]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Illumos 5445 - Add more visibility via arcstats
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
5dbd68a3 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
3bec585e 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
bd089c54 107 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
b9541d6b 121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
ca0bf58d 138#include <sys/multilist.h>
34dc7c2f
BB
139#ifdef _KERNEL
140#include <sys/vmsystm.h>
141#include <vm/anon.h>
142#include <sys/fs/swapnode.h>
ab26409d 143#include <sys/zpl.h>
aaed7c40 144#include <linux/mm_compat.h>
34dc7c2f
BB
145#endif
146#include <sys/callb.h>
147#include <sys/kstat.h>
570827e1 148#include <sys/dmu_tx.h>
428870ff 149#include <zfs_fletcher.h>
59ec819a 150#include <sys/arc_impl.h>
49ee64e5 151#include <sys/trace_arc.h>
34dc7c2f 152
498877ba
MA
153#ifndef _KERNEL
154/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
155boolean_t arc_watch = B_FALSE;
156#endif
157
ca0bf58d
PS
158static kmutex_t arc_reclaim_lock;
159static kcondvar_t arc_reclaim_thread_cv;
160static boolean_t arc_reclaim_thread_exit;
161static kcondvar_t arc_reclaim_waiters_cv;
162
163static kmutex_t arc_user_evicts_lock;
164static kcondvar_t arc_user_evicts_cv;
165static boolean_t arc_user_evicts_thread_exit;
34dc7c2f 166
e8b96c60 167/*
ca0bf58d
PS
168 * The number of headers to evict in arc_evict_state_impl() before
169 * dropping the sublist lock and evicting from another sublist. A lower
170 * value means we're more likely to evict the "correct" header (i.e. the
171 * oldest header in the arc state), but comes with higher overhead
172 * (i.e. more invocations of arc_evict_state_impl()).
173 */
174int zfs_arc_evict_batch_limit = 10;
175
176/*
177 * The number of sublists used for each of the arc state lists. If this
178 * is not set to a suitable value by the user, it will be configured to
179 * the number of CPUs on the system in arc_init().
e8b96c60 180 */
ca0bf58d 181int zfs_arc_num_sublists_per_state = 0;
e8b96c60 182
34dc7c2f 183/* number of seconds before growing cache again */
ca67b33a 184static int arc_grow_retry = 5;
34dc7c2f 185
ca0bf58d 186/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
ca67b33a 187int zfs_arc_overflow_shift = 8;
62422785 188
d164b209 189/* log2(fraction of arc to reclaim) */
ca67b33a 190static int arc_shrink_shift = 7;
d164b209 191
34dc7c2f 192/*
ca67b33a
MA
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
34dc7c2f 200 */
ca67b33a 201int arc_no_grow_shift = 5;
bce45ec9 202
49ddb315 203
ca0bf58d
PS
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
ca67b33a 208static int arc_min_prefetch_lifespan;
ca0bf58d 209
e8b96c60
MA
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
34dc7c2f
BB
215static int arc_dead;
216
b128c09f
BB
217/*
218 * The arc has filled available memory and has now warmed up.
219 */
220static boolean_t arc_warm;
221
34dc7c2f
BB
222/*
223 * These tunables are for performance analysis.
224 */
c28b2279
BB
225unsigned long zfs_arc_max = 0;
226unsigned long zfs_arc_min = 0;
227unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 228unsigned long zfs_arc_meta_min = 0;
ca67b33a
MA
229int zfs_arc_grow_retry = 0;
230int zfs_arc_shrink_shift = 0;
231int zfs_disable_dup_eviction = 0;
232int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 233
bc888666 234/*
ca67b33a 235 * These tunables are Linux specific
bc888666 236 */
ca67b33a
MA
237int zfs_arc_memory_throttle_disable = 1;
238int zfs_arc_min_prefetch_lifespan = 0;
239int zfs_arc_p_aggressive_disable = 1;
240int zfs_arc_p_dampener_disable = 1;
241int zfs_arc_meta_prune = 10000;
242int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
243int zfs_arc_meta_adjust_restarts = 4096;
bc888666 244
34dc7c2f
BB
245/* The 6 states: */
246static arc_state_t ARC_anon;
247static arc_state_t ARC_mru;
248static arc_state_t ARC_mru_ghost;
249static arc_state_t ARC_mfu;
250static arc_state_t ARC_mfu_ghost;
251static arc_state_t ARC_l2c_only;
252
253typedef struct arc_stats {
254 kstat_named_t arcstat_hits;
255 kstat_named_t arcstat_misses;
256 kstat_named_t arcstat_demand_data_hits;
257 kstat_named_t arcstat_demand_data_misses;
258 kstat_named_t arcstat_demand_metadata_hits;
259 kstat_named_t arcstat_demand_metadata_misses;
260 kstat_named_t arcstat_prefetch_data_hits;
261 kstat_named_t arcstat_prefetch_data_misses;
262 kstat_named_t arcstat_prefetch_metadata_hits;
263 kstat_named_t arcstat_prefetch_metadata_misses;
264 kstat_named_t arcstat_mru_hits;
265 kstat_named_t arcstat_mru_ghost_hits;
266 kstat_named_t arcstat_mfu_hits;
267 kstat_named_t arcstat_mfu_ghost_hits;
268 kstat_named_t arcstat_deleted;
e49f1e20
WA
269 /*
270 * Number of buffers that could not be evicted because the hash lock
271 * was held by another thread. The lock may not necessarily be held
272 * by something using the same buffer, since hash locks are shared
273 * by multiple buffers.
274 */
34dc7c2f 275 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
276 /*
277 * Number of buffers skipped because they have I/O in progress, are
278 * indrect prefetch buffers that have not lived long enough, or are
279 * not from the spa we're trying to evict from.
280 */
34dc7c2f 281 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
282 /*
283 * Number of times arc_evict_state() was unable to evict enough
284 * buffers to reach its target amount.
285 */
286 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
287 kstat_named_t arcstat_evict_l2_cached;
288 kstat_named_t arcstat_evict_l2_eligible;
289 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 290 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
291 kstat_named_t arcstat_hash_elements;
292 kstat_named_t arcstat_hash_elements_max;
293 kstat_named_t arcstat_hash_collisions;
294 kstat_named_t arcstat_hash_chains;
295 kstat_named_t arcstat_hash_chain_max;
296 kstat_named_t arcstat_p;
297 kstat_named_t arcstat_c;
298 kstat_named_t arcstat_c_min;
299 kstat_named_t arcstat_c_max;
300 kstat_named_t arcstat_size;
500445c0
PS
301 /*
302 * Number of bytes consumed by internal ARC structures necessary
303 * for tracking purposes; these structures are not actually
304 * backed by ARC buffers. This includes arc_buf_hdr_t structures
305 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
306 * caches), and arc_buf_t structures (allocated via arc_buf_t
307 * cache).
308 */
34dc7c2f 309 kstat_named_t arcstat_hdr_size;
500445c0
PS
310 /*
311 * Number of bytes consumed by ARC buffers of type equal to
312 * ARC_BUFC_DATA. This is generally consumed by buffers backing
313 * on disk user data (e.g. plain file contents).
314 */
d164b209 315 kstat_named_t arcstat_data_size;
500445c0
PS
316 /*
317 * Number of bytes consumed by ARC buffers of type equal to
318 * ARC_BUFC_METADATA. This is generally consumed by buffers
319 * backing on disk data that is used for internal ZFS
320 * structures (e.g. ZAP, dnode, indirect blocks, etc).
321 */
322 kstat_named_t arcstat_metadata_size;
323 /*
324 * Number of bytes consumed by various buffers and structures
325 * not actually backed with ARC buffers. This includes bonus
326 * buffers (allocated directly via zio_buf_* functions),
327 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
328 * cache), and dnode_t structures (allocated via dnode_t cache).
329 */
d164b209 330 kstat_named_t arcstat_other_size;
500445c0
PS
331 /*
332 * Total number of bytes consumed by ARC buffers residing in the
333 * arc_anon state. This includes *all* buffers in the arc_anon
334 * state; e.g. data, metadata, evictable, and unevictable buffers
335 * are all included in this value.
336 */
13be560d 337 kstat_named_t arcstat_anon_size;
500445c0
PS
338 /*
339 * Number of bytes consumed by ARC buffers that meet the
340 * following criteria: backing buffers of type ARC_BUFC_DATA,
341 * residing in the arc_anon state, and are eligible for eviction
342 * (e.g. have no outstanding holds on the buffer).
343 */
344 kstat_named_t arcstat_anon_evictable_data;
345 /*
346 * Number of bytes consumed by ARC buffers that meet the
347 * following criteria: backing buffers of type ARC_BUFC_METADATA,
348 * residing in the arc_anon state, and are eligible for eviction
349 * (e.g. have no outstanding holds on the buffer).
350 */
351 kstat_named_t arcstat_anon_evictable_metadata;
352 /*
353 * Total number of bytes consumed by ARC buffers residing in the
354 * arc_mru state. This includes *all* buffers in the arc_mru
355 * state; e.g. data, metadata, evictable, and unevictable buffers
356 * are all included in this value.
357 */
13be560d 358 kstat_named_t arcstat_mru_size;
500445c0
PS
359 /*
360 * Number of bytes consumed by ARC buffers that meet the
361 * following criteria: backing buffers of type ARC_BUFC_DATA,
362 * residing in the arc_mru state, and are eligible for eviction
363 * (e.g. have no outstanding holds on the buffer).
364 */
365 kstat_named_t arcstat_mru_evictable_data;
366 /*
367 * Number of bytes consumed by ARC buffers that meet the
368 * following criteria: backing buffers of type ARC_BUFC_METADATA,
369 * residing in the arc_mru state, and are eligible for eviction
370 * (e.g. have no outstanding holds on the buffer).
371 */
372 kstat_named_t arcstat_mru_evictable_metadata;
373 /*
374 * Total number of bytes that *would have been* consumed by ARC
375 * buffers in the arc_mru_ghost state. The key thing to note
376 * here, is the fact that this size doesn't actually indicate
377 * RAM consumption. The ghost lists only consist of headers and
378 * don't actually have ARC buffers linked off of these headers.
379 * Thus, *if* the headers had associated ARC buffers, these
380 * buffers *would have* consumed this number of bytes.
381 */
13be560d 382 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
383 /*
384 * Number of bytes that *would have been* consumed by ARC
385 * buffers that are eligible for eviction, of type
386 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
387 */
388 kstat_named_t arcstat_mru_ghost_evictable_data;
389 /*
390 * Number of bytes that *would have been* consumed by ARC
391 * buffers that are eligible for eviction, of type
392 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
393 */
394 kstat_named_t arcstat_mru_ghost_evictable_metadata;
395 /*
396 * Total number of bytes consumed by ARC buffers residing in the
397 * arc_mfu state. This includes *all* buffers in the arc_mfu
398 * state; e.g. data, metadata, evictable, and unevictable buffers
399 * are all included in this value.
400 */
13be560d 401 kstat_named_t arcstat_mfu_size;
500445c0
PS
402 /*
403 * Number of bytes consumed by ARC buffers that are eligible for
404 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
405 * state.
406 */
407 kstat_named_t arcstat_mfu_evictable_data;
408 /*
409 * Number of bytes consumed by ARC buffers that are eligible for
410 * eviction, of type ARC_BUFC_METADATA, and reside in the
411 * arc_mfu state.
412 */
413 kstat_named_t arcstat_mfu_evictable_metadata;
414 /*
415 * Total number of bytes that *would have been* consumed by ARC
416 * buffers in the arc_mfu_ghost state. See the comment above
417 * arcstat_mru_ghost_size for more details.
418 */
13be560d 419 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
420 /*
421 * Number of bytes that *would have been* consumed by ARC
422 * buffers that are eligible for eviction, of type
423 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
424 */
425 kstat_named_t arcstat_mfu_ghost_evictable_data;
426 /*
427 * Number of bytes that *would have been* consumed by ARC
428 * buffers that are eligible for eviction, of type
429 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
430 */
431 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
432 kstat_named_t arcstat_l2_hits;
433 kstat_named_t arcstat_l2_misses;
434 kstat_named_t arcstat_l2_feeds;
435 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
436 kstat_named_t arcstat_l2_read_bytes;
437 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
438 kstat_named_t arcstat_l2_writes_sent;
439 kstat_named_t arcstat_l2_writes_done;
440 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 441 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
442 kstat_named_t arcstat_l2_evict_lock_retry;
443 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 444 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f 445 kstat_named_t arcstat_l2_free_on_write;
ca0bf58d 446 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
447 kstat_named_t arcstat_l2_abort_lowmem;
448 kstat_named_t arcstat_l2_cksum_bad;
449 kstat_named_t arcstat_l2_io_error;
450 kstat_named_t arcstat_l2_size;
3a17a7a9 451 kstat_named_t arcstat_l2_asize;
34dc7c2f 452 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
453 kstat_named_t arcstat_l2_compress_successes;
454 kstat_named_t arcstat_l2_compress_zeros;
455 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 456 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
457 kstat_named_t arcstat_duplicate_buffers;
458 kstat_named_t arcstat_duplicate_buffers_size;
459 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
460 kstat_named_t arcstat_memory_direct_count;
461 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
462 kstat_named_t arcstat_no_grow;
463 kstat_named_t arcstat_tempreserve;
464 kstat_named_t arcstat_loaned_bytes;
ab26409d 465 kstat_named_t arcstat_prune;
1834f2d8
BB
466 kstat_named_t arcstat_meta_used;
467 kstat_named_t arcstat_meta_limit;
468 kstat_named_t arcstat_meta_max;
ca0bf58d 469 kstat_named_t arcstat_meta_min;
34dc7c2f
BB
470} arc_stats_t;
471
472static arc_stats_t arc_stats = {
473 { "hits", KSTAT_DATA_UINT64 },
474 { "misses", KSTAT_DATA_UINT64 },
475 { "demand_data_hits", KSTAT_DATA_UINT64 },
476 { "demand_data_misses", KSTAT_DATA_UINT64 },
477 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
478 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
479 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
480 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
481 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
482 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
483 { "mru_hits", KSTAT_DATA_UINT64 },
484 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
485 { "mfu_hits", KSTAT_DATA_UINT64 },
486 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
487 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
488 { "mutex_miss", KSTAT_DATA_UINT64 },
489 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 490 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
491 { "evict_l2_cached", KSTAT_DATA_UINT64 },
492 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
493 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 494 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
495 { "hash_elements", KSTAT_DATA_UINT64 },
496 { "hash_elements_max", KSTAT_DATA_UINT64 },
497 { "hash_collisions", KSTAT_DATA_UINT64 },
498 { "hash_chains", KSTAT_DATA_UINT64 },
499 { "hash_chain_max", KSTAT_DATA_UINT64 },
500 { "p", KSTAT_DATA_UINT64 },
501 { "c", KSTAT_DATA_UINT64 },
502 { "c_min", KSTAT_DATA_UINT64 },
503 { "c_max", KSTAT_DATA_UINT64 },
504 { "size", KSTAT_DATA_UINT64 },
505 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 506 { "data_size", KSTAT_DATA_UINT64 },
500445c0 507 { "metadata_size", KSTAT_DATA_UINT64 },
d164b209 508 { "other_size", KSTAT_DATA_UINT64 },
13be560d 509 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
510 { "anon_evictable_data", KSTAT_DATA_UINT64 },
511 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 512 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
513 { "mru_evictable_data", KSTAT_DATA_UINT64 },
514 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 515 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
516 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
517 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 518 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
519 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
520 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 521 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
522 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
523 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
524 { "l2_hits", KSTAT_DATA_UINT64 },
525 { "l2_misses", KSTAT_DATA_UINT64 },
526 { "l2_feeds", KSTAT_DATA_UINT64 },
527 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
528 { "l2_read_bytes", KSTAT_DATA_UINT64 },
529 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
530 { "l2_writes_sent", KSTAT_DATA_UINT64 },
531 { "l2_writes_done", KSTAT_DATA_UINT64 },
532 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 533 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
534 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
535 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 536 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f 537 { "l2_free_on_write", KSTAT_DATA_UINT64 },
ca0bf58d 538 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
539 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
540 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
541 { "l2_io_error", KSTAT_DATA_UINT64 },
542 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 543 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 544 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
545 { "l2_compress_successes", KSTAT_DATA_UINT64 },
546 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
547 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 548 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
549 { "duplicate_buffers", KSTAT_DATA_UINT64 },
550 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
551 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
552 { "memory_direct_count", KSTAT_DATA_UINT64 },
553 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
554 { "arc_no_grow", KSTAT_DATA_UINT64 },
555 { "arc_tempreserve", KSTAT_DATA_UINT64 },
556 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 557 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
558 { "arc_meta_used", KSTAT_DATA_UINT64 },
559 { "arc_meta_limit", KSTAT_DATA_UINT64 },
560 { "arc_meta_max", KSTAT_DATA_UINT64 },
500445c0 561 { "arc_meta_min", KSTAT_DATA_UINT64 }
34dc7c2f
BB
562};
563
564#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
565
566#define ARCSTAT_INCR(stat, val) \
d3cc8b15 567 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 568
428870ff 569#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
570#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
571
572#define ARCSTAT_MAX(stat, val) { \
573 uint64_t m; \
574 while ((val) > (m = arc_stats.stat.value.ui64) && \
575 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
576 continue; \
577}
578
579#define ARCSTAT_MAXSTAT(stat) \
580 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
581
582/*
583 * We define a macro to allow ARC hits/misses to be easily broken down by
584 * two separate conditions, giving a total of four different subtypes for
585 * each of hits and misses (so eight statistics total).
586 */
587#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
588 if (cond1) { \
589 if (cond2) { \
590 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
591 } else { \
592 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
593 } \
594 } else { \
595 if (cond2) { \
596 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
597 } else { \
598 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
599 } \
600 }
601
602kstat_t *arc_ksp;
428870ff 603static arc_state_t *arc_anon;
34dc7c2f
BB
604static arc_state_t *arc_mru;
605static arc_state_t *arc_mru_ghost;
606static arc_state_t *arc_mfu;
607static arc_state_t *arc_mfu_ghost;
608static arc_state_t *arc_l2c_only;
609
610/*
611 * There are several ARC variables that are critical to export as kstats --
612 * but we don't want to have to grovel around in the kstat whenever we wish to
613 * manipulate them. For these variables, we therefore define them to be in
614 * terms of the statistic variable. This assures that we are not introducing
615 * the possibility of inconsistency by having shadow copies of the variables,
616 * while still allowing the code to be readable.
617 */
618#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
619#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
620#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
621#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
622#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
623#define arc_no_grow ARCSTAT(arcstat_no_grow)
624#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
625#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 626#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
ca0bf58d 627#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
628#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
629#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 630
3a17a7a9
SK
631#define L2ARC_IS_VALID_COMPRESS(_c_) \
632 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
633
ab26409d
BB
634static list_t arc_prune_list;
635static kmutex_t arc_prune_mtx;
f6046738 636static taskq_t *arc_prune_taskq;
34dc7c2f 637static arc_buf_t *arc_eviction_list;
34dc7c2f 638static arc_buf_hdr_t arc_eviction_hdr;
428870ff 639
34dc7c2f
BB
640#define GHOST_STATE(state) \
641 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
642 (state) == arc_l2c_only)
643
2a432414
GW
644#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
645#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
646#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
647#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
648#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
649#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
b9541d6b 650
2a432414 651#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
b9541d6b 652#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
2a432414 653#define HDR_L2_READING(hdr) \
b9541d6b
CW
654 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
655 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
656#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
657#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
658#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
34dc7c2f 659
b9541d6b
CW
660#define HDR_ISTYPE_METADATA(hdr) \
661 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
662#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
663
664#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
665#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
666
667/* For storing compression mode in b_flags */
668#define HDR_COMPRESS_OFFSET 24
669#define HDR_COMPRESS_NBITS 7
670
671#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
672 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
673#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
674 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
675
34dc7c2f
BB
676/*
677 * Other sizes
678 */
679
b9541d6b
CW
680#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
681#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
682
683/*
684 * Hash table routines
685 */
686
00b46022
BB
687#define HT_LOCK_ALIGN 64
688#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
689
690struct ht_lock {
691 kmutex_t ht_lock;
692#ifdef _KERNEL
00b46022 693 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
694#endif
695};
696
b31d8ea7 697#define BUF_LOCKS 8192
34dc7c2f
BB
698typedef struct buf_hash_table {
699 uint64_t ht_mask;
700 arc_buf_hdr_t **ht_table;
701 struct ht_lock ht_locks[BUF_LOCKS];
702} buf_hash_table_t;
703
704static buf_hash_table_t buf_hash_table;
705
706#define BUF_HASH_INDEX(spa, dva, birth) \
707 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
708#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
709#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
710#define HDR_LOCK(hdr) \
711 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
712
713uint64_t zfs_crc64_table[256];
714
715/*
716 * Level 2 ARC
717 */
718
719#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
720#define L2ARC_HEADROOM 2 /* num of writes */
721/*
722 * If we discover during ARC scan any buffers to be compressed, we boost
723 * our headroom for the next scanning cycle by this percentage multiple.
724 */
725#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
726#define L2ARC_FEED_SECS 1 /* caching interval secs */
727#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 728
d962d5da
PS
729/*
730 * Used to distinguish headers that are being process by
731 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
732 * address. This can happen when the header is added to the l2arc's list
733 * of buffers to write in the first stage of l2arc_write_buffers(), but
734 * has not yet been written out which happens in the second stage of
735 * l2arc_write_buffers().
736 */
737#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
738
34dc7c2f
BB
739#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
740#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
741
d3cc8b15 742/* L2ARC Performance Tunables */
abd8610c
BB
743unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
744unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
745unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 746unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
747unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
748unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
749int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 750int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 751int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 752int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
753
754/*
755 * L2ARC Internals
756 */
34dc7c2f
BB
757static list_t L2ARC_dev_list; /* device list */
758static list_t *l2arc_dev_list; /* device list pointer */
759static kmutex_t l2arc_dev_mtx; /* device list mutex */
760static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
761static list_t L2ARC_free_on_write; /* free after write buf list */
762static list_t *l2arc_free_on_write; /* free after write list ptr */
763static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
764static uint64_t l2arc_ndev; /* number of devices */
765
766typedef struct l2arc_read_callback {
3a17a7a9
SK
767 arc_buf_t *l2rcb_buf; /* read buffer */
768 spa_t *l2rcb_spa; /* spa */
769 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 770 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
771 int l2rcb_flags; /* original flags */
772 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
773} l2arc_read_callback_t;
774
34dc7c2f
BB
775typedef struct l2arc_data_free {
776 /* protected by l2arc_free_on_write_mtx */
777 void *l2df_data;
778 size_t l2df_size;
779 void (*l2df_func)(void *, size_t);
780 list_node_t l2df_list_node;
781} l2arc_data_free_t;
782
783static kmutex_t l2arc_feed_thr_lock;
784static kcondvar_t l2arc_feed_thr_cv;
785static uint8_t l2arc_thread_exit;
786
2a432414
GW
787static void arc_get_data_buf(arc_buf_t *);
788static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 789static boolean_t arc_is_overflowing(void);
2a432414 790static void arc_buf_watch(arc_buf_t *);
ca67b33a 791static void arc_tuning_update(void);
2a432414 792
b9541d6b
CW
793static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
794static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
795
2a432414
GW
796static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
797static void l2arc_read_done(zio_t *);
34dc7c2f 798
b9541d6b 799static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
2a432414
GW
800static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
801static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
3a17a7a9 802
34dc7c2f 803static uint64_t
d164b209 804buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 805{
34dc7c2f
BB
806 uint8_t *vdva = (uint8_t *)dva;
807 uint64_t crc = -1ULL;
808 int i;
809
810 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
811
812 for (i = 0; i < sizeof (dva_t); i++)
813 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
814
d164b209 815 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
816
817 return (crc);
818}
819
820#define BUF_EMPTY(buf) \
821 ((buf)->b_dva.dva_word[0] == 0 && \
b9541d6b 822 (buf)->b_dva.dva_word[1] == 0)
34dc7c2f
BB
823
824#define BUF_EQUAL(spa, dva, birth, buf) \
825 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
826 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
827 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
828
428870ff
BB
829static void
830buf_discard_identity(arc_buf_hdr_t *hdr)
831{
832 hdr->b_dva.dva_word[0] = 0;
833 hdr->b_dva.dva_word[1] = 0;
834 hdr->b_birth = 0;
428870ff
BB
835}
836
34dc7c2f 837static arc_buf_hdr_t *
9b67f605 838buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 839{
9b67f605
MA
840 const dva_t *dva = BP_IDENTITY(bp);
841 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
842 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
843 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 844 arc_buf_hdr_t *hdr;
34dc7c2f
BB
845
846 mutex_enter(hash_lock);
2a432414
GW
847 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
848 hdr = hdr->b_hash_next) {
849 if (BUF_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 850 *lockp = hash_lock;
2a432414 851 return (hdr);
34dc7c2f
BB
852 }
853 }
854 mutex_exit(hash_lock);
855 *lockp = NULL;
856 return (NULL);
857}
858
859/*
860 * Insert an entry into the hash table. If there is already an element
861 * equal to elem in the hash table, then the already existing element
862 * will be returned and the new element will not be inserted.
863 * Otherwise returns NULL.
b9541d6b 864 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
865 */
866static arc_buf_hdr_t *
2a432414 867buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 868{
2a432414 869 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 870 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 871 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
872 uint32_t i;
873
2a432414
GW
874 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
875 ASSERT(hdr->b_birth != 0);
876 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
877
878 if (lockp != NULL) {
879 *lockp = hash_lock;
880 mutex_enter(hash_lock);
881 } else {
882 ASSERT(MUTEX_HELD(hash_lock));
883 }
884
2a432414
GW
885 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
886 fhdr = fhdr->b_hash_next, i++) {
887 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
888 return (fhdr);
34dc7c2f
BB
889 }
890
2a432414
GW
891 hdr->b_hash_next = buf_hash_table.ht_table[idx];
892 buf_hash_table.ht_table[idx] = hdr;
893 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
894
895 /* collect some hash table performance data */
896 if (i > 0) {
897 ARCSTAT_BUMP(arcstat_hash_collisions);
898 if (i == 1)
899 ARCSTAT_BUMP(arcstat_hash_chains);
900
901 ARCSTAT_MAX(arcstat_hash_chain_max, i);
902 }
903
904 ARCSTAT_BUMP(arcstat_hash_elements);
905 ARCSTAT_MAXSTAT(arcstat_hash_elements);
906
907 return (NULL);
908}
909
910static void
2a432414 911buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 912{
2a432414
GW
913 arc_buf_hdr_t *fhdr, **hdrp;
914 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
915
916 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 917 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 918
2a432414
GW
919 hdrp = &buf_hash_table.ht_table[idx];
920 while ((fhdr = *hdrp) != hdr) {
921 ASSERT(fhdr != NULL);
922 hdrp = &fhdr->b_hash_next;
34dc7c2f 923 }
2a432414
GW
924 *hdrp = hdr->b_hash_next;
925 hdr->b_hash_next = NULL;
926 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
927
928 /* collect some hash table performance data */
929 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
930
931 if (buf_hash_table.ht_table[idx] &&
932 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
933 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
934}
935
936/*
937 * Global data structures and functions for the buf kmem cache.
938 */
b9541d6b
CW
939static kmem_cache_t *hdr_full_cache;
940static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
941static kmem_cache_t *buf_cache;
942
943static void
944buf_fini(void)
945{
946 int i;
947
00b46022 948#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
949 /*
950 * Large allocations which do not require contiguous pages
951 * should be using vmem_free() in the linux kernel\
952 */
00b46022
BB
953 vmem_free(buf_hash_table.ht_table,
954 (buf_hash_table.ht_mask + 1) * sizeof (void *));
955#else
34dc7c2f
BB
956 kmem_free(buf_hash_table.ht_table,
957 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 958#endif
34dc7c2f
BB
959 for (i = 0; i < BUF_LOCKS; i++)
960 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
961 kmem_cache_destroy(hdr_full_cache);
962 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
963 kmem_cache_destroy(buf_cache);
964}
965
966/*
967 * Constructor callback - called when the cache is empty
968 * and a new buf is requested.
969 */
970/* ARGSUSED */
971static int
b9541d6b
CW
972hdr_full_cons(void *vbuf, void *unused, int kmflag)
973{
974 arc_buf_hdr_t *hdr = vbuf;
975
976 bzero(hdr, HDR_FULL_SIZE);
977 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
978 refcount_create(&hdr->b_l1hdr.b_refcnt);
979 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
980 list_link_init(&hdr->b_l1hdr.b_arc_node);
981 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 982 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
983 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
984
985 return (0);
986}
987
988/* ARGSUSED */
989static int
990hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 991{
2a432414
GW
992 arc_buf_hdr_t *hdr = vbuf;
993
b9541d6b
CW
994 bzero(hdr, HDR_L2ONLY_SIZE);
995 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 996
34dc7c2f
BB
997 return (0);
998}
999
b128c09f
BB
1000/* ARGSUSED */
1001static int
1002buf_cons(void *vbuf, void *unused, int kmflag)
1003{
1004 arc_buf_t *buf = vbuf;
1005
1006 bzero(buf, sizeof (arc_buf_t));
428870ff 1007 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1008 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1009
b128c09f
BB
1010 return (0);
1011}
1012
34dc7c2f
BB
1013/*
1014 * Destructor callback - called when a cached buf is
1015 * no longer required.
1016 */
1017/* ARGSUSED */
1018static void
b9541d6b 1019hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1020{
2a432414 1021 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1022
2a432414 1023 ASSERT(BUF_EMPTY(hdr));
b9541d6b
CW
1024 cv_destroy(&hdr->b_l1hdr.b_cv);
1025 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1026 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1027 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1028 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1029}
1030
1031/* ARGSUSED */
1032static void
1033hdr_l2only_dest(void *vbuf, void *unused)
1034{
1035 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1036
1037 ASSERT(BUF_EMPTY(hdr));
1038 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1039}
1040
b128c09f
BB
1041/* ARGSUSED */
1042static void
1043buf_dest(void *vbuf, void *unused)
1044{
1045 arc_buf_t *buf = vbuf;
1046
428870ff 1047 mutex_destroy(&buf->b_evict_lock);
d164b209 1048 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1049}
1050
34dc7c2f
BB
1051static void
1052buf_init(void)
1053{
1054 uint64_t *ct;
1055 uint64_t hsize = 1ULL << 12;
1056 int i, j;
1057
1058 /*
1059 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1060 * with an average block size of zfs_arc_average_blocksize (default 8K).
1061 * By default, the table will take up
1062 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1063 */
49ddb315 1064 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
1065 hsize <<= 1;
1066retry:
1067 buf_hash_table.ht_mask = hsize - 1;
00b46022 1068#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1069 /*
1070 * Large allocations which do not require contiguous pages
1071 * should be using vmem_alloc() in the linux kernel
1072 */
00b46022
BB
1073 buf_hash_table.ht_table =
1074 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1075#else
34dc7c2f
BB
1076 buf_hash_table.ht_table =
1077 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1078#endif
34dc7c2f
BB
1079 if (buf_hash_table.ht_table == NULL) {
1080 ASSERT(hsize > (1ULL << 8));
1081 hsize >>= 1;
1082 goto retry;
1083 }
1084
b9541d6b
CW
1085 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1086 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1087 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1088 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1089 NULL, NULL, 0);
34dc7c2f 1090 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1091 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1092
1093 for (i = 0; i < 256; i++)
1094 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1095 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1096
1097 for (i = 0; i < BUF_LOCKS; i++) {
1098 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1099 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1100 }
1101}
1102
b9541d6b
CW
1103/*
1104 * Transition between the two allocation states for the arc_buf_hdr struct.
1105 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1106 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1107 * version is used when a cache buffer is only in the L2ARC in order to reduce
1108 * memory usage.
1109 */
1110static arc_buf_hdr_t *
1111arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1112{
1113 arc_buf_hdr_t *nhdr;
1114 l2arc_dev_t *dev;
1115
1116 ASSERT(HDR_HAS_L2HDR(hdr));
1117 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1118 (old == hdr_l2only_cache && new == hdr_full_cache));
1119
1120 dev = hdr->b_l2hdr.b_dev;
1121 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1122
1123 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1124 buf_hash_remove(hdr);
1125
1126 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
d962d5da 1127
b9541d6b
CW
1128 if (new == hdr_full_cache) {
1129 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1130 /*
1131 * arc_access and arc_change_state need to be aware that a
1132 * header has just come out of L2ARC, so we set its state to
1133 * l2c_only even though it's about to change.
1134 */
1135 nhdr->b_l1hdr.b_state = arc_l2c_only;
ca0bf58d
PS
1136
1137 /* Verify previous threads set to NULL before freeing */
1138 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
b9541d6b
CW
1139 } else {
1140 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1141 ASSERT0(hdr->b_l1hdr.b_datacnt);
ca0bf58d
PS
1142
1143 /*
1144 * If we've reached here, We must have been called from
1145 * arc_evict_hdr(), as such we should have already been
1146 * removed from any ghost list we were previously on
1147 * (which protects us from racing with arc_evict_state),
1148 * thus no locking is needed during this check.
1149 */
1150 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1151
b9541d6b 1152 /*
ca0bf58d
PS
1153 * A buffer must not be moved into the arc_l2c_only
1154 * state if it's not finished being written out to the
1155 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1156 * might try to be accessed, even though it was removed.
b9541d6b 1157 */
ca0bf58d
PS
1158 VERIFY(!HDR_L2_WRITING(hdr));
1159 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1160
b9541d6b
CW
1161 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1162 }
1163 /*
1164 * The header has been reallocated so we need to re-insert it into any
1165 * lists it was on.
1166 */
1167 (void) buf_hash_insert(nhdr, NULL);
1168
1169 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1170
1171 mutex_enter(&dev->l2ad_mtx);
1172
1173 /*
1174 * We must place the realloc'ed header back into the list at
1175 * the same spot. Otherwise, if it's placed earlier in the list,
1176 * l2arc_write_buffers() could find it during the function's
1177 * write phase, and try to write it out to the l2arc.
1178 */
1179 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1180 list_remove(&dev->l2ad_buflist, hdr);
1181
1182 mutex_exit(&dev->l2ad_mtx);
1183
d962d5da
PS
1184 /*
1185 * Since we're using the pointer address as the tag when
1186 * incrementing and decrementing the l2ad_alloc refcount, we
1187 * must remove the old pointer (that we're about to destroy) and
1188 * add the new pointer to the refcount. Otherwise we'd remove
1189 * the wrong pointer address when calling arc_hdr_destroy() later.
1190 */
1191
1192 (void) refcount_remove_many(&dev->l2ad_alloc,
1193 hdr->b_l2hdr.b_asize, hdr);
1194
1195 (void) refcount_add_many(&dev->l2ad_alloc,
1196 nhdr->b_l2hdr.b_asize, nhdr);
1197
b9541d6b
CW
1198 buf_discard_identity(hdr);
1199 hdr->b_freeze_cksum = NULL;
1200 kmem_cache_free(old, hdr);
1201
1202 return (nhdr);
1203}
1204
1205
34dc7c2f
BB
1206#define ARC_MINTIME (hz>>4) /* 62 ms */
1207
1208static void
1209arc_cksum_verify(arc_buf_t *buf)
1210{
1211 zio_cksum_t zc;
1212
1213 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1214 return;
1215
b9541d6b
CW
1216 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1217 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1218 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1219 return;
1220 }
1221 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1222 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1223 panic("buffer modified while frozen!");
b9541d6b 1224 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1225}
1226
1227static int
1228arc_cksum_equal(arc_buf_t *buf)
1229{
1230 zio_cksum_t zc;
1231 int equal;
1232
b9541d6b 1233 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1234 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1235 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
b9541d6b 1236 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1237
1238 return (equal);
1239}
1240
1241static void
1242arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1243{
1244 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1245 return;
1246
b9541d6b 1247 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f 1248 if (buf->b_hdr->b_freeze_cksum != NULL) {
b9541d6b 1249 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1250 return;
1251 }
409dc1a5 1252 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
79c76d5b 1253 KM_SLEEP);
34dc7c2f
BB
1254 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1255 buf->b_hdr->b_freeze_cksum);
b9541d6b 1256 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1257 arc_buf_watch(buf);
1258}
1259
1260#ifndef _KERNEL
1261void
1262arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1263{
1264 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1265}
1266#endif
1267
1268/* ARGSUSED */
1269static void
1270arc_buf_unwatch(arc_buf_t *buf)
1271{
1272#ifndef _KERNEL
1273 if (arc_watch) {
1274 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1275 PROT_READ | PROT_WRITE));
1276 }
1277#endif
1278}
1279
1280/* ARGSUSED */
1281static void
1282arc_buf_watch(arc_buf_t *buf)
1283{
1284#ifndef _KERNEL
1285 if (arc_watch)
1286 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1287#endif
34dc7c2f
BB
1288}
1289
b9541d6b
CW
1290static arc_buf_contents_t
1291arc_buf_type(arc_buf_hdr_t *hdr)
1292{
1293 if (HDR_ISTYPE_METADATA(hdr)) {
1294 return (ARC_BUFC_METADATA);
1295 } else {
1296 return (ARC_BUFC_DATA);
1297 }
1298}
1299
1300static uint32_t
1301arc_bufc_to_flags(arc_buf_contents_t type)
1302{
1303 switch (type) {
1304 case ARC_BUFC_DATA:
1305 /* metadata field is 0 if buffer contains normal data */
1306 return (0);
1307 case ARC_BUFC_METADATA:
1308 return (ARC_FLAG_BUFC_METADATA);
1309 default:
1310 break;
1311 }
1312 panic("undefined ARC buffer type!");
1313 return ((uint32_t)-1);
1314}
1315
34dc7c2f
BB
1316void
1317arc_buf_thaw(arc_buf_t *buf)
1318{
1319 if (zfs_flags & ZFS_DEBUG_MODIFY) {
b9541d6b 1320 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f 1321 panic("modifying non-anon buffer!");
b9541d6b 1322 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
34dc7c2f
BB
1323 panic("modifying buffer while i/o in progress!");
1324 arc_cksum_verify(buf);
1325 }
1326
b9541d6b 1327 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1328 if (buf->b_hdr->b_freeze_cksum != NULL) {
1329 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1330 buf->b_hdr->b_freeze_cksum = NULL;
1331 }
428870ff 1332
b9541d6b 1333 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1334
1335 arc_buf_unwatch(buf);
34dc7c2f
BB
1336}
1337
1338void
1339arc_buf_freeze(arc_buf_t *buf)
1340{
428870ff
BB
1341 kmutex_t *hash_lock;
1342
34dc7c2f
BB
1343 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1344 return;
1345
428870ff
BB
1346 hash_lock = HDR_LOCK(buf->b_hdr);
1347 mutex_enter(hash_lock);
1348
34dc7c2f 1349 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
b9541d6b 1350 buf->b_hdr->b_l1hdr.b_state == arc_anon);
34dc7c2f 1351 arc_cksum_compute(buf, B_FALSE);
428870ff 1352 mutex_exit(hash_lock);
498877ba 1353
34dc7c2f
BB
1354}
1355
1356static void
2a432414 1357add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f 1358{
b9541d6b
CW
1359 arc_state_t *state;
1360
1361 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1362 ASSERT(MUTEX_HELD(hash_lock));
1363
b9541d6b
CW
1364 state = hdr->b_l1hdr.b_state;
1365
1366 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1367 (state != arc_anon)) {
1368 /* We don't use the L2-only state list. */
1369 if (state != arc_l2c_only) {
ca0bf58d 1370 arc_buf_contents_t type = arc_buf_type(hdr);
b9541d6b 1371 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
ca0bf58d
PS
1372 multilist_t *list = &state->arcs_list[type];
1373 uint64_t *size = &state->arcs_lsize[type];
1374
1375 multilist_remove(list, hdr);
b9541d6b 1376
b9541d6b
CW
1377 if (GHOST_STATE(state)) {
1378 ASSERT0(hdr->b_l1hdr.b_datacnt);
1379 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1380 delta = hdr->b_size;
1381 }
1382 ASSERT(delta > 0);
1383 ASSERT3U(*size, >=, delta);
1384 atomic_add_64(size, -delta);
34dc7c2f 1385 }
b128c09f 1386 /* remove the prefetch flag if we get a reference */
b9541d6b 1387 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
34dc7c2f
BB
1388 }
1389}
1390
1391static int
2a432414 1392remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1393{
1394 int cnt;
b9541d6b 1395 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1396
b9541d6b 1397 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1398 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1399 ASSERT(!GHOST_STATE(state));
1400
b9541d6b
CW
1401 /*
1402 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1403 * check to prevent usage of the arc_l2c_only list.
1404 */
1405 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1406 (state != arc_anon)) {
ca0bf58d
PS
1407 arc_buf_contents_t type = arc_buf_type(hdr);
1408 multilist_t *list = &state->arcs_list[type];
1409 uint64_t *size = &state->arcs_lsize[type];
1410
1411 multilist_insert(list, hdr);
34dc7c2f 1412
b9541d6b
CW
1413 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1414 atomic_add_64(size, hdr->b_size *
1415 hdr->b_l1hdr.b_datacnt);
34dc7c2f
BB
1416 }
1417 return (cnt);
1418}
1419
e0b0ca98
BB
1420/*
1421 * Returns detailed information about a specific arc buffer. When the
1422 * state_index argument is set the function will calculate the arc header
1423 * list position for its arc state. Since this requires a linear traversal
1424 * callers are strongly encourage not to do this. However, it can be helpful
1425 * for targeted analysis so the functionality is provided.
1426 */
1427void
1428arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1429{
1430 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
1431 l1arc_buf_hdr_t *l1hdr = NULL;
1432 l2arc_buf_hdr_t *l2hdr = NULL;
1433 arc_state_t *state = NULL;
1434
1435 if (HDR_HAS_L1HDR(hdr)) {
1436 l1hdr = &hdr->b_l1hdr;
1437 state = l1hdr->b_state;
1438 }
1439 if (HDR_HAS_L2HDR(hdr))
1440 l2hdr = &hdr->b_l2hdr;
e0b0ca98 1441
d1d7e268 1442 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98 1443 abi->abi_flags = hdr->b_flags;
b9541d6b
CW
1444
1445 if (l1hdr) {
1446 abi->abi_datacnt = l1hdr->b_datacnt;
1447 abi->abi_access = l1hdr->b_arc_access;
1448 abi->abi_mru_hits = l1hdr->b_mru_hits;
1449 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1450 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1451 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1452 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1453 }
1454
1455 if (l2hdr) {
1456 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1457 abi->abi_l2arc_asize = l2hdr->b_asize;
1458 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1459 abi->abi_l2arc_hits = l2hdr->b_hits;
1460 }
1461
e0b0ca98 1462 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 1463 abi->abi_state_contents = arc_buf_type(hdr);
e0b0ca98 1464 abi->abi_size = hdr->b_size;
e0b0ca98
BB
1465}
1466
34dc7c2f 1467/*
ca0bf58d 1468 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
1469 * for the buffer must be held by the caller.
1470 */
1471static void
2a432414
GW
1472arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1473 kmutex_t *hash_lock)
34dc7c2f 1474{
b9541d6b
CW
1475 arc_state_t *old_state;
1476 int64_t refcnt;
1477 uint32_t datacnt;
34dc7c2f 1478 uint64_t from_delta, to_delta;
b9541d6b
CW
1479 arc_buf_contents_t buftype = arc_buf_type(hdr);
1480
1481 /*
1482 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1483 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1484 * L1 hdr doesn't always exist when we change state to arc_anon before
1485 * destroying a header, in which case reallocating to add the L1 hdr is
1486 * pointless.
1487 */
1488 if (HDR_HAS_L1HDR(hdr)) {
1489 old_state = hdr->b_l1hdr.b_state;
1490 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1491 datacnt = hdr->b_l1hdr.b_datacnt;
1492 } else {
1493 old_state = arc_l2c_only;
1494 refcnt = 0;
1495 datacnt = 0;
1496 }
34dc7c2f
BB
1497
1498 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1499 ASSERT3P(new_state, !=, old_state);
b9541d6b
CW
1500 ASSERT(refcnt == 0 || datacnt > 0);
1501 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1502 ASSERT(old_state != arc_anon || datacnt <= 1);
34dc7c2f 1503
b9541d6b 1504 from_delta = to_delta = datacnt * hdr->b_size;
34dc7c2f
BB
1505
1506 /*
1507 * If this buffer is evictable, transfer it from the
1508 * old state list to the new state list.
1509 */
1510 if (refcnt == 0) {
b9541d6b 1511 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 1512 uint64_t *size = &old_state->arcs_lsize[buftype];
34dc7c2f 1513
b9541d6b 1514 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1515 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1516
1517 /*
1518 * If prefetching out of the ghost cache,
428870ff 1519 * we will have a non-zero datacnt.
34dc7c2f 1520 */
b9541d6b 1521 if (GHOST_STATE(old_state) && datacnt == 0) {
34dc7c2f 1522 /* ghost elements have a ghost size */
b9541d6b 1523 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1524 from_delta = hdr->b_size;
34dc7c2f
BB
1525 }
1526 ASSERT3U(*size, >=, from_delta);
1527 atomic_add_64(size, -from_delta);
34dc7c2f 1528 }
b9541d6b 1529 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b 1530 uint64_t *size = &new_state->arcs_lsize[buftype];
34dc7c2f 1531
b9541d6b
CW
1532 /*
1533 * An L1 header always exists here, since if we're
1534 * moving to some L1-cached state (i.e. not l2c_only or
1535 * anonymous), we realloc the header to add an L1hdr
1536 * beforehand.
1537 */
1538 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1539 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1540
1541 /* ghost elements have a ghost size */
1542 if (GHOST_STATE(new_state)) {
b9541d6b
CW
1543 ASSERT0(datacnt);
1544 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1545 to_delta = hdr->b_size;
34dc7c2f
BB
1546 }
1547 atomic_add_64(size, to_delta);
34dc7c2f
BB
1548 }
1549 }
1550
2a432414
GW
1551 ASSERT(!BUF_EMPTY(hdr));
1552 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1553 buf_hash_remove(hdr);
34dc7c2f 1554
b9541d6b
CW
1555 /* adjust state sizes (ignore arc_l2c_only) */
1556 if (to_delta && new_state != arc_l2c_only)
34dc7c2f 1557 atomic_add_64(&new_state->arcs_size, to_delta);
b9541d6b 1558 if (from_delta && old_state != arc_l2c_only) {
34dc7c2f
BB
1559 ASSERT3U(old_state->arcs_size, >=, from_delta);
1560 atomic_add_64(&old_state->arcs_size, -from_delta);
1561 }
b9541d6b
CW
1562 if (HDR_HAS_L1HDR(hdr))
1563 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 1564
b9541d6b
CW
1565 /*
1566 * L2 headers should never be on the L2 state list since they don't
1567 * have L1 headers allocated.
1568 */
ca0bf58d
PS
1569 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1570 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
1571}
1572
1573void
d164b209 1574arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1575{
d164b209
BB
1576 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1577
1578 switch (type) {
e75c13c3
BB
1579 default:
1580 break;
d164b209
BB
1581 case ARC_SPACE_DATA:
1582 ARCSTAT_INCR(arcstat_data_size, space);
1583 break;
cc7f677c 1584 case ARC_SPACE_META:
500445c0 1585 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 1586 break;
d164b209
BB
1587 case ARC_SPACE_OTHER:
1588 ARCSTAT_INCR(arcstat_other_size, space);
1589 break;
1590 case ARC_SPACE_HDRS:
1591 ARCSTAT_INCR(arcstat_hdr_size, space);
1592 break;
1593 case ARC_SPACE_L2HDRS:
1594 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1595 break;
1596 }
1597
500445c0 1598 if (type != ARC_SPACE_DATA)
cc7f677c
PS
1599 ARCSTAT_INCR(arcstat_meta_used, space);
1600
34dc7c2f
BB
1601 atomic_add_64(&arc_size, space);
1602}
1603
1604void
d164b209 1605arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1606{
d164b209
BB
1607 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1608
1609 switch (type) {
e75c13c3
BB
1610 default:
1611 break;
d164b209
BB
1612 case ARC_SPACE_DATA:
1613 ARCSTAT_INCR(arcstat_data_size, -space);
1614 break;
cc7f677c 1615 case ARC_SPACE_META:
500445c0 1616 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 1617 break;
d164b209
BB
1618 case ARC_SPACE_OTHER:
1619 ARCSTAT_INCR(arcstat_other_size, -space);
1620 break;
1621 case ARC_SPACE_HDRS:
1622 ARCSTAT_INCR(arcstat_hdr_size, -space);
1623 break;
1624 case ARC_SPACE_L2HDRS:
1625 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1626 break;
1627 }
1628
cc7f677c
PS
1629 if (type != ARC_SPACE_DATA) {
1630 ASSERT(arc_meta_used >= space);
500445c0
PS
1631 if (arc_meta_max < arc_meta_used)
1632 arc_meta_max = arc_meta_used;
cc7f677c
PS
1633 ARCSTAT_INCR(arcstat_meta_used, -space);
1634 }
1635
34dc7c2f
BB
1636 ASSERT(arc_size >= space);
1637 atomic_add_64(&arc_size, -space);
1638}
1639
34dc7c2f 1640arc_buf_t *
5f6d0b6f 1641arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1642{
1643 arc_buf_hdr_t *hdr;
1644 arc_buf_t *buf;
1645
f1512ee6 1646 VERIFY3U(size, <=, spa_maxblocksize(spa));
b9541d6b 1647 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f 1648 ASSERT(BUF_EMPTY(hdr));
b9541d6b 1649 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
34dc7c2f 1650 hdr->b_size = size;
3541dc6d 1651 hdr->b_spa = spa_load_guid(spa);
b9541d6b
CW
1652 hdr->b_l1hdr.b_mru_hits = 0;
1653 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1654 hdr->b_l1hdr.b_mfu_hits = 0;
1655 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1656 hdr->b_l1hdr.b_l2_hits = 0;
1657
34dc7c2f
BB
1658 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1659 buf->b_hdr = hdr;
1660 buf->b_data = NULL;
1661 buf->b_efunc = NULL;
1662 buf->b_private = NULL;
1663 buf->b_next = NULL;
b9541d6b
CW
1664
1665 hdr->b_flags = arc_bufc_to_flags(type);
1666 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1667
1668 hdr->b_l1hdr.b_buf = buf;
1669 hdr->b_l1hdr.b_state = arc_anon;
1670 hdr->b_l1hdr.b_arc_access = 0;
1671 hdr->b_l1hdr.b_datacnt = 1;
ca0bf58d 1672 hdr->b_l1hdr.b_tmp_cdata = NULL;
b9541d6b 1673
34dc7c2f 1674 arc_get_data_buf(buf);
b9541d6b
CW
1675
1676 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1677 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
34dc7c2f
BB
1678
1679 return (buf);
1680}
1681
9babb374
BB
1682static char *arc_onloan_tag = "onloan";
1683
1684/*
1685 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1686 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1687 * buffers must be returned to the arc before they can be used by the DMU or
1688 * freed.
1689 */
1690arc_buf_t *
5f6d0b6f 1691arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1692{
1693 arc_buf_t *buf;
1694
1695 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1696
1697 atomic_add_64(&arc_loaned_bytes, size);
1698 return (buf);
1699}
1700
1701/*
1702 * Return a loaned arc buffer to the arc.
1703 */
1704void
1705arc_return_buf(arc_buf_t *buf, void *tag)
1706{
1707 arc_buf_hdr_t *hdr = buf->b_hdr;
1708
9babb374 1709 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1710 ASSERT(HDR_HAS_L1HDR(hdr));
1711 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1712 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374
BB
1713
1714 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1715}
1716
428870ff
BB
1717/* Detach an arc_buf from a dbuf (tag) */
1718void
1719arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1720{
b9541d6b 1721 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1722
1723 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1724 ASSERT(HDR_HAS_L1HDR(hdr));
1725 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1726 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff
BB
1727 buf->b_efunc = NULL;
1728 buf->b_private = NULL;
1729
1730 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1731}
1732
34dc7c2f
BB
1733static arc_buf_t *
1734arc_buf_clone(arc_buf_t *from)
1735{
1736 arc_buf_t *buf;
1737 arc_buf_hdr_t *hdr = from->b_hdr;
1738 uint64_t size = hdr->b_size;
1739
b9541d6b
CW
1740 ASSERT(HDR_HAS_L1HDR(hdr));
1741 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
428870ff 1742
34dc7c2f
BB
1743 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1744 buf->b_hdr = hdr;
1745 buf->b_data = NULL;
1746 buf->b_efunc = NULL;
1747 buf->b_private = NULL;
b9541d6b
CW
1748 buf->b_next = hdr->b_l1hdr.b_buf;
1749 hdr->b_l1hdr.b_buf = buf;
34dc7c2f
BB
1750 arc_get_data_buf(buf);
1751 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1752
1753 /*
1754 * This buffer already exists in the arc so create a duplicate
1755 * copy for the caller. If the buffer is associated with user data
1756 * then track the size and number of duplicates. These stats will be
1757 * updated as duplicate buffers are created and destroyed.
1758 */
b9541d6b 1759 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
1760 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1761 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1762 }
b9541d6b 1763 hdr->b_l1hdr.b_datacnt += 1;
34dc7c2f
BB
1764 return (buf);
1765}
1766
1767void
1768arc_buf_add_ref(arc_buf_t *buf, void* tag)
1769{
1770 arc_buf_hdr_t *hdr;
1771 kmutex_t *hash_lock;
1772
1773 /*
b128c09f
BB
1774 * Check to see if this buffer is evicted. Callers
1775 * must verify b_data != NULL to know if the add_ref
1776 * was successful.
34dc7c2f 1777 */
428870ff 1778 mutex_enter(&buf->b_evict_lock);
b128c09f 1779 if (buf->b_data == NULL) {
428870ff 1780 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1781 return;
1782 }
428870ff 1783 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1784 mutex_enter(hash_lock);
428870ff 1785 hdr = buf->b_hdr;
b9541d6b 1786 ASSERT(HDR_HAS_L1HDR(hdr));
428870ff
BB
1787 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1788 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1789
b9541d6b
CW
1790 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1791 hdr->b_l1hdr.b_state == arc_mfu);
1792
34dc7c2f 1793 add_reference(hdr, hash_lock, tag);
d164b209 1794 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1795 arc_access(hdr, hash_lock);
1796 mutex_exit(hash_lock);
1797 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
1798 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1799 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
1800 data, metadata, hits);
1801}
1802
ca0bf58d
PS
1803static void
1804arc_buf_free_on_write(void *data, size_t size,
1805 void (*free_func)(void *, size_t))
1806{
1807 l2arc_data_free_t *df;
1808
1809 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1810 df->l2df_data = data;
1811 df->l2df_size = size;
1812 df->l2df_func = free_func;
1813 mutex_enter(&l2arc_free_on_write_mtx);
1814 list_insert_head(l2arc_free_on_write, df);
1815 mutex_exit(&l2arc_free_on_write_mtx);
1816}
1817
34dc7c2f
BB
1818/*
1819 * Free the arc data buffer. If it is an l2arc write in progress,
1820 * the buffer is placed on l2arc_free_on_write to be freed later.
1821 */
1822static void
498877ba 1823arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1824{
498877ba
MA
1825 arc_buf_hdr_t *hdr = buf->b_hdr;
1826
34dc7c2f 1827 if (HDR_L2_WRITING(hdr)) {
ca0bf58d 1828 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1829 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1830 } else {
498877ba 1831 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1832 }
1833}
1834
ca0bf58d
PS
1835static void
1836arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1837{
1838 ASSERT(HDR_HAS_L2HDR(hdr));
1839 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1840
1841 /*
1842 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1843 * that doesn't exist, the header is in the arc_l2c_only state,
1844 * and there isn't anything to free (it's already been freed).
1845 */
1846 if (!HDR_HAS_L1HDR(hdr))
1847 return;
1848
1849 /*
1850 * The header isn't being written to the l2arc device, thus it
1851 * shouldn't have a b_tmp_cdata to free.
1852 */
1853 if (!HDR_L2_WRITING(hdr)) {
1854 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1855 return;
1856 }
1857
1858 /*
1859 * The header does not have compression enabled. This can be due
1860 * to the buffer not being compressible, or because we're
1861 * freeing the buffer before the second phase of
1862 * l2arc_write_buffer() has started (which does the compression
1863 * step). In either case, b_tmp_cdata does not point to a
1864 * separately compressed buffer, so there's nothing to free (it
1865 * points to the same buffer as the arc_buf_t's b_data field).
1866 */
1867 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1868 hdr->b_l1hdr.b_tmp_cdata = NULL;
1869 return;
1870 }
1871
1872 /*
1873 * There's nothing to free since the buffer was all zero's and
1874 * compressed to a zero length buffer.
1875 */
1876 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1877 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1878 return;
1879 }
1880
1881 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1882
1883 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1884 hdr->b_size, zio_data_buf_free);
1885
1886 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1887 hdr->b_l1hdr.b_tmp_cdata = NULL;
1888}
1889
bd089c54
MA
1890/*
1891 * Free up buf->b_data and if 'remove' is set, then pull the
1892 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1893 */
34dc7c2f 1894static void
ca0bf58d 1895arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
34dc7c2f
BB
1896{
1897 arc_buf_t **bufp;
1898
1899 /* free up data associated with the buf */
b9541d6b
CW
1900 if (buf->b_data != NULL) {
1901 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 1902 uint64_t size = buf->b_hdr->b_size;
b9541d6b 1903 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
1904
1905 arc_cksum_verify(buf);
498877ba 1906 arc_buf_unwatch(buf);
428870ff 1907
ca0bf58d
PS
1908 if (type == ARC_BUFC_METADATA) {
1909 arc_buf_data_free(buf, zio_buf_free);
1910 arc_space_return(size, ARC_SPACE_META);
1911 } else {
1912 ASSERT(type == ARC_BUFC_DATA);
1913 arc_buf_data_free(buf, zio_data_buf_free);
1914 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f 1915 }
ca0bf58d
PS
1916
1917 /* protected by hash lock, if in the hash table */
1918 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
34dc7c2f
BB
1919 uint64_t *cnt = &state->arcs_lsize[type];
1920
b9541d6b
CW
1921 ASSERT(refcount_is_zero(
1922 &buf->b_hdr->b_l1hdr.b_refcnt));
1923 ASSERT(state != arc_anon && state != arc_l2c_only);
34dc7c2f
BB
1924
1925 ASSERT3U(*cnt, >=, size);
1926 atomic_add_64(cnt, -size);
1927 }
1928 ASSERT3U(state->arcs_size, >=, size);
1929 atomic_add_64(&state->arcs_size, -size);
1930 buf->b_data = NULL;
1eb5bfa3
GW
1931
1932 /*
1933 * If we're destroying a duplicate buffer make sure
1934 * that the appropriate statistics are updated.
1935 */
b9541d6b
CW
1936 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
1937 HDR_ISTYPE_DATA(buf->b_hdr)) {
1eb5bfa3
GW
1938 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1939 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1940 }
b9541d6b
CW
1941 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
1942 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f
BB
1943 }
1944
1945 /* only remove the buf if requested */
bd089c54 1946 if (!remove)
34dc7c2f
BB
1947 return;
1948
1949 /* remove the buf from the hdr list */
b9541d6b
CW
1950 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
1951 bufp = &(*bufp)->b_next)
34dc7c2f
BB
1952 continue;
1953 *bufp = buf->b_next;
428870ff 1954 buf->b_next = NULL;
34dc7c2f
BB
1955
1956 ASSERT(buf->b_efunc == NULL);
1957
1958 /* clean up the buf */
1959 buf->b_hdr = NULL;
1960 kmem_cache_free(buf_cache, buf);
1961}
1962
d962d5da
PS
1963static void
1964arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
1965{
1966 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
1967 l2arc_dev_t *dev = l2hdr->b_dev;
1968
1969 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1970 ASSERT(HDR_HAS_L2HDR(hdr));
1971
1972 list_remove(&dev->l2ad_buflist, hdr);
1973
1974 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1975
1976 /*
1977 * We don't want to leak the b_tmp_cdata buffer that was
1978 * allocated in l2arc_write_buffers()
1979 */
1980 arc_buf_l2_cdata_free(hdr);
1981
1982 /*
1983 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
1984 * this header is being processed by l2arc_write_buffers() (i.e.
1985 * it's in the first stage of l2arc_write_buffers()).
1986 * Re-affirming that truth here, just to serve as a reminder. If
1987 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
1988 * may not have its HDR_L2_WRITING flag set. (the write may have
1989 * completed, in which case HDR_L2_WRITING will be false and the
1990 * b_daddr field will point to the address of the buffer on disk).
1991 */
1992 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
1993
1994 /*
1995 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
1996 * l2arc_write_buffers(). Since we've just removed this header
1997 * from the l2arc buffer list, this header will never reach the
1998 * second stage of l2arc_write_buffers(), which increments the
1999 * accounting stats for this header. Thus, we must be careful
2000 * not to decrement them for this header either.
2001 */
2002 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2003 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2004 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2005
2006 vdev_space_update(dev->l2ad_vdev,
2007 -l2hdr->b_asize, 0, 0);
2008
2009 (void) refcount_remove_many(&dev->l2ad_alloc,
2010 l2hdr->b_asize, hdr);
2011 }
2012
2013 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2014}
2015
34dc7c2f
BB
2016static void
2017arc_hdr_destroy(arc_buf_hdr_t *hdr)
2018{
b9541d6b
CW
2019 if (HDR_HAS_L1HDR(hdr)) {
2020 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2021 hdr->b_l1hdr.b_datacnt > 0);
2022 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2023 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2024 }
34dc7c2f 2025 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
2026 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2027
2028 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
2029 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2030 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 2031
d962d5da
PS
2032 if (!buflist_held)
2033 mutex_enter(&dev->l2ad_mtx);
b9541d6b 2034
ca0bf58d 2035 /*
d962d5da
PS
2036 * Even though we checked this conditional above, we
2037 * need to check this again now that we have the
2038 * l2ad_mtx. This is because we could be racing with
2039 * another thread calling l2arc_evict() which might have
2040 * destroyed this header's L2 portion as we were waiting
2041 * to acquire the l2ad_mtx. If that happens, we don't
2042 * want to re-destroy the header's L2 portion.
ca0bf58d 2043 */
d962d5da
PS
2044 if (HDR_HAS_L2HDR(hdr))
2045 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
2046
2047 if (!buflist_held)
d962d5da 2048 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
2049 }
2050
b9541d6b 2051 if (!BUF_EMPTY(hdr))
428870ff 2052 buf_discard_identity(hdr);
b9541d6b 2053
34dc7c2f
BB
2054 if (hdr->b_freeze_cksum != NULL) {
2055 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2056 hdr->b_freeze_cksum = NULL;
2057 }
2058
b9541d6b
CW
2059 if (HDR_HAS_L1HDR(hdr)) {
2060 while (hdr->b_l1hdr.b_buf) {
2061 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2062
2063 if (buf->b_efunc != NULL) {
ca0bf58d 2064 mutex_enter(&arc_user_evicts_lock);
b9541d6b
CW
2065 mutex_enter(&buf->b_evict_lock);
2066 ASSERT(buf->b_hdr != NULL);
ca0bf58d 2067 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
b9541d6b
CW
2068 hdr->b_l1hdr.b_buf = buf->b_next;
2069 buf->b_hdr = &arc_eviction_hdr;
2070 buf->b_next = arc_eviction_list;
2071 arc_eviction_list = buf;
2072 mutex_exit(&buf->b_evict_lock);
ca0bf58d
PS
2073 cv_signal(&arc_user_evicts_cv);
2074 mutex_exit(&arc_user_evicts_lock);
b9541d6b 2075 } else {
ca0bf58d 2076 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
b9541d6b
CW
2077 }
2078 }
2079 }
2080
34dc7c2f 2081 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 2082 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 2083 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
2084 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2085 kmem_cache_free(hdr_full_cache, hdr);
2086 } else {
2087 kmem_cache_free(hdr_l2only_cache, hdr);
2088 }
34dc7c2f
BB
2089}
2090
2091void
2092arc_buf_free(arc_buf_t *buf, void *tag)
2093{
2094 arc_buf_hdr_t *hdr = buf->b_hdr;
b9541d6b 2095 int hashed = hdr->b_l1hdr.b_state != arc_anon;
34dc7c2f
BB
2096
2097 ASSERT(buf->b_efunc == NULL);
2098 ASSERT(buf->b_data != NULL);
2099
2100 if (hashed) {
2101 kmutex_t *hash_lock = HDR_LOCK(hdr);
2102
2103 mutex_enter(hash_lock);
428870ff
BB
2104 hdr = buf->b_hdr;
2105 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2106
34dc7c2f 2107 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2108 if (hdr->b_l1hdr.b_datacnt > 1) {
ca0bf58d 2109 arc_buf_destroy(buf, TRUE);
428870ff 2110 } else {
b9541d6b 2111 ASSERT(buf == hdr->b_l1hdr.b_buf);
428870ff 2112 ASSERT(buf->b_efunc == NULL);
2a432414 2113 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 2114 }
34dc7c2f
BB
2115 mutex_exit(hash_lock);
2116 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2117 int destroy_hdr;
2118 /*
2119 * We are in the middle of an async write. Don't destroy
2120 * this buffer unless the write completes before we finish
2121 * decrementing the reference count.
2122 */
ca0bf58d 2123 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2124 (void) remove_reference(hdr, NULL, tag);
b9541d6b 2125 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f 2126 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
ca0bf58d 2127 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2128 if (destroy_hdr)
2129 arc_hdr_destroy(hdr);
2130 } else {
428870ff 2131 if (remove_reference(hdr, NULL, tag) > 0)
ca0bf58d 2132 arc_buf_destroy(buf, TRUE);
428870ff 2133 else
34dc7c2f 2134 arc_hdr_destroy(hdr);
34dc7c2f
BB
2135 }
2136}
2137
13fe0198 2138boolean_t
34dc7c2f
BB
2139arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2140{
2141 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 2142 kmutex_t *hash_lock = NULL;
13fe0198 2143 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f 2144
b9541d6b
CW
2145 if (hdr->b_l1hdr.b_state == arc_anon) {
2146 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
34dc7c2f
BB
2147 arc_buf_free(buf, tag);
2148 return (no_callback);
2149 }
2150
b4f7f105 2151 hash_lock = HDR_LOCK(hdr);
34dc7c2f 2152 mutex_enter(hash_lock);
428870ff 2153 hdr = buf->b_hdr;
b9541d6b 2154 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
428870ff 2155 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
b9541d6b 2156 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
34dc7c2f
BB
2157 ASSERT(buf->b_data != NULL);
2158
2159 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2160 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f 2161 if (no_callback)
ca0bf58d 2162 arc_buf_destroy(buf, TRUE);
34dc7c2f 2163 } else if (no_callback) {
b9541d6b 2164 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
428870ff 2165 ASSERT(buf->b_efunc == NULL);
2a432414 2166 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
34dc7c2f 2167 }
b9541d6b
CW
2168 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2169 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
2170 mutex_exit(hash_lock);
2171 return (no_callback);
2172}
2173
5f6d0b6f 2174uint64_t
34dc7c2f
BB
2175arc_buf_size(arc_buf_t *buf)
2176{
2177 return (buf->b_hdr->b_size);
2178}
2179
1eb5bfa3
GW
2180/*
2181 * Called from the DMU to determine if the current buffer should be
2182 * evicted. In order to ensure proper locking, the eviction must be initiated
2183 * from the DMU. Return true if the buffer is associated with user data and
2184 * duplicate buffers still exist.
2185 */
2186boolean_t
2187arc_buf_eviction_needed(arc_buf_t *buf)
2188{
2189 arc_buf_hdr_t *hdr;
2190 boolean_t evict_needed = B_FALSE;
2191
2192 if (zfs_disable_dup_eviction)
2193 return (B_FALSE);
2194
2195 mutex_enter(&buf->b_evict_lock);
2196 hdr = buf->b_hdr;
2197 if (hdr == NULL) {
2198 /*
2199 * We are in arc_do_user_evicts(); let that function
2200 * perform the eviction.
2201 */
2202 ASSERT(buf->b_data == NULL);
2203 mutex_exit(&buf->b_evict_lock);
2204 return (B_FALSE);
2205 } else if (buf->b_data == NULL) {
2206 /*
2207 * We have already been added to the arc eviction list;
2208 * recommend eviction.
2209 */
2210 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2211 mutex_exit(&buf->b_evict_lock);
2212 return (B_TRUE);
2213 }
2214
b9541d6b 2215 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
1eb5bfa3
GW
2216 evict_needed = B_TRUE;
2217
2218 mutex_exit(&buf->b_evict_lock);
2219 return (evict_needed);
2220}
2221
34dc7c2f 2222/*
ca0bf58d
PS
2223 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2224 * state of the header is dependent on its state prior to entering this
2225 * function. The following transitions are possible:
34dc7c2f 2226 *
ca0bf58d
PS
2227 * - arc_mru -> arc_mru_ghost
2228 * - arc_mfu -> arc_mfu_ghost
2229 * - arc_mru_ghost -> arc_l2c_only
2230 * - arc_mru_ghost -> deleted
2231 * - arc_mfu_ghost -> arc_l2c_only
2232 * - arc_mfu_ghost -> deleted
34dc7c2f 2233 */
ca0bf58d
PS
2234static int64_t
2235arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 2236{
ca0bf58d
PS
2237 arc_state_t *evicted_state, *state;
2238 int64_t bytes_evicted = 0;
34dc7c2f 2239
ca0bf58d
PS
2240 ASSERT(MUTEX_HELD(hash_lock));
2241 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 2242
ca0bf58d
PS
2243 state = hdr->b_l1hdr.b_state;
2244 if (GHOST_STATE(state)) {
2245 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2246 ASSERT(hdr->b_l1hdr.b_buf == NULL);
e8b96c60
MA
2247
2248 /*
ca0bf58d
PS
2249 * l2arc_write_buffers() relies on a header's L1 portion
2250 * (i.e. its b_tmp_cdata field) during its write phase.
2251 * Thus, we cannot push a header onto the arc_l2c_only
2252 * state (removing its L1 piece) until the header is
2253 * done being written to the l2arc.
e8b96c60 2254 */
ca0bf58d
PS
2255 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2256 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2257 return (bytes_evicted);
e8b96c60
MA
2258 }
2259
ca0bf58d
PS
2260 ARCSTAT_BUMP(arcstat_deleted);
2261 bytes_evicted += hdr->b_size;
428870ff 2262
ca0bf58d 2263 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 2264
ca0bf58d
PS
2265 if (HDR_HAS_L2HDR(hdr)) {
2266 /*
2267 * This buffer is cached on the 2nd Level ARC;
2268 * don't destroy the header.
2269 */
2270 arc_change_state(arc_l2c_only, hdr, hash_lock);
2271 /*
2272 * dropping from L1+L2 cached to L2-only,
2273 * realloc to remove the L1 header.
2274 */
2275 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2276 hdr_l2only_cache);
34dc7c2f 2277 } else {
ca0bf58d
PS
2278 arc_change_state(arc_anon, hdr, hash_lock);
2279 arc_hdr_destroy(hdr);
34dc7c2f 2280 }
ca0bf58d 2281 return (bytes_evicted);
34dc7c2f
BB
2282 }
2283
ca0bf58d
PS
2284 ASSERT(state == arc_mru || state == arc_mfu);
2285 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 2286
ca0bf58d
PS
2287 /* prefetch buffers have a minimum lifespan */
2288 if (HDR_IO_IN_PROGRESS(hdr) ||
2289 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2290 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2291 arc_min_prefetch_lifespan)) {
2292 ARCSTAT_BUMP(arcstat_evict_skip);
2293 return (bytes_evicted);
da8ccd0e
PS
2294 }
2295
ca0bf58d
PS
2296 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2297 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2298 while (hdr->b_l1hdr.b_buf) {
2299 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2300 if (!mutex_tryenter(&buf->b_evict_lock)) {
2301 ARCSTAT_BUMP(arcstat_mutex_miss);
2302 break;
2303 }
2304 if (buf->b_data != NULL)
2305 bytes_evicted += hdr->b_size;
2306 if (buf->b_efunc != NULL) {
2307 mutex_enter(&arc_user_evicts_lock);
2308 arc_buf_destroy(buf, FALSE);
2309 hdr->b_l1hdr.b_buf = buf->b_next;
2310 buf->b_hdr = &arc_eviction_hdr;
2311 buf->b_next = arc_eviction_list;
2312 arc_eviction_list = buf;
2313 cv_signal(&arc_user_evicts_cv);
2314 mutex_exit(&arc_user_evicts_lock);
2315 mutex_exit(&buf->b_evict_lock);
2316 } else {
2317 mutex_exit(&buf->b_evict_lock);
2318 arc_buf_destroy(buf, TRUE);
2319 }
2320 }
34dc7c2f 2321
ca0bf58d
PS
2322 if (HDR_HAS_L2HDR(hdr)) {
2323 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2324 } else {
2325 if (l2arc_write_eligible(hdr->b_spa, hdr))
2326 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2327 else
2328 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2329 }
34dc7c2f 2330
ca0bf58d
PS
2331 if (hdr->b_l1hdr.b_datacnt == 0) {
2332 arc_change_state(evicted_state, hdr, hash_lock);
2333 ASSERT(HDR_IN_HASH_TABLE(hdr));
2334 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2335 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2336 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2337 }
34dc7c2f 2338
ca0bf58d 2339 return (bytes_evicted);
34dc7c2f
BB
2340}
2341
ca0bf58d
PS
2342static uint64_t
2343arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2344 uint64_t spa, int64_t bytes)
34dc7c2f 2345{
ca0bf58d
PS
2346 multilist_sublist_t *mls;
2347 uint64_t bytes_evicted = 0;
2348 arc_buf_hdr_t *hdr;
34dc7c2f 2349 kmutex_t *hash_lock;
ca0bf58d 2350 int evict_count = 0;
34dc7c2f 2351
ca0bf58d
PS
2352 ASSERT3P(marker, !=, NULL);
2353 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2354
2355 mls = multilist_sublist_lock(ml, idx);
572e2857 2356
ca0bf58d
PS
2357 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2358 hdr = multilist_sublist_prev(mls, marker)) {
2359 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2360 (evict_count >= zfs_arc_evict_batch_limit))
2361 break;
2362
2363 /*
2364 * To keep our iteration location, move the marker
2365 * forward. Since we're not holding hdr's hash lock, we
2366 * must be very careful and not remove 'hdr' from the
2367 * sublist. Otherwise, other consumers might mistake the
2368 * 'hdr' as not being on a sublist when they call the
2369 * multilist_link_active() function (they all rely on
2370 * the hash lock protecting concurrent insertions and
2371 * removals). multilist_sublist_move_forward() was
2372 * specifically implemented to ensure this is the case
2373 * (only 'marker' will be removed and re-inserted).
2374 */
2375 multilist_sublist_move_forward(mls, marker);
2376
2377 /*
2378 * The only case where the b_spa field should ever be
2379 * zero, is the marker headers inserted by
2380 * arc_evict_state(). It's possible for multiple threads
2381 * to be calling arc_evict_state() concurrently (e.g.
2382 * dsl_pool_close() and zio_inject_fault()), so we must
2383 * skip any markers we see from these other threads.
2384 */
2a432414 2385 if (hdr->b_spa == 0)
572e2857
BB
2386 continue;
2387
ca0bf58d
PS
2388 /* we're only interested in evicting buffers of a certain spa */
2389 if (spa != 0 && hdr->b_spa != spa) {
2390 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 2391 continue;
ca0bf58d
PS
2392 }
2393
2394 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
2395
2396 /*
ca0bf58d
PS
2397 * We aren't calling this function from any code path
2398 * that would already be holding a hash lock, so we're
2399 * asserting on this assumption to be defensive in case
2400 * this ever changes. Without this check, it would be
2401 * possible to incorrectly increment arcstat_mutex_miss
2402 * below (e.g. if the code changed such that we called
2403 * this function with a hash lock held).
e8b96c60 2404 */
ca0bf58d
PS
2405 ASSERT(!MUTEX_HELD(hash_lock));
2406
34dc7c2f 2407 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
2408 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2409 mutex_exit(hash_lock);
34dc7c2f 2410
ca0bf58d 2411 bytes_evicted += evicted;
34dc7c2f 2412
572e2857 2413 /*
ca0bf58d
PS
2414 * If evicted is zero, arc_evict_hdr() must have
2415 * decided to skip this header, don't increment
2416 * evict_count in this case.
572e2857 2417 */
ca0bf58d
PS
2418 if (evicted != 0)
2419 evict_count++;
2420
2421 /*
2422 * If arc_size isn't overflowing, signal any
2423 * threads that might happen to be waiting.
2424 *
2425 * For each header evicted, we wake up a single
2426 * thread. If we used cv_broadcast, we could
2427 * wake up "too many" threads causing arc_size
2428 * to significantly overflow arc_c; since
2429 * arc_get_data_buf() doesn't check for overflow
2430 * when it's woken up (it doesn't because it's
2431 * possible for the ARC to be overflowing while
2432 * full of un-evictable buffers, and the
2433 * function should proceed in this case).
2434 *
2435 * If threads are left sleeping, due to not
2436 * using cv_broadcast, they will be woken up
2437 * just before arc_reclaim_thread() sleeps.
2438 */
2439 mutex_enter(&arc_reclaim_lock);
2440 if (!arc_is_overflowing())
2441 cv_signal(&arc_reclaim_waiters_cv);
2442 mutex_exit(&arc_reclaim_lock);
e8b96c60 2443 } else {
ca0bf58d 2444 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 2445 }
34dc7c2f 2446 }
34dc7c2f 2447
ca0bf58d 2448 multilist_sublist_unlock(mls);
34dc7c2f 2449
ca0bf58d 2450 return (bytes_evicted);
34dc7c2f
BB
2451}
2452
ca0bf58d
PS
2453/*
2454 * Evict buffers from the given arc state, until we've removed the
2455 * specified number of bytes. Move the removed buffers to the
2456 * appropriate evict state.
2457 *
2458 * This function makes a "best effort". It skips over any buffers
2459 * it can't get a hash_lock on, and so, may not catch all candidates.
2460 * It may also return without evicting as much space as requested.
2461 *
2462 * If bytes is specified using the special value ARC_EVICT_ALL, this
2463 * will evict all available (i.e. unlocked and evictable) buffers from
2464 * the given arc state; which is used by arc_flush().
2465 */
2466static uint64_t
2467arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2468 arc_buf_contents_t type)
34dc7c2f 2469{
ca0bf58d
PS
2470 uint64_t total_evicted = 0;
2471 multilist_t *ml = &state->arcs_list[type];
2472 int num_sublists;
2473 arc_buf_hdr_t **markers;
2474 int i;
2475
2476 ASSERTV(if (bytes < 0) ASSERT(bytes == ARC_EVICT_ALL));
2477
2478 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
2479
2480 /*
ca0bf58d
PS
2481 * If we've tried to evict from each sublist, made some
2482 * progress, but still have not hit the target number of bytes
2483 * to evict, we want to keep trying. The markers allow us to
2484 * pick up where we left off for each individual sublist, rather
2485 * than starting from the tail each time.
d164b209 2486 */
ca0bf58d
PS
2487 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2488 for (i = 0; i < num_sublists; i++) {
2489 multilist_sublist_t *mls;
34dc7c2f 2490
ca0bf58d
PS
2491 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2492
2493 /*
2494 * A b_spa of 0 is used to indicate that this header is
2495 * a marker. This fact is used in arc_adjust_type() and
2496 * arc_evict_state_impl().
2497 */
2498 markers[i]->b_spa = 0;
34dc7c2f 2499
ca0bf58d
PS
2500 mls = multilist_sublist_lock(ml, i);
2501 multilist_sublist_insert_tail(mls, markers[i]);
2502 multilist_sublist_unlock(mls);
34dc7c2f
BB
2503 }
2504
d164b209 2505 /*
ca0bf58d
PS
2506 * While we haven't hit our target number of bytes to evict, or
2507 * we're evicting all available buffers.
d164b209 2508 */
ca0bf58d
PS
2509 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2510 /*
2511 * Start eviction using a randomly selected sublist,
2512 * this is to try and evenly balance eviction across all
2513 * sublists. Always starting at the same sublist
2514 * (e.g. index 0) would cause evictions to favor certain
2515 * sublists over others.
2516 */
2517 int sublist_idx = multilist_get_random_index(ml);
2518 uint64_t scan_evicted = 0;
34dc7c2f 2519
ca0bf58d
PS
2520 for (i = 0; i < num_sublists; i++) {
2521 uint64_t bytes_remaining;
2522 uint64_t bytes_evicted;
d164b209 2523
ca0bf58d
PS
2524 if (bytes == ARC_EVICT_ALL)
2525 bytes_remaining = ARC_EVICT_ALL;
2526 else if (total_evicted < bytes)
2527 bytes_remaining = bytes - total_evicted;
2528 else
2529 break;
34dc7c2f 2530
ca0bf58d
PS
2531 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2532 markers[sublist_idx], spa, bytes_remaining);
2533
2534 scan_evicted += bytes_evicted;
2535 total_evicted += bytes_evicted;
2536
2537 /* we've reached the end, wrap to the beginning */
2538 if (++sublist_idx >= num_sublists)
2539 sublist_idx = 0;
2540 }
2541
2542 /*
2543 * If we didn't evict anything during this scan, we have
2544 * no reason to believe we'll evict more during another
2545 * scan, so break the loop.
2546 */
2547 if (scan_evicted == 0) {
2548 /* This isn't possible, let's make that obvious */
2549 ASSERT3S(bytes, !=, 0);
34dc7c2f 2550
ca0bf58d
PS
2551 /*
2552 * When bytes is ARC_EVICT_ALL, the only way to
2553 * break the loop is when scan_evicted is zero.
2554 * In that case, we actually have evicted enough,
2555 * so we don't want to increment the kstat.
2556 */
2557 if (bytes != ARC_EVICT_ALL) {
2558 ASSERT3S(total_evicted, <, bytes);
2559 ARCSTAT_BUMP(arcstat_evict_not_enough);
2560 }
d164b209 2561
ca0bf58d
PS
2562 break;
2563 }
d164b209 2564 }
34dc7c2f 2565
ca0bf58d
PS
2566 for (i = 0; i < num_sublists; i++) {
2567 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2568 multilist_sublist_remove(mls, markers[i]);
2569 multilist_sublist_unlock(mls);
34dc7c2f 2570
ca0bf58d 2571 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 2572 }
ca0bf58d
PS
2573 kmem_free(markers, sizeof (*markers) * num_sublists);
2574
2575 return (total_evicted);
2576}
2577
2578/*
2579 * Flush all "evictable" data of the given type from the arc state
2580 * specified. This will not evict any "active" buffers (i.e. referenced).
2581 *
2582 * When 'retry' is set to FALSE, the function will make a single pass
2583 * over the state and evict any buffers that it can. Since it doesn't
2584 * continually retry the eviction, it might end up leaving some buffers
2585 * in the ARC due to lock misses.
2586 *
2587 * When 'retry' is set to TRUE, the function will continually retry the
2588 * eviction until *all* evictable buffers have been removed from the
2589 * state. As a result, if concurrent insertions into the state are
2590 * allowed (e.g. if the ARC isn't shutting down), this function might
2591 * wind up in an infinite loop, continually trying to evict buffers.
2592 */
2593static uint64_t
2594arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2595 boolean_t retry)
2596{
2597 uint64_t evicted = 0;
2598
2599 while (state->arcs_lsize[type] != 0) {
2600 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2601
2602 if (!retry)
2603 break;
2604 }
2605
2606 return (evicted);
34dc7c2f
BB
2607}
2608
ab26409d 2609/*
f6046738
BB
2610 * Helper function for arc_prune() it is responsible for safely handling
2611 * the execution of a registered arc_prune_func_t.
ab26409d
BB
2612 */
2613static void
f6046738 2614arc_prune_task(void *ptr)
ab26409d 2615{
f6046738
BB
2616 arc_prune_t *ap = (arc_prune_t *)ptr;
2617 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 2618
f6046738
BB
2619 if (func != NULL)
2620 func(ap->p_adjust, ap->p_private);
ab26409d 2621
f6046738
BB
2622 /* Callback unregistered concurrently with execution */
2623 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2624 ASSERT(!list_link_active(&ap->p_node));
2625 refcount_destroy(&ap->p_refcnt);
2626 kmem_free(ap, sizeof (*ap));
2627 }
2628}
ab26409d 2629
f6046738
BB
2630/*
2631 * Notify registered consumers they must drop holds on a portion of the ARC
2632 * buffered they reference. This provides a mechanism to ensure the ARC can
2633 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2634 * is analogous to dnlc_reduce_cache() but more generic.
2635 *
2636 * This operation is performed asyncronously so it may be safely called
ca67b33a 2637 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
2638 * for each registered arc_prune_t and the arc_prune_task() is responsible
2639 * for releasing it once the registered arc_prune_func_t has completed.
2640 */
2641static void
2642arc_prune_async(int64_t adjust)
2643{
2644 arc_prune_t *ap;
ab26409d 2645
f6046738
BB
2646 mutex_enter(&arc_prune_mtx);
2647 for (ap = list_head(&arc_prune_list); ap != NULL;
2648 ap = list_next(&arc_prune_list, ap)) {
ab26409d 2649
f6046738
BB
2650 if (refcount_count(&ap->p_refcnt) >= 2)
2651 continue;
ab26409d 2652
f6046738
BB
2653 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2654 ap->p_adjust = adjust;
2655 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2656 ARCSTAT_BUMP(arcstat_prune);
ab26409d 2657 }
ab26409d
BB
2658 mutex_exit(&arc_prune_mtx);
2659}
2660
f6046738
BB
2661static void
2662arc_prune(int64_t adjust)
2663{
2664 arc_prune_async(adjust);
2665 taskq_wait_outstanding(arc_prune_taskq, 0);
2666}
2667
ca0bf58d
PS
2668/*
2669 * Evict the specified number of bytes from the state specified,
2670 * restricting eviction to the spa and type given. This function
2671 * prevents us from trying to evict more from a state's list than
2672 * is "evictable", and to skip evicting altogether when passed a
2673 * negative value for "bytes". In contrast, arc_evict_state() will
2674 * evict everything it can, when passed a negative value for "bytes".
2675 */
2676static uint64_t
2677arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2678 arc_buf_contents_t type)
2679{
2680 int64_t delta;
2681
2682 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2683 delta = MIN(state->arcs_lsize[type], bytes);
2684 return (arc_evict_state(state, spa, delta, type));
2685 }
2686
2687 return (0);
2688}
2689
2690/*
2691 * The goal of this function is to evict enough meta data buffers from the
2692 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2693 * more complicated than it appears because it is common for data buffers
2694 * to have holds on meta data buffers. In addition, dnode meta data buffers
2695 * will be held by the dnodes in the block preventing them from being freed.
2696 * This means we can't simply traverse the ARC and expect to always find
2697 * enough unheld meta data buffer to release.
2698 *
2699 * Therefore, this function has been updated to make alternating passes
2700 * over the ARC releasing data buffers and then newly unheld meta data
2701 * buffers. This ensures forward progress is maintained and arc_meta_used
2702 * will decrease. Normally this is sufficient, but if required the ARC
2703 * will call the registered prune callbacks causing dentry and inodes to
2704 * be dropped from the VFS cache. This will make dnode meta data buffers
2705 * available for reclaim.
2706 */
2707static uint64_t
f6046738 2708arc_adjust_meta_balanced(void)
ca0bf58d
PS
2709{
2710 int64_t adjustmnt, delta, prune = 0;
2711 uint64_t total_evicted = 0;
2712 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 2713 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
2714
2715restart:
2716 /*
2717 * This slightly differs than the way we evict from the mru in
2718 * arc_adjust because we don't have a "target" value (i.e. no
2719 * "meta" arc_p). As a result, I think we can completely
2720 * cannibalize the metadata in the MRU before we evict the
2721 * metadata from the MFU. I think we probably need to implement a
2722 * "metadata arc_p" value to do this properly.
2723 */
2724 adjustmnt = arc_meta_used - arc_meta_limit;
2725
2726 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2727 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2728 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2729 adjustmnt -= delta;
2730 }
2731
2732 /*
2733 * We can't afford to recalculate adjustmnt here. If we do,
2734 * new metadata buffers can sneak into the MRU or ANON lists,
2735 * thus penalize the MFU metadata. Although the fudge factor is
2736 * small, it has been empirically shown to be significant for
2737 * certain workloads (e.g. creating many empty directories). As
2738 * such, we use the original calculation for adjustmnt, and
2739 * simply decrement the amount of data evicted from the MRU.
2740 */
2741
2742 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2743 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2744 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2745 }
2746
2747 adjustmnt = arc_meta_used - arc_meta_limit;
2748
2749 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2750 delta = MIN(adjustmnt,
2751 arc_mru_ghost->arcs_lsize[type]);
2752 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2753 adjustmnt -= delta;
2754 }
2755
2756 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2757 delta = MIN(adjustmnt,
2758 arc_mfu_ghost->arcs_lsize[type]);
2759 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2760 }
2761
2762 /*
2763 * If after attempting to make the requested adjustment to the ARC
2764 * the meta limit is still being exceeded then request that the
2765 * higher layers drop some cached objects which have holds on ARC
2766 * meta buffers. Requests to the upper layers will be made with
2767 * increasingly large scan sizes until the ARC is below the limit.
2768 */
2769 if (arc_meta_used > arc_meta_limit) {
2770 if (type == ARC_BUFC_DATA) {
2771 type = ARC_BUFC_METADATA;
2772 } else {
2773 type = ARC_BUFC_DATA;
2774
2775 if (zfs_arc_meta_prune) {
2776 prune += zfs_arc_meta_prune;
f6046738 2777 arc_prune_async(prune);
ca0bf58d
PS
2778 }
2779 }
2780
2781 if (restarts > 0) {
2782 restarts--;
2783 goto restart;
2784 }
2785 }
2786 return (total_evicted);
2787}
2788
f6046738
BB
2789/*
2790 * Evict metadata buffers from the cache, such that arc_meta_used is
2791 * capped by the arc_meta_limit tunable.
2792 */
2793static uint64_t
2794arc_adjust_meta_only(void)
2795{
2796 uint64_t total_evicted = 0;
2797 int64_t target;
2798
2799 /*
2800 * If we're over the meta limit, we want to evict enough
2801 * metadata to get back under the meta limit. We don't want to
2802 * evict so much that we drop the MRU below arc_p, though. If
2803 * we're over the meta limit more than we're over arc_p, we
2804 * evict some from the MRU here, and some from the MFU below.
2805 */
2806 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2807 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
2808
2809 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2810
2811 /*
2812 * Similar to the above, we want to evict enough bytes to get us
2813 * below the meta limit, but not so much as to drop us below the
2814 * space alloted to the MFU (which is defined as arc_c - arc_p).
2815 */
2816 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2817 (int64_t)(arc_mfu->arcs_size - (arc_c - arc_p)));
2818
2819 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2820
2821 return (total_evicted);
2822}
2823
2824static uint64_t
2825arc_adjust_meta(void)
2826{
2827 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2828 return (arc_adjust_meta_only());
2829 else
2830 return (arc_adjust_meta_balanced());
2831}
2832
ca0bf58d
PS
2833/*
2834 * Return the type of the oldest buffer in the given arc state
2835 *
2836 * This function will select a random sublist of type ARC_BUFC_DATA and
2837 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2838 * is compared, and the type which contains the "older" buffer will be
2839 * returned.
2840 */
2841static arc_buf_contents_t
2842arc_adjust_type(arc_state_t *state)
2843{
2844 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2845 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2846 int data_idx = multilist_get_random_index(data_ml);
2847 int meta_idx = multilist_get_random_index(meta_ml);
2848 multilist_sublist_t *data_mls;
2849 multilist_sublist_t *meta_mls;
2850 arc_buf_contents_t type;
2851 arc_buf_hdr_t *data_hdr;
2852 arc_buf_hdr_t *meta_hdr;
2853
2854 /*
2855 * We keep the sublist lock until we're finished, to prevent
2856 * the headers from being destroyed via arc_evict_state().
2857 */
2858 data_mls = multilist_sublist_lock(data_ml, data_idx);
2859 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2860
2861 /*
2862 * These two loops are to ensure we skip any markers that
2863 * might be at the tail of the lists due to arc_evict_state().
2864 */
2865
2866 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2867 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2868 if (data_hdr->b_spa != 0)
2869 break;
2870 }
2871
2872 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2873 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2874 if (meta_hdr->b_spa != 0)
2875 break;
2876 }
2877
2878 if (data_hdr == NULL && meta_hdr == NULL) {
2879 type = ARC_BUFC_DATA;
2880 } else if (data_hdr == NULL) {
2881 ASSERT3P(meta_hdr, !=, NULL);
2882 type = ARC_BUFC_METADATA;
2883 } else if (meta_hdr == NULL) {
2884 ASSERT3P(data_hdr, !=, NULL);
2885 type = ARC_BUFC_DATA;
2886 } else {
2887 ASSERT3P(data_hdr, !=, NULL);
2888 ASSERT3P(meta_hdr, !=, NULL);
2889
2890 /* The headers can't be on the sublist without an L1 header */
2891 ASSERT(HDR_HAS_L1HDR(data_hdr));
2892 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2893
2894 if (data_hdr->b_l1hdr.b_arc_access <
2895 meta_hdr->b_l1hdr.b_arc_access) {
2896 type = ARC_BUFC_DATA;
2897 } else {
2898 type = ARC_BUFC_METADATA;
2899 }
2900 }
2901
2902 multilist_sublist_unlock(meta_mls);
2903 multilist_sublist_unlock(data_mls);
2904
2905 return (type);
2906}
2907
2908/*
2909 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2910 */
2911static uint64_t
2912arc_adjust(void)
2913{
2914 uint64_t total_evicted = 0;
2915 uint64_t bytes;
2916 int64_t target;
2917
2918 /*
2919 * If we're over arc_meta_limit, we want to correct that before
2920 * potentially evicting data buffers below.
2921 */
2922 total_evicted += arc_adjust_meta();
2923
2924 /*
2925 * Adjust MRU size
2926 *
2927 * If we're over the target cache size, we want to evict enough
2928 * from the list to get back to our target size. We don't want
2929 * to evict too much from the MRU, such that it drops below
2930 * arc_p. So, if we're over our target cache size more than
2931 * the MRU is over arc_p, we'll evict enough to get back to
2932 * arc_p here, and then evict more from the MFU below.
2933 */
2934 target = MIN((int64_t)(arc_size - arc_c),
2935 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2936 arc_p));
2937
2938 /*
2939 * If we're below arc_meta_min, always prefer to evict data.
2940 * Otherwise, try to satisfy the requested number of bytes to
2941 * evict from the type which contains older buffers; in an
2942 * effort to keep newer buffers in the cache regardless of their
2943 * type. If we cannot satisfy the number of bytes from this
2944 * type, spill over into the next type.
2945 */
2946 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2947 arc_meta_used > arc_meta_min) {
2948 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2949 total_evicted += bytes;
2950
2951 /*
2952 * If we couldn't evict our target number of bytes from
2953 * metadata, we try to get the rest from data.
2954 */
2955 target -= bytes;
2956
2957 total_evicted +=
2958 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2959 } else {
2960 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2961 total_evicted += bytes;
2962
2963 /*
2964 * If we couldn't evict our target number of bytes from
2965 * data, we try to get the rest from metadata.
2966 */
2967 target -= bytes;
2968
2969 total_evicted +=
2970 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2971 }
2972
2973 /*
2974 * Adjust MFU size
2975 *
2976 * Now that we've tried to evict enough from the MRU to get its
2977 * size back to arc_p, if we're still above the target cache
2978 * size, we evict the rest from the MFU.
2979 */
2980 target = arc_size - arc_c;
2981
a7b10a93 2982 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
ca0bf58d
PS
2983 arc_meta_used > arc_meta_min) {
2984 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2985 total_evicted += bytes;
2986
2987 /*
2988 * If we couldn't evict our target number of bytes from
2989 * metadata, we try to get the rest from data.
2990 */
2991 target -= bytes;
2992
2993 total_evicted +=
2994 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2995 } else {
2996 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
2997 total_evicted += bytes;
2998
2999 /*
3000 * If we couldn't evict our target number of bytes from
3001 * data, we try to get the rest from data.
3002 */
3003 target -= bytes;
3004
3005 total_evicted +=
3006 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3007 }
3008
3009 /*
3010 * Adjust ghost lists
3011 *
3012 * In addition to the above, the ARC also defines target values
3013 * for the ghost lists. The sum of the mru list and mru ghost
3014 * list should never exceed the target size of the cache, and
3015 * the sum of the mru list, mfu list, mru ghost list, and mfu
3016 * ghost list should never exceed twice the target size of the
3017 * cache. The following logic enforces these limits on the ghost
3018 * caches, and evicts from them as needed.
3019 */
3020 target = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
3021
3022 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3023 total_evicted += bytes;
3024
3025 target -= bytes;
3026
3027 total_evicted +=
3028 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3029
3030 /*
3031 * We assume the sum of the mru list and mfu list is less than
3032 * or equal to arc_c (we enforced this above), which means we
3033 * can use the simpler of the two equations below:
3034 *
3035 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3036 * mru ghost + mfu ghost <= arc_c
3037 */
3038 target = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
3039
3040 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3041 total_evicted += bytes;
3042
3043 target -= bytes;
3044
3045 total_evicted +=
3046 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3047
3048 return (total_evicted);
3049}
3050
34dc7c2f
BB
3051static void
3052arc_do_user_evicts(void)
3053{
ca0bf58d 3054 mutex_enter(&arc_user_evicts_lock);
34dc7c2f
BB
3055 while (arc_eviction_list != NULL) {
3056 arc_buf_t *buf = arc_eviction_list;
3057 arc_eviction_list = buf->b_next;
428870ff 3058 mutex_enter(&buf->b_evict_lock);
34dc7c2f 3059 buf->b_hdr = NULL;
428870ff 3060 mutex_exit(&buf->b_evict_lock);
ca0bf58d 3061 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3062
3063 if (buf->b_efunc != NULL)
bd089c54 3064 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
3065
3066 buf->b_efunc = NULL;
3067 buf->b_private = NULL;
3068 kmem_cache_free(buf_cache, buf);
ca0bf58d 3069 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 3070 }
ca0bf58d 3071 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3072}
3073
ca0bf58d
PS
3074void
3075arc_flush(spa_t *spa, boolean_t retry)
ab26409d 3076{
ca0bf58d 3077 uint64_t guid = 0;
94520ca4 3078
bc888666 3079 /*
ca0bf58d
PS
3080 * If retry is TRUE, a spa must not be specified since we have
3081 * no good way to determine if all of a spa's buffers have been
3082 * evicted from an arc state.
bc888666 3083 */
ca0bf58d 3084 ASSERT(!retry || spa == 0);
d164b209 3085
b9541d6b 3086 if (spa != NULL)
3541dc6d 3087 guid = spa_load_guid(spa);
d164b209 3088
ca0bf58d
PS
3089 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3090 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3091
3092 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3093 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3094
3095 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3096 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3097
ca0bf58d
PS
3098 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3099 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3100
34dc7c2f 3101 arc_do_user_evicts();
34dc7c2f
BB
3102 ASSERT(spa || arc_eviction_list == NULL);
3103}
3104
34dc7c2f 3105void
ca67b33a 3106arc_shrink(int64_t to_free)
34dc7c2f
BB
3107{
3108 if (arc_c > arc_c_min) {
302f753f 3109
34dc7c2f
BB
3110 if (arc_c > arc_c_min + to_free)
3111 atomic_add_64(&arc_c, -to_free);
3112 else
3113 arc_c = arc_c_min;
3114
ca67b33a 3115 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
3116 if (arc_c > arc_size)
3117 arc_c = MAX(arc_size, arc_c_min);
3118 if (arc_p > arc_c)
3119 arc_p = (arc_c >> 1);
3120 ASSERT(arc_c >= arc_c_min);
3121 ASSERT((int64_t)arc_p >= 0);
3122 }
3123
3124 if (arc_size > arc_c)
ca0bf58d 3125 (void) arc_adjust();
34dc7c2f
BB
3126}
3127
ca67b33a
MA
3128typedef enum free_memory_reason_t {
3129 FMR_UNKNOWN,
3130 FMR_NEEDFREE,
3131 FMR_LOTSFREE,
3132 FMR_SWAPFS_MINFREE,
3133 FMR_PAGES_PP_MAXIMUM,
3134 FMR_HEAP_ARENA,
3135 FMR_ZIO_ARENA,
3136} free_memory_reason_t;
3137
3138int64_t last_free_memory;
3139free_memory_reason_t last_free_reason;
3140
3141#ifdef _KERNEL
3142#ifdef __linux__
3143/*
3144 * expiration time for arc_no_grow set by direct memory reclaim.
3145 */
3146static clock_t arc_grow_time = 0;
3147#else
3148/*
3149 * Additional reserve of pages for pp_reserve.
3150 */
3151int64_t arc_pages_pp_reserve = 64;
3152
3153/*
3154 * Additional reserve of pages for swapfs.
3155 */
3156int64_t arc_swapfs_reserve = 64;
3157#endif
3158#endif /* _KERNEL */
3159
3160/*
3161 * Return the amount of memory that can be consumed before reclaim will be
3162 * needed. Positive if there is sufficient free memory, negative indicates
3163 * the amount of memory that needs to be freed up.
3164 */
3165static int64_t
3166arc_available_memory(void)
3167{
3168 int64_t lowest = INT64_MAX;
3169 free_memory_reason_t r = FMR_UNKNOWN;
3170
3171#ifdef _KERNEL
3172#ifdef __linux__
3173 /*
3174 * Under Linux we are not allowed to directly interrogate the global
3175 * memory state. Instead rely on observing that direct reclaim has
3176 * recently occurred therefore the system must be low on memory. The
3177 * exact values returned are not critical but should be small.
3178 */
3179 if (ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
3180 lowest = PAGE_SIZE;
3181 else
3182 lowest = -PAGE_SIZE;
3183#else
3184 int64_t n;
3185
3186 /*
3187 * Platforms like illumos have greater visibility in to the memory
3188 * subsystem and can return a more detailed analysis of memory.
3189 */
3190 if (needfree > 0) {
3191 n = PAGESIZE * (-needfree);
3192 if (n < lowest) {
3193 lowest = n;
3194 r = FMR_NEEDFREE;
3195 }
3196 }
3197
3198 /*
3199 * check that we're out of range of the pageout scanner. It starts to
3200 * schedule paging if freemem is less than lotsfree and needfree.
3201 * lotsfree is the high-water mark for pageout, and needfree is the
3202 * number of needed free pages. We add extra pages here to make sure
3203 * the scanner doesn't start up while we're freeing memory.
3204 */
3205 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3206 if (n < lowest) {
3207 lowest = n;
3208 r = FMR_LOTSFREE;
3209 }
3210
3211 /*
3212 * check to make sure that swapfs has enough space so that anon
3213 * reservations can still succeed. anon_resvmem() checks that the
3214 * availrmem is greater than swapfs_minfree, and the number of reserved
3215 * swap pages. We also add a bit of extra here just to prevent
3216 * circumstances from getting really dire.
3217 */
3218 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3219 desfree - arc_swapfs_reserve);
3220 if (n < lowest) {
3221 lowest = n;
3222 r = FMR_SWAPFS_MINFREE;
3223 }
3224
3225
3226 /*
3227 * Check that we have enough availrmem that memory locking (e.g., via
3228 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3229 * stores the number of pages that cannot be locked; when availrmem
3230 * drops below pages_pp_maximum, page locking mechanisms such as
3231 * page_pp_lock() will fail.)
3232 */
3233 n = PAGESIZE * (availrmem - pages_pp_maximum -
3234 arc_pages_pp_reserve);
3235 if (n < lowest) {
3236 lowest = n;
3237 r = FMR_PAGES_PP_MAXIMUM;
3238 }
3239
3240#if defined(__i386)
3241 /*
3242 * If we're on an i386 platform, it's possible that we'll exhaust the
3243 * kernel heap space before we ever run out of available physical
3244 * memory. Most checks of the size of the heap_area compare against
3245 * tune.t_minarmem, which is the minimum available real memory that we
3246 * can have in the system. However, this is generally fixed at 25 pages
3247 * which is so low that it's useless. In this comparison, we seek to
3248 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3249 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3250 * free)
3251 */
3252 n = vmem_size(heap_arena, VMEM_FREE) -
3253 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3254 if (n < lowest) {
3255 lowest = n;
3256 r = FMR_HEAP_ARENA;
3257 }
3258#endif
3259
3260 /*
3261 * If zio data pages are being allocated out of a separate heap segment,
3262 * then enforce that the size of available vmem for this arena remains
3263 * above about 1/16th free.
3264 *
3265 * Note: The 1/16th arena free requirement was put in place
3266 * to aggressively evict memory from the arc in order to avoid
3267 * memory fragmentation issues.
3268 */
3269 if (zio_arena != NULL) {
3270 n = vmem_size(zio_arena, VMEM_FREE) -
3271 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3272 if (n < lowest) {
3273 lowest = n;
3274 r = FMR_ZIO_ARENA;
3275 }
3276 }
3277#endif /* __linux__ */
3278#else
3279 /* Every 100 calls, free a small amount */
3280 if (spa_get_random(100) == 0)
3281 lowest = -1024;
3282#endif
3283
3284 last_free_memory = lowest;
3285 last_free_reason = r;
3286
3287 return (lowest);
3288}
3289
3290/*
3291 * Determine if the system is under memory pressure and is asking
3292 * to reclaim memory. A return value of TRUE indicates that the system
3293 * is under memory pressure and that the arc should adjust accordingly.
3294 */
3295static boolean_t
3296arc_reclaim_needed(void)
3297{
3298 return (arc_available_memory() < 0);
3299}
3300
34dc7c2f 3301static void
ca67b33a 3302arc_kmem_reap_now(void)
34dc7c2f
BB
3303{
3304 size_t i;
3305 kmem_cache_t *prev_cache = NULL;
3306 kmem_cache_t *prev_data_cache = NULL;
3307 extern kmem_cache_t *zio_buf_cache[];
3308 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 3309 extern kmem_cache_t *range_seg_cache;
34dc7c2f 3310
f6046738
BB
3311 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3312 /*
3313 * We are exceeding our meta-data cache limit.
3314 * Prune some entries to release holds on meta-data.
3315 */
3316 arc_prune(zfs_arc_meta_prune);
3317 }
3318
34dc7c2f
BB
3319 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3320 if (zio_buf_cache[i] != prev_cache) {
3321 prev_cache = zio_buf_cache[i];
3322 kmem_cache_reap_now(zio_buf_cache[i]);
3323 }
3324 if (zio_data_buf_cache[i] != prev_data_cache) {
3325 prev_data_cache = zio_data_buf_cache[i];
3326 kmem_cache_reap_now(zio_data_buf_cache[i]);
3327 }
3328 }
ca0bf58d 3329 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
3330 kmem_cache_reap_now(hdr_full_cache);
3331 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 3332 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
3333
3334 if (zio_arena != NULL) {
3335 /*
3336 * Ask the vmem arena to reclaim unused memory from its
3337 * quantum caches.
3338 */
3339 vmem_qcache_reap(zio_arena);
3340 }
34dc7c2f
BB
3341}
3342
302f753f 3343/*
ca0bf58d
PS
3344 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3345 * enough data and signal them to proceed. When this happens, the threads in
3346 * arc_get_data_buf() are sleeping while holding the hash lock for their
3347 * particular arc header. Thus, we must be careful to never sleep on a
3348 * hash lock in this thread. This is to prevent the following deadlock:
3349 *
3350 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3351 * waiting for the reclaim thread to signal it.
3352 *
3353 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3354 * fails, and goes to sleep forever.
3355 *
3356 * This possible deadlock is avoided by always acquiring a hash lock
3357 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 3358 */
34dc7c2f 3359static void
ca67b33a 3360arc_reclaim_thread(void)
34dc7c2f 3361{
ca67b33a
MA
3362 fstrans_cookie_t cookie = spl_fstrans_mark();
3363 clock_t growtime = 0;
34dc7c2f
BB
3364 callb_cpr_t cpr;
3365
ca0bf58d 3366 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 3367
ca0bf58d 3368 mutex_enter(&arc_reclaim_lock);
ca67b33a
MA
3369 while (!arc_reclaim_thread_exit) {
3370 int64_t to_free;
3371 int64_t free_memory = arc_available_memory();
3372 uint64_t evicted = 0;
302f753f 3373
ca67b33a 3374 arc_tuning_update();
34dc7c2f 3375
ca67b33a 3376 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3377
ca67b33a 3378 if (free_memory < 0) {
34dc7c2f 3379
ca67b33a 3380 arc_no_grow = B_TRUE;
b128c09f 3381 arc_warm = B_TRUE;
34dc7c2f 3382
ca67b33a
MA
3383 /*
3384 * Wait at least zfs_grow_retry (default 5) seconds
3385 * before considering growing.
3386 */
3387 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
6a8f9b6b 3388
ca67b33a 3389 arc_kmem_reap_now();
34dc7c2f 3390
ca67b33a
MA
3391 /*
3392 * If we are still low on memory, shrink the ARC
3393 * so that we have arc_shrink_min free space.
3394 */
3395 free_memory = arc_available_memory();
34dc7c2f 3396
ca67b33a
MA
3397 to_free = (arc_c >> arc_shrink_shift) - free_memory;
3398 if (to_free > 0) {
3399#ifdef _KERNEL
3400 to_free = MAX(to_free, ptob(needfree));
3401#endif
3402 arc_shrink(to_free);
3403 }
3404 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3405 arc_no_grow = B_TRUE;
3406 } else if (ddi_get_lbolt() >= growtime) {
3407 arc_no_grow = B_FALSE;
3408 }
bce45ec9 3409
ca67b33a 3410 evicted = arc_adjust();
bce45ec9 3411
ca67b33a 3412 mutex_enter(&arc_reclaim_lock);
bce45ec9 3413
ca67b33a
MA
3414 /*
3415 * If evicted is zero, we couldn't evict anything via
3416 * arc_adjust(). This could be due to hash lock
3417 * collisions, but more likely due to the majority of
3418 * arc buffers being unevictable. Therefore, even if
3419 * arc_size is above arc_c, another pass is unlikely to
3420 * be helpful and could potentially cause us to enter an
3421 * infinite loop.
3422 */
3423 if (arc_size <= arc_c || evicted == 0) {
3424 /*
3425 * We're either no longer overflowing, or we
3426 * can't evict anything more, so we should wake
3427 * up any threads before we go to sleep.
3428 */
3429 cv_broadcast(&arc_reclaim_waiters_cv);
bce45ec9 3430
ca67b33a
MA
3431 /*
3432 * Block until signaled, or after one second (we
3433 * might need to perform arc_kmem_reap_now()
3434 * even if we aren't being signalled)
3435 */
3436 CALLB_CPR_SAFE_BEGIN(&cpr);
3437 (void) cv_timedwait_sig(&arc_reclaim_thread_cv,
3438 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3439 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3440 }
ca0bf58d 3441 }
bce45ec9 3442
ca67b33a 3443 arc_reclaim_thread_exit = FALSE;
ca0bf58d
PS
3444 cv_broadcast(&arc_reclaim_thread_cv);
3445 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3446 spl_fstrans_unmark(cookie);
3447 thread_exit();
3448}
3449
3450static void
3451arc_user_evicts_thread(void)
3452{
ca67b33a 3453 fstrans_cookie_t cookie = spl_fstrans_mark();
ca0bf58d 3454 callb_cpr_t cpr;
bce45ec9 3455
ca0bf58d 3456 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
bce45ec9 3457
ca0bf58d
PS
3458 mutex_enter(&arc_user_evicts_lock);
3459 while (!arc_user_evicts_thread_exit) {
3460 mutex_exit(&arc_user_evicts_lock);
3461
3462 arc_do_user_evicts();
3463
3464 /*
3465 * This is necessary in order for the mdb ::arc dcmd to
3466 * show up to date information. Since the ::arc command
3467 * does not call the kstat's update function, without
3468 * this call, the command may show stale stats for the
3469 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3470 * with this change, the data might be up to 1 second
3471 * out of date; but that should suffice. The arc_state_t
3472 * structures can be queried directly if more accurate
3473 * information is needed.
3474 */
3475 if (arc_ksp != NULL)
3476 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3477
3478 mutex_enter(&arc_user_evicts_lock);
3479
3480 /*
3481 * Block until signaled, or after one second (we need to
3482 * call the arc's kstat update function regularly).
3483 */
3484 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 3485 (void) cv_timedwait_sig(&arc_user_evicts_cv,
ca0bf58d
PS
3486 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3487 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
34dc7c2f
BB
3488 }
3489
ca0bf58d
PS
3490 arc_user_evicts_thread_exit = FALSE;
3491 cv_broadcast(&arc_user_evicts_cv);
3492 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
40d06e3c 3493 spl_fstrans_unmark(cookie);
34dc7c2f
BB
3494 thread_exit();
3495}
3496
7cb67b45
BB
3497#ifdef _KERNEL
3498/*
302f753f
BB
3499 * Determine the amount of memory eligible for eviction contained in the
3500 * ARC. All clean data reported by the ghost lists can always be safely
3501 * evicted. Due to arc_c_min, the same does not hold for all clean data
3502 * contained by the regular mru and mfu lists.
3503 *
3504 * In the case of the regular mru and mfu lists, we need to report as
3505 * much clean data as possible, such that evicting that same reported
3506 * data will not bring arc_size below arc_c_min. Thus, in certain
3507 * circumstances, the total amount of clean data in the mru and mfu
3508 * lists might not actually be evictable.
3509 *
3510 * The following two distinct cases are accounted for:
3511 *
3512 * 1. The sum of the amount of dirty data contained by both the mru and
3513 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3514 * is greater than or equal to arc_c_min.
3515 * (i.e. amount of dirty data >= arc_c_min)
3516 *
3517 * This is the easy case; all clean data contained by the mru and mfu
3518 * lists is evictable. Evicting all clean data can only drop arc_size
3519 * to the amount of dirty data, which is greater than arc_c_min.
3520 *
3521 * 2. The sum of the amount of dirty data contained by both the mru and
3522 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3523 * is less than arc_c_min.
3524 * (i.e. arc_c_min > amount of dirty data)
3525 *
3526 * 2.1. arc_size is greater than or equal arc_c_min.
3527 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3528 *
3529 * In this case, not all clean data from the regular mru and mfu
3530 * lists is actually evictable; we must leave enough clean data
3531 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3532 * evictable data from the two lists combined, is exactly the
3533 * difference between arc_size and arc_c_min.
3534 *
3535 * 2.2. arc_size is less than arc_c_min
3536 * (i.e. arc_c_min > arc_size > amount of dirty data)
3537 *
3538 * In this case, none of the data contained in the mru and mfu
3539 * lists is evictable, even if it's clean. Since arc_size is
3540 * already below arc_c_min, evicting any more would only
3541 * increase this negative difference.
7cb67b45 3542 */
302f753f
BB
3543static uint64_t
3544arc_evictable_memory(void) {
3545 uint64_t arc_clean =
3546 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3547 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3548 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3549 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3550 uint64_t ghost_clean =
3551 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3552 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3553 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3554 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3555 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3556
3557 if (arc_dirty >= arc_c_min)
3558 return (ghost_clean + arc_clean);
3559
3560 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3561}
3562
ed6e9cc2
TC
3563/*
3564 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3565 * number of objects which can potentially be freed. If it is nonzero,
3566 * the request is to free that many objects.
3567 *
3568 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3569 * in struct shrinker and also require the shrinker to return the number
3570 * of objects freed.
3571 *
3572 * Older kernels require the shrinker to return the number of freeable
3573 * objects following the freeing of nr_to_free.
3574 */
3575static spl_shrinker_t
7e7baeca 3576__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 3577{
ed6e9cc2 3578 int64_t pages;
7cb67b45 3579
302f753f
BB
3580 /* The arc is considered warm once reclaim has occurred */
3581 if (unlikely(arc_warm == B_FALSE))
3582 arc_warm = B_TRUE;
7cb67b45 3583
302f753f 3584 /* Return the potential number of reclaimable pages */
ed6e9cc2 3585 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
3586 if (sc->nr_to_scan == 0)
3587 return (pages);
3fd70ee6
BB
3588
3589 /* Not allowed to perform filesystem reclaim */
7e7baeca 3590 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 3591 return (SHRINK_STOP);
3fd70ee6 3592
7cb67b45 3593 /* Reclaim in progress */
ca0bf58d 3594 if (mutex_tryenter(&arc_reclaim_lock) == 0)
ed6e9cc2 3595 return (SHRINK_STOP);
7cb67b45 3596
ca0bf58d
PS
3597 mutex_exit(&arc_reclaim_lock);
3598
302f753f
BB
3599 /*
3600 * Evict the requested number of pages by shrinking arc_c the
3601 * requested amount. If there is nothing left to evict just
3602 * reap whatever we can from the various arc slabs.
3603 */
3604 if (pages > 0) {
ca67b33a
MA
3605 arc_shrink(ptob(sc->nr_to_scan));
3606 arc_kmem_reap_now();
ed6e9cc2
TC
3607#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3608 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3609#else
1e3cb67b 3610 pages = btop(arc_evictable_memory());
ed6e9cc2 3611#endif
302f753f 3612 } else {
ca67b33a 3613 arc_kmem_reap_now();
ed6e9cc2 3614 pages = SHRINK_STOP;
302f753f
BB
3615 }
3616
ca0bf58d
PS
3617 /*
3618 * We've reaped what we can, wake up threads.
3619 */
3620 cv_broadcast(&arc_reclaim_waiters_cv);
3621
302f753f
BB
3622 /*
3623 * When direct reclaim is observed it usually indicates a rapid
3624 * increase in memory pressure. This occurs because the kswapd
3625 * threads were unable to asynchronously keep enough free memory
3626 * available. In this case set arc_no_grow to briefly pause arc
3627 * growth to avoid compounding the memory pressure.
3628 */
7cb67b45 3629 if (current_is_kswapd()) {
302f753f 3630 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 3631 } else {
302f753f 3632 arc_no_grow = B_TRUE;
bce45ec9 3633 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 3634 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
3635 }
3636
1e3cb67b 3637 return (pages);
7cb67b45 3638}
7e7baeca 3639SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
3640
3641SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3642#endif /* _KERNEL */
3643
34dc7c2f
BB
3644/*
3645 * Adapt arc info given the number of bytes we are trying to add and
3646 * the state that we are comming from. This function is only called
3647 * when we are adding new content to the cache.
3648 */
3649static void
3650arc_adapt(int bytes, arc_state_t *state)
3651{
3652 int mult;
3653
3654 if (state == arc_l2c_only)
3655 return;
3656
3657 ASSERT(bytes > 0);
3658 /*
3659 * Adapt the target size of the MRU list:
3660 * - if we just hit in the MRU ghost list, then increase
3661 * the target size of the MRU list.
3662 * - if we just hit in the MFU ghost list, then increase
3663 * the target size of the MFU list by decreasing the
3664 * target size of the MRU list.
3665 */
3666 if (state == arc_mru_ghost) {
3667 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3668 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
62422785
PS
3669
3670 if (!zfs_arc_p_dampener_disable)
3671 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 3672
f521ce1b 3673 arc_p = MIN(arc_c, arc_p + bytes * mult);
34dc7c2f 3674 } else if (state == arc_mfu_ghost) {
d164b209
BB
3675 uint64_t delta;
3676
34dc7c2f
BB
3677 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3678 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
62422785
PS
3679
3680 if (!zfs_arc_p_dampener_disable)
3681 mult = MIN(mult, 10);
34dc7c2f 3682
d164b209 3683 delta = MIN(bytes * mult, arc_p);
f521ce1b 3684 arc_p = MAX(0, arc_p - delta);
34dc7c2f
BB
3685 }
3686 ASSERT((int64_t)arc_p >= 0);
3687
ca67b33a
MA
3688 if (arc_reclaim_needed()) {
3689 cv_signal(&arc_reclaim_thread_cv);
3690 return;
3691 }
3692
34dc7c2f
BB
3693 if (arc_no_grow)
3694 return;
3695
3696 if (arc_c >= arc_c_max)
3697 return;
3698
3699 /*
3700 * If we're within (2 * maxblocksize) bytes of the target
3701 * cache size, increment the target cache size
3702 */
121b3cae
TC
3703 VERIFY3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3704 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
3705 atomic_add_64(&arc_c, (int64_t)bytes);
3706 if (arc_c > arc_c_max)
3707 arc_c = arc_c_max;
3708 else if (state == arc_anon)
3709 atomic_add_64(&arc_p, (int64_t)bytes);
3710 if (arc_p > arc_c)
3711 arc_p = arc_c;
3712 }
3713 ASSERT((int64_t)arc_p >= 0);
3714}
3715
3716/*
ca0bf58d
PS
3717 * Check if arc_size has grown past our upper threshold, determined by
3718 * zfs_arc_overflow_shift.
34dc7c2f 3719 */
ca0bf58d
PS
3720static boolean_t
3721arc_is_overflowing(void)
34dc7c2f 3722{
ca0bf58d
PS
3723 /* Always allow at least one block of overflow */
3724 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3725 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 3726
ca0bf58d 3727 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
3728}
3729
3730/*
ca0bf58d
PS
3731 * The buffer, supplied as the first argument, needs a data block. If we
3732 * are hitting the hard limit for the cache size, we must sleep, waiting
3733 * for the eviction thread to catch up. If we're past the target size
3734 * but below the hard limit, we'll only signal the reclaim thread and
3735 * continue on.
34dc7c2f
BB
3736 */
3737static void
3738arc_get_data_buf(arc_buf_t *buf)
3739{
b9541d6b 3740 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 3741 uint64_t size = buf->b_hdr->b_size;
b9541d6b 3742 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
3743
3744 arc_adapt(size, state);
3745
3746 /*
ca0bf58d
PS
3747 * If arc_size is currently overflowing, and has grown past our
3748 * upper limit, we must be adding data faster than the evict
3749 * thread can evict. Thus, to ensure we don't compound the
3750 * problem by adding more data and forcing arc_size to grow even
3751 * further past it's target size, we halt and wait for the
3752 * eviction thread to catch up.
3753 *
3754 * It's also possible that the reclaim thread is unable to evict
3755 * enough buffers to get arc_size below the overflow limit (e.g.
3756 * due to buffers being un-evictable, or hash lock collisions).
3757 * In this case, we want to proceed regardless if we're
3758 * overflowing; thus we don't use a while loop here.
34dc7c2f 3759 */
ca0bf58d
PS
3760 if (arc_is_overflowing()) {
3761 mutex_enter(&arc_reclaim_lock);
3762
3763 /*
3764 * Now that we've acquired the lock, we may no longer be
3765 * over the overflow limit, lets check.
3766 *
3767 * We're ignoring the case of spurious wake ups. If that
3768 * were to happen, it'd let this thread consume an ARC
3769 * buffer before it should have (i.e. before we're under
3770 * the overflow limit and were signalled by the reclaim
3771 * thread). As long as that is a rare occurrence, it
3772 * shouldn't cause any harm.
3773 */
3774 if (arc_is_overflowing()) {
3775 cv_signal(&arc_reclaim_thread_cv);
3776 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 3777 }
34dc7c2f 3778
ca0bf58d 3779 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3780 }
ab26409d 3781
da8ccd0e 3782 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
3783 buf->b_data = zio_buf_alloc(size);
3784 arc_space_consume(size, ARC_SPACE_META);
3785 } else {
3786 ASSERT(type == ARC_BUFC_DATA);
3787 buf->b_data = zio_data_buf_alloc(size);
3788 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
3789 }
3790
34dc7c2f
BB
3791 /*
3792 * Update the state size. Note that ghost states have a
3793 * "ghost size" and so don't need to be updated.
3794 */
b9541d6b 3795 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
34dc7c2f
BB
3796 arc_buf_hdr_t *hdr = buf->b_hdr;
3797
b9541d6b 3798 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
ca0bf58d
PS
3799
3800 /*
3801 * If this is reached via arc_read, the link is
3802 * protected by the hash lock. If reached via
3803 * arc_buf_alloc, the header should not be accessed by
3804 * any other thread. And, if reached via arc_read_done,
3805 * the hash lock will protect it if it's found in the
3806 * hash table; otherwise no other thread should be
3807 * trying to [add|remove]_reference it.
3808 */
3809 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b
CW
3810 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3811 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3812 size);
34dc7c2f
BB
3813 }
3814 /*
3815 * If we are growing the cache, and we are adding anonymous
3816 * data, and we have outgrown arc_p, update arc_p
3817 */
ca0bf58d 3818 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
34dc7c2f
BB
3819 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3820 arc_p = MIN(arc_c, arc_p + size);
3821 }
3822}
3823
3824/*
3825 * This routine is called whenever a buffer is accessed.
3826 * NOTE: the hash lock is dropped in this function.
3827 */
3828static void
2a432414 3829arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3830{
428870ff
BB
3831 clock_t now;
3832
34dc7c2f 3833 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 3834 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 3835
b9541d6b 3836 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
3837 /*
3838 * This buffer is not in the cache, and does not
3839 * appear in our "ghost" list. Add the new buffer
3840 * to the MRU state.
3841 */
3842
b9541d6b
CW
3843 ASSERT0(hdr->b_l1hdr.b_arc_access);
3844 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3845 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3846 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 3847
b9541d6b 3848 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
3849 now = ddi_get_lbolt();
3850
34dc7c2f
BB
3851 /*
3852 * If this buffer is here because of a prefetch, then either:
3853 * - clear the flag if this is a "referencing" read
3854 * (any subsequent access will bump this into the MFU state).
3855 * or
3856 * - move the buffer to the head of the list if this is
3857 * another prefetch (to make it less likely to be evicted).
3858 */
b9541d6b
CW
3859 if (HDR_PREFETCH(hdr)) {
3860 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
3861 /* link protected by hash lock */
3862 ASSERT(multilist_link_active(
b9541d6b 3863 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 3864 } else {
2a432414 3865 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
b9541d6b 3866 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
3867 ARCSTAT_BUMP(arcstat_mru_hits);
3868 }
b9541d6b 3869 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
3870 return;
3871 }
3872
3873 /*
3874 * This buffer has been "accessed" only once so far,
3875 * but it is still in the cache. Move it to the MFU
3876 * state.
3877 */
b9541d6b
CW
3878 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3879 ARC_MINTIME)) {
34dc7c2f
BB
3880 /*
3881 * More than 125ms have passed since we
3882 * instantiated this buffer. Move it to the
3883 * most frequently used state.
3884 */
b9541d6b 3885 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
3886 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3887 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3888 }
b9541d6b 3889 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 3890 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 3891 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
3892 arc_state_t *new_state;
3893 /*
3894 * This buffer has been "accessed" recently, but
3895 * was evicted from the cache. Move it to the
3896 * MFU state.
3897 */
3898
b9541d6b 3899 if (HDR_PREFETCH(hdr)) {
34dc7c2f 3900 new_state = arc_mru;
b9541d6b 3901 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
2a432414
GW
3902 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3903 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3904 } else {
3905 new_state = arc_mfu;
2a432414 3906 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3907 }
3908
b9541d6b 3909 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 3910 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3911
b9541d6b 3912 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 3913 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 3914 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
3915 /*
3916 * This buffer has been accessed more than once and is
3917 * still in the cache. Keep it in the MFU state.
3918 *
3919 * NOTE: an add_reference() that occurred when we did
3920 * the arc_read() will have kicked this off the list.
3921 * If it was a prefetch, we will explicitly move it to
3922 * the head of the list now.
3923 */
b9541d6b
CW
3924 if ((HDR_PREFETCH(hdr)) != 0) {
3925 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3926 /* link protected by hash_lock */
3927 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 3928 }
b9541d6b 3929 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 3930 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
3931 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3932 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
3933 arc_state_t *new_state = arc_mfu;
3934 /*
3935 * This buffer has been accessed more than once but has
3936 * been evicted from the cache. Move it back to the
3937 * MFU state.
3938 */
3939
b9541d6b 3940 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
3941 /*
3942 * This is a prefetch access...
3943 * move this block back to the MRU state.
3944 */
b9541d6b 3945 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
3946 new_state = arc_mru;
3947 }
3948
b9541d6b 3949 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3950 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3951 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3952
b9541d6b 3953 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 3954 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 3955 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
3956 /*
3957 * This buffer is on the 2nd Level ARC.
3958 */
3959
b9541d6b 3960 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3961 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3962 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3963 } else {
b9541d6b
CW
3964 cmn_err(CE_PANIC, "invalid arc state 0x%p",
3965 hdr->b_l1hdr.b_state);
34dc7c2f
BB
3966 }
3967}
3968
3969/* a generic arc_done_func_t which you can use */
3970/* ARGSUSED */
3971void
3972arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3973{
428870ff
BB
3974 if (zio == NULL || zio->io_error == 0)
3975 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 3976 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3977}
3978
3979/* a generic arc_done_func_t */
3980void
3981arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3982{
3983 arc_buf_t **bufp = arg;
3984 if (zio && zio->io_error) {
13fe0198 3985 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
3986 *bufp = NULL;
3987 } else {
3988 *bufp = buf;
428870ff 3989 ASSERT(buf->b_data);
34dc7c2f
BB
3990 }
3991}
3992
3993static void
3994arc_read_done(zio_t *zio)
3995{
9b67f605 3996 arc_buf_hdr_t *hdr;
34dc7c2f
BB
3997 arc_buf_t *buf;
3998 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 3999 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
4000 arc_callback_t *callback_list, *acb;
4001 int freeable = FALSE;
4002
4003 buf = zio->io_private;
4004 hdr = buf->b_hdr;
4005
4006 /*
4007 * The hdr was inserted into hash-table and removed from lists
4008 * prior to starting I/O. We should find this header, since
4009 * it's in the hash table, and it should be legit since it's
4010 * not possible to evict it during the I/O. The only possible
4011 * reason for it not to be found is if we were freed during the
4012 * read.
4013 */
9b67f605
MA
4014 if (HDR_IN_HASH_TABLE(hdr)) {
4015 arc_buf_hdr_t *found;
4016
4017 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4018 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4019 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4020 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4021 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4022
4023 found = buf_hash_find(hdr->b_spa, zio->io_bp,
4024 &hash_lock);
4025
4026 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4027 hash_lock == NULL) ||
4028 (found == hdr &&
4029 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4030 (found == hdr && HDR_L2_READING(hdr)));
4031 }
34dc7c2f 4032
2a432414 4033 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
b9541d6b 4034 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
2a432414 4035 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
34dc7c2f
BB
4036
4037 /* byteswap if necessary */
b9541d6b 4038 callback_list = hdr->b_l1hdr.b_acb;
34dc7c2f 4039 ASSERT(callback_list != NULL);
428870ff 4040 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
4041 dmu_object_byteswap_t bswap =
4042 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
4043 if (BP_GET_LEVEL(zio->io_bp) > 0)
4044 byteswap_uint64_array(buf->b_data, hdr->b_size);
4045 else
4046 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 4047 }
34dc7c2f
BB
4048
4049 arc_cksum_compute(buf, B_FALSE);
498877ba 4050 arc_buf_watch(buf);
34dc7c2f 4051
b9541d6b
CW
4052 if (hash_lock && zio->io_error == 0 &&
4053 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
4054 /*
4055 * Only call arc_access on anonymous buffers. This is because
4056 * if we've issued an I/O for an evicted buffer, we've already
4057 * called arc_access (to prevent any simultaneous readers from
4058 * getting confused).
4059 */
4060 arc_access(hdr, hash_lock);
4061 }
4062
34dc7c2f
BB
4063 /* create copies of the data buffer for the callers */
4064 abuf = buf;
4065 for (acb = callback_list; acb; acb = acb->acb_next) {
4066 if (acb->acb_done) {
1eb5bfa3
GW
4067 if (abuf == NULL) {
4068 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 4069 abuf = arc_buf_clone(buf);
1eb5bfa3 4070 }
34dc7c2f
BB
4071 acb->acb_buf = abuf;
4072 abuf = NULL;
4073 }
4074 }
b9541d6b 4075 hdr->b_l1hdr.b_acb = NULL;
2a432414 4076 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4077 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
4078 if (abuf == buf) {
4079 ASSERT(buf->b_efunc == NULL);
b9541d6b 4080 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2a432414 4081 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 4082 }
34dc7c2f 4083
b9541d6b
CW
4084 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4085 callback_list != NULL);
34dc7c2f
BB
4086
4087 if (zio->io_error != 0) {
2a432414 4088 hdr->b_flags |= ARC_FLAG_IO_ERROR;
b9541d6b 4089 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
4090 arc_change_state(arc_anon, hdr, hash_lock);
4091 if (HDR_IN_HASH_TABLE(hdr))
4092 buf_hash_remove(hdr);
b9541d6b 4093 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4094 }
4095
4096 /*
4097 * Broadcast before we drop the hash_lock to avoid the possibility
4098 * that the hdr (and hence the cv) might be freed before we get to
4099 * the cv_broadcast().
4100 */
b9541d6b 4101 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 4102
b9541d6b 4103 if (hash_lock != NULL) {
34dc7c2f
BB
4104 mutex_exit(hash_lock);
4105 } else {
4106 /*
4107 * This block was freed while we waited for the read to
4108 * complete. It has been removed from the hash table and
4109 * moved to the anonymous state (so that it won't show up
4110 * in the cache).
4111 */
b9541d6b
CW
4112 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4113 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4114 }
4115
4116 /* execute each callback and free its structure */
4117 while ((acb = callback_list) != NULL) {
4118 if (acb->acb_done)
4119 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4120
4121 if (acb->acb_zio_dummy != NULL) {
4122 acb->acb_zio_dummy->io_error = zio->io_error;
4123 zio_nowait(acb->acb_zio_dummy);
4124 }
4125
4126 callback_list = acb->acb_next;
4127 kmem_free(acb, sizeof (arc_callback_t));
4128 }
4129
4130 if (freeable)
4131 arc_hdr_destroy(hdr);
4132}
4133
4134/*
5c839890 4135 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
4136 * cache. If the block is found in the cache, invoke the provided
4137 * callback immediately and return. Note that the `zio' parameter
4138 * in the callback will be NULL in this case, since no IO was
4139 * required. If the block is not in the cache pass the read request
4140 * on to the spa with a substitute callback function, so that the
4141 * requested block will be added to the cache.
4142 *
4143 * If a read request arrives for a block that has a read in-progress,
4144 * either wait for the in-progress read to complete (and return the
4145 * results); or, if this is a read with a "done" func, add a record
4146 * to the read to invoke the "done" func when the read completes,
4147 * and return; or just return.
4148 *
4149 * arc_read_done() will invoke all the requested "done" functions
4150 * for readers of this block.
4151 */
4152int
294f6806 4153arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
4154 void *private, zio_priority_t priority, int zio_flags,
4155 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 4156{
9b67f605 4157 arc_buf_hdr_t *hdr = NULL;
d4ed6673 4158 arc_buf_t *buf = NULL;
9b67f605 4159 kmutex_t *hash_lock = NULL;
34dc7c2f 4160 zio_t *rzio;
3541dc6d 4161 uint64_t guid = spa_load_guid(spa);
1421c891 4162 int rc = 0;
34dc7c2f 4163
9b67f605
MA
4164 ASSERT(!BP_IS_EMBEDDED(bp) ||
4165 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4166
34dc7c2f 4167top:
9b67f605
MA
4168 if (!BP_IS_EMBEDDED(bp)) {
4169 /*
4170 * Embedded BP's have no DVA and require no I/O to "read".
4171 * Create an anonymous arc buf to back it.
4172 */
4173 hdr = buf_hash_find(guid, bp, &hash_lock);
4174 }
4175
b9541d6b 4176 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
34dc7c2f 4177
2a432414 4178 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
4179
4180 if (HDR_IO_IN_PROGRESS(hdr)) {
4181
2a432414 4182 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 4183 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
4184 mutex_exit(hash_lock);
4185 goto top;
4186 }
2a432414 4187 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4188
4189 if (done) {
4190 arc_callback_t *acb = NULL;
4191
4192 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 4193 KM_SLEEP);
34dc7c2f
BB
4194 acb->acb_done = done;
4195 acb->acb_private = private;
34dc7c2f
BB
4196 if (pio != NULL)
4197 acb->acb_zio_dummy = zio_null(pio,
d164b209 4198 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
4199
4200 ASSERT(acb->acb_done != NULL);
b9541d6b
CW
4201 acb->acb_next = hdr->b_l1hdr.b_acb;
4202 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
4203 add_reference(hdr, hash_lock, private);
4204 mutex_exit(hash_lock);
1421c891 4205 goto out;
34dc7c2f
BB
4206 }
4207 mutex_exit(hash_lock);
1421c891 4208 goto out;
34dc7c2f
BB
4209 }
4210
b9541d6b
CW
4211 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4212 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
4213
4214 if (done) {
4215 add_reference(hdr, hash_lock, private);
4216 /*
4217 * If this block is already in use, create a new
4218 * copy of the data so that we will be guaranteed
4219 * that arc_release() will always succeed.
4220 */
b9541d6b 4221 buf = hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4222 ASSERT(buf);
4223 ASSERT(buf->b_data);
4224 if (HDR_BUF_AVAILABLE(hdr)) {
4225 ASSERT(buf->b_efunc == NULL);
2a432414 4226 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
34dc7c2f
BB
4227 } else {
4228 buf = arc_buf_clone(buf);
4229 }
428870ff 4230
2a432414 4231 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 4232 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
2a432414 4233 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4234 }
4235 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4236 arc_access(hdr, hash_lock);
2a432414
GW
4237 if (*arc_flags & ARC_FLAG_L2CACHE)
4238 hdr->b_flags |= ARC_FLAG_L2CACHE;
4239 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4240 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4241 mutex_exit(hash_lock);
4242 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
4243 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4244 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4245 data, metadata, hits);
4246
4247 if (done)
4248 done(NULL, buf, private);
4249 } else {
4250 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 4251 arc_callback_t *acb;
b128c09f 4252 vdev_t *vd = NULL;
a117a6d6 4253 uint64_t addr = 0;
d164b209 4254 boolean_t devw = B_FALSE;
0ed212dc 4255 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
b9541d6b 4256 int32_t b_asize = 0;
34dc7c2f 4257
5f6d0b6f
BB
4258 /*
4259 * Gracefully handle a damaged logical block size as a
4260 * checksum error by passing a dummy zio to the done callback.
4261 */
f1512ee6 4262 if (size > spa_maxblocksize(spa)) {
5f6d0b6f
BB
4263 if (done) {
4264 rzio = zio_null(pio, spa, NULL,
4265 NULL, NULL, zio_flags);
4266 rzio->io_error = ECKSUM;
4267 done(rzio, buf, private);
4268 zio_nowait(rzio);
4269 }
4270 rc = ECKSUM;
4271 goto out;
4272 }
4273
34dc7c2f
BB
4274 if (hdr == NULL) {
4275 /* this block is not in the cache */
9b67f605 4276 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
4277 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4278 buf = arc_buf_alloc(spa, size, private, type);
4279 hdr = buf->b_hdr;
9b67f605
MA
4280 if (!BP_IS_EMBEDDED(bp)) {
4281 hdr->b_dva = *BP_IDENTITY(bp);
4282 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
4283 exists = buf_hash_insert(hdr, &hash_lock);
4284 }
4285 if (exists != NULL) {
34dc7c2f
BB
4286 /* somebody beat us to the hash insert */
4287 mutex_exit(hash_lock);
428870ff 4288 buf_discard_identity(hdr);
34dc7c2f
BB
4289 (void) arc_buf_remove_ref(buf, private);
4290 goto top; /* restart the IO request */
4291 }
2a432414 4292
34dc7c2f 4293 /* if this is a prefetch, we don't have a reference */
2a432414 4294 if (*arc_flags & ARC_FLAG_PREFETCH) {
34dc7c2f
BB
4295 (void) remove_reference(hdr, hash_lock,
4296 private);
2a432414 4297 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f 4298 }
2a432414
GW
4299 if (*arc_flags & ARC_FLAG_L2CACHE)
4300 hdr->b_flags |= ARC_FLAG_L2CACHE;
4301 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4302 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f 4303 if (BP_GET_LEVEL(bp) > 0)
2a432414 4304 hdr->b_flags |= ARC_FLAG_INDIRECT;
34dc7c2f 4305 } else {
b9541d6b
CW
4306 /*
4307 * This block is in the ghost cache. If it was L2-only
4308 * (and thus didn't have an L1 hdr), we realloc the
4309 * header to add an L1 hdr.
4310 */
4311 if (!HDR_HAS_L1HDR(hdr)) {
4312 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4313 hdr_full_cache);
4314 }
4315
4316 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 4317 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 4318 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 4319 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
34dc7c2f
BB
4320
4321 /* if this is a prefetch, we don't have a reference */
2a432414
GW
4322 if (*arc_flags & ARC_FLAG_PREFETCH)
4323 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4324 else
4325 add_reference(hdr, hash_lock, private);
2a432414
GW
4326 if (*arc_flags & ARC_FLAG_L2CACHE)
4327 hdr->b_flags |= ARC_FLAG_L2CACHE;
4328 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4329 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4330 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4331 buf->b_hdr = hdr;
4332 buf->b_data = NULL;
4333 buf->b_efunc = NULL;
4334 buf->b_private = NULL;
4335 buf->b_next = NULL;
b9541d6b
CW
4336 hdr->b_l1hdr.b_buf = buf;
4337 ASSERT0(hdr->b_l1hdr.b_datacnt);
4338 hdr->b_l1hdr.b_datacnt = 1;
428870ff
BB
4339 arc_get_data_buf(buf);
4340 arc_access(hdr, hash_lock);
34dc7c2f
BB
4341 }
4342
b9541d6b 4343 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 4344
79c76d5b 4345 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
4346 acb->acb_done = done;
4347 acb->acb_private = private;
34dc7c2f 4348
b9541d6b
CW
4349 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4350 hdr->b_l1hdr.b_acb = acb;
2a432414 4351 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4352
b9541d6b
CW
4353 if (HDR_HAS_L2HDR(hdr) &&
4354 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4355 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4356 addr = hdr->b_l2hdr.b_daddr;
4357 b_compress = HDR_GET_COMPRESS(hdr);
4358 b_asize = hdr->b_l2hdr.b_asize;
b128c09f
BB
4359 /*
4360 * Lock out device removal.
4361 */
4362 if (vdev_is_dead(vd) ||
4363 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4364 vd = NULL;
4365 }
4366
9b67f605
MA
4367 if (hash_lock != NULL)
4368 mutex_exit(hash_lock);
b128c09f 4369
e49f1e20
WA
4370 /*
4371 * At this point, we have a level 1 cache miss. Try again in
4372 * L2ARC if possible.
4373 */
34dc7c2f 4374 ASSERT3U(hdr->b_size, ==, size);
428870ff 4375 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 4376 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f 4377 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
4378 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4379 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4380 data, metadata, misses);
4381
d164b209 4382 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
4383 /*
4384 * Read from the L2ARC if the following are true:
b128c09f
BB
4385 * 1. The L2ARC vdev was previously cached.
4386 * 2. This buffer still has L2ARC metadata.
4387 * 3. This buffer isn't currently writing to the L2ARC.
4388 * 4. The L2ARC entry wasn't evicted, which may
4389 * also have invalidated the vdev.
d164b209 4390 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 4391 */
b9541d6b 4392 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
4393 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4394 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
4395 l2arc_read_callback_t *cb;
4396
4397 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4398 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 4399 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 4400
34dc7c2f 4401 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 4402 KM_SLEEP);
34dc7c2f
BB
4403 cb->l2rcb_buf = buf;
4404 cb->l2rcb_spa = spa;
4405 cb->l2rcb_bp = *bp;
4406 cb->l2rcb_zb = *zb;
b128c09f 4407 cb->l2rcb_flags = zio_flags;
0ed212dc 4408 cb->l2rcb_compress = b_compress;
34dc7c2f 4409
a117a6d6
GW
4410 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4411 addr + size < vd->vdev_psize -
4412 VDEV_LABEL_END_SIZE);
4413
34dc7c2f 4414 /*
b128c09f
BB
4415 * l2arc read. The SCL_L2ARC lock will be
4416 * released by l2arc_read_done().
3a17a7a9
SK
4417 * Issue a null zio if the underlying buffer
4418 * was squashed to zero size by compression.
34dc7c2f 4419 */
0ed212dc 4420 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
4421 rzio = zio_null(pio, spa, vd,
4422 l2arc_read_done, cb,
4423 zio_flags | ZIO_FLAG_DONT_CACHE |
4424 ZIO_FLAG_CANFAIL |
4425 ZIO_FLAG_DONT_PROPAGATE |
4426 ZIO_FLAG_DONT_RETRY);
4427 } else {
4428 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
4429 b_asize, buf->b_data,
4430 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
4431 l2arc_read_done, cb, priority,
4432 zio_flags | ZIO_FLAG_DONT_CACHE |
4433 ZIO_FLAG_CANFAIL |
4434 ZIO_FLAG_DONT_PROPAGATE |
4435 ZIO_FLAG_DONT_RETRY, B_FALSE);
4436 }
34dc7c2f
BB
4437 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4438 zio_t *, rzio);
0ed212dc 4439 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 4440
2a432414 4441 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 4442 zio_nowait(rzio);
1421c891 4443 goto out;
b128c09f 4444 }
34dc7c2f 4445
2a432414 4446 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 4447 if (zio_wait(rzio) == 0)
1421c891 4448 goto out;
b128c09f
BB
4449
4450 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
4451 } else {
4452 DTRACE_PROBE1(l2arc__miss,
4453 arc_buf_hdr_t *, hdr);
4454 ARCSTAT_BUMP(arcstat_l2_misses);
4455 if (HDR_L2_WRITING(hdr))
4456 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 4457 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 4458 }
d164b209
BB
4459 } else {
4460 if (vd != NULL)
4461 spa_config_exit(spa, SCL_L2ARC, vd);
4462 if (l2arc_ndev != 0) {
4463 DTRACE_PROBE1(l2arc__miss,
4464 arc_buf_hdr_t *, hdr);
4465 ARCSTAT_BUMP(arcstat_l2_misses);
4466 }
34dc7c2f 4467 }
34dc7c2f
BB
4468
4469 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 4470 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 4471
2a432414 4472 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
4473 rc = zio_wait(rzio);
4474 goto out;
4475 }
34dc7c2f 4476
2a432414 4477 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4478 zio_nowait(rzio);
4479 }
1421c891
PS
4480
4481out:
4482 spa_read_history_add(spa, zb, *arc_flags);
4483 return (rc);
34dc7c2f
BB
4484}
4485
ab26409d
BB
4486arc_prune_t *
4487arc_add_prune_callback(arc_prune_func_t *func, void *private)
4488{
4489 arc_prune_t *p;
4490
d1d7e268 4491 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
4492 p->p_pfunc = func;
4493 p->p_private = private;
4494 list_link_init(&p->p_node);
4495 refcount_create(&p->p_refcnt);
4496
4497 mutex_enter(&arc_prune_mtx);
4498 refcount_add(&p->p_refcnt, &arc_prune_list);
4499 list_insert_head(&arc_prune_list, p);
4500 mutex_exit(&arc_prune_mtx);
4501
4502 return (p);
4503}
4504
4505void
4506arc_remove_prune_callback(arc_prune_t *p)
4507{
4508 mutex_enter(&arc_prune_mtx);
4509 list_remove(&arc_prune_list, p);
4510 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4511 refcount_destroy(&p->p_refcnt);
4512 kmem_free(p, sizeof (*p));
4513 }
4514 mutex_exit(&arc_prune_mtx);
4515}
4516
34dc7c2f
BB
4517void
4518arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4519{
4520 ASSERT(buf->b_hdr != NULL);
b9541d6b
CW
4521 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4522 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4523 func == NULL);
428870ff
BB
4524 ASSERT(buf->b_efunc == NULL);
4525 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4526
34dc7c2f
BB
4527 buf->b_efunc = func;
4528 buf->b_private = private;
4529}
4530
df4474f9
MA
4531/*
4532 * Notify the arc that a block was freed, and thus will never be used again.
4533 */
4534void
4535arc_freed(spa_t *spa, const blkptr_t *bp)
4536{
4537 arc_buf_hdr_t *hdr;
4538 kmutex_t *hash_lock;
4539 uint64_t guid = spa_load_guid(spa);
4540
9b67f605
MA
4541 ASSERT(!BP_IS_EMBEDDED(bp));
4542
4543 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
4544 if (hdr == NULL)
4545 return;
4546 if (HDR_BUF_AVAILABLE(hdr)) {
b9541d6b 4547 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
df4474f9 4548 add_reference(hdr, hash_lock, FTAG);
2a432414 4549 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
df4474f9
MA
4550 mutex_exit(hash_lock);
4551
4552 arc_release(buf, FTAG);
4553 (void) arc_buf_remove_ref(buf, FTAG);
4554 } else {
4555 mutex_exit(hash_lock);
4556 }
4557
4558}
4559
34dc7c2f 4560/*
bd089c54
MA
4561 * Clear the user eviction callback set by arc_set_callback(), first calling
4562 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4563 * clearing the callback may result in the arc_buf being destroyed. However,
4564 * it will not result in the *last* arc_buf being destroyed, hence the data
4565 * will remain cached in the ARC. We make a copy of the arc buffer here so
4566 * that we can process the callback without holding any locks.
4567 *
4568 * It's possible that the callback is already in the process of being cleared
4569 * by another thread. In this case we can not clear the callback.
4570 *
4571 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 4572 */
bd089c54
MA
4573boolean_t
4574arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
4575{
4576 arc_buf_hdr_t *hdr;
4577 kmutex_t *hash_lock;
bd089c54
MA
4578 arc_evict_func_t *efunc = buf->b_efunc;
4579 void *private = buf->b_private;
34dc7c2f 4580
428870ff 4581 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
4582 hdr = buf->b_hdr;
4583 if (hdr == NULL) {
4584 /*
4585 * We are in arc_do_user_evicts().
4586 */
4587 ASSERT(buf->b_data == NULL);
428870ff 4588 mutex_exit(&buf->b_evict_lock);
bd089c54 4589 return (B_FALSE);
b128c09f 4590 } else if (buf->b_data == NULL) {
34dc7c2f 4591 /*
b128c09f
BB
4592 * We are on the eviction list; process this buffer now
4593 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 4594 */
b128c09f 4595 buf->b_efunc = NULL;
428870ff 4596 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
4597 VERIFY0(efunc(private));
4598 return (B_TRUE);
34dc7c2f 4599 }
b128c09f
BB
4600 hash_lock = HDR_LOCK(hdr);
4601 mutex_enter(hash_lock);
428870ff
BB
4602 hdr = buf->b_hdr;
4603 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4604
b9541d6b
CW
4605 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4606 hdr->b_l1hdr.b_datacnt);
4607 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4608 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 4609
bd089c54
MA
4610 buf->b_efunc = NULL;
4611 buf->b_private = NULL;
34dc7c2f 4612
b9541d6b 4613 if (hdr->b_l1hdr.b_datacnt > 1) {
bd089c54 4614 mutex_exit(&buf->b_evict_lock);
ca0bf58d 4615 arc_buf_destroy(buf, TRUE);
bd089c54 4616 } else {
b9541d6b 4617 ASSERT(buf == hdr->b_l1hdr.b_buf);
2a432414 4618 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
bd089c54 4619 mutex_exit(&buf->b_evict_lock);
34dc7c2f 4620 }
34dc7c2f 4621
bd089c54
MA
4622 mutex_exit(hash_lock);
4623 VERIFY0(efunc(private));
4624 return (B_TRUE);
34dc7c2f
BB
4625}
4626
4627/*
e49f1e20
WA
4628 * Release this buffer from the cache, making it an anonymous buffer. This
4629 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 4630 * If the buffer has more than one reference, we must make
b128c09f 4631 * a new hdr for the buffer.
34dc7c2f
BB
4632 */
4633void
4634arc_release(arc_buf_t *buf, void *tag)
4635{
b9541d6b
CW
4636 kmutex_t *hash_lock;
4637 arc_state_t *state;
4638 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 4639
428870ff 4640 /*
ca0bf58d 4641 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
4642 * 0 || it's the dnode file), then it must be syncing context.
4643 * But we don't know that information at this level.
4644 */
4645
4646 mutex_enter(&buf->b_evict_lock);
b128c09f 4647
ca0bf58d
PS
4648 ASSERT(HDR_HAS_L1HDR(hdr));
4649
b9541d6b
CW
4650 /*
4651 * We don't grab the hash lock prior to this check, because if
4652 * the buffer's header is in the arc_anon state, it won't be
4653 * linked into the hash table.
4654 */
4655 if (hdr->b_l1hdr.b_state == arc_anon) {
4656 mutex_exit(&buf->b_evict_lock);
4657 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4658 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4659 ASSERT(!HDR_HAS_L2HDR(hdr));
4660 ASSERT(BUF_EMPTY(hdr));
34dc7c2f 4661
b9541d6b
CW
4662 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4663 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4664 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4665
4666 ASSERT3P(buf->b_efunc, ==, NULL);
4667 ASSERT3P(buf->b_private, ==, NULL);
4668
4669 hdr->b_l1hdr.b_arc_access = 0;
4670 arc_buf_thaw(buf);
4671
4672 return;
34dc7c2f
BB
4673 }
4674
b9541d6b
CW
4675 hash_lock = HDR_LOCK(hdr);
4676 mutex_enter(hash_lock);
4677
4678 /*
4679 * This assignment is only valid as long as the hash_lock is
4680 * held, we must be careful not to reference state or the
4681 * b_state field after dropping the lock.
4682 */
4683 state = hdr->b_l1hdr.b_state;
4684 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4685 ASSERT3P(state, !=, arc_anon);
4686
4687 /* this buffer is not on any list */
4688 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4689
4690 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 4691 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
4692
4693 /*
d962d5da
PS
4694 * We have to recheck this conditional again now that
4695 * we're holding the l2ad_mtx to prevent a race with
4696 * another thread which might be concurrently calling
4697 * l2arc_evict(). In that case, l2arc_evict() might have
4698 * destroyed the header's L2 portion as we were waiting
4699 * to acquire the l2ad_mtx.
ca0bf58d 4700 */
d962d5da
PS
4701 if (HDR_HAS_L2HDR(hdr))
4702 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 4703
b9541d6b 4704 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
4705 }
4706
34dc7c2f
BB
4707 /*
4708 * Do we have more than one buf?
4709 */
b9541d6b 4710 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f
BB
4711 arc_buf_hdr_t *nhdr;
4712 arc_buf_t **bufp;
4713 uint64_t blksz = hdr->b_size;
d164b209 4714 uint64_t spa = hdr->b_spa;
b9541d6b 4715 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4716 uint32_t flags = hdr->b_flags;
4717
b9541d6b 4718 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
34dc7c2f 4719 /*
428870ff
BB
4720 * Pull the data off of this hdr and attach it to
4721 * a new anonymous hdr.
34dc7c2f
BB
4722 */
4723 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 4724 bufp = &hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4725 while (*bufp != buf)
4726 bufp = &(*bufp)->b_next;
428870ff 4727 *bufp = buf->b_next;
34dc7c2f
BB
4728 buf->b_next = NULL;
4729
b9541d6b
CW
4730 ASSERT3P(state, !=, arc_l2c_only);
4731 ASSERT3U(state->arcs_size, >=, hdr->b_size);
4732 atomic_add_64(&state->arcs_size, -hdr->b_size);
4733 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4734 uint64_t *size;
4735
4736 ASSERT3P(state, !=, arc_l2c_only);
4737 size = &state->arcs_lsize[type];
34dc7c2f
BB
4738 ASSERT3U(*size, >=, hdr->b_size);
4739 atomic_add_64(size, -hdr->b_size);
4740 }
1eb5bfa3
GW
4741
4742 /*
4743 * We're releasing a duplicate user data buffer, update
4744 * our statistics accordingly.
4745 */
b9541d6b 4746 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
4747 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4748 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4749 -hdr->b_size);
4750 }
b9541d6b 4751 hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f 4752 arc_cksum_verify(buf);
498877ba 4753 arc_buf_unwatch(buf);
34dc7c2f
BB
4754
4755 mutex_exit(hash_lock);
4756
b9541d6b 4757 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f
BB
4758 nhdr->b_size = blksz;
4759 nhdr->b_spa = spa;
b9541d6b
CW
4760
4761 nhdr->b_l1hdr.b_mru_hits = 0;
4762 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4763 nhdr->b_l1hdr.b_mfu_hits = 0;
4764 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4765 nhdr->b_l1hdr.b_l2_hits = 0;
2a432414 4766 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
b9541d6b
CW
4767 nhdr->b_flags |= arc_bufc_to_flags(type);
4768 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4769
4770 nhdr->b_l1hdr.b_buf = buf;
4771 nhdr->b_l1hdr.b_datacnt = 1;
4772 nhdr->b_l1hdr.b_state = arc_anon;
4773 nhdr->b_l1hdr.b_arc_access = 0;
ca0bf58d 4774 nhdr->b_l1hdr.b_tmp_cdata = NULL;
34dc7c2f 4775 nhdr->b_freeze_cksum = NULL;
b9541d6b
CW
4776
4777 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 4778 buf->b_hdr = nhdr;
428870ff 4779 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
4780 atomic_add_64(&arc_anon->arcs_size, blksz);
4781 } else {
428870ff 4782 mutex_exit(&buf->b_evict_lock);
b9541d6b 4783 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
4784 /* protected by hash lock, or hdr is on arc_anon */
4785 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4786 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
4787 hdr->b_l1hdr.b_mru_hits = 0;
4788 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4789 hdr->b_l1hdr.b_mfu_hits = 0;
4790 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4791 hdr->b_l1hdr.b_l2_hits = 0;
4792 arc_change_state(arc_anon, hdr, hash_lock);
4793 hdr->b_l1hdr.b_arc_access = 0;
4794 mutex_exit(hash_lock);
34dc7c2f 4795
428870ff 4796 buf_discard_identity(hdr);
34dc7c2f
BB
4797 arc_buf_thaw(buf);
4798 }
4799 buf->b_efunc = NULL;
4800 buf->b_private = NULL;
34dc7c2f
BB
4801}
4802
4803int
4804arc_released(arc_buf_t *buf)
4805{
b128c09f
BB
4806 int released;
4807
428870ff 4808 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
4809 released = (buf->b_data != NULL &&
4810 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 4811 mutex_exit(&buf->b_evict_lock);
b128c09f 4812 return (released);
34dc7c2f
BB
4813}
4814
34dc7c2f
BB
4815#ifdef ZFS_DEBUG
4816int
4817arc_referenced(arc_buf_t *buf)
4818{
b128c09f
BB
4819 int referenced;
4820
428870ff 4821 mutex_enter(&buf->b_evict_lock);
b9541d6b 4822 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 4823 mutex_exit(&buf->b_evict_lock);
b128c09f 4824 return (referenced);
34dc7c2f
BB
4825}
4826#endif
4827
4828static void
4829arc_write_ready(zio_t *zio)
4830{
4831 arc_write_callback_t *callback = zio->io_private;
4832 arc_buf_t *buf = callback->awcb_buf;
4833 arc_buf_hdr_t *hdr = buf->b_hdr;
4834
b9541d6b
CW
4835 ASSERT(HDR_HAS_L1HDR(hdr));
4836 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4837 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f
BB
4838 callback->awcb_ready(zio, buf, callback->awcb_private);
4839
34dc7c2f
BB
4840 /*
4841 * If the IO is already in progress, then this is a re-write
b128c09f
BB
4842 * attempt, so we need to thaw and re-compute the cksum.
4843 * It is the responsibility of the callback to handle the
4844 * accounting for any re-write attempt.
34dc7c2f
BB
4845 */
4846 if (HDR_IO_IN_PROGRESS(hdr)) {
b9541d6b 4847 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4848 if (hdr->b_freeze_cksum != NULL) {
4849 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4850 hdr->b_freeze_cksum = NULL;
4851 }
b9541d6b 4852 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4853 }
4854 arc_cksum_compute(buf, B_FALSE);
2a432414 4855 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4856}
4857
e8b96c60
MA
4858/*
4859 * The SPA calls this callback for each physical write that happens on behalf
4860 * of a logical write. See the comment in dbuf_write_physdone() for details.
4861 */
4862static void
4863arc_write_physdone(zio_t *zio)
4864{
4865 arc_write_callback_t *cb = zio->io_private;
4866 if (cb->awcb_physdone != NULL)
4867 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4868}
4869
34dc7c2f
BB
4870static void
4871arc_write_done(zio_t *zio)
4872{
4873 arc_write_callback_t *callback = zio->io_private;
4874 arc_buf_t *buf = callback->awcb_buf;
4875 arc_buf_hdr_t *hdr = buf->b_hdr;
4876
b9541d6b 4877 ASSERT(hdr->b_l1hdr.b_acb == NULL);
428870ff
BB
4878
4879 if (zio->io_error == 0) {
9b67f605 4880 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
4881 buf_discard_identity(hdr);
4882 } else {
4883 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4884 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 4885 }
428870ff
BB
4886 } else {
4887 ASSERT(BUF_EMPTY(hdr));
4888 }
34dc7c2f 4889
34dc7c2f 4890 /*
9b67f605
MA
4891 * If the block to be written was all-zero or compressed enough to be
4892 * embedded in the BP, no write was performed so there will be no
4893 * dva/birth/checksum. The buffer must therefore remain anonymous
4894 * (and uncached).
34dc7c2f
BB
4895 */
4896 if (!BUF_EMPTY(hdr)) {
4897 arc_buf_hdr_t *exists;
4898 kmutex_t *hash_lock;
4899
428870ff
BB
4900 ASSERT(zio->io_error == 0);
4901
34dc7c2f
BB
4902 arc_cksum_verify(buf);
4903
4904 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 4905 if (exists != NULL) {
34dc7c2f
BB
4906 /*
4907 * This can only happen if we overwrite for
4908 * sync-to-convergence, because we remove
4909 * buffers from the hash table when we arc_free().
4910 */
428870ff
BB
4911 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4912 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4913 panic("bad overwrite, hdr=%p exists=%p",
4914 (void *)hdr, (void *)exists);
b9541d6b
CW
4915 ASSERT(refcount_is_zero(
4916 &exists->b_l1hdr.b_refcnt));
428870ff
BB
4917 arc_change_state(arc_anon, exists, hash_lock);
4918 mutex_exit(hash_lock);
4919 arc_hdr_destroy(exists);
4920 exists = buf_hash_insert(hdr, &hash_lock);
4921 ASSERT3P(exists, ==, NULL);
03c6040b
GW
4922 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4923 /* nopwrite */
4924 ASSERT(zio->io_prop.zp_nopwrite);
4925 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4926 panic("bad nopwrite, hdr=%p exists=%p",
4927 (void *)hdr, (void *)exists);
428870ff
BB
4928 } else {
4929 /* Dedup */
b9541d6b
CW
4930 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4931 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
4932 ASSERT(BP_GET_DEDUP(zio->io_bp));
4933 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4934 }
34dc7c2f 4935 }
2a432414 4936 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
b128c09f 4937 /* if it's not anon, we are doing a scrub */
b9541d6b 4938 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 4939 arc_access(hdr, hash_lock);
34dc7c2f 4940 mutex_exit(hash_lock);
34dc7c2f 4941 } else {
2a432414 4942 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4943 }
4944
b9541d6b 4945 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 4946 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
4947
4948 kmem_free(callback, sizeof (arc_write_callback_t));
4949}
4950
4951zio_t *
428870ff 4952arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 4953 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
4954 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4955 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 4956 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
4957{
4958 arc_buf_hdr_t *hdr = buf->b_hdr;
4959 arc_write_callback_t *callback;
b128c09f 4960 zio_t *zio;
34dc7c2f 4961
b128c09f 4962 ASSERT(ready != NULL);
428870ff 4963 ASSERT(done != NULL);
34dc7c2f 4964 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b
CW
4965 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4966 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4967 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f 4968 if (l2arc)
2a432414 4969 hdr->b_flags |= ARC_FLAG_L2CACHE;
3a17a7a9 4970 if (l2arc_compress)
2a432414 4971 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
79c76d5b 4972 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 4973 callback->awcb_ready = ready;
e8b96c60 4974 callback->awcb_physdone = physdone;
34dc7c2f
BB
4975 callback->awcb_done = done;
4976 callback->awcb_private = private;
4977 callback->awcb_buf = buf;
b128c09f 4978
428870ff 4979 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
4980 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4981 priority, zio_flags, zb);
34dc7c2f
BB
4982
4983 return (zio);
4984}
4985
34dc7c2f 4986static int
e8b96c60 4987arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
4988{
4989#ifdef _KERNEL
0c5493d4
BB
4990 if (zfs_arc_memory_throttle_disable)
4991 return (0);
4992
ca67b33a
MA
4993 if (freemem > physmem * arc_lotsfree_percent / 100)
4994 return (0);
4995
4996 if (arc_reclaim_needed()) {
4997 /* memory is low, delay before restarting */
34dc7c2f 4998 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 4999 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 5000 return (SET_ERROR(EAGAIN));
34dc7c2f 5001 }
34dc7c2f
BB
5002#endif
5003 return (0);
5004}
5005
5006void
5007arc_tempreserve_clear(uint64_t reserve)
5008{
5009 atomic_add_64(&arc_tempreserve, -reserve);
5010 ASSERT((int64_t)arc_tempreserve >= 0);
5011}
5012
5013int
5014arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5015{
5016 int error;
9babb374 5017 uint64_t anon_size;
34dc7c2f 5018
34dc7c2f
BB
5019 if (reserve > arc_c/4 && !arc_no_grow)
5020 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
5021
5022 /*
5023 * Throttle when the calculated memory footprint for the TXG
5024 * exceeds the target ARC size.
5025 */
570827e1
BB
5026 if (reserve > arc_c) {
5027 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 5028 return (SET_ERROR(ERESTART));
570827e1 5029 }
34dc7c2f 5030
9babb374
BB
5031 /*
5032 * Don't count loaned bufs as in flight dirty data to prevent long
5033 * network delays from blocking transactions that are ready to be
5034 * assigned to a txg.
5035 */
5036 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
5037
34dc7c2f
BB
5038 /*
5039 * Writes will, almost always, require additional memory allocations
d3cc8b15 5040 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
5041 * make sure that there is sufficient available memory for this.
5042 */
e8b96c60
MA
5043 error = arc_memory_throttle(reserve, txg);
5044 if (error != 0)
34dc7c2f
BB
5045 return (error);
5046
5047 /*
5048 * Throttle writes when the amount of dirty data in the cache
5049 * gets too large. We try to keep the cache less than half full
5050 * of dirty blocks so that our sync times don't grow too large.
5051 * Note: if two requests come in concurrently, we might let them
5052 * both succeed, when one of them should fail. Not a huge deal.
5053 */
9babb374
BB
5054
5055 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5056 anon_size > arc_c / 4) {
34dc7c2f
BB
5057 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5058 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5059 arc_tempreserve>>10,
5060 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5061 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5062 reserve>>10, arc_c>>10);
570827e1 5063 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 5064 return (SET_ERROR(ERESTART));
34dc7c2f
BB
5065 }
5066 atomic_add_64(&arc_tempreserve, reserve);
5067 return (0);
5068}
5069
13be560d
BB
5070static void
5071arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5072 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5073{
5074 size->value.ui64 = state->arcs_size;
5075 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5076 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5077}
5078
5079static int
5080arc_kstat_update(kstat_t *ksp, int rw)
5081{
5082 arc_stats_t *as = ksp->ks_data;
5083
5084 if (rw == KSTAT_WRITE) {
500445c0 5085 return (EACCES);
13be560d
BB
5086 } else {
5087 arc_kstat_update_state(arc_anon,
5088 &as->arcstat_anon_size,
500445c0
PS
5089 &as->arcstat_anon_evictable_data,
5090 &as->arcstat_anon_evictable_metadata);
13be560d
BB
5091 arc_kstat_update_state(arc_mru,
5092 &as->arcstat_mru_size,
500445c0
PS
5093 &as->arcstat_mru_evictable_data,
5094 &as->arcstat_mru_evictable_metadata);
13be560d
BB
5095 arc_kstat_update_state(arc_mru_ghost,
5096 &as->arcstat_mru_ghost_size,
500445c0
PS
5097 &as->arcstat_mru_ghost_evictable_data,
5098 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
5099 arc_kstat_update_state(arc_mfu,
5100 &as->arcstat_mfu_size,
500445c0
PS
5101 &as->arcstat_mfu_evictable_data,
5102 &as->arcstat_mfu_evictable_metadata);
fc41c640 5103 arc_kstat_update_state(arc_mfu_ghost,
13be560d 5104 &as->arcstat_mfu_ghost_size,
500445c0
PS
5105 &as->arcstat_mfu_ghost_evictable_data,
5106 &as->arcstat_mfu_ghost_evictable_metadata);
13be560d
BB
5107 }
5108
5109 return (0);
5110}
5111
ca0bf58d
PS
5112/*
5113 * This function *must* return indices evenly distributed between all
5114 * sublists of the multilist. This is needed due to how the ARC eviction
5115 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5116 * distributed between all sublists and uses this assumption when
5117 * deciding which sublist to evict from and how much to evict from it.
5118 */
5119unsigned int
5120arc_state_multilist_index_func(multilist_t *ml, void *obj)
5121{
5122 arc_buf_hdr_t *hdr = obj;
5123
5124 /*
5125 * We rely on b_dva to generate evenly distributed index
5126 * numbers using buf_hash below. So, as an added precaution,
5127 * let's make sure we never add empty buffers to the arc lists.
5128 */
5129 ASSERT(!BUF_EMPTY(hdr));
5130
5131 /*
5132 * The assumption here, is the hash value for a given
5133 * arc_buf_hdr_t will remain constant throughout its lifetime
5134 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
5135 * Thus, we don't need to store the header's sublist index
5136 * on insertion, as this index can be recalculated on removal.
5137 *
5138 * Also, the low order bits of the hash value are thought to be
5139 * distributed evenly. Otherwise, in the case that the multilist
5140 * has a power of two number of sublists, each sublists' usage
5141 * would not be evenly distributed.
5142 */
5143 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5144 multilist_get_num_sublists(ml));
5145}
5146
ca67b33a
MA
5147/*
5148 * Called during module initialization and periodically thereafter to
5149 * apply reasonable changes to the exposed performance tunings. Non-zero
5150 * zfs_* values which differ from the currently set values will be applied.
5151 */
5152static void
5153arc_tuning_update(void)
5154{
5155 /* Valid range: 64M - <all physical memory> */
5156 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
5157 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
5158 (zfs_arc_max > arc_c_min)) {
5159 arc_c_max = zfs_arc_max;
5160 arc_c = arc_c_max;
5161 arc_p = (arc_c >> 1);
5162 arc_meta_limit = MIN(arc_meta_limit, arc_c_max);
5163 }
5164
5165 /* Valid range: 32M - <arc_c_max> */
5166 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
5167 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
5168 (zfs_arc_min <= arc_c_max)) {
5169 arc_c_min = zfs_arc_min;
5170 arc_c = MAX(arc_c, arc_c_min);
5171 }
5172
5173 /* Valid range: 16M - <arc_c_max> */
5174 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
5175 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
5176 (zfs_arc_meta_min <= arc_c_max)) {
5177 arc_meta_min = zfs_arc_meta_min;
5178 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
5179 }
5180
5181 /* Valid range: <arc_meta_min> - <arc_c_max> */
5182 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
5183 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
5184 (zfs_arc_meta_limit <= arc_c_max))
5185 arc_meta_limit = zfs_arc_meta_limit;
5186
5187 /* Valid range: 1 - N */
5188 if (zfs_arc_grow_retry)
5189 arc_grow_retry = zfs_arc_grow_retry;
5190
5191 /* Valid range: 1 - N */
5192 if (zfs_arc_shrink_shift) {
5193 arc_shrink_shift = zfs_arc_shrink_shift;
5194 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
5195 }
5196
5197 /* Valid range: 1 - N ticks */
5198 if (zfs_arc_min_prefetch_lifespan)
5199 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
5200}
5201
34dc7c2f
BB
5202void
5203arc_init(void)
5204{
ca67b33a
MA
5205 /*
5206 * allmem is "all memory that we could possibly use".
5207 */
5208#ifdef _KERNEL
5209 uint64_t allmem = ptob(physmem);
5210#else
5211 uint64_t allmem = (physmem * PAGESIZE) / 2;
5212#endif
5213
ca0bf58d
PS
5214 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5215 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5216 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5217
5218 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5219 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f
BB
5220
5221 /* Convert seconds to clock ticks */
ca67b33a 5222 arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
5223
5224 /* Start out with 1/8 of all memory */
ca67b33a 5225 arc_c = allmem / 8;
34dc7c2f
BB
5226
5227#ifdef _KERNEL
5228 /*
5229 * On architectures where the physical memory can be larger
5230 * than the addressable space (intel in 32-bit mode), we may
5231 * need to limit the cache to 1/8 of VM size.
5232 */
5233 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
ca67b33a 5234
7cb67b45
BB
5235 /*
5236 * Register a shrinker to support synchronous (direct) memory
5237 * reclaim from the arc. This is done to prevent kswapd from
5238 * swapping out pages when it is preferable to shrink the arc.
5239 */
5240 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
5241#endif
5242
ca67b33a 5243 /* Set min cache to allow safe operation of arc_adapt() */
121b3cae 5244 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
ca67b33a
MA
5245 /* Set max to 1/2 of all memory */
5246 arc_c_max = allmem / 2;
34dc7c2f
BB
5247
5248 arc_c = arc_c_max;
5249 arc_p = (arc_c >> 1);
5250
ca67b33a
MA
5251 /* Set min to 1/2 of arc_c_min */
5252 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
5253 /* Initialize maximum observed usage to zero */
1834f2d8 5254 arc_meta_max = 0;
ca67b33a
MA
5255 /* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
5256 arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
34dc7c2f 5257
ca67b33a
MA
5258 /* Apply user specified tunings */
5259 arc_tuning_update();
c52fca13 5260
ca0bf58d 5261 if (zfs_arc_num_sublists_per_state < 1)
ca67b33a 5262 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
ca0bf58d 5263
34dc7c2f
BB
5264 /* if kmem_flags are set, lets try to use less memory */
5265 if (kmem_debugging())
5266 arc_c = arc_c / 2;
5267 if (arc_c < arc_c_min)
5268 arc_c = arc_c_min;
5269
5270 arc_anon = &ARC_anon;
5271 arc_mru = &ARC_mru;
5272 arc_mru_ghost = &ARC_mru_ghost;
5273 arc_mfu = &ARC_mfu;
5274 arc_mfu_ghost = &ARC_mfu_ghost;
5275 arc_l2c_only = &ARC_l2c_only;
5276 arc_size = 0;
5277
ca0bf58d 5278 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5279 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5280 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5281 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5282 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
b9541d6b 5283 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5284 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5285 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5286 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5287 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5288 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5289 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5290 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5291 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5292 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5293 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5294 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5295 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5296 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5297 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5298 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
b9541d6b 5299 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5300 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5301 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5302 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5303 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5304 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5305 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5306 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5307 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5308 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5309 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5310 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5311 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5312 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5313 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5314 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
b9541d6b 5315 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5316 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5317 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
34dc7c2f 5318
e0b0ca98
BB
5319 arc_anon->arcs_state = ARC_STATE_ANON;
5320 arc_mru->arcs_state = ARC_STATE_MRU;
5321 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
5322 arc_mfu->arcs_state = ARC_STATE_MFU;
5323 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
5324 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
5325
34dc7c2f
BB
5326 buf_init();
5327
ca0bf58d
PS
5328 arc_reclaim_thread_exit = FALSE;
5329 arc_user_evicts_thread_exit = FALSE;
ab26409d
BB
5330 list_create(&arc_prune_list, sizeof (arc_prune_t),
5331 offsetof(arc_prune_t, p_node));
34dc7c2f 5332 arc_eviction_list = NULL;
ab26409d 5333 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
5334 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5335
f6046738 5336 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
aa9af22c 5337 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 5338
34dc7c2f
BB
5339 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5340 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5341
5342 if (arc_ksp != NULL) {
5343 arc_ksp->ks_data = &arc_stats;
13be560d 5344 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
5345 kstat_install(arc_ksp);
5346 }
5347
ca67b33a 5348 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
34dc7c2f
BB
5349 TS_RUN, minclsyspri);
5350
ca0bf58d
PS
5351 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5352 TS_RUN, minclsyspri);
5353
34dc7c2f 5354 arc_dead = FALSE;
b128c09f 5355 arc_warm = B_FALSE;
34dc7c2f 5356
e8b96c60
MA
5357 /*
5358 * Calculate maximum amount of dirty data per pool.
5359 *
5360 * If it has been set by a module parameter, take that.
5361 * Otherwise, use a percentage of physical memory defined by
5362 * zfs_dirty_data_max_percent (default 10%) with a cap at
5363 * zfs_dirty_data_max_max (default 25% of physical memory).
5364 */
5365 if (zfs_dirty_data_max_max == 0)
5366 zfs_dirty_data_max_max = physmem * PAGESIZE *
5367 zfs_dirty_data_max_max_percent / 100;
5368
5369 if (zfs_dirty_data_max == 0) {
5370 zfs_dirty_data_max = physmem * PAGESIZE *
5371 zfs_dirty_data_max_percent / 100;
5372 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5373 zfs_dirty_data_max_max);
5374 }
34dc7c2f
BB
5375}
5376
5377void
5378arc_fini(void)
5379{
ab26409d
BB
5380 arc_prune_t *p;
5381
7cb67b45
BB
5382#ifdef _KERNEL
5383 spl_unregister_shrinker(&arc_shrinker);
5384#endif /* _KERNEL */
5385
ca0bf58d
PS
5386 mutex_enter(&arc_reclaim_lock);
5387 arc_reclaim_thread_exit = TRUE;
5388 /*
5389 * The reclaim thread will set arc_reclaim_thread_exit back to
5390 * FALSE when it is finished exiting; we're waiting for that.
5391 */
5392 while (arc_reclaim_thread_exit) {
5393 cv_signal(&arc_reclaim_thread_cv);
5394 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5395 }
5396 mutex_exit(&arc_reclaim_lock);
5397
5398 mutex_enter(&arc_user_evicts_lock);
5399 arc_user_evicts_thread_exit = TRUE;
5400 /*
5401 * The user evicts thread will set arc_user_evicts_thread_exit
5402 * to FALSE when it is finished exiting; we're waiting for that.
5403 */
5404 while (arc_user_evicts_thread_exit) {
5405 cv_signal(&arc_user_evicts_cv);
5406 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5407 }
5408 mutex_exit(&arc_user_evicts_lock);
34dc7c2f 5409
ca0bf58d
PS
5410 /* Use TRUE to ensure *all* buffers are evicted */
5411 arc_flush(NULL, TRUE);
34dc7c2f
BB
5412
5413 arc_dead = TRUE;
5414
5415 if (arc_ksp != NULL) {
5416 kstat_delete(arc_ksp);
5417 arc_ksp = NULL;
5418 }
5419
f6046738
BB
5420 taskq_wait(arc_prune_taskq);
5421 taskq_destroy(arc_prune_taskq);
5422
ab26409d
BB
5423 mutex_enter(&arc_prune_mtx);
5424 while ((p = list_head(&arc_prune_list)) != NULL) {
5425 list_remove(&arc_prune_list, p);
5426 refcount_remove(&p->p_refcnt, &arc_prune_list);
5427 refcount_destroy(&p->p_refcnt);
5428 kmem_free(p, sizeof (*p));
5429 }
5430 mutex_exit(&arc_prune_mtx);
5431
5432 list_destroy(&arc_prune_list);
5433 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
5434 mutex_destroy(&arc_reclaim_lock);
5435 cv_destroy(&arc_reclaim_thread_cv);
5436 cv_destroy(&arc_reclaim_waiters_cv);
5437
5438 mutex_destroy(&arc_user_evicts_lock);
5439 cv_destroy(&arc_user_evicts_cv);
5440
5441 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5442 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5443 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5444 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5445 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5446 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5447 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5448 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5449 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5450 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
34dc7c2f
BB
5451
5452 buf_fini();
9babb374 5453
b9541d6b 5454 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
5455}
5456
5457/*
5458 * Level 2 ARC
5459 *
5460 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5461 * It uses dedicated storage devices to hold cached data, which are populated
5462 * using large infrequent writes. The main role of this cache is to boost
5463 * the performance of random read workloads. The intended L2ARC devices
5464 * include short-stroked disks, solid state disks, and other media with
5465 * substantially faster read latency than disk.
5466 *
5467 * +-----------------------+
5468 * | ARC |
5469 * +-----------------------+
5470 * | ^ ^
5471 * | | |
5472 * l2arc_feed_thread() arc_read()
5473 * | | |
5474 * | l2arc read |
5475 * V | |
5476 * +---------------+ |
5477 * | L2ARC | |
5478 * +---------------+ |
5479 * | ^ |
5480 * l2arc_write() | |
5481 * | | |
5482 * V | |
5483 * +-------+ +-------+
5484 * | vdev | | vdev |
5485 * | cache | | cache |
5486 * +-------+ +-------+
5487 * +=========+ .-----.
5488 * : L2ARC : |-_____-|
5489 * : devices : | Disks |
5490 * +=========+ `-_____-'
5491 *
5492 * Read requests are satisfied from the following sources, in order:
5493 *
5494 * 1) ARC
5495 * 2) vdev cache of L2ARC devices
5496 * 3) L2ARC devices
5497 * 4) vdev cache of disks
5498 * 5) disks
5499 *
5500 * Some L2ARC device types exhibit extremely slow write performance.
5501 * To accommodate for this there are some significant differences between
5502 * the L2ARC and traditional cache design:
5503 *
5504 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5505 * the ARC behave as usual, freeing buffers and placing headers on ghost
5506 * lists. The ARC does not send buffers to the L2ARC during eviction as
5507 * this would add inflated write latencies for all ARC memory pressure.
5508 *
5509 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5510 * It does this by periodically scanning buffers from the eviction-end of
5511 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
5512 * not already there. It scans until a headroom of buffers is satisfied,
5513 * which itself is a buffer for ARC eviction. If a compressible buffer is
5514 * found during scanning and selected for writing to an L2ARC device, we
5515 * temporarily boost scanning headroom during the next scan cycle to make
5516 * sure we adapt to compression effects (which might significantly reduce
5517 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
5518 * l2arc_feed_thread(), illustrated below; example sizes are included to
5519 * provide a better sense of ratio than this diagram:
5520 *
5521 * head --> tail
5522 * +---------------------+----------+
5523 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5524 * +---------------------+----------+ | o L2ARC eligible
5525 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5526 * +---------------------+----------+ |
5527 * 15.9 Gbytes ^ 32 Mbytes |
5528 * headroom |
5529 * l2arc_feed_thread()
5530 * |
5531 * l2arc write hand <--[oooo]--'
5532 * | 8 Mbyte
5533 * | write max
5534 * V
5535 * +==============================+
5536 * L2ARC dev |####|#|###|###| |####| ... |
5537 * +==============================+
5538 * 32 Gbytes
5539 *
5540 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5541 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5542 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5543 * safe to say that this is an uncommon case, since buffers at the end of
5544 * the ARC lists have moved there due to inactivity.
5545 *
5546 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5547 * then the L2ARC simply misses copying some buffers. This serves as a
5548 * pressure valve to prevent heavy read workloads from both stalling the ARC
5549 * with waits and clogging the L2ARC with writes. This also helps prevent
5550 * the potential for the L2ARC to churn if it attempts to cache content too
5551 * quickly, such as during backups of the entire pool.
5552 *
b128c09f
BB
5553 * 5. After system boot and before the ARC has filled main memory, there are
5554 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5555 * lists can remain mostly static. Instead of searching from tail of these
5556 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5557 * for eligible buffers, greatly increasing its chance of finding them.
5558 *
5559 * The L2ARC device write speed is also boosted during this time so that
5560 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5561 * there are no L2ARC reads, and no fear of degrading read performance
5562 * through increased writes.
5563 *
5564 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
5565 * the vdev queue can aggregate them into larger and fewer writes. Each
5566 * device is written to in a rotor fashion, sweeping writes through
5567 * available space then repeating.
5568 *
b128c09f 5569 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
5570 * write buffers back to disk based storage.
5571 *
b128c09f 5572 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
5573 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5574 *
5575 * The performance of the L2ARC can be tweaked by a number of tunables, which
5576 * may be necessary for different workloads:
5577 *
5578 * l2arc_write_max max write bytes per interval
b128c09f 5579 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 5580 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 5581 * l2arc_nocompress skip compressing buffers
34dc7c2f 5582 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
5583 * l2arc_headroom_boost when we find compressed buffers during ARC
5584 * scanning, we multiply headroom by this
5585 * percentage factor for the next scan cycle,
5586 * since more compressed buffers are likely to
5587 * be present
34dc7c2f
BB
5588 * l2arc_feed_secs seconds between L2ARC writing
5589 *
5590 * Tunables may be removed or added as future performance improvements are
5591 * integrated, and also may become zpool properties.
d164b209
BB
5592 *
5593 * There are three key functions that control how the L2ARC warms up:
5594 *
5595 * l2arc_write_eligible() check if a buffer is eligible to cache
5596 * l2arc_write_size() calculate how much to write
5597 * l2arc_write_interval() calculate sleep delay between writes
5598 *
5599 * These three functions determine what to write, how much, and how quickly
5600 * to send writes.
34dc7c2f
BB
5601 */
5602
d164b209 5603static boolean_t
2a432414 5604l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
5605{
5606 /*
5607 * A buffer is *not* eligible for the L2ARC if it:
5608 * 1. belongs to a different spa.
428870ff
BB
5609 * 2. is already cached on the L2ARC.
5610 * 3. has an I/O in progress (it may be an incomplete read).
5611 * 4. is flagged not eligible (zfs property).
d164b209 5612 */
b9541d6b 5613 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 5614 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
5615 return (B_FALSE);
5616
5617 return (B_TRUE);
5618}
5619
5620static uint64_t
3a17a7a9 5621l2arc_write_size(void)
d164b209
BB
5622{
5623 uint64_t size;
5624
3a17a7a9
SK
5625 /*
5626 * Make sure our globals have meaningful values in case the user
5627 * altered them.
5628 */
5629 size = l2arc_write_max;
5630 if (size == 0) {
5631 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5632 "be greater than zero, resetting it to the default (%d)",
5633 L2ARC_WRITE_SIZE);
5634 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5635 }
d164b209
BB
5636
5637 if (arc_warm == B_FALSE)
3a17a7a9 5638 size += l2arc_write_boost;
d164b209
BB
5639
5640 return (size);
5641
5642}
5643
5644static clock_t
5645l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5646{
428870ff 5647 clock_t interval, next, now;
d164b209
BB
5648
5649 /*
5650 * If the ARC lists are busy, increase our write rate; if the
5651 * lists are stale, idle back. This is achieved by checking
5652 * how much we previously wrote - if it was more than half of
5653 * what we wanted, schedule the next write much sooner.
5654 */
5655 if (l2arc_feed_again && wrote > (wanted / 2))
5656 interval = (hz * l2arc_feed_min_ms) / 1000;
5657 else
5658 interval = hz * l2arc_feed_secs;
5659
428870ff
BB
5660 now = ddi_get_lbolt();
5661 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
5662
5663 return (next);
5664}
5665
34dc7c2f
BB
5666/*
5667 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 5668 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
5669 */
5670static l2arc_dev_t *
5671l2arc_dev_get_next(void)
5672{
b128c09f 5673 l2arc_dev_t *first, *next = NULL;
34dc7c2f 5674
b128c09f
BB
5675 /*
5676 * Lock out the removal of spas (spa_namespace_lock), then removal
5677 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5678 * both locks will be dropped and a spa config lock held instead.
5679 */
5680 mutex_enter(&spa_namespace_lock);
5681 mutex_enter(&l2arc_dev_mtx);
5682
5683 /* if there are no vdevs, there is nothing to do */
5684 if (l2arc_ndev == 0)
5685 goto out;
5686
5687 first = NULL;
5688 next = l2arc_dev_last;
5689 do {
5690 /* loop around the list looking for a non-faulted vdev */
5691 if (next == NULL) {
34dc7c2f 5692 next = list_head(l2arc_dev_list);
b128c09f
BB
5693 } else {
5694 next = list_next(l2arc_dev_list, next);
5695 if (next == NULL)
5696 next = list_head(l2arc_dev_list);
5697 }
5698
5699 /* if we have come back to the start, bail out */
5700 if (first == NULL)
5701 first = next;
5702 else if (next == first)
5703 break;
5704
5705 } while (vdev_is_dead(next->l2ad_vdev));
5706
5707 /* if we were unable to find any usable vdevs, return NULL */
5708 if (vdev_is_dead(next->l2ad_vdev))
5709 next = NULL;
34dc7c2f
BB
5710
5711 l2arc_dev_last = next;
5712
b128c09f
BB
5713out:
5714 mutex_exit(&l2arc_dev_mtx);
5715
5716 /*
5717 * Grab the config lock to prevent the 'next' device from being
5718 * removed while we are writing to it.
5719 */
5720 if (next != NULL)
5721 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5722 mutex_exit(&spa_namespace_lock);
5723
34dc7c2f
BB
5724 return (next);
5725}
5726
b128c09f
BB
5727/*
5728 * Free buffers that were tagged for destruction.
5729 */
5730static void
0bc8fd78 5731l2arc_do_free_on_write(void)
b128c09f
BB
5732{
5733 list_t *buflist;
5734 l2arc_data_free_t *df, *df_prev;
5735
5736 mutex_enter(&l2arc_free_on_write_mtx);
5737 buflist = l2arc_free_on_write;
5738
5739 for (df = list_tail(buflist); df; df = df_prev) {
5740 df_prev = list_prev(buflist, df);
5741 ASSERT(df->l2df_data != NULL);
5742 ASSERT(df->l2df_func != NULL);
5743 df->l2df_func(df->l2df_data, df->l2df_size);
5744 list_remove(buflist, df);
5745 kmem_free(df, sizeof (l2arc_data_free_t));
5746 }
5747
5748 mutex_exit(&l2arc_free_on_write_mtx);
5749}
5750
34dc7c2f
BB
5751/*
5752 * A write to a cache device has completed. Update all headers to allow
5753 * reads from these buffers to begin.
5754 */
5755static void
5756l2arc_write_done(zio_t *zio)
5757{
5758 l2arc_write_callback_t *cb;
5759 l2arc_dev_t *dev;
5760 list_t *buflist;
2a432414 5761 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 5762 kmutex_t *hash_lock;
3bec585e 5763 int64_t bytes_dropped = 0;
34dc7c2f
BB
5764
5765 cb = zio->io_private;
5766 ASSERT(cb != NULL);
5767 dev = cb->l2wcb_dev;
5768 ASSERT(dev != NULL);
5769 head = cb->l2wcb_head;
5770 ASSERT(head != NULL);
b9541d6b 5771 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5772 ASSERT(buflist != NULL);
5773 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5774 l2arc_write_callback_t *, cb);
5775
5776 if (zio->io_error != 0)
5777 ARCSTAT_BUMP(arcstat_l2_writes_error);
5778
34dc7c2f
BB
5779 /*
5780 * All writes completed, or an error was hit.
5781 */
ca0bf58d
PS
5782top:
5783 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5784 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5785 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5786
2a432414 5787 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5788
5789 /*
5790 * We cannot use mutex_enter or else we can deadlock
5791 * with l2arc_write_buffers (due to swapping the order
5792 * the hash lock and l2ad_mtx are taken).
5793 */
34dc7c2f
BB
5794 if (!mutex_tryenter(hash_lock)) {
5795 /*
ca0bf58d
PS
5796 * Missed the hash lock. We must retry so we
5797 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 5798 */
ca0bf58d
PS
5799 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5800
5801 /*
5802 * We don't want to rescan the headers we've
5803 * already marked as having been written out, so
5804 * we reinsert the head node so we can pick up
5805 * where we left off.
5806 */
5807 list_remove(buflist, head);
5808 list_insert_after(buflist, hdr, head);
5809
5810 mutex_exit(&dev->l2ad_mtx);
5811
5812 /*
5813 * We wait for the hash lock to become available
5814 * to try and prevent busy waiting, and increase
5815 * the chance we'll be able to acquire the lock
5816 * the next time around.
5817 */
5818 mutex_enter(hash_lock);
5819 mutex_exit(hash_lock);
5820 goto top;
34dc7c2f
BB
5821 }
5822
b9541d6b 5823 /*
ca0bf58d
PS
5824 * We could not have been moved into the arc_l2c_only
5825 * state while in-flight due to our ARC_FLAG_L2_WRITING
5826 * bit being set. Let's just ensure that's being enforced.
5827 */
5828 ASSERT(HDR_HAS_L1HDR(hdr));
5829
5830 /*
5831 * We may have allocated a buffer for L2ARC compression,
5832 * we must release it to avoid leaking this data.
b9541d6b 5833 */
ca0bf58d 5834 l2arc_release_cdata_buf(hdr);
b9541d6b 5835
34dc7c2f
BB
5836 if (zio->io_error != 0) {
5837 /*
b128c09f 5838 * Error - drop L2ARC entry.
34dc7c2f 5839 */
2a432414 5840 list_remove(buflist, hdr);
b9541d6b
CW
5841 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5842
5843 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
2a432414 5844 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
d962d5da
PS
5845
5846 bytes_dropped += hdr->b_l2hdr.b_asize;
5847 (void) refcount_remove_many(&dev->l2ad_alloc,
5848 hdr->b_l2hdr.b_asize, hdr);
34dc7c2f
BB
5849 }
5850
5851 /*
ca0bf58d
PS
5852 * Allow ARC to begin reads and ghost list evictions to
5853 * this L2ARC entry.
34dc7c2f 5854 */
2a432414 5855 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
34dc7c2f
BB
5856
5857 mutex_exit(hash_lock);
5858 }
5859
5860 atomic_inc_64(&l2arc_writes_done);
5861 list_remove(buflist, head);
b9541d6b
CW
5862 ASSERT(!HDR_HAS_L1HDR(head));
5863 kmem_cache_free(hdr_l2only_cache, head);
5864 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5865
3bec585e
SK
5866 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5867
b128c09f 5868 l2arc_do_free_on_write();
34dc7c2f
BB
5869
5870 kmem_free(cb, sizeof (l2arc_write_callback_t));
5871}
5872
5873/*
5874 * A read to a cache device completed. Validate buffer contents before
5875 * handing over to the regular ARC routines.
5876 */
5877static void
5878l2arc_read_done(zio_t *zio)
5879{
5880 l2arc_read_callback_t *cb;
5881 arc_buf_hdr_t *hdr;
5882 arc_buf_t *buf;
34dc7c2f 5883 kmutex_t *hash_lock;
b128c09f
BB
5884 int equal;
5885
5886 ASSERT(zio->io_vd != NULL);
5887 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5888
5889 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
5890
5891 cb = zio->io_private;
5892 ASSERT(cb != NULL);
5893 buf = cb->l2rcb_buf;
5894 ASSERT(buf != NULL);
34dc7c2f 5895
428870ff 5896 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 5897 mutex_enter(hash_lock);
428870ff
BB
5898 hdr = buf->b_hdr;
5899 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 5900
3a17a7a9
SK
5901 /*
5902 * If the buffer was compressed, decompress it first.
5903 */
5904 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5905 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5906 ASSERT(zio->io_data != NULL);
5907
34dc7c2f
BB
5908 /*
5909 * Check this survived the L2ARC journey.
5910 */
5911 equal = arc_cksum_equal(buf);
5912 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5913 mutex_exit(hash_lock);
5914 zio->io_private = buf;
b128c09f
BB
5915 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5916 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
5917 arc_read_done(zio);
5918 } else {
5919 mutex_exit(hash_lock);
5920 /*
5921 * Buffer didn't survive caching. Increment stats and
5922 * reissue to the original storage device.
5923 */
b128c09f 5924 if (zio->io_error != 0) {
34dc7c2f 5925 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 5926 } else {
2e528b49 5927 zio->io_error = SET_ERROR(EIO);
b128c09f 5928 }
34dc7c2f
BB
5929 if (!equal)
5930 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5931
34dc7c2f 5932 /*
b128c09f
BB
5933 * If there's no waiter, issue an async i/o to the primary
5934 * storage now. If there *is* a waiter, the caller must
5935 * issue the i/o in a context where it's OK to block.
34dc7c2f 5936 */
d164b209
BB
5937 if (zio->io_waiter == NULL) {
5938 zio_t *pio = zio_unique_parent(zio);
5939
5940 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5941
5942 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
5943 buf->b_data, zio->io_size, arc_read_done, buf,
5944 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 5945 }
34dc7c2f
BB
5946 }
5947
5948 kmem_free(cb, sizeof (l2arc_read_callback_t));
5949}
5950
5951/*
5952 * This is the list priority from which the L2ARC will search for pages to
5953 * cache. This is used within loops (0..3) to cycle through lists in the
5954 * desired order. This order can have a significant effect on cache
5955 * performance.
5956 *
5957 * Currently the metadata lists are hit first, MFU then MRU, followed by
5958 * the data lists. This function returns a locked list, and also returns
5959 * the lock pointer.
5960 */
ca0bf58d
PS
5961static multilist_sublist_t *
5962l2arc_sublist_lock(int list_num)
34dc7c2f 5963{
ca0bf58d
PS
5964 multilist_t *ml = NULL;
5965 unsigned int idx;
34dc7c2f
BB
5966
5967 ASSERT(list_num >= 0 && list_num <= 3);
5968
5969 switch (list_num) {
5970 case 0:
ca0bf58d 5971 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5972 break;
5973 case 1:
ca0bf58d 5974 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
5975 break;
5976 case 2:
ca0bf58d 5977 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5978 break;
5979 case 3:
ca0bf58d 5980 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
5981 break;
5982 }
5983
ca0bf58d
PS
5984 /*
5985 * Return a randomly-selected sublist. This is acceptable
5986 * because the caller feeds only a little bit of data for each
5987 * call (8MB). Subsequent calls will result in different
5988 * sublists being selected.
5989 */
5990 idx = multilist_get_random_index(ml);
5991 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
5992}
5993
5994/*
5995 * Evict buffers from the device write hand to the distance specified in
5996 * bytes. This distance may span populated buffers, it may span nothing.
5997 * This is clearing a region on the L2ARC device ready for writing.
5998 * If the 'all' boolean is set, every buffer is evicted.
5999 */
6000static void
6001l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6002{
6003 list_t *buflist;
2a432414 6004 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
6005 kmutex_t *hash_lock;
6006 uint64_t taddr;
6007
b9541d6b 6008 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
6009
6010 if (!all && dev->l2ad_first) {
6011 /*
6012 * This is the first sweep through the device. There is
6013 * nothing to evict.
6014 */
6015 return;
6016 }
6017
b128c09f 6018 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
6019 /*
6020 * When nearing the end of the device, evict to the end
6021 * before the device write hand jumps to the start.
6022 */
6023 taddr = dev->l2ad_end;
6024 } else {
6025 taddr = dev->l2ad_hand + distance;
6026 }
6027 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6028 uint64_t, taddr, boolean_t, all);
6029
6030top:
b9541d6b 6031 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
6032 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6033 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 6034
2a432414 6035 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
6036
6037 /*
6038 * We cannot use mutex_enter or else we can deadlock
6039 * with l2arc_write_buffers (due to swapping the order
6040 * the hash lock and l2ad_mtx are taken).
6041 */
34dc7c2f
BB
6042 if (!mutex_tryenter(hash_lock)) {
6043 /*
6044 * Missed the hash lock. Retry.
6045 */
6046 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 6047 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6048 mutex_enter(hash_lock);
6049 mutex_exit(hash_lock);
6050 goto top;
6051 }
6052
2a432414 6053 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
6054 /*
6055 * We hit a write head node. Leave it for
6056 * l2arc_write_done().
6057 */
2a432414 6058 list_remove(buflist, hdr);
34dc7c2f
BB
6059 mutex_exit(hash_lock);
6060 continue;
6061 }
6062
b9541d6b
CW
6063 if (!all && HDR_HAS_L2HDR(hdr) &&
6064 (hdr->b_l2hdr.b_daddr > taddr ||
6065 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
6066 /*
6067 * We've evicted to the target address,
6068 * or the end of the device.
6069 */
6070 mutex_exit(hash_lock);
6071 break;
6072 }
6073
b9541d6b
CW
6074 ASSERT(HDR_HAS_L2HDR(hdr));
6075 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 6076 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
6077 /*
6078 * This doesn't exist in the ARC. Destroy.
6079 * arc_hdr_destroy() will call list_remove()
6080 * and decrement arcstat_l2_size.
6081 */
2a432414
GW
6082 arc_change_state(arc_anon, hdr, hash_lock);
6083 arc_hdr_destroy(hdr);
34dc7c2f 6084 } else {
b9541d6b
CW
6085 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6086 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
6087 /*
6088 * Invalidate issued or about to be issued
6089 * reads, since we may be about to write
6090 * over this location.
6091 */
2a432414 6092 if (HDR_L2_READING(hdr)) {
b128c09f 6093 ARCSTAT_BUMP(arcstat_l2_evict_reading);
2a432414 6094 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
b128c09f
BB
6095 }
6096
ca0bf58d
PS
6097 /* Ensure this header has finished being written */
6098 ASSERT(!HDR_L2_WRITING(hdr));
6099 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
d962d5da
PS
6100
6101 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
6102 }
6103 mutex_exit(hash_lock);
6104 }
b9541d6b 6105 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6106}
6107
6108/*
6109 * Find and write ARC buffers to the L2ARC device.
6110 *
2a432414 6111 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 6112 * for reading until they have completed writing.
3a17a7a9
SK
6113 * The headroom_boost is an in-out parameter used to maintain headroom boost
6114 * state between calls to this function.
6115 *
6116 * Returns the number of bytes actually written (which may be smaller than
6117 * the delta by which the device hand has changed due to alignment).
34dc7c2f 6118 */
d164b209 6119static uint64_t
3a17a7a9
SK
6120l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6121 boolean_t *headroom_boost)
34dc7c2f 6122{
2a432414 6123 arc_buf_hdr_t *hdr, *hdr_prev, *head;
ef56b078
AG
6124 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
6125 stats_size;
34dc7c2f 6126 void *buf_data;
3a17a7a9 6127 boolean_t full;
34dc7c2f
BB
6128 l2arc_write_callback_t *cb;
6129 zio_t *pio, *wzio;
3541dc6d 6130 uint64_t guid = spa_load_guid(spa);
d6320ddb 6131 int try;
3a17a7a9 6132 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 6133
34dc7c2f
BB
6134 ASSERT(dev->l2ad_vdev != NULL);
6135
3a17a7a9
SK
6136 /* Lower the flag now, we might want to raise it again later. */
6137 *headroom_boost = B_FALSE;
6138
34dc7c2f 6139 pio = NULL;
ef56b078 6140 write_sz = write_asize = 0;
34dc7c2f 6141 full = B_FALSE;
b9541d6b 6142 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2a432414 6143 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
b9541d6b 6144 head->b_flags |= ARC_FLAG_HAS_L2HDR;
34dc7c2f 6145
3a17a7a9
SK
6146 /*
6147 * We will want to try to compress buffers that are at least 2x the
6148 * device sector size.
6149 */
6150 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6151
34dc7c2f
BB
6152 /*
6153 * Copy buffers for L2ARC writing.
6154 */
d6320ddb 6155 for (try = 0; try <= 3; try++) {
ca0bf58d 6156 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
6157 uint64_t passed_sz = 0;
6158
b128c09f
BB
6159 /*
6160 * L2ARC fast warmup.
6161 *
6162 * Until the ARC is warm and starts to evict, read from the
6163 * head of the ARC lists rather than the tail.
6164 */
b128c09f 6165 if (arc_warm == B_FALSE)
ca0bf58d 6166 hdr = multilist_sublist_head(mls);
b128c09f 6167 else
ca0bf58d 6168 hdr = multilist_sublist_tail(mls);
b128c09f 6169
3a17a7a9
SK
6170 headroom = target_sz * l2arc_headroom;
6171 if (do_headroom_boost)
6172 headroom = (headroom * l2arc_headroom_boost) / 100;
6173
2a432414 6174 for (; hdr; hdr = hdr_prev) {
3a17a7a9
SK
6175 kmutex_t *hash_lock;
6176 uint64_t buf_sz;
ef56b078 6177 uint64_t buf_a_sz;
3a17a7a9 6178
b128c09f 6179 if (arc_warm == B_FALSE)
ca0bf58d 6180 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 6181 else
ca0bf58d 6182 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 6183
2a432414 6184 hash_lock = HDR_LOCK(hdr);
3a17a7a9 6185 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
6186 /*
6187 * Skip this buffer rather than waiting.
6188 */
6189 continue;
6190 }
6191
2a432414 6192 passed_sz += hdr->b_size;
34dc7c2f
BB
6193 if (passed_sz > headroom) {
6194 /*
6195 * Searched too far.
6196 */
6197 mutex_exit(hash_lock);
6198 break;
6199 }
6200
2a432414 6201 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
6202 mutex_exit(hash_lock);
6203 continue;
6204 }
6205
ef56b078
AG
6206 /*
6207 * Assume that the buffer is not going to be compressed
6208 * and could take more space on disk because of a larger
6209 * disk block size.
6210 */
6211 buf_sz = hdr->b_size;
6212 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6213
6214 if ((write_asize + buf_a_sz) > target_sz) {
34dc7c2f
BB
6215 full = B_TRUE;
6216 mutex_exit(hash_lock);
6217 break;
6218 }
6219
34dc7c2f
BB
6220 if (pio == NULL) {
6221 /*
6222 * Insert a dummy header on the buflist so
6223 * l2arc_write_done() can find where the
6224 * write buffers begin without searching.
6225 */
ca0bf58d 6226 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6227 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 6228 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6229
409dc1a5 6230 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
79c76d5b 6231 KM_SLEEP);
34dc7c2f
BB
6232 cb->l2wcb_dev = dev;
6233 cb->l2wcb_head = head;
6234 pio = zio_root(spa, l2arc_write_done, cb,
6235 ZIO_FLAG_CANFAIL);
6236 }
6237
6238 /*
6239 * Create and add a new L2ARC header.
6240 */
b9541d6b
CW
6241 hdr->b_l2hdr.b_dev = dev;
6242 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
2a432414 6243 hdr->b_flags |= ARC_FLAG_L2_WRITING;
3a17a7a9
SK
6244 /*
6245 * Temporarily stash the data buffer in b_tmp_cdata.
6246 * The subsequent write step will pick it up from
b9541d6b 6247 * there. This is because can't access b_l1hdr.b_buf
3a17a7a9
SK
6248 * without holding the hash_lock, which we in turn
6249 * can't access without holding the ARC list locks
6250 * (which we want to avoid during compression/writing)
6251 */
b9541d6b
CW
6252 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6253 hdr->b_l2hdr.b_asize = hdr->b_size;
6254 hdr->b_l2hdr.b_hits = 0;
6255 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9 6256
d962d5da
PS
6257 /*
6258 * Explicitly set the b_daddr field to a known
6259 * value which means "invalid address". This
6260 * enables us to differentiate which stage of
6261 * l2arc_write_buffers() the particular header
6262 * is in (e.g. this loop, or the one below).
6263 * ARC_FLAG_L2_WRITING is not enough to make
6264 * this distinction, and we need to know in
6265 * order to do proper l2arc vdev accounting in
6266 * arc_release() and arc_hdr_destroy().
6267 *
6268 * Note, we can't use a new flag to distinguish
6269 * the two stages because we don't hold the
6270 * header's hash_lock below, in the second stage
6271 * of this function. Thus, we can't simply
6272 * change the b_flags field to denote that the
6273 * IO has been sent. We can change the b_daddr
6274 * field of the L2 portion, though, since we'll
6275 * be holding the l2ad_mtx; which is why we're
6276 * using it to denote the header's state change.
6277 */
6278 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
b9541d6b 6279 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
3a17a7a9 6280
ca0bf58d 6281 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6282 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 6283 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6284
6285 /*
6286 * Compute and store the buffer cksum before
6287 * writing. On debug the cksum is verified first.
6288 */
b9541d6b
CW
6289 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6290 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
34dc7c2f
BB
6291
6292 mutex_exit(hash_lock);
6293
3a17a7a9 6294 write_sz += buf_sz;
ef56b078 6295 write_asize += buf_a_sz;
3a17a7a9
SK
6296 }
6297
ca0bf58d 6298 multilist_sublist_unlock(mls);
3a17a7a9
SK
6299
6300 if (full == B_TRUE)
6301 break;
6302 }
6303
6304 /* No buffers selected for writing? */
6305 if (pio == NULL) {
6306 ASSERT0(write_sz);
b9541d6b
CW
6307 ASSERT(!HDR_HAS_L1HDR(head));
6308 kmem_cache_free(hdr_l2only_cache, head);
3a17a7a9
SK
6309 return (0);
6310 }
6311
ca0bf58d
PS
6312 mutex_enter(&dev->l2ad_mtx);
6313
ef56b078
AG
6314 /*
6315 * Note that elsewhere in this file arcstat_l2_asize
6316 * and the used space on l2ad_vdev are updated using b_asize,
6317 * which is not necessarily rounded up to the device block size.
6318 * Too keep accounting consistent we do the same here as well:
6319 * stats_size accumulates the sum of b_asize of the written buffers,
6320 * while write_asize accumulates the sum of b_asize rounded up
6321 * to the device block size.
6322 * The latter sum is used only to validate the corectness of the code.
6323 */
6324 stats_size = 0;
6325 write_asize = 0;
6326
3a17a7a9
SK
6327 /*
6328 * Now start writing the buffers. We're starting at the write head
6329 * and work backwards, retracing the course of the buffer selector
6330 * loop above.
6331 */
b9541d6b
CW
6332 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6333 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
3a17a7a9
SK
6334 uint64_t buf_sz;
6335
ca0bf58d
PS
6336 /*
6337 * We rely on the L1 portion of the header below, so
6338 * it's invalid for this header to have been evicted out
6339 * of the ghost cache, prior to being written out. The
6340 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6341 */
6342 ASSERT(HDR_HAS_L1HDR(hdr));
6343
3a17a7a9
SK
6344 /*
6345 * We shouldn't need to lock the buffer here, since we flagged
2a432414
GW
6346 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6347 * take care to only access its L2 cache parameters. In
b9541d6b 6348 * particular, hdr->l1hdr.b_buf may be invalid by now due to
2a432414 6349 * ARC eviction.
3a17a7a9 6350 */
b9541d6b 6351 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
3a17a7a9 6352
b9541d6b
CW
6353 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6354 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6355 if (l2arc_compress_buf(hdr)) {
3a17a7a9
SK
6356 /*
6357 * If compression succeeded, enable headroom
6358 * boost on the next scan cycle.
6359 */
6360 *headroom_boost = B_TRUE;
6361 }
6362 }
6363
6364 /*
6365 * Pick up the buffer data we had previously stashed away
6366 * (and now potentially also compressed).
6367 */
b9541d6b
CW
6368 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6369 buf_sz = hdr->b_l2hdr.b_asize;
3a17a7a9 6370
d962d5da
PS
6371 /*
6372 * We need to do this regardless if buf_sz is zero or
6373 * not, otherwise, when this l2hdr is evicted we'll
6374 * remove a reference that was never added.
6375 */
6376 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6377
3a17a7a9
SK
6378 /* Compression may have squashed the buffer to zero length. */
6379 if (buf_sz != 0) {
ef56b078 6380 uint64_t buf_a_sz;
3a17a7a9 6381
34dc7c2f
BB
6382 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6383 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6384 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6385 ZIO_FLAG_CANFAIL, B_FALSE);
6386
6387 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6388 zio_t *, wzio);
6389 (void) zio_nowait(wzio);
6390
ef56b078 6391 stats_size += buf_sz;
d962d5da 6392
b128c09f
BB
6393 /*
6394 * Keep the clock hand suitably device-aligned.
6395 */
ef56b078
AG
6396 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6397 write_asize += buf_a_sz;
6398 dev->l2ad_hand += buf_a_sz;
34dc7c2f 6399 }
34dc7c2f 6400 }
34dc7c2f 6401
b9541d6b 6402 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6403
3a17a7a9 6404 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 6405 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 6406 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 6407 ARCSTAT_INCR(arcstat_l2_size, write_sz);
ef56b078
AG
6408 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6409 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
34dc7c2f
BB
6410
6411 /*
6412 * Bump device hand to the device start if it is approaching the end.
6413 * l2arc_evict() will already have evicted ahead for this case.
6414 */
b128c09f 6415 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 6416 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
6417 dev->l2ad_first = B_FALSE;
6418 }
6419
d164b209 6420 dev->l2ad_writing = B_TRUE;
34dc7c2f 6421 (void) zio_wait(pio);
d164b209
BB
6422 dev->l2ad_writing = B_FALSE;
6423
3a17a7a9
SK
6424 return (write_asize);
6425}
6426
6427/*
6428 * Compresses an L2ARC buffer.
b9541d6b 6429 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
3a17a7a9
SK
6430 * size in l2hdr->b_asize. This routine tries to compress the data and
6431 * depending on the compression result there are three possible outcomes:
6432 * *) The buffer was incompressible. The original l2hdr contents were left
6433 * untouched and are ready for writing to an L2 device.
6434 * *) The buffer was all-zeros, so there is no need to write it to an L2
6435 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6436 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6437 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6438 * data buffer which holds the compressed data to be written, and b_asize
6439 * tells us how much data there is. b_compress is set to the appropriate
6440 * compression algorithm. Once writing is done, invoke
6441 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6442 *
6443 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6444 * buffer was incompressible).
6445 */
6446static boolean_t
b9541d6b 6447l2arc_compress_buf(arc_buf_hdr_t *hdr)
3a17a7a9
SK
6448{
6449 void *cdata;
9b67f605 6450 size_t csize, len, rounded;
b9541d6b 6451 l2arc_buf_hdr_t *l2hdr;
3a17a7a9 6452
b9541d6b
CW
6453 ASSERT(HDR_HAS_L2HDR(hdr));
6454
6455 l2hdr = &hdr->b_l2hdr;
6456
6457 ASSERT(HDR_HAS_L1HDR(hdr));
6458 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6459 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
3a17a7a9
SK
6460
6461 len = l2hdr->b_asize;
6462 cdata = zio_data_buf_alloc(len);
b9541d6b
CW
6463 ASSERT3P(cdata, !=, NULL);
6464 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
3a17a7a9
SK
6465 cdata, l2hdr->b_asize);
6466
9b67f605
MA
6467 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6468 if (rounded > csize) {
6469 bzero((char *)cdata + csize, rounded - csize);
6470 csize = rounded;
6471 }
6472
3a17a7a9
SK
6473 if (csize == 0) {
6474 /* zero block, indicate that there's nothing to write */
6475 zio_data_buf_free(cdata, len);
b9541d6b 6476 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
3a17a7a9 6477 l2hdr->b_asize = 0;
b9541d6b 6478 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9
SK
6479 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6480 return (B_TRUE);
6481 } else if (csize > 0 && csize < len) {
6482 /*
6483 * Compression succeeded, we'll keep the cdata around for
6484 * writing and release it afterwards.
6485 */
b9541d6b 6486 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
3a17a7a9 6487 l2hdr->b_asize = csize;
b9541d6b 6488 hdr->b_l1hdr.b_tmp_cdata = cdata;
3a17a7a9
SK
6489 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6490 return (B_TRUE);
6491 } else {
6492 /*
6493 * Compression failed, release the compressed buffer.
6494 * l2hdr will be left unmodified.
6495 */
6496 zio_data_buf_free(cdata, len);
6497 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6498 return (B_FALSE);
6499 }
6500}
6501
6502/*
6503 * Decompresses a zio read back from an l2arc device. On success, the
6504 * underlying zio's io_data buffer is overwritten by the uncompressed
6505 * version. On decompression error (corrupt compressed stream), the
6506 * zio->io_error value is set to signal an I/O error.
6507 *
6508 * Please note that the compressed data stream is not checksummed, so
6509 * if the underlying device is experiencing data corruption, we may feed
6510 * corrupt data to the decompressor, so the decompressor needs to be
6511 * able to handle this situation (LZ4 does).
6512 */
6513static void
6514l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6515{
6516 uint64_t csize;
6517 void *cdata;
6518
6519 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6520
6521 if (zio->io_error != 0) {
6522 /*
6523 * An io error has occured, just restore the original io
6524 * size in preparation for a main pool read.
6525 */
6526 zio->io_orig_size = zio->io_size = hdr->b_size;
6527 return;
6528 }
6529
6530 if (c == ZIO_COMPRESS_EMPTY) {
6531 /*
6532 * An empty buffer results in a null zio, which means we
6533 * need to fill its io_data after we're done restoring the
6534 * buffer's contents.
6535 */
b9541d6b
CW
6536 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6537 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6538 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9
SK
6539 } else {
6540 ASSERT(zio->io_data != NULL);
6541 /*
6542 * We copy the compressed data from the start of the arc buffer
6543 * (the zio_read will have pulled in only what we need, the
6544 * rest is garbage which we will overwrite at decompression)
6545 * and then decompress back to the ARC data buffer. This way we
6546 * can minimize copying by simply decompressing back over the
6547 * original compressed data (rather than decompressing to an
6548 * aux buffer and then copying back the uncompressed buffer,
6549 * which is likely to be much larger).
6550 */
6551 csize = zio->io_size;
6552 cdata = zio_data_buf_alloc(csize);
6553 bcopy(zio->io_data, cdata, csize);
6554 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6555 hdr->b_size) != 0)
2e528b49 6556 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
6557 zio_data_buf_free(cdata, csize);
6558 }
6559
6560 /* Restore the expected uncompressed IO size. */
6561 zio->io_orig_size = zio->io_size = hdr->b_size;
6562}
6563
6564/*
6565 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6566 * This buffer serves as a temporary holder of compressed data while
6567 * the buffer entry is being written to an l2arc device. Once that is
6568 * done, we can dispose of it.
6569 */
6570static void
2a432414 6571l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
3a17a7a9 6572{
ca0bf58d
PS
6573 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6574
b9541d6b 6575 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d
PS
6576 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6577
6578 if (comp == ZIO_COMPRESS_OFF) {
6579 /*
6580 * In this case, b_tmp_cdata points to the same buffer
6581 * as the arc_buf_t's b_data field. We don't want to
6582 * free it, since the arc_buf_t will handle that.
6583 */
6584 hdr->b_l1hdr.b_tmp_cdata = NULL;
6585 } else if (comp == ZIO_COMPRESS_EMPTY) {
6586 /*
6587 * In this case, b_tmp_cdata was compressed to an empty
6588 * buffer, thus there's nothing to free and b_tmp_cdata
6589 * should have been set to NULL in l2arc_write_buffers().
6590 */
6591 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6592 } else {
3a17a7a9
SK
6593 /*
6594 * If the data was compressed, then we've allocated a
6595 * temporary buffer for it, so now we need to release it.
6596 */
b9541d6b
CW
6597 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6598 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6599 hdr->b_size);
ca0bf58d 6600 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9 6601 }
ca0bf58d 6602
34dc7c2f
BB
6603}
6604
6605/*
6606 * This thread feeds the L2ARC at regular intervals. This is the beating
6607 * heart of the L2ARC.
6608 */
6609static void
6610l2arc_feed_thread(void)
6611{
6612 callb_cpr_t cpr;
6613 l2arc_dev_t *dev;
6614 spa_t *spa;
d164b209 6615 uint64_t size, wrote;
428870ff 6616 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 6617 boolean_t headroom_boost = B_FALSE;
40d06e3c 6618 fstrans_cookie_t cookie;
34dc7c2f
BB
6619
6620 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6621
6622 mutex_enter(&l2arc_feed_thr_lock);
6623
40d06e3c 6624 cookie = spl_fstrans_mark();
34dc7c2f 6625 while (l2arc_thread_exit == 0) {
34dc7c2f 6626 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 6627 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 6628 &l2arc_feed_thr_lock, next);
34dc7c2f 6629 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 6630 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
6631
6632 /*
b128c09f 6633 * Quick check for L2ARC devices.
34dc7c2f
BB
6634 */
6635 mutex_enter(&l2arc_dev_mtx);
6636 if (l2arc_ndev == 0) {
6637 mutex_exit(&l2arc_dev_mtx);
6638 continue;
6639 }
b128c09f 6640 mutex_exit(&l2arc_dev_mtx);
428870ff 6641 begin = ddi_get_lbolt();
34dc7c2f
BB
6642
6643 /*
b128c09f
BB
6644 * This selects the next l2arc device to write to, and in
6645 * doing so the next spa to feed from: dev->l2ad_spa. This
6646 * will return NULL if there are now no l2arc devices or if
6647 * they are all faulted.
6648 *
6649 * If a device is returned, its spa's config lock is also
6650 * held to prevent device removal. l2arc_dev_get_next()
6651 * will grab and release l2arc_dev_mtx.
34dc7c2f 6652 */
b128c09f 6653 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 6654 continue;
b128c09f
BB
6655
6656 spa = dev->l2ad_spa;
6657 ASSERT(spa != NULL);
34dc7c2f 6658
572e2857
BB
6659 /*
6660 * If the pool is read-only then force the feed thread to
6661 * sleep a little longer.
6662 */
6663 if (!spa_writeable(spa)) {
6664 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6665 spa_config_exit(spa, SCL_L2ARC, dev);
6666 continue;
6667 }
6668
34dc7c2f 6669 /*
b128c09f 6670 * Avoid contributing to memory pressure.
34dc7c2f 6671 */
ca67b33a 6672 if (arc_reclaim_needed()) {
b128c09f
BB
6673 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6674 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
6675 continue;
6676 }
b128c09f 6677
34dc7c2f
BB
6678 ARCSTAT_BUMP(arcstat_l2_feeds);
6679
3a17a7a9 6680 size = l2arc_write_size();
b128c09f 6681
34dc7c2f
BB
6682 /*
6683 * Evict L2ARC buffers that will be overwritten.
6684 */
b128c09f 6685 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
6686
6687 /*
6688 * Write ARC buffers.
6689 */
3a17a7a9 6690 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
6691
6692 /*
6693 * Calculate interval between writes.
6694 */
6695 next = l2arc_write_interval(begin, size, wrote);
b128c09f 6696 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 6697 }
40d06e3c 6698 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6699
6700 l2arc_thread_exit = 0;
6701 cv_broadcast(&l2arc_feed_thr_cv);
6702 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6703 thread_exit();
6704}
6705
b128c09f
BB
6706boolean_t
6707l2arc_vdev_present(vdev_t *vd)
6708{
6709 l2arc_dev_t *dev;
6710
6711 mutex_enter(&l2arc_dev_mtx);
6712 for (dev = list_head(l2arc_dev_list); dev != NULL;
6713 dev = list_next(l2arc_dev_list, dev)) {
6714 if (dev->l2ad_vdev == vd)
6715 break;
6716 }
6717 mutex_exit(&l2arc_dev_mtx);
6718
6719 return (dev != NULL);
6720}
6721
34dc7c2f
BB
6722/*
6723 * Add a vdev for use by the L2ARC. By this point the spa has already
6724 * validated the vdev and opened it.
6725 */
6726void
9babb374 6727l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
6728{
6729 l2arc_dev_t *adddev;
6730
b128c09f
BB
6731 ASSERT(!l2arc_vdev_present(vd));
6732
34dc7c2f
BB
6733 /*
6734 * Create a new l2arc device entry.
6735 */
6736 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6737 adddev->l2ad_spa = spa;
6738 adddev->l2ad_vdev = vd;
9babb374
BB
6739 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6740 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 6741 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 6742 adddev->l2ad_first = B_TRUE;
d164b209 6743 adddev->l2ad_writing = B_FALSE;
98f72a53 6744 list_link_init(&adddev->l2ad_node);
34dc7c2f 6745
b9541d6b 6746 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6747 /*
6748 * This is a list of all ARC buffers that are still valid on the
6749 * device.
6750 */
b9541d6b
CW
6751 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6752 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 6753
428870ff 6754 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 6755 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
6756
6757 /*
6758 * Add device to global list
6759 */
6760 mutex_enter(&l2arc_dev_mtx);
6761 list_insert_head(l2arc_dev_list, adddev);
6762 atomic_inc_64(&l2arc_ndev);
6763 mutex_exit(&l2arc_dev_mtx);
6764}
6765
6766/*
6767 * Remove a vdev from the L2ARC.
6768 */
6769void
6770l2arc_remove_vdev(vdev_t *vd)
6771{
6772 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6773
34dc7c2f
BB
6774 /*
6775 * Find the device by vdev
6776 */
6777 mutex_enter(&l2arc_dev_mtx);
6778 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6779 nextdev = list_next(l2arc_dev_list, dev);
6780 if (vd == dev->l2ad_vdev) {
6781 remdev = dev;
6782 break;
6783 }
6784 }
6785 ASSERT(remdev != NULL);
6786
6787 /*
6788 * Remove device from global list
6789 */
6790 list_remove(l2arc_dev_list, remdev);
6791 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
6792 atomic_dec_64(&l2arc_ndev);
6793 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
6794
6795 /*
6796 * Clear all buflists and ARC references. L2ARC device flush.
6797 */
6798 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
6799 list_destroy(&remdev->l2ad_buflist);
6800 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 6801 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 6802 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
6803}
6804
6805void
b128c09f 6806l2arc_init(void)
34dc7c2f
BB
6807{
6808 l2arc_thread_exit = 0;
6809 l2arc_ndev = 0;
6810 l2arc_writes_sent = 0;
6811 l2arc_writes_done = 0;
6812
6813 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6814 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6815 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6816 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6817
6818 l2arc_dev_list = &L2ARC_dev_list;
6819 l2arc_free_on_write = &L2ARC_free_on_write;
6820 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6821 offsetof(l2arc_dev_t, l2ad_node));
6822 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6823 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
6824}
6825
6826void
b128c09f 6827l2arc_fini(void)
34dc7c2f 6828{
b128c09f
BB
6829 /*
6830 * This is called from dmu_fini(), which is called from spa_fini();
6831 * Because of this, we can assume that all l2arc devices have
6832 * already been removed when the pools themselves were removed.
6833 */
6834
6835 l2arc_do_free_on_write();
34dc7c2f
BB
6836
6837 mutex_destroy(&l2arc_feed_thr_lock);
6838 cv_destroy(&l2arc_feed_thr_cv);
6839 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
6840 mutex_destroy(&l2arc_free_on_write_mtx);
6841
6842 list_destroy(l2arc_dev_list);
6843 list_destroy(l2arc_free_on_write);
6844}
b128c09f
BB
6845
6846void
6847l2arc_start(void)
6848{
fb5f0bc8 6849 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6850 return;
6851
6852 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6853 TS_RUN, minclsyspri);
6854}
6855
6856void
6857l2arc_stop(void)
6858{
fb5f0bc8 6859 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6860 return;
6861
6862 mutex_enter(&l2arc_feed_thr_lock);
6863 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6864 l2arc_thread_exit = 1;
6865 while (l2arc_thread_exit != 0)
6866 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6867 mutex_exit(&l2arc_feed_thr_lock);
6868}
c28b2279
BB
6869
6870#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
6871EXPORT_SYMBOL(arc_buf_size);
6872EXPORT_SYMBOL(arc_write);
c28b2279
BB
6873EXPORT_SYMBOL(arc_read);
6874EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 6875EXPORT_SYMBOL(arc_buf_info);
c28b2279 6876EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
6877EXPORT_SYMBOL(arc_add_prune_callback);
6878EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 6879
bce45ec9 6880module_param(zfs_arc_min, ulong, 0644);
c409e464 6881MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 6882
bce45ec9 6883module_param(zfs_arc_max, ulong, 0644);
c409e464 6884MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 6885
bce45ec9 6886module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 6887MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 6888
ca0bf58d
PS
6889module_param(zfs_arc_meta_min, ulong, 0644);
6890MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
6891
bce45ec9 6892module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 6893MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 6894
ca67b33a 6895module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
6896MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
6897 "Limit number of restarts in arc_adjust_meta");
6898
f6046738
BB
6899module_param(zfs_arc_meta_strategy, int, 0644);
6900MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
6901
bce45ec9 6902module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
6903MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
6904
89c8cac4
PS
6905module_param(zfs_arc_p_aggressive_disable, int, 0644);
6906MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
6907
62422785
PS
6908module_param(zfs_arc_p_dampener_disable, int, 0644);
6909MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
6910
bce45ec9 6911module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
6912MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
6913
1f7c30df
BB
6914module_param(zfs_disable_dup_eviction, int, 0644);
6915MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
6916
49ddb315
MA
6917module_param(zfs_arc_average_blocksize, int, 0444);
6918MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
6919
0c5493d4
BB
6920module_param(zfs_arc_memory_throttle_disable, int, 0644);
6921MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
6922
bce45ec9
BB
6923module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
6924MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
6925
ca0bf58d
PS
6926module_param(zfs_arc_num_sublists_per_state, int, 0644);
6927MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
6928 "Number of sublists used in each of the ARC state lists");
6929
bce45ec9 6930module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
6931MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
6932
bce45ec9 6933module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
6934MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
6935
bce45ec9 6936module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
6937MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
6938
3a17a7a9
SK
6939module_param(l2arc_headroom_boost, ulong, 0644);
6940MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
6941
bce45ec9 6942module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
6943MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
6944
bce45ec9 6945module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
6946MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
6947
bce45ec9 6948module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
6949MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
6950
3a17a7a9
SK
6951module_param(l2arc_nocompress, int, 0644);
6952MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
6953
bce45ec9 6954module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
6955MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
6956
bce45ec9 6957module_param(l2arc_norw, int, 0644);
abd8610c
BB
6958MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
6959
c28b2279 6960#endif