp->lost_out) {
2690 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2691 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2692 tp->lost_out = 0;
2693 }
2694 if (tp->sacked_out) {
2695 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2696 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2697 tp->sacked_out = 0;
2698 }
2699 if (tp->retrans_out) {
2700 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2701 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2702 tp->retrans_out = 0;
2703 }
2704 }
2705#endif
2706 *seq_rtt_p = seq_rtt;
7c46a03e 2707 return flag;
1da177e4
LT
2708}
2709
2710static void tcp_ack_probe(struct sock *sk)
2711{
463c84b9
ACM
2712 const struct tcp_sock *tp = tcp_sk(sk);
2713 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2714
2715 /* Was it a usable window open? */
2716
fe067e8a 2717 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2718 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2719 icsk->icsk_backoff = 0;
2720 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2721 /* Socket must be waked up by subsequent tcp_data_snd_check().
2722 * This function is not for random using!
2723 */
2724 } else {
463c84b9 2725 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2726 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2727 TCP_RTO_MAX);
1da177e4
LT
2728 }
2729}
2730
6687e988 2731static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2732{
2733 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2734 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2735}
2736
6687e988 2737static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2738{
6687e988 2739 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2740 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2741 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2742}
2743
2744/* Check that window update is acceptable.
2745 * The function assumes that snd_una<=ack<=snd_next.
2746 */
463c84b9
ACM
2747static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2748 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2749{
2750 return (after(ack, tp->snd_una) ||
2751 after(ack_seq, tp->snd_wl1) ||
2752 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2753}
2754
2755/* Update our send window.
2756 *
2757 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2758 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2759 */
9e412ba7
IJ
2760static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2761 u32 ack_seq)
1da177e4 2762{
9e412ba7 2763 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2764 int flag = 0;
aa8223c7 2765 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2766
aa8223c7 2767 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2768 nwin <<= tp->rx_opt.snd_wscale;
2769
2770 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2771 flag |= FLAG_WIN_UPDATE;
2772 tcp_update_wl(tp, ack, ack_seq);
2773
2774 if (tp->snd_wnd != nwin) {
2775 tp->snd_wnd = nwin;
2776
2777 /* Note, it is the only place, where
2778 * fast path is recovered for sending TCP.
2779 */
2ad41065 2780 tp->pred_flags = 0;
9e412ba7 2781 tcp_fast_path_check(sk);
1da177e4
LT
2782
2783 if (nwin > tp->max_window) {
2784 tp->max_window = nwin;
d83d8461 2785 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2786 }
2787 }
2788 }
2789
2790 tp->snd_una = ack;
2791
2792 return flag;
2793}
2794
9ead9a1d
IJ
2795/* A very conservative spurious RTO response algorithm: reduce cwnd and
2796 * continue in congestion avoidance.
2797 */
2798static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2799{
2800 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2801 tp->snd_cwnd_cnt = 0;
46323655 2802 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2803 tcp_moderate_cwnd(tp);
2804}
2805
3cfe3baa
IJ
2806/* A conservative spurious RTO response algorithm: reduce cwnd using
2807 * rate halving and continue in congestion avoidance.
2808 */
2809static void tcp_ratehalving_spur_to_response(struct sock *sk)
2810{
3cfe3baa 2811 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2812}
2813
e317f6f6 2814static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2815{
e317f6f6
IJ
2816 if (flag&FLAG_ECE)
2817 tcp_ratehalving_spur_to_response(sk);
2818 else
2819 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2820}
2821
30935cf4
IJ
2822/* F-RTO spurious RTO detection algorithm (RFC4138)
2823 *
6408d206
IJ
2824 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2825 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2826 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2827 * On First ACK, send two new segments out.
2828 * On Second ACK, RTO was likely spurious. Do spurious response (response
2829 * algorithm is not part of the F-RTO detection algorithm
2830 * given in RFC4138 but can be selected separately).
2831 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2832 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2833 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2834 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2835 *
2836 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2837 * original window even after we transmit two new data segments.
2838 *
4dc2665e
IJ
2839 * SACK version:
2840 * on first step, wait until first cumulative ACK arrives, then move to
2841 * the second step. In second step, the next ACK decides.
2842 *
30935cf4
IJ
2843 * F-RTO is implemented (mainly) in four functions:
2844 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2845 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2846 * called when tcp_use_frto() showed green light
2847 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2848 * - tcp_enter_frto_loss() is called if there is not enough evidence
2849 * to prove that the RTO is indeed spurious. It transfers the control
2850 * from F-RTO to the conventional RTO recovery
2851 */
2e605294 2852static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2853{
2854 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2855
005903bc 2856 tcp_verify_left_out(tp);
e905a9ed 2857
7487c48c
IJ
2858 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2859 if (flag&FLAG_DATA_ACKED)
2860 inet_csk(sk)->icsk_retransmits = 0;
2861
009a2e3e
IJ
2862 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2863 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2864 tp->undo_marker = 0;
2865
95c4922b 2866 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2867 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2868 return 1;
95c4922b
IJ
2869 }
2870
e60402d0 2871 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2872 /* RFC4138 shortcoming in step 2; should also have case c):
2873 * ACK isn't duplicate nor advances window, e.g., opposite dir
2874 * data, winupdate
2875 */
2e605294 2876 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2877 return 1;
2878
2879 if (!(flag&FLAG_DATA_ACKED)) {
2880 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2881 flag);
2882 return 1;
2883 }
2884 } else {
2885 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2886 /* Prevent sending of new data. */
2887 tp->snd_cwnd = min(tp->snd_cwnd,
2888 tcp_packets_in_flight(tp));
2889 return 1;
2890 }
6408d206 2891
d551e454 2892 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2893 (!(flag&FLAG_FORWARD_PROGRESS) ||
2894 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2895 /* RFC4138 shortcoming (see comment above) */
2896 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2897 return 1;
2898
2899 tcp_enter_frto_loss(sk, 3, flag);
2900 return 1;
2901 }
1da177e4
LT
2902 }
2903
2904 if (tp->frto_counter == 1) {
575ee714
IJ
2905 /* Sending of the next skb must be allowed or no FRTO */
2906 if (!tcp_send_head(sk) ||
2907 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2908 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2909 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2910 flag);
575ee714
IJ
2911 return 1;
2912 }
2913
1da177e4 2914 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2915 tp->frto_counter = 2;
7c9a4a5b 2916 return 1;
d551e454 2917 } else {
3cfe3baa
IJ
2918 switch (sysctl_tcp_frto_response) {
2919 case 2:
e317f6f6 2920 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2921 break;
2922 case 1:
2923 tcp_conservative_spur_to_response(tp);
2924 break;
2925 default:
2926 tcp_ratehalving_spur_to_response(sk);
2927 break;
3ff50b79 2928 }
94d0ea77 2929 tp->frto_counter = 0;
009a2e3e 2930 tp->undo_marker = 0;
1da177e4 2931 }
7c9a4a5b 2932 return 0;
1da177e4
LT
2933}
2934
1da177e4
LT
2935/* This routine deals with incoming acks, but not outgoing ones. */
2936static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2937{
6687e988 2938 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2939 struct tcp_sock *tp = tcp_sk(sk);
2940 u32 prior_snd_una = tp->snd_una;
2941 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2942 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2943 u32 prior_in_flight;
2944 s32 seq_rtt;
2945 int prior_packets;
7c9a4a5b 2946 int frto_cwnd = 0;
1da177e4
LT
2947
2948 /* If the ack is newer than sent or older than previous acks
2949 * then we can probably ignore it.
2950 */
2951 if (after(ack, tp->snd_nxt))
2952 goto uninteresting_ack;
2953
2954 if (before(ack, prior_snd_una))
2955 goto old_ack;
2956
2e605294
IJ
2957 if (after(ack, prior_snd_una))
2958 flag |= FLAG_SND_UNA_ADVANCED;
2959
3fdf3f0c
DO
2960 if (sysctl_tcp_abc) {
2961 if (icsk->icsk_ca_state < TCP_CA_CWR)
2962 tp->bytes_acked += ack - prior_snd_una;
2963 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2964 /* we assume just one segment left network */
2965 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2966 }
9772efb9 2967
1da177e4
LT
2968 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2969 /* Window is constant, pure forward advance.
2970 * No more checks are required.
2971 * Note, we use the fact that SND.UNA>=SND.WL2.
2972 */
2973 tcp_update_wl(tp, ack, ack_seq);
2974 tp->snd_una = ack;
1da177e4
LT
2975 flag |= FLAG_WIN_UPDATE;
2976
6687e988 2977 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2978
1da177e4
LT
2979 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2980 } else {
2981 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2982 flag |= FLAG_DATA;
2983 else
2984 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2985
9e412ba7 2986 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2987
2988 if (TCP_SKB_CB(skb)->sacked)
2989 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2990
aa8223c7 2991 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
2992 flag |= FLAG_ECE;
2993
6687e988 2994 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2995 }
2996
2997 /* We passed data and got it acked, remove any soft error
2998 * log. Something worked...
2999 */
3000 sk->sk_err_soft = 0;
3001 tp->rcv_tstamp = tcp_time_stamp;
3002 prior_packets = tp->packets_out;
3003 if (!prior_packets)
3004 goto no_queue;
3005
3006 prior_in_flight = tcp_packets_in_flight(tp);
3007
3008 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3009 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
3010
3011 if (tp->frto_counter)
2e605294 3012 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3013
6687e988 3014 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3015 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3016 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3017 tcp_may_raise_cwnd(sk, flag))
16751347 3018 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3019 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3020 } else {
7c9a4a5b 3021 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3022 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3023 }
3024
3025 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3026 dst_confirm(sk->sk_dst_cache);
3027
3028 return 1;
3029
3030no_queue:
6687e988 3031 icsk->icsk_probes_out = 0;
1da177e4
LT
3032
3033 /* If this ack opens up a zero window, clear backoff. It was
3034 * being used to time the probes, and is probably far higher than
3035 * it needs to be for normal retransmission.
3036 */
fe067e8a 3037 if (tcp_send_head(sk))
1da177e4
LT
3038 tcp_ack_probe(sk);
3039 return 1;
3040
3041old_ack:
3042 if (TCP_SKB_CB(skb)->sacked)
3043 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3044
3045uninteresting_ack:
3046 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3047 return 0;
3048}
3049
3050
3051/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3052 * But, this can also be called on packets in the established flow when
3053 * the fast version below fails.
3054 */
3055void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3056{
3057 unsigned char *ptr;
aa8223c7 3058 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3059 int length=(th->doff*4)-sizeof(struct tcphdr);
3060
3061 ptr = (unsigned char *)(th + 1);
3062 opt_rx->saw_tstamp = 0;
3063
2de979bd 3064 while (length > 0) {
e905a9ed 3065 int opcode=*ptr++;
1da177e4
LT
3066 int opsize;
3067
3068 switch (opcode) {
3069 case TCPOPT_EOL:
3070 return;
3071 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3072 length--;
3073 continue;
3074 default:
3075 opsize=*ptr++;
3076 if (opsize < 2) /* "silly options" */
3077 return;
3078 if (opsize > length)
3079 return; /* don't parse partial options */
2de979bd 3080 switch (opcode) {
1da177e4 3081 case TCPOPT_MSS:
2de979bd 3082 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3083 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3084 if (in_mss) {
3085 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3086 in_mss = opt_rx->user_mss;
3087 opt_rx->mss_clamp = in_mss;
3088 }
3089 }
3090 break;
3091 case TCPOPT_WINDOW:
2de979bd 3092 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3093 if (sysctl_tcp_window_scaling) {
3094 __u8 snd_wscale = *(__u8 *) ptr;
3095 opt_rx->wscale_ok = 1;
3096 if (snd_wscale > 14) {
2de979bd 3097 if (net_ratelimit())
1da177e4
LT
3098 printk(KERN_INFO "tcp_parse_options: Illegal window "
3099 "scaling value %d >14 received.\n",
3100 snd_wscale);
3101 snd_wscale = 14;
3102 }
3103 opt_rx->snd_wscale = snd_wscale;
3104 }
3105 break;
3106 case TCPOPT_TIMESTAMP:
2de979bd 3107 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3108 if ((estab && opt_rx->tstamp_ok) ||
3109 (!estab && sysctl_tcp_timestamps)) {
3110 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3111 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3112 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3113 }
3114 }
3115 break;
3116 case TCPOPT_SACK_PERM:
2de979bd 3117 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3118 if (sysctl_tcp_sack) {
3119 opt_rx->sack_ok = 1;
3120 tcp_sack_reset(opt_rx);
3121 }
3122 }
3123 break;
3124
3125 case TCPOPT_SACK:
2de979bd 3126 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3127 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3128 opt_rx->sack_ok) {
3129 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3130 }
d7ea5b91 3131 break;
cfb6eeb4
YH
3132#ifdef CONFIG_TCP_MD5SIG
3133 case TCPOPT_MD5SIG:
3134 /*
3135 * The MD5 Hash has already been
3136 * checked (see tcp_v{4,6}_do_rcv()).
3137 */
3138 break;
3139#endif
3ff50b79
SH
3140 }
3141
e905a9ed
YH
3142 ptr+=opsize-2;
3143 length-=opsize;
3ff50b79 3144 }
1da177e4
LT
3145 }
3146}
3147
3148/* Fast parse options. This hopes to only see timestamps.
3149 * If it is wrong it falls back on tcp_parse_options().
3150 */
40efc6fa
SH
3151static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3152 struct tcp_sock *tp)
1da177e4
LT
3153{
3154 if (th->doff == sizeof(struct tcphdr)>>2) {
3155 tp->rx_opt.saw_tstamp = 0;
3156 return 0;
3157 } else if (tp->rx_opt.tstamp_ok &&
3158 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3159 __be32 *ptr = (__be32 *)(th + 1);
3160 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3161 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3162 tp->rx_opt.saw_tstamp = 1;
3163 ++ptr;
3164 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3165 ++ptr;
3166 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3167 return 1;
3168 }
3169 }
3170 tcp_parse_options(skb, &tp->rx_opt, 1);
3171 return 1;
3172}
3173
3174static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3175{
3176 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3177 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3178}
3179
3180static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3181{
3182 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3183 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3184 * extra check below makes sure this can only happen
3185 * for pure ACK frames. -DaveM
3186 *
3187 * Not only, also it occurs for expired timestamps.
3188 */
3189
2de979bd 3190 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3191 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3192 tcp_store_ts_recent(tp);
3193 }
3194}
3195
3196/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3197 *
3198 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3199 * it can pass through stack. So, the following predicate verifies that
3200 * this segment is not used for anything but congestion avoidance or
3201 * fast retransmit. Moreover, we even are able to eliminate most of such
3202 * second order effects, if we apply some small "replay" window (~RTO)
3203 * to timestamp space.
3204 *
3205 * All these measures still do not guarantee that we reject wrapped ACKs
3206 * on networks with high bandwidth, when sequence space is recycled fastly,
3207 * but it guarantees that such events will be very rare and do not affect
3208 * connection seriously. This doesn't look nice, but alas, PAWS is really
3209 * buggy extension.
3210 *
3211 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3212 * states that events when retransmit arrives after original data are rare.
3213 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3214 * the biggest problem on large power networks even with minor reordering.
3215 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3216 * up to bandwidth of 18Gigabit/sec. 8) ]
3217 */
3218
463c84b9 3219static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3220{
463c84b9 3221 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3222 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3223 u32 seq = TCP_SKB_CB(skb)->seq;
3224 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3225
3226 return (/* 1. Pure ACK with correct sequence number. */
3227 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3228
3229 /* 2. ... and duplicate ACK. */
3230 ack == tp->snd_una &&
3231
3232 /* 3. ... and does not update window. */
3233 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3234
3235 /* 4. ... and sits in replay window. */
463c84b9 3236 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3237}
3238
463c84b9 3239static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3240{
463c84b9 3241 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3242 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3243 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3244 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3245}
3246
3247/* Check segment sequence number for validity.
3248 *
3249 * Segment controls are considered valid, if the segment
3250 * fits to the window after truncation to the window. Acceptability
3251 * of data (and SYN, FIN, of course) is checked separately.
3252 * See tcp_data_queue(), for example.
3253 *
3254 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3255 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3256 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3257 * (borrowed from freebsd)
3258 */
3259
3260static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3261{
3262 return !before(end_seq, tp->rcv_wup) &&
3263 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3264}
3265
3266/* When we get a reset we do this. */
3267static void tcp_reset(struct sock *sk)
3268{
3269 /* We want the right error as BSD sees it (and indeed as we do). */
3270 switch (sk->sk_state) {
3271 case TCP_SYN_SENT:
3272 sk->sk_err = ECONNREFUSED;
3273 break;
3274 case TCP_CLOSE_WAIT:
3275 sk->sk_err = EPIPE;
3276 break;
3277 case TCP_CLOSE:
3278 return;
3279 default:
3280 sk->sk_err = ECONNRESET;
3281 }
3282
3283 if (!sock_flag(sk, SOCK_DEAD))
3284 sk->sk_error_report(sk);
3285
3286 tcp_done(sk);
3287}
3288
3289/*
3290 * Process the FIN bit. This now behaves as it is supposed to work
3291 * and the FIN takes effect when it is validly part of sequence
3292 * space. Not before when we get holes.
3293 *
3294 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3295 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3296 * TIME-WAIT)
3297 *
3298 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3299 * close and we go into CLOSING (and later onto TIME-WAIT)
3300 *
3301 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3302 */
3303static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3304{
3305 struct tcp_sock *tp = tcp_sk(sk);
3306
463c84b9 3307 inet_csk_schedule_ack(sk);
1da177e4
LT
3308
3309 sk->sk_shutdown |= RCV_SHUTDOWN;
3310 sock_set_flag(sk, SOCK_DONE);
3311
3312 switch (sk->sk_state) {
3313 case TCP_SYN_RECV:
3314 case TCP_ESTABLISHED:
3315 /* Move to CLOSE_WAIT */
3316 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3317 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3318 break;
3319
3320 case TCP_CLOSE_WAIT:
3321 case TCP_CLOSING:
3322 /* Received a retransmission of the FIN, do
3323 * nothing.
3324 */
3325 break;
3326 case TCP_LAST_ACK:
3327 /* RFC793: Remain in the LAST-ACK state. */
3328 break;
3329
3330 case TCP_FIN_WAIT1:
3331 /* This case occurs when a simultaneous close
3332 * happens, we must ack the received FIN and
3333 * enter the CLOSING state.
3334 */
3335 tcp_send_ack(sk);
3336 tcp_set_state(sk, TCP_CLOSING);
3337 break;
3338 case TCP_FIN_WAIT2:
3339 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3340 tcp_send_ack(sk);
3341 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3342 break;
3343 default:
3344 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3345 * cases we should never reach this piece of code.
3346 */
3347 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3348 __FUNCTION__, sk->sk_state);
3349 break;
3ff50b79 3350 }
1da177e4
LT
3351
3352 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3353 * Probably, we should reset in this case. For now drop them.
3354 */
3355 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3356 if (tcp_is_sack(tp))
1da177e4
LT
3357 tcp_sack_reset(&tp->rx_opt);
3358 sk_stream_mem_reclaim(sk);
3359
3360 if (!sock_flag(sk, SOCK_DEAD)) {
3361 sk->sk_state_change(sk);
3362
3363 /* Do not send POLL_HUP for half duplex close. */
3364 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3365 sk->sk_state == TCP_CLOSE)
3366 sk_wake_async(sk, 1, POLL_HUP);
3367 else
3368 sk_wake_async(sk, 1, POLL_IN);
3369 }
3370}
3371
40efc6fa 3372static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3373{
3374 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3375 if (before(seq, sp->start_seq))
3376 sp->start_seq = seq;
3377 if (after(end_seq, sp->end_seq))
3378 sp->end_seq = end_seq;
3379 return 1;
3380 }
3381 return 0;
3382}
3383
40efc6fa 3384static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3385{
e60402d0 3386 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3387 if (before(seq, tp->rcv_nxt))
3388 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3389 else
3390 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3391
3392 tp->rx_opt.dsack = 1;
3393 tp->duplicate_sack[0].start_seq = seq;
3394 tp->duplicate_sack[0].end_seq = end_seq;
3395 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3396 }
3397}
3398
40efc6fa 3399static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3400{
3401 if (!tp->rx_opt.dsack)
3402 tcp_dsack_set(tp, seq, end_seq);
3403 else
3404 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3405}
3406
3407static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3408{
3409 struct tcp_sock *tp = tcp_sk(sk);
3410
3411 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3412 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3413 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3414 tcp_enter_quickack_mode(sk);
1da177e4 3415
e60402d0 3416 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3417 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3418
3419 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3420 end_seq = tp->rcv_nxt;
3421 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3422 }
3423 }
3424
3425 tcp_send_ack(sk);
3426}
3427
3428/* These routines update the SACK block as out-of-order packets arrive or
3429 * in-order packets close up the sequence space.
3430 */
3431static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3432{
3433 int this_sack;
3434 struct tcp_sack_block *sp = &tp->selective_acks[0];
3435 struct tcp_sack_block *swalk = sp+1;
3436
3437 /* See if the recent change to the first SACK eats into
3438 * or hits the sequence space of other SACK blocks, if so coalesce.
3439 */
3440 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3441 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3442 int i;
3443
3444 /* Zap SWALK, by moving every further SACK up by one slot.
3445 * Decrease num_sacks.
3446 */
3447 tp->rx_opt.num_sacks--;
3448 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3449 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3450 sp[i] = sp[i+1];
3451 continue;
3452 }
3453 this_sack++, swalk++;
3454 }
3455}
3456
40efc6fa 3457static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3458{
3459 __u32 tmp;
3460
3461 tmp = sack1->start_seq;
3462 sack1->start_seq = sack2->start_seq;
3463 sack2->start_seq = tmp;
3464
3465 tmp = sack1->end_seq;
3466 sack1->end_seq = sack2->end_seq;
3467 sack2->end_seq = tmp;
3468}
3469
3470static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3471{
3472 struct tcp_sock *tp = tcp_sk(sk);
3473 struct tcp_sack_block *sp = &tp->selective_acks[0];
3474 int cur_sacks = tp->rx_opt.num_sacks;
3475 int this_sack;
3476
3477 if (!cur_sacks)
3478 goto new_sack;
3479
3480 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3481 if (tcp_sack_extend(sp, seq, end_seq)) {
3482 /* Rotate this_sack to the first one. */
3483 for (; this_sack>0; this_sack--, sp--)
3484 tcp_sack_swap(sp, sp-1);
3485 if (cur_sacks > 1)
3486 tcp_sack_maybe_coalesce(tp);
3487 return;
3488 }
3489 }
3490
3491 /* Could not find an adjacent existing SACK, build a new one,
3492 * put it at the front, and shift everyone else down. We
3493 * always know there is at least one SACK present already here.
3494 *
3495 * If the sack array is full, forget about the last one.
3496 */
3497 if (this_sack >= 4) {
3498 this_sack--;
3499 tp->rx_opt.num_sacks--;
3500 sp--;
3501 }
2de979bd 3502 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3503 *sp = *(sp-1);
3504
3505new_sack:
3506 /* Build the new head SACK, and we're done. */
3507 sp->start_seq = seq;
3508 sp->end_seq = end_seq;
3509 tp->rx_opt.num_sacks++;
3510 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3511}
3512
3513/* RCV.NXT advances, some SACKs should be eaten. */
3514
3515static void tcp_sack_remove(struct tcp_sock *tp)
3516{
3517 struct tcp_sack_block *sp = &tp->selective_acks[0];
3518 int num_sacks = tp->rx_opt.num_sacks;
3519 int this_sack;
3520
3521 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3522 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3523 tp->rx_opt.num_sacks = 0;
3524 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3525 return;
3526 }
3527
2de979bd 3528 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3529 /* Check if the start of the sack is covered by RCV.NXT. */
3530 if (!before(tp->rcv_nxt, sp->start_seq)) {
3531 int i;
3532
3533 /* RCV.NXT must cover all the block! */
3534 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3535
3536 /* Zap this SACK, by moving forward any other SACKS. */
3537 for (i=this_sack+1; i < num_sacks; i++)
3538 tp->selective_acks[i-1] = tp->selective_acks[i];
3539 num_sacks--;
3540 continue;
3541 }
3542 this_sack++;
3543 sp++;
3544 }
3545 if (num_sacks != tp->rx_opt.num_sacks) {
3546 tp->rx_opt.num_sacks = num_sacks;
3547 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3548 }
3549}
3550
3551/* This one checks to see if we can put data from the
3552 * out_of_order queue into the receive_queue.
3553 */
3554static void tcp_ofo_queue(struct sock *sk)
3555{
3556 struct tcp_sock *tp = tcp_sk(sk);
3557 __u32 dsack_high = tp->rcv_nxt;
3558 struct sk_buff *skb;
3559
3560 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3561 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3562 break;
3563
3564 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3565 __u32 dsack = dsack_high;
3566 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3567 dsack_high = TCP_SKB_CB(skb)->end_seq;
3568 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3569 }
3570
3571 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3572 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3573 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3574 __kfree_skb(skb);
3575 continue;
3576 }
3577 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3578 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3579 TCP_SKB_CB(skb)->end_seq);
3580
8728b834 3581 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3582 __skb_queue_tail(&sk->sk_receive_queue, skb);
3583 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3584 if (tcp_hdr(skb)->fin)
3585 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3586 }
3587}
3588
3589static int tcp_prune_queue(struct sock *sk);
3590
3591static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3592{
aa8223c7 3593 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3594 struct tcp_sock *tp = tcp_sk(sk);
3595 int eaten = -1;
3596
3597 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3598 goto drop;
3599
1da177e4
LT
3600 __skb_pull(skb, th->doff*4);
3601
3602 TCP_ECN_accept_cwr(tp, skb);
3603
3604 if (tp->rx_opt.dsack) {
3605 tp->rx_opt.dsack = 0;
3606 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3607 4 - tp->rx_opt.tstamp_ok);
3608 }
3609
3610 /* Queue data for delivery to the user.
3611 * Packets in sequence go to the receive queue.
3612 * Out of sequence packets to the out_of_order_queue.
3613 */
3614 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3615 if (tcp_receive_window(tp) == 0)
3616 goto out_of_window;
3617
3618 /* Ok. In sequence. In window. */
3619 if (tp->ucopy.task == current &&
3620 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3621 sock_owned_by_user(sk) && !tp->urg_data) {
3622 int chunk = min_t(unsigned int, skb->len,
3623 tp->ucopy.len);
3624
3625 __set_current_state(TASK_RUNNING);
3626
3627 local_bh_enable();
3628 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3629 tp->ucopy.len -= chunk;
3630 tp->copied_seq += chunk;
3631 eaten = (chunk == skb->len && !th->fin);
3632 tcp_rcv_space_adjust(sk);
3633 }
3634 local_bh_disable();
3635 }
3636
3637 if (eaten <= 0) {
3638queue_and_out:
3639 if (eaten < 0 &&
3640 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3641 !sk_stream_rmem_schedule(sk, skb))) {
3642 if (tcp_prune_queue(sk) < 0 ||
3643 !sk_stream_rmem_schedule(sk, skb))
3644 goto drop;
3645 }
3646 sk_stream_set_owner_r(skb, sk);
3647 __skb_queue_tail(&sk->sk_receive_queue, skb);
3648 }
3649 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3650 if (skb->len)
9e412ba7 3651 tcp_event_data_recv(sk, skb);
2de979bd 3652 if (th->fin)
1da177e4
LT
3653 tcp_fin(skb, sk, th);
3654
b03efcfb 3655 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3656 tcp_ofo_queue(sk);
3657
3658 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3659 * gap in queue is filled.
3660 */
b03efcfb 3661 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3662 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3663 }
3664
3665 if (tp->rx_opt.num_sacks)
3666 tcp_sack_remove(tp);
3667
9e412ba7 3668 tcp_fast_path_check(sk);
1da177e4
LT
3669
3670 if (eaten > 0)
3671 __kfree_skb(skb);
3672 else if (!sock_flag(sk, SOCK_DEAD))
3673 sk->sk_data_ready(sk, 0);
3674 return;
3675 }
3676
3677 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3678 /* A retransmit, 2nd most common case. Force an immediate ack. */
3679 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3680 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3681
3682out_of_window:
463c84b9
ACM
3683 tcp_enter_quickack_mode(sk);
3684 inet_csk_schedule_ack(sk);
1da177e4
LT
3685drop:
3686 __kfree_skb(skb);
3687 return;
3688 }
3689
3690 /* Out of window. F.e. zero window probe. */
3691 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3692 goto out_of_window;
3693
463c84b9 3694 tcp_enter_quickack_mode(sk);
1da177e4
LT
3695
3696 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3697 /* Partial packet, seq < rcv_next < end_seq */
3698 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3699 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3700 TCP_SKB_CB(skb)->end_seq);
3701
3702 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3703
1da177e4
LT
3704 /* If window is closed, drop tail of packet. But after
3705 * remembering D-SACK for its head made in previous line.
3706 */
3707 if (!tcp_receive_window(tp))
3708 goto out_of_window;
3709 goto queue_and_out;
3710 }
3711
3712 TCP_ECN_check_ce(tp, skb);
3713
3714 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3715 !sk_stream_rmem_schedule(sk, skb)) {
3716 if (tcp_prune_queue(sk) < 0 ||
3717 !sk_stream_rmem_schedule(sk, skb))
3718 goto drop;
3719 }
3720
3721 /* Disable header prediction. */
3722 tp->pred_flags = 0;
463c84b9 3723 inet_csk_schedule_ack(sk);
1da177e4
LT
3724
3725 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3726 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3727
3728 sk_stream_set_owner_r(skb, sk);
3729
3730 if (!skb_peek(&tp->out_of_order_queue)) {
3731 /* Initial out of order segment, build 1 SACK. */
e60402d0 3732 if (tcp_is_sack(tp)) {
1da177e4
LT
3733 tp->rx_opt.num_sacks = 1;
3734 tp->rx_opt.dsack = 0;
3735 tp->rx_opt.eff_sacks = 1;
3736 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3737 tp->selective_acks[0].end_seq =
3738 TCP_SKB_CB(skb)->end_seq;
3739 }
3740 __skb_queue_head(&tp->out_of_order_queue,skb);
3741 } else {
3742 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3743 u32 seq = TCP_SKB_CB(skb)->seq;
3744 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3745
3746 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3747 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3748
3749 if (!tp->rx_opt.num_sacks ||
3750 tp->selective_acks[0].end_seq != seq)
3751 goto add_sack;
3752
3753 /* Common case: data arrive in order after hole. */
3754 tp->selective_acks[0].end_seq = end_seq;
3755 return;
3756 }
3757
3758 /* Find place to insert this segment. */
3759 do {
3760 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3761 break;
3762 } while ((skb1 = skb1->prev) !=
3763 (struct sk_buff*)&tp->out_of_order_queue);
3764
3765 /* Do skb overlap to previous one? */
3766 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3767 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3768 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3769 /* All the bits are present. Drop. */
3770 __kfree_skb(skb);
3771 tcp_dsack_set(tp, seq, end_seq);
3772 goto add_sack;
3773 }
3774 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3775 /* Partial overlap. */
3776 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3777 } else {
3778 skb1 = skb1->prev;
3779 }
3780 }
3781 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3782
1da177e4
LT
3783 /* And clean segments covered by new one as whole. */
3784 while ((skb1 = skb->next) !=
3785 (struct sk_buff*)&tp->out_of_order_queue &&
3786 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3787 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3788 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3789 break;
3790 }
8728b834 3791 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3792 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3793 __kfree_skb(skb1);
3794 }
3795
3796add_sack:
e60402d0 3797 if (tcp_is_sack(tp))
1da177e4
LT
3798 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3799 }
3800}
3801
3802/* Collapse contiguous sequence of skbs head..tail with
3803 * sequence numbers start..end.
3804 * Segments with FIN/SYN are not collapsed (only because this
3805 * simplifies code)
3806 */
3807static void
8728b834
DM
3808tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3809 struct sk_buff *head, struct sk_buff *tail,
3810 u32 start, u32 end)
1da177e4
LT
3811{
3812 struct sk_buff *skb;
3813
caa20d9a 3814 /* First, check that queue is collapsible and find
1da177e4
LT
3815 * the point where collapsing can be useful. */
3816 for (skb = head; skb != tail; ) {
3817 /* No new bits? It is possible on ofo queue. */
3818 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3819 struct sk_buff *next = skb->next;
8728b834 3820 __skb_unlink(skb, list);
1da177e4
LT
3821 __kfree_skb(skb);
3822 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3823 skb = next;
3824 continue;
3825 }
3826
3827 /* The first skb to collapse is:
3828 * - not SYN/FIN and
3829 * - bloated or contains data before "start" or
3830 * overlaps to the next one.
3831 */
aa8223c7 3832 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3833 (tcp_win_from_space(skb->truesize) > skb->len ||
3834 before(TCP_SKB_CB(skb)->seq, start) ||
3835 (skb->next != tail &&
3836 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3837 break;
3838
3839 /* Decided to skip this, advance start seq. */
3840 start = TCP_SKB_CB(skb)->end_seq;
3841 skb = skb->next;
3842 }
aa8223c7 3843 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3844 return;
3845
3846 while (before(start, end)) {
3847 struct sk_buff *nskb;
3848 int header = skb_headroom(skb);
3849 int copy = SKB_MAX_ORDER(header, 0);
3850
3851 /* Too big header? This can happen with IPv6. */
3852 if (copy < 0)
3853 return;
3854 if (end-start < copy)
3855 copy = end-start;
3856 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3857 if (!nskb)
3858 return;
c51957da 3859
98e399f8 3860 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3861 skb_set_network_header(nskb, (skb_network_header(skb) -
3862 skb->head));
3863 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3864 skb->head));
1da177e4
LT
3865 skb_reserve(nskb, header);
3866 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3867 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3868 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3869 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3870 sk_stream_set_owner_r(nskb, sk);
3871
3872 /* Copy data, releasing collapsed skbs. */
3873 while (copy > 0) {
3874 int offset = start - TCP_SKB_CB(skb)->seq;
3875 int size = TCP_SKB_CB(skb)->end_seq - start;
3876
09a62660 3877 BUG_ON(offset < 0);
1da177e4
LT
3878 if (size > 0) {
3879 size = min(copy, size);
3880 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3881 BUG();
3882 TCP_SKB_CB(nskb)->end_seq += size;
3883 copy -= size;
3884 start += size;
3885 }
3886 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3887 struct sk_buff *next = skb->next;
8728b834 3888 __skb_unlink(skb, list);
1da177e4
LT
3889 __kfree_skb(skb);
3890 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3891 skb = next;
aa8223c7
ACM
3892 if (skb == tail ||
3893 tcp_hdr(skb)->syn ||
3894 tcp_hdr(skb)->fin)
1da177e4
LT
3895 return;
3896 }
3897 }
3898 }
3899}
3900
3901/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3902 * and tcp_collapse() them until all the queue is collapsed.
3903 */
3904static void tcp_collapse_ofo_queue(struct sock *sk)
3905{
3906 struct tcp_sock *tp = tcp_sk(sk);
3907 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3908 struct sk_buff *head;
3909 u32 start, end;
3910
3911 if (skb == NULL)
3912 return;
3913
3914 start = TCP_SKB_CB(skb)->seq;
3915 end = TCP_SKB_CB(skb)->end_seq;
3916 head = skb;
3917
3918 for (;;) {
3919 skb = skb->next;
3920
3921 /* Segment is terminated when we see gap or when
3922 * we are at the end of all the queue. */
3923 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3924 after(TCP_SKB_CB(skb)->seq, end) ||
3925 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3926 tcp_collapse(sk, &tp->out_of_order_queue,
3927 head, skb, start, end);
1da177e4
LT
3928 head = skb;
3929 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3930 break;
3931 /* Start new segment */
3932 start = TCP_SKB_CB(skb)->seq;
3933 end = TCP_SKB_CB(skb)->end_seq;
3934 } else {
3935 if (before(TCP_SKB_CB(skb)->seq, start))
3936 start = TCP_SKB_CB(skb)->seq;
3937 if (after(TCP_SKB_CB(skb)->end_seq, end))
3938 end = TCP_SKB_CB(skb)->end_seq;
3939 }
3940 }
3941}
3942
3943/* Reduce allocated memory if we can, trying to get
3944 * the socket within its memory limits again.
3945 *
3946 * Return less than zero if we should start dropping frames
3947 * until the socket owning process reads some of the data
3948 * to stabilize the situation.
3949 */
3950static int tcp_prune_queue(struct sock *sk)
3951{
e905a9ed 3952 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3953
3954 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3955
3956 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3957
3958 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3959 tcp_clamp_window(sk);
1da177e4
LT
3960 else if (tcp_memory_pressure)
3961 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3962
3963 tcp_collapse_ofo_queue(sk);
8728b834
DM
3964 tcp_collapse(sk, &sk->sk_receive_queue,
3965 sk->sk_receive_queue.next,
1da177e4
LT
3966 (struct sk_buff*)&sk->sk_receive_queue,
3967 tp->copied_seq, tp->rcv_nxt);
3968 sk_stream_mem_reclaim(sk);
3969
3970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3971 return 0;
3972
3973 /* Collapsing did not help, destructive actions follow.
3974 * This must not ever occur. */
3975
3976 /* First, purge the out_of_order queue. */
b03efcfb
DM
3977 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3978 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3979 __skb_queue_purge(&tp->out_of_order_queue);
3980
3981 /* Reset SACK state. A conforming SACK implementation will
3982 * do the same at a timeout based retransmit. When a connection
3983 * is in a sad state like this, we care only about integrity
3984 * of the connection not performance.
3985 */
e60402d0 3986 if (tcp_is_sack(tp))
1da177e4
LT
3987 tcp_sack_reset(&tp->rx_opt);
3988 sk_stream_mem_reclaim(sk);
3989 }
3990
3991 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3992 return 0;
3993
3994 /* If we are really being abused, tell the caller to silently
3995 * drop receive data on the floor. It will get retransmitted
3996 * and hopefully then we'll have sufficient space.
3997 */
3998 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3999
4000 /* Massive buffer overcommit. */
4001 tp->pred_flags = 0;
4002 return -1;
4003}
4004
4005
4006/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4007 * As additional protections, we do not touch cwnd in retransmission phases,
4008 * and if application hit its sndbuf limit recently.
4009 */
4010void tcp_cwnd_application_limited(struct sock *sk)
4011{
4012 struct tcp_sock *tp = tcp_sk(sk);
4013
6687e988 4014 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4015 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4016 /* Limited by application or receiver window. */
d254bcdb
IJ
4017 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4018 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4019 if (win_used < tp->snd_cwnd) {
6687e988 4020 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4021 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4022 }
4023 tp->snd_cwnd_used = 0;
4024 }
4025 tp->snd_cwnd_stamp = tcp_time_stamp;
4026}
4027
9e412ba7 4028static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4029{
9e412ba7
IJ
4030 struct tcp_sock *tp = tcp_sk(sk);
4031
0d9901df
DM
4032 /* If the user specified a specific send buffer setting, do
4033 * not modify it.
4034 */
4035 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4036 return 0;
4037
4038 /* If we are under global TCP memory pressure, do not expand. */
4039 if (tcp_memory_pressure)
4040 return 0;
4041
4042 /* If we are under soft global TCP memory pressure, do not expand. */
4043 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4044 return 0;
4045
4046 /* If we filled the congestion window, do not expand. */
4047 if (tp->packets_out >= tp->snd_cwnd)
4048 return 0;
4049
4050 return 1;
4051}
1da177e4
LT
4052
4053/* When incoming ACK allowed to free some skb from write_queue,
4054 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4055 * on the exit from tcp input handler.
4056 *
4057 * PROBLEM: sndbuf expansion does not work well with largesend.
4058 */
4059static void tcp_new_space(struct sock *sk)
4060{
4061 struct tcp_sock *tp = tcp_sk(sk);
4062
9e412ba7 4063 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4064 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4065 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4066 demanded = max_t(unsigned int, tp->snd_cwnd,
4067 tp->reordering + 1);
4068 sndmem *= 2*demanded;
4069 if (sndmem > sk->sk_sndbuf)
4070 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4071 tp->snd_cwnd_stamp = tcp_time_stamp;
4072 }
4073
4074 sk->sk_write_space(sk);
4075}
4076
40efc6fa 4077static void tcp_check_space(struct sock *sk)
1da177e4
LT
4078{
4079 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4080 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4081 if (sk->sk_socket &&
4082 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4083 tcp_new_space(sk);
4084 }
4085}
4086
9e412ba7 4087static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4088{
9e412ba7 4089 tcp_push_pending_frames(sk);
1da177e4
LT
4090 tcp_check_space(sk);
4091}
4092
4093/*
4094 * Check if sending an ack is needed.
4095 */
4096static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4097{
4098 struct tcp_sock *tp = tcp_sk(sk);
4099
4100 /* More than one full frame received... */
463c84b9 4101 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4102 /* ... and right edge of window advances far enough.
4103 * (tcp_recvmsg() will send ACK otherwise). Or...
4104 */
4105 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4106 /* We ACK each frame or... */
463c84b9 4107 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4108 /* We have out of order data. */
4109 (ofo_possible &&
4110 skb_peek(&tp->out_of_order_queue))) {
4111 /* Then ack it now */
4112 tcp_send_ack(sk);
4113 } else {
4114 /* Else, send delayed ack. */
4115 tcp_send_delayed_ack(sk);
4116 }
4117}
4118
40efc6fa 4119static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4120{
463c84b9 4121 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4122 /* We sent a data segment already. */
4123 return;
4124 }
4125 __tcp_ack_snd_check(sk, 1);
4126}
4127
4128/*
4129 * This routine is only called when we have urgent data
caa20d9a 4130 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4131 * moved inline now as tcp_urg is only called from one
4132 * place. We handle URGent data wrong. We have to - as
4133 * BSD still doesn't use the correction from RFC961.
4134 * For 1003.1g we should support a new option TCP_STDURG to permit
4135 * either form (or just set the sysctl tcp_stdurg).
4136 */
e905a9ed 4137
1da177e4
LT
4138static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4139{
4140 struct tcp_sock *tp = tcp_sk(sk);
4141 u32 ptr = ntohs(th->urg_ptr);
4142
4143 if (ptr && !sysctl_tcp_stdurg)
4144 ptr--;
4145 ptr += ntohl(th->seq);
4146
4147 /* Ignore urgent data that we've already seen and read. */
4148 if (after(tp->copied_seq, ptr))
4149 return;
4150
4151 /* Do not replay urg ptr.
4152 *
4153 * NOTE: interesting situation not covered by specs.
4154 * Misbehaving sender may send urg ptr, pointing to segment,
4155 * which we already have in ofo queue. We are not able to fetch
4156 * such data and will stay in TCP_URG_NOTYET until will be eaten
4157 * by recvmsg(). Seems, we are not obliged to handle such wicked
4158 * situations. But it is worth to think about possibility of some
4159 * DoSes using some hypothetical application level deadlock.
4160 */
4161 if (before(ptr, tp->rcv_nxt))
4162 return;
4163
4164 /* Do we already have a newer (or duplicate) urgent pointer? */
4165 if (tp->urg_data && !after(ptr, tp->urg_seq))
4166 return;
4167
4168 /* Tell the world about our new urgent pointer. */
4169 sk_send_sigurg(sk);
4170
4171 /* We may be adding urgent data when the last byte read was
4172 * urgent. To do this requires some care. We cannot just ignore
4173 * tp->copied_seq since we would read the last urgent byte again
4174 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4175 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4176 *
4177 * NOTE. Double Dutch. Rendering to plain English: author of comment
4178 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4179 * and expect that both A and B disappear from stream. This is _wrong_.
4180 * Though this happens in BSD with high probability, this is occasional.
4181 * Any application relying on this is buggy. Note also, that fix "works"
4182 * only in this artificial test. Insert some normal data between A and B and we will
4183 * decline of BSD again. Verdict: it is better to remove to trap
4184 * buggy users.
4185 */
4186 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4187 !sock_flag(sk, SOCK_URGINLINE) &&
4188 tp->copied_seq != tp->rcv_nxt) {
4189 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4190 tp->copied_seq++;
4191 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4192 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4193 __kfree_skb(skb);
4194 }
4195 }
4196
4197 tp->urg_data = TCP_URG_NOTYET;
4198 tp->urg_seq = ptr;
4199
4200 /* Disable header prediction. */
4201 tp->pred_flags = 0;
4202}
4203
4204/* This is the 'fast' part of urgent handling. */
4205static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4206{
4207 struct tcp_sock *tp = tcp_sk(sk);
4208
4209 /* Check if we get a new urgent pointer - normally not. */
4210 if (th->urg)
4211 tcp_check_urg(sk,th);
4212
4213 /* Do we wait for any urgent data? - normally not... */
4214 if (tp->urg_data == TCP_URG_NOTYET) {
4215 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4216 th->syn;
4217
e905a9ed 4218 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4219 if (ptr < skb->len) {
4220 u8 tmp;
4221 if (skb_copy_bits(skb, ptr, &tmp, 1))
4222 BUG();
4223 tp->urg_data = TCP_URG_VALID | tmp;
4224 if (!sock_flag(sk, SOCK_DEAD))
4225 sk->sk_data_ready(sk, 0);
4226 }
4227 }
4228}
4229
4230static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4231{
4232 struct tcp_sock *tp = tcp_sk(sk);
4233 int chunk = skb->len - hlen;
4234 int err;
4235
4236 local_bh_enable();
60476372 4237 if (skb_csum_unnecessary(skb))
1da177e4
LT
4238 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4239 else
4240 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4241 tp->ucopy.iov);
4242
4243 if (!err) {
4244 tp->ucopy.len -= chunk;
4245 tp->copied_seq += chunk;
4246 tcp_rcv_space_adjust(sk);
4247 }
4248
4249 local_bh_disable();
4250 return err;
4251}
4252
b51655b9 4253static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4254{
b51655b9 4255 __sum16 result;
1da177e4
LT
4256
4257 if (sock_owned_by_user(sk)) {
4258 local_bh_enable();
4259 result = __tcp_checksum_complete(skb);
4260 local_bh_disable();
4261 } else {
4262 result = __tcp_checksum_complete(skb);
4263 }
4264 return result;
4265}
4266
40efc6fa 4267static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4268{
60476372 4269 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4270 __tcp_checksum_complete_user(sk, skb);
4271}
4272
1a2449a8
CL
4273#ifdef CONFIG_NET_DMA
4274static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4275{
4276 struct tcp_sock *tp = tcp_sk(sk);
4277 int chunk = skb->len - hlen;
4278 int dma_cookie;
4279 int copied_early = 0;
4280
4281 if (tp->ucopy.wakeup)
e905a9ed 4282 return 0;
1a2449a8
CL
4283
4284 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4285 tp->ucopy.dma_chan = get_softnet_dma();
4286
60476372 4287 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4288
4289 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4290 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4291
4292 if (dma_cookie < 0)
4293 goto out;
4294
4295 tp->ucopy.dma_cookie = dma_cookie;
4296 copied_early = 1;
4297
4298 tp->ucopy.len -= chunk;
4299 tp->copied_seq += chunk;
4300 tcp_rcv_space_adjust(sk);
4301
4302 if ((tp->ucopy.len == 0) ||
aa8223c7 4303 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4304 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4305 tp->ucopy.wakeup = 1;
4306 sk->sk_data_ready(sk, 0);
4307 }
4308 } else if (chunk > 0) {
4309 tp->ucopy.wakeup = 1;
4310 sk->sk_data_ready(sk, 0);
4311 }
4312out:
4313 return copied_early;
4314}
4315#endif /* CONFIG_NET_DMA */
4316
1da177e4 4317/*
e905a9ed 4318 * TCP receive function for the ESTABLISHED state.
1da177e4 4319 *
e905a9ed 4320 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4321 * disabled when:
4322 * - A zero window was announced from us - zero window probing
e905a9ed 4323 * is only handled properly in the slow path.
1da177e4
LT
4324 * - Out of order segments arrived.
4325 * - Urgent data is expected.
4326 * - There is no buffer space left
4327 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4328 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4329 * - Data is sent in both directions. Fast path only supports pure senders
4330 * or pure receivers (this means either the sequence number or the ack
4331 * value must stay constant)
4332 * - Unexpected TCP option.
4333 *
e905a9ed 4334 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4335 * receive procedure patterned after RFC793 to handle all cases.
4336 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4337 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4338 * tcp_data_queue when everything is OK.
4339 */
4340int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4341 struct tcphdr *th, unsigned len)
4342{
4343 struct tcp_sock *tp = tcp_sk(sk);
4344
4345 /*
4346 * Header prediction.
e905a9ed 4347 * The code loosely follows the one in the famous
1da177e4 4348 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4349 *
4350 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4351 * on a device interrupt, to call tcp_recv function
4352 * on the receive process context and checksum and copy
4353 * the buffer to user space. smart...
4354 *
e905a9ed 4355 * Our current scheme is not silly either but we take the
1da177e4
LT
4356 * extra cost of the net_bh soft interrupt processing...
4357 * We do checksum and copy also but from device to kernel.
4358 */
4359
4360 tp->rx_opt.saw_tstamp = 0;
4361
4362 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4363 * if header_prediction is to be made
1da177e4
LT
4364 * 'S' will always be tp->tcp_header_len >> 2
4365 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4366 * turn it off (when there are holes in the receive
1da177e4
LT
4367 * space for instance)
4368 * PSH flag is ignored.
4369 */
4370
4371 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4372 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4373 int tcp_header_len = tp->tcp_header_len;
4374
4375 /* Timestamp header prediction: tcp_header_len
4376 * is automatically equal to th->doff*4 due to pred_flags
4377 * match.
4378 */
4379
4380 /* Check timestamp */
4381 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4382 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4383
4384 /* No? Slow path! */
4f3608b7 4385 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4386 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4387 goto slow_path;
4388
4389 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4390 ++ptr;
1da177e4
LT
4391 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4392 ++ptr;
4393 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4394
4395 /* If PAWS failed, check it more carefully in slow path */
4396 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4397 goto slow_path;
4398
4399 /* DO NOT update ts_recent here, if checksum fails
4400 * and timestamp was corrupted part, it will result
4401 * in a hung connection since we will drop all
4402 * future packets due to the PAWS test.
4403 */
4404 }
4405
4406 if (len <= tcp_header_len) {
4407 /* Bulk data transfer: sender */
4408 if (len == tcp_header_len) {
4409 /* Predicted packet is in window by definition.
4410 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4411 * Hence, check seq<=rcv_wup reduces to:
4412 */
4413 if (tcp_header_len ==
4414 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4415 tp->rcv_nxt == tp->rcv_wup)
4416 tcp_store_ts_recent(tp);
4417
1da177e4
LT
4418 /* We know that such packets are checksummed
4419 * on entry.
4420 */
4421 tcp_ack(sk, skb, 0);
e905a9ed 4422 __kfree_skb(skb);
9e412ba7 4423 tcp_data_snd_check(sk);
1da177e4
LT
4424 return 0;
4425 } else { /* Header too small */
4426 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4427 goto discard;
4428 }
4429 } else {
4430 int eaten = 0;
1a2449a8 4431 int copied_early = 0;
1da177e4 4432
1a2449a8
CL
4433 if (tp->copied_seq == tp->rcv_nxt &&
4434 len - tcp_header_len <= tp->ucopy.len) {
4435#ifdef CONFIG_NET_DMA
4436 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4437 copied_early = 1;
4438 eaten = 1;
4439 }
4440#endif
4441 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4442 __set_current_state(TASK_RUNNING);
1da177e4 4443
1a2449a8
CL
4444 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4445 eaten = 1;
4446 }
4447 if (eaten) {
1da177e4
LT
4448 /* Predicted packet is in window by definition.
4449 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4450 * Hence, check seq<=rcv_wup reduces to:
4451 */
4452 if (tcp_header_len ==
4453 (sizeof(struct tcphdr) +
4454 TCPOLEN_TSTAMP_ALIGNED) &&
4455 tp->rcv_nxt == tp->rcv_wup)
4456 tcp_store_ts_recent(tp);
4457
463c84b9 4458 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4459
4460 __skb_pull(skb, tcp_header_len);
4461 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4462 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4463 }
1a2449a8
CL
4464 if (copied_early)
4465 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4466 }
4467 if (!eaten) {
4468 if (tcp_checksum_complete_user(sk, skb))
4469 goto csum_error;
4470
4471 /* Predicted packet is in window by definition.
4472 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4473 * Hence, check seq<=rcv_wup reduces to:
4474 */
4475 if (tcp_header_len ==
4476 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4477 tp->rcv_nxt == tp->rcv_wup)
4478 tcp_store_ts_recent(tp);
4479
463c84b9 4480 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4481
4482 if ((int)skb->truesize > sk->sk_forward_alloc)
4483 goto step5;
4484
4485 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4486
4487 /* Bulk data transfer: receiver */
4488 __skb_pull(skb,tcp_header_len);
4489 __skb_queue_tail(&sk->sk_receive_queue, skb);
4490 sk_stream_set_owner_r(skb, sk);
4491 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4492 }
4493
9e412ba7 4494 tcp_event_data_recv(sk, skb);
1da177e4
LT
4495
4496 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4497 /* Well, only one small jumplet in fast path... */
4498 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4499 tcp_data_snd_check(sk);
463c84b9 4500 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4501 goto no_ack;
4502 }
4503
31432412 4504 __tcp_ack_snd_check(sk, 0);
1da177e4 4505no_ack:
1a2449a8
CL
4506#ifdef CONFIG_NET_DMA
4507 if (copied_early)
4508 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4509 else
4510#endif
1da177e4
LT
4511 if (eaten)
4512 __kfree_skb(skb);
4513 else
4514 sk->sk_data_ready(sk, 0);
4515 return 0;
4516 }
4517 }
4518
4519slow_path:
4520 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4521 goto csum_error;
4522
4523 /*
4524 * RFC1323: H1. Apply PAWS check first.
4525 */
4526 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4527 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4528 if (!th->rst) {
4529 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4530 tcp_send_dupack(sk, skb);
4531 goto discard;
4532 }
4533 /* Resets are accepted even if PAWS failed.
4534
4535 ts_recent update must be made after we are sure
4536 that the packet is in window.
4537 */
4538 }
4539
4540 /*
4541 * Standard slow path.
4542 */
4543
4544 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4545 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4546 * (RST) segments are validated by checking their SEQ-fields."
4547 * And page 69: "If an incoming segment is not acceptable,
4548 * an acknowledgment should be sent in reply (unless the RST bit
4549 * is set, if so drop the segment and return)".
4550 */
4551 if (!th->rst)
4552 tcp_send_dupack(sk, skb);
4553 goto discard;
4554 }
4555
2de979bd 4556 if (th->rst) {
1da177e4
LT
4557 tcp_reset(sk);
4558 goto discard;
4559 }
4560
4561 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4562
4563 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4564 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4565 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4566 tcp_reset(sk);
4567 return 1;
4568 }
4569
4570step5:
2de979bd 4571 if (th->ack)
1da177e4
LT
4572 tcp_ack(sk, skb, FLAG_SLOWPATH);
4573
463c84b9 4574 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4575
4576 /* Process urgent data. */
4577 tcp_urg(sk, skb, th);
4578
4579 /* step 7: process the segment text */
4580 tcp_data_queue(sk, skb);
4581
9e412ba7 4582 tcp_data_snd_check(sk);
1da177e4
LT
4583 tcp_ack_snd_check(sk);
4584 return 0;
4585
4586csum_error:
4587 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4588
4589discard:
4590 __kfree_skb(skb);
4591 return 0;
4592}
4593
4594static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4595 struct tcphdr *th, unsigned len)
4596{
4597 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4598 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4599 int saved_clamp = tp->rx_opt.mss_clamp;
4600
4601 tcp_parse_options(skb, &tp->rx_opt, 0);
4602
4603 if (th->ack) {
4604 /* rfc793:
4605 * "If the state is SYN-SENT then
4606 * first check the ACK bit
4607 * If the ACK bit is set
4608 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4609 * a reset (unless the RST bit is set, if so drop
4610 * the segment and return)"
4611 *
4612 * We do not send data with SYN, so that RFC-correct
4613 * test reduces to:
4614 */
4615 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4616 goto reset_and_undo;
4617
4618 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4619 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4620 tcp_time_stamp)) {
4621 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4622 goto reset_and_undo;
4623 }
4624
4625 /* Now ACK is acceptable.
4626 *
4627 * "If the RST bit is set
4628 * If the ACK was acceptable then signal the user "error:
4629 * connection reset", drop the segment, enter CLOSED state,
4630 * delete TCB, and return."
4631 */
4632
4633 if (th->rst) {
4634 tcp_reset(sk);
4635 goto discard;
4636 }
4637
4638 /* rfc793:
4639 * "fifth, if neither of the SYN or RST bits is set then
4640 * drop the segment and return."
4641 *
4642 * See note below!
4643 * --ANK(990513)
4644 */
4645 if (!th->syn)
4646 goto discard_and_undo;
4647
4648 /* rfc793:
4649 * "If the SYN bit is on ...
4650 * are acceptable then ...
4651 * (our SYN has been ACKed), change the connection
4652 * state to ESTABLISHED..."
4653 */
4654
4655 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4656
4657 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4658 tcp_ack(sk, skb, FLAG_SLOWPATH);
4659
4660 /* Ok.. it's good. Set up sequence numbers and
4661 * move to established.
4662 */
4663 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4664 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4665
4666 /* RFC1323: The window in SYN & SYN/ACK segments is
4667 * never scaled.
4668 */
4669 tp->snd_wnd = ntohs(th->window);
4670 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4671
4672 if (!tp->rx_opt.wscale_ok) {
4673 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4674 tp->window_clamp = min(tp->window_clamp, 65535U);
4675 }
4676
4677 if (tp->rx_opt.saw_tstamp) {
4678 tp->rx_opt.tstamp_ok = 1;
4679 tp->tcp_header_len =
4680 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4681 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4682 tcp_store_ts_recent(tp);
4683 } else {
4684 tp->tcp_header_len = sizeof(struct tcphdr);
4685 }
4686
e60402d0
IJ
4687 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4688 tcp_enable_fack(tp);
1da177e4 4689
5d424d5a 4690 tcp_mtup_init(sk);
d83d8461 4691 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4692 tcp_initialize_rcv_mss(sk);
4693
4694 /* Remember, tcp_poll() does not lock socket!
4695 * Change state from SYN-SENT only after copied_seq
4696 * is initialized. */
4697 tp->copied_seq = tp->rcv_nxt;
e16aa207 4698 smp_mb();
1da177e4
LT
4699 tcp_set_state(sk, TCP_ESTABLISHED);
4700
6b877699
VY
4701 security_inet_conn_established(sk, skb);
4702
1da177e4 4703 /* Make sure socket is routed, for correct metrics. */
8292a17a 4704 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4705
4706 tcp_init_metrics(sk);
4707
6687e988 4708 tcp_init_congestion_control(sk);
317a76f9 4709
1da177e4
LT
4710 /* Prevent spurious tcp_cwnd_restart() on first data
4711 * packet.
4712 */
4713 tp->lsndtime = tcp_time_stamp;
4714
4715 tcp_init_buffer_space(sk);
4716
4717 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4718 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4719
4720 if (!tp->rx_opt.snd_wscale)
4721 __tcp_fast_path_on(tp, tp->snd_wnd);
4722 else
4723 tp->pred_flags = 0;
4724
4725 if (!sock_flag(sk, SOCK_DEAD)) {
4726 sk->sk_state_change(sk);
4727 sk_wake_async(sk, 0, POLL_OUT);
4728 }
4729
295f7324
ACM
4730 if (sk->sk_write_pending ||
4731 icsk->icsk_accept_queue.rskq_defer_accept ||
4732 icsk->icsk_ack.pingpong) {
1da177e4
LT
4733 /* Save one ACK. Data will be ready after
4734 * several ticks, if write_pending is set.
4735 *
4736 * It may be deleted, but with this feature tcpdumps
4737 * look so _wonderfully_ clever, that I was not able
4738 * to stand against the temptation 8) --ANK
4739 */
463c84b9 4740 inet_csk_schedule_ack(sk);
295f7324
ACM
4741 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4742 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4743 tcp_incr_quickack(sk);
4744 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4745 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4746 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4747
4748discard:
4749 __kfree_skb(skb);
4750 return 0;
4751 } else {
4752 tcp_send_ack(sk);
4753 }
4754 return -1;
4755 }
4756
4757 /* No ACK in the segment */
4758
4759 if (th->rst) {
4760 /* rfc793:
4761 * "If the RST bit is set
4762 *
4763 * Otherwise (no ACK) drop the segment and return."
4764 */
4765
4766 goto discard_and_undo;
4767 }
4768
4769 /* PAWS check. */
4770 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4771 goto discard_and_undo;
4772
4773 if (th->syn) {
4774 /* We see SYN without ACK. It is attempt of
4775 * simultaneous connect with crossed SYNs.
4776 * Particularly, it can be connect to self.
4777 */
4778 tcp_set_state(sk, TCP_SYN_RECV);
4779
4780 if (tp->rx_opt.saw_tstamp) {
4781 tp->rx_opt.tstamp_ok = 1;
4782 tcp_store_ts_recent(tp);
4783 tp->tcp_header_len =
4784 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4785 } else {
4786 tp->tcp_header_len = sizeof(struct tcphdr);
4787 }
4788
4789 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4790 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4791
4792 /* RFC1323: The window in SYN & SYN/ACK segments is
4793 * never scaled.
4794 */
4795 tp->snd_wnd = ntohs(th->window);
4796 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4797 tp->max_window = tp->snd_wnd;
4798
4799 TCP_ECN_rcv_syn(tp, th);
1da177e4 4800
5d424d5a 4801 tcp_mtup_init(sk);
d83d8461 4802 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4803 tcp_initialize_rcv_mss(sk);
4804
4805
4806 tcp_send_synack(sk);
4807#if 0
4808 /* Note, we could accept data and URG from this segment.
4809 * There are no obstacles to make this.
4810 *
4811 * However, if we ignore data in ACKless segments sometimes,
4812 * we have no reasons to accept it sometimes.
4813 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4814 * is not flawless. So, discard packet for sanity.
4815 * Uncomment this return to process the data.
4816 */
4817 return -1;
4818#else
4819 goto discard;
4820#endif
4821 }
4822 /* "fifth, if neither of the SYN or RST bits is set then
4823 * drop the segment and return."
4824 */
4825
4826discard_and_undo:
4827 tcp_clear_options(&tp->rx_opt);
4828 tp->rx_opt.mss_clamp = saved_clamp;
4829 goto discard;
4830
4831reset_and_undo:
4832 tcp_clear_options(&tp->rx_opt);
4833 tp->rx_opt.mss_clamp = saved_clamp;
4834 return 1;
4835}
4836
4837
4838/*
4839 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4840 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4841 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4842 * address independent.
4843 */
e905a9ed 4844
1da177e4
LT
4845int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4846 struct tcphdr *th, unsigned len)
4847{
4848 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4849 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4850 int queued = 0;
4851
4852 tp->rx_opt.saw_tstamp = 0;
4853
4854 switch (sk->sk_state) {
4855 case TCP_CLOSE:
4856 goto discard;
4857
4858 case TCP_LISTEN:
2de979bd 4859 if (th->ack)
1da177e4
LT
4860 return 1;
4861
2de979bd 4862 if (th->rst)
1da177e4
LT
4863 goto discard;
4864
2de979bd 4865 if (th->syn) {
8292a17a 4866 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4867 return 1;
4868
e905a9ed
YH
4869 /* Now we have several options: In theory there is
4870 * nothing else in the frame. KA9Q has an option to
1da177e4 4871 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4872 * syn up to the [to be] advertised window and
4873 * Solaris 2.1 gives you a protocol error. For now
4874 * we just ignore it, that fits the spec precisely
1da177e4
LT
4875 * and avoids incompatibilities. It would be nice in
4876 * future to drop through and process the data.
4877 *
e905a9ed 4878 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4879 * queue this data.
4880 * But, this leaves one open to an easy denial of
e905a9ed 4881 * service attack, and SYN cookies can't defend
1da177e4 4882 * against this problem. So, we drop the data
fb7e2399
MN
4883 * in the interest of security over speed unless
4884 * it's still in use.
1da177e4 4885 */
fb7e2399
MN
4886 kfree_skb(skb);
4887 return 0;
1da177e4
LT
4888 }
4889 goto discard;
4890
4891 case TCP_SYN_SENT:
1da177e4
LT
4892 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4893 if (queued >= 0)
4894 return queued;
4895
4896 /* Do step6 onward by hand. */
4897 tcp_urg(sk, skb, th);
4898 __kfree_skb(skb);
9e412ba7 4899 tcp_data_snd_check(sk);
1da177e4
LT
4900 return 0;
4901 }
4902
4903 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4904 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4905 if (!th->rst) {
4906 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4907 tcp_send_dupack(sk, skb);
4908 goto discard;
4909 }
4910 /* Reset is accepted even if it did not pass PAWS. */
4911 }
4912
4913 /* step 1: check sequence number */
4914 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4915 if (!th->rst)
4916 tcp_send_dupack(sk, skb);
4917 goto discard;
4918 }
4919
4920 /* step 2: check RST bit */
2de979bd 4921 if (th->rst) {
1da177e4
LT
4922 tcp_reset(sk);
4923 goto discard;
4924 }
4925
4926 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4927
4928 /* step 3: check security and precedence [ignored] */
4929
4930 /* step 4:
4931 *
4932 * Check for a SYN in window.
4933 */
4934 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4935 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4936 tcp_reset(sk);
4937 return 1;
4938 }
4939
4940 /* step 5: check the ACK field */
4941 if (th->ack) {
4942 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4943
2de979bd 4944 switch (sk->sk_state) {
1da177e4
LT
4945 case TCP_SYN_RECV:
4946 if (acceptable) {
4947 tp->copied_seq = tp->rcv_nxt;
e16aa207 4948 smp_mb();
1da177e4
LT
4949 tcp_set_state(sk, TCP_ESTABLISHED);
4950 sk->sk_state_change(sk);
4951
4952 /* Note, that this wakeup is only for marginal
4953 * crossed SYN case. Passively open sockets
4954 * are not waked up, because sk->sk_sleep ==
4955 * NULL and sk->sk_socket == NULL.
4956 */
4957 if (sk->sk_socket) {
4958 sk_wake_async(sk,0,POLL_OUT);
4959 }
4960
4961 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4962 tp->snd_wnd = ntohs(th->window) <<
4963 tp->rx_opt.snd_wscale;
4964 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4965 TCP_SKB_CB(skb)->seq);
4966
4967 /* tcp_ack considers this ACK as duplicate
4968 * and does not calculate rtt.
4969 * Fix it at least with timestamps.
4970 */
4971 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4972 !tp->srtt)
2d2abbab 4973 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4974
4975 if (tp->rx_opt.tstamp_ok)
4976 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4977
4978 /* Make sure socket is routed, for
4979 * correct metrics.
4980 */
8292a17a 4981 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4982
4983 tcp_init_metrics(sk);
4984
6687e988 4985 tcp_init_congestion_control(sk);
317a76f9 4986
1da177e4
LT
4987 /* Prevent spurious tcp_cwnd_restart() on
4988 * first data packet.
4989 */
4990 tp->lsndtime = tcp_time_stamp;
4991
5d424d5a 4992 tcp_mtup_init(sk);
1da177e4
LT
4993 tcp_initialize_rcv_mss(sk);
4994 tcp_init_buffer_space(sk);
4995 tcp_fast_path_on(tp);
4996 } else {
4997 return 1;
4998 }
4999 break;
5000
5001 case TCP_FIN_WAIT1:
5002 if (tp->snd_una == tp->write_seq) {
5003 tcp_set_state(sk, TCP_FIN_WAIT2);
5004 sk->sk_shutdown |= SEND_SHUTDOWN;
5005 dst_confirm(sk->sk_dst_cache);
5006
5007 if (!sock_flag(sk, SOCK_DEAD))
5008 /* Wake up lingering close() */
5009 sk->sk_state_change(sk);
5010 else {
5011 int tmo;
5012
5013 if (tp->linger2 < 0 ||
5014 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5015 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5016 tcp_done(sk);
5017 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5018 return 1;
5019 }
5020
463c84b9 5021 tmo = tcp_fin_time(sk);
1da177e4 5022 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5023 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5024 } else if (th->fin || sock_owned_by_user(sk)) {
5025 /* Bad case. We could lose such FIN otherwise.
5026 * It is not a big problem, but it looks confusing
5027 * and not so rare event. We still can lose it now,
5028 * if it spins in bh_lock_sock(), but it is really
5029 * marginal case.
5030 */
463c84b9 5031 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5032 } else {
5033 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5034 goto discard;
5035 }
5036 }
5037 }
5038 break;
5039
5040 case TCP_CLOSING:
5041 if (tp->snd_una == tp->write_seq) {
5042 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5043 goto discard;
5044 }
5045 break;
5046
5047 case TCP_LAST_ACK:
5048 if (tp->snd_una == tp->write_seq) {
5049 tcp_update_metrics(sk);
5050 tcp_done(sk);
5051 goto discard;
5052 }
5053 break;
5054 }
5055 } else
5056 goto discard;
5057
5058 /* step 6: check the URG bit */
5059 tcp_urg(sk, skb, th);
5060
5061 /* step 7: process the segment text */
5062 switch (sk->sk_state) {
5063 case TCP_CLOSE_WAIT:
5064 case TCP_CLOSING:
5065 case TCP_LAST_ACK:
5066 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5067 break;
5068 case TCP_FIN_WAIT1:
5069 case TCP_FIN_WAIT2:
5070 /* RFC 793 says to queue data in these states,
e905a9ed 5071 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5072 * BSD 4.4 also does reset.
5073 */
5074 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5075 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5076 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5077 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5078 tcp_reset(sk);
5079 return 1;
5080 }
5081 }
5082 /* Fall through */
e905a9ed 5083 case TCP_ESTABLISHED:
1da177e4
LT
5084 tcp_data_queue(sk, skb);
5085 queued = 1;
5086 break;
5087 }
5088
5089 /* tcp_data could move socket to TIME-WAIT */
5090 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5091 tcp_data_snd_check(sk);
1da177e4
LT
5092 tcp_ack_snd_check(sk);
5093 }
5094
e905a9ed 5095 if (!queued) {
1da177e4
LT
5096discard:
5097 __kfree_skb(skb);
5098 }
5099 return 0;
5100}
5101
5102EXPORT_SYMBOL(sysctl_tcp_ecn);
5103EXPORT_SYMBOL(sysctl_tcp_reordering);
5104EXPORT_SYMBOL(tcp_parse_options);
5105EXPORT_SYMBOL(tcp_rcv_established);
5106EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5107EXPORT_SYMBOL(tcp_initialize_rcv_mss);