]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev.c
Get rid of space_map_update() for ms_synced_length
[mirror_zfs.git] / module / zfs / vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
74d42600 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
153b2285 25 * Copyright 2017 Nexenta Systems, Inc.
e550644f
BB
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
12fa0466 28 * Copyright 2017 Joyent, Inc.
cc99f275 29 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
30 */
31
34dc7c2f
BB
32#include <sys/zfs_context.h>
33#include <sys/fm/fs/zfs.h>
34#include <sys/spa.h>
35#include <sys/spa_impl.h>
a1d477c2 36#include <sys/bpobj.h>
34dc7c2f
BB
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
a1d477c2 39#include <sys/dsl_dir.h>
34dc7c2f
BB
40#include <sys/vdev_impl.h>
41#include <sys/uberblock_impl.h>
42#include <sys/metaslab.h>
43#include <sys/metaslab_impl.h>
44#include <sys/space_map.h>
93cf2076 45#include <sys/space_reftree.h>
34dc7c2f
BB
46#include <sys/zio.h>
47#include <sys/zap.h>
48#include <sys/fs/zfs.h>
b128c09f 49#include <sys/arc.h>
9babb374 50#include <sys/zil.h>
428870ff 51#include <sys/dsl_scan.h>
a6255b7f 52#include <sys/abd.h>
619f0976 53#include <sys/vdev_initialize.h>
6c285672 54#include <sys/zvol.h>
6078881a 55#include <sys/zfs_ratelimit.h>
34dc7c2f 56
c853f382
SD
57/* default target for number of metaslabs per top-level vdev */
58int zfs_vdev_default_ms_count = 200;
d2734cce 59
e4e94ca3 60/* minimum number of metaslabs per top-level vdev */
c853f382 61int zfs_vdev_min_ms_count = 16;
d2734cce 62
e4e94ca3 63/* practical upper limit of total metaslabs per top-level vdev */
c853f382 64int zfs_vdev_ms_count_limit = 1ULL << 17;
e4e94ca3
DB
65
66/* lower limit for metaslab size (512M) */
c853f382 67int zfs_vdev_default_ms_shift = 29;
d2734cce 68
c853f382
SD
69/* upper limit for metaslab size (16G) */
70int zfs_vdev_max_ms_shift = 34;
e4e94ca3 71
d2734cce
SD
72int vdev_validate_skip = B_FALSE;
73
b8bcca18 74/*
d2734cce
SD
75 * Since the DTL space map of a vdev is not expected to have a lot of
76 * entries, we default its block size to 4K.
b8bcca18 77 */
d2734cce 78int vdev_dtl_sm_blksz = (1 << 12);
b8bcca18 79
80d52c39 80/*
ad796b8a 81 * Rate limit slow IO (delay) events to this many per second.
80d52c39 82 */
ad796b8a 83unsigned int zfs_slow_io_events_per_second = 20;
80d52c39
TH
84
85/*
86 * Rate limit checksum events after this many checksum errors per second.
87 */
ad796b8a 88unsigned int zfs_checksum_events_per_second = 20;
80d52c39 89
02638a30
TC
90/*
91 * Ignore errors during scrub/resilver. Allows to work around resilver
92 * upon import when there are pool errors.
93 */
94int zfs_scan_ignore_errors = 0;
95
d2734cce
SD
96/*
97 * vdev-wide space maps that have lots of entries written to them at
98 * the end of each transaction can benefit from a higher I/O bandwidth
99 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
100 */
101int vdev_standard_sm_blksz = (1 << 17);
6cb8e530 102
53b1f5ea
PS
103/*
104 * Tunable parameter for debugging or performance analysis. Setting this
105 * will cause pool corruption on power loss if a volatile out-of-order
106 * write cache is enabled.
107 */
108int zfs_nocacheflush = 0;
109
4a0ee12a
PZ
110/*PRINTFLIKE2*/
111void
112vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
113{
114 va_list adx;
115 char buf[256];
116
117 va_start(adx, fmt);
118 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
119 va_end(adx);
120
121 if (vd->vdev_path != NULL) {
122 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
123 vd->vdev_path, buf);
124 } else {
125 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
126 vd->vdev_ops->vdev_op_type,
127 (u_longlong_t)vd->vdev_id,
128 (u_longlong_t)vd->vdev_guid, buf);
129 }
130}
131
6cb8e530
PZ
132void
133vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
134{
135 char state[20];
136
137 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
138 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
139 vd->vdev_ops->vdev_op_type);
140 return;
141 }
142
143 switch (vd->vdev_state) {
144 case VDEV_STATE_UNKNOWN:
145 (void) snprintf(state, sizeof (state), "unknown");
146 break;
147 case VDEV_STATE_CLOSED:
148 (void) snprintf(state, sizeof (state), "closed");
149 break;
150 case VDEV_STATE_OFFLINE:
151 (void) snprintf(state, sizeof (state), "offline");
152 break;
153 case VDEV_STATE_REMOVED:
154 (void) snprintf(state, sizeof (state), "removed");
155 break;
156 case VDEV_STATE_CANT_OPEN:
157 (void) snprintf(state, sizeof (state), "can't open");
158 break;
159 case VDEV_STATE_FAULTED:
160 (void) snprintf(state, sizeof (state), "faulted");
161 break;
162 case VDEV_STATE_DEGRADED:
163 (void) snprintf(state, sizeof (state), "degraded");
164 break;
165 case VDEV_STATE_HEALTHY:
166 (void) snprintf(state, sizeof (state), "healthy");
167 break;
168 default:
169 (void) snprintf(state, sizeof (state), "<state %u>",
170 (uint_t)vd->vdev_state);
171 }
172
173 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
e902ddb0 174 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
6cb8e530
PZ
175 vd->vdev_islog ? " (log)" : "",
176 (u_longlong_t)vd->vdev_guid,
177 vd->vdev_path ? vd->vdev_path : "N/A", state);
178
179 for (uint64_t i = 0; i < vd->vdev_children; i++)
180 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
181}
182
34dc7c2f
BB
183/*
184 * Virtual device management.
185 */
186
187static vdev_ops_t *vdev_ops_table[] = {
188 &vdev_root_ops,
189 &vdev_raidz_ops,
190 &vdev_mirror_ops,
191 &vdev_replacing_ops,
192 &vdev_spare_ops,
193 &vdev_disk_ops,
194 &vdev_file_ops,
195 &vdev_missing_ops,
428870ff 196 &vdev_hole_ops,
a1d477c2 197 &vdev_indirect_ops,
34dc7c2f
BB
198 NULL
199};
200
34dc7c2f
BB
201/*
202 * Given a vdev type, return the appropriate ops vector.
203 */
204static vdev_ops_t *
205vdev_getops(const char *type)
206{
207 vdev_ops_t *ops, **opspp;
208
209 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
210 if (strcmp(ops->vdev_op_type, type) == 0)
211 break;
212
213 return (ops);
214}
215
619f0976
GW
216/* ARGSUSED */
217void
218vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
219{
220 res->rs_start = in->rs_start;
221 res->rs_end = in->rs_end;
222}
223
cc99f275
DB
224/*
225 * Derive the enumerated alloction bias from string input.
226 * String origin is either the per-vdev zap or zpool(1M).
227 */
228static vdev_alloc_bias_t
229vdev_derive_alloc_bias(const char *bias)
230{
231 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
232
233 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
234 alloc_bias = VDEV_BIAS_LOG;
235 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
236 alloc_bias = VDEV_BIAS_SPECIAL;
237 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
238 alloc_bias = VDEV_BIAS_DEDUP;
239
240 return (alloc_bias);
241}
242
34dc7c2f
BB
243/*
244 * Default asize function: return the MAX of psize with the asize of
245 * all children. This is what's used by anything other than RAID-Z.
246 */
247uint64_t
248vdev_default_asize(vdev_t *vd, uint64_t psize)
249{
250 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
251 uint64_t csize;
34dc7c2f 252
1c27024e 253 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
254 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
255 asize = MAX(asize, csize);
256 }
257
258 return (asize);
259}
260
261/*
9babb374
BB
262 * Get the minimum allocatable size. We define the allocatable size as
263 * the vdev's asize rounded to the nearest metaslab. This allows us to
264 * replace or attach devices which don't have the same physical size but
265 * can still satisfy the same number of allocations.
34dc7c2f
BB
266 */
267uint64_t
9babb374 268vdev_get_min_asize(vdev_t *vd)
34dc7c2f 269{
9babb374 270 vdev_t *pvd = vd->vdev_parent;
34dc7c2f 271
9babb374 272 /*
1bd201e7 273 * If our parent is NULL (inactive spare or cache) or is the root,
9babb374
BB
274 * just return our own asize.
275 */
276 if (pvd == NULL)
277 return (vd->vdev_asize);
34dc7c2f
BB
278
279 /*
9babb374
BB
280 * The top-level vdev just returns the allocatable size rounded
281 * to the nearest metaslab.
34dc7c2f 282 */
9babb374
BB
283 if (vd == vd->vdev_top)
284 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
34dc7c2f 285
9babb374
BB
286 /*
287 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
288 * so each child must provide at least 1/Nth of its asize.
289 */
290 if (pvd->vdev_ops == &vdev_raidz_ops)
2e215fec
SH
291 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
292 pvd->vdev_children);
34dc7c2f 293
9babb374
BB
294 return (pvd->vdev_min_asize);
295}
296
297void
298vdev_set_min_asize(vdev_t *vd)
299{
300 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 301
1c27024e 302 for (int c = 0; c < vd->vdev_children; c++)
9babb374 303 vdev_set_min_asize(vd->vdev_child[c]);
34dc7c2f
BB
304}
305
306vdev_t *
307vdev_lookup_top(spa_t *spa, uint64_t vdev)
308{
309 vdev_t *rvd = spa->spa_root_vdev;
310
b128c09f 311 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 312
b128c09f
BB
313 if (vdev < rvd->vdev_children) {
314 ASSERT(rvd->vdev_child[vdev] != NULL);
34dc7c2f 315 return (rvd->vdev_child[vdev]);
b128c09f 316 }
34dc7c2f
BB
317
318 return (NULL);
319}
320
321vdev_t *
322vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
323{
34dc7c2f
BB
324 vdev_t *mvd;
325
326 if (vd->vdev_guid == guid)
327 return (vd);
328
1c27024e 329 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
330 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
331 NULL)
332 return (mvd);
333
334 return (NULL);
335}
336
9c43027b
AJ
337static int
338vdev_count_leaves_impl(vdev_t *vd)
339{
340 int n = 0;
9c43027b
AJ
341
342 if (vd->vdev_ops->vdev_op_leaf)
343 return (1);
344
1c27024e 345 for (int c = 0; c < vd->vdev_children; c++)
9c43027b
AJ
346 n += vdev_count_leaves_impl(vd->vdev_child[c]);
347
348 return (n);
349}
350
351int
352vdev_count_leaves(spa_t *spa)
353{
743253df
OF
354 int rc;
355
356 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
357 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
358 spa_config_exit(spa, SCL_VDEV, FTAG);
359
360 return (rc);
9c43027b
AJ
361}
362
34dc7c2f
BB
363void
364vdev_add_child(vdev_t *pvd, vdev_t *cvd)
365{
366 size_t oldsize, newsize;
367 uint64_t id = cvd->vdev_id;
368 vdev_t **newchild;
369
44de2f02 370 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
371 ASSERT(cvd->vdev_parent == NULL);
372
373 cvd->vdev_parent = pvd;
374
375 if (pvd == NULL)
376 return;
377
378 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
379
380 oldsize = pvd->vdev_children * sizeof (vdev_t *);
381 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
382 newsize = pvd->vdev_children * sizeof (vdev_t *);
383
79c76d5b 384 newchild = kmem_alloc(newsize, KM_SLEEP);
34dc7c2f
BB
385 if (pvd->vdev_child != NULL) {
386 bcopy(pvd->vdev_child, newchild, oldsize);
387 kmem_free(pvd->vdev_child, oldsize);
388 }
389
390 pvd->vdev_child = newchild;
391 pvd->vdev_child[id] = cvd;
392
393 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
394 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
395
396 /*
397 * Walk up all ancestors to update guid sum.
398 */
399 for (; pvd != NULL; pvd = pvd->vdev_parent)
400 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
34dc7c2f
BB
401}
402
403void
404vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
405{
406 int c;
407 uint_t id = cvd->vdev_id;
408
409 ASSERT(cvd->vdev_parent == pvd);
410
411 if (pvd == NULL)
412 return;
413
414 ASSERT(id < pvd->vdev_children);
415 ASSERT(pvd->vdev_child[id] == cvd);
416
417 pvd->vdev_child[id] = NULL;
418 cvd->vdev_parent = NULL;
419
420 for (c = 0; c < pvd->vdev_children; c++)
421 if (pvd->vdev_child[c])
422 break;
423
424 if (c == pvd->vdev_children) {
425 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
426 pvd->vdev_child = NULL;
427 pvd->vdev_children = 0;
428 }
429
430 /*
431 * Walk up all ancestors to update guid sum.
432 */
433 for (; pvd != NULL; pvd = pvd->vdev_parent)
434 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
34dc7c2f
BB
435}
436
437/*
438 * Remove any holes in the child array.
439 */
440void
441vdev_compact_children(vdev_t *pvd)
442{
443 vdev_t **newchild, *cvd;
444 int oldc = pvd->vdev_children;
9babb374 445 int newc;
34dc7c2f 446
b128c09f 447 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f 448
a1d477c2
MA
449 if (oldc == 0)
450 return;
451
1c27024e 452 for (int c = newc = 0; c < oldc; c++)
34dc7c2f
BB
453 if (pvd->vdev_child[c])
454 newc++;
455
a1d477c2
MA
456 if (newc > 0) {
457 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
34dc7c2f 458
a1d477c2
MA
459 for (int c = newc = 0; c < oldc; c++) {
460 if ((cvd = pvd->vdev_child[c]) != NULL) {
461 newchild[newc] = cvd;
462 cvd->vdev_id = newc++;
463 }
34dc7c2f 464 }
a1d477c2
MA
465 } else {
466 newchild = NULL;
34dc7c2f
BB
467 }
468
469 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
470 pvd->vdev_child = newchild;
471 pvd->vdev_children = newc;
472}
473
474/*
475 * Allocate and minimally initialize a vdev_t.
476 */
428870ff 477vdev_t *
34dc7c2f
BB
478vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
479{
480 vdev_t *vd;
a1d477c2 481 vdev_indirect_config_t *vic;
34dc7c2f 482
79c76d5b 483 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
a1d477c2 484 vic = &vd->vdev_indirect_config;
34dc7c2f
BB
485
486 if (spa->spa_root_vdev == NULL) {
487 ASSERT(ops == &vdev_root_ops);
488 spa->spa_root_vdev = vd;
3541dc6d 489 spa->spa_load_guid = spa_generate_guid(NULL);
34dc7c2f
BB
490 }
491
428870ff 492 if (guid == 0 && ops != &vdev_hole_ops) {
34dc7c2f
BB
493 if (spa->spa_root_vdev == vd) {
494 /*
495 * The root vdev's guid will also be the pool guid,
496 * which must be unique among all pools.
497 */
428870ff 498 guid = spa_generate_guid(NULL);
34dc7c2f
BB
499 } else {
500 /*
501 * Any other vdev's guid must be unique within the pool.
502 */
428870ff 503 guid = spa_generate_guid(spa);
34dc7c2f
BB
504 }
505 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
506 }
507
508 vd->vdev_spa = spa;
509 vd->vdev_id = id;
510 vd->vdev_guid = guid;
511 vd->vdev_guid_sum = guid;
512 vd->vdev_ops = ops;
513 vd->vdev_state = VDEV_STATE_CLOSED;
428870ff 514 vd->vdev_ishole = (ops == &vdev_hole_ops);
a1d477c2
MA
515 vic->vic_prev_indirect_vdev = UINT64_MAX;
516
517 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
518 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
519 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
34dc7c2f 520
6078881a
TH
521 /*
522 * Initialize rate limit structs for events. We rate limit ZIO delay
523 * and checksum events so that we don't overwhelm ZED with thousands
524 * of events when a disk is acting up.
525 */
ad796b8a
TH
526 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
527 1);
528 zfs_ratelimit_init(&vd->vdev_checksum_rl,
529 &zfs_checksum_events_per_second, 1);
6078881a 530
98f72a53
BB
531 list_link_init(&vd->vdev_config_dirty_node);
532 list_link_init(&vd->vdev_state_dirty_node);
c10d37dd 533 list_link_init(&vd->vdev_initialize_node);
448d7aaa 534 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f 535 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
b128c09f 536 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
d4a72f23 537 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
619f0976
GW
538 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
539 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
540 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
541 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
6078881a 542
1c27024e 543 for (int t = 0; t < DTL_TYPES; t++) {
a1d477c2 544 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
fb5f0bc8 545 }
4747a7d3 546 txg_list_create(&vd->vdev_ms_list, spa,
34dc7c2f 547 offsetof(struct metaslab, ms_txg_node));
4747a7d3 548 txg_list_create(&vd->vdev_dtl_list, spa,
34dc7c2f
BB
549 offsetof(struct vdev, vdev_dtl_node));
550 vd->vdev_stat.vs_timestamp = gethrtime();
551 vdev_queue_init(vd);
552 vdev_cache_init(vd);
553
554 return (vd);
555}
556
557/*
558 * Allocate a new vdev. The 'alloctype' is used to control whether we are
559 * creating a new vdev or loading an existing one - the behavior is slightly
560 * different for each case.
561 */
562int
563vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
564 int alloctype)
565{
566 vdev_ops_t *ops;
567 char *type;
568 uint64_t guid = 0, islog, nparity;
569 vdev_t *vd;
a1d477c2 570 vdev_indirect_config_t *vic;
4a283c7f
TH
571 char *tmp = NULL;
572 int rc;
cc99f275
DB
573 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
574 boolean_t top_level = (parent && !parent->vdev_parent);
34dc7c2f 575
b128c09f 576 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
577
578 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
2e528b49 579 return (SET_ERROR(EINVAL));
34dc7c2f
BB
580
581 if ((ops = vdev_getops(type)) == NULL)
2e528b49 582 return (SET_ERROR(EINVAL));
34dc7c2f
BB
583
584 /*
585 * If this is a load, get the vdev guid from the nvlist.
586 * Otherwise, vdev_alloc_common() will generate one for us.
587 */
588 if (alloctype == VDEV_ALLOC_LOAD) {
589 uint64_t label_id;
590
591 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
592 label_id != id)
2e528b49 593 return (SET_ERROR(EINVAL));
34dc7c2f
BB
594
595 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 596 return (SET_ERROR(EINVAL));
34dc7c2f
BB
597 } else if (alloctype == VDEV_ALLOC_SPARE) {
598 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 599 return (SET_ERROR(EINVAL));
34dc7c2f
BB
600 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
601 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 602 return (SET_ERROR(EINVAL));
9babb374
BB
603 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
604 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
2e528b49 605 return (SET_ERROR(EINVAL));
34dc7c2f
BB
606 }
607
608 /*
609 * The first allocated vdev must be of type 'root'.
610 */
611 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
2e528b49 612 return (SET_ERROR(EINVAL));
34dc7c2f
BB
613
614 /*
615 * Determine whether we're a log vdev.
616 */
617 islog = 0;
618 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
619 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
2e528b49 620 return (SET_ERROR(ENOTSUP));
34dc7c2f 621
428870ff 622 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
2e528b49 623 return (SET_ERROR(ENOTSUP));
428870ff 624
34dc7c2f
BB
625 /*
626 * Set the nparity property for RAID-Z vdevs.
627 */
628 nparity = -1ULL;
629 if (ops == &vdev_raidz_ops) {
630 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
631 &nparity) == 0) {
428870ff 632 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
2e528b49 633 return (SET_ERROR(EINVAL));
34dc7c2f 634 /*
45d1cae3
BB
635 * Previous versions could only support 1 or 2 parity
636 * device.
34dc7c2f 637 */
45d1cae3
BB
638 if (nparity > 1 &&
639 spa_version(spa) < SPA_VERSION_RAIDZ2)
2e528b49 640 return (SET_ERROR(ENOTSUP));
45d1cae3
BB
641 if (nparity > 2 &&
642 spa_version(spa) < SPA_VERSION_RAIDZ3)
2e528b49 643 return (SET_ERROR(ENOTSUP));
34dc7c2f
BB
644 } else {
645 /*
646 * We require the parity to be specified for SPAs that
647 * support multiple parity levels.
648 */
45d1cae3 649 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
2e528b49 650 return (SET_ERROR(EINVAL));
34dc7c2f
BB
651 /*
652 * Otherwise, we default to 1 parity device for RAID-Z.
653 */
654 nparity = 1;
655 }
656 } else {
657 nparity = 0;
658 }
659 ASSERT(nparity != -1ULL);
660
cc99f275
DB
661 /*
662 * If creating a top-level vdev, check for allocation classes input
663 */
664 if (top_level && alloctype == VDEV_ALLOC_ADD) {
665 char *bias;
666
667 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
668 &bias) == 0) {
669 alloc_bias = vdev_derive_alloc_bias(bias);
670
671 /* spa_vdev_add() expects feature to be enabled */
672 if (spa->spa_load_state != SPA_LOAD_CREATE &&
673 !spa_feature_is_enabled(spa,
674 SPA_FEATURE_ALLOCATION_CLASSES)) {
675 return (SET_ERROR(ENOTSUP));
676 }
677 }
678 }
679
34dc7c2f 680 vd = vdev_alloc_common(spa, id, guid, ops);
a1d477c2 681 vic = &vd->vdev_indirect_config;
34dc7c2f
BB
682
683 vd->vdev_islog = islog;
684 vd->vdev_nparity = nparity;
cc99f275
DB
685 if (top_level && alloc_bias != VDEV_BIAS_NONE)
686 vd->vdev_alloc_bias = alloc_bias;
34dc7c2f
BB
687
688 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
689 vd->vdev_path = spa_strdup(vd->vdev_path);
4a283c7f
TH
690
691 /*
692 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
693 * fault on a vdev and want it to persist across imports (like with
694 * zpool offline -f).
695 */
696 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
697 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
698 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
699 vd->vdev_faulted = 1;
700 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
701 }
702
34dc7c2f
BB
703 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
704 vd->vdev_devid = spa_strdup(vd->vdev_devid);
705 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
706 &vd->vdev_physpath) == 0)
707 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
1bbd8770
TH
708
709 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
710 &vd->vdev_enc_sysfs_path) == 0)
711 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
712
9babb374
BB
713 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
714 vd->vdev_fru = spa_strdup(vd->vdev_fru);
34dc7c2f
BB
715
716 /*
717 * Set the whole_disk property. If it's not specified, leave the value
718 * as -1.
719 */
720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
721 &vd->vdev_wholedisk) != 0)
722 vd->vdev_wholedisk = -1ULL;
723
a1d477c2
MA
724 ASSERT0(vic->vic_mapping_object);
725 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
726 &vic->vic_mapping_object);
727 ASSERT0(vic->vic_births_object);
728 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
729 &vic->vic_births_object);
730 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
731 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
732 &vic->vic_prev_indirect_vdev);
733
34dc7c2f
BB
734 /*
735 * Look for the 'not present' flag. This will only be set if the device
736 * was not present at the time of import.
737 */
9babb374
BB
738 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
739 &vd->vdev_not_present);
34dc7c2f
BB
740
741 /*
742 * Get the alignment requirement.
743 */
744 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
745
428870ff
BB
746 /*
747 * Retrieve the vdev creation time.
748 */
749 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
750 &vd->vdev_crtxg);
751
34dc7c2f
BB
752 /*
753 * If we're a top-level vdev, try to load the allocation parameters.
754 */
cc99f275 755 if (top_level &&
428870ff 756 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
34dc7c2f
BB
757 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
758 &vd->vdev_ms_array);
759 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
760 &vd->vdev_ms_shift);
761 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
762 &vd->vdev_asize);
428870ff
BB
763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
764 &vd->vdev_removing);
e0ab3ab5
JS
765 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
766 &vd->vdev_top_zap);
767 } else {
768 ASSERT0(vd->vdev_top_zap);
428870ff
BB
769 }
770
cc99f275 771 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
428870ff
BB
772 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
773 alloctype == VDEV_ALLOC_ADD ||
774 alloctype == VDEV_ALLOC_SPLIT ||
775 alloctype == VDEV_ALLOC_ROOTPOOL);
cc99f275 776 /* Note: metaslab_group_create() is now deferred */
34dc7c2f
BB
777 }
778
e0ab3ab5
JS
779 if (vd->vdev_ops->vdev_op_leaf &&
780 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
781 (void) nvlist_lookup_uint64(nv,
782 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
783 } else {
784 ASSERT0(vd->vdev_leaf_zap);
785 }
786
34dc7c2f
BB
787 /*
788 * If we're a leaf vdev, try to load the DTL object and other state.
789 */
e0ab3ab5 790
b128c09f 791 if (vd->vdev_ops->vdev_op_leaf &&
9babb374
BB
792 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
793 alloctype == VDEV_ALLOC_ROOTPOOL)) {
b128c09f
BB
794 if (alloctype == VDEV_ALLOC_LOAD) {
795 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
93cf2076 796 &vd->vdev_dtl_object);
b128c09f
BB
797 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
798 &vd->vdev_unspare);
799 }
9babb374
BB
800
801 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
802 uint64_t spare = 0;
803
804 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
805 &spare) == 0 && spare)
806 spa_spare_add(vd);
807 }
808
34dc7c2f
BB
809 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
810 &vd->vdev_offline);
b128c09f 811
5d1f7fb6
GW
812 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
813 &vd->vdev_resilver_txg);
572e2857 814
80a91e74
TC
815 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
816 vdev_set_deferred_resilver(spa, vd);
817
34dc7c2f 818 /*
4a283c7f
TH
819 * In general, when importing a pool we want to ignore the
820 * persistent fault state, as the diagnosis made on another
821 * system may not be valid in the current context. The only
822 * exception is if we forced a vdev to a persistently faulted
823 * state with 'zpool offline -f'. The persistent fault will
824 * remain across imports until cleared.
825 *
826 * Local vdevs will remain in the faulted state.
34dc7c2f 827 */
4a283c7f
TH
828 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
829 spa_load_state(spa) == SPA_LOAD_IMPORT) {
34dc7c2f
BB
830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
831 &vd->vdev_faulted);
832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
833 &vd->vdev_degraded);
834 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
835 &vd->vdev_removed);
428870ff
BB
836
837 if (vd->vdev_faulted || vd->vdev_degraded) {
838 char *aux;
839
840 vd->vdev_label_aux =
841 VDEV_AUX_ERR_EXCEEDED;
842 if (nvlist_lookup_string(nv,
843 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
844 strcmp(aux, "external") == 0)
845 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
a0ad7ca5
TC
846 else
847 vd->vdev_faulted = 0ULL;
428870ff 848 }
34dc7c2f
BB
849 }
850 }
851
852 /*
853 * Add ourselves to the parent's list of children.
854 */
855 vdev_add_child(parent, vd);
856
857 *vdp = vd;
858
859 return (0);
860}
861
862void
863vdev_free(vdev_t *vd)
864{
34dc7c2f 865 spa_t *spa = vd->vdev_spa;
619f0976 866 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
34dc7c2f 867
d4a72f23
TC
868 /*
869 * Scan queues are normally destroyed at the end of a scan. If the
870 * queue exists here, that implies the vdev is being removed while
871 * the scan is still running.
872 */
873 if (vd->vdev_scan_io_queue != NULL) {
874 mutex_enter(&vd->vdev_scan_io_queue_lock);
875 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
876 vd->vdev_scan_io_queue = NULL;
877 mutex_exit(&vd->vdev_scan_io_queue_lock);
878 }
879
34dc7c2f
BB
880 /*
881 * vdev_free() implies closing the vdev first. This is simpler than
882 * trying to ensure complicated semantics for all callers.
883 */
884 vdev_close(vd);
885
b128c09f 886 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
428870ff 887 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
34dc7c2f
BB
888
889 /*
890 * Free all children.
891 */
1c27024e 892 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
893 vdev_free(vd->vdev_child[c]);
894
895 ASSERT(vd->vdev_child == NULL);
896 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
619f0976 897 ASSERT(vd->vdev_initialize_thread == NULL);
34dc7c2f
BB
898
899 /*
900 * Discard allocation state.
901 */
428870ff 902 if (vd->vdev_mg != NULL) {
34dc7c2f 903 vdev_metaslab_fini(vd);
428870ff
BB
904 metaslab_group_destroy(vd->vdev_mg);
905 }
34dc7c2f 906
c99c9001
MS
907 ASSERT0(vd->vdev_stat.vs_space);
908 ASSERT0(vd->vdev_stat.vs_dspace);
909 ASSERT0(vd->vdev_stat.vs_alloc);
34dc7c2f
BB
910
911 /*
912 * Remove this vdev from its parent's child list.
913 */
914 vdev_remove_child(vd->vdev_parent, vd);
915
916 ASSERT(vd->vdev_parent == NULL);
917
918 /*
919 * Clean up vdev structure.
920 */
921 vdev_queue_fini(vd);
922 vdev_cache_fini(vd);
923
924 if (vd->vdev_path)
925 spa_strfree(vd->vdev_path);
926 if (vd->vdev_devid)
927 spa_strfree(vd->vdev_devid);
928 if (vd->vdev_physpath)
929 spa_strfree(vd->vdev_physpath);
1bbd8770
TH
930
931 if (vd->vdev_enc_sysfs_path)
932 spa_strfree(vd->vdev_enc_sysfs_path);
933
9babb374
BB
934 if (vd->vdev_fru)
935 spa_strfree(vd->vdev_fru);
34dc7c2f
BB
936
937 if (vd->vdev_isspare)
938 spa_spare_remove(vd);
939 if (vd->vdev_isl2cache)
940 spa_l2cache_remove(vd);
941
942 txg_list_destroy(&vd->vdev_ms_list);
943 txg_list_destroy(&vd->vdev_dtl_list);
fb5f0bc8 944
34dc7c2f 945 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 946 space_map_close(vd->vdev_dtl_sm);
1c27024e 947 for (int t = 0; t < DTL_TYPES; t++) {
93cf2076
GW
948 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
949 range_tree_destroy(vd->vdev_dtl[t]);
fb5f0bc8 950 }
34dc7c2f 951 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8 952
a1d477c2
MA
953 EQUIV(vd->vdev_indirect_births != NULL,
954 vd->vdev_indirect_mapping != NULL);
955 if (vd->vdev_indirect_births != NULL) {
956 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
957 vdev_indirect_births_close(vd->vdev_indirect_births);
958 }
959
960 if (vd->vdev_obsolete_sm != NULL) {
961 ASSERT(vd->vdev_removing ||
962 vd->vdev_ops == &vdev_indirect_ops);
963 space_map_close(vd->vdev_obsolete_sm);
964 vd->vdev_obsolete_sm = NULL;
965 }
966 range_tree_destroy(vd->vdev_obsolete_segments);
967 rw_destroy(&vd->vdev_indirect_rwlock);
968 mutex_destroy(&vd->vdev_obsolete_lock);
969
34dc7c2f
BB
970 mutex_destroy(&vd->vdev_dtl_lock);
971 mutex_destroy(&vd->vdev_stat_lock);
b128c09f 972 mutex_destroy(&vd->vdev_probe_lock);
d4a72f23 973 mutex_destroy(&vd->vdev_scan_io_queue_lock);
619f0976
GW
974 mutex_destroy(&vd->vdev_initialize_lock);
975 mutex_destroy(&vd->vdev_initialize_io_lock);
976 cv_destroy(&vd->vdev_initialize_io_cv);
977 cv_destroy(&vd->vdev_initialize_cv);
34dc7c2f 978
c17486b2
GN
979 zfs_ratelimit_fini(&vd->vdev_delay_rl);
980 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
981
34dc7c2f
BB
982 if (vd == spa->spa_root_vdev)
983 spa->spa_root_vdev = NULL;
984
985 kmem_free(vd, sizeof (vdev_t));
986}
987
988/*
989 * Transfer top-level vdev state from svd to tvd.
990 */
991static void
992vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
993{
994 spa_t *spa = svd->vdev_spa;
995 metaslab_t *msp;
996 vdev_t *vd;
997 int t;
998
999 ASSERT(tvd == tvd->vdev_top);
1000
77943bc1 1001 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
34dc7c2f
BB
1002 tvd->vdev_ms_array = svd->vdev_ms_array;
1003 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1004 tvd->vdev_ms_count = svd->vdev_ms_count;
e0ab3ab5 1005 tvd->vdev_top_zap = svd->vdev_top_zap;
34dc7c2f
BB
1006
1007 svd->vdev_ms_array = 0;
1008 svd->vdev_ms_shift = 0;
1009 svd->vdev_ms_count = 0;
e0ab3ab5 1010 svd->vdev_top_zap = 0;
34dc7c2f 1011
5ffb9d1d
GW
1012 if (tvd->vdev_mg)
1013 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
34dc7c2f
BB
1014 tvd->vdev_mg = svd->vdev_mg;
1015 tvd->vdev_ms = svd->vdev_ms;
1016
1017 svd->vdev_mg = NULL;
1018 svd->vdev_ms = NULL;
1019
1020 if (tvd->vdev_mg != NULL)
1021 tvd->vdev_mg->mg_vd = tvd;
1022
d2734cce
SD
1023 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1024 svd->vdev_checkpoint_sm = NULL;
1025
cc99f275
DB
1026 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1027 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1028
34dc7c2f
BB
1029 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1030 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1031 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1032
1033 svd->vdev_stat.vs_alloc = 0;
1034 svd->vdev_stat.vs_space = 0;
1035 svd->vdev_stat.vs_dspace = 0;
1036
9e052db4
MA
1037 /*
1038 * State which may be set on a top-level vdev that's in the
1039 * process of being removed.
1040 */
1041 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1042 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1043 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1044 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1045 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1046 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1047 ASSERT0(tvd->vdev_removing);
1048 tvd->vdev_removing = svd->vdev_removing;
1049 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1050 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1051 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1052 range_tree_swap(&svd->vdev_obsolete_segments,
1053 &tvd->vdev_obsolete_segments);
1054 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1055 svd->vdev_indirect_config.vic_mapping_object = 0;
1056 svd->vdev_indirect_config.vic_births_object = 0;
1057 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1058 svd->vdev_indirect_mapping = NULL;
1059 svd->vdev_indirect_births = NULL;
1060 svd->vdev_obsolete_sm = NULL;
1061 svd->vdev_removing = 0;
1062
34dc7c2f
BB
1063 for (t = 0; t < TXG_SIZE; t++) {
1064 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1065 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1066 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1067 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1068 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1069 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1070 }
1071
b128c09f 1072 if (list_link_active(&svd->vdev_config_dirty_node)) {
34dc7c2f
BB
1073 vdev_config_clean(svd);
1074 vdev_config_dirty(tvd);
1075 }
1076
b128c09f
BB
1077 if (list_link_active(&svd->vdev_state_dirty_node)) {
1078 vdev_state_clean(svd);
1079 vdev_state_dirty(tvd);
1080 }
1081
34dc7c2f
BB
1082 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1083 svd->vdev_deflate_ratio = 0;
1084
1085 tvd->vdev_islog = svd->vdev_islog;
1086 svd->vdev_islog = 0;
d4a72f23
TC
1087
1088 dsl_scan_io_queue_vdev_xfer(svd, tvd);
34dc7c2f
BB
1089}
1090
1091static void
1092vdev_top_update(vdev_t *tvd, vdev_t *vd)
1093{
34dc7c2f
BB
1094 if (vd == NULL)
1095 return;
1096
1097 vd->vdev_top = tvd;
1098
1c27024e 1099 for (int c = 0; c < vd->vdev_children; c++)
34dc7c2f
BB
1100 vdev_top_update(tvd, vd->vdev_child[c]);
1101}
1102
1103/*
1104 * Add a mirror/replacing vdev above an existing vdev.
1105 */
1106vdev_t *
1107vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1108{
1109 spa_t *spa = cvd->vdev_spa;
1110 vdev_t *pvd = cvd->vdev_parent;
1111 vdev_t *mvd;
1112
b128c09f 1113 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
1114
1115 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1116
1117 mvd->vdev_asize = cvd->vdev_asize;
9babb374 1118 mvd->vdev_min_asize = cvd->vdev_min_asize;
1bd201e7 1119 mvd->vdev_max_asize = cvd->vdev_max_asize;
a1d477c2 1120 mvd->vdev_psize = cvd->vdev_psize;
34dc7c2f
BB
1121 mvd->vdev_ashift = cvd->vdev_ashift;
1122 mvd->vdev_state = cvd->vdev_state;
428870ff 1123 mvd->vdev_crtxg = cvd->vdev_crtxg;
34dc7c2f
BB
1124
1125 vdev_remove_child(pvd, cvd);
1126 vdev_add_child(pvd, mvd);
1127 cvd->vdev_id = mvd->vdev_children;
1128 vdev_add_child(mvd, cvd);
1129 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1130
1131 if (mvd == mvd->vdev_top)
1132 vdev_top_transfer(cvd, mvd);
1133
1134 return (mvd);
1135}
1136
1137/*
1138 * Remove a 1-way mirror/replacing vdev from the tree.
1139 */
1140void
1141vdev_remove_parent(vdev_t *cvd)
1142{
1143 vdev_t *mvd = cvd->vdev_parent;
1144 vdev_t *pvd = mvd->vdev_parent;
1145
b128c09f 1146 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
34dc7c2f
BB
1147
1148 ASSERT(mvd->vdev_children == 1);
1149 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1150 mvd->vdev_ops == &vdev_replacing_ops ||
1151 mvd->vdev_ops == &vdev_spare_ops);
1152 cvd->vdev_ashift = mvd->vdev_ashift;
1153
1154 vdev_remove_child(mvd, cvd);
1155 vdev_remove_child(pvd, mvd);
fb5f0bc8 1156
34dc7c2f 1157 /*
b128c09f
BB
1158 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1159 * Otherwise, we could have detached an offline device, and when we
1160 * go to import the pool we'll think we have two top-level vdevs,
1161 * instead of a different version of the same top-level vdev.
34dc7c2f 1162 */
fb5f0bc8
BB
1163 if (mvd->vdev_top == mvd) {
1164 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
428870ff 1165 cvd->vdev_orig_guid = cvd->vdev_guid;
fb5f0bc8
BB
1166 cvd->vdev_guid += guid_delta;
1167 cvd->vdev_guid_sum += guid_delta;
61e99a73
AB
1168
1169 /*
1170 * If pool not set for autoexpand, we need to also preserve
1171 * mvd's asize to prevent automatic expansion of cvd.
1172 * Otherwise if we are adjusting the mirror by attaching and
1173 * detaching children of non-uniform sizes, the mirror could
1174 * autoexpand, unexpectedly requiring larger devices to
1175 * re-establish the mirror.
1176 */
1177 if (!cvd->vdev_spa->spa_autoexpand)
1178 cvd->vdev_asize = mvd->vdev_asize;
fb5f0bc8 1179 }
b128c09f
BB
1180 cvd->vdev_id = mvd->vdev_id;
1181 vdev_add_child(pvd, cvd);
34dc7c2f
BB
1182 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1183
1184 if (cvd == cvd->vdev_top)
1185 vdev_top_transfer(mvd, cvd);
1186
1187 ASSERT(mvd->vdev_children == 0);
1188 vdev_free(mvd);
1189}
1190
cc99f275
DB
1191static void
1192vdev_metaslab_group_create(vdev_t *vd)
1193{
1194 spa_t *spa = vd->vdev_spa;
1195
1196 /*
1197 * metaslab_group_create was delayed until allocation bias was available
1198 */
1199 if (vd->vdev_mg == NULL) {
1200 metaslab_class_t *mc;
1201
1202 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1203 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1204
1205 ASSERT3U(vd->vdev_islog, ==,
1206 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1207
1208 switch (vd->vdev_alloc_bias) {
1209 case VDEV_BIAS_LOG:
1210 mc = spa_log_class(spa);
1211 break;
1212 case VDEV_BIAS_SPECIAL:
1213 mc = spa_special_class(spa);
1214 break;
1215 case VDEV_BIAS_DEDUP:
1216 mc = spa_dedup_class(spa);
1217 break;
1218 default:
1219 mc = spa_normal_class(spa);
1220 }
1221
1222 vd->vdev_mg = metaslab_group_create(mc, vd,
1223 spa->spa_alloc_count);
1224
1225 /*
1226 * The spa ashift values currently only reflect the
1227 * general vdev classes. Class destination is late
1228 * binding so ashift checking had to wait until now
1229 */
1230 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1231 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1232 if (vd->vdev_ashift > spa->spa_max_ashift)
1233 spa->spa_max_ashift = vd->vdev_ashift;
1234 if (vd->vdev_ashift < spa->spa_min_ashift)
1235 spa->spa_min_ashift = vd->vdev_ashift;
1236 }
1237 }
1238}
1239
34dc7c2f
BB
1240int
1241vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1242{
1243 spa_t *spa = vd->vdev_spa;
1244 objset_t *mos = spa->spa_meta_objset;
34dc7c2f
BB
1245 uint64_t m;
1246 uint64_t oldc = vd->vdev_ms_count;
1247 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1248 metaslab_t **mspp;
1249 int error;
cc99f275 1250 boolean_t expanding = (oldc != 0);
34dc7c2f 1251
428870ff
BB
1252 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1253
1254 /*
1255 * This vdev is not being allocated from yet or is a hole.
1256 */
1257 if (vd->vdev_ms_shift == 0)
34dc7c2f
BB
1258 return (0);
1259
428870ff
BB
1260 ASSERT(!vd->vdev_ishole);
1261
34dc7c2f
BB
1262 ASSERT(oldc <= newc);
1263
bffb68a2 1264 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
34dc7c2f 1265
cc99f275 1266 if (expanding) {
34dc7c2f 1267 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
bffb68a2 1268 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
34dc7c2f
BB
1269 }
1270
1271 vd->vdev_ms = mspp;
1272 vd->vdev_ms_count = newc;
34dc7c2f 1273 for (m = oldc; m < newc; m++) {
93cf2076
GW
1274 uint64_t object = 0;
1275
a1d477c2
MA
1276 /*
1277 * vdev_ms_array may be 0 if we are creating the "fake"
1278 * metaslabs for an indirect vdev for zdb's leak detection.
1279 * See zdb_leak_init().
1280 */
1281 if (txg == 0 && vd->vdev_ms_array != 0) {
34dc7c2f 1282 error = dmu_read(mos, vd->vdev_ms_array,
9babb374
BB
1283 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1284 DMU_READ_PREFETCH);
4a0ee12a
PZ
1285 if (error != 0) {
1286 vdev_dbgmsg(vd, "unable to read the metaslab "
1287 "array [error=%d]", error);
34dc7c2f 1288 return (error);
4a0ee12a 1289 }
34dc7c2f 1290 }
fb42a493 1291
cc99f275
DB
1292#ifndef _KERNEL
1293 /*
1294 * To accomodate zdb_leak_init() fake indirect
1295 * metaslabs, we allocate a metaslab group for
1296 * indirect vdevs which normally don't have one.
1297 */
1298 if (vd->vdev_mg == NULL) {
1299 ASSERT0(vdev_is_concrete(vd));
1300 vdev_metaslab_group_create(vd);
1301 }
1302#endif
fb42a493
PS
1303 error = metaslab_init(vd->vdev_mg, m, object, txg,
1304 &(vd->vdev_ms[m]));
4a0ee12a
PZ
1305 if (error != 0) {
1306 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1307 error);
fb42a493 1308 return (error);
4a0ee12a 1309 }
34dc7c2f
BB
1310 }
1311
428870ff
BB
1312 if (txg == 0)
1313 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1314
1315 /*
1316 * If the vdev is being removed we don't activate
1317 * the metaslabs since we want to ensure that no new
1318 * allocations are performed on this device.
1319 */
cc99f275 1320 if (!expanding && !vd->vdev_removing) {
428870ff 1321 metaslab_group_activate(vd->vdev_mg);
cc99f275 1322 }
428870ff
BB
1323
1324 if (txg == 0)
1325 spa_config_exit(spa, SCL_ALLOC, FTAG);
1326
34dc7c2f
BB
1327 return (0);
1328}
1329
1330void
1331vdev_metaslab_fini(vdev_t *vd)
1332{
d2734cce
SD
1333 if (vd->vdev_checkpoint_sm != NULL) {
1334 ASSERT(spa_feature_is_active(vd->vdev_spa,
1335 SPA_FEATURE_POOL_CHECKPOINT));
1336 space_map_close(vd->vdev_checkpoint_sm);
1337 /*
1338 * Even though we close the space map, we need to set its
1339 * pointer to NULL. The reason is that vdev_metaslab_fini()
1340 * may be called multiple times for certain operations
1341 * (i.e. when destroying a pool) so we need to ensure that
1342 * this clause never executes twice. This logic is similar
1343 * to the one used for the vdev_ms clause below.
1344 */
1345 vd->vdev_checkpoint_sm = NULL;
1346 }
1347
34dc7c2f 1348 if (vd->vdev_ms != NULL) {
a1d477c2
MA
1349 uint64_t count = vd->vdev_ms_count;
1350
428870ff 1351 metaslab_group_passivate(vd->vdev_mg);
a1d477c2 1352 for (uint64_t m = 0; m < count; m++) {
93cf2076
GW
1353 metaslab_t *msp = vd->vdev_ms[m];
1354
1355 if (msp != NULL)
1356 metaslab_fini(msp);
1357 }
bffb68a2 1358 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
34dc7c2f 1359 vd->vdev_ms = NULL;
920dd524 1360
a1d477c2
MA
1361 vd->vdev_ms_count = 0;
1362 }
1363 ASSERT0(vd->vdev_ms_count);
920dd524 1364 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
34dc7c2f
BB
1365}
1366
b128c09f
BB
1367typedef struct vdev_probe_stats {
1368 boolean_t vps_readable;
1369 boolean_t vps_writeable;
1370 int vps_flags;
b128c09f
BB
1371} vdev_probe_stats_t;
1372
1373static void
1374vdev_probe_done(zio_t *zio)
34dc7c2f 1375{
fb5f0bc8 1376 spa_t *spa = zio->io_spa;
d164b209 1377 vdev_t *vd = zio->io_vd;
b128c09f 1378 vdev_probe_stats_t *vps = zio->io_private;
d164b209
BB
1379
1380 ASSERT(vd->vdev_probe_zio != NULL);
b128c09f
BB
1381
1382 if (zio->io_type == ZIO_TYPE_READ) {
b128c09f
BB
1383 if (zio->io_error == 0)
1384 vps->vps_readable = 1;
fb5f0bc8 1385 if (zio->io_error == 0 && spa_writeable(spa)) {
d164b209 1386 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
a6255b7f 1387 zio->io_offset, zio->io_size, zio->io_abd,
b128c09f
BB
1388 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1389 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1390 } else {
a6255b7f 1391 abd_free(zio->io_abd);
b128c09f
BB
1392 }
1393 } else if (zio->io_type == ZIO_TYPE_WRITE) {
b128c09f
BB
1394 if (zio->io_error == 0)
1395 vps->vps_writeable = 1;
a6255b7f 1396 abd_free(zio->io_abd);
b128c09f 1397 } else if (zio->io_type == ZIO_TYPE_NULL) {
d164b209 1398 zio_t *pio;
3dfb57a3 1399 zio_link_t *zl;
b128c09f
BB
1400
1401 vd->vdev_cant_read |= !vps->vps_readable;
1402 vd->vdev_cant_write |= !vps->vps_writeable;
1403
1404 if (vdev_readable(vd) &&
fb5f0bc8 1405 (vdev_writeable(vd) || !spa_writeable(spa))) {
b128c09f
BB
1406 zio->io_error = 0;
1407 } else {
1408 ASSERT(zio->io_error != 0);
4a0ee12a 1409 vdev_dbgmsg(vd, "failed probe");
b128c09f 1410 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
b5256303 1411 spa, vd, NULL, NULL, 0, 0);
2e528b49 1412 zio->io_error = SET_ERROR(ENXIO);
b128c09f 1413 }
d164b209
BB
1414
1415 mutex_enter(&vd->vdev_probe_lock);
1416 ASSERT(vd->vdev_probe_zio == zio);
1417 vd->vdev_probe_zio = NULL;
1418 mutex_exit(&vd->vdev_probe_lock);
1419
3dfb57a3
DB
1420 zl = NULL;
1421 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
d164b209 1422 if (!vdev_accessible(vd, pio))
2e528b49 1423 pio->io_error = SET_ERROR(ENXIO);
d164b209 1424
b128c09f
BB
1425 kmem_free(vps, sizeof (*vps));
1426 }
1427}
34dc7c2f 1428
b128c09f 1429/*
d3cc8b15
WA
1430 * Determine whether this device is accessible.
1431 *
1432 * Read and write to several known locations: the pad regions of each
1433 * vdev label but the first, which we leave alone in case it contains
1434 * a VTOC.
b128c09f
BB
1435 */
1436zio_t *
d164b209 1437vdev_probe(vdev_t *vd, zio_t *zio)
b128c09f
BB
1438{
1439 spa_t *spa = vd->vdev_spa;
d164b209
BB
1440 vdev_probe_stats_t *vps = NULL;
1441 zio_t *pio;
1442
1443 ASSERT(vd->vdev_ops->vdev_op_leaf);
34dc7c2f 1444
d164b209
BB
1445 /*
1446 * Don't probe the probe.
1447 */
1448 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1449 return (NULL);
b128c09f 1450
d164b209
BB
1451 /*
1452 * To prevent 'probe storms' when a device fails, we create
1453 * just one probe i/o at a time. All zios that want to probe
1454 * this vdev will become parents of the probe io.
1455 */
1456 mutex_enter(&vd->vdev_probe_lock);
b128c09f 1457
d164b209 1458 if ((pio = vd->vdev_probe_zio) == NULL) {
79c76d5b 1459 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
d164b209
BB
1460
1461 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1462 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
9babb374 1463 ZIO_FLAG_TRYHARD;
d164b209
BB
1464
1465 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1466 /*
1467 * vdev_cant_read and vdev_cant_write can only
1468 * transition from TRUE to FALSE when we have the
1469 * SCL_ZIO lock as writer; otherwise they can only
1470 * transition from FALSE to TRUE. This ensures that
1471 * any zio looking at these values can assume that
1472 * failures persist for the life of the I/O. That's
1473 * important because when a device has intermittent
1474 * connectivity problems, we want to ensure that
1475 * they're ascribed to the device (ENXIO) and not
1476 * the zio (EIO).
1477 *
1478 * Since we hold SCL_ZIO as writer here, clear both
1479 * values so the probe can reevaluate from first
1480 * principles.
1481 */
1482 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1483 vd->vdev_cant_read = B_FALSE;
1484 vd->vdev_cant_write = B_FALSE;
1485 }
1486
1487 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1488 vdev_probe_done, vps,
1489 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1490
428870ff
BB
1491 /*
1492 * We can't change the vdev state in this context, so we
1493 * kick off an async task to do it on our behalf.
1494 */
d164b209
BB
1495 if (zio != NULL) {
1496 vd->vdev_probe_wanted = B_TRUE;
1497 spa_async_request(spa, SPA_ASYNC_PROBE);
1498 }
b128c09f
BB
1499 }
1500
d164b209
BB
1501 if (zio != NULL)
1502 zio_add_child(zio, pio);
b128c09f 1503
d164b209 1504 mutex_exit(&vd->vdev_probe_lock);
b128c09f 1505
d164b209
BB
1506 if (vps == NULL) {
1507 ASSERT(zio != NULL);
1508 return (NULL);
1509 }
b128c09f 1510
1c27024e 1511 for (int l = 1; l < VDEV_LABELS; l++) {
d164b209 1512 zio_nowait(zio_read_phys(pio, vd,
b128c09f 1513 vdev_label_offset(vd->vdev_psize, l,
a6255b7f
DQ
1514 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1515 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
b128c09f
BB
1516 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1517 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1518 }
1519
d164b209
BB
1520 if (zio == NULL)
1521 return (pio);
1522
1523 zio_nowait(pio);
1524 return (NULL);
34dc7c2f
BB
1525}
1526
45d1cae3
BB
1527static void
1528vdev_open_child(void *arg)
1529{
1530 vdev_t *vd = arg;
1531
1532 vd->vdev_open_thread = curthread;
1533 vd->vdev_open_error = vdev_open(vd);
1534 vd->vdev_open_thread = NULL;
1535}
1536
6c285672 1537static boolean_t
428870ff
BB
1538vdev_uses_zvols(vdev_t *vd)
1539{
6c285672
JL
1540#ifdef _KERNEL
1541 if (zvol_is_zvol(vd->vdev_path))
428870ff 1542 return (B_TRUE);
6c285672
JL
1543#endif
1544
1c27024e 1545 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
1546 if (vdev_uses_zvols(vd->vdev_child[c]))
1547 return (B_TRUE);
6c285672 1548
428870ff
BB
1549 return (B_FALSE);
1550}
1551
45d1cae3
BB
1552void
1553vdev_open_children(vdev_t *vd)
1554{
1555 taskq_t *tq;
1556 int children = vd->vdev_children;
1557
428870ff
BB
1558 /*
1559 * in order to handle pools on top of zvols, do the opens
1560 * in a single thread so that the same thread holds the
1561 * spa_namespace_lock
1562 */
1563 if (vdev_uses_zvols(vd)) {
13d9a004 1564retry_sync:
1c27024e 1565 for (int c = 0; c < children; c++)
428870ff
BB
1566 vd->vdev_child[c]->vdev_open_error =
1567 vdev_open(vd->vdev_child[c]);
4770aa06
HJ
1568 } else {
1569 tq = taskq_create("vdev_open", children, minclsyspri,
1570 children, children, TASKQ_PREPOPULATE);
13d9a004
BB
1571 if (tq == NULL)
1572 goto retry_sync;
45d1cae3 1573
1c27024e 1574 for (int c = 0; c < children; c++)
4770aa06 1575 VERIFY(taskq_dispatch(tq, vdev_open_child,
48d3eb40 1576 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
45d1cae3 1577
4770aa06
HJ
1578 taskq_destroy(tq);
1579 }
1580
1581 vd->vdev_nonrot = B_TRUE;
fb40095f 1582
1c27024e 1583 for (int c = 0; c < children; c++)
fb40095f 1584 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
45d1cae3
BB
1585}
1586
a1d477c2
MA
1587/*
1588 * Compute the raidz-deflation ratio. Note, we hard-code
1589 * in 128k (1 << 17) because it is the "typical" blocksize.
1590 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1591 * otherwise it would inconsistently account for existing bp's.
1592 */
1593static void
1594vdev_set_deflate_ratio(vdev_t *vd)
1595{
1596 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1597 vd->vdev_deflate_ratio = (1 << 17) /
1598 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1599 }
1600}
1601
34dc7c2f
BB
1602/*
1603 * Prepare a virtual device for access.
1604 */
1605int
1606vdev_open(vdev_t *vd)
1607{
fb5f0bc8 1608 spa_t *spa = vd->vdev_spa;
34dc7c2f 1609 int error;
34dc7c2f 1610 uint64_t osize = 0;
1bd201e7
CS
1611 uint64_t max_osize = 0;
1612 uint64_t asize, max_asize, psize;
34dc7c2f
BB
1613 uint64_t ashift = 0;
1614
45d1cae3
BB
1615 ASSERT(vd->vdev_open_thread == curthread ||
1616 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
1617 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1618 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1619 vd->vdev_state == VDEV_STATE_OFFLINE);
1620
34dc7c2f 1621 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
9babb374
BB
1622 vd->vdev_cant_read = B_FALSE;
1623 vd->vdev_cant_write = B_FALSE;
1624 vd->vdev_min_asize = vdev_get_min_asize(vd);
34dc7c2f 1625
428870ff
BB
1626 /*
1627 * If this vdev is not removed, check its fault status. If it's
1628 * faulted, bail out of the open.
1629 */
34dc7c2f
BB
1630 if (!vd->vdev_removed && vd->vdev_faulted) {
1631 ASSERT(vd->vdev_children == 0);
428870ff
BB
1632 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1633 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
34dc7c2f 1634 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
428870ff 1635 vd->vdev_label_aux);
2e528b49 1636 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1637 } else if (vd->vdev_offline) {
1638 ASSERT(vd->vdev_children == 0);
1639 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2e528b49 1640 return (SET_ERROR(ENXIO));
34dc7c2f
BB
1641 }
1642
1bd201e7 1643 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
34dc7c2f 1644
428870ff
BB
1645 /*
1646 * Reset the vdev_reopening flag so that we actually close
1647 * the vdev on error.
1648 */
1649 vd->vdev_reopening = B_FALSE;
34dc7c2f 1650 if (zio_injection_enabled && error == 0)
9babb374 1651 error = zio_handle_device_injection(vd, NULL, ENXIO);
34dc7c2f
BB
1652
1653 if (error) {
1654 if (vd->vdev_removed &&
1655 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1656 vd->vdev_removed = B_FALSE;
1657
6cb8e530
PZ
1658 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1659 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1660 vd->vdev_stat.vs_aux);
1661 } else {
1662 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1663 vd->vdev_stat.vs_aux);
1664 }
34dc7c2f
BB
1665 return (error);
1666 }
1667
1668 vd->vdev_removed = B_FALSE;
1669
428870ff
BB
1670 /*
1671 * Recheck the faulted flag now that we have confirmed that
1672 * the vdev is accessible. If we're faulted, bail.
1673 */
1674 if (vd->vdev_faulted) {
1675 ASSERT(vd->vdev_children == 0);
1676 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1677 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1678 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1679 vd->vdev_label_aux);
2e528b49 1680 return (SET_ERROR(ENXIO));
428870ff
BB
1681 }
1682
34dc7c2f
BB
1683 if (vd->vdev_degraded) {
1684 ASSERT(vd->vdev_children == 0);
1685 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1686 VDEV_AUX_ERR_EXCEEDED);
1687 } else {
428870ff 1688 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
34dc7c2f
BB
1689 }
1690
428870ff
BB
1691 /*
1692 * For hole or missing vdevs we just return success.
1693 */
1694 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1695 return (0);
1696
1c27024e 1697 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f
BB
1698 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1699 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1700 VDEV_AUX_NONE);
1701 break;
1702 }
9babb374 1703 }
34dc7c2f
BB
1704
1705 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1bd201e7 1706 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
34dc7c2f
BB
1707
1708 if (vd->vdev_children == 0) {
1709 if (osize < SPA_MINDEVSIZE) {
1710 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1711 VDEV_AUX_TOO_SMALL);
2e528b49 1712 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1713 }
1714 psize = osize;
1715 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1bd201e7
CS
1716 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1717 VDEV_LABEL_END_SIZE);
34dc7c2f
BB
1718 } else {
1719 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1720 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1721 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1722 VDEV_AUX_TOO_SMALL);
2e528b49 1723 return (SET_ERROR(EOVERFLOW));
34dc7c2f
BB
1724 }
1725 psize = 0;
1726 asize = osize;
1bd201e7 1727 max_asize = max_osize;
34dc7c2f
BB
1728 }
1729
9d3f7b87
OF
1730 /*
1731 * If the vdev was expanded, record this so that we can re-create the
1732 * uberblock rings in labels {2,3}, during the next sync.
1733 */
1734 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1735 vd->vdev_copy_uberblocks = B_TRUE;
1736
34dc7c2f
BB
1737 vd->vdev_psize = psize;
1738
9babb374 1739 /*
2e215fec 1740 * Make sure the allocatable size hasn't shrunk too much.
9babb374
BB
1741 */
1742 if (asize < vd->vdev_min_asize) {
1743 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1744 VDEV_AUX_BAD_LABEL);
2e528b49 1745 return (SET_ERROR(EINVAL));
9babb374
BB
1746 }
1747
34dc7c2f
BB
1748 if (vd->vdev_asize == 0) {
1749 /*
1750 * This is the first-ever open, so use the computed values.
b28e57cb 1751 * For compatibility, a different ashift can be requested.
34dc7c2f
BB
1752 */
1753 vd->vdev_asize = asize;
1bd201e7 1754 vd->vdev_max_asize = max_asize;
ff61d1a4 1755 if (vd->vdev_ashift == 0) {
1756 vd->vdev_ashift = ashift; /* use detected value */
1757 }
1758 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1759 vd->vdev_ashift > ASHIFT_MAX)) {
1760 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1761 VDEV_AUX_BAD_ASHIFT);
1762 return (SET_ERROR(EDOM));
1763 }
34dc7c2f
BB
1764 } else {
1765 /*
32a9872b
GW
1766 * Detect if the alignment requirement has increased.
1767 * We don't want to make the pool unavailable, just
1768 * post an event instead.
34dc7c2f 1769 */
32a9872b
GW
1770 if (ashift > vd->vdev_top->vdev_ashift &&
1771 vd->vdev_ops->vdev_op_leaf) {
1772 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
b5256303 1773 spa, vd, NULL, NULL, 0, 0);
34dc7c2f 1774 }
32a9872b 1775
1bd201e7 1776 vd->vdev_max_asize = max_asize;
9babb374 1777 }
34dc7c2f 1778
9babb374 1779 /*
2e215fec
SH
1780 * If all children are healthy we update asize if either:
1781 * The asize has increased, due to a device expansion caused by dynamic
1782 * LUN growth or vdev replacement, and automatic expansion is enabled;
1783 * making the additional space available.
1784 *
1785 * The asize has decreased, due to a device shrink usually caused by a
1786 * vdev replace with a smaller device. This ensures that calculations
1787 * based of max_asize and asize e.g. esize are always valid. It's safe
1788 * to do this as we've already validated that asize is greater than
1789 * vdev_min_asize.
9babb374 1790 */
2e215fec
SH
1791 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1792 ((asize > vd->vdev_asize &&
1793 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1794 (asize < vd->vdev_asize)))
9babb374 1795 vd->vdev_asize = asize;
34dc7c2f 1796
9babb374 1797 vdev_set_min_asize(vd);
34dc7c2f
BB
1798
1799 /*
1800 * Ensure we can issue some IO before declaring the
1801 * vdev open for business.
1802 */
b128c09f
BB
1803 if (vd->vdev_ops->vdev_op_leaf &&
1804 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
428870ff
BB
1805 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1806 VDEV_AUX_ERR_EXCEEDED);
34dc7c2f
BB
1807 return (error);
1808 }
1809
c3520e7f
MA
1810 /*
1811 * Track the min and max ashift values for normal data devices.
cc99f275
DB
1812 *
1813 * DJB - TBD these should perhaps be tracked per allocation class
1814 * (e.g. spa_min_ashift is used to round up post compression buffers)
c3520e7f
MA
1815 */
1816 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
cc99f275
DB
1817 vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1818 vd->vdev_aux == NULL) {
c3520e7f
MA
1819 if (vd->vdev_ashift > spa->spa_max_ashift)
1820 spa->spa_max_ashift = vd->vdev_ashift;
1821 if (vd->vdev_ashift < spa->spa_min_ashift)
1822 spa->spa_min_ashift = vd->vdev_ashift;
1823 }
1824
34dc7c2f 1825 /*
b128c09f 1826 * If a leaf vdev has a DTL, and seems healthy, then kick off a
fb5f0bc8
BB
1827 * resilver. But don't do this if we are doing a reopen for a scrub,
1828 * since this would just restart the scrub we are already doing.
34dc7c2f 1829 */
fb5f0bc8 1830 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
80a91e74
TC
1831 vdev_resilver_needed(vd, NULL, NULL)) {
1832 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1833 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1834 vdev_set_deferred_resilver(spa, vd);
1835 else
1836 spa_async_request(spa, SPA_ASYNC_RESILVER);
1837 }
34dc7c2f
BB
1838
1839 return (0);
1840}
1841
1842/*
1843 * Called once the vdevs are all opened, this routine validates the label
6cb8e530 1844 * contents. This needs to be done before vdev_load() so that we don't
34dc7c2f
BB
1845 * inadvertently do repair I/Os to the wrong device.
1846 *
1847 * This function will only return failure if one of the vdevs indicates that it
1848 * has since been destroyed or exported. This is only possible if
1849 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1850 * will be updated but the function will return 0.
1851 */
1852int
6cb8e530 1853vdev_validate(vdev_t *vd)
34dc7c2f
BB
1854{
1855 spa_t *spa = vd->vdev_spa;
34dc7c2f 1856 nvlist_t *label;
6cb8e530 1857 uint64_t guid = 0, aux_guid = 0, top_guid;
34dc7c2f 1858 uint64_t state;
6cb8e530
PZ
1859 nvlist_t *nvl;
1860 uint64_t txg;
34dc7c2f 1861
6cb8e530
PZ
1862 if (vdev_validate_skip)
1863 return (0);
1864
1865 for (uint64_t c = 0; c < vd->vdev_children; c++)
1866 if (vdev_validate(vd->vdev_child[c]) != 0)
2e528b49 1867 return (SET_ERROR(EBADF));
34dc7c2f
BB
1868
1869 /*
1870 * If the device has already failed, or was marked offline, don't do
1871 * any further validation. Otherwise, label I/O will fail and we will
1872 * overwrite the previous state.
1873 */
6cb8e530
PZ
1874 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1875 return (0);
34dc7c2f 1876
6cb8e530
PZ
1877 /*
1878 * If we are performing an extreme rewind, we allow for a label that
1879 * was modified at a point after the current txg.
a11c7aae
PZ
1880 * If config lock is not held do not check for the txg. spa_sync could
1881 * be updating the vdev's label before updating spa_last_synced_txg.
6cb8e530 1882 */
a11c7aae
PZ
1883 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1884 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
6cb8e530
PZ
1885 txg = UINT64_MAX;
1886 else
1887 txg = spa_last_synced_txg(spa);
34dc7c2f 1888
6cb8e530
PZ
1889 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1890 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1891 VDEV_AUX_BAD_LABEL);
38a19edd
PZ
1892 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1893 "txg %llu", (u_longlong_t)txg);
6cb8e530
PZ
1894 return (0);
1895 }
428870ff 1896
6cb8e530
PZ
1897 /*
1898 * Determine if this vdev has been split off into another
1899 * pool. If so, then refuse to open it.
1900 */
1901 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1902 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1903 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1904 VDEV_AUX_SPLIT_POOL);
1905 nvlist_free(label);
1906 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1907 return (0);
1908 }
34dc7c2f 1909
6cb8e530
PZ
1910 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1911 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1912 VDEV_AUX_CORRUPT_DATA);
1913 nvlist_free(label);
1914 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1915 ZPOOL_CONFIG_POOL_GUID);
1916 return (0);
1917 }
428870ff 1918
6cb8e530
PZ
1919 /*
1920 * If config is not trusted then ignore the spa guid check. This is
1921 * necessary because if the machine crashed during a re-guid the new
1922 * guid might have been written to all of the vdev labels, but not the
1923 * cached config. The check will be performed again once we have the
1924 * trusted config from the MOS.
1925 */
1926 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1927 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1928 VDEV_AUX_CORRUPT_DATA);
1929 nvlist_free(label);
1930 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1931 "match config (%llu != %llu)", (u_longlong_t)guid,
1932 (u_longlong_t)spa_guid(spa));
1933 return (0);
1934 }
1935
1936 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1937 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1938 &aux_guid) != 0)
1939 aux_guid = 0;
1940
1941 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1942 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1943 VDEV_AUX_CORRUPT_DATA);
1944 nvlist_free(label);
1945 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1946 ZPOOL_CONFIG_GUID);
1947 return (0);
1948 }
1949
1950 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1951 != 0) {
1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 VDEV_AUX_CORRUPT_DATA);
1954 nvlist_free(label);
1955 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1956 ZPOOL_CONFIG_TOP_GUID);
1957 return (0);
1958 }
1959
1960 /*
1961 * If this vdev just became a top-level vdev because its sibling was
1962 * detached, it will have adopted the parent's vdev guid -- but the
1963 * label may or may not be on disk yet. Fortunately, either version
1964 * of the label will have the same top guid, so if we're a top-level
1965 * vdev, we can safely compare to that instead.
1966 * However, if the config comes from a cachefile that failed to update
1967 * after the detach, a top-level vdev will appear as a non top-level
1968 * vdev in the config. Also relax the constraints if we perform an
1969 * extreme rewind.
1970 *
1971 * If we split this vdev off instead, then we also check the
1972 * original pool's guid. We don't want to consider the vdev
1973 * corrupt if it is partway through a split operation.
1974 */
1975 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1976 boolean_t mismatch = B_FALSE;
1977 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1978 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1979 mismatch = B_TRUE;
1980 } else {
1981 if (vd->vdev_guid != top_guid &&
1982 vd->vdev_top->vdev_guid != guid)
1983 mismatch = B_TRUE;
34dc7c2f
BB
1984 }
1985
6cb8e530 1986 if (mismatch) {
34dc7c2f
BB
1987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1988 VDEV_AUX_CORRUPT_DATA);
1989 nvlist_free(label);
6cb8e530
PZ
1990 vdev_dbgmsg(vd, "vdev_validate: config guid "
1991 "doesn't match label guid");
1992 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1993 (u_longlong_t)vd->vdev_guid,
1994 (u_longlong_t)vd->vdev_top->vdev_guid);
1995 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1996 "aux_guid %llu", (u_longlong_t)guid,
1997 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
34dc7c2f
BB
1998 return (0);
1999 }
6cb8e530 2000 }
34dc7c2f 2001
6cb8e530
PZ
2002 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2003 &state) != 0) {
2004 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2005 VDEV_AUX_CORRUPT_DATA);
34dc7c2f 2006 nvlist_free(label);
6cb8e530
PZ
2007 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2008 ZPOOL_CONFIG_POOL_STATE);
2009 return (0);
2010 }
34dc7c2f 2011
6cb8e530
PZ
2012 nvlist_free(label);
2013
2014 /*
2015 * If this is a verbatim import, no need to check the
2016 * state of the pool.
2017 */
2018 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2019 spa_load_state(spa) == SPA_LOAD_OPEN &&
2020 state != POOL_STATE_ACTIVE) {
2021 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2022 "for spa %s", (u_longlong_t)state, spa->spa_name);
2023 return (SET_ERROR(EBADF));
2024 }
2025
2026 /*
2027 * If we were able to open and validate a vdev that was
2028 * previously marked permanently unavailable, clear that state
2029 * now.
2030 */
2031 if (vd->vdev_not_present)
2032 vd->vdev_not_present = 0;
2033
2034 return (0);
2035}
2036
2037static void
2038vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2039{
2040 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2041 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2042 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2043 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2044 dvd->vdev_path, svd->vdev_path);
2045 spa_strfree(dvd->vdev_path);
2046 dvd->vdev_path = spa_strdup(svd->vdev_path);
4a0ee12a 2047 }
6cb8e530
PZ
2048 } else if (svd->vdev_path != NULL) {
2049 dvd->vdev_path = spa_strdup(svd->vdev_path);
2050 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2051 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2052 }
2053}
34dc7c2f 2054
6cb8e530
PZ
2055/*
2056 * Recursively copy vdev paths from one vdev to another. Source and destination
2057 * vdev trees must have same geometry otherwise return error. Intended to copy
2058 * paths from userland config into MOS config.
2059 */
2060int
2061vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2062{
2063 if ((svd->vdev_ops == &vdev_missing_ops) ||
2064 (svd->vdev_ishole && dvd->vdev_ishole) ||
2065 (dvd->vdev_ops == &vdev_indirect_ops))
2066 return (0);
2067
2068 if (svd->vdev_ops != dvd->vdev_ops) {
2069 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2070 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2071 return (SET_ERROR(EINVAL));
2072 }
2073
2074 if (svd->vdev_guid != dvd->vdev_guid) {
2075 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2076 "%llu)", (u_longlong_t)svd->vdev_guid,
2077 (u_longlong_t)dvd->vdev_guid);
2078 return (SET_ERROR(EINVAL));
b128c09f 2079 }
34dc7c2f 2080
6cb8e530
PZ
2081 if (svd->vdev_children != dvd->vdev_children) {
2082 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2083 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2084 (u_longlong_t)dvd->vdev_children);
2085 return (SET_ERROR(EINVAL));
2086 }
2087
2088 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2089 int error = vdev_copy_path_strict(svd->vdev_child[i],
2090 dvd->vdev_child[i]);
2091 if (error != 0)
2092 return (error);
2093 }
2094
2095 if (svd->vdev_ops->vdev_op_leaf)
2096 vdev_copy_path_impl(svd, dvd);
2097
34dc7c2f
BB
2098 return (0);
2099}
2100
6cb8e530
PZ
2101static void
2102vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2103{
2104 ASSERT(stvd->vdev_top == stvd);
2105 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2106
2107 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2108 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2109 }
2110
2111 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2112 return;
2113
2114 /*
2115 * The idea here is that while a vdev can shift positions within
2116 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2117 * step outside of it.
2118 */
2119 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2120
2121 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2122 return;
2123
2124 ASSERT(vd->vdev_ops->vdev_op_leaf);
2125
2126 vdev_copy_path_impl(vd, dvd);
2127}
2128
2129/*
2130 * Recursively copy vdev paths from one root vdev to another. Source and
2131 * destination vdev trees may differ in geometry. For each destination leaf
2132 * vdev, search a vdev with the same guid and top vdev id in the source.
2133 * Intended to copy paths from userland config into MOS config.
2134 */
2135void
2136vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2137{
2138 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2139 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2140 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2141
2142 for (uint64_t i = 0; i < children; i++) {
2143 vdev_copy_path_search(srvd->vdev_child[i],
2144 drvd->vdev_child[i]);
2145 }
2146}
2147
34dc7c2f
BB
2148/*
2149 * Close a virtual device.
2150 */
2151void
2152vdev_close(vdev_t *vd)
2153{
428870ff 2154 vdev_t *pvd = vd->vdev_parent;
1fde1e37 2155 ASSERTV(spa_t *spa = vd->vdev_spa);
fb5f0bc8
BB
2156
2157 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2158
428870ff
BB
2159 /*
2160 * If our parent is reopening, then we are as well, unless we are
2161 * going offline.
2162 */
2163 if (pvd != NULL && pvd->vdev_reopening)
2164 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2165
34dc7c2f
BB
2166 vd->vdev_ops->vdev_op_close(vd);
2167
2168 vdev_cache_purge(vd);
2169
2170 /*
9babb374 2171 * We record the previous state before we close it, so that if we are
34dc7c2f
BB
2172 * doing a reopen(), we don't generate FMA ereports if we notice that
2173 * it's still faulted.
2174 */
2175 vd->vdev_prevstate = vd->vdev_state;
2176
2177 if (vd->vdev_offline)
2178 vd->vdev_state = VDEV_STATE_OFFLINE;
2179 else
2180 vd->vdev_state = VDEV_STATE_CLOSED;
2181 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2182}
2183
428870ff
BB
2184void
2185vdev_hold(vdev_t *vd)
2186{
2187 spa_t *spa = vd->vdev_spa;
2188
2189 ASSERT(spa_is_root(spa));
2190 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2191 return;
2192
1c27024e 2193 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
2194 vdev_hold(vd->vdev_child[c]);
2195
2196 if (vd->vdev_ops->vdev_op_leaf)
2197 vd->vdev_ops->vdev_op_hold(vd);
2198}
2199
2200void
2201vdev_rele(vdev_t *vd)
2202{
d6320ddb 2203 ASSERT(spa_is_root(vd->vdev_spa));
1c27024e 2204 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
2205 vdev_rele(vd->vdev_child[c]);
2206
2207 if (vd->vdev_ops->vdev_op_leaf)
2208 vd->vdev_ops->vdev_op_rele(vd);
2209}
2210
2211/*
2212 * Reopen all interior vdevs and any unopened leaves. We don't actually
2213 * reopen leaf vdevs which had previously been opened as they might deadlock
2214 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2215 * If the leaf has never been opened then open it, as usual.
2216 */
34dc7c2f
BB
2217void
2218vdev_reopen(vdev_t *vd)
2219{
2220 spa_t *spa = vd->vdev_spa;
2221
b128c09f 2222 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f 2223
428870ff
BB
2224 /* set the reopening flag unless we're taking the vdev offline */
2225 vd->vdev_reopening = !vd->vdev_offline;
34dc7c2f
BB
2226 vdev_close(vd);
2227 (void) vdev_open(vd);
2228
2229 /*
2230 * Call vdev_validate() here to make sure we have the same device.
2231 * Otherwise, a device with an invalid label could be successfully
2232 * opened in response to vdev_reopen().
2233 */
b128c09f
BB
2234 if (vd->vdev_aux) {
2235 (void) vdev_validate_aux(vd);
2236 if (vdev_readable(vd) && vdev_writeable(vd) &&
9babb374
BB
2237 vd->vdev_aux == &spa->spa_l2cache &&
2238 !l2arc_vdev_present(vd))
2239 l2arc_add_vdev(spa, vd);
b128c09f 2240 } else {
6cb8e530 2241 (void) vdev_validate(vd);
b128c09f 2242 }
34dc7c2f
BB
2243
2244 /*
2245 * Reassess parent vdev's health.
2246 */
2247 vdev_propagate_state(vd);
2248}
2249
2250int
2251vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2252{
2253 int error;
2254
2255 /*
2256 * Normally, partial opens (e.g. of a mirror) are allowed.
2257 * For a create, however, we want to fail the request if
2258 * there are any components we can't open.
2259 */
2260 error = vdev_open(vd);
2261
2262 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2263 vdev_close(vd);
2264 return (error ? error : ENXIO);
2265 }
2266
2267 /*
93cf2076 2268 * Recursively load DTLs and initialize all labels.
34dc7c2f 2269 */
93cf2076
GW
2270 if ((error = vdev_dtl_load(vd)) != 0 ||
2271 (error = vdev_label_init(vd, txg, isreplacing ?
34dc7c2f
BB
2272 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2273 vdev_close(vd);
2274 return (error);
2275 }
2276
2277 return (0);
2278}
2279
34dc7c2f 2280void
9babb374 2281vdev_metaslab_set_size(vdev_t *vd)
34dc7c2f 2282{
d2734cce 2283 uint64_t asize = vd->vdev_asize;
c853f382 2284 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
e4e94ca3 2285 uint64_t ms_shift;
d2734cce 2286
34dc7c2f 2287 /*
e4e94ca3
DB
2288 * There are two dimensions to the metaslab sizing calculation:
2289 * the size of the metaslab and the count of metaslabs per vdev.
e4e94ca3 2290 *
c853f382
SD
2291 * The default values used below are a good balance between memory
2292 * usage (larger metaslab size means more memory needed for loaded
2293 * metaslabs; more metaslabs means more memory needed for the
2294 * metaslab_t structs), metaslab load time (larger metaslabs take
2295 * longer to load), and metaslab sync time (more metaslabs means
2296 * more time spent syncing all of them).
2297 *
2298 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2299 * The range of the dimensions are as follows:
2300 *
2301 * 2^29 <= ms_size <= 2^34
e4e94ca3
DB
2302 * 16 <= ms_count <= 131,072
2303 *
2304 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2305 * at least 512MB (2^29) to minimize fragmentation effects when
2306 * testing with smaller devices. However, the count constraint
2307 * of at least 16 metaslabs will override this minimum size goal.
2308 *
2309 * On the upper end of vdev sizes, we aim for a maximum metaslab
c853f382
SD
2310 * size of 16GB. However, we will cap the total count to 2^17
2311 * metaslabs to keep our memory footprint in check and let the
2312 * metaslab size grow from there if that limit is hit.
e4e94ca3
DB
2313 *
2314 * The net effect of applying above constrains is summarized below.
2315 *
c853f382
SD
2316 * vdev size metaslab count
2317 * --------------|-----------------
2318 * < 8GB ~16
2319 * 8GB - 100GB one per 512MB
2320 * 100GB - 3TB ~200
2321 * 3TB - 2PB one per 16GB
2322 * > 2PB ~131,072
2323 * --------------------------------
2324 *
2325 * Finally, note that all of the above calculate the initial
2326 * number of metaslabs. Expanding a top-level vdev will result
2327 * in additional metaslabs being allocated making it possible
2328 * to exceed the zfs_vdev_ms_count_limit.
34dc7c2f 2329 */
d2734cce 2330
c853f382
SD
2331 if (ms_count < zfs_vdev_min_ms_count)
2332 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2333 else if (ms_count > zfs_vdev_default_ms_count)
2334 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
e4e94ca3 2335 else
c853f382 2336 ms_shift = zfs_vdev_default_ms_shift;
e4e94ca3
DB
2337
2338 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2339 ms_shift = SPA_MAXBLOCKSHIFT;
c853f382
SD
2340 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2341 ms_shift = zfs_vdev_max_ms_shift;
e4e94ca3 2342 /* cap the total count to constrain memory footprint */
c853f382
SD
2343 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2344 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
d2734cce
SD
2345 }
2346
2347 vd->vdev_ms_shift = ms_shift;
2348 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
34dc7c2f
BB
2349}
2350
2351void
2352vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2353{
2354 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
2355 /* indirect vdevs don't have metaslabs or dtls */
2356 ASSERT(vdev_is_concrete(vd) || flags == 0);
34dc7c2f 2357 ASSERT(ISP2(flags));
572e2857 2358 ASSERT(spa_writeable(vd->vdev_spa));
34dc7c2f
BB
2359
2360 if (flags & VDD_METASLAB)
2361 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2362
2363 if (flags & VDD_DTL)
2364 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2365
2366 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2367}
2368
93cf2076
GW
2369void
2370vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2371{
1c27024e 2372 for (int c = 0; c < vd->vdev_children; c++)
93cf2076
GW
2373 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2374
2375 if (vd->vdev_ops->vdev_op_leaf)
2376 vdev_dirty(vd->vdev_top, flags, vd, txg);
2377}
2378
fb5f0bc8
BB
2379/*
2380 * DTLs.
2381 *
2382 * A vdev's DTL (dirty time log) is the set of transaction groups for which
428870ff 2383 * the vdev has less than perfect replication. There are four kinds of DTL:
fb5f0bc8
BB
2384 *
2385 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2386 *
2387 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2388 *
2389 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2390 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2391 * txgs that was scrubbed.
2392 *
2393 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2394 * persistent errors or just some device being offline.
2395 * Unlike the other three, the DTL_OUTAGE map is not generally
2396 * maintained; it's only computed when needed, typically to
2397 * determine whether a device can be detached.
2398 *
2399 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2400 * either has the data or it doesn't.
2401 *
2402 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2403 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2404 * if any child is less than fully replicated, then so is its parent.
2405 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2406 * comprising only those txgs which appear in 'maxfaults' or more children;
2407 * those are the txgs we don't have enough replication to read. For example,
2408 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2409 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2410 * two child DTL_MISSING maps.
2411 *
2412 * It should be clear from the above that to compute the DTLs and outage maps
2413 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2414 * Therefore, that is all we keep on disk. When loading the pool, or after
2415 * a configuration change, we generate all other DTLs from first principles.
2416 */
34dc7c2f 2417void
fb5f0bc8 2418vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 2419{
93cf2076 2420 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
2421
2422 ASSERT(t < DTL_TYPES);
2423 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
572e2857 2424 ASSERT(spa_writeable(vd->vdev_spa));
fb5f0bc8 2425
a1d477c2 2426 mutex_enter(&vd->vdev_dtl_lock);
93cf2076
GW
2427 if (!range_tree_contains(rt, txg, size))
2428 range_tree_add(rt, txg, size);
a1d477c2 2429 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2430}
2431
fb5f0bc8
BB
2432boolean_t
2433vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
34dc7c2f 2434{
93cf2076 2435 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8 2436 boolean_t dirty = B_FALSE;
34dc7c2f 2437
fb5f0bc8
BB
2438 ASSERT(t < DTL_TYPES);
2439 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
34dc7c2f 2440
a1d477c2
MA
2441 /*
2442 * While we are loading the pool, the DTLs have not been loaded yet.
2443 * Ignore the DTLs and try all devices. This avoids a recursive
2444 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2445 * when loading the pool (relying on the checksum to ensure that
2446 * we get the right data -- note that we while loading, we are
2447 * only reading the MOS, which is always checksummed).
2448 */
2449 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2450 return (B_FALSE);
2451
2452 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2453 if (!range_tree_is_empty(rt))
93cf2076 2454 dirty = range_tree_contains(rt, txg, size);
a1d477c2 2455 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2456
2457 return (dirty);
2458}
2459
fb5f0bc8
BB
2460boolean_t
2461vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2462{
93cf2076 2463 range_tree_t *rt = vd->vdev_dtl[t];
fb5f0bc8
BB
2464 boolean_t empty;
2465
a1d477c2 2466 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2467 empty = range_tree_is_empty(rt);
a1d477c2 2468 mutex_exit(&vd->vdev_dtl_lock);
fb5f0bc8
BB
2469
2470 return (empty);
2471}
2472
3d6da72d
IH
2473/*
2474 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2475 */
2476boolean_t
2477vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2478{
2479 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2480
2481 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2482 vd->vdev_ops->vdev_op_leaf)
2483 return (B_TRUE);
2484
2485 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2486}
2487
5d1f7fb6
GW
2488/*
2489 * Returns the lowest txg in the DTL range.
2490 */
2491static uint64_t
2492vdev_dtl_min(vdev_t *vd)
2493{
93cf2076 2494 range_seg_t *rs;
5d1f7fb6
GW
2495
2496 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 2497 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
2498 ASSERT0(vd->vdev_children);
2499
93cf2076
GW
2500 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2501 return (rs->rs_start - 1);
5d1f7fb6
GW
2502}
2503
2504/*
2505 * Returns the highest txg in the DTL.
2506 */
2507static uint64_t
2508vdev_dtl_max(vdev_t *vd)
2509{
93cf2076 2510 range_seg_t *rs;
5d1f7fb6
GW
2511
2512 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
93cf2076 2513 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
5d1f7fb6
GW
2514 ASSERT0(vd->vdev_children);
2515
93cf2076
GW
2516 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2517 return (rs->rs_end);
5d1f7fb6
GW
2518}
2519
2520/*
2521 * Determine if a resilvering vdev should remove any DTL entries from
2522 * its range. If the vdev was resilvering for the entire duration of the
2523 * scan then it should excise that range from its DTLs. Otherwise, this
2524 * vdev is considered partially resilvered and should leave its DTL
2525 * entries intact. The comment in vdev_dtl_reassess() describes how we
2526 * excise the DTLs.
2527 */
2528static boolean_t
2529vdev_dtl_should_excise(vdev_t *vd)
2530{
2531 spa_t *spa = vd->vdev_spa;
2532 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2533
2534 ASSERT0(scn->scn_phys.scn_errors);
2535 ASSERT0(vd->vdev_children);
2536
335b251a
MA
2537 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2538 return (B_FALSE);
2539
80a91e74
TC
2540 if (vd->vdev_resilver_deferred)
2541 return (B_FALSE);
2542
5d1f7fb6 2543 if (vd->vdev_resilver_txg == 0 ||
d2734cce 2544 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
5d1f7fb6
GW
2545 return (B_TRUE);
2546
2547 /*
2548 * When a resilver is initiated the scan will assign the scn_max_txg
2549 * value to the highest txg value that exists in all DTLs. If this
2550 * device's max DTL is not part of this scan (i.e. it is not in
2551 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2552 * for excision.
2553 */
2554 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2555 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2556 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2557 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2558 return (B_TRUE);
2559 }
2560 return (B_FALSE);
2561}
2562
34dc7c2f 2563/*
fde25c0a
TC
2564 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2565 * write operations will be issued to the pool.
34dc7c2f
BB
2566 */
2567void
2568vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2569{
2570 spa_t *spa = vd->vdev_spa;
fb5f0bc8 2571 avl_tree_t reftree;
1c27024e 2572 int minref;
34dc7c2f 2573
fb5f0bc8 2574 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 2575
1c27024e 2576 for (int c = 0; c < vd->vdev_children; c++)
fb5f0bc8
BB
2577 vdev_dtl_reassess(vd->vdev_child[c], txg,
2578 scrub_txg, scrub_done);
2579
a1d477c2 2580 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
fb5f0bc8
BB
2581 return;
2582
2583 if (vd->vdev_ops->vdev_op_leaf) {
428870ff
BB
2584 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2585
34dc7c2f 2586 mutex_enter(&vd->vdev_dtl_lock);
5d1f7fb6 2587
02638a30
TC
2588 /*
2589 * If requested, pretend the scan completed cleanly.
2590 */
2591 if (zfs_scan_ignore_errors && scn)
2592 scn->scn_phys.scn_errors = 0;
2593
5d1f7fb6
GW
2594 /*
2595 * If we've completed a scan cleanly then determine
2596 * if this vdev should remove any DTLs. We only want to
2597 * excise regions on vdevs that were available during
2598 * the entire duration of this scan.
2599 */
b128c09f 2600 if (scrub_txg != 0 &&
428870ff 2601 (spa->spa_scrub_started ||
5d1f7fb6
GW
2602 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2603 vdev_dtl_should_excise(vd)) {
b128c09f
BB
2604 /*
2605 * We completed a scrub up to scrub_txg. If we
2606 * did it without rebooting, then the scrub dtl
2607 * will be valid, so excise the old region and
2608 * fold in the scrub dtl. Otherwise, leave the
2609 * dtl as-is if there was an error.
fb5f0bc8
BB
2610 *
2611 * There's little trick here: to excise the beginning
2612 * of the DTL_MISSING map, we put it into a reference
2613 * tree and then add a segment with refcnt -1 that
2614 * covers the range [0, scrub_txg). This means
2615 * that each txg in that range has refcnt -1 or 0.
2616 * We then add DTL_SCRUB with a refcnt of 2, so that
2617 * entries in the range [0, scrub_txg) will have a
2618 * positive refcnt -- either 1 or 2. We then convert
2619 * the reference tree into the new DTL_MISSING map.
b128c09f 2620 */
93cf2076
GW
2621 space_reftree_create(&reftree);
2622 space_reftree_add_map(&reftree,
2623 vd->vdev_dtl[DTL_MISSING], 1);
2624 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2625 space_reftree_add_map(&reftree,
2626 vd->vdev_dtl[DTL_SCRUB], 2);
2627 space_reftree_generate_map(&reftree,
2628 vd->vdev_dtl[DTL_MISSING], 1);
2629 space_reftree_destroy(&reftree);
34dc7c2f 2630 }
93cf2076
GW
2631 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2632 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2633 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
34dc7c2f 2634 if (scrub_done)
93cf2076
GW
2635 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2636 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
fb5f0bc8 2637 if (!vdev_readable(vd))
93cf2076 2638 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
fb5f0bc8 2639 else
93cf2076
GW
2640 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2641 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
5d1f7fb6
GW
2642
2643 /*
2644 * If the vdev was resilvering and no longer has any
d14fa5db 2645 * DTLs then reset its resilvering flag and dirty
2646 * the top level so that we persist the change.
5d1f7fb6 2647 */
fde25c0a 2648 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
d2734cce
SD
2649 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2650 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
5d1f7fb6 2651 vd->vdev_resilver_txg = 0;
d14fa5db 2652 vdev_config_dirty(vd->vdev_top);
2653 }
5d1f7fb6 2654
34dc7c2f 2655 mutex_exit(&vd->vdev_dtl_lock);
b128c09f 2656
34dc7c2f
BB
2657 if (txg != 0)
2658 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2659 return;
2660 }
2661
34dc7c2f 2662 mutex_enter(&vd->vdev_dtl_lock);
1c27024e 2663 for (int t = 0; t < DTL_TYPES; t++) {
428870ff
BB
2664 /* account for child's outage in parent's missing map */
2665 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
fb5f0bc8
BB
2666 if (t == DTL_SCRUB)
2667 continue; /* leaf vdevs only */
2668 if (t == DTL_PARTIAL)
2669 minref = 1; /* i.e. non-zero */
2670 else if (vd->vdev_nparity != 0)
2671 minref = vd->vdev_nparity + 1; /* RAID-Z */
2672 else
2673 minref = vd->vdev_children; /* any kind of mirror */
93cf2076 2674 space_reftree_create(&reftree);
1c27024e 2675 for (int c = 0; c < vd->vdev_children; c++) {
fb5f0bc8
BB
2676 vdev_t *cvd = vd->vdev_child[c];
2677 mutex_enter(&cvd->vdev_dtl_lock);
93cf2076 2678 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
fb5f0bc8
BB
2679 mutex_exit(&cvd->vdev_dtl_lock);
2680 }
93cf2076
GW
2681 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2682 space_reftree_destroy(&reftree);
34dc7c2f 2683 }
fb5f0bc8 2684 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f
BB
2685}
2686
93cf2076 2687int
34dc7c2f
BB
2688vdev_dtl_load(vdev_t *vd)
2689{
2690 spa_t *spa = vd->vdev_spa;
34dc7c2f 2691 objset_t *mos = spa->spa_meta_objset;
93cf2076 2692 int error = 0;
34dc7c2f 2693
93cf2076 2694 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
a1d477c2 2695 ASSERT(vdev_is_concrete(vd));
34dc7c2f 2696
93cf2076 2697 error = space_map_open(&vd->vdev_dtl_sm, mos,
a1d477c2 2698 vd->vdev_dtl_object, 0, -1ULL, 0);
93cf2076
GW
2699 if (error)
2700 return (error);
2701 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f 2702
93cf2076 2703 mutex_enter(&vd->vdev_dtl_lock);
93cf2076
GW
2704 error = space_map_load(vd->vdev_dtl_sm,
2705 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2706 mutex_exit(&vd->vdev_dtl_lock);
34dc7c2f 2707
93cf2076
GW
2708 return (error);
2709 }
2710
1c27024e 2711 for (int c = 0; c < vd->vdev_children; c++) {
93cf2076
GW
2712 error = vdev_dtl_load(vd->vdev_child[c]);
2713 if (error != 0)
2714 break;
2715 }
34dc7c2f
BB
2716
2717 return (error);
2718}
2719
cc99f275
DB
2720static void
2721vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2722{
2723 spa_t *spa = vd->vdev_spa;
2724 objset_t *mos = spa->spa_meta_objset;
2725 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2726 const char *string;
2727
2728 ASSERT(alloc_bias != VDEV_BIAS_NONE);
2729
2730 string =
2731 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2732 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2733 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2734
2735 ASSERT(string != NULL);
2736 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2737 1, strlen(string) + 1, string, tx));
2738
2739 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2740 spa_activate_allocation_classes(spa, tx);
2741 }
2742}
2743
e0ab3ab5
JS
2744void
2745vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2746{
2747 spa_t *spa = vd->vdev_spa;
2748
2749 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2750 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2751 zapobj, tx));
2752}
2753
2754uint64_t
2755vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2756{
2757 spa_t *spa = vd->vdev_spa;
2758 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2759 DMU_OT_NONE, 0, tx);
2760
2761 ASSERT(zap != 0);
2762 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2763 zap, tx));
2764
2765 return (zap);
2766}
2767
2768void
2769vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2770{
e0ab3ab5
JS
2771 if (vd->vdev_ops != &vdev_hole_ops &&
2772 vd->vdev_ops != &vdev_missing_ops &&
2773 vd->vdev_ops != &vdev_root_ops &&
2774 !vd->vdev_top->vdev_removing) {
2775 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2776 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2777 }
2778 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2779 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
cc99f275
DB
2780 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2781 vdev_zap_allocation_data(vd, tx);
e0ab3ab5
JS
2782 }
2783 }
cc99f275 2784
1c27024e 2785 for (uint64_t i = 0; i < vd->vdev_children; i++) {
e0ab3ab5
JS
2786 vdev_construct_zaps(vd->vdev_child[i], tx);
2787 }
2788}
2789
34dc7c2f
BB
2790void
2791vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2792{
2793 spa_t *spa = vd->vdev_spa;
93cf2076 2794 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
34dc7c2f 2795 objset_t *mos = spa->spa_meta_objset;
93cf2076 2796 range_tree_t *rtsync;
34dc7c2f 2797 dmu_tx_t *tx;
93cf2076 2798 uint64_t object = space_map_object(vd->vdev_dtl_sm);
34dc7c2f 2799
a1d477c2 2800 ASSERT(vdev_is_concrete(vd));
93cf2076 2801 ASSERT(vd->vdev_ops->vdev_op_leaf);
428870ff 2802
34dc7c2f
BB
2803 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2804
93cf2076
GW
2805 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2806 mutex_enter(&vd->vdev_dtl_lock);
2807 space_map_free(vd->vdev_dtl_sm, tx);
2808 space_map_close(vd->vdev_dtl_sm);
2809 vd->vdev_dtl_sm = NULL;
2810 mutex_exit(&vd->vdev_dtl_lock);
e0ab3ab5
JS
2811
2812 /*
2813 * We only destroy the leaf ZAP for detached leaves or for
2814 * removed log devices. Removed data devices handle leaf ZAP
2815 * cleanup later, once cancellation is no longer possible.
2816 */
2817 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2818 vd->vdev_top->vdev_islog)) {
2819 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2820 vd->vdev_leaf_zap = 0;
2821 }
2822
34dc7c2f 2823 dmu_tx_commit(tx);
34dc7c2f
BB
2824 return;
2825 }
2826
93cf2076
GW
2827 if (vd->vdev_dtl_sm == NULL) {
2828 uint64_t new_object;
2829
d2734cce 2830 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
93cf2076
GW
2831 VERIFY3U(new_object, !=, 0);
2832
2833 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
a1d477c2 2834 0, -1ULL, 0));
93cf2076 2835 ASSERT(vd->vdev_dtl_sm != NULL);
34dc7c2f
BB
2836 }
2837
a1d477c2 2838 rtsync = range_tree_create(NULL, NULL);
34dc7c2f
BB
2839
2840 mutex_enter(&vd->vdev_dtl_lock);
93cf2076 2841 range_tree_walk(rt, range_tree_add, rtsync);
34dc7c2f
BB
2842 mutex_exit(&vd->vdev_dtl_lock);
2843
d2734cce 2844 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
4d044c4c 2845 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
93cf2076 2846 range_tree_vacate(rtsync, NULL, NULL);
34dc7c2f 2847
93cf2076 2848 range_tree_destroy(rtsync);
34dc7c2f 2849
93cf2076
GW
2850 /*
2851 * If the object for the space map has changed then dirty
2852 * the top level so that we update the config.
2853 */
2854 if (object != space_map_object(vd->vdev_dtl_sm)) {
4a0ee12a
PZ
2855 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2856 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2857 (u_longlong_t)object,
2858 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
93cf2076
GW
2859 vdev_config_dirty(vd->vdev_top);
2860 }
34dc7c2f
BB
2861
2862 dmu_tx_commit(tx);
2863}
2864
fb5f0bc8
BB
2865/*
2866 * Determine whether the specified vdev can be offlined/detached/removed
2867 * without losing data.
2868 */
2869boolean_t
2870vdev_dtl_required(vdev_t *vd)
2871{
2872 spa_t *spa = vd->vdev_spa;
2873 vdev_t *tvd = vd->vdev_top;
2874 uint8_t cant_read = vd->vdev_cant_read;
2875 boolean_t required;
2876
2877 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2878
2879 if (vd == spa->spa_root_vdev || vd == tvd)
2880 return (B_TRUE);
2881
2882 /*
2883 * Temporarily mark the device as unreadable, and then determine
2884 * whether this results in any DTL outages in the top-level vdev.
2885 * If not, we can safely offline/detach/remove the device.
2886 */
2887 vd->vdev_cant_read = B_TRUE;
2888 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2889 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2890 vd->vdev_cant_read = cant_read;
2891 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2892
572e2857
BB
2893 if (!required && zio_injection_enabled)
2894 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2895
fb5f0bc8
BB
2896 return (required);
2897}
2898
b128c09f
BB
2899/*
2900 * Determine if resilver is needed, and if so the txg range.
2901 */
2902boolean_t
2903vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2904{
2905 boolean_t needed = B_FALSE;
2906 uint64_t thismin = UINT64_MAX;
2907 uint64_t thismax = 0;
2908
2909 if (vd->vdev_children == 0) {
2910 mutex_enter(&vd->vdev_dtl_lock);
d2734cce 2911 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
fb5f0bc8 2912 vdev_writeable(vd)) {
b128c09f 2913
5d1f7fb6
GW
2914 thismin = vdev_dtl_min(vd);
2915 thismax = vdev_dtl_max(vd);
b128c09f
BB
2916 needed = B_TRUE;
2917 }
2918 mutex_exit(&vd->vdev_dtl_lock);
2919 } else {
1c27024e 2920 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
2921 vdev_t *cvd = vd->vdev_child[c];
2922 uint64_t cmin, cmax;
2923
2924 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2925 thismin = MIN(thismin, cmin);
2926 thismax = MAX(thismax, cmax);
2927 needed = B_TRUE;
2928 }
2929 }
2930 }
2931
2932 if (needed && minp) {
2933 *minp = thismin;
2934 *maxp = thismax;
2935 }
2936 return (needed);
2937}
2938
d2734cce 2939/*
27f80e85
BB
2940 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
2941 * will contain either the checkpoint spacemap object or zero if none exists.
2942 * All other errors are returned to the caller.
d2734cce
SD
2943 */
2944int
27f80e85 2945vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
d2734cce
SD
2946{
2947 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
27f80e85 2948
d2734cce 2949 if (vd->vdev_top_zap == 0) {
27f80e85 2950 *sm_obj = 0;
d2734cce
SD
2951 return (0);
2952 }
2953
27f80e85
BB
2954 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2955 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
2956 if (error == ENOENT) {
2957 *sm_obj = 0;
2958 error = 0;
2959 }
d2734cce 2960
27f80e85 2961 return (error);
d2734cce
SD
2962}
2963
a1d477c2 2964int
34dc7c2f
BB
2965vdev_load(vdev_t *vd)
2966{
a1d477c2
MA
2967 int error = 0;
2968
34dc7c2f
BB
2969 /*
2970 * Recursively load all children.
2971 */
a1d477c2
MA
2972 for (int c = 0; c < vd->vdev_children; c++) {
2973 error = vdev_load(vd->vdev_child[c]);
2974 if (error != 0) {
2975 return (error);
2976 }
2977 }
2978
2979 vdev_set_deflate_ratio(vd);
34dc7c2f 2980
cc99f275
DB
2981 /*
2982 * On spa_load path, grab the allocation bias from our zap
2983 */
2984 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2985 spa_t *spa = vd->vdev_spa;
2986 char bias_str[64];
2987
2988 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2989 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2990 bias_str) == 0) {
2991 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2992 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2993 }
2994 }
2995
34dc7c2f
BB
2996 /*
2997 * If this is a top-level vdev, initialize its metaslabs.
2998 */
a1d477c2 2999 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
cc99f275
DB
3000 vdev_metaslab_group_create(vd);
3001
a1d477c2
MA
3002 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3003 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3004 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3005 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3006 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3007 (u_longlong_t)vd->vdev_asize);
a1d477c2
MA
3008 return (SET_ERROR(ENXIO));
3009 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
4a0ee12a
PZ
3010 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3011 "[error=%d]", error);
a1d477c2
MA
3012 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3013 VDEV_AUX_CORRUPT_DATA);
3014 return (error);
3015 }
d2734cce 3016
27f80e85
BB
3017 uint64_t checkpoint_sm_obj;
3018 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3019 if (error == 0 && checkpoint_sm_obj != 0) {
d2734cce
SD
3020 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3021 ASSERT(vd->vdev_asize != 0);
3022 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3023
3024 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
3025 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3026 vd->vdev_ashift))) {
3027 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3028 "failed for checkpoint spacemap (obj %llu) "
3029 "[error=%d]",
3030 (u_longlong_t)checkpoint_sm_obj, error);
3031 return (error);
3032 }
3033 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
d2734cce
SD
3034
3035 /*
3036 * Since the checkpoint_sm contains free entries
425d3237
SD
3037 * exclusively we can use space_map_allocated() to
3038 * indicate the cumulative checkpointed space that
3039 * has been freed.
d2734cce
SD
3040 */
3041 vd->vdev_stat.vs_checkpoint_space =
425d3237 3042 -space_map_allocated(vd->vdev_checkpoint_sm);
d2734cce
SD
3043 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3044 vd->vdev_stat.vs_checkpoint_space;
27f80e85
BB
3045 } else if (error != 0) {
3046 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3047 "checkpoint space map object from vdev ZAP "
3048 "[error=%d]", error);
3049 return (error);
d2734cce 3050 }
a1d477c2
MA
3051 }
3052
34dc7c2f
BB
3053 /*
3054 * If this is a leaf vdev, load its DTL.
3055 */
a1d477c2 3056 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
34dc7c2f
BB
3057 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3058 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3059 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3060 "[error=%d]", error);
a1d477c2
MA
3061 return (error);
3062 }
3063
27f80e85
BB
3064 uint64_t obsolete_sm_object;
3065 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3066 if (error == 0 && obsolete_sm_object != 0) {
a1d477c2
MA
3067 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3068 ASSERT(vd->vdev_asize != 0);
d2734cce 3069 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
a1d477c2
MA
3070
3071 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3072 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3073 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3074 VDEV_AUX_CORRUPT_DATA);
4a0ee12a
PZ
3075 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3076 "obsolete spacemap (obj %llu) [error=%d]",
3077 (u_longlong_t)obsolete_sm_object, error);
a1d477c2
MA
3078 return (error);
3079 }
27f80e85
BB
3080 } else if (error != 0) {
3081 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3082 "space map object from vdev ZAP [error=%d]", error);
3083 return (error);
a1d477c2
MA
3084 }
3085
3086 return (0);
34dc7c2f
BB
3087}
3088
3089/*
3090 * The special vdev case is used for hot spares and l2cache devices. Its
3091 * sole purpose it to set the vdev state for the associated vdev. To do this,
3092 * we make sure that we can open the underlying device, then try to read the
3093 * label, and make sure that the label is sane and that it hasn't been
3094 * repurposed to another pool.
3095 */
3096int
3097vdev_validate_aux(vdev_t *vd)
3098{
3099 nvlist_t *label;
3100 uint64_t guid, version;
3101 uint64_t state;
3102
b128c09f
BB
3103 if (!vdev_readable(vd))
3104 return (0);
3105
3bc7e0fb 3106 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
34dc7c2f
BB
3107 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3108 VDEV_AUX_CORRUPT_DATA);
3109 return (-1);
3110 }
3111
3112 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
9ae529ec 3113 !SPA_VERSION_IS_SUPPORTED(version) ||
34dc7c2f
BB
3114 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3115 guid != vd->vdev_guid ||
3116 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3117 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3118 VDEV_AUX_CORRUPT_DATA);
3119 nvlist_free(label);
3120 return (-1);
3121 }
3122
3123 /*
3124 * We don't actually check the pool state here. If it's in fact in
3125 * use by another pool, we update this fact on the fly when requested.
3126 */
3127 nvlist_free(label);
3128 return (0);
3129}
3130
a1d477c2
MA
3131/*
3132 * Free the objects used to store this vdev's spacemaps, and the array
3133 * that points to them.
3134 */
428870ff 3135void
a1d477c2
MA
3136vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3137{
3138 if (vd->vdev_ms_array == 0)
3139 return;
3140
3141 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3142 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3143 size_t array_bytes = array_count * sizeof (uint64_t);
3144 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3145 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3146 array_bytes, smobj_array, 0));
3147
3148 for (uint64_t i = 0; i < array_count; i++) {
3149 uint64_t smobj = smobj_array[i];
3150 if (smobj == 0)
3151 continue;
3152
3153 space_map_free_obj(mos, smobj, tx);
3154 }
3155
3156 kmem_free(smobj_array, array_bytes);
3157 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3158 vd->vdev_ms_array = 0;
3159}
3160
3161static void
ee900344 3162vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
428870ff
BB
3163{
3164 spa_t *spa = vd->vdev_spa;
428870ff 3165
ee900344 3166 ASSERT(vd->vdev_islog);
e0ab3ab5
JS
3167 ASSERT(vd == vd->vdev_top);
3168 ASSERT3U(txg, ==, spa_syncing_txg(spa));
428870ff 3169
ee900344 3170 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
e0ab3ab5 3171
ee900344
SD
3172 vdev_destroy_spacemaps(vd, tx);
3173 if (vd->vdev_top_zap != 0) {
e0ab3ab5
JS
3174 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3175 vd->vdev_top_zap = 0;
3176 }
ee900344 3177
428870ff
BB
3178 dmu_tx_commit(tx);
3179}
3180
34dc7c2f
BB
3181void
3182vdev_sync_done(vdev_t *vd, uint64_t txg)
3183{
3184 metaslab_t *msp;
428870ff
BB
3185 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3186
a1d477c2 3187 ASSERT(vdev_is_concrete(vd));
34dc7c2f 3188
619f0976
GW
3189 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3190 != NULL)
34dc7c2f 3191 metaslab_sync_done(msp, txg);
428870ff
BB
3192
3193 if (reassess)
3194 metaslab_sync_reassess(vd->vdev_mg);
34dc7c2f
BB
3195}
3196
3197void
3198vdev_sync(vdev_t *vd, uint64_t txg)
3199{
3200 spa_t *spa = vd->vdev_spa;
3201 vdev_t *lvd;
3202 metaslab_t *msp;
34dc7c2f 3203
6c926f42
SD
3204 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3205 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
a1d477c2 3206 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
a1d477c2
MA
3207 ASSERT(vd->vdev_removing ||
3208 vd->vdev_ops == &vdev_indirect_ops);
3209
a1d477c2 3210 vdev_indirect_sync_obsolete(vd, tx);
a1d477c2
MA
3211
3212 /*
3213 * If the vdev is indirect, it can't have dirty
3214 * metaslabs or DTLs.
3215 */
3216 if (vd->vdev_ops == &vdev_indirect_ops) {
3217 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3218 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
6c926f42 3219 dmu_tx_commit(tx);
a1d477c2
MA
3220 return;
3221 }
3222 }
3223
3224 ASSERT(vdev_is_concrete(vd));
3225
3226 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3227 !vd->vdev_removing) {
34dc7c2f 3228 ASSERT(vd == vd->vdev_top);
a1d477c2 3229 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
34dc7c2f
BB
3230 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3231 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3232 ASSERT(vd->vdev_ms_array != 0);
3233 vdev_config_dirty(vd);
34dc7c2f
BB
3234 }
3235
3236 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3237 metaslab_sync(msp, txg);
3238 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3239 }
3240
3241 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3242 vdev_dtl_sync(lvd, txg);
3243
a1d477c2 3244 /*
ee900344
SD
3245 * If this is an empty log device being removed, destroy the
3246 * metadata associated with it.
a1d477c2 3247 */
ee900344
SD
3248 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3249 vdev_remove_empty_log(vd, txg);
a1d477c2 3250
34dc7c2f 3251 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
6c926f42 3252 dmu_tx_commit(tx);
34dc7c2f
BB
3253}
3254
3255uint64_t
3256vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3257{
3258 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3259}
3260
34dc7c2f
BB
3261/*
3262 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3263 * not be opened, and no I/O is attempted.
3264 */
3265int
428870ff 3266vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 3267{
572e2857 3268 vdev_t *vd, *tvd;
34dc7c2f 3269
428870ff 3270 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3271
b128c09f
BB
3272 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3273 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 3274
34dc7c2f 3275 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3276 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3277
572e2857
BB
3278 tvd = vd->vdev_top;
3279
4a283c7f
TH
3280 /*
3281 * If user did a 'zpool offline -f' then make the fault persist across
3282 * reboots.
3283 */
3284 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3285 /*
3286 * There are two kinds of forced faults: temporary and
3287 * persistent. Temporary faults go away at pool import, while
3288 * persistent faults stay set. Both types of faults can be
3289 * cleared with a zpool clear.
3290 *
3291 * We tell if a vdev is persistently faulted by looking at the
3292 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3293 * import then it's a persistent fault. Otherwise, it's
3294 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3295 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3296 * tells vdev_config_generate() (which gets run later) to set
3297 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3298 */
3299 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3300 vd->vdev_tmpoffline = B_FALSE;
3301 aux = VDEV_AUX_EXTERNAL;
3302 } else {
3303 vd->vdev_tmpoffline = B_TRUE;
3304 }
3305
428870ff
BB
3306 /*
3307 * We don't directly use the aux state here, but if we do a
3308 * vdev_reopen(), we need this value to be present to remember why we
3309 * were faulted.
3310 */
3311 vd->vdev_label_aux = aux;
3312
34dc7c2f
BB
3313 /*
3314 * Faulted state takes precedence over degraded.
3315 */
428870ff 3316 vd->vdev_delayed_close = B_FALSE;
34dc7c2f
BB
3317 vd->vdev_faulted = 1ULL;
3318 vd->vdev_degraded = 0ULL;
428870ff 3319 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
34dc7c2f
BB
3320
3321 /*
428870ff
BB
3322 * If this device has the only valid copy of the data, then
3323 * back off and simply mark the vdev as degraded instead.
34dc7c2f 3324 */
572e2857 3325 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
34dc7c2f
BB
3326 vd->vdev_degraded = 1ULL;
3327 vd->vdev_faulted = 0ULL;
3328
3329 /*
3330 * If we reopen the device and it's not dead, only then do we
3331 * mark it degraded.
3332 */
572e2857 3333 vdev_reopen(tvd);
34dc7c2f 3334
428870ff
BB
3335 if (vdev_readable(vd))
3336 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
34dc7c2f
BB
3337 }
3338
b128c09f 3339 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3340}
3341
3342/*
3343 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3344 * user that something is wrong. The vdev continues to operate as normal as far
3345 * as I/O is concerned.
3346 */
3347int
428870ff 3348vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
34dc7c2f 3349{
b128c09f 3350 vdev_t *vd;
34dc7c2f 3351
428870ff 3352 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3353
b128c09f
BB
3354 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3355 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f 3356
34dc7c2f 3357 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3358 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f
BB
3359
3360 /*
3361 * If the vdev is already faulted, then don't do anything.
3362 */
b128c09f
BB
3363 if (vd->vdev_faulted || vd->vdev_degraded)
3364 return (spa_vdev_state_exit(spa, NULL, 0));
34dc7c2f
BB
3365
3366 vd->vdev_degraded = 1ULL;
3367 if (!vdev_is_dead(vd))
3368 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
428870ff 3369 aux);
34dc7c2f 3370
b128c09f 3371 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3372}
3373
3374/*
d3cc8b15
WA
3375 * Online the given vdev.
3376 *
3377 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3378 * spare device should be detached when the device finishes resilvering.
3379 * Second, the online should be treated like a 'test' online case, so no FMA
3380 * events are generated if the device fails to open.
34dc7c2f
BB
3381 */
3382int
b128c09f 3383vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
34dc7c2f 3384{
9babb374 3385 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
153b2285
YP
3386 boolean_t wasoffline;
3387 vdev_state_t oldstate;
34dc7c2f 3388
428870ff 3389 spa_vdev_state_enter(spa, SCL_NONE);
34dc7c2f 3390
b128c09f
BB
3391 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3392 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
3393
3394 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3395 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3396
153b2285
YP
3397 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3398 oldstate = vd->vdev_state;
fb390aaf 3399
9babb374 3400 tvd = vd->vdev_top;
34dc7c2f
BB
3401 vd->vdev_offline = B_FALSE;
3402 vd->vdev_tmpoffline = B_FALSE;
b128c09f
BB
3403 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3404 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
9babb374
BB
3405
3406 /* XXX - L2ARC 1.0 does not support expansion */
3407 if (!vd->vdev_aux) {
3408 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
d441e85d
BB
3409 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3410 spa->spa_autoexpand);
d48091de 3411 vd->vdev_expansion_time = gethrestime_sec();
9babb374
BB
3412 }
3413
3414 vdev_reopen(tvd);
34dc7c2f
BB
3415 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3416
9babb374
BB
3417 if (!vd->vdev_aux) {
3418 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3419 pvd->vdev_expanding = B_FALSE;
3420 }
3421
34dc7c2f
BB
3422 if (newstate)
3423 *newstate = vd->vdev_state;
3424 if ((flags & ZFS_ONLINE_UNSPARE) &&
3425 !vdev_is_dead(vd) && vd->vdev_parent &&
3426 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3427 vd->vdev_parent->vdev_child[0] == vd)
3428 vd->vdev_unspare = B_TRUE;
3429
9babb374
BB
3430 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3431
3432 /* XXX - L2ARC 1.0 does not support expansion */
3433 if (vd->vdev_aux)
3434 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3435 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3436 }
fb390aaf 3437
619f0976
GW
3438 /* Restart initializing if necessary */
3439 mutex_enter(&vd->vdev_initialize_lock);
3440 if (vdev_writeable(vd) &&
3441 vd->vdev_initialize_thread == NULL &&
3442 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3443 (void) vdev_initialize(vd);
3444 }
3445 mutex_exit(&vd->vdev_initialize_lock);
3446
153b2285
YP
3447 if (wasoffline ||
3448 (oldstate < VDEV_STATE_DEGRADED &&
3449 vd->vdev_state >= VDEV_STATE_DEGRADED))
12fa0466 3450 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
fb390aaf 3451
fb5f0bc8 3452 return (spa_vdev_state_exit(spa, vd, 0));
34dc7c2f
BB
3453}
3454
428870ff
BB
3455static int
3456vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
34dc7c2f 3457{
9babb374 3458 vdev_t *vd, *tvd;
428870ff
BB
3459 int error = 0;
3460 uint64_t generation;
3461 metaslab_group_t *mg;
34dc7c2f 3462
428870ff
BB
3463top:
3464 spa_vdev_state_enter(spa, SCL_ALLOC);
34dc7c2f 3465
b128c09f
BB
3466 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3467 return (spa_vdev_state_exit(spa, NULL, ENODEV));
34dc7c2f
BB
3468
3469 if (!vd->vdev_ops->vdev_op_leaf)
b128c09f 3470 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
34dc7c2f 3471
9babb374 3472 tvd = vd->vdev_top;
428870ff
BB
3473 mg = tvd->vdev_mg;
3474 generation = spa->spa_config_generation + 1;
9babb374 3475
34dc7c2f
BB
3476 /*
3477 * If the device isn't already offline, try to offline it.
3478 */
3479 if (!vd->vdev_offline) {
3480 /*
fb5f0bc8 3481 * If this device has the only valid copy of some data,
9babb374
BB
3482 * don't allow it to be offlined. Log devices are always
3483 * expendable.
34dc7c2f 3484 */
9babb374
BB
3485 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3486 vdev_dtl_required(vd))
b128c09f 3487 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 3488
428870ff
BB
3489 /*
3490 * If the top-level is a slog and it has had allocations
3491 * then proceed. We check that the vdev's metaslab group
3492 * is not NULL since it's possible that we may have just
3493 * added this vdev but not yet initialized its metaslabs.
3494 */
3495 if (tvd->vdev_islog && mg != NULL) {
3496 /*
3497 * Prevent any future allocations.
3498 */
3499 metaslab_group_passivate(mg);
3500 (void) spa_vdev_state_exit(spa, vd, 0);
3501
a1d477c2 3502 error = spa_reset_logs(spa);
428870ff 3503
d2734cce
SD
3504 /*
3505 * If the log device was successfully reset but has
3506 * checkpointed data, do not offline it.
3507 */
3508 if (error == 0 &&
3509 tvd->vdev_checkpoint_sm != NULL) {
425d3237
SD
3510 ASSERT3U(space_map_allocated(
3511 tvd->vdev_checkpoint_sm), !=, 0);
d2734cce
SD
3512 error = ZFS_ERR_CHECKPOINT_EXISTS;
3513 }
3514
428870ff
BB
3515 spa_vdev_state_enter(spa, SCL_ALLOC);
3516
3517 /*
3518 * Check to see if the config has changed.
3519 */
3520 if (error || generation != spa->spa_config_generation) {
3521 metaslab_group_activate(mg);
3522 if (error)
3523 return (spa_vdev_state_exit(spa,
3524 vd, error));
3525 (void) spa_vdev_state_exit(spa, vd, 0);
3526 goto top;
3527 }
c99c9001 3528 ASSERT0(tvd->vdev_stat.vs_alloc);
428870ff
BB
3529 }
3530
34dc7c2f
BB
3531 /*
3532 * Offline this device and reopen its top-level vdev.
9babb374
BB
3533 * If the top-level vdev is a log device then just offline
3534 * it. Otherwise, if this action results in the top-level
3535 * vdev becoming unusable, undo it and fail the request.
34dc7c2f
BB
3536 */
3537 vd->vdev_offline = B_TRUE;
9babb374
BB
3538 vdev_reopen(tvd);
3539
3540 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3541 vdev_is_dead(tvd)) {
34dc7c2f 3542 vd->vdev_offline = B_FALSE;
9babb374 3543 vdev_reopen(tvd);
b128c09f 3544 return (spa_vdev_state_exit(spa, NULL, EBUSY));
34dc7c2f 3545 }
428870ff
BB
3546
3547 /*
3548 * Add the device back into the metaslab rotor so that
3549 * once we online the device it's open for business.
3550 */
3551 if (tvd->vdev_islog && mg != NULL)
3552 metaslab_group_activate(mg);
34dc7c2f
BB
3553 }
3554
b128c09f 3555 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
34dc7c2f 3556
428870ff
BB
3557 return (spa_vdev_state_exit(spa, vd, 0));
3558}
9babb374 3559
428870ff
BB
3560int
3561vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3562{
3563 int error;
9babb374 3564
428870ff
BB
3565 mutex_enter(&spa->spa_vdev_top_lock);
3566 error = vdev_offline_locked(spa, guid, flags);
3567 mutex_exit(&spa->spa_vdev_top_lock);
3568
3569 return (error);
34dc7c2f
BB
3570}
3571
3572/*
3573 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3574 * vdev_offline(), we assume the spa config is locked. We also clear all
3575 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
34dc7c2f
BB
3576 */
3577void
b128c09f 3578vdev_clear(spa_t *spa, vdev_t *vd)
34dc7c2f 3579{
b128c09f
BB
3580 vdev_t *rvd = spa->spa_root_vdev;
3581
3582 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
34dc7c2f
BB
3583
3584 if (vd == NULL)
b128c09f 3585 vd = rvd;
34dc7c2f
BB
3586
3587 vd->vdev_stat.vs_read_errors = 0;
3588 vd->vdev_stat.vs_write_errors = 0;
3589 vd->vdev_stat.vs_checksum_errors = 0;
ad796b8a 3590 vd->vdev_stat.vs_slow_ios = 0;
34dc7c2f 3591
1c27024e 3592 for (int c = 0; c < vd->vdev_children; c++)
b128c09f 3593 vdev_clear(spa, vd->vdev_child[c]);
34dc7c2f 3594
a1d477c2
MA
3595 /*
3596 * It makes no sense to "clear" an indirect vdev.
3597 */
3598 if (!vdev_is_concrete(vd))
3599 return;
3600
34dc7c2f 3601 /*
b128c09f
BB
3602 * If we're in the FAULTED state or have experienced failed I/O, then
3603 * clear the persistent state and attempt to reopen the device. We
3604 * also mark the vdev config dirty, so that the new faulted state is
3605 * written out to disk.
34dc7c2f 3606 */
b128c09f
BB
3607 if (vd->vdev_faulted || vd->vdev_degraded ||
3608 !vdev_readable(vd) || !vdev_writeable(vd)) {
428870ff 3609 /*
4e33ba4c 3610 * When reopening in response to a clear event, it may be due to
428870ff
BB
3611 * a fmadm repair request. In this case, if the device is
3612 * still broken, we want to still post the ereport again.
3613 */
3614 vd->vdev_forcefault = B_TRUE;
3615
572e2857 3616 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
b128c09f
BB
3617 vd->vdev_cant_read = B_FALSE;
3618 vd->vdev_cant_write = B_FALSE;
4a283c7f 3619 vd->vdev_stat.vs_aux = 0;
b128c09f 3620
572e2857 3621 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
34dc7c2f 3622
428870ff
BB
3623 vd->vdev_forcefault = B_FALSE;
3624
572e2857 3625 if (vd != rvd && vdev_writeable(vd->vdev_top))
b128c09f
BB
3626 vdev_state_dirty(vd->vdev_top);
3627
80a91e74
TC
3628 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3629 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3630 spa_feature_is_enabled(spa,
3631 SPA_FEATURE_RESILVER_DEFER))
3632 vdev_set_deferred_resilver(spa, vd);
3633 else
3634 spa_async_request(spa, SPA_ASYNC_RESILVER);
3635 }
34dc7c2f 3636
12fa0466 3637 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
34dc7c2f 3638 }
428870ff
BB
3639
3640 /*
3641 * When clearing a FMA-diagnosed fault, we always want to
3642 * unspare the device, as we assume that the original spare was
3643 * done in response to the FMA fault.
3644 */
3645 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3646 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3647 vd->vdev_parent->vdev_child[0] == vd)
3648 vd->vdev_unspare = B_TRUE;
34dc7c2f
BB
3649}
3650
b128c09f
BB
3651boolean_t
3652vdev_is_dead(vdev_t *vd)
3653{
428870ff
BB
3654 /*
3655 * Holes and missing devices are always considered "dead".
3656 * This simplifies the code since we don't have to check for
3657 * these types of devices in the various code paths.
3658 * Instead we rely on the fact that we skip over dead devices
3659 * before issuing I/O to them.
3660 */
a1d477c2
MA
3661 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3662 vd->vdev_ops == &vdev_hole_ops ||
428870ff 3663 vd->vdev_ops == &vdev_missing_ops);
b128c09f
BB
3664}
3665
3666boolean_t
34dc7c2f
BB
3667vdev_readable(vdev_t *vd)
3668{
b128c09f 3669 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
34dc7c2f
BB
3670}
3671
b128c09f 3672boolean_t
34dc7c2f
BB
3673vdev_writeable(vdev_t *vd)
3674{
a1d477c2
MA
3675 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3676 vdev_is_concrete(vd));
34dc7c2f
BB
3677}
3678
b128c09f
BB
3679boolean_t
3680vdev_allocatable(vdev_t *vd)
34dc7c2f 3681{
fb5f0bc8
BB
3682 uint64_t state = vd->vdev_state;
3683
b128c09f 3684 /*
fb5f0bc8 3685 * We currently allow allocations from vdevs which may be in the
b128c09f
BB
3686 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3687 * fails to reopen then we'll catch it later when we're holding
fb5f0bc8
BB
3688 * the proper locks. Note that we have to get the vdev state
3689 * in a local variable because although it changes atomically,
3690 * we're asking two separate questions about it.
b128c09f 3691 */
fb5f0bc8 3692 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
a1d477c2 3693 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3dfb57a3 3694 vd->vdev_mg->mg_initialized);
34dc7c2f
BB
3695}
3696
b128c09f
BB
3697boolean_t
3698vdev_accessible(vdev_t *vd, zio_t *zio)
34dc7c2f 3699{
b128c09f 3700 ASSERT(zio->io_vd == vd);
34dc7c2f 3701
b128c09f
BB
3702 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3703 return (B_FALSE);
34dc7c2f 3704
b128c09f
BB
3705 if (zio->io_type == ZIO_TYPE_READ)
3706 return (!vd->vdev_cant_read);
34dc7c2f 3707
b128c09f
BB
3708 if (zio->io_type == ZIO_TYPE_WRITE)
3709 return (!vd->vdev_cant_write);
34dc7c2f 3710
b128c09f 3711 return (B_TRUE);
34dc7c2f
BB
3712}
3713
193a37cb
TH
3714static void
3715vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
34dc7c2f 3716{
193a37cb
TH
3717 int t;
3718 for (t = 0; t < ZIO_TYPES; t++) {
3719 vs->vs_ops[t] += cvs->vs_ops[t];
3720 vs->vs_bytes[t] += cvs->vs_bytes[t];
3721 }
34dc7c2f 3722
193a37cb
TH
3723 cvs->vs_scan_removing = cvd->vdev_removing;
3724}
f3a7f661 3725
193a37cb
TH
3726/*
3727 * Get extended stats
3728 */
3729static void
3730vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3731{
3732 int t, b;
3733 for (t = 0; t < ZIO_TYPES; t++) {
7e945072 3734 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
193a37cb 3735 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
7e945072
TH
3736
3737 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
193a37cb
TH
3738 vsx->vsx_total_histo[t][b] +=
3739 cvsx->vsx_total_histo[t][b];
3740 }
f38dfec3 3741 }
34dc7c2f 3742
193a37cb 3743 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
7e945072 3744 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
193a37cb
TH
3745 vsx->vsx_queue_histo[t][b] +=
3746 cvsx->vsx_queue_histo[t][b];
3747 }
3748 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3749 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
7e945072
TH
3750
3751 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3752 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3753
3754 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3755 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
193a37cb 3756 }
7e945072 3757
193a37cb
TH
3758}
3759
d2734cce
SD
3760boolean_t
3761vdev_is_spacemap_addressable(vdev_t *vd)
3762{
419ba591
SD
3763 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3764 return (B_TRUE);
3765
d2734cce 3766 /*
419ba591
SD
3767 * If double-word space map entries are not enabled we assume
3768 * 47 bits of the space map entry are dedicated to the entry's
3769 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3770 * to calculate the maximum address that can be described by a
3771 * space map entry for the given device.
d2734cce 3772 */
419ba591 3773 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
d2734cce
SD
3774
3775 if (shift >= 63) /* detect potential overflow */
3776 return (B_TRUE);
3777
3778 return (vd->vdev_asize < (1ULL << shift));
3779}
3780
193a37cb
TH
3781/*
3782 * Get statistics for the given vdev.
3783 */
3784static void
3785vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3786{
1c27024e 3787 int t;
34dc7c2f
BB
3788 /*
3789 * If we're getting stats on the root vdev, aggregate the I/O counts
3790 * over all top-level vdevs (i.e. the direct children of the root).
3791 */
193a37cb
TH
3792 if (!vd->vdev_ops->vdev_op_leaf) {
3793 if (vs) {
3794 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3795 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3796 }
3797 if (vsx)
3798 memset(vsx, 0, sizeof (*vsx));
3799
1c27024e 3800 for (int c = 0; c < vd->vdev_children; c++) {
193a37cb 3801 vdev_t *cvd = vd->vdev_child[c];
34dc7c2f 3802 vdev_stat_t *cvs = &cvd->vdev_stat;
193a37cb
TH
3803 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3804
3805 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3806 if (vs)
3807 vdev_get_child_stat(cvd, vs, cvs);
3808 if (vsx)
3809 vdev_get_child_stat_ex(cvd, vsx, cvsx);
34dc7c2f 3810
193a37cb
TH
3811 }
3812 } else {
3813 /*
3814 * We're a leaf. Just copy our ZIO active queue stats in. The
3815 * other leaf stats are updated in vdev_stat_update().
3816 */
3817 if (!vsx)
3818 return;
3819
3820 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3821
3822 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3823 vsx->vsx_active_queue[t] =
3824 vd->vdev_queue.vq_class[t].vqc_active;
3825 vsx->vsx_pend_queue[t] = avl_numnodes(
3826 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
34dc7c2f
BB
3827 }
3828 }
193a37cb
TH
3829}
3830
3831void
3832vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3833{
0f676dc2 3834 vdev_t *tvd = vd->vdev_top;
193a37cb
TH
3835 mutex_enter(&vd->vdev_stat_lock);
3836 if (vs) {
3837 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3838 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3839 vs->vs_state = vd->vdev_state;
3840 vs->vs_rsize = vdev_get_min_asize(vd);
619f0976 3841 if (vd->vdev_ops->vdev_op_leaf) {
193a37cb
TH
3842 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3843 VDEV_LABEL_END_SIZE;
619f0976
GW
3844 /*
3845 * Report intializing progress. Since we don't
3846 * have the initializing locks held, this is only
3847 * an estimate (although a fairly accurate one).
3848 */
3849 vs->vs_initialize_bytes_done =
3850 vd->vdev_initialize_bytes_done;
3851 vs->vs_initialize_bytes_est =
3852 vd->vdev_initialize_bytes_est;
3853 vs->vs_initialize_state = vd->vdev_initialize_state;
3854 vs->vs_initialize_action_time =
3855 vd->vdev_initialize_action_time;
3856 }
0f676dc2
GM
3857 /*
3858 * Report expandable space on top-level, non-auxillary devices
3859 * only. The expandable space is reported in terms of metaslab
3860 * sized units since that determines how much space the pool
3861 * can expand.
3862 */
3863 if (vd->vdev_aux == NULL && tvd != NULL) {
3864 vs->vs_esize = P2ALIGN(
3865 vd->vdev_max_asize - vd->vdev_asize,
3866 1ULL << tvd->vdev_ms_shift);
3867 }
193a37cb 3868 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
a1d477c2 3869 vdev_is_concrete(vd)) {
cc99f275
DB
3870 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3871 vd->vdev_mg->mg_fragmentation : 0;
193a37cb 3872 }
80a91e74
TC
3873 if (vd->vdev_ops->vdev_op_leaf)
3874 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
193a37cb
TH
3875 }
3876
3877 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3878 vdev_get_stats_ex_impl(vd, vs, vsx);
f3a7f661 3879 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
3880}
3881
193a37cb
TH
3882void
3883vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3884{
3885 return (vdev_get_stats_ex(vd, vs, NULL));
3886}
3887
34dc7c2f
BB
3888void
3889vdev_clear_stats(vdev_t *vd)
3890{
3891 mutex_enter(&vd->vdev_stat_lock);
3892 vd->vdev_stat.vs_space = 0;
3893 vd->vdev_stat.vs_dspace = 0;
3894 vd->vdev_stat.vs_alloc = 0;
3895 mutex_exit(&vd->vdev_stat_lock);
3896}
3897
428870ff
BB
3898void
3899vdev_scan_stat_init(vdev_t *vd)
3900{
3901 vdev_stat_t *vs = &vd->vdev_stat;
3902
1c27024e 3903 for (int c = 0; c < vd->vdev_children; c++)
428870ff
BB
3904 vdev_scan_stat_init(vd->vdev_child[c]);
3905
3906 mutex_enter(&vd->vdev_stat_lock);
3907 vs->vs_scan_processed = 0;
3908 mutex_exit(&vd->vdev_stat_lock);
3909}
3910
34dc7c2f 3911void
b128c09f 3912vdev_stat_update(zio_t *zio, uint64_t psize)
34dc7c2f 3913{
fb5f0bc8
BB
3914 spa_t *spa = zio->io_spa;
3915 vdev_t *rvd = spa->spa_root_vdev;
b128c09f 3916 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
34dc7c2f
BB
3917 vdev_t *pvd;
3918 uint64_t txg = zio->io_txg;
3919 vdev_stat_t *vs = &vd->vdev_stat;
193a37cb 3920 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
34dc7c2f
BB
3921 zio_type_t type = zio->io_type;
3922 int flags = zio->io_flags;
3923
b128c09f
BB
3924 /*
3925 * If this i/o is a gang leader, it didn't do any actual work.
3926 */
3927 if (zio->io_gang_tree)
3928 return;
3929
34dc7c2f 3930 if (zio->io_error == 0) {
b128c09f
BB
3931 /*
3932 * If this is a root i/o, don't count it -- we've already
3933 * counted the top-level vdevs, and vdev_get_stats() will
3934 * aggregate them when asked. This reduces contention on
3935 * the root vdev_stat_lock and implicitly handles blocks
3936 * that compress away to holes, for which there is no i/o.
3937 * (Holes never create vdev children, so all the counters
3938 * remain zero, which is what we want.)
3939 *
3940 * Note: this only applies to successful i/o (io_error == 0)
3941 * because unlike i/o counts, errors are not additive.
3942 * When reading a ditto block, for example, failure of
3943 * one top-level vdev does not imply a root-level error.
3944 */
3945 if (vd == rvd)
3946 return;
3947
3948 ASSERT(vd == zio->io_vd);
fb5f0bc8
BB
3949
3950 if (flags & ZIO_FLAG_IO_BYPASS)
3951 return;
3952
3953 mutex_enter(&vd->vdev_stat_lock);
3954
b128c09f 3955 if (flags & ZIO_FLAG_IO_REPAIR) {
572e2857 3956 if (flags & ZIO_FLAG_SCAN_THREAD) {
428870ff
BB
3957 dsl_scan_phys_t *scn_phys =
3958 &spa->spa_dsl_pool->dp_scan->scn_phys;
3959 uint64_t *processed = &scn_phys->scn_processed;
3960
3961 /* XXX cleanup? */
3962 if (vd->vdev_ops->vdev_op_leaf)
3963 atomic_add_64(processed, psize);
3964 vs->vs_scan_processed += psize;
3965 }
3966
fb5f0bc8 3967 if (flags & ZIO_FLAG_SELF_HEAL)
b128c09f 3968 vs->vs_self_healed += psize;
34dc7c2f 3969 }
fb5f0bc8 3970
193a37cb
TH
3971 /*
3972 * The bytes/ops/histograms are recorded at the leaf level and
3973 * aggregated into the higher level vdevs in vdev_get_stats().
3974 */
4eb0db42
TH
3975 if (vd->vdev_ops->vdev_op_leaf &&
3976 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
193a37cb
TH
3977
3978 vs->vs_ops[type]++;
3979 vs->vs_bytes[type] += psize;
3980
7e945072
TH
3981 if (flags & ZIO_FLAG_DELEGATED) {
3982 vsx->vsx_agg_histo[zio->io_priority]
3983 [RQ_HISTO(zio->io_size)]++;
3984 } else {
3985 vsx->vsx_ind_histo[zio->io_priority]
3986 [RQ_HISTO(zio->io_size)]++;
3987 }
3988
193a37cb
TH
3989 if (zio->io_delta && zio->io_delay) {
3990 vsx->vsx_queue_histo[zio->io_priority]
7e945072 3991 [L_HISTO(zio->io_delta - zio->io_delay)]++;
193a37cb 3992 vsx->vsx_disk_histo[type]
7e945072 3993 [L_HISTO(zio->io_delay)]++;
193a37cb 3994 vsx->vsx_total_histo[type]
7e945072 3995 [L_HISTO(zio->io_delta)]++;
193a37cb
TH
3996 }
3997 }
fb5f0bc8
BB
3998
3999 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f
BB
4000 return;
4001 }
4002
4003 if (flags & ZIO_FLAG_SPECULATIVE)
4004 return;
4005
9babb374
BB
4006 /*
4007 * If this is an I/O error that is going to be retried, then ignore the
4008 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4009 * hard errors, when in reality they can happen for any number of
4010 * innocuous reasons (bus resets, MPxIO link failure, etc).
4011 */
4012 if (zio->io_error == EIO &&
4013 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4014 return;
4015
428870ff
BB
4016 /*
4017 * Intent logs writes won't propagate their error to the root
4018 * I/O so don't mark these types of failures as pool-level
4019 * errors.
4020 */
4021 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4022 return;
4023
b128c09f 4024 mutex_enter(&vd->vdev_stat_lock);
9babb374 4025 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
b128c09f
BB
4026 if (zio->io_error == ECKSUM)
4027 vs->vs_checksum_errors++;
4028 else
4029 vs->vs_read_errors++;
34dc7c2f 4030 }
9babb374 4031 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
b128c09f
BB
4032 vs->vs_write_errors++;
4033 mutex_exit(&vd->vdev_stat_lock);
34dc7c2f 4034
a1d477c2
MA
4035 if (spa->spa_load_state == SPA_LOAD_NONE &&
4036 type == ZIO_TYPE_WRITE && txg != 0 &&
fb5f0bc8 4037 (!(flags & ZIO_FLAG_IO_REPAIR) ||
572e2857 4038 (flags & ZIO_FLAG_SCAN_THREAD) ||
428870ff 4039 spa->spa_claiming)) {
fb5f0bc8 4040 /*
428870ff
BB
4041 * This is either a normal write (not a repair), or it's
4042 * a repair induced by the scrub thread, or it's a repair
4043 * made by zil_claim() during spa_load() in the first txg.
4044 * In the normal case, we commit the DTL change in the same
4045 * txg as the block was born. In the scrub-induced repair
4046 * case, we know that scrubs run in first-pass syncing context,
4047 * so we commit the DTL change in spa_syncing_txg(spa).
4048 * In the zil_claim() case, we commit in spa_first_txg(spa).
fb5f0bc8
BB
4049 *
4050 * We currently do not make DTL entries for failed spontaneous
4051 * self-healing writes triggered by normal (non-scrubbing)
4052 * reads, because we have no transactional context in which to
4053 * do so -- and it's not clear that it'd be desirable anyway.
4054 */
4055 if (vd->vdev_ops->vdev_op_leaf) {
4056 uint64_t commit_txg = txg;
572e2857 4057 if (flags & ZIO_FLAG_SCAN_THREAD) {
fb5f0bc8
BB
4058 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4059 ASSERT(spa_sync_pass(spa) == 1);
4060 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
428870ff
BB
4061 commit_txg = spa_syncing_txg(spa);
4062 } else if (spa->spa_claiming) {
4063 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4064 commit_txg = spa_first_txg(spa);
fb5f0bc8 4065 }
428870ff 4066 ASSERT(commit_txg >= spa_syncing_txg(spa));
fb5f0bc8 4067 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
34dc7c2f 4068 return;
fb5f0bc8
BB
4069 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4070 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4071 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
34dc7c2f 4072 }
fb5f0bc8
BB
4073 if (vd != rvd)
4074 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
34dc7c2f
BB
4075 }
4076}
4077
cc99f275
DB
4078int64_t
4079vdev_deflated_space(vdev_t *vd, int64_t space)
4080{
4081 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4082 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4083
4084 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4085}
4086
34dc7c2f 4087/*
cc99f275 4088 * Update the in-core space usage stats for this vdev and the root vdev.
34dc7c2f
BB
4089 */
4090void
428870ff
BB
4091vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4092 int64_t space_delta)
34dc7c2f 4093{
cc99f275 4094 int64_t dspace_delta;
34dc7c2f
BB
4095 spa_t *spa = vd->vdev_spa;
4096 vdev_t *rvd = spa->spa_root_vdev;
4097
4098 ASSERT(vd == vd->vdev_top);
4099
4100 /*
4101 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4102 * factor. We must calculate this here and not at the root vdev
4103 * because the root vdev's psize-to-asize is simply the max of its
4104 * childrens', thus not accurate enough for us.
4105 */
cc99f275 4106 dspace_delta = vdev_deflated_space(vd, space_delta);
34dc7c2f
BB
4107
4108 mutex_enter(&vd->vdev_stat_lock);
7558997d
SD
4109 /* ensure we won't underflow */
4110 if (alloc_delta < 0) {
4111 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4112 }
4113
34dc7c2f 4114 vd->vdev_stat.vs_alloc += alloc_delta;
428870ff 4115 vd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
4116 vd->vdev_stat.vs_dspace += dspace_delta;
4117 mutex_exit(&vd->vdev_stat_lock);
4118
cc99f275
DB
4119 /* every class but log contributes to root space stats */
4120 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
7558997d 4121 ASSERT(!vd->vdev_isl2cache);
34dc7c2f 4122 mutex_enter(&rvd->vdev_stat_lock);
34dc7c2f 4123 rvd->vdev_stat.vs_alloc += alloc_delta;
428870ff 4124 rvd->vdev_stat.vs_space += space_delta;
34dc7c2f
BB
4125 rvd->vdev_stat.vs_dspace += dspace_delta;
4126 mutex_exit(&rvd->vdev_stat_lock);
4127 }
cc99f275 4128 /* Note: metaslab_class_space_update moved to metaslab_space_update */
34dc7c2f
BB
4129}
4130
4131/*
4132 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4133 * so that it will be written out next time the vdev configuration is synced.
4134 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4135 */
4136void
4137vdev_config_dirty(vdev_t *vd)
4138{
4139 spa_t *spa = vd->vdev_spa;
4140 vdev_t *rvd = spa->spa_root_vdev;
4141 int c;
4142
572e2857
BB
4143 ASSERT(spa_writeable(spa));
4144
34dc7c2f 4145 /*
9babb374
BB
4146 * If this is an aux vdev (as with l2cache and spare devices), then we
4147 * update the vdev config manually and set the sync flag.
b128c09f
BB
4148 */
4149 if (vd->vdev_aux != NULL) {
4150 spa_aux_vdev_t *sav = vd->vdev_aux;
4151 nvlist_t **aux;
4152 uint_t naux;
4153
4154 for (c = 0; c < sav->sav_count; c++) {
4155 if (sav->sav_vdevs[c] == vd)
4156 break;
4157 }
4158
4159 if (c == sav->sav_count) {
4160 /*
4161 * We're being removed. There's nothing more to do.
4162 */
4163 ASSERT(sav->sav_sync == B_TRUE);
4164 return;
4165 }
4166
4167 sav->sav_sync = B_TRUE;
4168
9babb374
BB
4169 if (nvlist_lookup_nvlist_array(sav->sav_config,
4170 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4171 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4172 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4173 }
b128c09f
BB
4174
4175 ASSERT(c < naux);
4176
4177 /*
4178 * Setting the nvlist in the middle if the array is a little
4179 * sketchy, but it will work.
4180 */
4181 nvlist_free(aux[c]);
428870ff 4182 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
b128c09f
BB
4183
4184 return;
4185 }
4186
4187 /*
4188 * The dirty list is protected by the SCL_CONFIG lock. The caller
4189 * must either hold SCL_CONFIG as writer, or must be the sync thread
4190 * (which holds SCL_CONFIG as reader). There's only one sync thread,
34dc7c2f
BB
4191 * so this is sufficient to ensure mutual exclusion.
4192 */
b128c09f
BB
4193 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4194 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4195 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f
BB
4196
4197 if (vd == rvd) {
4198 for (c = 0; c < rvd->vdev_children; c++)
4199 vdev_config_dirty(rvd->vdev_child[c]);
4200 } else {
4201 ASSERT(vd == vd->vdev_top);
4202
428870ff 4203 if (!list_link_active(&vd->vdev_config_dirty_node) &&
a1d477c2 4204 vdev_is_concrete(vd)) {
b128c09f 4205 list_insert_head(&spa->spa_config_dirty_list, vd);
a1d477c2 4206 }
34dc7c2f
BB
4207 }
4208}
4209
4210void
4211vdev_config_clean(vdev_t *vd)
4212{
4213 spa_t *spa = vd->vdev_spa;
4214
b128c09f
BB
4215 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4216 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4217 spa_config_held(spa, SCL_CONFIG, RW_READER)));
34dc7c2f 4218
b128c09f
BB
4219 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4220 list_remove(&spa->spa_config_dirty_list, vd);
34dc7c2f
BB
4221}
4222
b128c09f
BB
4223/*
4224 * Mark a top-level vdev's state as dirty, so that the next pass of
4225 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4226 * the state changes from larger config changes because they require
4227 * much less locking, and are often needed for administrative actions.
4228 */
4229void
4230vdev_state_dirty(vdev_t *vd)
4231{
4232 spa_t *spa = vd->vdev_spa;
4233
572e2857 4234 ASSERT(spa_writeable(spa));
b128c09f
BB
4235 ASSERT(vd == vd->vdev_top);
4236
4237 /*
4238 * The state list is protected by the SCL_STATE lock. The caller
4239 * must either hold SCL_STATE as writer, or must be the sync thread
4240 * (which holds SCL_STATE as reader). There's only one sync thread,
4241 * so this is sufficient to ensure mutual exclusion.
4242 */
4243 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4244 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4245 spa_config_held(spa, SCL_STATE, RW_READER)));
4246
a1d477c2
MA
4247 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4248 vdev_is_concrete(vd))
b128c09f
BB
4249 list_insert_head(&spa->spa_state_dirty_list, vd);
4250}
4251
4252void
4253vdev_state_clean(vdev_t *vd)
4254{
4255 spa_t *spa = vd->vdev_spa;
4256
4257 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4258 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4259 spa_config_held(spa, SCL_STATE, RW_READER)));
4260
4261 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4262 list_remove(&spa->spa_state_dirty_list, vd);
4263}
4264
4265/*
4266 * Propagate vdev state up from children to parent.
4267 */
34dc7c2f
BB
4268void
4269vdev_propagate_state(vdev_t *vd)
4270{
fb5f0bc8
BB
4271 spa_t *spa = vd->vdev_spa;
4272 vdev_t *rvd = spa->spa_root_vdev;
34dc7c2f
BB
4273 int degraded = 0, faulted = 0;
4274 int corrupted = 0;
34dc7c2f
BB
4275 vdev_t *child;
4276
4277 if (vd->vdev_children > 0) {
1c27024e 4278 for (int c = 0; c < vd->vdev_children; c++) {
34dc7c2f 4279 child = vd->vdev_child[c];
b128c09f 4280
428870ff 4281 /*
a1d477c2
MA
4282 * Don't factor holes or indirect vdevs into the
4283 * decision.
428870ff 4284 */
a1d477c2 4285 if (!vdev_is_concrete(child))
428870ff
BB
4286 continue;
4287
b128c09f 4288 if (!vdev_readable(child) ||
fb5f0bc8 4289 (!vdev_writeable(child) && spa_writeable(spa))) {
b128c09f
BB
4290 /*
4291 * Root special: if there is a top-level log
4292 * device, treat the root vdev as if it were
4293 * degraded.
4294 */
4295 if (child->vdev_islog && vd == rvd)
4296 degraded++;
4297 else
4298 faulted++;
4299 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
34dc7c2f 4300 degraded++;
b128c09f 4301 }
34dc7c2f
BB
4302
4303 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4304 corrupted++;
4305 }
4306
4307 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4308
4309 /*
b128c09f 4310 * Root special: if there is a top-level vdev that cannot be
34dc7c2f
BB
4311 * opened due to corrupted metadata, then propagate the root
4312 * vdev's aux state as 'corrupt' rather than 'insufficient
4313 * replicas'.
4314 */
4315 if (corrupted && vd == rvd &&
4316 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4317 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4318 VDEV_AUX_CORRUPT_DATA);
4319 }
4320
b128c09f 4321 if (vd->vdev_parent)
34dc7c2f
BB
4322 vdev_propagate_state(vd->vdev_parent);
4323}
4324
4325/*
4326 * Set a vdev's state. If this is during an open, we don't update the parent
4327 * state, because we're in the process of opening children depth-first.
4328 * Otherwise, we propagate the change to the parent.
4329 *
4330 * If this routine places a device in a faulted state, an appropriate ereport is
4331 * generated.
4332 */
4333void
4334vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4335{
4336 uint64_t save_state;
b128c09f 4337 spa_t *spa = vd->vdev_spa;
34dc7c2f
BB
4338
4339 if (state == vd->vdev_state) {
976246fa
DB
4340 /*
4341 * Since vdev_offline() code path is already in an offline
4342 * state we can miss a statechange event to OFFLINE. Check
4343 * the previous state to catch this condition.
4344 */
4345 if (vd->vdev_ops->vdev_op_leaf &&
4346 (state == VDEV_STATE_OFFLINE) &&
4347 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4348 /* post an offline state change */
4349 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4350 }
34dc7c2f
BB
4351 vd->vdev_stat.vs_aux = aux;
4352 return;
4353 }
4354
4355 save_state = vd->vdev_state;
4356
4357 vd->vdev_state = state;
4358 vd->vdev_stat.vs_aux = aux;
4359
4360 /*
4361 * If we are setting the vdev state to anything but an open state, then
428870ff
BB
4362 * always close the underlying device unless the device has requested
4363 * a delayed close (i.e. we're about to remove or fault the device).
4364 * Otherwise, we keep accessible but invalid devices open forever.
4365 * We don't call vdev_close() itself, because that implies some extra
4366 * checks (offline, etc) that we don't want here. This is limited to
4367 * leaf devices, because otherwise closing the device will affect other
4368 * children.
34dc7c2f 4369 */
428870ff
BB
4370 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4371 vd->vdev_ops->vdev_op_leaf)
34dc7c2f
BB
4372 vd->vdev_ops->vdev_op_close(vd);
4373
4374 if (vd->vdev_removed &&
4375 state == VDEV_STATE_CANT_OPEN &&
4376 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4377 /*
4378 * If the previous state is set to VDEV_STATE_REMOVED, then this
4379 * device was previously marked removed and someone attempted to
4380 * reopen it. If this failed due to a nonexistent device, then
4381 * keep the device in the REMOVED state. We also let this be if
4382 * it is one of our special test online cases, which is only
4383 * attempting to online the device and shouldn't generate an FMA
4384 * fault.
4385 */
4386 vd->vdev_state = VDEV_STATE_REMOVED;
4387 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4388 } else if (state == VDEV_STATE_REMOVED) {
34dc7c2f
BB
4389 vd->vdev_removed = B_TRUE;
4390 } else if (state == VDEV_STATE_CANT_OPEN) {
4391 /*
572e2857
BB
4392 * If we fail to open a vdev during an import or recovery, we
4393 * mark it as "not available", which signifies that it was
4394 * never there to begin with. Failure to open such a device
4395 * is not considered an error.
34dc7c2f 4396 */
572e2857
BB
4397 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4398 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
34dc7c2f
BB
4399 vd->vdev_ops->vdev_op_leaf)
4400 vd->vdev_not_present = 1;
4401
4402 /*
4403 * Post the appropriate ereport. If the 'prevstate' field is
4404 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4405 * that this is part of a vdev_reopen(). In this case, we don't
4406 * want to post the ereport if the device was already in the
4407 * CANT_OPEN state beforehand.
4408 *
4409 * If the 'checkremove' flag is set, then this is an attempt to
4410 * online the device in response to an insertion event. If we
4411 * hit this case, then we have detected an insertion event for a
4412 * faulted or offline device that wasn't in the removed state.
4413 * In this scenario, we don't post an ereport because we are
4414 * about to replace the device, or attempt an online with
4415 * vdev_forcefault, which will generate the fault for us.
4416 */
4417 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4418 !vd->vdev_not_present && !vd->vdev_checkremove &&
b128c09f 4419 vd != spa->spa_root_vdev) {
34dc7c2f
BB
4420 const char *class;
4421
4422 switch (aux) {
4423 case VDEV_AUX_OPEN_FAILED:
4424 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4425 break;
4426 case VDEV_AUX_CORRUPT_DATA:
4427 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4428 break;
4429 case VDEV_AUX_NO_REPLICAS:
4430 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4431 break;
4432 case VDEV_AUX_BAD_GUID_SUM:
4433 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4434 break;
4435 case VDEV_AUX_TOO_SMALL:
4436 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4437 break;
4438 case VDEV_AUX_BAD_LABEL:
4439 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4440 break;
ff61d1a4 4441 case VDEV_AUX_BAD_ASHIFT:
4442 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4443 break;
34dc7c2f
BB
4444 default:
4445 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4446 }
4447
b5256303
TC
4448 zfs_ereport_post(class, spa, vd, NULL, NULL,
4449 save_state, 0);
34dc7c2f
BB
4450 }
4451
4452 /* Erase any notion of persistent removed state */
4453 vd->vdev_removed = B_FALSE;
4454 } else {
4455 vd->vdev_removed = B_FALSE;
4456 }
4457
d02ca379
DB
4458 /*
4459 * Notify ZED of any significant state-change on a leaf vdev.
4460 *
d02ca379 4461 */
6078881a
TH
4462 if (vd->vdev_ops->vdev_op_leaf) {
4463 /* preserve original state from a vdev_reopen() */
4464 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4465 (vd->vdev_prevstate != vd->vdev_state) &&
4466 (save_state <= VDEV_STATE_CLOSED))
4467 save_state = vd->vdev_prevstate;
4468
4469 /* filter out state change due to initial vdev_open */
4470 if (save_state > VDEV_STATE_CLOSED)
4471 zfs_post_state_change(spa, vd, save_state);
d02ca379
DB
4472 }
4473
9babb374
BB
4474 if (!isopen && vd->vdev_parent)
4475 vdev_propagate_state(vd->vdev_parent);
34dc7c2f 4476}
b128c09f 4477
6cb8e530
PZ
4478boolean_t
4479vdev_children_are_offline(vdev_t *vd)
4480{
4481 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4482
4483 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4484 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4485 return (B_FALSE);
4486 }
4487
4488 return (B_TRUE);
4489}
4490
b128c09f
BB
4491/*
4492 * Check the vdev configuration to ensure that it's capable of supporting
e550644f 4493 * a root pool. We do not support partial configuration.
b128c09f
BB
4494 */
4495boolean_t
4496vdev_is_bootable(vdev_t *vd)
4497{
b128c09f 4498 if (!vd->vdev_ops->vdev_op_leaf) {
e550644f 4499 const char *vdev_type = vd->vdev_ops->vdev_op_type;
b128c09f 4500
a1d477c2
MA
4501 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4502 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
b128c09f 4503 return (B_FALSE);
a1d477c2 4504 }
b128c09f
BB
4505 }
4506
e550644f 4507 for (int c = 0; c < vd->vdev_children; c++) {
b128c09f
BB
4508 if (!vdev_is_bootable(vd->vdev_child[c]))
4509 return (B_FALSE);
4510 }
4511 return (B_TRUE);
4512}
9babb374 4513
a1d477c2
MA
4514boolean_t
4515vdev_is_concrete(vdev_t *vd)
4516{
4517 vdev_ops_t *ops = vd->vdev_ops;
4518 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4519 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4520 return (B_FALSE);
4521 } else {
4522 return (B_TRUE);
4523 }
4524}
4525
572e2857
BB
4526/*
4527 * Determine if a log device has valid content. If the vdev was
4528 * removed or faulted in the MOS config then we know that
4529 * the content on the log device has already been written to the pool.
4530 */
4531boolean_t
4532vdev_log_state_valid(vdev_t *vd)
4533{
4534 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4535 !vd->vdev_removed)
4536 return (B_TRUE);
4537
1c27024e 4538 for (int c = 0; c < vd->vdev_children; c++)
572e2857
BB
4539 if (vdev_log_state_valid(vd->vdev_child[c]))
4540 return (B_TRUE);
4541
4542 return (B_FALSE);
4543}
4544
9babb374
BB
4545/*
4546 * Expand a vdev if possible.
4547 */
4548void
4549vdev_expand(vdev_t *vd, uint64_t txg)
4550{
4551 ASSERT(vd->vdev_top == vd);
4552 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
7637ef8d 4553 ASSERT(vdev_is_concrete(vd));
9babb374 4554
a1d477c2
MA
4555 vdev_set_deflate_ratio(vd);
4556
cc99f275
DB
4557 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4558 vdev_is_concrete(vd)) {
4559 vdev_metaslab_group_create(vd);
9babb374
BB
4560 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4561 vdev_config_dirty(vd);
4562 }
4563}
428870ff
BB
4564
4565/*
4566 * Split a vdev.
4567 */
4568void
4569vdev_split(vdev_t *vd)
4570{
4571 vdev_t *cvd, *pvd = vd->vdev_parent;
4572
4573 vdev_remove_child(pvd, vd);
4574 vdev_compact_children(pvd);
4575
4576 cvd = pvd->vdev_child[0];
4577 if (pvd->vdev_children == 1) {
4578 vdev_remove_parent(cvd);
4579 cvd->vdev_splitting = B_TRUE;
4580 }
4581 vdev_propagate_state(cvd);
4582}
c28b2279 4583
cc92e9d0 4584void
8fb1ede1 4585vdev_deadman(vdev_t *vd, char *tag)
cc92e9d0 4586{
1c27024e 4587 for (int c = 0; c < vd->vdev_children; c++) {
cc92e9d0
GW
4588 vdev_t *cvd = vd->vdev_child[c];
4589
8fb1ede1 4590 vdev_deadman(cvd, tag);
cc92e9d0
GW
4591 }
4592
4593 if (vd->vdev_ops->vdev_op_leaf) {
4594 vdev_queue_t *vq = &vd->vdev_queue;
4595
4596 mutex_enter(&vq->vq_lock);
e8b96c60 4597 if (avl_numnodes(&vq->vq_active_tree) > 0) {
cc92e9d0
GW
4598 spa_t *spa = vd->vdev_spa;
4599 zio_t *fio;
4600 uint64_t delta;
4601
8fb1ede1
BB
4602 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4603 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4604
cc92e9d0
GW
4605 /*
4606 * Look at the head of all the pending queues,
4607 * if any I/O has been outstanding for longer than
8fb1ede1 4608 * the spa_deadman_synctime invoke the deadman logic.
cc92e9d0 4609 */
e8b96c60 4610 fio = avl_first(&vq->vq_active_tree);
cb682a17 4611 delta = gethrtime() - fio->io_timestamp;
8fb1ede1
BB
4612 if (delta > spa_deadman_synctime(spa))
4613 zio_deadman(fio, tag);
cc92e9d0
GW
4614 }
4615 mutex_exit(&vq->vq_lock);
4616 }
4617}
4618
80a91e74
TC
4619void
4620vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4621{
4021ba4c
TC
4622 for (uint64_t i = 0; i < vd->vdev_children; i++)
4623 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4624
4625 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4626 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4627 return;
4628 }
4629
80a91e74
TC
4630 vd->vdev_resilver_deferred = B_TRUE;
4631 spa->spa_resilver_deferred = B_TRUE;
4632}
4633
93ce2b4c 4634#if defined(_KERNEL)
c28b2279
BB
4635EXPORT_SYMBOL(vdev_fault);
4636EXPORT_SYMBOL(vdev_degrade);
4637EXPORT_SYMBOL(vdev_online);
4638EXPORT_SYMBOL(vdev_offline);
4639EXPORT_SYMBOL(vdev_clear);
4ea3f864 4640/* BEGIN CSTYLED */
c853f382
SD
4641module_param(zfs_vdev_default_ms_count, int, 0644);
4642MODULE_PARM_DESC(zfs_vdev_default_ms_count,
e4e94ca3 4643 "Target number of metaslabs per top-level vdev");
80d52c39 4644
c853f382
SD
4645module_param(zfs_vdev_min_ms_count, int, 0644);
4646MODULE_PARM_DESC(zfs_vdev_min_ms_count,
d2734cce
SD
4647 "Minimum number of metaslabs per top-level vdev");
4648
c853f382
SD
4649module_param(zfs_vdev_ms_count_limit, int, 0644);
4650MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
e4e94ca3
DB
4651 "Practical upper limit of total metaslabs per top-level vdev");
4652
ad796b8a
TH
4653module_param(zfs_slow_io_events_per_second, uint, 0644);
4654MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4655 "Rate limit slow IO (delay) events to this many per second");
80d52c39 4656
ad796b8a
TH
4657module_param(zfs_checksum_events_per_second, uint, 0644);
4658MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
80d52c39
TH
4659 "to this many checksum errors per second (do not set below zed"
4660 "threshold).");
02638a30
TC
4661
4662module_param(zfs_scan_ignore_errors, int, 0644);
4663MODULE_PARM_DESC(zfs_scan_ignore_errors,
4664 "Ignore errors during resilver/scrub");
6cb8e530
PZ
4665
4666module_param(vdev_validate_skip, int, 0644);
4667MODULE_PARM_DESC(vdev_validate_skip,
4668 "Bypass vdev_validate()");
53b1f5ea
PS
4669
4670module_param(zfs_nocacheflush, int, 0644);
4671MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4ea3f864 4672/* END CSTYLED */
c28b2279 4673#endif