]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
Fix 'zfs get {user|group}objused@' functionality
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
64fc7762 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
adfe9d93 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
3c67d83a 26 * Copyright 2013 Saso Kiselkov. All rights reserved.
0ea05c64 27 * Copyright (c) 2017 Datto Inc.
34dc7c2f
BB
28 */
29
34dc7c2f
BB
30#include <sys/zfs_context.h>
31#include <sys/spa_impl.h>
32#include <sys/zio.h>
33#include <sys/zio_checksum.h>
34#include <sys/zio_compress.h>
35#include <sys/dmu.h>
36#include <sys/dmu_tx.h>
37#include <sys/zap.h>
38#include <sys/zil.h>
39#include <sys/vdev_impl.h>
bc25c932 40#include <sys/vdev_file.h>
ab9f4b0b 41#include <sys/vdev_raidz.h>
34dc7c2f
BB
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
26685276 50#include <sys/fm/util.h>
428870ff 51#include <sys/dsl_scan.h>
34dc7c2f
BB
52#include <sys/fs/zfs.h>
53#include <sys/metaslab_impl.h>
b128c09f 54#include <sys/arc.h>
428870ff 55#include <sys/ddt.h>
1421c891 56#include <sys/kstat.h>
34dc7c2f 57#include "zfs_prop.h"
3c67d83a 58#include <sys/zfeature.h>
6a9d6359 59#include "qat_compress.h"
34dc7c2f
BB
60
61/*
62 * SPA locking
63 *
64 * There are four basic locks for managing spa_t structures:
65 *
66 * spa_namespace_lock (global mutex)
67 *
68 * This lock must be acquired to do any of the following:
69 *
70 * - Lookup a spa_t by name
71 * - Add or remove a spa_t from the namespace
72 * - Increase spa_refcount from non-zero
73 * - Check if spa_refcount is zero
74 * - Rename a spa_t
75 * - add/remove/attach/detach devices
76 * - Held for the duration of create/destroy/import/export
77 *
78 * It does not need to handle recursion. A create or destroy may
79 * reference objects (files or zvols) in other pools, but by
80 * definition they must have an existing reference, and will never need
81 * to lookup a spa_t by name.
82 *
83 * spa_refcount (per-spa refcount_t protected by mutex)
84 *
85 * This reference count keep track of any active users of the spa_t. The
86 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
87 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 88 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
89 * present the image of a zero/non-zero value to consumers.
90 *
b128c09f 91 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
92 *
93 * This protects the spa_t from config changes, and must be held in
94 * the following circumstances:
95 *
96 * - RW_READER to perform I/O to the spa
97 * - RW_WRITER to change the vdev config
98 *
34dc7c2f
BB
99 * The locking order is fairly straightforward:
100 *
101 * spa_namespace_lock -> spa_refcount
102 *
103 * The namespace lock must be acquired to increase the refcount from 0
104 * or to check if it is zero.
105 *
b128c09f 106 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
107 *
108 * There must be at least one valid reference on the spa_t to acquire
109 * the config lock.
110 *
b128c09f 111 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
112 *
113 * The namespace lock must always be taken before the config lock.
114 *
115 *
b128c09f 116 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 117 *
b128c09f
BB
118 * The namespace is manipulated using the following functions, all of which
119 * require the spa_namespace_lock to be held.
34dc7c2f
BB
120 *
121 * spa_lookup() Lookup a spa_t by name.
122 *
123 * spa_add() Create a new spa_t in the namespace.
124 *
125 * spa_remove() Remove a spa_t from the namespace. This also
126 * frees up any memory associated with the spa_t.
127 *
128 * spa_next() Returns the next spa_t in the system, or the
129 * first if NULL is passed.
130 *
131 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * the system.
133 *
134 * spa_guid_exists() Determine whether a pool/device guid exists.
135 *
136 * The spa_refcount is manipulated using the following functions:
137 *
138 * spa_open_ref() Adds a reference to the given spa_t. Must be
139 * called with spa_namespace_lock held if the
140 * refcount is currently zero.
141 *
142 * spa_close() Remove a reference from the spa_t. This will
143 * not free the spa_t or remove it from the
144 * namespace. No locking is required.
145 *
146 * spa_refcount_zero() Returns true if the refcount is currently
147 * zero. Must be called with spa_namespace_lock
148 * held.
149 *
b128c09f
BB
150 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153 *
154 * To read the configuration, it suffices to hold one of these locks as reader.
155 * To modify the configuration, you must hold all locks as writer. To modify
156 * vdev state without altering the vdev tree's topology (e.g. online/offline),
157 * you must hold SCL_STATE and SCL_ZIO as writer.
158 *
159 * We use these distinct config locks to avoid recursive lock entry.
160 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161 * block allocations (SCL_ALLOC), which may require reading space maps
162 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163 *
164 * The spa config locks cannot be normal rwlocks because we need the
165 * ability to hand off ownership. For example, SCL_ZIO is acquired
166 * by the issuing thread and later released by an interrupt thread.
167 * They do, however, obey the usual write-wanted semantics to prevent
168 * writer (i.e. system administrator) starvation.
169 *
170 * The lock acquisition rules are as follows:
171 *
172 * SCL_CONFIG
173 * Protects changes to the vdev tree topology, such as vdev
174 * add/remove/attach/detach. Protects the dirty config list
175 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 *
177 * SCL_STATE
178 * Protects changes to pool state and vdev state, such as vdev
179 * online/offline/fault/degrade/clear. Protects the dirty state list
180 * (spa_state_dirty_list) and global pool state (spa_state).
181 *
182 * SCL_ALLOC
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_alloc() and metaslab_claim().
185 *
186 * SCL_ZIO
187 * Held by bp-level zios (those which have no io_vd upon entry)
188 * to prevent changes to the vdev tree. The bp-level zio implicitly
189 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 *
191 * SCL_FREE
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_free(). SCL_FREE is distinct from
194 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195 * blocks in zio_done() while another i/o that holds either
196 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 *
198 * SCL_VDEV
199 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 200 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
201 * other locks, and lower than all of them, to ensure that it's safe
202 * to acquire regardless of caller context.
203 *
204 * In addition, the following rules apply:
205 *
206 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
207 * The lock ordering is SCL_CONFIG > spa_props_lock.
208 *
209 * (b) I/O operations on leaf vdevs. For any zio operation that takes
210 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211 * or zio_write_phys() -- the caller must ensure that the config cannot
212 * cannot change in the interim, and that the vdev cannot be reopened.
213 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
214 *
215 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216 *
217 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * for writing.
219 *
220 * spa_vdev_exit() Release the config lock, wait for all I/O
221 * to complete, sync the updated configs to the
222 * cache, and release the namespace lock.
223 *
b128c09f
BB
224 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 *
9ae529ec 228 * spa_rename() is also implemented within this file since it requires
b128c09f 229 * manipulation of the namespace.
34dc7c2f
BB
230 */
231
232static avl_tree_t spa_namespace_avl;
233kmutex_t spa_namespace_lock;
234static kcondvar_t spa_namespace_cv;
34dc7c2f
BB
235int spa_max_replication_override = SPA_DVAS_PER_BP;
236
237static kmutex_t spa_spare_lock;
238static avl_tree_t spa_spare_avl;
239static kmutex_t spa_l2cache_lock;
240static avl_tree_t spa_l2cache_avl;
241
242kmem_cache_t *spa_buffer_pool;
fb5f0bc8 243int spa_mode_global;
34dc7c2f 244
0b39b9f9
PS
245#ifdef ZFS_DEBUG
246/* Everything except dprintf and spa is on by default in debug builds */
247int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
248#else
249int zfs_flags = 0;
250#endif
251
252/*
253 * zfs_recover can be set to nonzero to attempt to recover from
254 * otherwise-fatal errors, typically caused by on-disk corruption. When
255 * set, calls to zfs_panic_recover() will turn into warning messages.
256 * This should only be used as a last resort, as it typically results
257 * in leaked space, or worse.
258 */
259int zfs_recover = B_FALSE;
260
261/*
262 * If destroy encounters an EIO while reading metadata (e.g. indirect
263 * blocks), space referenced by the missing metadata can not be freed.
264 * Normally this causes the background destroy to become "stalled", as
265 * it is unable to make forward progress. While in this stalled state,
266 * all remaining space to free from the error-encountering filesystem is
267 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
268 * permanently leak the space from indirect blocks that can not be read,
269 * and continue to free everything else that it can.
270 *
271 * The default, "stalling" behavior is useful if the storage partially
272 * fails (i.e. some but not all i/os fail), and then later recovers. In
273 * this case, we will be able to continue pool operations while it is
274 * partially failed, and when it recovers, we can continue to free the
275 * space, with no leaks. However, note that this case is actually
276 * fairly rare.
277 *
278 * Typically pools either (a) fail completely (but perhaps temporarily,
279 * e.g. a top-level vdev going offline), or (b) have localized,
280 * permanent errors (e.g. disk returns the wrong data due to bit flip or
281 * firmware bug). In case (a), this setting does not matter because the
282 * pool will be suspended and the sync thread will not be able to make
283 * forward progress regardless. In case (b), because the error is
284 * permanent, the best we can do is leak the minimum amount of space,
285 * which is what setting this flag will do. Therefore, it is reasonable
286 * for this flag to normally be set, but we chose the more conservative
287 * approach of not setting it, so that there is no possibility of
288 * leaking space in the "partial temporary" failure case.
289 */
290int zfs_free_leak_on_eio = B_FALSE;
291
cc92e9d0 292/*
e8b96c60
MA
293 * Expiration time in milliseconds. This value has two meanings. First it is
294 * used to determine when the spa_deadman() logic should fire. By default the
295 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
296 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
297 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
298 * in a system panic.
cc92e9d0 299 */
e8b96c60 300unsigned long zfs_deadman_synctime_ms = 1000000ULL;
cc92e9d0 301
b81a3ddc
TC
302/*
303 * Check time in milliseconds. This defines the frequency at which we check
304 * for hung I/O.
305 */
306unsigned long zfs_deadman_checktime_ms = 5000ULL;
307
cc92e9d0
GW
308/*
309 * By default the deadman is enabled.
310 */
311int zfs_deadman_enabled = 1;
312
e8b96c60
MA
313/*
314 * The worst case is single-sector max-parity RAID-Z blocks, in which
315 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316 * times the size; so just assume that. Add to this the fact that
317 * we can have up to 3 DVAs per bp, and one more factor of 2 because
318 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
319 * the worst case is:
320 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321 */
322int spa_asize_inflation = 24;
323
3d45fdd6
MA
324/*
325 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326 * the pool to be consumed. This ensures that we don't run the pool
327 * completely out of space, due to unaccounted changes (e.g. to the MOS).
328 * It also limits the worst-case time to allocate space. If we have
329 * less than this amount of free space, most ZPL operations (e.g. write,
330 * create) will return ENOSPC.
331 *
332 * Certain operations (e.g. file removal, most administrative actions) can
333 * use half the slop space. They will only return ENOSPC if less than half
334 * the slop space is free. Typically, once the pool has less than the slop
335 * space free, the user will use these operations to free up space in the pool.
336 * These are the operations that call dsl_pool_adjustedsize() with the netfree
337 * argument set to TRUE.
338 *
339 * A very restricted set of operations are always permitted, regardless of
340 * the amount of free space. These are the operations that call
341 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
342 * operations result in a net increase in the amount of space used,
343 * it is possible to run the pool completely out of space, causing it to
344 * be permanently read-only.
345 *
d7958b4c
MA
346 * Note that on very small pools, the slop space will be larger than
347 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
348 * but we never allow it to be more than half the pool size.
349 *
3d45fdd6
MA
350 * See also the comments in zfs_space_check_t.
351 */
352int spa_slop_shift = 5;
d7958b4c 353uint64_t spa_min_slop = 128 * 1024 * 1024;
3d45fdd6 354
34dc7c2f
BB
355/*
356 * ==========================================================================
357 * SPA config locking
358 * ==========================================================================
359 */
360static void
b128c09f
BB
361spa_config_lock_init(spa_t *spa)
362{
1c27024e 363 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
364 spa_config_lock_t *scl = &spa->spa_config_lock[i];
365 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
366 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
13fe0198 367 refcount_create_untracked(&scl->scl_count);
b128c09f
BB
368 scl->scl_writer = NULL;
369 scl->scl_write_wanted = 0;
370 }
34dc7c2f
BB
371}
372
373static void
b128c09f
BB
374spa_config_lock_destroy(spa_t *spa)
375{
1c27024e 376 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
377 spa_config_lock_t *scl = &spa->spa_config_lock[i];
378 mutex_destroy(&scl->scl_lock);
379 cv_destroy(&scl->scl_cv);
380 refcount_destroy(&scl->scl_count);
381 ASSERT(scl->scl_writer == NULL);
382 ASSERT(scl->scl_write_wanted == 0);
383 }
384}
385
386int
387spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 388{
1c27024e 389 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
390 spa_config_lock_t *scl = &spa->spa_config_lock[i];
391 if (!(locks & (1 << i)))
392 continue;
393 mutex_enter(&scl->scl_lock);
394 if (rw == RW_READER) {
395 if (scl->scl_writer || scl->scl_write_wanted) {
396 mutex_exit(&scl->scl_lock);
adfe9d93
SK
397 spa_config_exit(spa, locks & ((1 << i) - 1),
398 tag);
b128c09f
BB
399 return (0);
400 }
401 } else {
402 ASSERT(scl->scl_writer != curthread);
403 if (!refcount_is_zero(&scl->scl_count)) {
404 mutex_exit(&scl->scl_lock);
adfe9d93
SK
405 spa_config_exit(spa, locks & ((1 << i) - 1),
406 tag);
b128c09f
BB
407 return (0);
408 }
409 scl->scl_writer = curthread;
410 }
411 (void) refcount_add(&scl->scl_count, tag);
412 mutex_exit(&scl->scl_lock);
413 }
414 return (1);
34dc7c2f
BB
415}
416
417void
b128c09f 418spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 419{
45d1cae3
BB
420 int wlocks_held = 0;
421
13fe0198
MA
422 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
423
1c27024e 424 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f 425 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
426 if (scl->scl_writer == curthread)
427 wlocks_held |= (1 << i);
b128c09f
BB
428 if (!(locks & (1 << i)))
429 continue;
430 mutex_enter(&scl->scl_lock);
431 if (rw == RW_READER) {
432 while (scl->scl_writer || scl->scl_write_wanted) {
433 cv_wait(&scl->scl_cv, &scl->scl_lock);
434 }
435 } else {
436 ASSERT(scl->scl_writer != curthread);
437 while (!refcount_is_zero(&scl->scl_count)) {
438 scl->scl_write_wanted++;
439 cv_wait(&scl->scl_cv, &scl->scl_lock);
440 scl->scl_write_wanted--;
441 }
442 scl->scl_writer = curthread;
443 }
444 (void) refcount_add(&scl->scl_count, tag);
445 mutex_exit(&scl->scl_lock);
34dc7c2f 446 }
45d1cae3 447 ASSERT(wlocks_held <= locks);
34dc7c2f
BB
448}
449
450void
b128c09f 451spa_config_exit(spa_t *spa, int locks, void *tag)
34dc7c2f 452{
1c27024e 453 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
454 spa_config_lock_t *scl = &spa->spa_config_lock[i];
455 if (!(locks & (1 << i)))
456 continue;
457 mutex_enter(&scl->scl_lock);
458 ASSERT(!refcount_is_zero(&scl->scl_count));
459 if (refcount_remove(&scl->scl_count, tag) == 0) {
460 ASSERT(scl->scl_writer == NULL ||
461 scl->scl_writer == curthread);
462 scl->scl_writer = NULL; /* OK in either case */
463 cv_broadcast(&scl->scl_cv);
464 }
465 mutex_exit(&scl->scl_lock);
34dc7c2f 466 }
34dc7c2f
BB
467}
468
b128c09f
BB
469int
470spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 471{
1c27024e 472 int locks_held = 0;
34dc7c2f 473
1c27024e 474 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
475 spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 if (!(locks & (1 << i)))
477 continue;
478 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
479 (rw == RW_WRITER && scl->scl_writer == curthread))
480 locks_held |= 1 << i;
481 }
482
483 return (locks_held);
34dc7c2f
BB
484}
485
486/*
487 * ==========================================================================
488 * SPA namespace functions
489 * ==========================================================================
490 */
491
492/*
493 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
494 * Returns NULL if no matching spa_t is found.
495 */
496spa_t *
497spa_lookup(const char *name)
498{
b128c09f
BB
499 static spa_t search; /* spa_t is large; don't allocate on stack */
500 spa_t *spa;
34dc7c2f 501 avl_index_t where;
34dc7c2f
BB
502 char *cp;
503
504 ASSERT(MUTEX_HELD(&spa_namespace_lock));
505
13fe0198
MA
506 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
507
34dc7c2f
BB
508 /*
509 * If it's a full dataset name, figure out the pool name and
510 * just use that.
511 */
da536844 512 cp = strpbrk(search.spa_name, "/@#");
13fe0198 513 if (cp != NULL)
34dc7c2f 514 *cp = '\0';
34dc7c2f 515
34dc7c2f
BB
516 spa = avl_find(&spa_namespace_avl, &search, &where);
517
34dc7c2f
BB
518 return (spa);
519}
520
cc92e9d0
GW
521/*
522 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
523 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
524 * looking for potentially hung I/Os.
525 */
526void
527spa_deadman(void *arg)
528{
529 spa_t *spa = arg;
530
b81a3ddc
TC
531 /* Disable the deadman if the pool is suspended. */
532 if (spa_suspended(spa))
533 return;
534
cc92e9d0
GW
535 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
536 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
537 ++spa->spa_deadman_calls);
538 if (zfs_deadman_enabled)
539 vdev_deadman(spa->spa_root_vdev);
540
57ddcda1 541 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
f764edf0 542 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
b81a3ddc 543 MSEC_TO_TICK(zfs_deadman_checktime_ms));
cc92e9d0
GW
544}
545
34dc7c2f
BB
546/*
547 * Create an uninitialized spa_t with the given name. Requires
548 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
549 * exist by calling spa_lookup() first.
550 */
551spa_t *
428870ff 552spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
553{
554 spa_t *spa;
b128c09f 555 spa_config_dirent_t *dp;
34dc7c2f
BB
556
557 ASSERT(MUTEX_HELD(&spa_namespace_lock));
558
79c76d5b 559 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
34dc7c2f 560
34dc7c2f 561 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 562 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 563 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
0c66c32d 564 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 565 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 566 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 567 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
3c67d83a 568 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
569 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
570 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
571 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
4eb30c68 572 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
3dfb57a3 573 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
574
575 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
0c66c32d 576 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
428870ff 577 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 578 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 579 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 580
1c27024e 581 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
582 bplist_create(&spa->spa_free_bplist[t]);
583
b128c09f 584 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
585 spa->spa_state = POOL_STATE_UNINITIALIZED;
586 spa->spa_freeze_txg = UINT64_MAX;
587 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
588 spa->spa_load_max_txg = UINT64_MAX;
589 spa->spa_proc = &p0;
590 spa->spa_proc_state = SPA_PROC_NONE;
34dc7c2f 591
e8b96c60 592 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
cc92e9d0 593
34dc7c2f 594 refcount_create(&spa->spa_refcount);
b128c09f 595 spa_config_lock_init(spa);
1421c891 596 spa_stats_init(spa);
34dc7c2f
BB
597
598 avl_add(&spa_namespace_avl, spa);
599
34dc7c2f
BB
600 /*
601 * Set the alternate root, if there is one.
602 */
0336f3d0 603 if (altroot)
34dc7c2f 604 spa->spa_root = spa_strdup(altroot);
34dc7c2f 605
64fc7762 606 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
3dfb57a3
DB
607 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
608
b128c09f
BB
609 /*
610 * Every pool starts with the default cachefile
611 */
612 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
613 offsetof(spa_config_dirent_t, scd_link));
614
79c76d5b 615 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 616 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
617 list_insert_head(&spa->spa_config_list, dp);
618
572e2857 619 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
79c76d5b 620 KM_SLEEP) == 0);
572e2857 621
9ae529ec
CS
622 if (config != NULL) {
623 nvlist_t *features;
624
625 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
626 &features) == 0) {
627 VERIFY(nvlist_dup(features, &spa->spa_label_features,
628 0) == 0);
629 }
630
428870ff 631 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
632 }
633
634 if (spa->spa_label_features == NULL) {
635 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
79c76d5b 636 KM_SLEEP) == 0);
9ae529ec 637 }
428870ff 638
13fe0198
MA
639 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
640
c3520e7f
MA
641 spa->spa_min_ashift = INT_MAX;
642 spa->spa_max_ashift = 0;
643
e8a20144
GN
644 /* Reset cached value */
645 spa->spa_dedup_dspace = ~0ULL;
646
b0bc7a84
MG
647 /*
648 * As a pool is being created, treat all features as disabled by
649 * setting SPA_FEATURE_DISABLED for all entries in the feature
650 * refcount cache.
651 */
1c27024e 652 for (int i = 0; i < SPA_FEATURES; i++) {
b0bc7a84
MG
653 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
654 }
655
34dc7c2f
BB
656 return (spa);
657}
658
659/*
660 * Removes a spa_t from the namespace, freeing up any memory used. Requires
661 * spa_namespace_lock. This is called only after the spa_t has been closed and
662 * deactivated.
663 */
664void
665spa_remove(spa_t *spa)
666{
b128c09f
BB
667 spa_config_dirent_t *dp;
668
34dc7c2f
BB
669 ASSERT(MUTEX_HELD(&spa_namespace_lock));
670 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
0c66c32d 671 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
34dc7c2f 672
428870ff
BB
673 nvlist_free(spa->spa_config_splitting);
674
34dc7c2f
BB
675 avl_remove(&spa_namespace_avl, spa);
676 cv_broadcast(&spa_namespace_cv);
677
0336f3d0 678 if (spa->spa_root)
34dc7c2f 679 spa_strfree(spa->spa_root);
34dc7c2f 680
b128c09f
BB
681 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
682 list_remove(&spa->spa_config_list, dp);
683 if (dp->scd_path != NULL)
684 spa_strfree(dp->scd_path);
685 kmem_free(dp, sizeof (spa_config_dirent_t));
686 }
34dc7c2f 687
3dfb57a3 688 avl_destroy(&spa->spa_alloc_tree);
b128c09f 689 list_destroy(&spa->spa_config_list);
34dc7c2f 690
9ae529ec 691 nvlist_free(spa->spa_label_features);
572e2857 692 nvlist_free(spa->spa_load_info);
417104bd 693 nvlist_free(spa->spa_feat_stats);
34dc7c2f
BB
694 spa_config_set(spa, NULL);
695
696 refcount_destroy(&spa->spa_refcount);
697
1421c891 698 spa_stats_destroy(spa);
b128c09f 699 spa_config_lock_destroy(spa);
34dc7c2f 700
1c27024e 701 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
702 bplist_destroy(&spa->spa_free_bplist[t]);
703
3c67d83a
TH
704 zio_checksum_templates_free(spa);
705
34dc7c2f 706 cv_destroy(&spa->spa_async_cv);
0c66c32d 707 cv_destroy(&spa->spa_evicting_os_cv);
428870ff 708 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 709 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 710 cv_destroy(&spa->spa_suspend_cv);
34dc7c2f 711
3dfb57a3 712 mutex_destroy(&spa->spa_alloc_lock);
34dc7c2f 713 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 714 mutex_destroy(&spa->spa_errlist_lock);
428870ff 715 mutex_destroy(&spa->spa_errlog_lock);
0c66c32d 716 mutex_destroy(&spa->spa_evicting_os_lock);
34dc7c2f 717 mutex_destroy(&spa->spa_history_lock);
428870ff 718 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 719 mutex_destroy(&spa->spa_props_lock);
3c67d83a 720 mutex_destroy(&spa->spa_cksum_tmpls_lock);
428870ff 721 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 722 mutex_destroy(&spa->spa_suspend_lock);
428870ff 723 mutex_destroy(&spa->spa_vdev_top_lock);
4eb30c68 724 mutex_destroy(&spa->spa_feat_stats_lock);
34dc7c2f
BB
725
726 kmem_free(spa, sizeof (spa_t));
727}
728
729/*
730 * Given a pool, return the next pool in the namespace, or NULL if there is
731 * none. If 'prev' is NULL, return the first pool.
732 */
733spa_t *
734spa_next(spa_t *prev)
735{
736 ASSERT(MUTEX_HELD(&spa_namespace_lock));
737
738 if (prev)
739 return (AVL_NEXT(&spa_namespace_avl, prev));
740 else
741 return (avl_first(&spa_namespace_avl));
742}
743
744/*
745 * ==========================================================================
746 * SPA refcount functions
747 * ==========================================================================
748 */
749
750/*
751 * Add a reference to the given spa_t. Must have at least one reference, or
752 * have the namespace lock held.
753 */
754void
755spa_open_ref(spa_t *spa, void *tag)
756{
b128c09f 757 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 758 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
759 (void) refcount_add(&spa->spa_refcount, tag);
760}
761
762/*
763 * Remove a reference to the given spa_t. Must have at least one reference, or
764 * have the namespace lock held.
765 */
766void
767spa_close(spa_t *spa, void *tag)
768{
b128c09f 769 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 770 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
771 (void) refcount_remove(&spa->spa_refcount, tag);
772}
773
0c66c32d
JG
774/*
775 * Remove a reference to the given spa_t held by a dsl dir that is
776 * being asynchronously released. Async releases occur from a taskq
777 * performing eviction of dsl datasets and dirs. The namespace lock
778 * isn't held and the hold by the object being evicted may contribute to
779 * spa_minref (e.g. dataset or directory released during pool export),
780 * so the asserts in spa_close() do not apply.
781 */
782void
783spa_async_close(spa_t *spa, void *tag)
784{
785 (void) refcount_remove(&spa->spa_refcount, tag);
786}
787
34dc7c2f
BB
788/*
789 * Check to see if the spa refcount is zero. Must be called with
b128c09f 790 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
791 * number of references acquired when opening a pool
792 */
793boolean_t
794spa_refcount_zero(spa_t *spa)
795{
796 ASSERT(MUTEX_HELD(&spa_namespace_lock));
797
b128c09f 798 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
799}
800
801/*
802 * ==========================================================================
803 * SPA spare and l2cache tracking
804 * ==========================================================================
805 */
806
807/*
808 * Hot spares and cache devices are tracked using the same code below,
809 * for 'auxiliary' devices.
810 */
811
812typedef struct spa_aux {
813 uint64_t aux_guid;
814 uint64_t aux_pool;
815 avl_node_t aux_avl;
816 int aux_count;
817} spa_aux_t;
818
ee36c709 819static inline int
34dc7c2f
BB
820spa_aux_compare(const void *a, const void *b)
821{
ee36c709
GN
822 const spa_aux_t *sa = (const spa_aux_t *)a;
823 const spa_aux_t *sb = (const spa_aux_t *)b;
34dc7c2f 824
ee36c709 825 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
34dc7c2f
BB
826}
827
828void
829spa_aux_add(vdev_t *vd, avl_tree_t *avl)
830{
831 avl_index_t where;
832 spa_aux_t search;
833 spa_aux_t *aux;
834
835 search.aux_guid = vd->vdev_guid;
836 if ((aux = avl_find(avl, &search, &where)) != NULL) {
837 aux->aux_count++;
838 } else {
79c76d5b 839 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
34dc7c2f
BB
840 aux->aux_guid = vd->vdev_guid;
841 aux->aux_count = 1;
842 avl_insert(avl, aux, where);
843 }
844}
845
846void
847spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
848{
849 spa_aux_t search;
850 spa_aux_t *aux;
851 avl_index_t where;
852
853 search.aux_guid = vd->vdev_guid;
854 aux = avl_find(avl, &search, &where);
855
856 ASSERT(aux != NULL);
857
858 if (--aux->aux_count == 0) {
859 avl_remove(avl, aux);
860 kmem_free(aux, sizeof (spa_aux_t));
861 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
862 aux->aux_pool = 0ULL;
863 }
864}
865
866boolean_t
b128c09f 867spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
868{
869 spa_aux_t search, *found;
34dc7c2f
BB
870
871 search.aux_guid = guid;
b128c09f 872 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
873
874 if (pool) {
875 if (found)
876 *pool = found->aux_pool;
877 else
878 *pool = 0ULL;
879 }
880
b128c09f
BB
881 if (refcnt) {
882 if (found)
883 *refcnt = found->aux_count;
884 else
885 *refcnt = 0;
886 }
887
34dc7c2f
BB
888 return (found != NULL);
889}
890
891void
892spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
893{
894 spa_aux_t search, *found;
895 avl_index_t where;
896
897 search.aux_guid = vd->vdev_guid;
898 found = avl_find(avl, &search, &where);
899 ASSERT(found != NULL);
900 ASSERT(found->aux_pool == 0ULL);
901
902 found->aux_pool = spa_guid(vd->vdev_spa);
903}
904
905/*
906 * Spares are tracked globally due to the following constraints:
907 *
908 * - A spare may be part of multiple pools.
909 * - A spare may be added to a pool even if it's actively in use within
910 * another pool.
911 * - A spare in use in any pool can only be the source of a replacement if
912 * the target is a spare in the same pool.
913 *
914 * We keep track of all spares on the system through the use of a reference
915 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
916 * spare, then we bump the reference count in the AVL tree. In addition, we set
917 * the 'vdev_isspare' member to indicate that the device is a spare (active or
918 * inactive). When a spare is made active (used to replace a device in the
919 * pool), we also keep track of which pool its been made a part of.
920 *
921 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
922 * called under the spa_namespace lock as part of vdev reconfiguration. The
923 * separate spare lock exists for the status query path, which does not need to
924 * be completely consistent with respect to other vdev configuration changes.
925 */
926
927static int
928spa_spare_compare(const void *a, const void *b)
929{
930 return (spa_aux_compare(a, b));
931}
932
933void
934spa_spare_add(vdev_t *vd)
935{
936 mutex_enter(&spa_spare_lock);
937 ASSERT(!vd->vdev_isspare);
938 spa_aux_add(vd, &spa_spare_avl);
939 vd->vdev_isspare = B_TRUE;
940 mutex_exit(&spa_spare_lock);
941}
942
943void
944spa_spare_remove(vdev_t *vd)
945{
946 mutex_enter(&spa_spare_lock);
947 ASSERT(vd->vdev_isspare);
948 spa_aux_remove(vd, &spa_spare_avl);
949 vd->vdev_isspare = B_FALSE;
950 mutex_exit(&spa_spare_lock);
951}
952
953boolean_t
b128c09f 954spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
955{
956 boolean_t found;
957
958 mutex_enter(&spa_spare_lock);
b128c09f 959 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
960 mutex_exit(&spa_spare_lock);
961
962 return (found);
963}
964
965void
966spa_spare_activate(vdev_t *vd)
967{
968 mutex_enter(&spa_spare_lock);
969 ASSERT(vd->vdev_isspare);
970 spa_aux_activate(vd, &spa_spare_avl);
971 mutex_exit(&spa_spare_lock);
972}
973
974/*
975 * Level 2 ARC devices are tracked globally for the same reasons as spares.
976 * Cache devices currently only support one pool per cache device, and so
977 * for these devices the aux reference count is currently unused beyond 1.
978 */
979
980static int
981spa_l2cache_compare(const void *a, const void *b)
982{
983 return (spa_aux_compare(a, b));
984}
985
986void
987spa_l2cache_add(vdev_t *vd)
988{
989 mutex_enter(&spa_l2cache_lock);
990 ASSERT(!vd->vdev_isl2cache);
991 spa_aux_add(vd, &spa_l2cache_avl);
992 vd->vdev_isl2cache = B_TRUE;
993 mutex_exit(&spa_l2cache_lock);
994}
995
996void
997spa_l2cache_remove(vdev_t *vd)
998{
999 mutex_enter(&spa_l2cache_lock);
1000 ASSERT(vd->vdev_isl2cache);
1001 spa_aux_remove(vd, &spa_l2cache_avl);
1002 vd->vdev_isl2cache = B_FALSE;
1003 mutex_exit(&spa_l2cache_lock);
1004}
1005
1006boolean_t
1007spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1008{
1009 boolean_t found;
1010
1011 mutex_enter(&spa_l2cache_lock);
b128c09f 1012 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
1013 mutex_exit(&spa_l2cache_lock);
1014
1015 return (found);
1016}
1017
1018void
1019spa_l2cache_activate(vdev_t *vd)
1020{
1021 mutex_enter(&spa_l2cache_lock);
1022 ASSERT(vd->vdev_isl2cache);
1023 spa_aux_activate(vd, &spa_l2cache_avl);
1024 mutex_exit(&spa_l2cache_lock);
1025}
1026
34dc7c2f
BB
1027/*
1028 * ==========================================================================
1029 * SPA vdev locking
1030 * ==========================================================================
1031 */
1032
1033/*
1034 * Lock the given spa_t for the purpose of adding or removing a vdev.
1035 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1036 * It returns the next transaction group for the spa_t.
1037 */
1038uint64_t
1039spa_vdev_enter(spa_t *spa)
1040{
428870ff 1041 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 1042 mutex_enter(&spa_namespace_lock);
428870ff
BB
1043 return (spa_vdev_config_enter(spa));
1044}
1045
1046/*
1047 * Internal implementation for spa_vdev_enter(). Used when a vdev
1048 * operation requires multiple syncs (i.e. removing a device) while
1049 * keeping the spa_namespace_lock held.
1050 */
1051uint64_t
1052spa_vdev_config_enter(spa_t *spa)
1053{
1054 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 1055
b128c09f 1056 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
1057
1058 return (spa_last_synced_txg(spa) + 1);
1059}
1060
1061/*
428870ff
BB
1062 * Used in combination with spa_vdev_config_enter() to allow the syncing
1063 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 1064 */
428870ff
BB
1065void
1066spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f 1067{
1c27024e
DB
1068 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1069
34dc7c2f
BB
1070 int config_changed = B_FALSE;
1071
1072 ASSERT(txg > spa_last_synced_txg(spa));
1073
b128c09f
BB
1074 spa->spa_pending_vdev = NULL;
1075
34dc7c2f
BB
1076 /*
1077 * Reassess the DTLs.
1078 */
1079 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1080
b128c09f 1081 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 1082 config_changed = B_TRUE;
428870ff 1083 spa->spa_config_generation++;
34dc7c2f
BB
1084 }
1085
428870ff
BB
1086 /*
1087 * Verify the metaslab classes.
1088 */
1089 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1090 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1091
b128c09f 1092 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 1093
428870ff
BB
1094 /*
1095 * Panic the system if the specified tag requires it. This
1096 * is useful for ensuring that configurations are updated
1097 * transactionally.
1098 */
1099 if (zio_injection_enabled)
1100 zio_handle_panic_injection(spa, tag, 0);
1101
34dc7c2f
BB
1102 /*
1103 * Note: this txg_wait_synced() is important because it ensures
1104 * that there won't be more than one config change per txg.
1105 * This allows us to use the txg as the generation number.
1106 */
1107 if (error == 0)
1108 txg_wait_synced(spa->spa_dsl_pool, txg);
1109
1110 if (vd != NULL) {
93cf2076 1111 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
fb5f0bc8 1112 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1113 vdev_free(vd);
fb5f0bc8 1114 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1115 }
1116
1117 /*
1118 * If the config changed, update the config cache.
1119 */
1120 if (config_changed)
b128c09f 1121 spa_config_sync(spa, B_FALSE, B_TRUE);
428870ff 1122}
34dc7c2f 1123
428870ff
BB
1124/*
1125 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1126 * locking of spa_vdev_enter(), we also want make sure the transactions have
1127 * synced to disk, and then update the global configuration cache with the new
1128 * information.
1129 */
1130int
1131spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1132{
1133 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1134 mutex_exit(&spa_namespace_lock);
428870ff 1135 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1136
1137 return (error);
1138}
1139
b128c09f
BB
1140/*
1141 * Lock the given spa_t for the purpose of changing vdev state.
1142 */
1143void
428870ff 1144spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1145{
428870ff
BB
1146 int locks = SCL_STATE_ALL | oplocks;
1147
1148 /*
1149 * Root pools may need to read of the underlying devfs filesystem
1150 * when opening up a vdev. Unfortunately if we're holding the
1151 * SCL_ZIO lock it will result in a deadlock when we try to issue
1152 * the read from the root filesystem. Instead we "prefetch"
1153 * the associated vnodes that we need prior to opening the
1154 * underlying devices and cache them so that we can prevent
1155 * any I/O when we are doing the actual open.
1156 */
1157 if (spa_is_root(spa)) {
1158 int low = locks & ~(SCL_ZIO - 1);
1159 int high = locks & ~low;
1160
1161 spa_config_enter(spa, high, spa, RW_WRITER);
1162 vdev_hold(spa->spa_root_vdev);
1163 spa_config_enter(spa, low, spa, RW_WRITER);
1164 } else {
1165 spa_config_enter(spa, locks, spa, RW_WRITER);
1166 }
1167 spa->spa_vdev_locks = locks;
b128c09f
BB
1168}
1169
1170int
1171spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1172{
428870ff 1173 boolean_t config_changed = B_FALSE;
4a283c7f
TH
1174 vdev_t *vdev_top;
1175
1176 if (vd == NULL || vd == spa->spa_root_vdev) {
1177 vdev_top = spa->spa_root_vdev;
1178 } else {
1179 vdev_top = vd->vdev_top;
1180 }
428870ff
BB
1181
1182 if (vd != NULL || error == 0)
4a283c7f 1183 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
428870ff
BB
1184
1185 if (vd != NULL) {
4a283c7f
TH
1186 if (vd != spa->spa_root_vdev)
1187 vdev_state_dirty(vdev_top);
1188
428870ff
BB
1189 config_changed = B_TRUE;
1190 spa->spa_config_generation++;
1191 }
b128c09f 1192
428870ff
BB
1193 if (spa_is_root(spa))
1194 vdev_rele(spa->spa_root_vdev);
1195
1196 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1197 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1198
fb5f0bc8
BB
1199 /*
1200 * If anything changed, wait for it to sync. This ensures that,
1201 * from the system administrator's perspective, zpool(1M) commands
1202 * are synchronous. This is important for things like zpool offline:
1203 * when the command completes, you expect no further I/O from ZFS.
1204 */
1205 if (vd != NULL)
1206 txg_wait_synced(spa->spa_dsl_pool, 0);
1207
428870ff
BB
1208 /*
1209 * If the config changed, update the config cache.
1210 */
1211 if (config_changed) {
1212 mutex_enter(&spa_namespace_lock);
1213 spa_config_sync(spa, B_FALSE, B_TRUE);
1214 mutex_exit(&spa_namespace_lock);
1215 }
1216
b128c09f
BB
1217 return (error);
1218}
1219
34dc7c2f
BB
1220/*
1221 * ==========================================================================
1222 * Miscellaneous functions
1223 * ==========================================================================
1224 */
1225
9ae529ec 1226void
b0bc7a84 1227spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1228{
fa86b5db
MA
1229 if (!nvlist_exists(spa->spa_label_features, feature)) {
1230 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1231 /*
1232 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1233 * dirty the vdev config because lock SCL_CONFIG is not held.
1234 * Thankfully, in this case we don't need to dirty the config
1235 * because it will be written out anyway when we finish
1236 * creating the pool.
1237 */
1238 if (tx->tx_txg != TXG_INITIAL)
1239 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1240 }
9ae529ec
CS
1241}
1242
1243void
1244spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1245{
fa86b5db
MA
1246 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1247 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1248}
1249
34dc7c2f
BB
1250/*
1251 * Rename a spa_t.
1252 */
1253int
1254spa_rename(const char *name, const char *newname)
1255{
1256 spa_t *spa;
1257 int err;
1258
1259 /*
1260 * Lookup the spa_t and grab the config lock for writing. We need to
1261 * actually open the pool so that we can sync out the necessary labels.
1262 * It's OK to call spa_open() with the namespace lock held because we
1263 * allow recursive calls for other reasons.
1264 */
1265 mutex_enter(&spa_namespace_lock);
1266 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1267 mutex_exit(&spa_namespace_lock);
1268 return (err);
1269 }
1270
b128c09f 1271 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1272
1273 avl_remove(&spa_namespace_avl, spa);
b128c09f 1274 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
34dc7c2f
BB
1275 avl_add(&spa_namespace_avl, spa);
1276
1277 /*
1278 * Sync all labels to disk with the new names by marking the root vdev
1279 * dirty and waiting for it to sync. It will pick up the new pool name
1280 * during the sync.
1281 */
1282 vdev_config_dirty(spa->spa_root_vdev);
1283
b128c09f 1284 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1285
1286 txg_wait_synced(spa->spa_dsl_pool, 0);
1287
1288 /*
1289 * Sync the updated config cache.
1290 */
b128c09f 1291 spa_config_sync(spa, B_FALSE, B_TRUE);
34dc7c2f
BB
1292
1293 spa_close(spa, FTAG);
1294
1295 mutex_exit(&spa_namespace_lock);
1296
1297 return (0);
1298}
1299
34dc7c2f 1300/*
572e2857
BB
1301 * Return the spa_t associated with given pool_guid, if it exists. If
1302 * device_guid is non-zero, determine whether the pool exists *and* contains
1303 * a device with the specified device_guid.
34dc7c2f 1304 */
572e2857
BB
1305spa_t *
1306spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1307{
1308 spa_t *spa;
1309 avl_tree_t *t = &spa_namespace_avl;
1310
1311 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1312
1313 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1314 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1315 continue;
1316 if (spa->spa_root_vdev == NULL)
1317 continue;
1318 if (spa_guid(spa) == pool_guid) {
1319 if (device_guid == 0)
1320 break;
1321
1322 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1323 device_guid) != NULL)
1324 break;
1325
1326 /*
1327 * Check any devices we may be in the process of adding.
1328 */
1329 if (spa->spa_pending_vdev) {
1330 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1331 device_guid) != NULL)
1332 break;
1333 }
1334 }
1335 }
1336
572e2857
BB
1337 return (spa);
1338}
1339
1340/*
1341 * Determine whether a pool with the given pool_guid exists.
1342 */
1343boolean_t
1344spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1345{
1346 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1347}
1348
1349char *
1350spa_strdup(const char *s)
1351{
1352 size_t len;
1353 char *new;
1354
1355 len = strlen(s);
79c76d5b 1356 new = kmem_alloc(len + 1, KM_SLEEP);
34dc7c2f
BB
1357 bcopy(s, new, len);
1358 new[len] = '\0';
1359
1360 return (new);
1361}
1362
1363void
1364spa_strfree(char *s)
1365{
1366 kmem_free(s, strlen(s) + 1);
1367}
1368
1369uint64_t
1370spa_get_random(uint64_t range)
1371{
1372 uint64_t r;
1373
1374 ASSERT(range != 0);
1375
379ca9cf
OF
1376 if (range == 1)
1377 return (0);
1378
34dc7c2f
BB
1379 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1380
1381 return (r % range);
1382}
1383
428870ff
BB
1384uint64_t
1385spa_generate_guid(spa_t *spa)
34dc7c2f 1386{
428870ff 1387 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1388
428870ff
BB
1389 if (spa != NULL) {
1390 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1391 guid = spa_get_random(-1ULL);
1392 } else {
1393 while (guid == 0 || spa_guid_exists(guid, 0))
1394 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1395 }
1396
428870ff
BB
1397 return (guid);
1398}
1399
1400void
b0bc7a84 1401snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1402{
9ae529ec 1403 char type[256];
428870ff
BB
1404 char *checksum = NULL;
1405 char *compress = NULL;
b5256303 1406 char *crypt_type = NULL;
34dc7c2f 1407
428870ff 1408 if (bp != NULL) {
9ae529ec
CS
1409 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1410 dmu_object_byteswap_t bswap =
1411 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1412 (void) snprintf(type, sizeof (type), "bswap %s %s",
1413 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1414 "metadata" : "data",
1415 dmu_ot_byteswap[bswap].ob_name);
1416 } else {
1417 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1418 sizeof (type));
1419 }
b5256303
TC
1420 if (BP_IS_ENCRYPTED(bp)) {
1421 crypt_type = "encrypted";
1422 } else if (BP_IS_AUTHENTICATED(bp)) {
1423 crypt_type = "authenticated";
1424 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
1425 crypt_type = "indirect-MAC";
1426 } else {
1427 crypt_type = "unencrypted";
1428 }
9b67f605
MA
1429 if (!BP_IS_EMBEDDED(bp)) {
1430 checksum =
1431 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1432 }
428870ff 1433 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1434 }
1435
b0bc7a84 1436 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
b5256303 1437 crypt_type, compress);
34dc7c2f
BB
1438}
1439
1440void
1441spa_freeze(spa_t *spa)
1442{
1443 uint64_t freeze_txg = 0;
1444
b128c09f 1445 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1446 if (spa->spa_freeze_txg == UINT64_MAX) {
1447 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1448 spa->spa_freeze_txg = freeze_txg;
1449 }
b128c09f 1450 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1451 if (freeze_txg != 0)
1452 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1453}
1454
0b39b9f9
PS
1455void
1456zfs_panic_recover(const char *fmt, ...)
1457{
1458 va_list adx;
1459
1460 va_start(adx, fmt);
1461 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1462 va_end(adx);
1463}
1464
428870ff
BB
1465/*
1466 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1467 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1468 */
1469uint64_t
e19572e4 1470zfs_strtonum(const char *str, char **nptr)
428870ff
BB
1471{
1472 uint64_t val = 0;
1473 char c;
1474 int digit;
1475
1476 while ((c = *str) != '\0') {
1477 if (c >= '0' && c <= '9')
1478 digit = c - '0';
1479 else if (c >= 'a' && c <= 'f')
1480 digit = 10 + c - 'a';
1481 else
1482 break;
1483
1484 val *= 16;
1485 val += digit;
1486
1487 str++;
1488 }
1489
1490 if (nptr)
1491 *nptr = (char *)str;
1492
1493 return (val);
1494}
1495
34dc7c2f
BB
1496/*
1497 * ==========================================================================
1498 * Accessor functions
1499 * ==========================================================================
1500 */
1501
b128c09f
BB
1502boolean_t
1503spa_shutting_down(spa_t *spa)
34dc7c2f 1504{
b128c09f 1505 return (spa->spa_async_suspended);
34dc7c2f
BB
1506}
1507
1508dsl_pool_t *
1509spa_get_dsl(spa_t *spa)
1510{
1511 return (spa->spa_dsl_pool);
1512}
1513
9ae529ec
CS
1514boolean_t
1515spa_is_initializing(spa_t *spa)
1516{
1517 return (spa->spa_is_initializing);
1518}
1519
34dc7c2f
BB
1520blkptr_t *
1521spa_get_rootblkptr(spa_t *spa)
1522{
1523 return (&spa->spa_ubsync.ub_rootbp);
1524}
1525
1526void
1527spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1528{
1529 spa->spa_uberblock.ub_rootbp = *bp;
1530}
1531
1532void
1533spa_altroot(spa_t *spa, char *buf, size_t buflen)
1534{
1535 if (spa->spa_root == NULL)
1536 buf[0] = '\0';
1537 else
1538 (void) strncpy(buf, spa->spa_root, buflen);
1539}
1540
1541int
1542spa_sync_pass(spa_t *spa)
1543{
1544 return (spa->spa_sync_pass);
1545}
1546
1547char *
1548spa_name(spa_t *spa)
1549{
34dc7c2f
BB
1550 return (spa->spa_name);
1551}
1552
1553uint64_t
1554spa_guid(spa_t *spa)
1555{
3bc7e0fb
GW
1556 dsl_pool_t *dp = spa_get_dsl(spa);
1557 uint64_t guid;
1558
34dc7c2f
BB
1559 /*
1560 * If we fail to parse the config during spa_load(), we can go through
1561 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1562 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1563 * this case.
1564 */
3bc7e0fb
GW
1565 if (spa->spa_root_vdev == NULL)
1566 return (spa->spa_config_guid);
1567
1568 guid = spa->spa_last_synced_guid != 0 ?
1569 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1570
1571 /*
1572 * Return the most recently synced out guid unless we're
1573 * in syncing context.
1574 */
1575 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1576 return (spa->spa_root_vdev->vdev_guid);
1577 else
3bc7e0fb 1578 return (guid);
3541dc6d
GA
1579}
1580
1581uint64_t
1582spa_load_guid(spa_t *spa)
1583{
1584 /*
1585 * This is a GUID that exists solely as a reference for the
1586 * purposes of the arc. It is generated at load time, and
1587 * is never written to persistent storage.
1588 */
1589 return (spa->spa_load_guid);
34dc7c2f
BB
1590}
1591
1592uint64_t
1593spa_last_synced_txg(spa_t *spa)
1594{
1595 return (spa->spa_ubsync.ub_txg);
1596}
1597
1598uint64_t
1599spa_first_txg(spa_t *spa)
1600{
1601 return (spa->spa_first_txg);
1602}
1603
428870ff
BB
1604uint64_t
1605spa_syncing_txg(spa_t *spa)
1606{
1607 return (spa->spa_syncing_txg);
1608}
1609
3b7f360c
GW
1610/*
1611 * Return the last txg where data can be dirtied. The final txgs
1612 * will be used to just clear out any deferred frees that remain.
1613 */
1614uint64_t
1615spa_final_dirty_txg(spa_t *spa)
1616{
1617 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1618}
1619
b128c09f 1620pool_state_t
34dc7c2f
BB
1621spa_state(spa_t *spa)
1622{
1623 return (spa->spa_state);
1624}
1625
428870ff
BB
1626spa_load_state_t
1627spa_load_state(spa_t *spa)
34dc7c2f 1628{
428870ff 1629 return (spa->spa_load_state);
34dc7c2f
BB
1630}
1631
34dc7c2f 1632uint64_t
428870ff 1633spa_freeze_txg(spa_t *spa)
34dc7c2f 1634{
428870ff 1635 return (spa->spa_freeze_txg);
34dc7c2f
BB
1636}
1637
047187c1 1638/*
1639 * Return the inflated asize for a logical write in bytes. This is used by the
1640 * DMU to calculate the space a logical write will require on disk.
1641 * If lsize is smaller than the largest physical block size allocatable on this
1642 * pool we use its value instead, since the write will end up using the whole
1643 * block anyway.
1644 */
34dc7c2f 1645uint64_t
3ec3bc21 1646spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1647{
047187c1 1648 if (lsize == 0)
1649 return (0); /* No inflation needed */
1650 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
34dc7c2f
BB
1651}
1652
3d45fdd6
MA
1653/*
1654 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
d7958b4c
MA
1655 * or at least 128MB, unless that would cause it to be more than half the
1656 * pool size.
3d45fdd6
MA
1657 *
1658 * See the comment above spa_slop_shift for details.
1659 */
1660uint64_t
4ea3f864
GM
1661spa_get_slop_space(spa_t *spa)
1662{
3d45fdd6 1663 uint64_t space = spa_get_dspace(spa);
d7958b4c 1664 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
3d45fdd6
MA
1665}
1666
34dc7c2f
BB
1667uint64_t
1668spa_get_dspace(spa_t *spa)
1669{
428870ff 1670 return (spa->spa_dspace);
34dc7c2f
BB
1671}
1672
428870ff
BB
1673void
1674spa_update_dspace(spa_t *spa)
34dc7c2f 1675{
428870ff
BB
1676 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1677 ddt_get_dedup_dspace(spa);
34dc7c2f
BB
1678}
1679
1680/*
1681 * Return the failure mode that has been set to this pool. The default
1682 * behavior will be to block all I/Os when a complete failure occurs.
1683 */
1684uint8_t
1685spa_get_failmode(spa_t *spa)
1686{
1687 return (spa->spa_failmode);
1688}
1689
b128c09f
BB
1690boolean_t
1691spa_suspended(spa_t *spa)
1692{
1693 return (spa->spa_suspended);
1694}
1695
34dc7c2f
BB
1696uint64_t
1697spa_version(spa_t *spa)
1698{
1699 return (spa->spa_ubsync.ub_version);
1700}
1701
428870ff
BB
1702boolean_t
1703spa_deflate(spa_t *spa)
1704{
1705 return (spa->spa_deflate);
1706}
1707
1708metaslab_class_t *
1709spa_normal_class(spa_t *spa)
1710{
1711 return (spa->spa_normal_class);
1712}
1713
1714metaslab_class_t *
1715spa_log_class(spa_t *spa)
1716{
1717 return (spa->spa_log_class);
1718}
1719
0c66c32d
JG
1720void
1721spa_evicting_os_register(spa_t *spa, objset_t *os)
1722{
1723 mutex_enter(&spa->spa_evicting_os_lock);
1724 list_insert_head(&spa->spa_evicting_os_list, os);
1725 mutex_exit(&spa->spa_evicting_os_lock);
1726}
1727
1728void
1729spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1730{
1731 mutex_enter(&spa->spa_evicting_os_lock);
1732 list_remove(&spa->spa_evicting_os_list, os);
1733 cv_broadcast(&spa->spa_evicting_os_cv);
1734 mutex_exit(&spa->spa_evicting_os_lock);
1735}
1736
1737void
1738spa_evicting_os_wait(spa_t *spa)
1739{
1740 mutex_enter(&spa->spa_evicting_os_lock);
1741 while (!list_is_empty(&spa->spa_evicting_os_list))
1742 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1743 mutex_exit(&spa->spa_evicting_os_lock);
1744
1745 dmu_buf_user_evict_wait();
1746}
1747
34dc7c2f
BB
1748int
1749spa_max_replication(spa_t *spa)
1750{
1751 /*
1752 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1753 * handle BPs with more than one DVA allocated. Set our max
1754 * replication level accordingly.
1755 */
1756 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1757 return (1);
1758 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1759}
1760
428870ff
BB
1761int
1762spa_prev_software_version(spa_t *spa)
1763{
1764 return (spa->spa_prev_software_version);
1765}
1766
cc92e9d0
GW
1767uint64_t
1768spa_deadman_synctime(spa_t *spa)
1769{
1770 return (spa->spa_deadman_synctime);
1771}
1772
34dc7c2f 1773uint64_t
428870ff 1774dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 1775{
428870ff
BB
1776 uint64_t asize = DVA_GET_ASIZE(dva);
1777 uint64_t dsize = asize;
34dc7c2f 1778
428870ff 1779 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1780
428870ff
BB
1781 if (asize != 0 && spa->spa_deflate) {
1782 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
1783 if (vd != NULL)
1784 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1785 vd->vdev_deflate_ratio;
34dc7c2f 1786 }
428870ff
BB
1787
1788 return (dsize);
1789}
1790
1791uint64_t
1792bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1793{
1794 uint64_t dsize = 0;
1795
1c27024e 1796 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1797 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1798
1799 return (dsize);
1800}
1801
1802uint64_t
1803bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1804{
1805 uint64_t dsize = 0;
1806
1807 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1808
1c27024e 1809 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1810 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1811
b128c09f 1812 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
1813
1814 return (dsize);
34dc7c2f
BB
1815}
1816
1817/*
1818 * ==========================================================================
1819 * Initialization and Termination
1820 * ==========================================================================
1821 */
1822
1823static int
1824spa_name_compare(const void *a1, const void *a2)
1825{
1826 const spa_t *s1 = a1;
1827 const spa_t *s2 = a2;
1828 int s;
1829
1830 s = strcmp(s1->spa_name, s2->spa_name);
ee36c709
GN
1831
1832 return (AVL_ISIGN(s));
34dc7c2f
BB
1833}
1834
34dc7c2f 1835void
0bc8fd78 1836spa_boot_init(void)
34dc7c2f
BB
1837{
1838 spa_config_load();
1839}
1840
1841void
1842spa_init(int mode)
1843{
1844 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1845 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1846 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1847 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1848
1849 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1850 offsetof(spa_t, spa_avl));
1851
1852 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1853 offsetof(spa_aux_t, aux_avl));
1854
1855 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1856 offsetof(spa_aux_t, aux_avl));
1857
fb5f0bc8 1858 spa_mode_global = mode;
34dc7c2f 1859
498877ba
MA
1860#ifndef _KERNEL
1861 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1862 struct sigaction sa;
1863
1864 sa.sa_flags = SA_SIGINFO;
1865 sigemptyset(&sa.sa_mask);
1866 sa.sa_sigaction = arc_buf_sigsegv;
1867
1868 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1869 perror("could not enable watchpoints: "
1870 "sigaction(SIGSEGV, ...) = ");
1871 } else {
1872 arc_watch = B_TRUE;
1873 }
1874 }
1875#endif
1876
26685276 1877 fm_init();
34dc7c2f
BB
1878 refcount_init();
1879 unique_init();
93cf2076 1880 range_tree_init();
4e21fd06 1881 metaslab_alloc_trace_init();
ecf3d9b8 1882 ddt_init();
34dc7c2f
BB
1883 zio_init();
1884 dmu_init();
1885 zil_init();
1886 vdev_cache_stat_init();
551905dd 1887 vdev_mirror_stat_init();
ab9f4b0b 1888 vdev_raidz_math_init();
da8f51e1 1889 vdev_file_init();
34dc7c2f
BB
1890 zfs_prop_init();
1891 zpool_prop_init();
9ae529ec 1892 zpool_feature_init();
34dc7c2f 1893 spa_config_load();
b128c09f 1894 l2arc_start();
d4a72f23 1895 scan_init();
6a9d6359 1896 qat_init();
34dc7c2f
BB
1897}
1898
1899void
1900spa_fini(void)
1901{
b128c09f
BB
1902 l2arc_stop();
1903
34dc7c2f
BB
1904 spa_evict_all();
1905
da8f51e1 1906 vdev_file_fini();
34dc7c2f 1907 vdev_cache_stat_fini();
551905dd 1908 vdev_mirror_stat_fini();
ab9f4b0b 1909 vdev_raidz_math_fini();
34dc7c2f
BB
1910 zil_fini();
1911 dmu_fini();
1912 zio_fini();
ecf3d9b8 1913 ddt_fini();
4e21fd06 1914 metaslab_alloc_trace_fini();
93cf2076 1915 range_tree_fini();
34dc7c2f
BB
1916 unique_fini();
1917 refcount_fini();
26685276 1918 fm_fini();
d4a72f23 1919 scan_fini();
6a9d6359 1920 qat_fini();
34dc7c2f
BB
1921
1922 avl_destroy(&spa_namespace_avl);
1923 avl_destroy(&spa_spare_avl);
1924 avl_destroy(&spa_l2cache_avl);
1925
1926 cv_destroy(&spa_namespace_cv);
1927 mutex_destroy(&spa_namespace_lock);
1928 mutex_destroy(&spa_spare_lock);
1929 mutex_destroy(&spa_l2cache_lock);
1930}
1931
1932/*
1933 * Return whether this pool has slogs. No locking needed.
1934 * It's not a problem if the wrong answer is returned as it's only for
1935 * performance and not correctness
1936 */
1937boolean_t
1938spa_has_slogs(spa_t *spa)
1939{
1940 return (spa->spa_log_class->mc_rotor != NULL);
1941}
b128c09f 1942
428870ff
BB
1943spa_log_state_t
1944spa_get_log_state(spa_t *spa)
1945{
1946 return (spa->spa_log_state);
1947}
1948
1949void
1950spa_set_log_state(spa_t *spa, spa_log_state_t state)
1951{
1952 spa->spa_log_state = state;
1953}
1954
b128c09f
BB
1955boolean_t
1956spa_is_root(spa_t *spa)
1957{
1958 return (spa->spa_is_root);
1959}
fb5f0bc8
BB
1960
1961boolean_t
1962spa_writeable(spa_t *spa)
1963{
1964 return (!!(spa->spa_mode & FWRITE));
1965}
1966
acbad6ff
AR
1967/*
1968 * Returns true if there is a pending sync task in any of the current
1969 * syncing txg, the current quiescing txg, or the current open txg.
1970 */
1971boolean_t
1972spa_has_pending_synctask(spa_t *spa)
1973{
1974 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1975}
1976
fb5f0bc8
BB
1977int
1978spa_mode(spa_t *spa)
1979{
1980 return (spa->spa_mode);
1981}
428870ff
BB
1982
1983uint64_t
1984spa_bootfs(spa_t *spa)
1985{
1986 return (spa->spa_bootfs);
1987}
1988
1989uint64_t
1990spa_delegation(spa_t *spa)
1991{
1992 return (spa->spa_delegation);
1993}
1994
1995objset_t *
1996spa_meta_objset(spa_t *spa)
1997{
1998 return (spa->spa_meta_objset);
1999}
2000
2001enum zio_checksum
2002spa_dedup_checksum(spa_t *spa)
2003{
2004 return (spa->spa_dedup_checksum);
2005}
2006
2007/*
2008 * Reset pool scan stat per scan pass (or reboot).
2009 */
2010void
2011spa_scan_stat_init(spa_t *spa)
2012{
2013 /* data not stored on disk */
2014 spa->spa_scan_pass_start = gethrestime_sec();
0ea05c64
AP
2015 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2016 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2017 else
2018 spa->spa_scan_pass_scrub_pause = 0;
2019 spa->spa_scan_pass_scrub_spent_paused = 0;
428870ff 2020 spa->spa_scan_pass_exam = 0;
d4a72f23 2021 spa->spa_scan_pass_issued = 0;
428870ff
BB
2022 vdev_scan_stat_init(spa->spa_root_vdev);
2023}
2024
2025/*
2026 * Get scan stats for zpool status reports
2027 */
2028int
2029spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2030{
2031 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2032
2033 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 2034 return (SET_ERROR(ENOENT));
428870ff
BB
2035 bzero(ps, sizeof (pool_scan_stat_t));
2036
2037 /* data stored on disk */
2038 ps->pss_func = scn->scn_phys.scn_func;
d4a72f23 2039 ps->pss_state = scn->scn_phys.scn_state;
428870ff
BB
2040 ps->pss_start_time = scn->scn_phys.scn_start_time;
2041 ps->pss_end_time = scn->scn_phys.scn_end_time;
2042 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
428870ff
BB
2043 ps->pss_to_process = scn->scn_phys.scn_to_process;
2044 ps->pss_processed = scn->scn_phys.scn_processed;
2045 ps->pss_errors = scn->scn_phys.scn_errors;
d4a72f23
TC
2046 ps->pss_examined = scn->scn_phys.scn_examined;
2047 ps->pss_issued =
2048 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
428870ff
BB
2049
2050 /* data not stored on disk */
2051 ps->pss_pass_start = spa->spa_scan_pass_start;
2052 ps->pss_pass_exam = spa->spa_scan_pass_exam;
d4a72f23 2053 ps->pss_pass_issued = spa->spa_scan_pass_issued;
0ea05c64
AP
2054 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2055 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
428870ff
BB
2056
2057 return (0);
2058}
c28b2279 2059
6d974228
GW
2060boolean_t
2061spa_debug_enabled(spa_t *spa)
2062{
2063 return (spa->spa_debug);
2064}
2065
f1512ee6
MA
2066int
2067spa_maxblocksize(spa_t *spa)
2068{
2069 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2070 return (SPA_MAXBLOCKSIZE);
2071 else
2072 return (SPA_OLD_MAXBLOCKSIZE);
2073}
2074
50c957f7
NB
2075int
2076spa_maxdnodesize(spa_t *spa)
2077{
2078 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2079 return (DNODE_MAX_SIZE);
2080 else
2081 return (DNODE_MIN_SIZE);
2082}
2083
379ca9cf
OF
2084boolean_t
2085spa_multihost(spa_t *spa)
2086{
2087 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2088}
2089
2090unsigned long
2091spa_get_hostid(void)
2092{
2093 unsigned long myhostid;
2094
2095#ifdef _KERNEL
2096 myhostid = zone_get_hostid(NULL);
2097#else /* _KERNEL */
2098 /*
2099 * We're emulating the system's hostid in userland, so
2100 * we can't use zone_get_hostid().
2101 */
2102 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2103#endif /* _KERNEL */
2104
2105 return (myhostid);
2106}
2107
c28b2279
BB
2108#if defined(_KERNEL) && defined(HAVE_SPL)
2109/* Namespace manipulation */
2110EXPORT_SYMBOL(spa_lookup);
2111EXPORT_SYMBOL(spa_add);
2112EXPORT_SYMBOL(spa_remove);
2113EXPORT_SYMBOL(spa_next);
2114
2115/* Refcount functions */
2116EXPORT_SYMBOL(spa_open_ref);
2117EXPORT_SYMBOL(spa_close);
2118EXPORT_SYMBOL(spa_refcount_zero);
2119
2120/* Pool configuration lock */
2121EXPORT_SYMBOL(spa_config_tryenter);
2122EXPORT_SYMBOL(spa_config_enter);
2123EXPORT_SYMBOL(spa_config_exit);
2124EXPORT_SYMBOL(spa_config_held);
2125
2126/* Pool vdev add/remove lock */
2127EXPORT_SYMBOL(spa_vdev_enter);
2128EXPORT_SYMBOL(spa_vdev_exit);
2129
2130/* Pool vdev state change lock */
2131EXPORT_SYMBOL(spa_vdev_state_enter);
2132EXPORT_SYMBOL(spa_vdev_state_exit);
2133
2134/* Accessor functions */
2135EXPORT_SYMBOL(spa_shutting_down);
2136EXPORT_SYMBOL(spa_get_dsl);
2137EXPORT_SYMBOL(spa_get_rootblkptr);
2138EXPORT_SYMBOL(spa_set_rootblkptr);
2139EXPORT_SYMBOL(spa_altroot);
2140EXPORT_SYMBOL(spa_sync_pass);
2141EXPORT_SYMBOL(spa_name);
2142EXPORT_SYMBOL(spa_guid);
2143EXPORT_SYMBOL(spa_last_synced_txg);
2144EXPORT_SYMBOL(spa_first_txg);
2145EXPORT_SYMBOL(spa_syncing_txg);
2146EXPORT_SYMBOL(spa_version);
2147EXPORT_SYMBOL(spa_state);
2148EXPORT_SYMBOL(spa_load_state);
2149EXPORT_SYMBOL(spa_freeze_txg);
c28b2279
BB
2150EXPORT_SYMBOL(spa_get_dspace);
2151EXPORT_SYMBOL(spa_update_dspace);
2152EXPORT_SYMBOL(spa_deflate);
2153EXPORT_SYMBOL(spa_normal_class);
2154EXPORT_SYMBOL(spa_log_class);
2155EXPORT_SYMBOL(spa_max_replication);
2156EXPORT_SYMBOL(spa_prev_software_version);
2157EXPORT_SYMBOL(spa_get_failmode);
2158EXPORT_SYMBOL(spa_suspended);
2159EXPORT_SYMBOL(spa_bootfs);
2160EXPORT_SYMBOL(spa_delegation);
2161EXPORT_SYMBOL(spa_meta_objset);
f1512ee6 2162EXPORT_SYMBOL(spa_maxblocksize);
50c957f7 2163EXPORT_SYMBOL(spa_maxdnodesize);
c28b2279
BB
2164
2165/* Miscellaneous support routines */
2166EXPORT_SYMBOL(spa_rename);
2167EXPORT_SYMBOL(spa_guid_exists);
2168EXPORT_SYMBOL(spa_strdup);
2169EXPORT_SYMBOL(spa_strfree);
2170EXPORT_SYMBOL(spa_get_random);
2171EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 2172EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
2173EXPORT_SYMBOL(spa_freeze);
2174EXPORT_SYMBOL(spa_upgrade);
2175EXPORT_SYMBOL(spa_evict_all);
2176EXPORT_SYMBOL(spa_lookup_by_guid);
2177EXPORT_SYMBOL(spa_has_spare);
2178EXPORT_SYMBOL(dva_get_dsize_sync);
2179EXPORT_SYMBOL(bp_get_dsize_sync);
2180EXPORT_SYMBOL(bp_get_dsize);
2181EXPORT_SYMBOL(spa_has_slogs);
2182EXPORT_SYMBOL(spa_is_root);
2183EXPORT_SYMBOL(spa_writeable);
2184EXPORT_SYMBOL(spa_mode);
c28b2279 2185EXPORT_SYMBOL(spa_namespace_lock);
cc92e9d0 2186
02730c33 2187/* BEGIN CSTYLED */
33b6dbbc 2188module_param(zfs_flags, uint, 0644);
0b39b9f9
PS
2189MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2190
2191module_param(zfs_recover, int, 0644);
2192MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2193
2194module_param(zfs_free_leak_on_eio, int, 0644);
2195MODULE_PARM_DESC(zfs_free_leak_on_eio,
2196 "Set to ignore IO errors during free and permanently leak the space");
2197
e8b96c60 2198module_param(zfs_deadman_synctime_ms, ulong, 0644);
d1d7e268 2199MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
cc92e9d0 2200
b81a3ddc
TC
2201module_param(zfs_deadman_checktime_ms, ulong, 0644);
2202MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2203 "Dead I/O check interval in milliseconds");
2204
cc92e9d0
GW
2205module_param(zfs_deadman_enabled, int, 0644);
2206MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
e8b96c60
MA
2207
2208module_param(spa_asize_inflation, int, 0644);
2209MODULE_PARM_DESC(spa_asize_inflation,
d1d7e268 2210 "SPA size estimate multiplication factor");
6cde6435
BB
2211
2212module_param(spa_slop_shift, int, 0644);
2213MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
02730c33 2214/* END CSTYLED */
c28b2279 2215#endif