]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Don't panic on unencrypted block in encrypted dataset
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59
60 static kstat_t *dbuf_ksp;
61
62 typedef struct dbuf_stats {
63 /*
64 * Various statistics about the size of the dbuf cache.
65 */
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
69 /*
70 * Statistics regarding the bounds on the dbuf cache size.
71 */
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
75 /*
76 * Total number of dbuf cache evictions that have occurred.
77 */
78 kstat_named_t cache_total_evicts;
79 /*
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
82 */
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 /*
86 * Statistics about the dbuf hash table.
87 */
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
93 /*
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
96 */
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
99 /*
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
102 */
103 kstat_named_t hash_insert_race;
104 /*
105 * Number of entries in the hash table dbuf and mutex arrays.
106 */
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
109 /*
110 * Statistics about the size of the metadata dbuf cache.
111 */
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
115 /*
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
119 */
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
147 };
148
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val);
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val));
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1);
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1);
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
176 }
177
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
181
182 /*
183 * Global data structures and functions for the dbuf cache.
184 */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t cache;
226 zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243
244 /*
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
253 *
254 * The dbuf cache:
255 * (max size)
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
258 * | | | |
259 * | | | |
260 * | | | |
261 * | | | |
262 * +----------------------------------------+----------+----------+
263 * stop signal evict
264 * evicting eviction directly
265 * thread
266 *
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
280 * mark.
281 */
282
283 /*
284 * The percentage above and below the maximum cache size.
285 */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288
289 static int
290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 (void) unused, (void) kmflag;
293 dmu_buf_impl_t *db = vdb;
294 memset(db, 0, sizeof (dmu_buf_impl_t));
295
296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 multilist_link_init(&db->db_cache_link);
300 zfs_refcount_create(&db->db_holds);
301
302 return (0);
303 }
304
305 static void
306 dbuf_dest(void *vdb, void *unused)
307 {
308 (void) unused;
309 dmu_buf_impl_t *db = vdb;
310 mutex_destroy(&db->db_mtx);
311 rw_destroy(&db->db_rwlock);
312 cv_destroy(&db->db_changed);
313 ASSERT(!multilist_link_active(&db->db_cache_link));
314 zfs_refcount_destroy(&db->db_holds);
315 }
316
317 /*
318 * dbuf hash table routines
319 */
320 static dbuf_hash_table_t dbuf_hash_table;
321
322 /*
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
325 */
326 static uint64_t
327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334 const char *, why)
335
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
341
342 dmu_buf_impl_t *
343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344 uint64_t *hash_out)
345 {
346 dbuf_hash_table_t *h = &dbuf_hash_table;
347 uint64_t hv;
348 uint64_t idx;
349 dmu_buf_impl_t *db;
350
351 hv = dbuf_hash(os, obj, level, blkid);
352 idx = hv & h->hash_table_mask;
353
354 mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 mutex_enter(&db->db_mtx);
358 if (db->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (db);
361 }
362 mutex_exit(&db->db_mtx);
363 }
364 }
365 mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 if (hash_out != NULL)
367 *hash_out = hv;
368 return (NULL);
369 }
370
371 static dmu_buf_impl_t *
372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 dnode_t *dn;
375 dmu_buf_impl_t *db = NULL;
376
377 if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 if (dn->dn_bonus != NULL) {
380 db = dn->dn_bonus;
381 mutex_enter(&db->db_mtx);
382 }
383 rw_exit(&dn->dn_struct_rwlock);
384 dnode_rele(dn, FTAG);
385 }
386 return (db);
387 }
388
389 /*
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
394 */
395 static dmu_buf_impl_t *
396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 dbuf_hash_table_t *h = &dbuf_hash_table;
399 objset_t *os = db->db_objset;
400 uint64_t obj = db->db.db_object;
401 int level = db->db_level;
402 uint64_t blkid, idx;
403 dmu_buf_impl_t *dbf;
404 uint32_t i;
405
406 blkid = db->db_blkid;
407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 idx = db->db_hash & h->hash_table_mask;
409
410 mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 dbf = dbf->db_hash_next, i++) {
413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 mutex_enter(&dbf->db_mtx);
415 if (dbf->db_state != DB_EVICTING) {
416 mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 return (dbf);
418 }
419 mutex_exit(&dbf->db_mtx);
420 }
421 }
422
423 if (i > 0) {
424 DBUF_STAT_BUMP(hash_collisions);
425 if (i == 1)
426 DBUF_STAT_BUMP(hash_chains);
427
428 DBUF_STAT_MAX(hash_chain_max, i);
429 }
430
431 mutex_enter(&db->db_mtx);
432 db->db_hash_next = h->hash_table[idx];
433 h->hash_table[idx] = db;
434 mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
436 DBUF_STAT_MAX(hash_elements_max, he);
437
438 return (NULL);
439 }
440
441 /*
442 * This returns whether this dbuf should be stored in the metadata cache, which
443 * is based on whether it's from one of the dnode types that store data related
444 * to traversing dataset hierarchies.
445 */
446 static boolean_t
447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
448 {
449 DB_DNODE_ENTER(db);
450 dmu_object_type_t type = DB_DNODE(db)->dn_type;
451 DB_DNODE_EXIT(db);
452
453 /* Check if this dbuf is one of the types we care about */
454 if (DMU_OT_IS_METADATA_CACHED(type)) {
455 /* If we hit this, then we set something up wrong in dmu_ot */
456 ASSERT(DMU_OT_IS_METADATA(type));
457
458 /*
459 * Sanity check for small-memory systems: don't allocate too
460 * much memory for this purpose.
461 */
462 if (zfs_refcount_count(
463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
464 dbuf_metadata_cache_target_bytes()) {
465 DBUF_STAT_BUMP(metadata_cache_overflow);
466 return (B_FALSE);
467 }
468
469 return (B_TRUE);
470 }
471
472 return (B_FALSE);
473 }
474
475 /*
476 * Remove an entry from the hash table. It must be in the EVICTING state.
477 */
478 static void
479 dbuf_hash_remove(dmu_buf_impl_t *db)
480 {
481 dbuf_hash_table_t *h = &dbuf_hash_table;
482 uint64_t idx;
483 dmu_buf_impl_t *dbf, **dbp;
484
485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
486 db->db_blkid), ==, db->db_hash);
487 idx = db->db_hash & h->hash_table_mask;
488
489 /*
490 * We mustn't hold db_mtx to maintain lock ordering:
491 * DBUF_HASH_MUTEX > db_mtx.
492 */
493 ASSERT(zfs_refcount_is_zero(&db->db_holds));
494 ASSERT(db->db_state == DB_EVICTING);
495 ASSERT(!MUTEX_HELD(&db->db_mtx));
496
497 mutex_enter(DBUF_HASH_MUTEX(h, idx));
498 dbp = &h->hash_table[idx];
499 while ((dbf = *dbp) != db) {
500 dbp = &dbf->db_hash_next;
501 ASSERT(dbf != NULL);
502 }
503 *dbp = db->db_hash_next;
504 db->db_hash_next = NULL;
505 if (h->hash_table[idx] &&
506 h->hash_table[idx]->db_hash_next == NULL)
507 DBUF_STAT_BUMPDOWN(hash_chains);
508 mutex_exit(DBUF_HASH_MUTEX(h, idx));
509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
510 }
511
512 typedef enum {
513 DBVU_EVICTING,
514 DBVU_NOT_EVICTING
515 } dbvu_verify_type_t;
516
517 static void
518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
519 {
520 #ifdef ZFS_DEBUG
521 int64_t holds;
522
523 if (db->db_user == NULL)
524 return;
525
526 /* Only data blocks support the attachment of user data. */
527 ASSERT(db->db_level == 0);
528
529 /* Clients must resolve a dbuf before attaching user data. */
530 ASSERT(db->db.db_data != NULL);
531 ASSERT3U(db->db_state, ==, DB_CACHED);
532
533 holds = zfs_refcount_count(&db->db_holds);
534 if (verify_type == DBVU_EVICTING) {
535 /*
536 * Immediate eviction occurs when holds == dirtycnt.
537 * For normal eviction buffers, holds is zero on
538 * eviction, except when dbuf_fix_old_data() calls
539 * dbuf_clear_data(). However, the hold count can grow
540 * during eviction even though db_mtx is held (see
541 * dmu_bonus_hold() for an example), so we can only
542 * test the generic invariant that holds >= dirtycnt.
543 */
544 ASSERT3U(holds, >=, db->db_dirtycnt);
545 } else {
546 if (db->db_user_immediate_evict == TRUE)
547 ASSERT3U(holds, >=, db->db_dirtycnt);
548 else
549 ASSERT3U(holds, >, 0);
550 }
551 #endif
552 }
553
554 static void
555 dbuf_evict_user(dmu_buf_impl_t *db)
556 {
557 dmu_buf_user_t *dbu = db->db_user;
558
559 ASSERT(MUTEX_HELD(&db->db_mtx));
560
561 if (dbu == NULL)
562 return;
563
564 dbuf_verify_user(db, DBVU_EVICTING);
565 db->db_user = NULL;
566
567 #ifdef ZFS_DEBUG
568 if (dbu->dbu_clear_on_evict_dbufp != NULL)
569 *dbu->dbu_clear_on_evict_dbufp = NULL;
570 #endif
571
572 if (db->db_caching_status != DB_NO_CACHE) {
573 /*
574 * This is a cached dbuf, so the size of the user data is
575 * included in its cached amount. We adjust it here because the
576 * user data has already been detached from the dbuf, and the
577 * sync functions are not supposed to touch it (the dbuf might
578 * not exist anymore by the time the sync functions run.
579 */
580 uint64_t size = dbu->dbu_size;
581 (void) zfs_refcount_remove_many(
582 &dbuf_caches[db->db_caching_status].size, size, db);
583 if (db->db_caching_status == DB_DBUF_CACHE)
584 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
585 }
586
587 /*
588 * There are two eviction callbacks - one that we call synchronously
589 * and one that we invoke via a taskq. The async one is useful for
590 * avoiding lock order reversals and limiting stack depth.
591 *
592 * Note that if we have a sync callback but no async callback,
593 * it's likely that the sync callback will free the structure
594 * containing the dbu. In that case we need to take care to not
595 * dereference dbu after calling the sync evict func.
596 */
597 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
598
599 if (dbu->dbu_evict_func_sync != NULL)
600 dbu->dbu_evict_func_sync(dbu);
601
602 if (has_async) {
603 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
604 dbu, 0, &dbu->dbu_tqent);
605 }
606 }
607
608 boolean_t
609 dbuf_is_metadata(dmu_buf_impl_t *db)
610 {
611 /*
612 * Consider indirect blocks and spill blocks to be meta data.
613 */
614 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
615 return (B_TRUE);
616 } else {
617 boolean_t is_metadata;
618
619 DB_DNODE_ENTER(db);
620 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
621 DB_DNODE_EXIT(db);
622
623 return (is_metadata);
624 }
625 }
626
627 /*
628 * We want to exclude buffers that are on a special allocation class from
629 * L2ARC.
630 */
631 boolean_t
632 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
633 {
634 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
635 (db->db_objset->os_secondary_cache ==
636 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
637 if (l2arc_exclude_special == 0)
638 return (B_TRUE);
639
640 blkptr_t *bp = db->db_blkptr;
641 if (bp == NULL || BP_IS_HOLE(bp))
642 return (B_FALSE);
643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
644 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
645 vdev_t *vd = NULL;
646
647 if (vdev < rvd->vdev_children)
648 vd = rvd->vdev_child[vdev];
649
650 if (vd == NULL)
651 return (B_TRUE);
652
653 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
654 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
655 return (B_TRUE);
656 }
657 return (B_FALSE);
658 }
659
660 static inline boolean_t
661 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
662 {
663 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
664 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
665 (level > 0 ||
666 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
667 if (l2arc_exclude_special == 0)
668 return (B_TRUE);
669
670 if (bp == NULL || BP_IS_HOLE(bp))
671 return (B_FALSE);
672 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
673 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
674 vdev_t *vd = NULL;
675
676 if (vdev < rvd->vdev_children)
677 vd = rvd->vdev_child[vdev];
678
679 if (vd == NULL)
680 return (B_TRUE);
681
682 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
683 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
684 return (B_TRUE);
685 }
686 return (B_FALSE);
687 }
688
689
690 /*
691 * This function *must* return indices evenly distributed between all
692 * sublists of the multilist. This is needed due to how the dbuf eviction
693 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
694 * distributed between all sublists and uses this assumption when
695 * deciding which sublist to evict from and how much to evict from it.
696 */
697 static unsigned int
698 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
699 {
700 dmu_buf_impl_t *db = obj;
701
702 /*
703 * The assumption here, is the hash value for a given
704 * dmu_buf_impl_t will remain constant throughout it's lifetime
705 * (i.e. it's objset, object, level and blkid fields don't change).
706 * Thus, we don't need to store the dbuf's sublist index
707 * on insertion, as this index can be recalculated on removal.
708 *
709 * Also, the low order bits of the hash value are thought to be
710 * distributed evenly. Otherwise, in the case that the multilist
711 * has a power of two number of sublists, each sublists' usage
712 * would not be evenly distributed. In this context full 64bit
713 * division would be a waste of time, so limit it to 32 bits.
714 */
715 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
716 db->db_level, db->db_blkid) %
717 multilist_get_num_sublists(ml));
718 }
719
720 /*
721 * The target size of the dbuf cache can grow with the ARC target,
722 * unless limited by the tunable dbuf_cache_max_bytes.
723 */
724 static inline unsigned long
725 dbuf_cache_target_bytes(void)
726 {
727 return (MIN(dbuf_cache_max_bytes,
728 arc_target_bytes() >> dbuf_cache_shift));
729 }
730
731 /*
732 * The target size of the dbuf metadata cache can grow with the ARC target,
733 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
734 */
735 static inline unsigned long
736 dbuf_metadata_cache_target_bytes(void)
737 {
738 return (MIN(dbuf_metadata_cache_max_bytes,
739 arc_target_bytes() >> dbuf_metadata_cache_shift));
740 }
741
742 static inline uint64_t
743 dbuf_cache_hiwater_bytes(void)
744 {
745 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
746 return (dbuf_cache_target +
747 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
748 }
749
750 static inline uint64_t
751 dbuf_cache_lowater_bytes(void)
752 {
753 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
754 return (dbuf_cache_target -
755 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
756 }
757
758 static inline boolean_t
759 dbuf_cache_above_lowater(void)
760 {
761 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_lowater_bytes());
763 }
764
765 /*
766 * Evict the oldest eligible dbuf from the dbuf cache.
767 */
768 static void
769 dbuf_evict_one(void)
770 {
771 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
772 multilist_sublist_t *mls = multilist_sublist_lock(
773 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
774
775 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
776
777 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
778 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
779 db = multilist_sublist_prev(mls, db);
780 }
781
782 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
783 multilist_sublist_t *, mls);
784
785 if (db != NULL) {
786 multilist_sublist_remove(mls, db);
787 multilist_sublist_unlock(mls);
788 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
789 (void) zfs_refcount_remove_many(
790 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
791 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
792 DBUF_STAT_BUMPDOWN(cache_count);
793 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
794 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
795 db->db_caching_status = DB_NO_CACHE;
796 dbuf_destroy(db);
797 DBUF_STAT_BUMP(cache_total_evicts);
798 } else {
799 multilist_sublist_unlock(mls);
800 }
801 }
802
803 /*
804 * The dbuf evict thread is responsible for aging out dbufs from the
805 * cache. Once the cache has reached it's maximum size, dbufs are removed
806 * and destroyed. The eviction thread will continue running until the size
807 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
808 * out of the cache it is destroyed and becomes eligible for arc eviction.
809 */
810 static __attribute__((noreturn)) void
811 dbuf_evict_thread(void *unused)
812 {
813 (void) unused;
814 callb_cpr_t cpr;
815
816 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
817
818 mutex_enter(&dbuf_evict_lock);
819 while (!dbuf_evict_thread_exit) {
820 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
821 CALLB_CPR_SAFE_BEGIN(&cpr);
822 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
823 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
824 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
825 }
826 mutex_exit(&dbuf_evict_lock);
827
828 /*
829 * Keep evicting as long as we're above the low water mark
830 * for the cache. We do this without holding the locks to
831 * minimize lock contention.
832 */
833 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
834 dbuf_evict_one();
835 }
836
837 mutex_enter(&dbuf_evict_lock);
838 }
839
840 dbuf_evict_thread_exit = B_FALSE;
841 cv_broadcast(&dbuf_evict_cv);
842 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
843 thread_exit();
844 }
845
846 /*
847 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
848 * If the dbuf cache is at its high water mark, then evict a dbuf from the
849 * dbuf cache using the caller's context.
850 */
851 static void
852 dbuf_evict_notify(uint64_t size)
853 {
854 /*
855 * We check if we should evict without holding the dbuf_evict_lock,
856 * because it's OK to occasionally make the wrong decision here,
857 * and grabbing the lock results in massive lock contention.
858 */
859 if (size > dbuf_cache_target_bytes()) {
860 if (size > dbuf_cache_hiwater_bytes())
861 dbuf_evict_one();
862 cv_signal(&dbuf_evict_cv);
863 }
864 }
865
866 static int
867 dbuf_kstat_update(kstat_t *ksp, int rw)
868 {
869 dbuf_stats_t *ds = ksp->ks_data;
870 dbuf_hash_table_t *h = &dbuf_hash_table;
871
872 if (rw == KSTAT_WRITE)
873 return (SET_ERROR(EACCES));
874
875 ds->cache_count.value.ui64 =
876 wmsum_value(&dbuf_sums.cache_count);
877 ds->cache_size_bytes.value.ui64 =
878 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
879 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
880 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
881 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
882 ds->cache_total_evicts.value.ui64 =
883 wmsum_value(&dbuf_sums.cache_total_evicts);
884 for (int i = 0; i < DN_MAX_LEVELS; i++) {
885 ds->cache_levels[i].value.ui64 =
886 wmsum_value(&dbuf_sums.cache_levels[i]);
887 ds->cache_levels_bytes[i].value.ui64 =
888 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
889 }
890 ds->hash_hits.value.ui64 =
891 wmsum_value(&dbuf_sums.hash_hits);
892 ds->hash_misses.value.ui64 =
893 wmsum_value(&dbuf_sums.hash_misses);
894 ds->hash_collisions.value.ui64 =
895 wmsum_value(&dbuf_sums.hash_collisions);
896 ds->hash_chains.value.ui64 =
897 wmsum_value(&dbuf_sums.hash_chains);
898 ds->hash_insert_race.value.ui64 =
899 wmsum_value(&dbuf_sums.hash_insert_race);
900 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
901 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
902 ds->metadata_cache_count.value.ui64 =
903 wmsum_value(&dbuf_sums.metadata_cache_count);
904 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
905 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
906 ds->metadata_cache_overflow.value.ui64 =
907 wmsum_value(&dbuf_sums.metadata_cache_overflow);
908 return (0);
909 }
910
911 void
912 dbuf_init(void)
913 {
914 uint64_t hmsize, hsize = 1ULL << 16;
915 dbuf_hash_table_t *h = &dbuf_hash_table;
916
917 /*
918 * The hash table is big enough to fill one eighth of physical memory
919 * with an average block size of zfs_arc_average_blocksize (default 8K).
920 * By default, the table will take up
921 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
922 */
923 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
924 hsize <<= 1;
925
926 h->hash_table = NULL;
927 while (h->hash_table == NULL) {
928 h->hash_table_mask = hsize - 1;
929
930 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
931 if (h->hash_table == NULL)
932 hsize >>= 1;
933
934 ASSERT3U(hsize, >=, 1ULL << 10);
935 }
936
937 /*
938 * The hash table buckets are protected by an array of mutexes where
939 * each mutex is reponsible for protecting 128 buckets. A minimum
940 * array size of 8192 is targeted to avoid contention.
941 */
942 if (dbuf_mutex_cache_shift == 0)
943 hmsize = MAX(hsize >> 7, 1ULL << 13);
944 else
945 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
946
947 h->hash_mutexes = NULL;
948 while (h->hash_mutexes == NULL) {
949 h->hash_mutex_mask = hmsize - 1;
950
951 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
952 KM_SLEEP);
953 if (h->hash_mutexes == NULL)
954 hmsize >>= 1;
955 }
956
957 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
958 sizeof (dmu_buf_impl_t),
959 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
960
961 for (int i = 0; i < hmsize; i++)
962 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
963
964 dbuf_stats_init(h);
965
966 /*
967 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
968 * configuration is not required.
969 */
970 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
971
972 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
973 multilist_create(&dbuf_caches[dcs].cache,
974 sizeof (dmu_buf_impl_t),
975 offsetof(dmu_buf_impl_t, db_cache_link),
976 dbuf_cache_multilist_index_func);
977 zfs_refcount_create(&dbuf_caches[dcs].size);
978 }
979
980 dbuf_evict_thread_exit = B_FALSE;
981 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
982 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
983 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
984 NULL, 0, &p0, TS_RUN, minclsyspri);
985
986 wmsum_init(&dbuf_sums.cache_count, 0);
987 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
988 for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 wmsum_init(&dbuf_sums.cache_levels[i], 0);
990 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
991 }
992 wmsum_init(&dbuf_sums.hash_hits, 0);
993 wmsum_init(&dbuf_sums.hash_misses, 0);
994 wmsum_init(&dbuf_sums.hash_collisions, 0);
995 wmsum_init(&dbuf_sums.hash_chains, 0);
996 wmsum_init(&dbuf_sums.hash_insert_race, 0);
997 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
998 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
999
1000 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1001 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1002 KSTAT_FLAG_VIRTUAL);
1003 if (dbuf_ksp != NULL) {
1004 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1005 snprintf(dbuf_stats.cache_levels[i].name,
1006 KSTAT_STRLEN, "cache_level_%d", i);
1007 dbuf_stats.cache_levels[i].data_type =
1008 KSTAT_DATA_UINT64;
1009 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1010 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1011 dbuf_stats.cache_levels_bytes[i].data_type =
1012 KSTAT_DATA_UINT64;
1013 }
1014 dbuf_ksp->ks_data = &dbuf_stats;
1015 dbuf_ksp->ks_update = dbuf_kstat_update;
1016 kstat_install(dbuf_ksp);
1017 }
1018 }
1019
1020 void
1021 dbuf_fini(void)
1022 {
1023 dbuf_hash_table_t *h = &dbuf_hash_table;
1024
1025 dbuf_stats_destroy();
1026
1027 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1028 mutex_destroy(&h->hash_mutexes[i]);
1029
1030 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1031 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1032 sizeof (kmutex_t));
1033
1034 kmem_cache_destroy(dbuf_kmem_cache);
1035 taskq_destroy(dbu_evict_taskq);
1036
1037 mutex_enter(&dbuf_evict_lock);
1038 dbuf_evict_thread_exit = B_TRUE;
1039 while (dbuf_evict_thread_exit) {
1040 cv_signal(&dbuf_evict_cv);
1041 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1042 }
1043 mutex_exit(&dbuf_evict_lock);
1044
1045 mutex_destroy(&dbuf_evict_lock);
1046 cv_destroy(&dbuf_evict_cv);
1047
1048 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1049 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1050 multilist_destroy(&dbuf_caches[dcs].cache);
1051 }
1052
1053 if (dbuf_ksp != NULL) {
1054 kstat_delete(dbuf_ksp);
1055 dbuf_ksp = NULL;
1056 }
1057
1058 wmsum_fini(&dbuf_sums.cache_count);
1059 wmsum_fini(&dbuf_sums.cache_total_evicts);
1060 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1061 wmsum_fini(&dbuf_sums.cache_levels[i]);
1062 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1063 }
1064 wmsum_fini(&dbuf_sums.hash_hits);
1065 wmsum_fini(&dbuf_sums.hash_misses);
1066 wmsum_fini(&dbuf_sums.hash_collisions);
1067 wmsum_fini(&dbuf_sums.hash_chains);
1068 wmsum_fini(&dbuf_sums.hash_insert_race);
1069 wmsum_fini(&dbuf_sums.metadata_cache_count);
1070 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1071 }
1072
1073 /*
1074 * Other stuff.
1075 */
1076
1077 #ifdef ZFS_DEBUG
1078 static void
1079 dbuf_verify(dmu_buf_impl_t *db)
1080 {
1081 dnode_t *dn;
1082 dbuf_dirty_record_t *dr;
1083 uint32_t txg_prev;
1084
1085 ASSERT(MUTEX_HELD(&db->db_mtx));
1086
1087 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1088 return;
1089
1090 ASSERT(db->db_objset != NULL);
1091 DB_DNODE_ENTER(db);
1092 dn = DB_DNODE(db);
1093 if (dn == NULL) {
1094 ASSERT(db->db_parent == NULL);
1095 ASSERT(db->db_blkptr == NULL);
1096 } else {
1097 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1098 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1099 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1100 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1101 db->db_blkid == DMU_SPILL_BLKID ||
1102 !avl_is_empty(&dn->dn_dbufs));
1103 }
1104 if (db->db_blkid == DMU_BONUS_BLKID) {
1105 ASSERT(dn != NULL);
1106 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1107 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1108 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1109 ASSERT(dn != NULL);
1110 ASSERT0(db->db.db_offset);
1111 } else {
1112 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1113 }
1114
1115 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1116 ASSERT(dr->dr_dbuf == db);
1117 txg_prev = dr->dr_txg;
1118 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1119 dr = list_next(&db->db_dirty_records, dr)) {
1120 ASSERT(dr->dr_dbuf == db);
1121 ASSERT(txg_prev > dr->dr_txg);
1122 txg_prev = dr->dr_txg;
1123 }
1124 }
1125
1126 /*
1127 * We can't assert that db_size matches dn_datablksz because it
1128 * can be momentarily different when another thread is doing
1129 * dnode_set_blksz().
1130 */
1131 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1132 dr = db->db_data_pending;
1133 /*
1134 * It should only be modified in syncing context, so
1135 * make sure we only have one copy of the data.
1136 */
1137 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1138 }
1139
1140 /* verify db->db_blkptr */
1141 if (db->db_blkptr) {
1142 if (db->db_parent == dn->dn_dbuf) {
1143 /* db is pointed to by the dnode */
1144 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1145 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1146 ASSERT(db->db_parent == NULL);
1147 else
1148 ASSERT(db->db_parent != NULL);
1149 if (db->db_blkid != DMU_SPILL_BLKID)
1150 ASSERT3P(db->db_blkptr, ==,
1151 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1152 } else {
1153 /* db is pointed to by an indirect block */
1154 int epb __maybe_unused = db->db_parent->db.db_size >>
1155 SPA_BLKPTRSHIFT;
1156 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1157 ASSERT3U(db->db_parent->db.db_object, ==,
1158 db->db.db_object);
1159 /*
1160 * dnode_grow_indblksz() can make this fail if we don't
1161 * have the parent's rwlock. XXX indblksz no longer
1162 * grows. safe to do this now?
1163 */
1164 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1165 ASSERT3P(db->db_blkptr, ==,
1166 ((blkptr_t *)db->db_parent->db.db_data +
1167 db->db_blkid % epb));
1168 }
1169 }
1170 }
1171 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1172 (db->db_buf == NULL || db->db_buf->b_data) &&
1173 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1174 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1175 /*
1176 * If the blkptr isn't set but they have nonzero data,
1177 * it had better be dirty, otherwise we'll lose that
1178 * data when we evict this buffer.
1179 *
1180 * There is an exception to this rule for indirect blocks; in
1181 * this case, if the indirect block is a hole, we fill in a few
1182 * fields on each of the child blocks (importantly, birth time)
1183 * to prevent hole birth times from being lost when you
1184 * partially fill in a hole.
1185 */
1186 if (db->db_dirtycnt == 0) {
1187 if (db->db_level == 0) {
1188 uint64_t *buf = db->db.db_data;
1189 int i;
1190
1191 for (i = 0; i < db->db.db_size >> 3; i++) {
1192 ASSERT(buf[i] == 0);
1193 }
1194 } else {
1195 blkptr_t *bps = db->db.db_data;
1196 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1197 db->db.db_size);
1198 /*
1199 * We want to verify that all the blkptrs in the
1200 * indirect block are holes, but we may have
1201 * automatically set up a few fields for them.
1202 * We iterate through each blkptr and verify
1203 * they only have those fields set.
1204 */
1205 for (int i = 0;
1206 i < db->db.db_size / sizeof (blkptr_t);
1207 i++) {
1208 blkptr_t *bp = &bps[i];
1209 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1210 &bp->blk_cksum));
1211 ASSERT(
1212 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1213 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1214 DVA_IS_EMPTY(&bp->blk_dva[2]));
1215 ASSERT0(bp->blk_fill);
1216 ASSERT0(bp->blk_pad[0]);
1217 ASSERT0(bp->blk_pad[1]);
1218 ASSERT(!BP_IS_EMBEDDED(bp));
1219 ASSERT(BP_IS_HOLE(bp));
1220 ASSERT0(bp->blk_phys_birth);
1221 }
1222 }
1223 }
1224 }
1225 DB_DNODE_EXIT(db);
1226 }
1227 #endif
1228
1229 static void
1230 dbuf_clear_data(dmu_buf_impl_t *db)
1231 {
1232 ASSERT(MUTEX_HELD(&db->db_mtx));
1233 dbuf_evict_user(db);
1234 ASSERT3P(db->db_buf, ==, NULL);
1235 db->db.db_data = NULL;
1236 if (db->db_state != DB_NOFILL) {
1237 db->db_state = DB_UNCACHED;
1238 DTRACE_SET_STATE(db, "clear data");
1239 }
1240 }
1241
1242 static void
1243 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1244 {
1245 ASSERT(MUTEX_HELD(&db->db_mtx));
1246 ASSERT(buf != NULL);
1247
1248 db->db_buf = buf;
1249 ASSERT(buf->b_data != NULL);
1250 db->db.db_data = buf->b_data;
1251 }
1252
1253 static arc_buf_t *
1254 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1255 {
1256 spa_t *spa = db->db_objset->os_spa;
1257
1258 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1259 }
1260
1261 /*
1262 * Loan out an arc_buf for read. Return the loaned arc_buf.
1263 */
1264 arc_buf_t *
1265 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1266 {
1267 arc_buf_t *abuf;
1268
1269 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1270 mutex_enter(&db->db_mtx);
1271 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1272 int blksz = db->db.db_size;
1273 spa_t *spa = db->db_objset->os_spa;
1274
1275 mutex_exit(&db->db_mtx);
1276 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1277 memcpy(abuf->b_data, db->db.db_data, blksz);
1278 } else {
1279 abuf = db->db_buf;
1280 arc_loan_inuse_buf(abuf, db);
1281 db->db_buf = NULL;
1282 dbuf_clear_data(db);
1283 mutex_exit(&db->db_mtx);
1284 }
1285 return (abuf);
1286 }
1287
1288 /*
1289 * Calculate which level n block references the data at the level 0 offset
1290 * provided.
1291 */
1292 uint64_t
1293 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1294 {
1295 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1296 /*
1297 * The level n blkid is equal to the level 0 blkid divided by
1298 * the number of level 0s in a level n block.
1299 *
1300 * The level 0 blkid is offset >> datablkshift =
1301 * offset / 2^datablkshift.
1302 *
1303 * The number of level 0s in a level n is the number of block
1304 * pointers in an indirect block, raised to the power of level.
1305 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1306 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1307 *
1308 * Thus, the level n blkid is: offset /
1309 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1310 * = offset / 2^(datablkshift + level *
1311 * (indblkshift - SPA_BLKPTRSHIFT))
1312 * = offset >> (datablkshift + level *
1313 * (indblkshift - SPA_BLKPTRSHIFT))
1314 */
1315
1316 const unsigned exp = dn->dn_datablkshift +
1317 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1318
1319 if (exp >= 8 * sizeof (offset)) {
1320 /* This only happens on the highest indirection level */
1321 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1322 return (0);
1323 }
1324
1325 ASSERT3U(exp, <, 8 * sizeof (offset));
1326
1327 return (offset >> exp);
1328 } else {
1329 ASSERT3U(offset, <, dn->dn_datablksz);
1330 return (0);
1331 }
1332 }
1333
1334 /*
1335 * This function is used to lock the parent of the provided dbuf. This should be
1336 * used when modifying or reading db_blkptr.
1337 */
1338 db_lock_type_t
1339 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1340 {
1341 enum db_lock_type ret = DLT_NONE;
1342 if (db->db_parent != NULL) {
1343 rw_enter(&db->db_parent->db_rwlock, rw);
1344 ret = DLT_PARENT;
1345 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1346 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1347 tag);
1348 ret = DLT_OBJSET;
1349 }
1350 /*
1351 * We only return a DLT_NONE lock when it's the top-most indirect block
1352 * of the meta-dnode of the MOS.
1353 */
1354 return (ret);
1355 }
1356
1357 /*
1358 * We need to pass the lock type in because it's possible that the block will
1359 * move from being the topmost indirect block in a dnode (and thus, have no
1360 * parent) to not the top-most via an indirection increase. This would cause a
1361 * panic if we didn't pass the lock type in.
1362 */
1363 void
1364 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1365 {
1366 if (type == DLT_PARENT)
1367 rw_exit(&db->db_parent->db_rwlock);
1368 else if (type == DLT_OBJSET)
1369 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1370 }
1371
1372 static void
1373 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1374 arc_buf_t *buf, void *vdb)
1375 {
1376 (void) zb, (void) bp;
1377 dmu_buf_impl_t *db = vdb;
1378
1379 mutex_enter(&db->db_mtx);
1380 ASSERT3U(db->db_state, ==, DB_READ);
1381 /*
1382 * All reads are synchronous, so we must have a hold on the dbuf
1383 */
1384 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1385 ASSERT(db->db_buf == NULL);
1386 ASSERT(db->db.db_data == NULL);
1387 if (buf == NULL) {
1388 /* i/o error */
1389 ASSERT(zio == NULL || zio->io_error != 0);
1390 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1391 ASSERT3P(db->db_buf, ==, NULL);
1392 db->db_state = DB_UNCACHED;
1393 DTRACE_SET_STATE(db, "i/o error");
1394 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1395 /* freed in flight */
1396 ASSERT(zio == NULL || zio->io_error == 0);
1397 arc_release(buf, db);
1398 memset(buf->b_data, 0, db->db.db_size);
1399 arc_buf_freeze(buf);
1400 db->db_freed_in_flight = FALSE;
1401 dbuf_set_data(db, buf);
1402 db->db_state = DB_CACHED;
1403 DTRACE_SET_STATE(db, "freed in flight");
1404 } else {
1405 /* success */
1406 ASSERT(zio == NULL || zio->io_error == 0);
1407 dbuf_set_data(db, buf);
1408 db->db_state = DB_CACHED;
1409 DTRACE_SET_STATE(db, "successful read");
1410 }
1411 cv_broadcast(&db->db_changed);
1412 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1413 }
1414
1415 /*
1416 * Shortcut for performing reads on bonus dbufs. Returns
1417 * an error if we fail to verify the dnode associated with
1418 * a decrypted block. Otherwise success.
1419 */
1420 static int
1421 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1422 {
1423 int bonuslen, max_bonuslen, err;
1424
1425 err = dbuf_read_verify_dnode_crypt(db, flags);
1426 if (err)
1427 return (err);
1428
1429 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1430 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1431 ASSERT(MUTEX_HELD(&db->db_mtx));
1432 ASSERT(DB_DNODE_HELD(db));
1433 ASSERT3U(bonuslen, <=, db->db.db_size);
1434 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1435 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1436 if (bonuslen < max_bonuslen)
1437 memset(db->db.db_data, 0, max_bonuslen);
1438 if (bonuslen)
1439 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1440 db->db_state = DB_CACHED;
1441 DTRACE_SET_STATE(db, "bonus buffer filled");
1442 return (0);
1443 }
1444
1445 static void
1446 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1447 {
1448 blkptr_t *bps = db->db.db_data;
1449 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1450 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1451
1452 for (int i = 0; i < n_bps; i++) {
1453 blkptr_t *bp = &bps[i];
1454
1455 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1456 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1457 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1458 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1459 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1460 BP_SET_BIRTH(bp, dbbp->blk_birth, 0);
1461 }
1462 }
1463
1464 /*
1465 * Handle reads on dbufs that are holes, if necessary. This function
1466 * requires that the dbuf's mutex is held. Returns success (0) if action
1467 * was taken, ENOENT if no action was taken.
1468 */
1469 static int
1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1471 {
1472 ASSERT(MUTEX_HELD(&db->db_mtx));
1473
1474 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1475 /*
1476 * For level 0 blocks only, if the above check fails:
1477 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1478 * processes the delete record and clears the bp while we are waiting
1479 * for the dn_mtx (resulting in a "no" from block_freed).
1480 */
1481 if (!is_hole && db->db_level == 0)
1482 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1483
1484 if (is_hole) {
1485 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1486 memset(db->db.db_data, 0, db->db.db_size);
1487
1488 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1489 bp->blk_birth != 0) {
1490 dbuf_handle_indirect_hole(db, dn, bp);
1491 }
1492 db->db_state = DB_CACHED;
1493 DTRACE_SET_STATE(db, "hole read satisfied");
1494 return (0);
1495 }
1496 return (ENOENT);
1497 }
1498
1499 /*
1500 * This function ensures that, when doing a decrypting read of a block,
1501 * we make sure we have decrypted the dnode associated with it. We must do
1502 * this so that we ensure we are fully authenticating the checksum-of-MACs
1503 * tree from the root of the objset down to this block. Indirect blocks are
1504 * always verified against their secure checksum-of-MACs assuming that the
1505 * dnode containing them is correct. Now that we are doing a decrypting read,
1506 * we can be sure that the key is loaded and verify that assumption. This is
1507 * especially important considering that we always read encrypted dnode
1508 * blocks as raw data (without verifying their MACs) to start, and
1509 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1510 */
1511 static int
1512 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1513 {
1514 int err = 0;
1515 objset_t *os = db->db_objset;
1516 arc_buf_t *dnode_abuf;
1517 dnode_t *dn;
1518 zbookmark_phys_t zb;
1519
1520 ASSERT(MUTEX_HELD(&db->db_mtx));
1521
1522 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1523 !os->os_encrypted || os->os_raw_receive)
1524 return (0);
1525
1526 DB_DNODE_ENTER(db);
1527 dn = DB_DNODE(db);
1528 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1529
1530 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1531 DB_DNODE_EXIT(db);
1532 return (0);
1533 }
1534
1535 SET_BOOKMARK(&zb, dmu_objset_id(os),
1536 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1537 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1538
1539 /*
1540 * An error code of EACCES tells us that the key is still not
1541 * available. This is ok if we are only reading authenticated
1542 * (and therefore non-encrypted) blocks.
1543 */
1544 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1545 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1546 (db->db_blkid == DMU_BONUS_BLKID &&
1547 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1548 err = 0;
1549
1550 DB_DNODE_EXIT(db);
1551
1552 return (err);
1553 }
1554
1555 /*
1556 * Drops db_mtx and the parent lock specified by dblt and tag before
1557 * returning.
1558 */
1559 static int
1560 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1561 db_lock_type_t dblt, const void *tag)
1562 {
1563 dnode_t *dn;
1564 zbookmark_phys_t zb;
1565 uint32_t aflags = ARC_FLAG_NOWAIT;
1566 int err, zio_flags;
1567 blkptr_t bp, *bpp;
1568
1569 DB_DNODE_ENTER(db);
1570 dn = DB_DNODE(db);
1571 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1572 ASSERT(MUTEX_HELD(&db->db_mtx));
1573 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1574 ASSERT(db->db_buf == NULL);
1575 ASSERT(db->db_parent == NULL ||
1576 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1577
1578 if (db->db_blkid == DMU_BONUS_BLKID) {
1579 err = dbuf_read_bonus(db, dn, flags);
1580 goto early_unlock;
1581 }
1582
1583 if (db->db_state == DB_UNCACHED) {
1584 if (db->db_blkptr == NULL) {
1585 bpp = NULL;
1586 } else {
1587 bp = *db->db_blkptr;
1588 bpp = &bp;
1589 }
1590 } else {
1591 dbuf_dirty_record_t *dr;
1592
1593 ASSERT3S(db->db_state, ==, DB_NOFILL);
1594
1595 /*
1596 * Block cloning: If we have a pending block clone,
1597 * we don't want to read the underlying block, but the content
1598 * of the block being cloned, so we have the most recent data.
1599 */
1600 dr = list_head(&db->db_dirty_records);
1601 if (dr == NULL || !dr->dt.dl.dr_brtwrite) {
1602 err = EIO;
1603 goto early_unlock;
1604 }
1605 bp = dr->dt.dl.dr_overridden_by;
1606 bpp = &bp;
1607 }
1608
1609 err = dbuf_read_hole(db, dn, bpp);
1610 if (err == 0)
1611 goto early_unlock;
1612
1613 ASSERT(bpp != NULL);
1614
1615 /*
1616 * Any attempt to read a redacted block should result in an error. This
1617 * will never happen under normal conditions, but can be useful for
1618 * debugging purposes.
1619 */
1620 if (BP_IS_REDACTED(bpp)) {
1621 ASSERT(dsl_dataset_feature_is_active(
1622 db->db_objset->os_dsl_dataset,
1623 SPA_FEATURE_REDACTED_DATASETS));
1624 err = SET_ERROR(EIO);
1625 goto early_unlock;
1626 }
1627
1628 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1629 db->db.db_object, db->db_level, db->db_blkid);
1630
1631 /*
1632 * All bps of an encrypted os should have the encryption bit set.
1633 * If this is not true it indicates tampering and we report an error.
1634 */
1635 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1636 spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth);
1637 err = SET_ERROR(EIO);
1638 goto early_unlock;
1639 }
1640
1641 err = dbuf_read_verify_dnode_crypt(db, flags);
1642 if (err != 0)
1643 goto early_unlock;
1644
1645 DB_DNODE_EXIT(db);
1646
1647 db->db_state = DB_READ;
1648 DTRACE_SET_STATE(db, "read issued");
1649 mutex_exit(&db->db_mtx);
1650
1651 if (!DBUF_IS_CACHEABLE(db))
1652 aflags |= ARC_FLAG_UNCACHED;
1653 else if (dbuf_is_l2cacheable(db))
1654 aflags |= ARC_FLAG_L2CACHE;
1655
1656 dbuf_add_ref(db, NULL);
1657
1658 zio_flags = (flags & DB_RF_CANFAIL) ?
1659 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1660
1661 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1662 zio_flags |= ZIO_FLAG_RAW;
1663 /*
1664 * The zio layer will copy the provided blkptr later, but we have our
1665 * own copy so that we can release the parent's rwlock. We have to
1666 * do that so that if dbuf_read_done is called synchronously (on
1667 * an l1 cache hit) we don't acquire the db_mtx while holding the
1668 * parent's rwlock, which would be a lock ordering violation.
1669 */
1670 dmu_buf_unlock_parent(db, dblt, tag);
1671 (void) arc_read(zio, db->db_objset->os_spa, bpp,
1672 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1673 &aflags, &zb);
1674 return (err);
1675 early_unlock:
1676 DB_DNODE_EXIT(db);
1677 mutex_exit(&db->db_mtx);
1678 dmu_buf_unlock_parent(db, dblt, tag);
1679 return (err);
1680 }
1681
1682 /*
1683 * This is our just-in-time copy function. It makes a copy of buffers that
1684 * have been modified in a previous transaction group before we access them in
1685 * the current active group.
1686 *
1687 * This function is used in three places: when we are dirtying a buffer for the
1688 * first time in a txg, when we are freeing a range in a dnode that includes
1689 * this buffer, and when we are accessing a buffer which was received compressed
1690 * and later referenced in a WRITE_BYREF record.
1691 *
1692 * Note that when we are called from dbuf_free_range() we do not put a hold on
1693 * the buffer, we just traverse the active dbuf list for the dnode.
1694 */
1695 static void
1696 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1697 {
1698 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1699
1700 ASSERT(MUTEX_HELD(&db->db_mtx));
1701 ASSERT(db->db.db_data != NULL);
1702 ASSERT(db->db_level == 0);
1703 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1704
1705 if (dr == NULL ||
1706 (dr->dt.dl.dr_data !=
1707 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1708 return;
1709
1710 /*
1711 * If the last dirty record for this dbuf has not yet synced
1712 * and its referencing the dbuf data, either:
1713 * reset the reference to point to a new copy,
1714 * or (if there a no active holders)
1715 * just null out the current db_data pointer.
1716 */
1717 ASSERT3U(dr->dr_txg, >=, txg - 2);
1718 if (db->db_blkid == DMU_BONUS_BLKID) {
1719 dnode_t *dn = DB_DNODE(db);
1720 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1721 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1722 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1723 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1724 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1725 dnode_t *dn = DB_DNODE(db);
1726 int size = arc_buf_size(db->db_buf);
1727 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1728 spa_t *spa = db->db_objset->os_spa;
1729 enum zio_compress compress_type =
1730 arc_get_compression(db->db_buf);
1731 uint8_t complevel = arc_get_complevel(db->db_buf);
1732
1733 if (arc_is_encrypted(db->db_buf)) {
1734 boolean_t byteorder;
1735 uint8_t salt[ZIO_DATA_SALT_LEN];
1736 uint8_t iv[ZIO_DATA_IV_LEN];
1737 uint8_t mac[ZIO_DATA_MAC_LEN];
1738
1739 arc_get_raw_params(db->db_buf, &byteorder, salt,
1740 iv, mac);
1741 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1742 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1743 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1744 compress_type, complevel);
1745 } else if (compress_type != ZIO_COMPRESS_OFF) {
1746 ASSERT3U(type, ==, ARC_BUFC_DATA);
1747 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1748 size, arc_buf_lsize(db->db_buf), compress_type,
1749 complevel);
1750 } else {
1751 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1752 }
1753 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1754 } else {
1755 db->db_buf = NULL;
1756 dbuf_clear_data(db);
1757 }
1758 }
1759
1760 int
1761 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1762 {
1763 int err = 0;
1764 boolean_t prefetch;
1765 dnode_t *dn;
1766
1767 /*
1768 * We don't have to hold the mutex to check db_state because it
1769 * can't be freed while we have a hold on the buffer.
1770 */
1771 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1772
1773 DB_DNODE_ENTER(db);
1774 dn = DB_DNODE(db);
1775
1776 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1777 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1778
1779 mutex_enter(&db->db_mtx);
1780 if (flags & DB_RF_PARTIAL_FIRST)
1781 db->db_partial_read = B_TRUE;
1782 else if (!(flags & DB_RF_PARTIAL_MORE))
1783 db->db_partial_read = B_FALSE;
1784 if (db->db_state == DB_CACHED) {
1785 /*
1786 * Ensure that this block's dnode has been decrypted if
1787 * the caller has requested decrypted data.
1788 */
1789 err = dbuf_read_verify_dnode_crypt(db, flags);
1790
1791 /*
1792 * If the arc buf is compressed or encrypted and the caller
1793 * requested uncompressed data, we need to untransform it
1794 * before returning. We also call arc_untransform() on any
1795 * unauthenticated blocks, which will verify their MAC if
1796 * the key is now available.
1797 */
1798 if (err == 0 && db->db_buf != NULL &&
1799 (flags & DB_RF_NO_DECRYPT) == 0 &&
1800 (arc_is_encrypted(db->db_buf) ||
1801 arc_is_unauthenticated(db->db_buf) ||
1802 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1803 spa_t *spa = dn->dn_objset->os_spa;
1804 zbookmark_phys_t zb;
1805
1806 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1807 db->db.db_object, db->db_level, db->db_blkid);
1808 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1809 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1810 dbuf_set_data(db, db->db_buf);
1811 }
1812 mutex_exit(&db->db_mtx);
1813 if (err == 0 && prefetch) {
1814 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1815 B_FALSE, flags & DB_RF_HAVESTRUCT);
1816 }
1817 DB_DNODE_EXIT(db);
1818 DBUF_STAT_BUMP(hash_hits);
1819 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) {
1820 boolean_t need_wait = B_FALSE;
1821
1822 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1823
1824 if (zio == NULL && (db->db_state == DB_NOFILL ||
1825 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1826 spa_t *spa = dn->dn_objset->os_spa;
1827 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1828 need_wait = B_TRUE;
1829 }
1830 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1831 /*
1832 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1833 * for us
1834 */
1835 if (!err && prefetch) {
1836 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1837 db->db_state != DB_CACHED,
1838 flags & DB_RF_HAVESTRUCT);
1839 }
1840
1841 DB_DNODE_EXIT(db);
1842 DBUF_STAT_BUMP(hash_misses);
1843
1844 /*
1845 * If we created a zio_root we must execute it to avoid
1846 * leaking it, even if it isn't attached to any work due
1847 * to an error in dbuf_read_impl().
1848 */
1849 if (need_wait) {
1850 if (err == 0)
1851 err = zio_wait(zio);
1852 else
1853 VERIFY0(zio_wait(zio));
1854 }
1855 } else {
1856 /*
1857 * Another reader came in while the dbuf was in flight
1858 * between UNCACHED and CACHED. Either a writer will finish
1859 * writing the buffer (sending the dbuf to CACHED) or the
1860 * first reader's request will reach the read_done callback
1861 * and send the dbuf to CACHED. Otherwise, a failure
1862 * occurred and the dbuf went to UNCACHED.
1863 */
1864 mutex_exit(&db->db_mtx);
1865 if (prefetch) {
1866 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1867 B_TRUE, flags & DB_RF_HAVESTRUCT);
1868 }
1869 DB_DNODE_EXIT(db);
1870 DBUF_STAT_BUMP(hash_misses);
1871
1872 /* Skip the wait per the caller's request. */
1873 if ((flags & DB_RF_NEVERWAIT) == 0) {
1874 mutex_enter(&db->db_mtx);
1875 while (db->db_state == DB_READ ||
1876 db->db_state == DB_FILL) {
1877 ASSERT(db->db_state == DB_READ ||
1878 (flags & DB_RF_HAVESTRUCT) == 0);
1879 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1880 db, zio_t *, zio);
1881 cv_wait(&db->db_changed, &db->db_mtx);
1882 }
1883 if (db->db_state == DB_UNCACHED)
1884 err = SET_ERROR(EIO);
1885 mutex_exit(&db->db_mtx);
1886 }
1887 }
1888
1889 return (err);
1890 }
1891
1892 static void
1893 dbuf_noread(dmu_buf_impl_t *db)
1894 {
1895 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897 mutex_enter(&db->db_mtx);
1898 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1899 cv_wait(&db->db_changed, &db->db_mtx);
1900 if (db->db_state == DB_UNCACHED) {
1901 ASSERT(db->db_buf == NULL);
1902 ASSERT(db->db.db_data == NULL);
1903 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1904 db->db_state = DB_FILL;
1905 DTRACE_SET_STATE(db, "assigning filled buffer");
1906 } else if (db->db_state == DB_NOFILL) {
1907 dbuf_clear_data(db);
1908 } else {
1909 ASSERT3U(db->db_state, ==, DB_CACHED);
1910 }
1911 mutex_exit(&db->db_mtx);
1912 }
1913
1914 void
1915 dbuf_unoverride(dbuf_dirty_record_t *dr)
1916 {
1917 dmu_buf_impl_t *db = dr->dr_dbuf;
1918 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1919 uint64_t txg = dr->dr_txg;
1920
1921 ASSERT(MUTEX_HELD(&db->db_mtx));
1922 /*
1923 * This assert is valid because dmu_sync() expects to be called by
1924 * a zilog's get_data while holding a range lock. This call only
1925 * comes from dbuf_dirty() callers who must also hold a range lock.
1926 */
1927 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1928 ASSERT(db->db_level == 0);
1929
1930 if (db->db_blkid == DMU_BONUS_BLKID ||
1931 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1932 return;
1933
1934 ASSERT(db->db_data_pending != dr);
1935
1936 /* free this block */
1937 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1938 zio_free(db->db_objset->os_spa, txg, bp);
1939
1940 if (dr->dt.dl.dr_brtwrite) {
1941 ASSERT0P(dr->dt.dl.dr_data);
1942 dr->dt.dl.dr_data = db->db_buf;
1943 }
1944 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1945 dr->dt.dl.dr_nopwrite = B_FALSE;
1946 dr->dt.dl.dr_brtwrite = B_FALSE;
1947 dr->dt.dl.dr_has_raw_params = B_FALSE;
1948
1949 /*
1950 * Release the already-written buffer, so we leave it in
1951 * a consistent dirty state. Note that all callers are
1952 * modifying the buffer, so they will immediately do
1953 * another (redundant) arc_release(). Therefore, leave
1954 * the buf thawed to save the effort of freezing &
1955 * immediately re-thawing it.
1956 */
1957 if (dr->dt.dl.dr_data)
1958 arc_release(dr->dt.dl.dr_data, db);
1959 }
1960
1961 /*
1962 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1963 * data blocks in the free range, so that any future readers will find
1964 * empty blocks.
1965 */
1966 void
1967 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1968 dmu_tx_t *tx)
1969 {
1970 dmu_buf_impl_t *db_search;
1971 dmu_buf_impl_t *db, *db_next;
1972 uint64_t txg = tx->tx_txg;
1973 avl_index_t where;
1974 dbuf_dirty_record_t *dr;
1975
1976 if (end_blkid > dn->dn_maxblkid &&
1977 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1978 end_blkid = dn->dn_maxblkid;
1979 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1980 (u_longlong_t)end_blkid);
1981
1982 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1983 db_search->db_level = 0;
1984 db_search->db_blkid = start_blkid;
1985 db_search->db_state = DB_SEARCH;
1986
1987 mutex_enter(&dn->dn_dbufs_mtx);
1988 db = avl_find(&dn->dn_dbufs, db_search, &where);
1989 ASSERT3P(db, ==, NULL);
1990
1991 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1992
1993 for (; db != NULL; db = db_next) {
1994 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1995 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1996
1997 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1998 break;
1999 }
2000 ASSERT3U(db->db_blkid, >=, start_blkid);
2001
2002 /* found a level 0 buffer in the range */
2003 mutex_enter(&db->db_mtx);
2004 if (dbuf_undirty(db, tx)) {
2005 /* mutex has been dropped and dbuf destroyed */
2006 continue;
2007 }
2008
2009 if (db->db_state == DB_UNCACHED ||
2010 db->db_state == DB_NOFILL ||
2011 db->db_state == DB_EVICTING) {
2012 ASSERT(db->db.db_data == NULL);
2013 mutex_exit(&db->db_mtx);
2014 continue;
2015 }
2016 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2017 /* will be handled in dbuf_read_done or dbuf_rele */
2018 db->db_freed_in_flight = TRUE;
2019 mutex_exit(&db->db_mtx);
2020 continue;
2021 }
2022 if (zfs_refcount_count(&db->db_holds) == 0) {
2023 ASSERT(db->db_buf);
2024 dbuf_destroy(db);
2025 continue;
2026 }
2027 /* The dbuf is referenced */
2028
2029 dr = list_head(&db->db_dirty_records);
2030 if (dr != NULL) {
2031 if (dr->dr_txg == txg) {
2032 /*
2033 * This buffer is "in-use", re-adjust the file
2034 * size to reflect that this buffer may
2035 * contain new data when we sync.
2036 */
2037 if (db->db_blkid != DMU_SPILL_BLKID &&
2038 db->db_blkid > dn->dn_maxblkid)
2039 dn->dn_maxblkid = db->db_blkid;
2040 dbuf_unoverride(dr);
2041 } else {
2042 /*
2043 * This dbuf is not dirty in the open context.
2044 * Either uncache it (if its not referenced in
2045 * the open context) or reset its contents to
2046 * empty.
2047 */
2048 dbuf_fix_old_data(db, txg);
2049 }
2050 }
2051 /* clear the contents if its cached */
2052 if (db->db_state == DB_CACHED) {
2053 ASSERT(db->db.db_data != NULL);
2054 arc_release(db->db_buf, db);
2055 rw_enter(&db->db_rwlock, RW_WRITER);
2056 memset(db->db.db_data, 0, db->db.db_size);
2057 rw_exit(&db->db_rwlock);
2058 arc_buf_freeze(db->db_buf);
2059 }
2060
2061 mutex_exit(&db->db_mtx);
2062 }
2063
2064 mutex_exit(&dn->dn_dbufs_mtx);
2065 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2066 }
2067
2068 void
2069 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2070 {
2071 arc_buf_t *buf, *old_buf;
2072 dbuf_dirty_record_t *dr;
2073 int osize = db->db.db_size;
2074 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2075 dnode_t *dn;
2076
2077 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2078
2079 DB_DNODE_ENTER(db);
2080 dn = DB_DNODE(db);
2081
2082 /*
2083 * XXX we should be doing a dbuf_read, checking the return
2084 * value and returning that up to our callers
2085 */
2086 dmu_buf_will_dirty(&db->db, tx);
2087
2088 /* create the data buffer for the new block */
2089 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2090
2091 /* copy old block data to the new block */
2092 old_buf = db->db_buf;
2093 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2094 /* zero the remainder */
2095 if (size > osize)
2096 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2097
2098 mutex_enter(&db->db_mtx);
2099 dbuf_set_data(db, buf);
2100 arc_buf_destroy(old_buf, db);
2101 db->db.db_size = size;
2102
2103 dr = list_head(&db->db_dirty_records);
2104 /* dirty record added by dmu_buf_will_dirty() */
2105 VERIFY(dr != NULL);
2106 if (db->db_level == 0)
2107 dr->dt.dl.dr_data = buf;
2108 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2109 ASSERT3U(dr->dr_accounted, ==, osize);
2110 dr->dr_accounted = size;
2111 mutex_exit(&db->db_mtx);
2112
2113 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2114 DB_DNODE_EXIT(db);
2115 }
2116
2117 void
2118 dbuf_release_bp(dmu_buf_impl_t *db)
2119 {
2120 objset_t *os __maybe_unused = db->db_objset;
2121
2122 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2123 ASSERT(arc_released(os->os_phys_buf) ||
2124 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2125 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2126
2127 (void) arc_release(db->db_buf, db);
2128 }
2129
2130 /*
2131 * We already have a dirty record for this TXG, and we are being
2132 * dirtied again.
2133 */
2134 static void
2135 dbuf_redirty(dbuf_dirty_record_t *dr)
2136 {
2137 dmu_buf_impl_t *db = dr->dr_dbuf;
2138
2139 ASSERT(MUTEX_HELD(&db->db_mtx));
2140
2141 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2142 /*
2143 * If this buffer has already been written out,
2144 * we now need to reset its state.
2145 */
2146 dbuf_unoverride(dr);
2147 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2148 db->db_state != DB_NOFILL) {
2149 /* Already released on initial dirty, so just thaw. */
2150 ASSERT(arc_released(db->db_buf));
2151 arc_buf_thaw(db->db_buf);
2152 }
2153 }
2154 }
2155
2156 dbuf_dirty_record_t *
2157 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2158 {
2159 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2160 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2161 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2162 ASSERT(dn->dn_maxblkid >= blkid);
2163
2164 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2165 list_link_init(&dr->dr_dirty_node);
2166 list_link_init(&dr->dr_dbuf_node);
2167 dr->dr_dnode = dn;
2168 dr->dr_txg = tx->tx_txg;
2169 dr->dt.dll.dr_blkid = blkid;
2170 dr->dr_accounted = dn->dn_datablksz;
2171
2172 /*
2173 * There should not be any dbuf for the block that we're dirtying.
2174 * Otherwise the buffer contents could be inconsistent between the
2175 * dbuf and the lightweight dirty record.
2176 */
2177 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2178 NULL));
2179
2180 mutex_enter(&dn->dn_mtx);
2181 int txgoff = tx->tx_txg & TXG_MASK;
2182 if (dn->dn_free_ranges[txgoff] != NULL) {
2183 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2184 }
2185
2186 if (dn->dn_nlevels == 1) {
2187 ASSERT3U(blkid, <, dn->dn_nblkptr);
2188 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2189 mutex_exit(&dn->dn_mtx);
2190 rw_exit(&dn->dn_struct_rwlock);
2191 dnode_setdirty(dn, tx);
2192 } else {
2193 mutex_exit(&dn->dn_mtx);
2194
2195 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2196 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2197 1, blkid >> epbs, FTAG);
2198 rw_exit(&dn->dn_struct_rwlock);
2199 if (parent_db == NULL) {
2200 kmem_free(dr, sizeof (*dr));
2201 return (NULL);
2202 }
2203 int err = dbuf_read(parent_db, NULL,
2204 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2205 if (err != 0) {
2206 dbuf_rele(parent_db, FTAG);
2207 kmem_free(dr, sizeof (*dr));
2208 return (NULL);
2209 }
2210
2211 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2212 dbuf_rele(parent_db, FTAG);
2213 mutex_enter(&parent_dr->dt.di.dr_mtx);
2214 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2215 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2216 mutex_exit(&parent_dr->dt.di.dr_mtx);
2217 dr->dr_parent = parent_dr;
2218 }
2219
2220 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2221
2222 return (dr);
2223 }
2224
2225 dbuf_dirty_record_t *
2226 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2227 {
2228 dnode_t *dn;
2229 objset_t *os;
2230 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2231 int txgoff = tx->tx_txg & TXG_MASK;
2232 boolean_t drop_struct_rwlock = B_FALSE;
2233
2234 ASSERT(tx->tx_txg != 0);
2235 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2236 DMU_TX_DIRTY_BUF(tx, db);
2237
2238 DB_DNODE_ENTER(db);
2239 dn = DB_DNODE(db);
2240 /*
2241 * Shouldn't dirty a regular buffer in syncing context. Private
2242 * objects may be dirtied in syncing context, but only if they
2243 * were already pre-dirtied in open context.
2244 */
2245 #ifdef ZFS_DEBUG
2246 if (dn->dn_objset->os_dsl_dataset != NULL) {
2247 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2248 RW_READER, FTAG);
2249 }
2250 ASSERT(!dmu_tx_is_syncing(tx) ||
2251 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2252 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2253 dn->dn_objset->os_dsl_dataset == NULL);
2254 if (dn->dn_objset->os_dsl_dataset != NULL)
2255 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2256 #endif
2257 /*
2258 * We make this assert for private objects as well, but after we
2259 * check if we're already dirty. They are allowed to re-dirty
2260 * in syncing context.
2261 */
2262 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2263 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2264 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2265
2266 mutex_enter(&db->db_mtx);
2267 /*
2268 * XXX make this true for indirects too? The problem is that
2269 * transactions created with dmu_tx_create_assigned() from
2270 * syncing context don't bother holding ahead.
2271 */
2272 ASSERT(db->db_level != 0 ||
2273 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2274 db->db_state == DB_NOFILL);
2275
2276 mutex_enter(&dn->dn_mtx);
2277 dnode_set_dirtyctx(dn, tx, db);
2278 if (tx->tx_txg > dn->dn_dirty_txg)
2279 dn->dn_dirty_txg = tx->tx_txg;
2280 mutex_exit(&dn->dn_mtx);
2281
2282 if (db->db_blkid == DMU_SPILL_BLKID)
2283 dn->dn_have_spill = B_TRUE;
2284
2285 /*
2286 * If this buffer is already dirty, we're done.
2287 */
2288 dr_head = list_head(&db->db_dirty_records);
2289 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2290 db->db.db_object == DMU_META_DNODE_OBJECT);
2291 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2292 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2293 DB_DNODE_EXIT(db);
2294
2295 dbuf_redirty(dr_next);
2296 mutex_exit(&db->db_mtx);
2297 return (dr_next);
2298 }
2299
2300 /*
2301 * Only valid if not already dirty.
2302 */
2303 ASSERT(dn->dn_object == 0 ||
2304 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2305 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2306
2307 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2308
2309 /*
2310 * We should only be dirtying in syncing context if it's the
2311 * mos or we're initializing the os or it's a special object.
2312 * However, we are allowed to dirty in syncing context provided
2313 * we already dirtied it in open context. Hence we must make
2314 * this assertion only if we're not already dirty.
2315 */
2316 os = dn->dn_objset;
2317 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2318 #ifdef ZFS_DEBUG
2319 if (dn->dn_objset->os_dsl_dataset != NULL)
2320 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2321 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2322 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2323 if (dn->dn_objset->os_dsl_dataset != NULL)
2324 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2325 #endif
2326 ASSERT(db->db.db_size != 0);
2327
2328 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2329
2330 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2331 dmu_objset_willuse_space(os, db->db.db_size, tx);
2332 }
2333
2334 /*
2335 * If this buffer is dirty in an old transaction group we need
2336 * to make a copy of it so that the changes we make in this
2337 * transaction group won't leak out when we sync the older txg.
2338 */
2339 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2340 list_link_init(&dr->dr_dirty_node);
2341 list_link_init(&dr->dr_dbuf_node);
2342 dr->dr_dnode = dn;
2343 if (db->db_level == 0) {
2344 void *data_old = db->db_buf;
2345
2346 if (db->db_state != DB_NOFILL) {
2347 if (db->db_blkid == DMU_BONUS_BLKID) {
2348 dbuf_fix_old_data(db, tx->tx_txg);
2349 data_old = db->db.db_data;
2350 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2351 /*
2352 * Release the data buffer from the cache so
2353 * that we can modify it without impacting
2354 * possible other users of this cached data
2355 * block. Note that indirect blocks and
2356 * private objects are not released until the
2357 * syncing state (since they are only modified
2358 * then).
2359 */
2360 arc_release(db->db_buf, db);
2361 dbuf_fix_old_data(db, tx->tx_txg);
2362 data_old = db->db_buf;
2363 }
2364 ASSERT(data_old != NULL);
2365 }
2366 dr->dt.dl.dr_data = data_old;
2367 } else {
2368 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2369 list_create(&dr->dt.di.dr_children,
2370 sizeof (dbuf_dirty_record_t),
2371 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2372 }
2373 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2374 dr->dr_accounted = db->db.db_size;
2375 }
2376 dr->dr_dbuf = db;
2377 dr->dr_txg = tx->tx_txg;
2378 list_insert_before(&db->db_dirty_records, dr_next, dr);
2379
2380 /*
2381 * We could have been freed_in_flight between the dbuf_noread
2382 * and dbuf_dirty. We win, as though the dbuf_noread() had
2383 * happened after the free.
2384 */
2385 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2386 db->db_blkid != DMU_SPILL_BLKID) {
2387 mutex_enter(&dn->dn_mtx);
2388 if (dn->dn_free_ranges[txgoff] != NULL) {
2389 range_tree_clear(dn->dn_free_ranges[txgoff],
2390 db->db_blkid, 1);
2391 }
2392 mutex_exit(&dn->dn_mtx);
2393 db->db_freed_in_flight = FALSE;
2394 }
2395
2396 /*
2397 * This buffer is now part of this txg
2398 */
2399 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2400 db->db_dirtycnt += 1;
2401 ASSERT3U(db->db_dirtycnt, <=, 3);
2402
2403 mutex_exit(&db->db_mtx);
2404
2405 if (db->db_blkid == DMU_BONUS_BLKID ||
2406 db->db_blkid == DMU_SPILL_BLKID) {
2407 mutex_enter(&dn->dn_mtx);
2408 ASSERT(!list_link_active(&dr->dr_dirty_node));
2409 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2410 mutex_exit(&dn->dn_mtx);
2411 dnode_setdirty(dn, tx);
2412 DB_DNODE_EXIT(db);
2413 return (dr);
2414 }
2415
2416 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2417 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2418 drop_struct_rwlock = B_TRUE;
2419 }
2420
2421 /*
2422 * If we are overwriting a dedup BP, then unless it is snapshotted,
2423 * when we get to syncing context we will need to decrement its
2424 * refcount in the DDT. Prefetch the relevant DDT block so that
2425 * syncing context won't have to wait for the i/o.
2426 */
2427 if (db->db_blkptr != NULL) {
2428 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2429 ddt_prefetch(os->os_spa, db->db_blkptr);
2430 dmu_buf_unlock_parent(db, dblt, FTAG);
2431 }
2432
2433 /*
2434 * We need to hold the dn_struct_rwlock to make this assertion,
2435 * because it protects dn_phys / dn_next_nlevels from changing.
2436 */
2437 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2438 dn->dn_phys->dn_nlevels > db->db_level ||
2439 dn->dn_next_nlevels[txgoff] > db->db_level ||
2440 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2441 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2442
2443
2444 if (db->db_level == 0) {
2445 ASSERT(!db->db_objset->os_raw_receive ||
2446 dn->dn_maxblkid >= db->db_blkid);
2447 dnode_new_blkid(dn, db->db_blkid, tx,
2448 drop_struct_rwlock, B_FALSE);
2449 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2450 }
2451
2452 if (db->db_level+1 < dn->dn_nlevels) {
2453 dmu_buf_impl_t *parent = db->db_parent;
2454 dbuf_dirty_record_t *di;
2455 int parent_held = FALSE;
2456
2457 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2458 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2459 parent = dbuf_hold_level(dn, db->db_level + 1,
2460 db->db_blkid >> epbs, FTAG);
2461 ASSERT(parent != NULL);
2462 parent_held = TRUE;
2463 }
2464 if (drop_struct_rwlock)
2465 rw_exit(&dn->dn_struct_rwlock);
2466 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2467 di = dbuf_dirty(parent, tx);
2468 if (parent_held)
2469 dbuf_rele(parent, FTAG);
2470
2471 mutex_enter(&db->db_mtx);
2472 /*
2473 * Since we've dropped the mutex, it's possible that
2474 * dbuf_undirty() might have changed this out from under us.
2475 */
2476 if (list_head(&db->db_dirty_records) == dr ||
2477 dn->dn_object == DMU_META_DNODE_OBJECT) {
2478 mutex_enter(&di->dt.di.dr_mtx);
2479 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2480 ASSERT(!list_link_active(&dr->dr_dirty_node));
2481 list_insert_tail(&di->dt.di.dr_children, dr);
2482 mutex_exit(&di->dt.di.dr_mtx);
2483 dr->dr_parent = di;
2484 }
2485 mutex_exit(&db->db_mtx);
2486 } else {
2487 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2488 ASSERT(db->db_blkid < dn->dn_nblkptr);
2489 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2490 mutex_enter(&dn->dn_mtx);
2491 ASSERT(!list_link_active(&dr->dr_dirty_node));
2492 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2493 mutex_exit(&dn->dn_mtx);
2494 if (drop_struct_rwlock)
2495 rw_exit(&dn->dn_struct_rwlock);
2496 }
2497
2498 dnode_setdirty(dn, tx);
2499 DB_DNODE_EXIT(db);
2500 return (dr);
2501 }
2502
2503 static void
2504 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2505 {
2506 dmu_buf_impl_t *db = dr->dr_dbuf;
2507
2508 if (dr->dt.dl.dr_data != db->db.db_data) {
2509 struct dnode *dn = dr->dr_dnode;
2510 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2511
2512 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2513 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2514 }
2515 db->db_data_pending = NULL;
2516 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2517 list_remove(&db->db_dirty_records, dr);
2518 if (dr->dr_dbuf->db_level != 0) {
2519 mutex_destroy(&dr->dt.di.dr_mtx);
2520 list_destroy(&dr->dt.di.dr_children);
2521 }
2522 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2523 ASSERT3U(db->db_dirtycnt, >, 0);
2524 db->db_dirtycnt -= 1;
2525 }
2526
2527 /*
2528 * Undirty a buffer in the transaction group referenced by the given
2529 * transaction. Return whether this evicted the dbuf.
2530 */
2531 boolean_t
2532 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2533 {
2534 uint64_t txg = tx->tx_txg;
2535 boolean_t brtwrite;
2536
2537 ASSERT(txg != 0);
2538
2539 /*
2540 * Due to our use of dn_nlevels below, this can only be called
2541 * in open context, unless we are operating on the MOS.
2542 * From syncing context, dn_nlevels may be different from the
2543 * dn_nlevels used when dbuf was dirtied.
2544 */
2545 ASSERT(db->db_objset ==
2546 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2547 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2548 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2549 ASSERT0(db->db_level);
2550 ASSERT(MUTEX_HELD(&db->db_mtx));
2551
2552 /*
2553 * If this buffer is not dirty, we're done.
2554 */
2555 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2556 if (dr == NULL)
2557 return (B_FALSE);
2558 ASSERT(dr->dr_dbuf == db);
2559
2560 brtwrite = dr->dt.dl.dr_brtwrite;
2561 if (brtwrite) {
2562 /*
2563 * We are freeing a block that we cloned in the same
2564 * transaction group.
2565 */
2566 brt_pending_remove(dmu_objset_spa(db->db_objset),
2567 &dr->dt.dl.dr_overridden_by, tx);
2568 }
2569
2570 dnode_t *dn = dr->dr_dnode;
2571
2572 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2573
2574 ASSERT(db->db.db_size != 0);
2575
2576 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2577 dr->dr_accounted, txg);
2578
2579 list_remove(&db->db_dirty_records, dr);
2580
2581 /*
2582 * Note that there are three places in dbuf_dirty()
2583 * where this dirty record may be put on a list.
2584 * Make sure to do a list_remove corresponding to
2585 * every one of those list_insert calls.
2586 */
2587 if (dr->dr_parent) {
2588 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2589 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2590 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2591 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2592 db->db_level + 1 == dn->dn_nlevels) {
2593 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2594 mutex_enter(&dn->dn_mtx);
2595 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2596 mutex_exit(&dn->dn_mtx);
2597 }
2598
2599 if (db->db_state != DB_NOFILL && !brtwrite) {
2600 dbuf_unoverride(dr);
2601
2602 ASSERT(db->db_buf != NULL);
2603 ASSERT(dr->dt.dl.dr_data != NULL);
2604 if (dr->dt.dl.dr_data != db->db_buf)
2605 arc_buf_destroy(dr->dt.dl.dr_data, db);
2606 }
2607
2608 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2609
2610 ASSERT(db->db_dirtycnt > 0);
2611 db->db_dirtycnt -= 1;
2612
2613 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2614 ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2615 arc_released(db->db_buf));
2616 dbuf_destroy(db);
2617 return (B_TRUE);
2618 }
2619
2620 return (B_FALSE);
2621 }
2622
2623 static void
2624 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2625 {
2626 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2627 boolean_t undirty = B_FALSE;
2628
2629 ASSERT(tx->tx_txg != 0);
2630 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2631
2632 /*
2633 * Quick check for dirtiness. For already dirty blocks, this
2634 * reduces runtime of this function by >90%, and overall performance
2635 * by 50% for some workloads (e.g. file deletion with indirect blocks
2636 * cached).
2637 */
2638 mutex_enter(&db->db_mtx);
2639
2640 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2641 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2642 /*
2643 * It's possible that it is already dirty but not cached,
2644 * because there are some calls to dbuf_dirty() that don't
2645 * go through dmu_buf_will_dirty().
2646 */
2647 if (dr != NULL) {
2648 if (dr->dt.dl.dr_brtwrite) {
2649 /*
2650 * Block cloning: If we are dirtying a cloned
2651 * block, we cannot simply redirty it, because
2652 * this dr has no data associated with it.
2653 * We will go through a full undirtying below,
2654 * before dirtying it again.
2655 */
2656 undirty = B_TRUE;
2657 } else {
2658 /* This dbuf is already dirty and cached. */
2659 dbuf_redirty(dr);
2660 mutex_exit(&db->db_mtx);
2661 return;
2662 }
2663 }
2664 }
2665 mutex_exit(&db->db_mtx);
2666
2667 DB_DNODE_ENTER(db);
2668 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2669 flags |= DB_RF_HAVESTRUCT;
2670 DB_DNODE_EXIT(db);
2671
2672 /*
2673 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2674 * want to make sure dbuf_read() will read the pending cloned block and
2675 * not the uderlying block that is being replaced. dbuf_undirty() will
2676 * do dbuf_unoverride(), so we will end up with cloned block content,
2677 * without overridden BP.
2678 */
2679 (void) dbuf_read(db, NULL, flags);
2680 if (undirty) {
2681 mutex_enter(&db->db_mtx);
2682 VERIFY(!dbuf_undirty(db, tx));
2683 mutex_exit(&db->db_mtx);
2684 }
2685 (void) dbuf_dirty(db, tx);
2686 }
2687
2688 void
2689 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2690 {
2691 dmu_buf_will_dirty_impl(db_fake,
2692 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2693 }
2694
2695 boolean_t
2696 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2697 {
2698 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2699 dbuf_dirty_record_t *dr;
2700
2701 mutex_enter(&db->db_mtx);
2702 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2703 mutex_exit(&db->db_mtx);
2704 return (dr != NULL);
2705 }
2706
2707 void
2708 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2709 {
2710 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2711
2712 /*
2713 * Block cloning: We are going to clone into this block, so undirty
2714 * modifications done to this block so far in this txg. This includes
2715 * writes and clones into this block.
2716 */
2717 mutex_enter(&db->db_mtx);
2718 DBUF_VERIFY(db);
2719 VERIFY(!dbuf_undirty(db, tx));
2720 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2721 if (db->db_buf != NULL) {
2722 arc_buf_destroy(db->db_buf, db);
2723 db->db_buf = NULL;
2724 dbuf_clear_data(db);
2725 }
2726
2727 db->db_state = DB_NOFILL;
2728 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2729
2730 DBUF_VERIFY(db);
2731 mutex_exit(&db->db_mtx);
2732
2733 dbuf_noread(db);
2734 (void) dbuf_dirty(db, tx);
2735 }
2736
2737 void
2738 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2739 {
2740 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2741
2742 mutex_enter(&db->db_mtx);
2743 db->db_state = DB_NOFILL;
2744 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2745 mutex_exit(&db->db_mtx);
2746
2747 dbuf_noread(db);
2748 (void) dbuf_dirty(db, tx);
2749 }
2750
2751 void
2752 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2753 {
2754 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2755
2756 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2757 ASSERT(tx->tx_txg != 0);
2758 ASSERT(db->db_level == 0);
2759 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2760
2761 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2762 dmu_tx_private_ok(tx));
2763
2764 mutex_enter(&db->db_mtx);
2765 if (db->db_state == DB_NOFILL) {
2766 /*
2767 * Block cloning: We will be completely overwriting a block
2768 * cloned in this transaction group, so let's undirty the
2769 * pending clone and mark the block as uncached. This will be
2770 * as if the clone was never done. But if the fill can fail
2771 * we should have a way to return back to the cloned data.
2772 */
2773 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2774 mutex_exit(&db->db_mtx);
2775 dmu_buf_will_dirty(db_fake, tx);
2776 return;
2777 }
2778 VERIFY(!dbuf_undirty(db, tx));
2779 db->db_state = DB_UNCACHED;
2780 }
2781 mutex_exit(&db->db_mtx);
2782
2783 dbuf_noread(db);
2784 (void) dbuf_dirty(db, tx);
2785 }
2786
2787 /*
2788 * This function is effectively the same as dmu_buf_will_dirty(), but
2789 * indicates the caller expects raw encrypted data in the db, and provides
2790 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2791 * blkptr_t when this dbuf is written. This is only used for blocks of
2792 * dnodes, during raw receive.
2793 */
2794 void
2795 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2796 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2797 {
2798 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2799 dbuf_dirty_record_t *dr;
2800
2801 /*
2802 * dr_has_raw_params is only processed for blocks of dnodes
2803 * (see dbuf_sync_dnode_leaf_crypt()).
2804 */
2805 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2806 ASSERT3U(db->db_level, ==, 0);
2807 ASSERT(db->db_objset->os_raw_receive);
2808
2809 dmu_buf_will_dirty_impl(db_fake,
2810 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2811
2812 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2813
2814 ASSERT3P(dr, !=, NULL);
2815
2816 dr->dt.dl.dr_has_raw_params = B_TRUE;
2817 dr->dt.dl.dr_byteorder = byteorder;
2818 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2819 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2820 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2821 }
2822
2823 static void
2824 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2825 {
2826 struct dirty_leaf *dl;
2827 dbuf_dirty_record_t *dr;
2828
2829 dr = list_head(&db->db_dirty_records);
2830 ASSERT3P(dr, !=, NULL);
2831 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2832 dl = &dr->dt.dl;
2833 dl->dr_overridden_by = *bp;
2834 dl->dr_override_state = DR_OVERRIDDEN;
2835 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2836 }
2837
2838 boolean_t
2839 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2840 {
2841 (void) tx;
2842 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2843 mutex_enter(&db->db_mtx);
2844 DBUF_VERIFY(db);
2845
2846 if (db->db_state == DB_FILL) {
2847 if (db->db_level == 0 && db->db_freed_in_flight) {
2848 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2849 /* we were freed while filling */
2850 /* XXX dbuf_undirty? */
2851 memset(db->db.db_data, 0, db->db.db_size);
2852 db->db_freed_in_flight = FALSE;
2853 db->db_state = DB_CACHED;
2854 DTRACE_SET_STATE(db,
2855 "fill done handling freed in flight");
2856 failed = B_FALSE;
2857 } else if (failed) {
2858 VERIFY(!dbuf_undirty(db, tx));
2859 db->db_buf = NULL;
2860 dbuf_clear_data(db);
2861 DTRACE_SET_STATE(db, "fill failed");
2862 } else {
2863 db->db_state = DB_CACHED;
2864 DTRACE_SET_STATE(db, "fill done");
2865 }
2866 cv_broadcast(&db->db_changed);
2867 } else {
2868 db->db_state = DB_CACHED;
2869 failed = B_FALSE;
2870 }
2871 mutex_exit(&db->db_mtx);
2872 return (failed);
2873 }
2874
2875 void
2876 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2877 bp_embedded_type_t etype, enum zio_compress comp,
2878 int uncompressed_size, int compressed_size, int byteorder,
2879 dmu_tx_t *tx)
2880 {
2881 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2882 struct dirty_leaf *dl;
2883 dmu_object_type_t type;
2884 dbuf_dirty_record_t *dr;
2885
2886 if (etype == BP_EMBEDDED_TYPE_DATA) {
2887 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2888 SPA_FEATURE_EMBEDDED_DATA));
2889 }
2890
2891 DB_DNODE_ENTER(db);
2892 type = DB_DNODE(db)->dn_type;
2893 DB_DNODE_EXIT(db);
2894
2895 ASSERT0(db->db_level);
2896 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2897
2898 dmu_buf_will_not_fill(dbuf, tx);
2899
2900 dr = list_head(&db->db_dirty_records);
2901 ASSERT3P(dr, !=, NULL);
2902 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2903 dl = &dr->dt.dl;
2904 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2905 data, comp, uncompressed_size, compressed_size);
2906 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2907 BP_SET_TYPE(&dl->dr_overridden_by, type);
2908 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2909 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2910
2911 dl->dr_override_state = DR_OVERRIDDEN;
2912 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2913 }
2914
2915 void
2916 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2917 {
2918 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2919 dmu_object_type_t type;
2920 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2921 SPA_FEATURE_REDACTED_DATASETS));
2922
2923 DB_DNODE_ENTER(db);
2924 type = DB_DNODE(db)->dn_type;
2925 DB_DNODE_EXIT(db);
2926
2927 ASSERT0(db->db_level);
2928 dmu_buf_will_not_fill(dbuf, tx);
2929
2930 blkptr_t bp = { { { {0} } } };
2931 BP_SET_TYPE(&bp, type);
2932 BP_SET_LEVEL(&bp, 0);
2933 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2934 BP_SET_REDACTED(&bp);
2935 BPE_SET_LSIZE(&bp, dbuf->db_size);
2936
2937 dbuf_override_impl(db, &bp, tx);
2938 }
2939
2940 /*
2941 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2942 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2943 */
2944 void
2945 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2946 {
2947 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2948 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2949 ASSERT(db->db_level == 0);
2950 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2951 ASSERT(buf != NULL);
2952 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2953 ASSERT(tx->tx_txg != 0);
2954
2955 arc_return_buf(buf, db);
2956 ASSERT(arc_released(buf));
2957
2958 mutex_enter(&db->db_mtx);
2959
2960 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2961 cv_wait(&db->db_changed, &db->db_mtx);
2962
2963 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2964 db->db_state == DB_NOFILL);
2965
2966 if (db->db_state == DB_CACHED &&
2967 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2968 /*
2969 * In practice, we will never have a case where we have an
2970 * encrypted arc buffer while additional holds exist on the
2971 * dbuf. We don't handle this here so we simply assert that
2972 * fact instead.
2973 */
2974 ASSERT(!arc_is_encrypted(buf));
2975 mutex_exit(&db->db_mtx);
2976 (void) dbuf_dirty(db, tx);
2977 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2978 arc_buf_destroy(buf, db);
2979 return;
2980 }
2981
2982 if (db->db_state == DB_CACHED) {
2983 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2984
2985 ASSERT(db->db_buf != NULL);
2986 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2987 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2988
2989 if (!arc_released(db->db_buf)) {
2990 ASSERT(dr->dt.dl.dr_override_state ==
2991 DR_OVERRIDDEN);
2992 arc_release(db->db_buf, db);
2993 }
2994 dr->dt.dl.dr_data = buf;
2995 arc_buf_destroy(db->db_buf, db);
2996 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2997 arc_release(db->db_buf, db);
2998 arc_buf_destroy(db->db_buf, db);
2999 }
3000 db->db_buf = NULL;
3001 } else if (db->db_state == DB_NOFILL) {
3002 /*
3003 * We will be completely replacing the cloned block. In case
3004 * it was cloned in this transaction group, let's undirty the
3005 * pending clone and mark the block as uncached. This will be
3006 * as if the clone was never done.
3007 */
3008 VERIFY(!dbuf_undirty(db, tx));
3009 db->db_state = DB_UNCACHED;
3010 }
3011 ASSERT(db->db_buf == NULL);
3012 dbuf_set_data(db, buf);
3013 db->db_state = DB_FILL;
3014 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3015 mutex_exit(&db->db_mtx);
3016 (void) dbuf_dirty(db, tx);
3017 dmu_buf_fill_done(&db->db, tx, B_FALSE);
3018 }
3019
3020 void
3021 dbuf_destroy(dmu_buf_impl_t *db)
3022 {
3023 dnode_t *dn;
3024 dmu_buf_impl_t *parent = db->db_parent;
3025 dmu_buf_impl_t *dndb;
3026
3027 ASSERT(MUTEX_HELD(&db->db_mtx));
3028 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3029
3030 if (db->db_buf != NULL) {
3031 arc_buf_destroy(db->db_buf, db);
3032 db->db_buf = NULL;
3033 }
3034
3035 if (db->db_blkid == DMU_BONUS_BLKID) {
3036 int slots = DB_DNODE(db)->dn_num_slots;
3037 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3038 if (db->db.db_data != NULL) {
3039 kmem_free(db->db.db_data, bonuslen);
3040 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3041 db->db_state = DB_UNCACHED;
3042 DTRACE_SET_STATE(db, "buffer cleared");
3043 }
3044 }
3045
3046 dbuf_clear_data(db);
3047
3048 if (multilist_link_active(&db->db_cache_link)) {
3049 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3050 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3051
3052 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3053
3054 ASSERT0(dmu_buf_user_size(&db->db));
3055 (void) zfs_refcount_remove_many(
3056 &dbuf_caches[db->db_caching_status].size,
3057 db->db.db_size, db);
3058
3059 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3060 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3061 } else {
3062 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3063 DBUF_STAT_BUMPDOWN(cache_count);
3064 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3065 db->db.db_size);
3066 }
3067 db->db_caching_status = DB_NO_CACHE;
3068 }
3069
3070 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3071 ASSERT(db->db_data_pending == NULL);
3072 ASSERT(list_is_empty(&db->db_dirty_records));
3073
3074 db->db_state = DB_EVICTING;
3075 DTRACE_SET_STATE(db, "buffer eviction started");
3076 db->db_blkptr = NULL;
3077
3078 /*
3079 * Now that db_state is DB_EVICTING, nobody else can find this via
3080 * the hash table. We can now drop db_mtx, which allows us to
3081 * acquire the dn_dbufs_mtx.
3082 */
3083 mutex_exit(&db->db_mtx);
3084
3085 DB_DNODE_ENTER(db);
3086 dn = DB_DNODE(db);
3087 dndb = dn->dn_dbuf;
3088 if (db->db_blkid != DMU_BONUS_BLKID) {
3089 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3090 if (needlock)
3091 mutex_enter_nested(&dn->dn_dbufs_mtx,
3092 NESTED_SINGLE);
3093 avl_remove(&dn->dn_dbufs, db);
3094 membar_producer();
3095 DB_DNODE_EXIT(db);
3096 if (needlock)
3097 mutex_exit(&dn->dn_dbufs_mtx);
3098 /*
3099 * Decrementing the dbuf count means that the hold corresponding
3100 * to the removed dbuf is no longer discounted in dnode_move(),
3101 * so the dnode cannot be moved until after we release the hold.
3102 * The membar_producer() ensures visibility of the decremented
3103 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3104 * release any lock.
3105 */
3106 mutex_enter(&dn->dn_mtx);
3107 dnode_rele_and_unlock(dn, db, B_TRUE);
3108 db->db_dnode_handle = NULL;
3109
3110 dbuf_hash_remove(db);
3111 } else {
3112 DB_DNODE_EXIT(db);
3113 }
3114
3115 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3116
3117 db->db_parent = NULL;
3118
3119 ASSERT(db->db_buf == NULL);
3120 ASSERT(db->db.db_data == NULL);
3121 ASSERT(db->db_hash_next == NULL);
3122 ASSERT(db->db_blkptr == NULL);
3123 ASSERT(db->db_data_pending == NULL);
3124 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3125 ASSERT(!multilist_link_active(&db->db_cache_link));
3126
3127 /*
3128 * If this dbuf is referenced from an indirect dbuf,
3129 * decrement the ref count on the indirect dbuf.
3130 */
3131 if (parent && parent != dndb) {
3132 mutex_enter(&parent->db_mtx);
3133 dbuf_rele_and_unlock(parent, db, B_TRUE);
3134 }
3135
3136 kmem_cache_free(dbuf_kmem_cache, db);
3137 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3138 }
3139
3140 /*
3141 * Note: While bpp will always be updated if the function returns success,
3142 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3143 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3144 * object.
3145 */
3146 __attribute__((always_inline))
3147 static inline int
3148 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3149 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3150 {
3151 *parentp = NULL;
3152 *bpp = NULL;
3153
3154 ASSERT(blkid != DMU_BONUS_BLKID);
3155
3156 if (blkid == DMU_SPILL_BLKID) {
3157 mutex_enter(&dn->dn_mtx);
3158 if (dn->dn_have_spill &&
3159 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3160 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3161 else
3162 *bpp = NULL;
3163 dbuf_add_ref(dn->dn_dbuf, NULL);
3164 *parentp = dn->dn_dbuf;
3165 mutex_exit(&dn->dn_mtx);
3166 return (0);
3167 }
3168
3169 int nlevels =
3170 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3171 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3172
3173 ASSERT3U(level * epbs, <, 64);
3174 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3175 /*
3176 * This assertion shouldn't trip as long as the max indirect block size
3177 * is less than 1M. The reason for this is that up to that point,
3178 * the number of levels required to address an entire object with blocks
3179 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3180 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3181 * (i.e. we can address the entire object), objects will all use at most
3182 * N-1 levels and the assertion won't overflow. However, once epbs is
3183 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3184 * enough to address an entire object, so objects will have 5 levels,
3185 * but then this assertion will overflow.
3186 *
3187 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3188 * need to redo this logic to handle overflows.
3189 */
3190 ASSERT(level >= nlevels ||
3191 ((nlevels - level - 1) * epbs) +
3192 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3193 if (level >= nlevels ||
3194 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3195 ((nlevels - level - 1) * epbs)) ||
3196 (fail_sparse &&
3197 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3198 /* the buffer has no parent yet */
3199 return (SET_ERROR(ENOENT));
3200 } else if (level < nlevels-1) {
3201 /* this block is referenced from an indirect block */
3202 int err;
3203
3204 err = dbuf_hold_impl(dn, level + 1,
3205 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3206
3207 if (err)
3208 return (err);
3209 err = dbuf_read(*parentp, NULL,
3210 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3211 if (err) {
3212 dbuf_rele(*parentp, NULL);
3213 *parentp = NULL;
3214 return (err);
3215 }
3216 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3217 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3218 (blkid & ((1ULL << epbs) - 1));
3219 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3220 ASSERT(BP_IS_HOLE(*bpp));
3221 rw_exit(&(*parentp)->db_rwlock);
3222 return (0);
3223 } else {
3224 /* the block is referenced from the dnode */
3225 ASSERT3U(level, ==, nlevels-1);
3226 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3227 blkid < dn->dn_phys->dn_nblkptr);
3228 if (dn->dn_dbuf) {
3229 dbuf_add_ref(dn->dn_dbuf, NULL);
3230 *parentp = dn->dn_dbuf;
3231 }
3232 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3233 return (0);
3234 }
3235 }
3236
3237 static dmu_buf_impl_t *
3238 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3239 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3240 {
3241 objset_t *os = dn->dn_objset;
3242 dmu_buf_impl_t *db, *odb;
3243
3244 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3245 ASSERT(dn->dn_type != DMU_OT_NONE);
3246
3247 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3248
3249 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3250 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3251
3252 db->db_objset = os;
3253 db->db.db_object = dn->dn_object;
3254 db->db_level = level;
3255 db->db_blkid = blkid;
3256 db->db_dirtycnt = 0;
3257 db->db_dnode_handle = dn->dn_handle;
3258 db->db_parent = parent;
3259 db->db_blkptr = blkptr;
3260 db->db_hash = hash;
3261
3262 db->db_user = NULL;
3263 db->db_user_immediate_evict = FALSE;
3264 db->db_freed_in_flight = FALSE;
3265 db->db_pending_evict = FALSE;
3266
3267 if (blkid == DMU_BONUS_BLKID) {
3268 ASSERT3P(parent, ==, dn->dn_dbuf);
3269 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3270 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3271 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3272 db->db.db_offset = DMU_BONUS_BLKID;
3273 db->db_state = DB_UNCACHED;
3274 DTRACE_SET_STATE(db, "bonus buffer created");
3275 db->db_caching_status = DB_NO_CACHE;
3276 /* the bonus dbuf is not placed in the hash table */
3277 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3278 return (db);
3279 } else if (blkid == DMU_SPILL_BLKID) {
3280 db->db.db_size = (blkptr != NULL) ?
3281 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3282 db->db.db_offset = 0;
3283 } else {
3284 int blocksize =
3285 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3286 db->db.db_size = blocksize;
3287 db->db.db_offset = db->db_blkid * blocksize;
3288 }
3289
3290 /*
3291 * Hold the dn_dbufs_mtx while we get the new dbuf
3292 * in the hash table *and* added to the dbufs list.
3293 * This prevents a possible deadlock with someone
3294 * trying to look up this dbuf before it's added to the
3295 * dn_dbufs list.
3296 */
3297 mutex_enter(&dn->dn_dbufs_mtx);
3298 db->db_state = DB_EVICTING; /* not worth logging this state change */
3299 if ((odb = dbuf_hash_insert(db)) != NULL) {
3300 /* someone else inserted it first */
3301 mutex_exit(&dn->dn_dbufs_mtx);
3302 kmem_cache_free(dbuf_kmem_cache, db);
3303 DBUF_STAT_BUMP(hash_insert_race);
3304 return (odb);
3305 }
3306 avl_add(&dn->dn_dbufs, db);
3307
3308 db->db_state = DB_UNCACHED;
3309 DTRACE_SET_STATE(db, "regular buffer created");
3310 db->db_caching_status = DB_NO_CACHE;
3311 mutex_exit(&dn->dn_dbufs_mtx);
3312 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3313
3314 if (parent && parent != dn->dn_dbuf)
3315 dbuf_add_ref(parent, db);
3316
3317 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3318 zfs_refcount_count(&dn->dn_holds) > 0);
3319 (void) zfs_refcount_add(&dn->dn_holds, db);
3320
3321 dprintf_dbuf(db, "db=%p\n", db);
3322
3323 return (db);
3324 }
3325
3326 /*
3327 * This function returns a block pointer and information about the object,
3328 * given a dnode and a block. This is a publicly accessible version of
3329 * dbuf_findbp that only returns some information, rather than the
3330 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3331 * should be locked as (at least) a reader.
3332 */
3333 int
3334 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3335 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3336 {
3337 dmu_buf_impl_t *dbp = NULL;
3338 blkptr_t *bp2;
3339 int err = 0;
3340 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3341
3342 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3343 if (err == 0) {
3344 ASSERT3P(bp2, !=, NULL);
3345 *bp = *bp2;
3346 if (dbp != NULL)
3347 dbuf_rele(dbp, NULL);
3348 if (datablkszsec != NULL)
3349 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3350 if (indblkshift != NULL)
3351 *indblkshift = dn->dn_phys->dn_indblkshift;
3352 }
3353
3354 return (err);
3355 }
3356
3357 typedef struct dbuf_prefetch_arg {
3358 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3359 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3360 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3361 int dpa_curlevel; /* The current level that we're reading */
3362 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3363 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3364 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3365 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3366 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3367 void *dpa_arg; /* prefetch completion arg */
3368 } dbuf_prefetch_arg_t;
3369
3370 static void
3371 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3372 {
3373 if (dpa->dpa_cb != NULL) {
3374 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3375 dpa->dpa_zb.zb_blkid, io_done);
3376 }
3377 kmem_free(dpa, sizeof (*dpa));
3378 }
3379
3380 static void
3381 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3382 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3383 {
3384 (void) zio, (void) zb, (void) iobp;
3385 dbuf_prefetch_arg_t *dpa = private;
3386
3387 if (abuf != NULL)
3388 arc_buf_destroy(abuf, private);
3389
3390 dbuf_prefetch_fini(dpa, B_TRUE);
3391 }
3392
3393 /*
3394 * Actually issue the prefetch read for the block given.
3395 */
3396 static void
3397 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3398 {
3399 ASSERT(!BP_IS_REDACTED(bp) ||
3400 dsl_dataset_feature_is_active(
3401 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3402 SPA_FEATURE_REDACTED_DATASETS));
3403
3404 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3405 return (dbuf_prefetch_fini(dpa, B_FALSE));
3406
3407 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3408 arc_flags_t aflags =
3409 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3410 ARC_FLAG_NO_BUF;
3411
3412 /* dnodes are always read as raw and then converted later */
3413 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3414 dpa->dpa_curlevel == 0)
3415 zio_flags |= ZIO_FLAG_RAW;
3416
3417 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3418 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3419 ASSERT(dpa->dpa_zio != NULL);
3420 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3421 dbuf_issue_final_prefetch_done, dpa,
3422 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3423 }
3424
3425 /*
3426 * Called when an indirect block above our prefetch target is read in. This
3427 * will either read in the next indirect block down the tree or issue the actual
3428 * prefetch if the next block down is our target.
3429 */
3430 static void
3431 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3432 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3433 {
3434 (void) zb, (void) iobp;
3435 dbuf_prefetch_arg_t *dpa = private;
3436
3437 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3438 ASSERT3S(dpa->dpa_curlevel, >, 0);
3439
3440 if (abuf == NULL) {
3441 ASSERT(zio == NULL || zio->io_error != 0);
3442 dbuf_prefetch_fini(dpa, B_TRUE);
3443 return;
3444 }
3445 ASSERT(zio == NULL || zio->io_error == 0);
3446
3447 /*
3448 * The dpa_dnode is only valid if we are called with a NULL
3449 * zio. This indicates that the arc_read() returned without
3450 * first calling zio_read() to issue a physical read. Once
3451 * a physical read is made the dpa_dnode must be invalidated
3452 * as the locks guarding it may have been dropped. If the
3453 * dpa_dnode is still valid, then we want to add it to the dbuf
3454 * cache. To do so, we must hold the dbuf associated with the block
3455 * we just prefetched, read its contents so that we associate it
3456 * with an arc_buf_t, and then release it.
3457 */
3458 if (zio != NULL) {
3459 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3460 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3461 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3462 } else {
3463 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3464 }
3465 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3466
3467 dpa->dpa_dnode = NULL;
3468 } else if (dpa->dpa_dnode != NULL) {
3469 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3470 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3471 dpa->dpa_zb.zb_level));
3472 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3473 dpa->dpa_curlevel, curblkid, FTAG);
3474 if (db == NULL) {
3475 arc_buf_destroy(abuf, private);
3476 dbuf_prefetch_fini(dpa, B_TRUE);
3477 return;
3478 }
3479 (void) dbuf_read(db, NULL,
3480 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3481 dbuf_rele(db, FTAG);
3482 }
3483
3484 dpa->dpa_curlevel--;
3485 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3486 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3487 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3488 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3489
3490 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3491 dsl_dataset_feature_is_active(
3492 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3493 SPA_FEATURE_REDACTED_DATASETS)));
3494 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3495 arc_buf_destroy(abuf, private);
3496 dbuf_prefetch_fini(dpa, B_TRUE);
3497 return;
3498 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3499 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3500 dbuf_issue_final_prefetch(dpa, bp);
3501 } else {
3502 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3503 zbookmark_phys_t zb;
3504
3505 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3506 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3507 iter_aflags |= ARC_FLAG_L2CACHE;
3508
3509 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3510
3511 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3512 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3513
3514 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3515 bp, dbuf_prefetch_indirect_done, dpa,
3516 ZIO_PRIORITY_SYNC_READ,
3517 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3518 &iter_aflags, &zb);
3519 }
3520
3521 arc_buf_destroy(abuf, private);
3522 }
3523
3524 /*
3525 * Issue prefetch reads for the given block on the given level. If the indirect
3526 * blocks above that block are not in memory, we will read them in
3527 * asynchronously. As a result, this call never blocks waiting for a read to
3528 * complete. Note that the prefetch might fail if the dataset is encrypted and
3529 * the encryption key is unmapped before the IO completes.
3530 */
3531 int
3532 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3533 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3534 void *arg)
3535 {
3536 blkptr_t bp;
3537 int epbs, nlevels, curlevel;
3538 uint64_t curblkid;
3539
3540 ASSERT(blkid != DMU_BONUS_BLKID);
3541 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3542
3543 if (blkid > dn->dn_maxblkid)
3544 goto no_issue;
3545
3546 if (level == 0 && dnode_block_freed(dn, blkid))
3547 goto no_issue;
3548
3549 /*
3550 * This dnode hasn't been written to disk yet, so there's nothing to
3551 * prefetch.
3552 */
3553 nlevels = dn->dn_phys->dn_nlevels;
3554 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3555 goto no_issue;
3556
3557 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3558 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3559 goto no_issue;
3560
3561 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3562 level, blkid, NULL);
3563 if (db != NULL) {
3564 mutex_exit(&db->db_mtx);
3565 /*
3566 * This dbuf already exists. It is either CACHED, or
3567 * (we assume) about to be read or filled.
3568 */
3569 goto no_issue;
3570 }
3571
3572 /*
3573 * Find the closest ancestor (indirect block) of the target block
3574 * that is present in the cache. In this indirect block, we will
3575 * find the bp that is at curlevel, curblkid.
3576 */
3577 curlevel = level;
3578 curblkid = blkid;
3579 while (curlevel < nlevels - 1) {
3580 int parent_level = curlevel + 1;
3581 uint64_t parent_blkid = curblkid >> epbs;
3582 dmu_buf_impl_t *db;
3583
3584 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3585 FALSE, TRUE, FTAG, &db) == 0) {
3586 blkptr_t *bpp = db->db_buf->b_data;
3587 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3588 dbuf_rele(db, FTAG);
3589 break;
3590 }
3591
3592 curlevel = parent_level;
3593 curblkid = parent_blkid;
3594 }
3595
3596 if (curlevel == nlevels - 1) {
3597 /* No cached indirect blocks found. */
3598 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3599 bp = dn->dn_phys->dn_blkptr[curblkid];
3600 }
3601 ASSERT(!BP_IS_REDACTED(&bp) ||
3602 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3603 SPA_FEATURE_REDACTED_DATASETS));
3604 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3605 goto no_issue;
3606
3607 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3608
3609 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3610 ZIO_FLAG_CANFAIL);
3611
3612 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3613 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3614 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3615 dn->dn_object, level, blkid);
3616 dpa->dpa_curlevel = curlevel;
3617 dpa->dpa_prio = prio;
3618 dpa->dpa_aflags = aflags;
3619 dpa->dpa_spa = dn->dn_objset->os_spa;
3620 dpa->dpa_dnode = dn;
3621 dpa->dpa_epbs = epbs;
3622 dpa->dpa_zio = pio;
3623 dpa->dpa_cb = cb;
3624 dpa->dpa_arg = arg;
3625
3626 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3627 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3628 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3629 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3630
3631 /*
3632 * If we have the indirect just above us, no need to do the asynchronous
3633 * prefetch chain; we'll just run the last step ourselves. If we're at
3634 * a higher level, though, we want to issue the prefetches for all the
3635 * indirect blocks asynchronously, so we can go on with whatever we were
3636 * doing.
3637 */
3638 if (curlevel == level) {
3639 ASSERT3U(curblkid, ==, blkid);
3640 dbuf_issue_final_prefetch(dpa, &bp);
3641 } else {
3642 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3643 zbookmark_phys_t zb;
3644
3645 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3646 if (dnode_level_is_l2cacheable(&bp, dn, level))
3647 iter_aflags |= ARC_FLAG_L2CACHE;
3648
3649 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3650 dn->dn_object, curlevel, curblkid);
3651 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3652 &bp, dbuf_prefetch_indirect_done, dpa,
3653 ZIO_PRIORITY_SYNC_READ,
3654 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3655 &iter_aflags, &zb);
3656 }
3657 /*
3658 * We use pio here instead of dpa_zio since it's possible that
3659 * dpa may have already been freed.
3660 */
3661 zio_nowait(pio);
3662 return (1);
3663 no_issue:
3664 if (cb != NULL)
3665 cb(arg, level, blkid, B_FALSE);
3666 return (0);
3667 }
3668
3669 int
3670 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3671 arc_flags_t aflags)
3672 {
3673
3674 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3675 }
3676
3677 /*
3678 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3679 * the case of encrypted, compressed and uncompressed buffers by
3680 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3681 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3682 *
3683 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3684 */
3685 noinline static void
3686 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3687 {
3688 dbuf_dirty_record_t *dr = db->db_data_pending;
3689 arc_buf_t *data = dr->dt.dl.dr_data;
3690 enum zio_compress compress_type = arc_get_compression(data);
3691 uint8_t complevel = arc_get_complevel(data);
3692
3693 if (arc_is_encrypted(data)) {
3694 boolean_t byteorder;
3695 uint8_t salt[ZIO_DATA_SALT_LEN];
3696 uint8_t iv[ZIO_DATA_IV_LEN];
3697 uint8_t mac[ZIO_DATA_MAC_LEN];
3698
3699 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3700 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3701 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3702 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3703 compress_type, complevel));
3704 } else if (compress_type != ZIO_COMPRESS_OFF) {
3705 dbuf_set_data(db, arc_alloc_compressed_buf(
3706 dn->dn_objset->os_spa, db, arc_buf_size(data),
3707 arc_buf_lsize(data), compress_type, complevel));
3708 } else {
3709 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3710 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3711 }
3712
3713 rw_enter(&db->db_rwlock, RW_WRITER);
3714 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3715 rw_exit(&db->db_rwlock);
3716 }
3717
3718 /*
3719 * Returns with db_holds incremented, and db_mtx not held.
3720 * Note: dn_struct_rwlock must be held.
3721 */
3722 int
3723 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3724 boolean_t fail_sparse, boolean_t fail_uncached,
3725 const void *tag, dmu_buf_impl_t **dbp)
3726 {
3727 dmu_buf_impl_t *db, *parent = NULL;
3728 uint64_t hv;
3729
3730 /* If the pool has been created, verify the tx_sync_lock is not held */
3731 spa_t *spa = dn->dn_objset->os_spa;
3732 dsl_pool_t *dp = spa->spa_dsl_pool;
3733 if (dp != NULL) {
3734 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3735 }
3736
3737 ASSERT(blkid != DMU_BONUS_BLKID);
3738 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3739 ASSERT3U(dn->dn_nlevels, >, level);
3740
3741 *dbp = NULL;
3742
3743 /* dbuf_find() returns with db_mtx held */
3744 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3745
3746 if (db == NULL) {
3747 blkptr_t *bp = NULL;
3748 int err;
3749
3750 if (fail_uncached)
3751 return (SET_ERROR(ENOENT));
3752
3753 ASSERT3P(parent, ==, NULL);
3754 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3755 if (fail_sparse) {
3756 if (err == 0 && bp && BP_IS_HOLE(bp))
3757 err = SET_ERROR(ENOENT);
3758 if (err) {
3759 if (parent)
3760 dbuf_rele(parent, NULL);
3761 return (err);
3762 }
3763 }
3764 if (err && err != ENOENT)
3765 return (err);
3766 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3767 }
3768
3769 if (fail_uncached && db->db_state != DB_CACHED) {
3770 mutex_exit(&db->db_mtx);
3771 return (SET_ERROR(ENOENT));
3772 }
3773
3774 if (db->db_buf != NULL) {
3775 arc_buf_access(db->db_buf);
3776 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3777 }
3778
3779 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3780
3781 /*
3782 * If this buffer is currently syncing out, and we are
3783 * still referencing it from db_data, we need to make a copy
3784 * of it in case we decide we want to dirty it again in this txg.
3785 */
3786 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3787 dn->dn_object != DMU_META_DNODE_OBJECT &&
3788 db->db_state == DB_CACHED && db->db_data_pending) {
3789 dbuf_dirty_record_t *dr = db->db_data_pending;
3790 if (dr->dt.dl.dr_data == db->db_buf) {
3791 ASSERT3P(db->db_buf, !=, NULL);
3792 dbuf_hold_copy(dn, db);
3793 }
3794 }
3795
3796 if (multilist_link_active(&db->db_cache_link)) {
3797 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3798 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3799 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3800
3801 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3802
3803 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
3804 (void) zfs_refcount_remove_many(
3805 &dbuf_caches[db->db_caching_status].size, size, db);
3806
3807 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3808 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3809 } else {
3810 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3811 DBUF_STAT_BUMPDOWN(cache_count);
3812 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
3813 }
3814 db->db_caching_status = DB_NO_CACHE;
3815 }
3816 (void) zfs_refcount_add(&db->db_holds, tag);
3817 DBUF_VERIFY(db);
3818 mutex_exit(&db->db_mtx);
3819
3820 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3821 if (parent)
3822 dbuf_rele(parent, NULL);
3823
3824 ASSERT3P(DB_DNODE(db), ==, dn);
3825 ASSERT3U(db->db_blkid, ==, blkid);
3826 ASSERT3U(db->db_level, ==, level);
3827 *dbp = db;
3828
3829 return (0);
3830 }
3831
3832 dmu_buf_impl_t *
3833 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3834 {
3835 return (dbuf_hold_level(dn, 0, blkid, tag));
3836 }
3837
3838 dmu_buf_impl_t *
3839 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3840 {
3841 dmu_buf_impl_t *db;
3842 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3843 return (err ? NULL : db);
3844 }
3845
3846 void
3847 dbuf_create_bonus(dnode_t *dn)
3848 {
3849 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3850
3851 ASSERT(dn->dn_bonus == NULL);
3852 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3853 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3854 }
3855
3856 int
3857 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3858 {
3859 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3860
3861 if (db->db_blkid != DMU_SPILL_BLKID)
3862 return (SET_ERROR(ENOTSUP));
3863 if (blksz == 0)
3864 blksz = SPA_MINBLOCKSIZE;
3865 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3866 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3867
3868 dbuf_new_size(db, blksz, tx);
3869
3870 return (0);
3871 }
3872
3873 void
3874 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3875 {
3876 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3877 }
3878
3879 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3880 void
3881 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3882 {
3883 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3884 VERIFY3S(holds, >, 1);
3885 }
3886
3887 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3888 boolean_t
3889 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3890 const void *tag)
3891 {
3892 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3893 dmu_buf_impl_t *found_db;
3894 boolean_t result = B_FALSE;
3895
3896 if (blkid == DMU_BONUS_BLKID)
3897 found_db = dbuf_find_bonus(os, obj);
3898 else
3899 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3900
3901 if (found_db != NULL) {
3902 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3903 (void) zfs_refcount_add(&db->db_holds, tag);
3904 result = B_TRUE;
3905 }
3906 mutex_exit(&found_db->db_mtx);
3907 }
3908 return (result);
3909 }
3910
3911 /*
3912 * If you call dbuf_rele() you had better not be referencing the dnode handle
3913 * unless you have some other direct or indirect hold on the dnode. (An indirect
3914 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3915 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3916 * dnode's parent dbuf evicting its dnode handles.
3917 */
3918 void
3919 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3920 {
3921 mutex_enter(&db->db_mtx);
3922 dbuf_rele_and_unlock(db, tag, B_FALSE);
3923 }
3924
3925 void
3926 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3927 {
3928 dbuf_rele((dmu_buf_impl_t *)db, tag);
3929 }
3930
3931 /*
3932 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3933 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3934 * argument should be set if we are already in the dbuf-evicting code
3935 * path, in which case we don't want to recursively evict. This allows us to
3936 * avoid deeply nested stacks that would have a call flow similar to this:
3937 *
3938 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3939 * ^ |
3940 * | |
3941 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3942 *
3943 */
3944 void
3945 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3946 {
3947 int64_t holds;
3948 uint64_t size;
3949
3950 ASSERT(MUTEX_HELD(&db->db_mtx));
3951 DBUF_VERIFY(db);
3952
3953 /*
3954 * Remove the reference to the dbuf before removing its hold on the
3955 * dnode so we can guarantee in dnode_move() that a referenced bonus
3956 * buffer has a corresponding dnode hold.
3957 */
3958 holds = zfs_refcount_remove(&db->db_holds, tag);
3959 ASSERT(holds >= 0);
3960
3961 /*
3962 * We can't freeze indirects if there is a possibility that they
3963 * may be modified in the current syncing context.
3964 */
3965 if (db->db_buf != NULL &&
3966 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3967 arc_buf_freeze(db->db_buf);
3968 }
3969
3970 if (holds == db->db_dirtycnt &&
3971 db->db_level == 0 && db->db_user_immediate_evict)
3972 dbuf_evict_user(db);
3973
3974 if (holds == 0) {
3975 if (db->db_blkid == DMU_BONUS_BLKID) {
3976 dnode_t *dn;
3977 boolean_t evict_dbuf = db->db_pending_evict;
3978
3979 /*
3980 * If the dnode moves here, we cannot cross this
3981 * barrier until the move completes.
3982 */
3983 DB_DNODE_ENTER(db);
3984
3985 dn = DB_DNODE(db);
3986 atomic_dec_32(&dn->dn_dbufs_count);
3987
3988 /*
3989 * Decrementing the dbuf count means that the bonus
3990 * buffer's dnode hold is no longer discounted in
3991 * dnode_move(). The dnode cannot move until after
3992 * the dnode_rele() below.
3993 */
3994 DB_DNODE_EXIT(db);
3995
3996 /*
3997 * Do not reference db after its lock is dropped.
3998 * Another thread may evict it.
3999 */
4000 mutex_exit(&db->db_mtx);
4001
4002 if (evict_dbuf)
4003 dnode_evict_bonus(dn);
4004
4005 dnode_rele(dn, db);
4006 } else if (db->db_buf == NULL) {
4007 /*
4008 * This is a special case: we never associated this
4009 * dbuf with any data allocated from the ARC.
4010 */
4011 ASSERT(db->db_state == DB_UNCACHED ||
4012 db->db_state == DB_NOFILL);
4013 dbuf_destroy(db);
4014 } else if (arc_released(db->db_buf)) {
4015 /*
4016 * This dbuf has anonymous data associated with it.
4017 */
4018 dbuf_destroy(db);
4019 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4020 db->db_pending_evict) {
4021 dbuf_destroy(db);
4022 } else if (!multilist_link_active(&db->db_cache_link)) {
4023 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4024
4025 dbuf_cached_state_t dcs =
4026 dbuf_include_in_metadata_cache(db) ?
4027 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4028 db->db_caching_status = dcs;
4029
4030 multilist_insert(&dbuf_caches[dcs].cache, db);
4031 uint64_t db_size = db->db.db_size +
4032 dmu_buf_user_size(&db->db);
4033 size = zfs_refcount_add_many(
4034 &dbuf_caches[dcs].size, db_size, db);
4035 uint8_t db_level = db->db_level;
4036 mutex_exit(&db->db_mtx);
4037
4038 if (dcs == DB_DBUF_METADATA_CACHE) {
4039 DBUF_STAT_BUMP(metadata_cache_count);
4040 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4041 size);
4042 } else {
4043 DBUF_STAT_BUMP(cache_count);
4044 DBUF_STAT_MAX(cache_size_bytes_max, size);
4045 DBUF_STAT_BUMP(cache_levels[db_level]);
4046 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4047 db_size);
4048 }
4049
4050 if (dcs == DB_DBUF_CACHE && !evicting)
4051 dbuf_evict_notify(size);
4052 }
4053 } else {
4054 mutex_exit(&db->db_mtx);
4055 }
4056
4057 }
4058
4059 #pragma weak dmu_buf_refcount = dbuf_refcount
4060 uint64_t
4061 dbuf_refcount(dmu_buf_impl_t *db)
4062 {
4063 return (zfs_refcount_count(&db->db_holds));
4064 }
4065
4066 uint64_t
4067 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4068 {
4069 uint64_t holds;
4070 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4071
4072 mutex_enter(&db->db_mtx);
4073 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4074 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4075 mutex_exit(&db->db_mtx);
4076
4077 return (holds);
4078 }
4079
4080 void *
4081 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4082 dmu_buf_user_t *new_user)
4083 {
4084 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4085
4086 mutex_enter(&db->db_mtx);
4087 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4088 if (db->db_user == old_user)
4089 db->db_user = new_user;
4090 else
4091 old_user = db->db_user;
4092 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4093 mutex_exit(&db->db_mtx);
4094
4095 return (old_user);
4096 }
4097
4098 void *
4099 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4100 {
4101 return (dmu_buf_replace_user(db_fake, NULL, user));
4102 }
4103
4104 void *
4105 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4106 {
4107 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4108
4109 db->db_user_immediate_evict = TRUE;
4110 return (dmu_buf_set_user(db_fake, user));
4111 }
4112
4113 void *
4114 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4115 {
4116 return (dmu_buf_replace_user(db_fake, user, NULL));
4117 }
4118
4119 void *
4120 dmu_buf_get_user(dmu_buf_t *db_fake)
4121 {
4122 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4123
4124 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4125 return (db->db_user);
4126 }
4127
4128 uint64_t
4129 dmu_buf_user_size(dmu_buf_t *db_fake)
4130 {
4131 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4132 if (db->db_user == NULL)
4133 return (0);
4134 return (atomic_load_64(&db->db_user->dbu_size));
4135 }
4136
4137 void
4138 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4139 {
4140 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4141 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4142 ASSERT3P(db->db_user, !=, NULL);
4143 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4144 atomic_add_64(&db->db_user->dbu_size, nadd);
4145 }
4146
4147 void
4148 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4149 {
4150 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4151 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4152 ASSERT3P(db->db_user, !=, NULL);
4153 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4154 atomic_sub_64(&db->db_user->dbu_size, nsub);
4155 }
4156
4157 void
4158 dmu_buf_user_evict_wait(void)
4159 {
4160 taskq_wait(dbu_evict_taskq);
4161 }
4162
4163 blkptr_t *
4164 dmu_buf_get_blkptr(dmu_buf_t *db)
4165 {
4166 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4167 return (dbi->db_blkptr);
4168 }
4169
4170 objset_t *
4171 dmu_buf_get_objset(dmu_buf_t *db)
4172 {
4173 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4174 return (dbi->db_objset);
4175 }
4176
4177 dnode_t *
4178 dmu_buf_dnode_enter(dmu_buf_t *db)
4179 {
4180 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4181 DB_DNODE_ENTER(dbi);
4182 return (DB_DNODE(dbi));
4183 }
4184
4185 void
4186 dmu_buf_dnode_exit(dmu_buf_t *db)
4187 {
4188 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4189 DB_DNODE_EXIT(dbi);
4190 }
4191
4192 static void
4193 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4194 {
4195 /* ASSERT(dmu_tx_is_syncing(tx) */
4196 ASSERT(MUTEX_HELD(&db->db_mtx));
4197
4198 if (db->db_blkptr != NULL)
4199 return;
4200
4201 if (db->db_blkid == DMU_SPILL_BLKID) {
4202 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4203 BP_ZERO(db->db_blkptr);
4204 return;
4205 }
4206 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4207 /*
4208 * This buffer was allocated at a time when there was
4209 * no available blkptrs from the dnode, or it was
4210 * inappropriate to hook it in (i.e., nlevels mismatch).
4211 */
4212 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4213 ASSERT(db->db_parent == NULL);
4214 db->db_parent = dn->dn_dbuf;
4215 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4216 DBUF_VERIFY(db);
4217 } else {
4218 dmu_buf_impl_t *parent = db->db_parent;
4219 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4220
4221 ASSERT(dn->dn_phys->dn_nlevels > 1);
4222 if (parent == NULL) {
4223 mutex_exit(&db->db_mtx);
4224 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4225 parent = dbuf_hold_level(dn, db->db_level + 1,
4226 db->db_blkid >> epbs, db);
4227 rw_exit(&dn->dn_struct_rwlock);
4228 mutex_enter(&db->db_mtx);
4229 db->db_parent = parent;
4230 }
4231 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4232 (db->db_blkid & ((1ULL << epbs) - 1));
4233 DBUF_VERIFY(db);
4234 }
4235 }
4236
4237 static void
4238 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4239 {
4240 dmu_buf_impl_t *db = dr->dr_dbuf;
4241 void *data = dr->dt.dl.dr_data;
4242
4243 ASSERT0(db->db_level);
4244 ASSERT(MUTEX_HELD(&db->db_mtx));
4245 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4246 ASSERT(data != NULL);
4247
4248 dnode_t *dn = dr->dr_dnode;
4249 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4250 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4251 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4252
4253 dbuf_sync_leaf_verify_bonus_dnode(dr);
4254
4255 dbuf_undirty_bonus(dr);
4256 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4257 }
4258
4259 /*
4260 * When syncing out a blocks of dnodes, adjust the block to deal with
4261 * encryption. Normally, we make sure the block is decrypted before writing
4262 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4263 * from a raw receive. In this case, set the ARC buf's crypt params so
4264 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4265 */
4266 static void
4267 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4268 {
4269 int err;
4270 dmu_buf_impl_t *db = dr->dr_dbuf;
4271
4272 ASSERT(MUTEX_HELD(&db->db_mtx));
4273 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4274 ASSERT3U(db->db_level, ==, 0);
4275
4276 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4277 zbookmark_phys_t zb;
4278
4279 /*
4280 * Unfortunately, there is currently no mechanism for
4281 * syncing context to handle decryption errors. An error
4282 * here is only possible if an attacker maliciously
4283 * changed a dnode block and updated the associated
4284 * checksums going up the block tree.
4285 */
4286 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4287 db->db.db_object, db->db_level, db->db_blkid);
4288 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4289 &zb, B_TRUE);
4290 if (err)
4291 panic("Invalid dnode block MAC");
4292 } else if (dr->dt.dl.dr_has_raw_params) {
4293 (void) arc_release(dr->dt.dl.dr_data, db);
4294 arc_convert_to_raw(dr->dt.dl.dr_data,
4295 dmu_objset_id(db->db_objset),
4296 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4297 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4298 }
4299 }
4300
4301 /*
4302 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4303 * is critical the we not allow the compiler to inline this function in to
4304 * dbuf_sync_list() thereby drastically bloating the stack usage.
4305 */
4306 noinline static void
4307 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4308 {
4309 dmu_buf_impl_t *db = dr->dr_dbuf;
4310 dnode_t *dn = dr->dr_dnode;
4311
4312 ASSERT(dmu_tx_is_syncing(tx));
4313
4314 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4315
4316 mutex_enter(&db->db_mtx);
4317
4318 ASSERT(db->db_level > 0);
4319 DBUF_VERIFY(db);
4320
4321 /* Read the block if it hasn't been read yet. */
4322 if (db->db_buf == NULL) {
4323 mutex_exit(&db->db_mtx);
4324 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4325 mutex_enter(&db->db_mtx);
4326 }
4327 ASSERT3U(db->db_state, ==, DB_CACHED);
4328 ASSERT(db->db_buf != NULL);
4329
4330 /* Indirect block size must match what the dnode thinks it is. */
4331 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4332 dbuf_check_blkptr(dn, db);
4333
4334 /* Provide the pending dirty record to child dbufs */
4335 db->db_data_pending = dr;
4336
4337 mutex_exit(&db->db_mtx);
4338
4339 dbuf_write(dr, db->db_buf, tx);
4340
4341 zio_t *zio = dr->dr_zio;
4342 mutex_enter(&dr->dt.di.dr_mtx);
4343 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4344 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4345 mutex_exit(&dr->dt.di.dr_mtx);
4346 zio_nowait(zio);
4347 }
4348
4349 /*
4350 * Verify that the size of the data in our bonus buffer does not exceed
4351 * its recorded size.
4352 *
4353 * The purpose of this verification is to catch any cases in development
4354 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4355 * due to incorrect feature management, older pools expect to read more
4356 * data even though they didn't actually write it to begin with.
4357 *
4358 * For a example, this would catch an error in the feature logic where we
4359 * open an older pool and we expect to write the space map histogram of
4360 * a space map with size SPACE_MAP_SIZE_V0.
4361 */
4362 static void
4363 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4364 {
4365 #ifdef ZFS_DEBUG
4366 dnode_t *dn = dr->dr_dnode;
4367
4368 /*
4369 * Encrypted bonus buffers can have data past their bonuslen.
4370 * Skip the verification of these blocks.
4371 */
4372 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4373 return;
4374
4375 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4376 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4377 ASSERT3U(bonuslen, <=, maxbonuslen);
4378
4379 arc_buf_t *datap = dr->dt.dl.dr_data;
4380 char *datap_end = ((char *)datap) + bonuslen;
4381 char *datap_max = ((char *)datap) + maxbonuslen;
4382
4383 /* ensure that everything is zero after our data */
4384 for (; datap_end < datap_max; datap_end++)
4385 ASSERT(*datap_end == 0);
4386 #endif
4387 }
4388
4389 static blkptr_t *
4390 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4391 {
4392 /* This must be a lightweight dirty record. */
4393 ASSERT3P(dr->dr_dbuf, ==, NULL);
4394 dnode_t *dn = dr->dr_dnode;
4395
4396 if (dn->dn_phys->dn_nlevels == 1) {
4397 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4398 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4399 } else {
4400 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4401 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4402 VERIFY3U(parent_db->db_level, ==, 1);
4403 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4404 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4405 blkptr_t *bp = parent_db->db.db_data;
4406 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4407 }
4408 }
4409
4410 static void
4411 dbuf_lightweight_ready(zio_t *zio)
4412 {
4413 dbuf_dirty_record_t *dr = zio->io_private;
4414 blkptr_t *bp = zio->io_bp;
4415
4416 if (zio->io_error != 0)
4417 return;
4418
4419 dnode_t *dn = dr->dr_dnode;
4420
4421 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4422 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4423 int64_t delta = bp_get_dsize_sync(spa, bp) -
4424 bp_get_dsize_sync(spa, bp_orig);
4425 dnode_diduse_space(dn, delta);
4426
4427 uint64_t blkid = dr->dt.dll.dr_blkid;
4428 mutex_enter(&dn->dn_mtx);
4429 if (blkid > dn->dn_phys->dn_maxblkid) {
4430 ASSERT0(dn->dn_objset->os_raw_receive);
4431 dn->dn_phys->dn_maxblkid = blkid;
4432 }
4433 mutex_exit(&dn->dn_mtx);
4434
4435 if (!BP_IS_EMBEDDED(bp)) {
4436 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4437 BP_SET_FILL(bp, fill);
4438 }
4439
4440 dmu_buf_impl_t *parent_db;
4441 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4442 if (dr->dr_parent == NULL) {
4443 parent_db = dn->dn_dbuf;
4444 } else {
4445 parent_db = dr->dr_parent->dr_dbuf;
4446 }
4447 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4448 *bp_orig = *bp;
4449 rw_exit(&parent_db->db_rwlock);
4450 }
4451
4452 static void
4453 dbuf_lightweight_done(zio_t *zio)
4454 {
4455 dbuf_dirty_record_t *dr = zio->io_private;
4456
4457 VERIFY0(zio->io_error);
4458
4459 objset_t *os = dr->dr_dnode->dn_objset;
4460 dmu_tx_t *tx = os->os_synctx;
4461
4462 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4463 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4464 } else {
4465 dsl_dataset_t *ds = os->os_dsl_dataset;
4466 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4467 dsl_dataset_block_born(ds, zio->io_bp, tx);
4468 }
4469
4470 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4471 zio->io_txg);
4472
4473 abd_free(dr->dt.dll.dr_abd);
4474 kmem_free(dr, sizeof (*dr));
4475 }
4476
4477 noinline static void
4478 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4479 {
4480 dnode_t *dn = dr->dr_dnode;
4481 zio_t *pio;
4482 if (dn->dn_phys->dn_nlevels == 1) {
4483 pio = dn->dn_zio;
4484 } else {
4485 pio = dr->dr_parent->dr_zio;
4486 }
4487
4488 zbookmark_phys_t zb = {
4489 .zb_objset = dmu_objset_id(dn->dn_objset),
4490 .zb_object = dn->dn_object,
4491 .zb_level = 0,
4492 .zb_blkid = dr->dt.dll.dr_blkid,
4493 };
4494
4495 /*
4496 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4497 * will have the old BP in dbuf_lightweight_done().
4498 */
4499 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4500
4501 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4502 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4503 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4504 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4505 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4506 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4507
4508 zio_nowait(dr->dr_zio);
4509 }
4510
4511 /*
4512 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4513 * critical the we not allow the compiler to inline this function in to
4514 * dbuf_sync_list() thereby drastically bloating the stack usage.
4515 */
4516 noinline static void
4517 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4518 {
4519 arc_buf_t **datap = &dr->dt.dl.dr_data;
4520 dmu_buf_impl_t *db = dr->dr_dbuf;
4521 dnode_t *dn = dr->dr_dnode;
4522 objset_t *os;
4523 uint64_t txg = tx->tx_txg;
4524
4525 ASSERT(dmu_tx_is_syncing(tx));
4526
4527 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4528
4529 mutex_enter(&db->db_mtx);
4530 /*
4531 * To be synced, we must be dirtied. But we
4532 * might have been freed after the dirty.
4533 */
4534 if (db->db_state == DB_UNCACHED) {
4535 /* This buffer has been freed since it was dirtied */
4536 ASSERT(db->db.db_data == NULL);
4537 } else if (db->db_state == DB_FILL) {
4538 /* This buffer was freed and is now being re-filled */
4539 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4540 } else if (db->db_state == DB_READ) {
4541 /*
4542 * This buffer has a clone we need to write, and an in-flight
4543 * read on the BP we're about to clone. Its safe to issue the
4544 * write here because the read has already been issued and the
4545 * contents won't change.
4546 */
4547 ASSERT(dr->dt.dl.dr_brtwrite &&
4548 dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4549 } else {
4550 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4551 }
4552 DBUF_VERIFY(db);
4553
4554 if (db->db_blkid == DMU_SPILL_BLKID) {
4555 mutex_enter(&dn->dn_mtx);
4556 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4557 /*
4558 * In the previous transaction group, the bonus buffer
4559 * was entirely used to store the attributes for the
4560 * dnode which overrode the dn_spill field. However,
4561 * when adding more attributes to the file a spill
4562 * block was required to hold the extra attributes.
4563 *
4564 * Make sure to clear the garbage left in the dn_spill
4565 * field from the previous attributes in the bonus
4566 * buffer. Otherwise, after writing out the spill
4567 * block to the new allocated dva, it will free
4568 * the old block pointed to by the invalid dn_spill.
4569 */
4570 db->db_blkptr = NULL;
4571 }
4572 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4573 mutex_exit(&dn->dn_mtx);
4574 }
4575
4576 /*
4577 * If this is a bonus buffer, simply copy the bonus data into the
4578 * dnode. It will be written out when the dnode is synced (and it
4579 * will be synced, since it must have been dirty for dbuf_sync to
4580 * be called).
4581 */
4582 if (db->db_blkid == DMU_BONUS_BLKID) {
4583 ASSERT(dr->dr_dbuf == db);
4584 dbuf_sync_bonus(dr, tx);
4585 return;
4586 }
4587
4588 os = dn->dn_objset;
4589
4590 /*
4591 * This function may have dropped the db_mtx lock allowing a dmu_sync
4592 * operation to sneak in. As a result, we need to ensure that we
4593 * don't check the dr_override_state until we have returned from
4594 * dbuf_check_blkptr.
4595 */
4596 dbuf_check_blkptr(dn, db);
4597
4598 /*
4599 * If this buffer is in the middle of an immediate write,
4600 * wait for the synchronous IO to complete.
4601 */
4602 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4603 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4604 cv_wait(&db->db_changed, &db->db_mtx);
4605 }
4606
4607 /*
4608 * If this is a dnode block, ensure it is appropriately encrypted
4609 * or decrypted, depending on what we are writing to it this txg.
4610 */
4611 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4612 dbuf_prepare_encrypted_dnode_leaf(dr);
4613
4614 if (db->db_state != DB_NOFILL &&
4615 dn->dn_object != DMU_META_DNODE_OBJECT &&
4616 zfs_refcount_count(&db->db_holds) > 1 &&
4617 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4618 *datap == db->db_buf) {
4619 /*
4620 * If this buffer is currently "in use" (i.e., there
4621 * are active holds and db_data still references it),
4622 * then make a copy before we start the write so that
4623 * any modifications from the open txg will not leak
4624 * into this write.
4625 *
4626 * NOTE: this copy does not need to be made for
4627 * objects only modified in the syncing context (e.g.
4628 * DNONE_DNODE blocks).
4629 */
4630 int psize = arc_buf_size(*datap);
4631 int lsize = arc_buf_lsize(*datap);
4632 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4633 enum zio_compress compress_type = arc_get_compression(*datap);
4634 uint8_t complevel = arc_get_complevel(*datap);
4635
4636 if (arc_is_encrypted(*datap)) {
4637 boolean_t byteorder;
4638 uint8_t salt[ZIO_DATA_SALT_LEN];
4639 uint8_t iv[ZIO_DATA_IV_LEN];
4640 uint8_t mac[ZIO_DATA_MAC_LEN];
4641
4642 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4643 *datap = arc_alloc_raw_buf(os->os_spa, db,
4644 dmu_objset_id(os), byteorder, salt, iv, mac,
4645 dn->dn_type, psize, lsize, compress_type,
4646 complevel);
4647 } else if (compress_type != ZIO_COMPRESS_OFF) {
4648 ASSERT3U(type, ==, ARC_BUFC_DATA);
4649 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4650 psize, lsize, compress_type, complevel);
4651 } else {
4652 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4653 }
4654 memcpy((*datap)->b_data, db->db.db_data, psize);
4655 }
4656 db->db_data_pending = dr;
4657
4658 mutex_exit(&db->db_mtx);
4659
4660 dbuf_write(dr, *datap, tx);
4661
4662 ASSERT(!list_link_active(&dr->dr_dirty_node));
4663 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4664 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4665 } else {
4666 zio_nowait(dr->dr_zio);
4667 }
4668 }
4669
4670 /*
4671 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4672 * called recursively from dbuf_sync_indirect().
4673 */
4674 void
4675 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4676 {
4677 dbuf_dirty_record_t *dr;
4678
4679 while ((dr = list_head(list))) {
4680 if (dr->dr_zio != NULL) {
4681 /*
4682 * If we find an already initialized zio then we
4683 * are processing the meta-dnode, and we have finished.
4684 * The dbufs for all dnodes are put back on the list
4685 * during processing, so that we can zio_wait()
4686 * these IOs after initiating all child IOs.
4687 */
4688 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4689 DMU_META_DNODE_OBJECT);
4690 break;
4691 }
4692 list_remove(list, dr);
4693 if (dr->dr_dbuf == NULL) {
4694 dbuf_sync_lightweight(dr, tx);
4695 } else {
4696 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4697 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4698 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4699 }
4700 if (dr->dr_dbuf->db_level > 0)
4701 dbuf_sync_indirect(dr, tx);
4702 else
4703 dbuf_sync_leaf(dr, tx);
4704 }
4705 }
4706 }
4707
4708 static void
4709 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4710 {
4711 (void) buf;
4712 dmu_buf_impl_t *db = vdb;
4713 dnode_t *dn;
4714 blkptr_t *bp = zio->io_bp;
4715 blkptr_t *bp_orig = &zio->io_bp_orig;
4716 spa_t *spa = zio->io_spa;
4717 int64_t delta;
4718 uint64_t fill = 0;
4719 int i;
4720
4721 ASSERT3P(db->db_blkptr, !=, NULL);
4722 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4723
4724 DB_DNODE_ENTER(db);
4725 dn = DB_DNODE(db);
4726 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4727 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4728 zio->io_prev_space_delta = delta;
4729
4730 if (bp->blk_birth != 0) {
4731 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4732 BP_GET_TYPE(bp) == dn->dn_type) ||
4733 (db->db_blkid == DMU_SPILL_BLKID &&
4734 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4735 BP_IS_EMBEDDED(bp));
4736 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4737 }
4738
4739 mutex_enter(&db->db_mtx);
4740
4741 #ifdef ZFS_DEBUG
4742 if (db->db_blkid == DMU_SPILL_BLKID) {
4743 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4744 ASSERT(!(BP_IS_HOLE(bp)) &&
4745 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4746 }
4747 #endif
4748
4749 if (db->db_level == 0) {
4750 mutex_enter(&dn->dn_mtx);
4751 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4752 db->db_blkid != DMU_SPILL_BLKID) {
4753 ASSERT0(db->db_objset->os_raw_receive);
4754 dn->dn_phys->dn_maxblkid = db->db_blkid;
4755 }
4756 mutex_exit(&dn->dn_mtx);
4757
4758 if (dn->dn_type == DMU_OT_DNODE) {
4759 i = 0;
4760 while (i < db->db.db_size) {
4761 dnode_phys_t *dnp =
4762 (void *)(((char *)db->db.db_data) + i);
4763
4764 i += DNODE_MIN_SIZE;
4765 if (dnp->dn_type != DMU_OT_NONE) {
4766 fill++;
4767 for (int j = 0; j < dnp->dn_nblkptr;
4768 j++) {
4769 (void) zfs_blkptr_verify(spa,
4770 &dnp->dn_blkptr[j],
4771 BLK_CONFIG_SKIP,
4772 BLK_VERIFY_HALT);
4773 }
4774 if (dnp->dn_flags &
4775 DNODE_FLAG_SPILL_BLKPTR) {
4776 (void) zfs_blkptr_verify(spa,
4777 DN_SPILL_BLKPTR(dnp),
4778 BLK_CONFIG_SKIP,
4779 BLK_VERIFY_HALT);
4780 }
4781 i += dnp->dn_extra_slots *
4782 DNODE_MIN_SIZE;
4783 }
4784 }
4785 } else {
4786 if (BP_IS_HOLE(bp)) {
4787 fill = 0;
4788 } else {
4789 fill = 1;
4790 }
4791 }
4792 } else {
4793 blkptr_t *ibp = db->db.db_data;
4794 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4795 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4796 if (BP_IS_HOLE(ibp))
4797 continue;
4798 (void) zfs_blkptr_verify(spa, ibp,
4799 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4800 fill += BP_GET_FILL(ibp);
4801 }
4802 }
4803 DB_DNODE_EXIT(db);
4804
4805 if (!BP_IS_EMBEDDED(bp))
4806 BP_SET_FILL(bp, fill);
4807
4808 mutex_exit(&db->db_mtx);
4809
4810 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4811 *db->db_blkptr = *bp;
4812 dmu_buf_unlock_parent(db, dblt, FTAG);
4813 }
4814
4815 /*
4816 * This function gets called just prior to running through the compression
4817 * stage of the zio pipeline. If we're an indirect block comprised of only
4818 * holes, then we want this indirect to be compressed away to a hole. In
4819 * order to do that we must zero out any information about the holes that
4820 * this indirect points to prior to before we try to compress it.
4821 */
4822 static void
4823 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4824 {
4825 (void) zio, (void) buf;
4826 dmu_buf_impl_t *db = vdb;
4827 dnode_t *dn;
4828 blkptr_t *bp;
4829 unsigned int epbs, i;
4830
4831 ASSERT3U(db->db_level, >, 0);
4832 DB_DNODE_ENTER(db);
4833 dn = DB_DNODE(db);
4834 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4835 ASSERT3U(epbs, <, 31);
4836
4837 /* Determine if all our children are holes */
4838 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4839 if (!BP_IS_HOLE(bp))
4840 break;
4841 }
4842
4843 /*
4844 * If all the children are holes, then zero them all out so that
4845 * we may get compressed away.
4846 */
4847 if (i == 1ULL << epbs) {
4848 /*
4849 * We only found holes. Grab the rwlock to prevent
4850 * anybody from reading the blocks we're about to
4851 * zero out.
4852 */
4853 rw_enter(&db->db_rwlock, RW_WRITER);
4854 memset(db->db.db_data, 0, db->db.db_size);
4855 rw_exit(&db->db_rwlock);
4856 }
4857 DB_DNODE_EXIT(db);
4858 }
4859
4860 static void
4861 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4862 {
4863 (void) buf;
4864 dmu_buf_impl_t *db = vdb;
4865 blkptr_t *bp_orig = &zio->io_bp_orig;
4866 blkptr_t *bp = db->db_blkptr;
4867 objset_t *os = db->db_objset;
4868 dmu_tx_t *tx = os->os_synctx;
4869
4870 ASSERT0(zio->io_error);
4871 ASSERT(db->db_blkptr == bp);
4872
4873 /*
4874 * For nopwrites and rewrites we ensure that the bp matches our
4875 * original and bypass all the accounting.
4876 */
4877 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4878 ASSERT(BP_EQUAL(bp, bp_orig));
4879 } else {
4880 dsl_dataset_t *ds = os->os_dsl_dataset;
4881 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4882 dsl_dataset_block_born(ds, bp, tx);
4883 }
4884
4885 mutex_enter(&db->db_mtx);
4886
4887 DBUF_VERIFY(db);
4888
4889 dbuf_dirty_record_t *dr = db->db_data_pending;
4890 dnode_t *dn = dr->dr_dnode;
4891 ASSERT(!list_link_active(&dr->dr_dirty_node));
4892 ASSERT(dr->dr_dbuf == db);
4893 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4894 list_remove(&db->db_dirty_records, dr);
4895
4896 #ifdef ZFS_DEBUG
4897 if (db->db_blkid == DMU_SPILL_BLKID) {
4898 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4899 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4900 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4901 }
4902 #endif
4903
4904 if (db->db_level == 0) {
4905 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4906 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4907 if (db->db_state != DB_NOFILL) {
4908 if (dr->dt.dl.dr_data != NULL &&
4909 dr->dt.dl.dr_data != db->db_buf) {
4910 arc_buf_destroy(dr->dt.dl.dr_data, db);
4911 }
4912 }
4913 } else {
4914 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4915 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4916 if (!BP_IS_HOLE(db->db_blkptr)) {
4917 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4918 SPA_BLKPTRSHIFT;
4919 ASSERT3U(db->db_blkid, <=,
4920 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4921 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4922 db->db.db_size);
4923 }
4924 mutex_destroy(&dr->dt.di.dr_mtx);
4925 list_destroy(&dr->dt.di.dr_children);
4926 }
4927
4928 cv_broadcast(&db->db_changed);
4929 ASSERT(db->db_dirtycnt > 0);
4930 db->db_dirtycnt -= 1;
4931 db->db_data_pending = NULL;
4932 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4933
4934 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4935 zio->io_txg);
4936
4937 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4938 }
4939
4940 static void
4941 dbuf_write_nofill_ready(zio_t *zio)
4942 {
4943 dbuf_write_ready(zio, NULL, zio->io_private);
4944 }
4945
4946 static void
4947 dbuf_write_nofill_done(zio_t *zio)
4948 {
4949 dbuf_write_done(zio, NULL, zio->io_private);
4950 }
4951
4952 static void
4953 dbuf_write_override_ready(zio_t *zio)
4954 {
4955 dbuf_dirty_record_t *dr = zio->io_private;
4956 dmu_buf_impl_t *db = dr->dr_dbuf;
4957
4958 dbuf_write_ready(zio, NULL, db);
4959 }
4960
4961 static void
4962 dbuf_write_override_done(zio_t *zio)
4963 {
4964 dbuf_dirty_record_t *dr = zio->io_private;
4965 dmu_buf_impl_t *db = dr->dr_dbuf;
4966 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4967
4968 mutex_enter(&db->db_mtx);
4969 if (!BP_EQUAL(zio->io_bp, obp)) {
4970 if (!BP_IS_HOLE(obp))
4971 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4972 arc_release(dr->dt.dl.dr_data, db);
4973 }
4974 mutex_exit(&db->db_mtx);
4975
4976 dbuf_write_done(zio, NULL, db);
4977
4978 if (zio->io_abd != NULL)
4979 abd_free(zio->io_abd);
4980 }
4981
4982 typedef struct dbuf_remap_impl_callback_arg {
4983 objset_t *drica_os;
4984 uint64_t drica_blk_birth;
4985 dmu_tx_t *drica_tx;
4986 } dbuf_remap_impl_callback_arg_t;
4987
4988 static void
4989 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4990 void *arg)
4991 {
4992 dbuf_remap_impl_callback_arg_t *drica = arg;
4993 objset_t *os = drica->drica_os;
4994 spa_t *spa = dmu_objset_spa(os);
4995 dmu_tx_t *tx = drica->drica_tx;
4996
4997 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4998
4999 if (os == spa_meta_objset(spa)) {
5000 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5001 } else {
5002 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5003 size, drica->drica_blk_birth, tx);
5004 }
5005 }
5006
5007 static void
5008 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5009 {
5010 blkptr_t bp_copy = *bp;
5011 spa_t *spa = dmu_objset_spa(dn->dn_objset);
5012 dbuf_remap_impl_callback_arg_t drica;
5013
5014 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5015
5016 drica.drica_os = dn->dn_objset;
5017 drica.drica_blk_birth = bp->blk_birth;
5018 drica.drica_tx = tx;
5019 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5020 &drica)) {
5021 /*
5022 * If the blkptr being remapped is tracked by a livelist,
5023 * then we need to make sure the livelist reflects the update.
5024 * First, cancel out the old blkptr by appending a 'FREE'
5025 * entry. Next, add an 'ALLOC' to track the new version. This
5026 * way we avoid trying to free an inaccurate blkptr at delete.
5027 * Note that embedded blkptrs are not tracked in livelists.
5028 */
5029 if (dn->dn_objset != spa_meta_objset(spa)) {
5030 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5031 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5032 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
5033 ASSERT(!BP_IS_EMBEDDED(bp));
5034 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5035 ASSERT(spa_feature_is_enabled(spa,
5036 SPA_FEATURE_LIVELIST));
5037 bplist_append(&ds->ds_dir->dd_pending_frees,
5038 bp);
5039 bplist_append(&ds->ds_dir->dd_pending_allocs,
5040 &bp_copy);
5041 }
5042 }
5043
5044 /*
5045 * The db_rwlock prevents dbuf_read_impl() from
5046 * dereferencing the BP while we are changing it. To
5047 * avoid lock contention, only grab it when we are actually
5048 * changing the BP.
5049 */
5050 if (rw != NULL)
5051 rw_enter(rw, RW_WRITER);
5052 *bp = bp_copy;
5053 if (rw != NULL)
5054 rw_exit(rw);
5055 }
5056 }
5057
5058 /*
5059 * Remap any existing BP's to concrete vdevs, if possible.
5060 */
5061 static void
5062 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5063 {
5064 spa_t *spa = dmu_objset_spa(db->db_objset);
5065 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5066
5067 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5068 return;
5069
5070 if (db->db_level > 0) {
5071 blkptr_t *bp = db->db.db_data;
5072 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5073 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5074 }
5075 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5076 dnode_phys_t *dnp = db->db.db_data;
5077 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5078 DMU_OT_DNODE);
5079 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5080 i += dnp[i].dn_extra_slots + 1) {
5081 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5082 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5083 &dn->dn_dbuf->db_rwlock);
5084 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5085 tx);
5086 }
5087 }
5088 }
5089 }
5090
5091
5092 /*
5093 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5094 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5095 */
5096 static void
5097 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5098 {
5099 dmu_buf_impl_t *db = dr->dr_dbuf;
5100 dnode_t *dn = dr->dr_dnode;
5101 objset_t *os;
5102 dmu_buf_impl_t *parent = db->db_parent;
5103 uint64_t txg = tx->tx_txg;
5104 zbookmark_phys_t zb;
5105 zio_prop_t zp;
5106 zio_t *pio; /* parent I/O */
5107 int wp_flag = 0;
5108
5109 ASSERT(dmu_tx_is_syncing(tx));
5110
5111 os = dn->dn_objset;
5112
5113 if (db->db_state != DB_NOFILL) {
5114 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5115 /*
5116 * Private object buffers are released here rather
5117 * than in dbuf_dirty() since they are only modified
5118 * in the syncing context and we don't want the
5119 * overhead of making multiple copies of the data.
5120 */
5121 if (BP_IS_HOLE(db->db_blkptr)) {
5122 arc_buf_thaw(data);
5123 } else {
5124 dbuf_release_bp(db);
5125 }
5126 dbuf_remap(dn, db, tx);
5127 }
5128 }
5129
5130 if (parent != dn->dn_dbuf) {
5131 /* Our parent is an indirect block. */
5132 /* We have a dirty parent that has been scheduled for write. */
5133 ASSERT(parent && parent->db_data_pending);
5134 /* Our parent's buffer is one level closer to the dnode. */
5135 ASSERT(db->db_level == parent->db_level-1);
5136 /*
5137 * We're about to modify our parent's db_data by modifying
5138 * our block pointer, so the parent must be released.
5139 */
5140 ASSERT(arc_released(parent->db_buf));
5141 pio = parent->db_data_pending->dr_zio;
5142 } else {
5143 /* Our parent is the dnode itself. */
5144 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5145 db->db_blkid != DMU_SPILL_BLKID) ||
5146 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5147 if (db->db_blkid != DMU_SPILL_BLKID)
5148 ASSERT3P(db->db_blkptr, ==,
5149 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5150 pio = dn->dn_zio;
5151 }
5152
5153 ASSERT(db->db_level == 0 || data == db->db_buf);
5154 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5155 ASSERT(pio);
5156
5157 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5158 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5159 db->db.db_object, db->db_level, db->db_blkid);
5160
5161 if (db->db_blkid == DMU_SPILL_BLKID)
5162 wp_flag = WP_SPILL;
5163 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5164
5165 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5166
5167 /*
5168 * We copy the blkptr now (rather than when we instantiate the dirty
5169 * record), because its value can change between open context and
5170 * syncing context. We do not need to hold dn_struct_rwlock to read
5171 * db_blkptr because we are in syncing context.
5172 */
5173 dr->dr_bp_copy = *db->db_blkptr;
5174
5175 if (db->db_level == 0 &&
5176 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5177 /*
5178 * The BP for this block has been provided by open context
5179 * (by dmu_sync() or dmu_buf_write_embedded()).
5180 */
5181 abd_t *contents = (data != NULL) ?
5182 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5183
5184 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5185 contents, db->db.db_size, db->db.db_size, &zp,
5186 dbuf_write_override_ready, NULL,
5187 dbuf_write_override_done,
5188 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5189 mutex_enter(&db->db_mtx);
5190 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5191 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5192 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5193 dr->dt.dl.dr_brtwrite);
5194 mutex_exit(&db->db_mtx);
5195 } else if (db->db_state == DB_NOFILL) {
5196 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5197 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5198 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5199 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5200 dbuf_write_nofill_ready, NULL,
5201 dbuf_write_nofill_done, db,
5202 ZIO_PRIORITY_ASYNC_WRITE,
5203 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5204 } else {
5205 ASSERT(arc_released(data));
5206
5207 /*
5208 * For indirect blocks, we want to setup the children
5209 * ready callback so that we can properly handle an indirect
5210 * block that only contains holes.
5211 */
5212 arc_write_done_func_t *children_ready_cb = NULL;
5213 if (db->db_level != 0)
5214 children_ready_cb = dbuf_write_children_ready;
5215
5216 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5217 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5218 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5219 children_ready_cb, dbuf_write_done, db,
5220 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5221 }
5222 }
5223
5224 EXPORT_SYMBOL(dbuf_find);
5225 EXPORT_SYMBOL(dbuf_is_metadata);
5226 EXPORT_SYMBOL(dbuf_destroy);
5227 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5228 EXPORT_SYMBOL(dbuf_whichblock);
5229 EXPORT_SYMBOL(dbuf_read);
5230 EXPORT_SYMBOL(dbuf_unoverride);
5231 EXPORT_SYMBOL(dbuf_free_range);
5232 EXPORT_SYMBOL(dbuf_new_size);
5233 EXPORT_SYMBOL(dbuf_release_bp);
5234 EXPORT_SYMBOL(dbuf_dirty);
5235 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5236 EXPORT_SYMBOL(dmu_buf_will_dirty);
5237 EXPORT_SYMBOL(dmu_buf_is_dirty);
5238 EXPORT_SYMBOL(dmu_buf_will_clone);
5239 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5240 EXPORT_SYMBOL(dmu_buf_will_fill);
5241 EXPORT_SYMBOL(dmu_buf_fill_done);
5242 EXPORT_SYMBOL(dmu_buf_rele);
5243 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5244 EXPORT_SYMBOL(dbuf_prefetch);
5245 EXPORT_SYMBOL(dbuf_hold_impl);
5246 EXPORT_SYMBOL(dbuf_hold);
5247 EXPORT_SYMBOL(dbuf_hold_level);
5248 EXPORT_SYMBOL(dbuf_create_bonus);
5249 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5250 EXPORT_SYMBOL(dbuf_rm_spill);
5251 EXPORT_SYMBOL(dbuf_add_ref);
5252 EXPORT_SYMBOL(dbuf_rele);
5253 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5254 EXPORT_SYMBOL(dbuf_refcount);
5255 EXPORT_SYMBOL(dbuf_sync_list);
5256 EXPORT_SYMBOL(dmu_buf_set_user);
5257 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5258 EXPORT_SYMBOL(dmu_buf_get_user);
5259 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5260
5261 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5262 "Maximum size in bytes of the dbuf cache.");
5263
5264 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5265 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5266
5267 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5268 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5269
5270 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5271 "Maximum size in bytes of dbuf metadata cache.");
5272
5273 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5274 "Set size of dbuf cache to log2 fraction of arc size.");
5275
5276 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5277 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5278
5279 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5280 "Set size of dbuf cache mutex array as log2 shift.");