]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Get rid of space_map_update() for ms_synced_length
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
39
40 #define WITH_DF_BLOCK_ALLOCATOR
41
42 #define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
44
45 /*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
51 unsigned long metaslab_aliquot = 512 << 10;
52
53 /*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
57
58 /*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64 int zfs_metaslab_sm_blksz = (1 << 12);
65
66 /*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
69 * space map representation must be before we compact it on-disk.
70 * Values should be greater than or equal to 100.
71 */
72 int zfs_condense_pct = 200;
73
74 /*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87 int zfs_metaslab_condense_block_threshold = 4;
88
89 /*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
92 * free space. Metaslab groups that have more free space than
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102 int zfs_mg_noalloc_threshold = 0;
103
104 /*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111 int zfs_mg_fragmentation_threshold = 85;
112
113 /*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119 int zfs_metaslab_fragmentation_threshold = 70;
120
121 /*
122 * When set will load all metaslabs when pool is first opened.
123 */
124 int metaslab_debug_load = 0;
125
126 /*
127 * When set will prevent metaslabs from being unloaded.
128 */
129 int metaslab_debug_unload = 0;
130
131 /*
132 * Minimum size which forces the dynamic allocator to change
133 * it's allocation strategy. Once the space map cannot satisfy
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
137 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
138
139 /*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
142 * Once the space map's free space drops below this level we dynamically
143 * switch to using best-fit allocations.
144 */
145 int metaslab_df_free_pct = 4;
146
147 /*
148 * Percentage of all cpus that can be used by the metaslab taskq.
149 */
150 int metaslab_load_pct = 50;
151
152 /*
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
156 */
157 int metaslab_unload_delay = TXG_SIZE * 2;
158
159 /*
160 * Max number of metaslabs per group to preload.
161 */
162 int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164 /*
165 * Enable/disable preloading of metaslab.
166 */
167 int metaslab_preload_enabled = B_TRUE;
168
169 /*
170 * Enable/disable fragmentation weighting on metaslabs.
171 */
172 int metaslab_fragmentation_factor_enabled = B_TRUE;
173
174 /*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177 int metaslab_lba_weighting_enabled = B_TRUE;
178
179 /*
180 * Enable/disable metaslab group biasing.
181 */
182 int metaslab_bias_enabled = B_TRUE;
183
184
185 /*
186 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
187 */
188 boolean_t zfs_remap_blkptr_enable = B_TRUE;
189
190 /*
191 * Enable/disable segment-based metaslab selection.
192 */
193 int zfs_metaslab_segment_weight_enabled = B_TRUE;
194
195 /*
196 * When using segment-based metaslab selection, we will continue
197 * allocating from the active metaslab until we have exhausted
198 * zfs_metaslab_switch_threshold of its buckets.
199 */
200 int zfs_metaslab_switch_threshold = 2;
201
202 /*
203 * Internal switch to enable/disable the metaslab allocation tracing
204 * facility.
205 */
206 #ifdef _METASLAB_TRACING
207 boolean_t metaslab_trace_enabled = B_TRUE;
208 #endif
209
210 /*
211 * Maximum entries that the metaslab allocation tracing facility will keep
212 * in a given list when running in non-debug mode. We limit the number
213 * of entries in non-debug mode to prevent us from using up too much memory.
214 * The limit should be sufficiently large that we don't expect any allocation
215 * to every exceed this value. In debug mode, the system will panic if this
216 * limit is ever reached allowing for further investigation.
217 */
218 #ifdef _METASLAB_TRACING
219 uint64_t metaslab_trace_max_entries = 5000;
220 #endif
221
222 static uint64_t metaslab_weight(metaslab_t *);
223 static void metaslab_set_fragmentation(metaslab_t *);
224 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
225 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
226
227 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
228 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
229 #ifdef _METASLAB_TRACING
230 kmem_cache_t *metaslab_alloc_trace_cache;
231 #endif
232
233 /*
234 * ==========================================================================
235 * Metaslab classes
236 * ==========================================================================
237 */
238 metaslab_class_t *
239 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
240 {
241 metaslab_class_t *mc;
242
243 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
244
245 mc->mc_spa = spa;
246 mc->mc_rotor = NULL;
247 mc->mc_ops = ops;
248 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
249 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
250 sizeof (zfs_refcount_t), KM_SLEEP);
251 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
252 sizeof (uint64_t), KM_SLEEP);
253 for (int i = 0; i < spa->spa_alloc_count; i++)
254 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
255
256 return (mc);
257 }
258
259 void
260 metaslab_class_destroy(metaslab_class_t *mc)
261 {
262 ASSERT(mc->mc_rotor == NULL);
263 ASSERT(mc->mc_alloc == 0);
264 ASSERT(mc->mc_deferred == 0);
265 ASSERT(mc->mc_space == 0);
266 ASSERT(mc->mc_dspace == 0);
267
268 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
269 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
270 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
271 sizeof (zfs_refcount_t));
272 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
273 sizeof (uint64_t));
274 mutex_destroy(&mc->mc_lock);
275 kmem_free(mc, sizeof (metaslab_class_t));
276 }
277
278 int
279 metaslab_class_validate(metaslab_class_t *mc)
280 {
281 metaslab_group_t *mg;
282 vdev_t *vd;
283
284 /*
285 * Must hold one of the spa_config locks.
286 */
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
288 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
289
290 if ((mg = mc->mc_rotor) == NULL)
291 return (0);
292
293 do {
294 vd = mg->mg_vd;
295 ASSERT(vd->vdev_mg != NULL);
296 ASSERT3P(vd->vdev_top, ==, vd);
297 ASSERT3P(mg->mg_class, ==, mc);
298 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
299 } while ((mg = mg->mg_next) != mc->mc_rotor);
300
301 return (0);
302 }
303
304 static void
305 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
306 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
307 {
308 atomic_add_64(&mc->mc_alloc, alloc_delta);
309 atomic_add_64(&mc->mc_deferred, defer_delta);
310 atomic_add_64(&mc->mc_space, space_delta);
311 atomic_add_64(&mc->mc_dspace, dspace_delta);
312 }
313
314 uint64_t
315 metaslab_class_get_alloc(metaslab_class_t *mc)
316 {
317 return (mc->mc_alloc);
318 }
319
320 uint64_t
321 metaslab_class_get_deferred(metaslab_class_t *mc)
322 {
323 return (mc->mc_deferred);
324 }
325
326 uint64_t
327 metaslab_class_get_space(metaslab_class_t *mc)
328 {
329 return (mc->mc_space);
330 }
331
332 uint64_t
333 metaslab_class_get_dspace(metaslab_class_t *mc)
334 {
335 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
336 }
337
338 void
339 metaslab_class_histogram_verify(metaslab_class_t *mc)
340 {
341 spa_t *spa = mc->mc_spa;
342 vdev_t *rvd = spa->spa_root_vdev;
343 uint64_t *mc_hist;
344 int i;
345
346 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
347 return;
348
349 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
350 KM_SLEEP);
351
352 for (int c = 0; c < rvd->vdev_children; c++) {
353 vdev_t *tvd = rvd->vdev_child[c];
354 metaslab_group_t *mg = tvd->vdev_mg;
355
356 /*
357 * Skip any holes, uninitialized top-levels, or
358 * vdevs that are not in this metalab class.
359 */
360 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
361 mg->mg_class != mc) {
362 continue;
363 }
364
365 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
366 mc_hist[i] += mg->mg_histogram[i];
367 }
368
369 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
370 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
371
372 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
373 }
374
375 /*
376 * Calculate the metaslab class's fragmentation metric. The metric
377 * is weighted based on the space contribution of each metaslab group.
378 * The return value will be a number between 0 and 100 (inclusive), or
379 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
380 * zfs_frag_table for more information about the metric.
381 */
382 uint64_t
383 metaslab_class_fragmentation(metaslab_class_t *mc)
384 {
385 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386 uint64_t fragmentation = 0;
387
388 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
389
390 for (int c = 0; c < rvd->vdev_children; c++) {
391 vdev_t *tvd = rvd->vdev_child[c];
392 metaslab_group_t *mg = tvd->vdev_mg;
393
394 /*
395 * Skip any holes, uninitialized top-levels,
396 * or vdevs that are not in this metalab class.
397 */
398 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
399 mg->mg_class != mc) {
400 continue;
401 }
402
403 /*
404 * If a metaslab group does not contain a fragmentation
405 * metric then just bail out.
406 */
407 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (ZFS_FRAG_INVALID);
410 }
411
412 /*
413 * Determine how much this metaslab_group is contributing
414 * to the overall pool fragmentation metric.
415 */
416 fragmentation += mg->mg_fragmentation *
417 metaslab_group_get_space(mg);
418 }
419 fragmentation /= metaslab_class_get_space(mc);
420
421 ASSERT3U(fragmentation, <=, 100);
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (fragmentation);
424 }
425
426 /*
427 * Calculate the amount of expandable space that is available in
428 * this metaslab class. If a device is expanded then its expandable
429 * space will be the amount of allocatable space that is currently not
430 * part of this metaslab class.
431 */
432 uint64_t
433 metaslab_class_expandable_space(metaslab_class_t *mc)
434 {
435 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
436 uint64_t space = 0;
437
438 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
439 for (int c = 0; c < rvd->vdev_children; c++) {
440 vdev_t *tvd = rvd->vdev_child[c];
441 metaslab_group_t *mg = tvd->vdev_mg;
442
443 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
444 mg->mg_class != mc) {
445 continue;
446 }
447
448 /*
449 * Calculate if we have enough space to add additional
450 * metaslabs. We report the expandable space in terms
451 * of the metaslab size since that's the unit of expansion.
452 */
453 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
454 1ULL << tvd->vdev_ms_shift);
455 }
456 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
457 return (space);
458 }
459
460 static int
461 metaslab_compare(const void *x1, const void *x2)
462 {
463 const metaslab_t *m1 = (const metaslab_t *)x1;
464 const metaslab_t *m2 = (const metaslab_t *)x2;
465
466 int sort1 = 0;
467 int sort2 = 0;
468 if (m1->ms_allocator != -1 && m1->ms_primary)
469 sort1 = 1;
470 else if (m1->ms_allocator != -1 && !m1->ms_primary)
471 sort1 = 2;
472 if (m2->ms_allocator != -1 && m2->ms_primary)
473 sort2 = 1;
474 else if (m2->ms_allocator != -1 && !m2->ms_primary)
475 sort2 = 2;
476
477 /*
478 * Sort inactive metaslabs first, then primaries, then secondaries. When
479 * selecting a metaslab to allocate from, an allocator first tries its
480 * primary, then secondary active metaslab. If it doesn't have active
481 * metaslabs, or can't allocate from them, it searches for an inactive
482 * metaslab to activate. If it can't find a suitable one, it will steal
483 * a primary or secondary metaslab from another allocator.
484 */
485 if (sort1 < sort2)
486 return (-1);
487 if (sort1 > sort2)
488 return (1);
489
490 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
491 if (likely(cmp))
492 return (cmp);
493
494 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
495
496 return (AVL_CMP(m1->ms_start, m2->ms_start));
497 }
498
499 uint64_t
500 metaslab_allocated_space(metaslab_t *msp)
501 {
502 return (msp->ms_allocated_space);
503 }
504
505 /*
506 * Verify that the space accounting on disk matches the in-core range_trees.
507 */
508 static void
509 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
510 {
511 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
512 uint64_t allocating = 0;
513 uint64_t sm_free_space, msp_free_space;
514
515 ASSERT(MUTEX_HELD(&msp->ms_lock));
516 ASSERT(!msp->ms_condensing);
517
518 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
519 return;
520
521 /*
522 * We can only verify the metaslab space when we're called
523 * from syncing context with a loaded metaslab that has an
524 * allocated space map. Calling this in non-syncing context
525 * does not provide a consistent view of the metaslab since
526 * we're performing allocations in the future.
527 */
528 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
529 !msp->ms_loaded)
530 return;
531
532 /*
533 * Even though the smp_alloc field can get negative (e.g.
534 * see vdev_checkpoint_sm), that should never be the case
535 * when it come's to a metaslab's space map.
536 */
537 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
538
539 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
540
541 /*
542 * Account for future allocations since we would have
543 * already deducted that space from the ms_allocatable.
544 */
545 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
546 allocating +=
547 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
548 }
549
550 ASSERT3U(msp->ms_deferspace, ==,
551 range_tree_space(msp->ms_defer[0]) +
552 range_tree_space(msp->ms_defer[1]));
553
554 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
555 msp->ms_deferspace + range_tree_space(msp->ms_freed);
556
557 VERIFY3U(sm_free_space, ==, msp_free_space);
558 }
559
560 /*
561 * ==========================================================================
562 * Metaslab groups
563 * ==========================================================================
564 */
565 /*
566 * Update the allocatable flag and the metaslab group's capacity.
567 * The allocatable flag is set to true if the capacity is below
568 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
569 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
570 * transitions from allocatable to non-allocatable or vice versa then the
571 * metaslab group's class is updated to reflect the transition.
572 */
573 static void
574 metaslab_group_alloc_update(metaslab_group_t *mg)
575 {
576 vdev_t *vd = mg->mg_vd;
577 metaslab_class_t *mc = mg->mg_class;
578 vdev_stat_t *vs = &vd->vdev_stat;
579 boolean_t was_allocatable;
580 boolean_t was_initialized;
581
582 ASSERT(vd == vd->vdev_top);
583 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
584 SCL_ALLOC);
585
586 mutex_enter(&mg->mg_lock);
587 was_allocatable = mg->mg_allocatable;
588 was_initialized = mg->mg_initialized;
589
590 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
591 (vs->vs_space + 1);
592
593 mutex_enter(&mc->mc_lock);
594
595 /*
596 * If the metaslab group was just added then it won't
597 * have any space until we finish syncing out this txg.
598 * At that point we will consider it initialized and available
599 * for allocations. We also don't consider non-activated
600 * metaslab groups (e.g. vdevs that are in the middle of being removed)
601 * to be initialized, because they can't be used for allocation.
602 */
603 mg->mg_initialized = metaslab_group_initialized(mg);
604 if (!was_initialized && mg->mg_initialized) {
605 mc->mc_groups++;
606 } else if (was_initialized && !mg->mg_initialized) {
607 ASSERT3U(mc->mc_groups, >, 0);
608 mc->mc_groups--;
609 }
610 if (mg->mg_initialized)
611 mg->mg_no_free_space = B_FALSE;
612
613 /*
614 * A metaslab group is considered allocatable if it has plenty
615 * of free space or is not heavily fragmented. We only take
616 * fragmentation into account if the metaslab group has a valid
617 * fragmentation metric (i.e. a value between 0 and 100).
618 */
619 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
620 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
621 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
622 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
623
624 /*
625 * The mc_alloc_groups maintains a count of the number of
626 * groups in this metaslab class that are still above the
627 * zfs_mg_noalloc_threshold. This is used by the allocating
628 * threads to determine if they should avoid allocations to
629 * a given group. The allocator will avoid allocations to a group
630 * if that group has reached or is below the zfs_mg_noalloc_threshold
631 * and there are still other groups that are above the threshold.
632 * When a group transitions from allocatable to non-allocatable or
633 * vice versa we update the metaslab class to reflect that change.
634 * When the mc_alloc_groups value drops to 0 that means that all
635 * groups have reached the zfs_mg_noalloc_threshold making all groups
636 * eligible for allocations. This effectively means that all devices
637 * are balanced again.
638 */
639 if (was_allocatable && !mg->mg_allocatable)
640 mc->mc_alloc_groups--;
641 else if (!was_allocatable && mg->mg_allocatable)
642 mc->mc_alloc_groups++;
643 mutex_exit(&mc->mc_lock);
644
645 mutex_exit(&mg->mg_lock);
646 }
647
648 metaslab_group_t *
649 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
650 {
651 metaslab_group_t *mg;
652
653 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
654 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
656 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
657 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
658 KM_SLEEP);
659 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
660 KM_SLEEP);
661 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
662 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
663 mg->mg_vd = vd;
664 mg->mg_class = mc;
665 mg->mg_activation_count = 0;
666 mg->mg_initialized = B_FALSE;
667 mg->mg_no_free_space = B_TRUE;
668 mg->mg_allocators = allocators;
669
670 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
671 sizeof (zfs_refcount_t), KM_SLEEP);
672 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
673 sizeof (uint64_t), KM_SLEEP);
674 for (int i = 0; i < allocators; i++) {
675 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
676 mg->mg_cur_max_alloc_queue_depth[i] = 0;
677 }
678
679 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
680 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
681
682 return (mg);
683 }
684
685 void
686 metaslab_group_destroy(metaslab_group_t *mg)
687 {
688 ASSERT(mg->mg_prev == NULL);
689 ASSERT(mg->mg_next == NULL);
690 /*
691 * We may have gone below zero with the activation count
692 * either because we never activated in the first place or
693 * because we're done, and possibly removing the vdev.
694 */
695 ASSERT(mg->mg_activation_count <= 0);
696
697 taskq_destroy(mg->mg_taskq);
698 avl_destroy(&mg->mg_metaslab_tree);
699 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
700 kmem_free(mg->mg_secondaries, mg->mg_allocators *
701 sizeof (metaslab_t *));
702 mutex_destroy(&mg->mg_lock);
703 mutex_destroy(&mg->mg_ms_initialize_lock);
704 cv_destroy(&mg->mg_ms_initialize_cv);
705
706 for (int i = 0; i < mg->mg_allocators; i++) {
707 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
708 mg->mg_cur_max_alloc_queue_depth[i] = 0;
709 }
710 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
711 sizeof (zfs_refcount_t));
712 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
713 sizeof (uint64_t));
714
715 kmem_free(mg, sizeof (metaslab_group_t));
716 }
717
718 void
719 metaslab_group_activate(metaslab_group_t *mg)
720 {
721 metaslab_class_t *mc = mg->mg_class;
722 metaslab_group_t *mgprev, *mgnext;
723
724 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
725
726 ASSERT(mc->mc_rotor != mg);
727 ASSERT(mg->mg_prev == NULL);
728 ASSERT(mg->mg_next == NULL);
729 ASSERT(mg->mg_activation_count <= 0);
730
731 if (++mg->mg_activation_count <= 0)
732 return;
733
734 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
735 metaslab_group_alloc_update(mg);
736
737 if ((mgprev = mc->mc_rotor) == NULL) {
738 mg->mg_prev = mg;
739 mg->mg_next = mg;
740 } else {
741 mgnext = mgprev->mg_next;
742 mg->mg_prev = mgprev;
743 mg->mg_next = mgnext;
744 mgprev->mg_next = mg;
745 mgnext->mg_prev = mg;
746 }
747 mc->mc_rotor = mg;
748 }
749
750 /*
751 * Passivate a metaslab group and remove it from the allocation rotor.
752 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
753 * a metaslab group. This function will momentarily drop spa_config_locks
754 * that are lower than the SCL_ALLOC lock (see comment below).
755 */
756 void
757 metaslab_group_passivate(metaslab_group_t *mg)
758 {
759 metaslab_class_t *mc = mg->mg_class;
760 spa_t *spa = mc->mc_spa;
761 metaslab_group_t *mgprev, *mgnext;
762 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
763
764 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
765 (SCL_ALLOC | SCL_ZIO));
766
767 if (--mg->mg_activation_count != 0) {
768 ASSERT(mc->mc_rotor != mg);
769 ASSERT(mg->mg_prev == NULL);
770 ASSERT(mg->mg_next == NULL);
771 ASSERT(mg->mg_activation_count < 0);
772 return;
773 }
774
775 /*
776 * The spa_config_lock is an array of rwlocks, ordered as
777 * follows (from highest to lowest):
778 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
779 * SCL_ZIO > SCL_FREE > SCL_VDEV
780 * (For more information about the spa_config_lock see spa_misc.c)
781 * The higher the lock, the broader its coverage. When we passivate
782 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
783 * config locks. However, the metaslab group's taskq might be trying
784 * to preload metaslabs so we must drop the SCL_ZIO lock and any
785 * lower locks to allow the I/O to complete. At a minimum,
786 * we continue to hold the SCL_ALLOC lock, which prevents any future
787 * allocations from taking place and any changes to the vdev tree.
788 */
789 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
790 taskq_wait_outstanding(mg->mg_taskq, 0);
791 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
792 metaslab_group_alloc_update(mg);
793 for (int i = 0; i < mg->mg_allocators; i++) {
794 metaslab_t *msp = mg->mg_primaries[i];
795 if (msp != NULL) {
796 mutex_enter(&msp->ms_lock);
797 metaslab_passivate(msp,
798 metaslab_weight_from_range_tree(msp));
799 mutex_exit(&msp->ms_lock);
800 }
801 msp = mg->mg_secondaries[i];
802 if (msp != NULL) {
803 mutex_enter(&msp->ms_lock);
804 metaslab_passivate(msp,
805 metaslab_weight_from_range_tree(msp));
806 mutex_exit(&msp->ms_lock);
807 }
808 }
809
810 mgprev = mg->mg_prev;
811 mgnext = mg->mg_next;
812
813 if (mg == mgnext) {
814 mc->mc_rotor = NULL;
815 } else {
816 mc->mc_rotor = mgnext;
817 mgprev->mg_next = mgnext;
818 mgnext->mg_prev = mgprev;
819 }
820
821 mg->mg_prev = NULL;
822 mg->mg_next = NULL;
823 }
824
825 boolean_t
826 metaslab_group_initialized(metaslab_group_t *mg)
827 {
828 vdev_t *vd = mg->mg_vd;
829 vdev_stat_t *vs = &vd->vdev_stat;
830
831 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
832 }
833
834 uint64_t
835 metaslab_group_get_space(metaslab_group_t *mg)
836 {
837 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
838 }
839
840 void
841 metaslab_group_histogram_verify(metaslab_group_t *mg)
842 {
843 uint64_t *mg_hist;
844 vdev_t *vd = mg->mg_vd;
845 uint64_t ashift = vd->vdev_ashift;
846 int i;
847
848 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
849 return;
850
851 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
852 KM_SLEEP);
853
854 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
855 SPACE_MAP_HISTOGRAM_SIZE + ashift);
856
857 for (int m = 0; m < vd->vdev_ms_count; m++) {
858 metaslab_t *msp = vd->vdev_ms[m];
859
860 /* skip if not active or not a member */
861 if (msp->ms_sm == NULL || msp->ms_group != mg)
862 continue;
863
864 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
865 mg_hist[i + ashift] +=
866 msp->ms_sm->sm_phys->smp_histogram[i];
867 }
868
869 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
870 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
871
872 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
873 }
874
875 static void
876 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
877 {
878 metaslab_class_t *mc = mg->mg_class;
879 uint64_t ashift = mg->mg_vd->vdev_ashift;
880
881 ASSERT(MUTEX_HELD(&msp->ms_lock));
882 if (msp->ms_sm == NULL)
883 return;
884
885 mutex_enter(&mg->mg_lock);
886 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
887 mg->mg_histogram[i + ashift] +=
888 msp->ms_sm->sm_phys->smp_histogram[i];
889 mc->mc_histogram[i + ashift] +=
890 msp->ms_sm->sm_phys->smp_histogram[i];
891 }
892 mutex_exit(&mg->mg_lock);
893 }
894
895 void
896 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
897 {
898 metaslab_class_t *mc = mg->mg_class;
899 uint64_t ashift = mg->mg_vd->vdev_ashift;
900
901 ASSERT(MUTEX_HELD(&msp->ms_lock));
902 if (msp->ms_sm == NULL)
903 return;
904
905 mutex_enter(&mg->mg_lock);
906 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
907 ASSERT3U(mg->mg_histogram[i + ashift], >=,
908 msp->ms_sm->sm_phys->smp_histogram[i]);
909 ASSERT3U(mc->mc_histogram[i + ashift], >=,
910 msp->ms_sm->sm_phys->smp_histogram[i]);
911
912 mg->mg_histogram[i + ashift] -=
913 msp->ms_sm->sm_phys->smp_histogram[i];
914 mc->mc_histogram[i + ashift] -=
915 msp->ms_sm->sm_phys->smp_histogram[i];
916 }
917 mutex_exit(&mg->mg_lock);
918 }
919
920 static void
921 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
922 {
923 ASSERT(msp->ms_group == NULL);
924 mutex_enter(&mg->mg_lock);
925 msp->ms_group = mg;
926 msp->ms_weight = 0;
927 avl_add(&mg->mg_metaslab_tree, msp);
928 mutex_exit(&mg->mg_lock);
929
930 mutex_enter(&msp->ms_lock);
931 metaslab_group_histogram_add(mg, msp);
932 mutex_exit(&msp->ms_lock);
933 }
934
935 static void
936 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
937 {
938 mutex_enter(&msp->ms_lock);
939 metaslab_group_histogram_remove(mg, msp);
940 mutex_exit(&msp->ms_lock);
941
942 mutex_enter(&mg->mg_lock);
943 ASSERT(msp->ms_group == mg);
944 avl_remove(&mg->mg_metaslab_tree, msp);
945 msp->ms_group = NULL;
946 mutex_exit(&mg->mg_lock);
947 }
948
949 static void
950 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
951 {
952 ASSERT(MUTEX_HELD(&mg->mg_lock));
953 ASSERT(msp->ms_group == mg);
954 avl_remove(&mg->mg_metaslab_tree, msp);
955 msp->ms_weight = weight;
956 avl_add(&mg->mg_metaslab_tree, msp);
957
958 }
959
960 static void
961 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
962 {
963 /*
964 * Although in principle the weight can be any value, in
965 * practice we do not use values in the range [1, 511].
966 */
967 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
968 ASSERT(MUTEX_HELD(&msp->ms_lock));
969
970 mutex_enter(&mg->mg_lock);
971 metaslab_group_sort_impl(mg, msp, weight);
972 mutex_exit(&mg->mg_lock);
973 }
974
975 /*
976 * Calculate the fragmentation for a given metaslab group. We can use
977 * a simple average here since all metaslabs within the group must have
978 * the same size. The return value will be a value between 0 and 100
979 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
980 * group have a fragmentation metric.
981 */
982 uint64_t
983 metaslab_group_fragmentation(metaslab_group_t *mg)
984 {
985 vdev_t *vd = mg->mg_vd;
986 uint64_t fragmentation = 0;
987 uint64_t valid_ms = 0;
988
989 for (int m = 0; m < vd->vdev_ms_count; m++) {
990 metaslab_t *msp = vd->vdev_ms[m];
991
992 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
993 continue;
994 if (msp->ms_group != mg)
995 continue;
996
997 valid_ms++;
998 fragmentation += msp->ms_fragmentation;
999 }
1000
1001 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1002 return (ZFS_FRAG_INVALID);
1003
1004 fragmentation /= valid_ms;
1005 ASSERT3U(fragmentation, <=, 100);
1006 return (fragmentation);
1007 }
1008
1009 /*
1010 * Determine if a given metaslab group should skip allocations. A metaslab
1011 * group should avoid allocations if its free capacity is less than the
1012 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1013 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1014 * that can still handle allocations. If the allocation throttle is enabled
1015 * then we skip allocations to devices that have reached their maximum
1016 * allocation queue depth unless the selected metaslab group is the only
1017 * eligible group remaining.
1018 */
1019 static boolean_t
1020 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1021 uint64_t psize, int allocator, int d)
1022 {
1023 spa_t *spa = mg->mg_vd->vdev_spa;
1024 metaslab_class_t *mc = mg->mg_class;
1025
1026 /*
1027 * We can only consider skipping this metaslab group if it's
1028 * in the normal metaslab class and there are other metaslab
1029 * groups to select from. Otherwise, we always consider it eligible
1030 * for allocations.
1031 */
1032 if ((mc != spa_normal_class(spa) &&
1033 mc != spa_special_class(spa) &&
1034 mc != spa_dedup_class(spa)) ||
1035 mc->mc_groups <= 1)
1036 return (B_TRUE);
1037
1038 /*
1039 * If the metaslab group's mg_allocatable flag is set (see comments
1040 * in metaslab_group_alloc_update() for more information) and
1041 * the allocation throttle is disabled then allow allocations to this
1042 * device. However, if the allocation throttle is enabled then
1043 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1044 * to determine if we should allow allocations to this metaslab group.
1045 * If all metaslab groups are no longer considered allocatable
1046 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1047 * gang block size then we allow allocations on this metaslab group
1048 * regardless of the mg_allocatable or throttle settings.
1049 */
1050 if (mg->mg_allocatable) {
1051 metaslab_group_t *mgp;
1052 int64_t qdepth;
1053 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1054
1055 if (!mc->mc_alloc_throttle_enabled)
1056 return (B_TRUE);
1057
1058 /*
1059 * If this metaslab group does not have any free space, then
1060 * there is no point in looking further.
1061 */
1062 if (mg->mg_no_free_space)
1063 return (B_FALSE);
1064
1065 /*
1066 * Relax allocation throttling for ditto blocks. Due to
1067 * random imbalances in allocation it tends to push copies
1068 * to one vdev, that looks a bit better at the moment.
1069 */
1070 qmax = qmax * (4 + d) / 4;
1071
1072 qdepth = zfs_refcount_count(
1073 &mg->mg_alloc_queue_depth[allocator]);
1074
1075 /*
1076 * If this metaslab group is below its qmax or it's
1077 * the only allocatable metasable group, then attempt
1078 * to allocate from it.
1079 */
1080 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1081 return (B_TRUE);
1082 ASSERT3U(mc->mc_alloc_groups, >, 1);
1083
1084 /*
1085 * Since this metaslab group is at or over its qmax, we
1086 * need to determine if there are metaslab groups after this
1087 * one that might be able to handle this allocation. This is
1088 * racy since we can't hold the locks for all metaslab
1089 * groups at the same time when we make this check.
1090 */
1091 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1092 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1093 qmax = qmax * (4 + d) / 4;
1094 qdepth = zfs_refcount_count(
1095 &mgp->mg_alloc_queue_depth[allocator]);
1096
1097 /*
1098 * If there is another metaslab group that
1099 * might be able to handle the allocation, then
1100 * we return false so that we skip this group.
1101 */
1102 if (qdepth < qmax && !mgp->mg_no_free_space)
1103 return (B_FALSE);
1104 }
1105
1106 /*
1107 * We didn't find another group to handle the allocation
1108 * so we can't skip this metaslab group even though
1109 * we are at or over our qmax.
1110 */
1111 return (B_TRUE);
1112
1113 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1114 return (B_TRUE);
1115 }
1116 return (B_FALSE);
1117 }
1118
1119 /*
1120 * ==========================================================================
1121 * Range tree callbacks
1122 * ==========================================================================
1123 */
1124
1125 /*
1126 * Comparison function for the private size-ordered tree. Tree is sorted
1127 * by size, larger sizes at the end of the tree.
1128 */
1129 static int
1130 metaslab_rangesize_compare(const void *x1, const void *x2)
1131 {
1132 const range_seg_t *r1 = x1;
1133 const range_seg_t *r2 = x2;
1134 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1135 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1136
1137 int cmp = AVL_CMP(rs_size1, rs_size2);
1138 if (likely(cmp))
1139 return (cmp);
1140
1141 return (AVL_CMP(r1->rs_start, r2->rs_start));
1142 }
1143
1144 /*
1145 * ==========================================================================
1146 * Common allocator routines
1147 * ==========================================================================
1148 */
1149
1150 /*
1151 * Return the maximum contiguous segment within the metaslab.
1152 */
1153 uint64_t
1154 metaslab_block_maxsize(metaslab_t *msp)
1155 {
1156 avl_tree_t *t = &msp->ms_allocatable_by_size;
1157 range_seg_t *rs;
1158
1159 if (t == NULL || (rs = avl_last(t)) == NULL)
1160 return (0ULL);
1161
1162 return (rs->rs_end - rs->rs_start);
1163 }
1164
1165 static range_seg_t *
1166 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1167 {
1168 range_seg_t *rs, rsearch;
1169 avl_index_t where;
1170
1171 rsearch.rs_start = start;
1172 rsearch.rs_end = start + size;
1173
1174 rs = avl_find(t, &rsearch, &where);
1175 if (rs == NULL) {
1176 rs = avl_nearest(t, where, AVL_AFTER);
1177 }
1178
1179 return (rs);
1180 }
1181
1182 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1183 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1184 defined(WITH_CF_BLOCK_ALLOCATOR)
1185 /*
1186 * This is a helper function that can be used by the allocator to find
1187 * a suitable block to allocate. This will search the specified AVL
1188 * tree looking for a block that matches the specified criteria.
1189 */
1190 static uint64_t
1191 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1192 uint64_t align)
1193 {
1194 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1195
1196 while (rs != NULL) {
1197 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1198
1199 if (offset + size <= rs->rs_end) {
1200 *cursor = offset + size;
1201 return (offset);
1202 }
1203 rs = AVL_NEXT(t, rs);
1204 }
1205
1206 /*
1207 * If we know we've searched the whole map (*cursor == 0), give up.
1208 * Otherwise, reset the cursor to the beginning and try again.
1209 */
1210 if (*cursor == 0)
1211 return (-1ULL);
1212
1213 *cursor = 0;
1214 return (metaslab_block_picker(t, cursor, size, align));
1215 }
1216 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1217
1218 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1219 /*
1220 * ==========================================================================
1221 * The first-fit block allocator
1222 * ==========================================================================
1223 */
1224 static uint64_t
1225 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1226 {
1227 /*
1228 * Find the largest power of 2 block size that evenly divides the
1229 * requested size. This is used to try to allocate blocks with similar
1230 * alignment from the same area of the metaslab (i.e. same cursor
1231 * bucket) but it does not guarantee that other allocations sizes
1232 * may exist in the same region.
1233 */
1234 uint64_t align = size & -size;
1235 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1236 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1237
1238 return (metaslab_block_picker(t, cursor, size, align));
1239 }
1240
1241 static metaslab_ops_t metaslab_ff_ops = {
1242 metaslab_ff_alloc
1243 };
1244
1245 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1246 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1247
1248 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1249 /*
1250 * ==========================================================================
1251 * Dynamic block allocator -
1252 * Uses the first fit allocation scheme until space get low and then
1253 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1254 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1255 * ==========================================================================
1256 */
1257 static uint64_t
1258 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1259 {
1260 /*
1261 * Find the largest power of 2 block size that evenly divides the
1262 * requested size. This is used to try to allocate blocks with similar
1263 * alignment from the same area of the metaslab (i.e. same cursor
1264 * bucket) but it does not guarantee that other allocations sizes
1265 * may exist in the same region.
1266 */
1267 uint64_t align = size & -size;
1268 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1269 range_tree_t *rt = msp->ms_allocatable;
1270 avl_tree_t *t = &rt->rt_root;
1271 uint64_t max_size = metaslab_block_maxsize(msp);
1272 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1273
1274 ASSERT(MUTEX_HELD(&msp->ms_lock));
1275 ASSERT3U(avl_numnodes(t), ==,
1276 avl_numnodes(&msp->ms_allocatable_by_size));
1277
1278 if (max_size < size)
1279 return (-1ULL);
1280
1281 /*
1282 * If we're running low on space switch to using the size
1283 * sorted AVL tree (best-fit).
1284 */
1285 if (max_size < metaslab_df_alloc_threshold ||
1286 free_pct < metaslab_df_free_pct) {
1287 t = &msp->ms_allocatable_by_size;
1288 *cursor = 0;
1289 }
1290
1291 return (metaslab_block_picker(t, cursor, size, 1ULL));
1292 }
1293
1294 static metaslab_ops_t metaslab_df_ops = {
1295 metaslab_df_alloc
1296 };
1297
1298 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1299 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1300
1301 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1302 /*
1303 * ==========================================================================
1304 * Cursor fit block allocator -
1305 * Select the largest region in the metaslab, set the cursor to the beginning
1306 * of the range and the cursor_end to the end of the range. As allocations
1307 * are made advance the cursor. Continue allocating from the cursor until
1308 * the range is exhausted and then find a new range.
1309 * ==========================================================================
1310 */
1311 static uint64_t
1312 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1313 {
1314 range_tree_t *rt = msp->ms_allocatable;
1315 avl_tree_t *t = &msp->ms_allocatable_by_size;
1316 uint64_t *cursor = &msp->ms_lbas[0];
1317 uint64_t *cursor_end = &msp->ms_lbas[1];
1318 uint64_t offset = 0;
1319
1320 ASSERT(MUTEX_HELD(&msp->ms_lock));
1321 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1322
1323 ASSERT3U(*cursor_end, >=, *cursor);
1324
1325 if ((*cursor + size) > *cursor_end) {
1326 range_seg_t *rs;
1327
1328 rs = avl_last(&msp->ms_allocatable_by_size);
1329 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1330 return (-1ULL);
1331
1332 *cursor = rs->rs_start;
1333 *cursor_end = rs->rs_end;
1334 }
1335
1336 offset = *cursor;
1337 *cursor += size;
1338
1339 return (offset);
1340 }
1341
1342 static metaslab_ops_t metaslab_cf_ops = {
1343 metaslab_cf_alloc
1344 };
1345
1346 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1347 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1348
1349 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1350 /*
1351 * ==========================================================================
1352 * New dynamic fit allocator -
1353 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1354 * contiguous blocks. If no region is found then just use the largest segment
1355 * that remains.
1356 * ==========================================================================
1357 */
1358
1359 /*
1360 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1361 * to request from the allocator.
1362 */
1363 uint64_t metaslab_ndf_clump_shift = 4;
1364
1365 static uint64_t
1366 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1367 {
1368 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1369 avl_index_t where;
1370 range_seg_t *rs, rsearch;
1371 uint64_t hbit = highbit64(size);
1372 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1373 uint64_t max_size = metaslab_block_maxsize(msp);
1374
1375 ASSERT(MUTEX_HELD(&msp->ms_lock));
1376 ASSERT3U(avl_numnodes(t), ==,
1377 avl_numnodes(&msp->ms_allocatable_by_size));
1378
1379 if (max_size < size)
1380 return (-1ULL);
1381
1382 rsearch.rs_start = *cursor;
1383 rsearch.rs_end = *cursor + size;
1384
1385 rs = avl_find(t, &rsearch, &where);
1386 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1387 t = &msp->ms_allocatable_by_size;
1388
1389 rsearch.rs_start = 0;
1390 rsearch.rs_end = MIN(max_size,
1391 1ULL << (hbit + metaslab_ndf_clump_shift));
1392 rs = avl_find(t, &rsearch, &where);
1393 if (rs == NULL)
1394 rs = avl_nearest(t, where, AVL_AFTER);
1395 ASSERT(rs != NULL);
1396 }
1397
1398 if ((rs->rs_end - rs->rs_start) >= size) {
1399 *cursor = rs->rs_start + size;
1400 return (rs->rs_start);
1401 }
1402 return (-1ULL);
1403 }
1404
1405 static metaslab_ops_t metaslab_ndf_ops = {
1406 metaslab_ndf_alloc
1407 };
1408
1409 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1410 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1411
1412
1413 /*
1414 * ==========================================================================
1415 * Metaslabs
1416 * ==========================================================================
1417 */
1418
1419 /*
1420 * Wait for any in-progress metaslab loads to complete.
1421 */
1422 static void
1423 metaslab_load_wait(metaslab_t *msp)
1424 {
1425 ASSERT(MUTEX_HELD(&msp->ms_lock));
1426
1427 while (msp->ms_loading) {
1428 ASSERT(!msp->ms_loaded);
1429 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1430 }
1431 }
1432
1433 static int
1434 metaslab_load_impl(metaslab_t *msp)
1435 {
1436 int error = 0;
1437
1438 ASSERT(MUTEX_HELD(&msp->ms_lock));
1439 ASSERT(msp->ms_loading);
1440 ASSERT(!msp->ms_condensing);
1441
1442 /*
1443 * We temporarily drop the lock to unblock other operations while we
1444 * are reading the space map. Therefore, metaslab_sync() and
1445 * metaslab_sync_done() can run at the same time as we do.
1446 *
1447 * metaslab_sync() can append to the space map while we are loading.
1448 * Therefore we load only entries that existed when we started the
1449 * load. Additionally, metaslab_sync_done() has to wait for the load
1450 * to complete because there are potential races like metaslab_load()
1451 * loading parts of the space map that are currently being appended
1452 * by metaslab_sync(). If we didn't, the ms_allocatable would have
1453 * entries that metaslab_sync_done() would try to re-add later.
1454 *
1455 * That's why before dropping the lock we remember the synced length
1456 * of the metaslab and read up to that point of the space map,
1457 * ignoring entries appended by metaslab_sync() that happen after we
1458 * drop the lock.
1459 */
1460 uint64_t length = msp->ms_synced_length;
1461 mutex_exit(&msp->ms_lock);
1462
1463 if (msp->ms_sm != NULL) {
1464 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1465 SM_FREE, length);
1466 } else {
1467 /*
1468 * The space map has not been allocated yet, so treat
1469 * all the space in the metaslab as free and add it to the
1470 * ms_allocatable tree.
1471 */
1472 range_tree_add(msp->ms_allocatable,
1473 msp->ms_start, msp->ms_size);
1474 }
1475
1476 /*
1477 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
1478 * changing the ms_sm and the metaslab's range trees while we are
1479 * about to use them and populate the ms_allocatable. The ms_lock
1480 * is insufficient for this because metaslab_sync() doesn't hold
1481 * the ms_lock while writing the ms_checkpointing tree to disk.
1482 */
1483 mutex_enter(&msp->ms_sync_lock);
1484 mutex_enter(&msp->ms_lock);
1485 ASSERT(!msp->ms_condensing);
1486
1487 if (error != 0)
1488 return (error);
1489
1490 ASSERT3P(msp->ms_group, !=, NULL);
1491 msp->ms_loaded = B_TRUE;
1492
1493 /*
1494 * The ms_allocatable contains the segments that exist in the
1495 * ms_defer trees [see ms_synced_length]. Thus we need to remove
1496 * them from ms_allocatable as they will be added again in
1497 * metaslab_sync_done().
1498 */
1499 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1500 range_tree_walk(msp->ms_defer[t],
1501 range_tree_remove, msp->ms_allocatable);
1502 }
1503
1504 msp->ms_max_size = metaslab_block_maxsize(msp);
1505
1506 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1507 metaslab_verify_space(msp, spa_syncing_txg(spa));
1508 mutex_exit(&msp->ms_sync_lock);
1509
1510 return (0);
1511 }
1512
1513 int
1514 metaslab_load(metaslab_t *msp)
1515 {
1516 ASSERT(MUTEX_HELD(&msp->ms_lock));
1517
1518 /*
1519 * There may be another thread loading the same metaslab, if that's
1520 * the case just wait until the other thread is done and return.
1521 */
1522 metaslab_load_wait(msp);
1523 if (msp->ms_loaded)
1524 return (0);
1525 VERIFY(!msp->ms_loading);
1526 ASSERT(!msp->ms_condensing);
1527
1528 msp->ms_loading = B_TRUE;
1529 int error = metaslab_load_impl(msp);
1530 msp->ms_loading = B_FALSE;
1531 cv_broadcast(&msp->ms_load_cv);
1532
1533 return (error);
1534 }
1535
1536 void
1537 metaslab_unload(metaslab_t *msp)
1538 {
1539 ASSERT(MUTEX_HELD(&msp->ms_lock));
1540 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1541 msp->ms_loaded = B_FALSE;
1542 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1543 msp->ms_max_size = 0;
1544 }
1545
1546 static void
1547 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1548 int64_t defer_delta, int64_t space_delta)
1549 {
1550 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1551
1552 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1553 ASSERT(vd->vdev_ms_count != 0);
1554
1555 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1556 vdev_deflated_space(vd, space_delta));
1557 }
1558
1559 int
1560 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1561 metaslab_t **msp)
1562 {
1563 vdev_t *vd = mg->mg_vd;
1564 spa_t *spa = vd->vdev_spa;
1565 objset_t *mos = spa->spa_meta_objset;
1566 metaslab_t *ms;
1567 int error;
1568
1569 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1570 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1571 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1572 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1573
1574 ms->ms_id = id;
1575 ms->ms_start = id << vd->vdev_ms_shift;
1576 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1577 ms->ms_allocator = -1;
1578 ms->ms_new = B_TRUE;
1579
1580 /*
1581 * We only open space map objects that already exist. All others
1582 * will be opened when we finally allocate an object for it.
1583 *
1584 * Note:
1585 * When called from vdev_expand(), we can't call into the DMU as
1586 * we are holding the spa_config_lock as a writer and we would
1587 * deadlock [see relevant comment in vdev_metaslab_init()]. in
1588 * that case, the object parameter is zero though, so we won't
1589 * call into the DMU.
1590 */
1591 if (object != 0) {
1592 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1593 ms->ms_size, vd->vdev_ashift);
1594
1595 if (error != 0) {
1596 kmem_free(ms, sizeof (metaslab_t));
1597 return (error);
1598 }
1599
1600 ASSERT(ms->ms_sm != NULL);
1601 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
1602 }
1603
1604 /*
1605 * We create the ms_allocatable here, but we don't create the
1606 * other range trees until metaslab_sync_done(). This serves
1607 * two purposes: it allows metaslab_sync_done() to detect the
1608 * addition of new space; and for debugging, it ensures that
1609 * we'd data fault on any attempt to use this metaslab before
1610 * it's ready.
1611 */
1612 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1613 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
1614 metaslab_group_add(mg, ms);
1615
1616 metaslab_set_fragmentation(ms);
1617
1618 /*
1619 * If we're opening an existing pool (txg == 0) or creating
1620 * a new one (txg == TXG_INITIAL), all space is available now.
1621 * If we're adding space to an existing pool, the new space
1622 * does not become available until after this txg has synced.
1623 * The metaslab's weight will also be initialized when we sync
1624 * out this txg. This ensures that we don't attempt to allocate
1625 * from it before we have initialized it completely.
1626 */
1627 if (txg <= TXG_INITIAL) {
1628 metaslab_sync_done(ms, 0);
1629 metaslab_space_update(vd, mg->mg_class,
1630 metaslab_allocated_space(ms), 0, 0);
1631 }
1632
1633 /*
1634 * If metaslab_debug_load is set and we're initializing a metaslab
1635 * that has an allocated space map object then load the space map
1636 * so that we can verify frees.
1637 */
1638 if (metaslab_debug_load && ms->ms_sm != NULL) {
1639 mutex_enter(&ms->ms_lock);
1640 VERIFY0(metaslab_load(ms));
1641 mutex_exit(&ms->ms_lock);
1642 }
1643
1644 if (txg != 0) {
1645 vdev_dirty(vd, 0, NULL, txg);
1646 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1647 }
1648
1649 *msp = ms;
1650
1651 return (0);
1652 }
1653
1654 void
1655 metaslab_fini(metaslab_t *msp)
1656 {
1657 metaslab_group_t *mg = msp->ms_group;
1658 vdev_t *vd = mg->mg_vd;
1659
1660 metaslab_group_remove(mg, msp);
1661
1662 mutex_enter(&msp->ms_lock);
1663 VERIFY(msp->ms_group == NULL);
1664 metaslab_space_update(vd, mg->mg_class,
1665 -metaslab_allocated_space(msp), 0, -msp->ms_size);
1666
1667 space_map_close(msp->ms_sm);
1668
1669 metaslab_unload(msp);
1670
1671 range_tree_destroy(msp->ms_allocatable);
1672 range_tree_destroy(msp->ms_freeing);
1673 range_tree_destroy(msp->ms_freed);
1674
1675 for (int t = 0; t < TXG_SIZE; t++) {
1676 range_tree_destroy(msp->ms_allocating[t]);
1677 }
1678
1679 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1680 range_tree_destroy(msp->ms_defer[t]);
1681 }
1682 ASSERT0(msp->ms_deferspace);
1683
1684 range_tree_destroy(msp->ms_checkpointing);
1685
1686 mutex_exit(&msp->ms_lock);
1687 cv_destroy(&msp->ms_load_cv);
1688 mutex_destroy(&msp->ms_lock);
1689 mutex_destroy(&msp->ms_sync_lock);
1690 ASSERT3U(msp->ms_allocator, ==, -1);
1691
1692 kmem_free(msp, sizeof (metaslab_t));
1693 }
1694
1695 #define FRAGMENTATION_TABLE_SIZE 17
1696
1697 /*
1698 * This table defines a segment size based fragmentation metric that will
1699 * allow each metaslab to derive its own fragmentation value. This is done
1700 * by calculating the space in each bucket of the spacemap histogram and
1701 * multiplying that by the fragmetation metric in this table. Doing
1702 * this for all buckets and dividing it by the total amount of free
1703 * space in this metaslab (i.e. the total free space in all buckets) gives
1704 * us the fragmentation metric. This means that a high fragmentation metric
1705 * equates to most of the free space being comprised of small segments.
1706 * Conversely, if the metric is low, then most of the free space is in
1707 * large segments. A 10% change in fragmentation equates to approximately
1708 * double the number of segments.
1709 *
1710 * This table defines 0% fragmented space using 16MB segments. Testing has
1711 * shown that segments that are greater than or equal to 16MB do not suffer
1712 * from drastic performance problems. Using this value, we derive the rest
1713 * of the table. Since the fragmentation value is never stored on disk, it
1714 * is possible to change these calculations in the future.
1715 */
1716 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1717 100, /* 512B */
1718 100, /* 1K */
1719 98, /* 2K */
1720 95, /* 4K */
1721 90, /* 8K */
1722 80, /* 16K */
1723 70, /* 32K */
1724 60, /* 64K */
1725 50, /* 128K */
1726 40, /* 256K */
1727 30, /* 512K */
1728 20, /* 1M */
1729 15, /* 2M */
1730 10, /* 4M */
1731 5, /* 8M */
1732 0 /* 16M */
1733 };
1734
1735 /*
1736 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
1737 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
1738 * been upgraded and does not support this metric. Otherwise, the return
1739 * value should be in the range [0, 100].
1740 */
1741 static void
1742 metaslab_set_fragmentation(metaslab_t *msp)
1743 {
1744 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1745 uint64_t fragmentation = 0;
1746 uint64_t total = 0;
1747 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1748 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1749
1750 if (!feature_enabled) {
1751 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1752 return;
1753 }
1754
1755 /*
1756 * A null space map means that the entire metaslab is free
1757 * and thus is not fragmented.
1758 */
1759 if (msp->ms_sm == NULL) {
1760 msp->ms_fragmentation = 0;
1761 return;
1762 }
1763
1764 /*
1765 * If this metaslab's space map has not been upgraded, flag it
1766 * so that we upgrade next time we encounter it.
1767 */
1768 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1769 uint64_t txg = spa_syncing_txg(spa);
1770 vdev_t *vd = msp->ms_group->mg_vd;
1771
1772 /*
1773 * If we've reached the final dirty txg, then we must
1774 * be shutting down the pool. We don't want to dirty
1775 * any data past this point so skip setting the condense
1776 * flag. We can retry this action the next time the pool
1777 * is imported.
1778 */
1779 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1780 msp->ms_condense_wanted = B_TRUE;
1781 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1782 zfs_dbgmsg("txg %llu, requesting force condense: "
1783 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1784 vd->vdev_id);
1785 }
1786 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1787 return;
1788 }
1789
1790 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1791 uint64_t space = 0;
1792 uint8_t shift = msp->ms_sm->sm_shift;
1793
1794 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1795 FRAGMENTATION_TABLE_SIZE - 1);
1796
1797 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1798 continue;
1799
1800 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1801 total += space;
1802
1803 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1804 fragmentation += space * zfs_frag_table[idx];
1805 }
1806
1807 if (total > 0)
1808 fragmentation /= total;
1809 ASSERT3U(fragmentation, <=, 100);
1810
1811 msp->ms_fragmentation = fragmentation;
1812 }
1813
1814 /*
1815 * Compute a weight -- a selection preference value -- for the given metaslab.
1816 * This is based on the amount of free space, the level of fragmentation,
1817 * the LBA range, and whether the metaslab is loaded.
1818 */
1819 static uint64_t
1820 metaslab_space_weight(metaslab_t *msp)
1821 {
1822 metaslab_group_t *mg = msp->ms_group;
1823 vdev_t *vd = mg->mg_vd;
1824 uint64_t weight, space;
1825
1826 ASSERT(MUTEX_HELD(&msp->ms_lock));
1827 ASSERT(!vd->vdev_removing);
1828
1829 /*
1830 * The baseline weight is the metaslab's free space.
1831 */
1832 space = msp->ms_size - metaslab_allocated_space(msp);
1833
1834 if (metaslab_fragmentation_factor_enabled &&
1835 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1836 /*
1837 * Use the fragmentation information to inversely scale
1838 * down the baseline weight. We need to ensure that we
1839 * don't exclude this metaslab completely when it's 100%
1840 * fragmented. To avoid this we reduce the fragmented value
1841 * by 1.
1842 */
1843 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1844
1845 /*
1846 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1847 * this metaslab again. The fragmentation metric may have
1848 * decreased the space to something smaller than
1849 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1850 * so that we can consume any remaining space.
1851 */
1852 if (space > 0 && space < SPA_MINBLOCKSIZE)
1853 space = SPA_MINBLOCKSIZE;
1854 }
1855 weight = space;
1856
1857 /*
1858 * Modern disks have uniform bit density and constant angular velocity.
1859 * Therefore, the outer recording zones are faster (higher bandwidth)
1860 * than the inner zones by the ratio of outer to inner track diameter,
1861 * which is typically around 2:1. We account for this by assigning
1862 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1863 * In effect, this means that we'll select the metaslab with the most
1864 * free bandwidth rather than simply the one with the most free space.
1865 */
1866 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1867 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1868 ASSERT(weight >= space && weight <= 2 * space);
1869 }
1870
1871 /*
1872 * If this metaslab is one we're actively using, adjust its
1873 * weight to make it preferable to any inactive metaslab so
1874 * we'll polish it off. If the fragmentation on this metaslab
1875 * has exceed our threshold, then don't mark it active.
1876 */
1877 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1878 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1879 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1880 }
1881
1882 WEIGHT_SET_SPACEBASED(weight);
1883 return (weight);
1884 }
1885
1886 /*
1887 * Return the weight of the specified metaslab, according to the segment-based
1888 * weighting algorithm. The metaslab must be loaded. This function can
1889 * be called within a sync pass since it relies only on the metaslab's
1890 * range tree which is always accurate when the metaslab is loaded.
1891 */
1892 static uint64_t
1893 metaslab_weight_from_range_tree(metaslab_t *msp)
1894 {
1895 uint64_t weight = 0;
1896 uint32_t segments = 0;
1897
1898 ASSERT(msp->ms_loaded);
1899
1900 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1901 i--) {
1902 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1903 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1904
1905 segments <<= 1;
1906 segments += msp->ms_allocatable->rt_histogram[i];
1907
1908 /*
1909 * The range tree provides more precision than the space map
1910 * and must be downgraded so that all values fit within the
1911 * space map's histogram. This allows us to compare loaded
1912 * vs. unloaded metaslabs to determine which metaslab is
1913 * considered "best".
1914 */
1915 if (i > max_idx)
1916 continue;
1917
1918 if (segments != 0) {
1919 WEIGHT_SET_COUNT(weight, segments);
1920 WEIGHT_SET_INDEX(weight, i);
1921 WEIGHT_SET_ACTIVE(weight, 0);
1922 break;
1923 }
1924 }
1925 return (weight);
1926 }
1927
1928 /*
1929 * Calculate the weight based on the on-disk histogram. This should only
1930 * be called after a sync pass has completely finished since the on-disk
1931 * information is updated in metaslab_sync().
1932 */
1933 static uint64_t
1934 metaslab_weight_from_spacemap(metaslab_t *msp)
1935 {
1936 uint64_t weight = 0;
1937
1938 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1939 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1940 WEIGHT_SET_COUNT(weight,
1941 msp->ms_sm->sm_phys->smp_histogram[i]);
1942 WEIGHT_SET_INDEX(weight, i +
1943 msp->ms_sm->sm_shift);
1944 WEIGHT_SET_ACTIVE(weight, 0);
1945 break;
1946 }
1947 }
1948 return (weight);
1949 }
1950
1951 /*
1952 * Compute a segment-based weight for the specified metaslab. The weight
1953 * is determined by highest bucket in the histogram. The information
1954 * for the highest bucket is encoded into the weight value.
1955 */
1956 static uint64_t
1957 metaslab_segment_weight(metaslab_t *msp)
1958 {
1959 metaslab_group_t *mg = msp->ms_group;
1960 uint64_t weight = 0;
1961 uint8_t shift = mg->mg_vd->vdev_ashift;
1962
1963 ASSERT(MUTEX_HELD(&msp->ms_lock));
1964
1965 /*
1966 * The metaslab is completely free.
1967 */
1968 if (metaslab_allocated_space(msp) == 0) {
1969 int idx = highbit64(msp->ms_size) - 1;
1970 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1971
1972 if (idx < max_idx) {
1973 WEIGHT_SET_COUNT(weight, 1ULL);
1974 WEIGHT_SET_INDEX(weight, idx);
1975 } else {
1976 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1977 WEIGHT_SET_INDEX(weight, max_idx);
1978 }
1979 WEIGHT_SET_ACTIVE(weight, 0);
1980 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1981
1982 return (weight);
1983 }
1984
1985 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1986
1987 /*
1988 * If the metaslab is fully allocated then just make the weight 0.
1989 */
1990 if (metaslab_allocated_space(msp) == msp->ms_size)
1991 return (0);
1992 /*
1993 * If the metaslab is already loaded, then use the range tree to
1994 * determine the weight. Otherwise, we rely on the space map information
1995 * to generate the weight.
1996 */
1997 if (msp->ms_loaded) {
1998 weight = metaslab_weight_from_range_tree(msp);
1999 } else {
2000 weight = metaslab_weight_from_spacemap(msp);
2001 }
2002
2003 /*
2004 * If the metaslab was active the last time we calculated its weight
2005 * then keep it active. We want to consume the entire region that
2006 * is associated with this weight.
2007 */
2008 if (msp->ms_activation_weight != 0 && weight != 0)
2009 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2010 return (weight);
2011 }
2012
2013 /*
2014 * Determine if we should attempt to allocate from this metaslab. If the
2015 * metaslab has a maximum size then we can quickly determine if the desired
2016 * allocation size can be satisfied. Otherwise, if we're using segment-based
2017 * weighting then we can determine the maximum allocation that this metaslab
2018 * can accommodate based on the index encoded in the weight. If we're using
2019 * space-based weights then rely on the entire weight (excluding the weight
2020 * type bit).
2021 */
2022 boolean_t
2023 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2024 {
2025 boolean_t should_allocate;
2026
2027 if (msp->ms_max_size != 0)
2028 return (msp->ms_max_size >= asize);
2029
2030 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2031 /*
2032 * The metaslab segment weight indicates segments in the
2033 * range [2^i, 2^(i+1)), where i is the index in the weight.
2034 * Since the asize might be in the middle of the range, we
2035 * should attempt the allocation if asize < 2^(i+1).
2036 */
2037 should_allocate = (asize <
2038 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2039 } else {
2040 should_allocate = (asize <=
2041 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2042 }
2043 return (should_allocate);
2044 }
2045 static uint64_t
2046 metaslab_weight(metaslab_t *msp)
2047 {
2048 vdev_t *vd = msp->ms_group->mg_vd;
2049 spa_t *spa = vd->vdev_spa;
2050 uint64_t weight;
2051
2052 ASSERT(MUTEX_HELD(&msp->ms_lock));
2053
2054 /*
2055 * If this vdev is in the process of being removed, there is nothing
2056 * for us to do here.
2057 */
2058 if (vd->vdev_removing)
2059 return (0);
2060
2061 metaslab_set_fragmentation(msp);
2062
2063 /*
2064 * Update the maximum size if the metaslab is loaded. This will
2065 * ensure that we get an accurate maximum size if newly freed space
2066 * has been added back into the free tree.
2067 */
2068 if (msp->ms_loaded)
2069 msp->ms_max_size = metaslab_block_maxsize(msp);
2070 else
2071 ASSERT0(msp->ms_max_size);
2072
2073 /*
2074 * Segment-based weighting requires space map histogram support.
2075 */
2076 if (zfs_metaslab_segment_weight_enabled &&
2077 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2078 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2079 sizeof (space_map_phys_t))) {
2080 weight = metaslab_segment_weight(msp);
2081 } else {
2082 weight = metaslab_space_weight(msp);
2083 }
2084 return (weight);
2085 }
2086
2087 static int
2088 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2089 int allocator, uint64_t activation_weight)
2090 {
2091 /*
2092 * If we're activating for the claim code, we don't want to actually
2093 * set the metaslab up for a specific allocator.
2094 */
2095 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2096 return (0);
2097 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2098 mg->mg_primaries : mg->mg_secondaries);
2099
2100 ASSERT(MUTEX_HELD(&msp->ms_lock));
2101 mutex_enter(&mg->mg_lock);
2102 if (arr[allocator] != NULL) {
2103 mutex_exit(&mg->mg_lock);
2104 return (EEXIST);
2105 }
2106
2107 arr[allocator] = msp;
2108 ASSERT3S(msp->ms_allocator, ==, -1);
2109 msp->ms_allocator = allocator;
2110 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2111 mutex_exit(&mg->mg_lock);
2112
2113 return (0);
2114 }
2115
2116 static int
2117 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2118 {
2119 ASSERT(MUTEX_HELD(&msp->ms_lock));
2120
2121 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2122 int error = metaslab_load(msp);
2123 if (error != 0) {
2124 metaslab_group_sort(msp->ms_group, msp, 0);
2125 return (error);
2126 }
2127 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2128 /*
2129 * The metaslab was activated for another allocator
2130 * while we were waiting, we should reselect.
2131 */
2132 return (SET_ERROR(EBUSY));
2133 }
2134 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2135 allocator, activation_weight)) != 0) {
2136 return (error);
2137 }
2138
2139 msp->ms_activation_weight = msp->ms_weight;
2140 metaslab_group_sort(msp->ms_group, msp,
2141 msp->ms_weight | activation_weight);
2142 }
2143 ASSERT(msp->ms_loaded);
2144 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2145
2146 return (0);
2147 }
2148
2149 static void
2150 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2151 uint64_t weight)
2152 {
2153 ASSERT(MUTEX_HELD(&msp->ms_lock));
2154 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2155 metaslab_group_sort(mg, msp, weight);
2156 return;
2157 }
2158
2159 mutex_enter(&mg->mg_lock);
2160 ASSERT3P(msp->ms_group, ==, mg);
2161 if (msp->ms_primary) {
2162 ASSERT3U(0, <=, msp->ms_allocator);
2163 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2164 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2165 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2166 mg->mg_primaries[msp->ms_allocator] = NULL;
2167 } else {
2168 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2169 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2170 mg->mg_secondaries[msp->ms_allocator] = NULL;
2171 }
2172 msp->ms_allocator = -1;
2173 metaslab_group_sort_impl(mg, msp, weight);
2174 mutex_exit(&mg->mg_lock);
2175 }
2176
2177 static void
2178 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2179 {
2180 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2181
2182 /*
2183 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2184 * this metaslab again. In that case, it had better be empty,
2185 * or we would be leaving space on the table.
2186 */
2187 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2188 size >= SPA_MINBLOCKSIZE ||
2189 range_tree_space(msp->ms_allocatable) == 0);
2190 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2191
2192 msp->ms_activation_weight = 0;
2193 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2194 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2195 }
2196
2197 /*
2198 * Segment-based metaslabs are activated once and remain active until
2199 * we either fail an allocation attempt (similar to space-based metaslabs)
2200 * or have exhausted the free space in zfs_metaslab_switch_threshold
2201 * buckets since the metaslab was activated. This function checks to see
2202 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2203 * metaslab and passivates it proactively. This will allow us to select a
2204 * metaslab with a larger contiguous region, if any, remaining within this
2205 * metaslab group. If we're in sync pass > 1, then we continue using this
2206 * metaslab so that we don't dirty more block and cause more sync passes.
2207 */
2208 void
2209 metaslab_segment_may_passivate(metaslab_t *msp)
2210 {
2211 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2212
2213 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2214 return;
2215
2216 /*
2217 * Since we are in the middle of a sync pass, the most accurate
2218 * information that is accessible to us is the in-core range tree
2219 * histogram; calculate the new weight based on that information.
2220 */
2221 uint64_t weight = metaslab_weight_from_range_tree(msp);
2222 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2223 int current_idx = WEIGHT_GET_INDEX(weight);
2224
2225 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2226 metaslab_passivate(msp, weight);
2227 }
2228
2229 static void
2230 metaslab_preload(void *arg)
2231 {
2232 metaslab_t *msp = arg;
2233 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2234 fstrans_cookie_t cookie = spl_fstrans_mark();
2235
2236 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2237
2238 mutex_enter(&msp->ms_lock);
2239 (void) metaslab_load(msp);
2240 msp->ms_selected_txg = spa_syncing_txg(spa);
2241 mutex_exit(&msp->ms_lock);
2242 spl_fstrans_unmark(cookie);
2243 }
2244
2245 static void
2246 metaslab_group_preload(metaslab_group_t *mg)
2247 {
2248 spa_t *spa = mg->mg_vd->vdev_spa;
2249 metaslab_t *msp;
2250 avl_tree_t *t = &mg->mg_metaslab_tree;
2251 int m = 0;
2252
2253 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2254 taskq_wait_outstanding(mg->mg_taskq, 0);
2255 return;
2256 }
2257
2258 mutex_enter(&mg->mg_lock);
2259
2260 /*
2261 * Load the next potential metaslabs
2262 */
2263 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2264 ASSERT3P(msp->ms_group, ==, mg);
2265
2266 /*
2267 * We preload only the maximum number of metaslabs specified
2268 * by metaslab_preload_limit. If a metaslab is being forced
2269 * to condense then we preload it too. This will ensure
2270 * that force condensing happens in the next txg.
2271 */
2272 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2273 continue;
2274 }
2275
2276 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2277 msp, TQ_SLEEP) != TASKQID_INVALID);
2278 }
2279 mutex_exit(&mg->mg_lock);
2280 }
2281
2282 /*
2283 * Determine if the space map's on-disk footprint is past our tolerance
2284 * for inefficiency. We would like to use the following criteria to make
2285 * our decision:
2286 *
2287 * 1. The size of the space map object should not dramatically increase as a
2288 * result of writing out the free space range tree.
2289 *
2290 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2291 * times the size than the free space range tree representation
2292 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2293 *
2294 * 3. The on-disk size of the space map should actually decrease.
2295 *
2296 * Unfortunately, we cannot compute the on-disk size of the space map in this
2297 * context because we cannot accurately compute the effects of compression, etc.
2298 * Instead, we apply the heuristic described in the block comment for
2299 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2300 * is greater than a threshold number of blocks.
2301 */
2302 static boolean_t
2303 metaslab_should_condense(metaslab_t *msp)
2304 {
2305 space_map_t *sm = msp->ms_sm;
2306 vdev_t *vd = msp->ms_group->mg_vd;
2307 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2308 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2309
2310 ASSERT(MUTEX_HELD(&msp->ms_lock));
2311 ASSERT(msp->ms_loaded);
2312
2313 /*
2314 * Allocations and frees in early passes are generally more space
2315 * efficient (in terms of blocks described in space map entries)
2316 * than the ones in later passes (e.g. we don't compress after
2317 * sync pass 5) and condensing a metaslab multiple times in a txg
2318 * could degrade performance.
2319 *
2320 * Thus we prefer condensing each metaslab at most once every txg at
2321 * the earliest sync pass possible. If a metaslab is eligible for
2322 * condensing again after being considered for condensing within the
2323 * same txg, it will hopefully be dirty in the next txg where it will
2324 * be condensed at an earlier pass.
2325 */
2326 if (msp->ms_condense_checked_txg == current_txg)
2327 return (B_FALSE);
2328 msp->ms_condense_checked_txg = current_txg;
2329
2330 /*
2331 * We always condense metaslabs that are empty and metaslabs for
2332 * which a condense request has been made.
2333 */
2334 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2335 msp->ms_condense_wanted)
2336 return (B_TRUE);
2337
2338 uint64_t object_size = space_map_length(msp->ms_sm);
2339 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2340 msp->ms_allocatable, SM_NO_VDEVID);
2341
2342 dmu_object_info_t doi;
2343 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2344 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2345
2346 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2347 object_size > zfs_metaslab_condense_block_threshold * record_size);
2348 }
2349
2350 /*
2351 * Condense the on-disk space map representation to its minimized form.
2352 * The minimized form consists of a small number of allocations followed by
2353 * the entries of the free range tree.
2354 */
2355 static void
2356 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2357 {
2358 range_tree_t *condense_tree;
2359 space_map_t *sm = msp->ms_sm;
2360
2361 ASSERT(MUTEX_HELD(&msp->ms_lock));
2362 ASSERT(msp->ms_loaded);
2363
2364
2365 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2366 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2367 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2368 msp->ms_group->mg_vd->vdev_spa->spa_name,
2369 space_map_length(msp->ms_sm),
2370 avl_numnodes(&msp->ms_allocatable->rt_root),
2371 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2372
2373 msp->ms_condense_wanted = B_FALSE;
2374
2375 /*
2376 * Create an range tree that is 100% allocated. We remove segments
2377 * that have been freed in this txg, any deferred frees that exist,
2378 * and any allocation in the future. Removing segments should be
2379 * a relatively inexpensive operation since we expect these trees to
2380 * have a small number of nodes.
2381 */
2382 condense_tree = range_tree_create(NULL, NULL);
2383 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2384
2385 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2386 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2387
2388 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2389 range_tree_walk(msp->ms_defer[t],
2390 range_tree_remove, condense_tree);
2391 }
2392
2393 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2394 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2395 range_tree_remove, condense_tree);
2396 }
2397
2398 /*
2399 * We're about to drop the metaslab's lock thus allowing
2400 * other consumers to change it's content. Set the
2401 * metaslab's ms_condensing flag to ensure that
2402 * allocations on this metaslab do not occur while we're
2403 * in the middle of committing it to disk. This is only critical
2404 * for ms_allocatable as all other range trees use per txg
2405 * views of their content.
2406 */
2407 msp->ms_condensing = B_TRUE;
2408
2409 mutex_exit(&msp->ms_lock);
2410 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2411
2412 /*
2413 * While we would ideally like to create a space map representation
2414 * that consists only of allocation records, doing so can be
2415 * prohibitively expensive because the in-core free tree can be
2416 * large, and therefore computationally expensive to subtract
2417 * from the condense_tree. Instead we sync out two trees, a cheap
2418 * allocation only tree followed by the in-core free tree. While not
2419 * optimal, this is typically close to optimal, and much cheaper to
2420 * compute.
2421 */
2422 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2423 range_tree_vacate(condense_tree, NULL, NULL);
2424 range_tree_destroy(condense_tree);
2425
2426 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2427 mutex_enter(&msp->ms_lock);
2428 msp->ms_condensing = B_FALSE;
2429 }
2430
2431 /*
2432 * Write a metaslab to disk in the context of the specified transaction group.
2433 */
2434 void
2435 metaslab_sync(metaslab_t *msp, uint64_t txg)
2436 {
2437 metaslab_group_t *mg = msp->ms_group;
2438 vdev_t *vd = mg->mg_vd;
2439 spa_t *spa = vd->vdev_spa;
2440 objset_t *mos = spa_meta_objset(spa);
2441 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2442 dmu_tx_t *tx;
2443 uint64_t object = space_map_object(msp->ms_sm);
2444
2445 ASSERT(!vd->vdev_ishole);
2446
2447 /*
2448 * This metaslab has just been added so there's no work to do now.
2449 */
2450 if (msp->ms_freeing == NULL) {
2451 ASSERT3P(alloctree, ==, NULL);
2452 return;
2453 }
2454
2455 ASSERT3P(alloctree, !=, NULL);
2456 ASSERT3P(msp->ms_freeing, !=, NULL);
2457 ASSERT3P(msp->ms_freed, !=, NULL);
2458 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2459
2460 /*
2461 * Normally, we don't want to process a metaslab if there are no
2462 * allocations or frees to perform. However, if the metaslab is being
2463 * forced to condense and it's loaded, we need to let it through.
2464 */
2465 if (range_tree_is_empty(alloctree) &&
2466 range_tree_is_empty(msp->ms_freeing) &&
2467 range_tree_is_empty(msp->ms_checkpointing) &&
2468 !(msp->ms_loaded && msp->ms_condense_wanted))
2469 return;
2470
2471
2472 VERIFY(txg <= spa_final_dirty_txg(spa));
2473
2474 /*
2475 * The only state that can actually be changing concurrently
2476 * with metaslab_sync() is the metaslab's ms_allocatable. No
2477 * other thread can be modifying this txg's alloc, freeing,
2478 * freed, or space_map_phys_t. We drop ms_lock whenever we
2479 * could call into the DMU, because the DMU can call down to
2480 * us (e.g. via zio_free()) at any time.
2481 *
2482 * The spa_vdev_remove_thread() can be reading metaslab state
2483 * concurrently, and it is locked out by the ms_sync_lock.
2484 * Note that the ms_lock is insufficient for this, because it
2485 * is dropped by space_map_write().
2486 */
2487 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2488
2489 if (msp->ms_sm == NULL) {
2490 uint64_t new_object;
2491
2492 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2493 VERIFY3U(new_object, !=, 0);
2494
2495 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2496 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2497
2498 ASSERT(msp->ms_sm != NULL);
2499 ASSERT0(metaslab_allocated_space(msp));
2500 }
2501
2502 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2503 vd->vdev_checkpoint_sm == NULL) {
2504 ASSERT(spa_has_checkpoint(spa));
2505
2506 uint64_t new_object = space_map_alloc(mos,
2507 vdev_standard_sm_blksz, tx);
2508 VERIFY3U(new_object, !=, 0);
2509
2510 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2511 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2512 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2513
2514 /*
2515 * We save the space map object as an entry in vdev_top_zap
2516 * so it can be retrieved when the pool is reopened after an
2517 * export or through zdb.
2518 */
2519 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2520 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2521 sizeof (new_object), 1, &new_object, tx));
2522 }
2523
2524 mutex_enter(&msp->ms_sync_lock);
2525 mutex_enter(&msp->ms_lock);
2526
2527 /*
2528 * Note: metaslab_condense() clears the space map's histogram.
2529 * Therefore we must verify and remove this histogram before
2530 * condensing.
2531 */
2532 metaslab_group_histogram_verify(mg);
2533 metaslab_class_histogram_verify(mg->mg_class);
2534 metaslab_group_histogram_remove(mg, msp);
2535
2536 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2537 metaslab_condense(msp, txg, tx);
2538 } else {
2539 mutex_exit(&msp->ms_lock);
2540 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2541 SM_NO_VDEVID, tx);
2542 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2543 SM_NO_VDEVID, tx);
2544 mutex_enter(&msp->ms_lock);
2545 }
2546
2547 msp->ms_allocated_space += range_tree_space(alloctree);
2548 ASSERT3U(msp->ms_allocated_space, >=,
2549 range_tree_space(msp->ms_freeing));
2550 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
2551
2552 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2553 ASSERT(spa_has_checkpoint(spa));
2554 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2555
2556 /*
2557 * Since we are doing writes to disk and the ms_checkpointing
2558 * tree won't be changing during that time, we drop the
2559 * ms_lock while writing to the checkpoint space map.
2560 */
2561 mutex_exit(&msp->ms_lock);
2562 space_map_write(vd->vdev_checkpoint_sm,
2563 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2564 mutex_enter(&msp->ms_lock);
2565
2566 spa->spa_checkpoint_info.sci_dspace +=
2567 range_tree_space(msp->ms_checkpointing);
2568 vd->vdev_stat.vs_checkpoint_space +=
2569 range_tree_space(msp->ms_checkpointing);
2570 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2571 -space_map_allocated(vd->vdev_checkpoint_sm));
2572
2573 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2574 }
2575
2576 if (msp->ms_loaded) {
2577 /*
2578 * When the space map is loaded, we have an accurate
2579 * histogram in the range tree. This gives us an opportunity
2580 * to bring the space map's histogram up-to-date so we clear
2581 * it first before updating it.
2582 */
2583 space_map_histogram_clear(msp->ms_sm);
2584 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2585
2586 /*
2587 * Since we've cleared the histogram we need to add back
2588 * any free space that has already been processed, plus
2589 * any deferred space. This allows the on-disk histogram
2590 * to accurately reflect all free space even if some space
2591 * is not yet available for allocation (i.e. deferred).
2592 */
2593 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2594
2595 /*
2596 * Add back any deferred free space that has not been
2597 * added back into the in-core free tree yet. This will
2598 * ensure that we don't end up with a space map histogram
2599 * that is completely empty unless the metaslab is fully
2600 * allocated.
2601 */
2602 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2603 space_map_histogram_add(msp->ms_sm,
2604 msp->ms_defer[t], tx);
2605 }
2606 }
2607
2608 /*
2609 * Always add the free space from this sync pass to the space
2610 * map histogram. We want to make sure that the on-disk histogram
2611 * accounts for all free space. If the space map is not loaded,
2612 * then we will lose some accuracy but will correct it the next
2613 * time we load the space map.
2614 */
2615 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2616
2617 metaslab_group_histogram_add(mg, msp);
2618 metaslab_group_histogram_verify(mg);
2619 metaslab_class_histogram_verify(mg->mg_class);
2620
2621 /*
2622 * For sync pass 1, we avoid traversing this txg's free range tree
2623 * and instead will just swap the pointers for freeing and freed.
2624 * We can safely do this since the freed_tree is guaranteed to be
2625 * empty on the initial pass.
2626 */
2627 if (spa_sync_pass(spa) == 1) {
2628 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2629 ASSERT0(msp->ms_allocated_this_txg);
2630 } else {
2631 range_tree_vacate(msp->ms_freeing,
2632 range_tree_add, msp->ms_freed);
2633 }
2634 msp->ms_allocated_this_txg += range_tree_space(alloctree);
2635 range_tree_vacate(alloctree, NULL, NULL);
2636
2637 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2638 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2639 & TXG_MASK]));
2640 ASSERT0(range_tree_space(msp->ms_freeing));
2641 ASSERT0(range_tree_space(msp->ms_checkpointing));
2642
2643 mutex_exit(&msp->ms_lock);
2644
2645 if (object != space_map_object(msp->ms_sm)) {
2646 object = space_map_object(msp->ms_sm);
2647 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2648 msp->ms_id, sizeof (uint64_t), &object, tx);
2649 }
2650 mutex_exit(&msp->ms_sync_lock);
2651 dmu_tx_commit(tx);
2652 }
2653
2654 /*
2655 * Called after a transaction group has completely synced to mark
2656 * all of the metaslab's free space as usable.
2657 */
2658 void
2659 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2660 {
2661 metaslab_group_t *mg = msp->ms_group;
2662 vdev_t *vd = mg->mg_vd;
2663 spa_t *spa = vd->vdev_spa;
2664 range_tree_t **defer_tree;
2665 int64_t alloc_delta, defer_delta;
2666 boolean_t defer_allowed = B_TRUE;
2667
2668 ASSERT(!vd->vdev_ishole);
2669
2670 mutex_enter(&msp->ms_lock);
2671
2672 /*
2673 * If this metaslab is just becoming available, initialize its
2674 * range trees and add its capacity to the vdev.
2675 */
2676 if (msp->ms_freed == NULL) {
2677 for (int t = 0; t < TXG_SIZE; t++) {
2678 ASSERT(msp->ms_allocating[t] == NULL);
2679
2680 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2681 }
2682
2683 ASSERT3P(msp->ms_freeing, ==, NULL);
2684 msp->ms_freeing = range_tree_create(NULL, NULL);
2685
2686 ASSERT3P(msp->ms_freed, ==, NULL);
2687 msp->ms_freed = range_tree_create(NULL, NULL);
2688
2689 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2690 ASSERT(msp->ms_defer[t] == NULL);
2691
2692 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2693 }
2694
2695 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2696 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2697
2698 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
2699 }
2700 ASSERT0(range_tree_space(msp->ms_freeing));
2701 ASSERT0(range_tree_space(msp->ms_checkpointing));
2702
2703 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2704
2705 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2706 metaslab_class_get_alloc(spa_normal_class(spa));
2707 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2708 defer_allowed = B_FALSE;
2709 }
2710
2711 defer_delta = 0;
2712 alloc_delta = msp->ms_allocated_this_txg -
2713 range_tree_space(msp->ms_freed);
2714 if (defer_allowed) {
2715 defer_delta = range_tree_space(msp->ms_freed) -
2716 range_tree_space(*defer_tree);
2717 } else {
2718 defer_delta -= range_tree_space(*defer_tree);
2719 }
2720
2721 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
2722 defer_delta, 0);
2723
2724 /*
2725 * If there's a metaslab_load() in progress, wait for it to complete
2726 * so that we have a consistent view of the in-core space map.
2727 */
2728 metaslab_load_wait(msp);
2729
2730 /*
2731 * Move the frees from the defer_tree back to the free
2732 * range tree (if it's loaded). Swap the freed_tree and
2733 * the defer_tree -- this is safe to do because we've
2734 * just emptied out the defer_tree.
2735 */
2736 range_tree_vacate(*defer_tree,
2737 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2738 if (defer_allowed) {
2739 range_tree_swap(&msp->ms_freed, defer_tree);
2740 } else {
2741 range_tree_vacate(msp->ms_freed,
2742 msp->ms_loaded ? range_tree_add : NULL,
2743 msp->ms_allocatable);
2744 }
2745
2746 msp->ms_synced_length = space_map_length(msp->ms_sm);
2747
2748 msp->ms_deferspace += defer_delta;
2749 ASSERT3S(msp->ms_deferspace, >=, 0);
2750 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2751 if (msp->ms_deferspace != 0) {
2752 /*
2753 * Keep syncing this metaslab until all deferred frees
2754 * are back in circulation.
2755 */
2756 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2757 }
2758
2759 if (msp->ms_new) {
2760 msp->ms_new = B_FALSE;
2761 mutex_enter(&mg->mg_lock);
2762 mg->mg_ms_ready++;
2763 mutex_exit(&mg->mg_lock);
2764 }
2765 /*
2766 * Calculate the new weights before unloading any metaslabs.
2767 * This will give us the most accurate weighting.
2768 */
2769 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2770 (msp->ms_weight & METASLAB_ACTIVE_MASK));
2771
2772 /*
2773 * If the metaslab is loaded and we've not tried to load or allocate
2774 * from it in 'metaslab_unload_delay' txgs, then unload it.
2775 */
2776 if (msp->ms_loaded &&
2777 msp->ms_initializing == 0 &&
2778 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2779
2780 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2781 VERIFY0(range_tree_space(
2782 msp->ms_allocating[(txg + t) & TXG_MASK]));
2783 }
2784 if (msp->ms_allocator != -1) {
2785 metaslab_passivate(msp, msp->ms_weight &
2786 ~METASLAB_ACTIVE_MASK);
2787 }
2788
2789 if (!metaslab_debug_unload)
2790 metaslab_unload(msp);
2791 }
2792
2793 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2794 ASSERT0(range_tree_space(msp->ms_freeing));
2795 ASSERT0(range_tree_space(msp->ms_freed));
2796 ASSERT0(range_tree_space(msp->ms_checkpointing));
2797
2798 msp->ms_allocated_this_txg = 0;
2799 mutex_exit(&msp->ms_lock);
2800 }
2801
2802 void
2803 metaslab_sync_reassess(metaslab_group_t *mg)
2804 {
2805 spa_t *spa = mg->mg_class->mc_spa;
2806
2807 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2808 metaslab_group_alloc_update(mg);
2809 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2810
2811 /*
2812 * Preload the next potential metaslabs but only on active
2813 * metaslab groups. We can get into a state where the metaslab
2814 * is no longer active since we dirty metaslabs as we remove a
2815 * a device, thus potentially making the metaslab group eligible
2816 * for preloading.
2817 */
2818 if (mg->mg_activation_count > 0) {
2819 metaslab_group_preload(mg);
2820 }
2821 spa_config_exit(spa, SCL_ALLOC, FTAG);
2822 }
2823
2824 /*
2825 * When writing a ditto block (i.e. more than one DVA for a given BP) on
2826 * the same vdev as an existing DVA of this BP, then try to allocate it
2827 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
2828 */
2829 static boolean_t
2830 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
2831 {
2832 uint64_t dva_ms_id;
2833
2834 if (DVA_GET_ASIZE(dva) == 0)
2835 return (B_TRUE);
2836
2837 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2838 return (B_TRUE);
2839
2840 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
2841
2842 return (msp->ms_id != dva_ms_id);
2843 }
2844
2845 /*
2846 * ==========================================================================
2847 * Metaslab allocation tracing facility
2848 * ==========================================================================
2849 */
2850 #ifdef _METASLAB_TRACING
2851 kstat_t *metaslab_trace_ksp;
2852 kstat_named_t metaslab_trace_over_limit;
2853
2854 void
2855 metaslab_alloc_trace_init(void)
2856 {
2857 ASSERT(metaslab_alloc_trace_cache == NULL);
2858 metaslab_alloc_trace_cache = kmem_cache_create(
2859 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2860 0, NULL, NULL, NULL, NULL, NULL, 0);
2861 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2862 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2863 if (metaslab_trace_ksp != NULL) {
2864 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2865 kstat_named_init(&metaslab_trace_over_limit,
2866 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2867 kstat_install(metaslab_trace_ksp);
2868 }
2869 }
2870
2871 void
2872 metaslab_alloc_trace_fini(void)
2873 {
2874 if (metaslab_trace_ksp != NULL) {
2875 kstat_delete(metaslab_trace_ksp);
2876 metaslab_trace_ksp = NULL;
2877 }
2878 kmem_cache_destroy(metaslab_alloc_trace_cache);
2879 metaslab_alloc_trace_cache = NULL;
2880 }
2881
2882 /*
2883 * Add an allocation trace element to the allocation tracing list.
2884 */
2885 static void
2886 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2887 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2888 int allocator)
2889 {
2890 metaslab_alloc_trace_t *mat;
2891
2892 if (!metaslab_trace_enabled)
2893 return;
2894
2895 /*
2896 * When the tracing list reaches its maximum we remove
2897 * the second element in the list before adding a new one.
2898 * By removing the second element we preserve the original
2899 * entry as a clue to what allocations steps have already been
2900 * performed.
2901 */
2902 if (zal->zal_size == metaslab_trace_max_entries) {
2903 metaslab_alloc_trace_t *mat_next;
2904 #ifdef DEBUG
2905 panic("too many entries in allocation list");
2906 #endif
2907 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2908 zal->zal_size--;
2909 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2910 list_remove(&zal->zal_list, mat_next);
2911 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2912 }
2913
2914 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2915 list_link_init(&mat->mat_list_node);
2916 mat->mat_mg = mg;
2917 mat->mat_msp = msp;
2918 mat->mat_size = psize;
2919 mat->mat_dva_id = dva_id;
2920 mat->mat_offset = offset;
2921 mat->mat_weight = 0;
2922 mat->mat_allocator = allocator;
2923
2924 if (msp != NULL)
2925 mat->mat_weight = msp->ms_weight;
2926
2927 /*
2928 * The list is part of the zio so locking is not required. Only
2929 * a single thread will perform allocations for a given zio.
2930 */
2931 list_insert_tail(&zal->zal_list, mat);
2932 zal->zal_size++;
2933
2934 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2935 }
2936
2937 void
2938 metaslab_trace_init(zio_alloc_list_t *zal)
2939 {
2940 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2941 offsetof(metaslab_alloc_trace_t, mat_list_node));
2942 zal->zal_size = 0;
2943 }
2944
2945 void
2946 metaslab_trace_fini(zio_alloc_list_t *zal)
2947 {
2948 metaslab_alloc_trace_t *mat;
2949
2950 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2951 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2952 list_destroy(&zal->zal_list);
2953 zal->zal_size = 0;
2954 }
2955 #else
2956
2957 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
2958
2959 void
2960 metaslab_alloc_trace_init(void)
2961 {
2962 }
2963
2964 void
2965 metaslab_alloc_trace_fini(void)
2966 {
2967 }
2968
2969 void
2970 metaslab_trace_init(zio_alloc_list_t *zal)
2971 {
2972 }
2973
2974 void
2975 metaslab_trace_fini(zio_alloc_list_t *zal)
2976 {
2977 }
2978
2979 #endif /* _METASLAB_TRACING */
2980
2981 /*
2982 * ==========================================================================
2983 * Metaslab block operations
2984 * ==========================================================================
2985 */
2986
2987 static void
2988 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2989 int allocator)
2990 {
2991 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2992 (flags & METASLAB_DONT_THROTTLE))
2993 return;
2994
2995 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2996 if (!mg->mg_class->mc_alloc_throttle_enabled)
2997 return;
2998
2999 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
3000 }
3001
3002 static void
3003 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
3004 {
3005 uint64_t max = mg->mg_max_alloc_queue_depth;
3006 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3007 while (cur < max) {
3008 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
3009 cur, cur + 1) == cur) {
3010 atomic_inc_64(
3011 &mg->mg_class->mc_alloc_max_slots[allocator]);
3012 return;
3013 }
3014 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3015 }
3016 }
3017
3018 void
3019 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
3020 int allocator, boolean_t io_complete)
3021 {
3022 if (!(flags & METASLAB_ASYNC_ALLOC) ||
3023 (flags & METASLAB_DONT_THROTTLE))
3024 return;
3025
3026 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3027 if (!mg->mg_class->mc_alloc_throttle_enabled)
3028 return;
3029
3030 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
3031 if (io_complete)
3032 metaslab_group_increment_qdepth(mg, allocator);
3033 }
3034
3035 void
3036 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
3037 int allocator)
3038 {
3039 #ifdef ZFS_DEBUG
3040 const dva_t *dva = bp->blk_dva;
3041 int ndvas = BP_GET_NDVAS(bp);
3042
3043 for (int d = 0; d < ndvas; d++) {
3044 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
3045 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3046 VERIFY(zfs_refcount_not_held(
3047 &mg->mg_alloc_queue_depth[allocator], tag));
3048 }
3049 #endif
3050 }
3051
3052 static uint64_t
3053 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
3054 {
3055 uint64_t start;
3056 range_tree_t *rt = msp->ms_allocatable;
3057 metaslab_class_t *mc = msp->ms_group->mg_class;
3058
3059 VERIFY(!msp->ms_condensing);
3060 VERIFY0(msp->ms_initializing);
3061
3062 start = mc->mc_ops->msop_alloc(msp, size);
3063 if (start != -1ULL) {
3064 metaslab_group_t *mg = msp->ms_group;
3065 vdev_t *vd = mg->mg_vd;
3066
3067 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
3068 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3069 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
3070 range_tree_remove(rt, start, size);
3071
3072 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3073 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3074
3075 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3076
3077 /* Track the last successful allocation */
3078 msp->ms_alloc_txg = txg;
3079 metaslab_verify_space(msp, txg);
3080 }
3081
3082 /*
3083 * Now that we've attempted the allocation we need to update the
3084 * metaslab's maximum block size since it may have changed.
3085 */
3086 msp->ms_max_size = metaslab_block_maxsize(msp);
3087 return (start);
3088 }
3089
3090 /*
3091 * Find the metaslab with the highest weight that is less than what we've
3092 * already tried. In the common case, this means that we will examine each
3093 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3094 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3095 * activated by another thread, and we fail to allocate from the metaslab we
3096 * have selected, we may not try the newly-activated metaslab, and instead
3097 * activate another metaslab. This is not optimal, but generally does not cause
3098 * any problems (a possible exception being if every metaslab is completely full
3099 * except for the the newly-activated metaslab which we fail to examine).
3100 */
3101 static metaslab_t *
3102 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3103 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
3104 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3105 {
3106 avl_index_t idx;
3107 avl_tree_t *t = &mg->mg_metaslab_tree;
3108 metaslab_t *msp = avl_find(t, search, &idx);
3109 if (msp == NULL)
3110 msp = avl_nearest(t, idx, AVL_AFTER);
3111
3112 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3113 int i;
3114 if (!metaslab_should_allocate(msp, asize)) {
3115 metaslab_trace_add(zal, mg, msp, asize, d,
3116 TRACE_TOO_SMALL, allocator);
3117 continue;
3118 }
3119
3120 /*
3121 * If the selected metaslab is condensing or being
3122 * initialized, skip it.
3123 */
3124 if (msp->ms_condensing || msp->ms_initializing > 0)
3125 continue;
3126
3127 *was_active = msp->ms_allocator != -1;
3128 /*
3129 * If we're activating as primary, this is our first allocation
3130 * from this disk, so we don't need to check how close we are.
3131 * If the metaslab under consideration was already active,
3132 * we're getting desperate enough to steal another allocator's
3133 * metaslab, so we still don't care about distances.
3134 */
3135 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3136 break;
3137
3138 for (i = 0; i < d; i++) {
3139 if (want_unique &&
3140 !metaslab_is_unique(msp, &dva[i]))
3141 break; /* try another metaslab */
3142 }
3143 if (i == d)
3144 break;
3145 }
3146
3147 if (msp != NULL) {
3148 search->ms_weight = msp->ms_weight;
3149 search->ms_start = msp->ms_start + 1;
3150 search->ms_allocator = msp->ms_allocator;
3151 search->ms_primary = msp->ms_primary;
3152 }
3153 return (msp);
3154 }
3155
3156 /* ARGSUSED */
3157 static uint64_t
3158 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3159 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3160 int d, int allocator)
3161 {
3162 metaslab_t *msp = NULL;
3163 uint64_t offset = -1ULL;
3164 uint64_t activation_weight;
3165
3166 activation_weight = METASLAB_WEIGHT_PRIMARY;
3167 for (int i = 0; i < d; i++) {
3168 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3169 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3170 activation_weight = METASLAB_WEIGHT_SECONDARY;
3171 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3172 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3173 activation_weight = METASLAB_WEIGHT_CLAIM;
3174 break;
3175 }
3176 }
3177
3178 /*
3179 * If we don't have enough metaslabs active to fill the entire array, we
3180 * just use the 0th slot.
3181 */
3182 if (mg->mg_ms_ready < mg->mg_allocators * 3)
3183 allocator = 0;
3184
3185 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3186
3187 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3188 search->ms_weight = UINT64_MAX;
3189 search->ms_start = 0;
3190 /*
3191 * At the end of the metaslab tree are the already-active metaslabs,
3192 * first the primaries, then the secondaries. When we resume searching
3193 * through the tree, we need to consider ms_allocator and ms_primary so
3194 * we start in the location right after where we left off, and don't
3195 * accidentally loop forever considering the same metaslabs.
3196 */
3197 search->ms_allocator = -1;
3198 search->ms_primary = B_TRUE;
3199 for (;;) {
3200 boolean_t was_active = B_FALSE;
3201
3202 mutex_enter(&mg->mg_lock);
3203
3204 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3205 mg->mg_primaries[allocator] != NULL) {
3206 msp = mg->mg_primaries[allocator];
3207 was_active = B_TRUE;
3208 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3209 mg->mg_secondaries[allocator] != NULL) {
3210 msp = mg->mg_secondaries[allocator];
3211 was_active = B_TRUE;
3212 } else {
3213 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3214 want_unique, asize, allocator, zal, search,
3215 &was_active);
3216 }
3217
3218 mutex_exit(&mg->mg_lock);
3219 if (msp == NULL) {
3220 kmem_free(search, sizeof (*search));
3221 return (-1ULL);
3222 }
3223
3224 mutex_enter(&msp->ms_lock);
3225 /*
3226 * Ensure that the metaslab we have selected is still
3227 * capable of handling our request. It's possible that
3228 * another thread may have changed the weight while we
3229 * were blocked on the metaslab lock. We check the
3230 * active status first to see if we need to reselect
3231 * a new metaslab.
3232 */
3233 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3234 mutex_exit(&msp->ms_lock);
3235 continue;
3236 }
3237
3238 /*
3239 * If the metaslab is freshly activated for an allocator that
3240 * isn't the one we're allocating from, or if it's a primary and
3241 * we're seeking a secondary (or vice versa), we go back and
3242 * select a new metaslab.
3243 */
3244 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3245 (msp->ms_allocator != -1) &&
3246 (msp->ms_allocator != allocator || ((activation_weight ==
3247 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3248 mutex_exit(&msp->ms_lock);
3249 continue;
3250 }
3251
3252 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3253 activation_weight != METASLAB_WEIGHT_CLAIM) {
3254 metaslab_passivate(msp, msp->ms_weight &
3255 ~METASLAB_WEIGHT_CLAIM);
3256 mutex_exit(&msp->ms_lock);
3257 continue;
3258 }
3259
3260 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3261 mutex_exit(&msp->ms_lock);
3262 continue;
3263 }
3264
3265 msp->ms_selected_txg = txg;
3266
3267 /*
3268 * Now that we have the lock, recheck to see if we should
3269 * continue to use this metaslab for this allocation. The
3270 * the metaslab is now loaded so metaslab_should_allocate() can
3271 * accurately determine if the allocation attempt should
3272 * proceed.
3273 */
3274 if (!metaslab_should_allocate(msp, asize)) {
3275 /* Passivate this metaslab and select a new one. */
3276 metaslab_trace_add(zal, mg, msp, asize, d,
3277 TRACE_TOO_SMALL, allocator);
3278 goto next;
3279 }
3280
3281
3282 /*
3283 * If this metaslab is currently condensing then pick again as
3284 * we can't manipulate this metaslab until it's committed
3285 * to disk. If this metaslab is being initialized, we shouldn't
3286 * allocate from it since the allocated region might be
3287 * overwritten after allocation.
3288 */
3289 if (msp->ms_condensing) {
3290 metaslab_trace_add(zal, mg, msp, asize, d,
3291 TRACE_CONDENSING, allocator);
3292 metaslab_passivate(msp, msp->ms_weight &
3293 ~METASLAB_ACTIVE_MASK);
3294 mutex_exit(&msp->ms_lock);
3295 continue;
3296 } else if (msp->ms_initializing > 0) {
3297 metaslab_trace_add(zal, mg, msp, asize, d,
3298 TRACE_INITIALIZING, allocator);
3299 metaslab_passivate(msp, msp->ms_weight &
3300 ~METASLAB_ACTIVE_MASK);
3301 mutex_exit(&msp->ms_lock);
3302 continue;
3303 }
3304
3305 offset = metaslab_block_alloc(msp, asize, txg);
3306 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3307
3308 if (offset != -1ULL) {
3309 /* Proactively passivate the metaslab, if needed */
3310 metaslab_segment_may_passivate(msp);
3311 break;
3312 }
3313 next:
3314 ASSERT(msp->ms_loaded);
3315
3316 /*
3317 * We were unable to allocate from this metaslab so determine
3318 * a new weight for this metaslab. Now that we have loaded
3319 * the metaslab we can provide a better hint to the metaslab
3320 * selector.
3321 *
3322 * For space-based metaslabs, we use the maximum block size.
3323 * This information is only available when the metaslab
3324 * is loaded and is more accurate than the generic free
3325 * space weight that was calculated by metaslab_weight().
3326 * This information allows us to quickly compare the maximum
3327 * available allocation in the metaslab to the allocation
3328 * size being requested.
3329 *
3330 * For segment-based metaslabs, determine the new weight
3331 * based on the highest bucket in the range tree. We
3332 * explicitly use the loaded segment weight (i.e. the range
3333 * tree histogram) since it contains the space that is
3334 * currently available for allocation and is accurate
3335 * even within a sync pass.
3336 */
3337 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3338 uint64_t weight = metaslab_block_maxsize(msp);
3339 WEIGHT_SET_SPACEBASED(weight);
3340 metaslab_passivate(msp, weight);
3341 } else {
3342 metaslab_passivate(msp,
3343 metaslab_weight_from_range_tree(msp));
3344 }
3345
3346 /*
3347 * We have just failed an allocation attempt, check
3348 * that metaslab_should_allocate() agrees. Otherwise,
3349 * we may end up in an infinite loop retrying the same
3350 * metaslab.
3351 */
3352 ASSERT(!metaslab_should_allocate(msp, asize));
3353
3354 mutex_exit(&msp->ms_lock);
3355 }
3356 mutex_exit(&msp->ms_lock);
3357 kmem_free(search, sizeof (*search));
3358 return (offset);
3359 }
3360
3361 static uint64_t
3362 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3363 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3364 int d, int allocator)
3365 {
3366 uint64_t offset;
3367 ASSERT(mg->mg_initialized);
3368
3369 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3370 dva, d, allocator);
3371
3372 mutex_enter(&mg->mg_lock);
3373 if (offset == -1ULL) {
3374 mg->mg_failed_allocations++;
3375 metaslab_trace_add(zal, mg, NULL, asize, d,
3376 TRACE_GROUP_FAILURE, allocator);
3377 if (asize == SPA_GANGBLOCKSIZE) {
3378 /*
3379 * This metaslab group was unable to allocate
3380 * the minimum gang block size so it must be out of
3381 * space. We must notify the allocation throttle
3382 * to start skipping allocation attempts to this
3383 * metaslab group until more space becomes available.
3384 * Note: this failure cannot be caused by the
3385 * allocation throttle since the allocation throttle
3386 * is only responsible for skipping devices and
3387 * not failing block allocations.
3388 */
3389 mg->mg_no_free_space = B_TRUE;
3390 }
3391 }
3392 mg->mg_allocations++;
3393 mutex_exit(&mg->mg_lock);
3394 return (offset);
3395 }
3396
3397 /*
3398 * Allocate a block for the specified i/o.
3399 */
3400 int
3401 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3402 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3403 zio_alloc_list_t *zal, int allocator)
3404 {
3405 metaslab_group_t *mg, *fast_mg, *rotor;
3406 vdev_t *vd;
3407 boolean_t try_hard = B_FALSE;
3408
3409 ASSERT(!DVA_IS_VALID(&dva[d]));
3410
3411 /*
3412 * For testing, make some blocks above a certain size be gang blocks.
3413 * This will result in more split blocks when using device removal,
3414 * and a large number of split blocks coupled with ztest-induced
3415 * damage can result in extremely long reconstruction times. This
3416 * will also test spilling from special to normal.
3417 */
3418 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
3419 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3420 allocator);
3421 return (SET_ERROR(ENOSPC));
3422 }
3423
3424 /*
3425 * Start at the rotor and loop through all mgs until we find something.
3426 * Note that there's no locking on mc_rotor or mc_aliquot because
3427 * nothing actually breaks if we miss a few updates -- we just won't
3428 * allocate quite as evenly. It all balances out over time.
3429 *
3430 * If we are doing ditto or log blocks, try to spread them across
3431 * consecutive vdevs. If we're forced to reuse a vdev before we've
3432 * allocated all of our ditto blocks, then try and spread them out on
3433 * that vdev as much as possible. If it turns out to not be possible,
3434 * gradually lower our standards until anything becomes acceptable.
3435 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3436 * gives us hope of containing our fault domains to something we're
3437 * able to reason about. Otherwise, any two top-level vdev failures
3438 * will guarantee the loss of data. With consecutive allocation,
3439 * only two adjacent top-level vdev failures will result in data loss.
3440 *
3441 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3442 * ourselves on the same vdev as our gang block header. That
3443 * way, we can hope for locality in vdev_cache, plus it makes our
3444 * fault domains something tractable.
3445 */
3446 if (hintdva) {
3447 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3448
3449 /*
3450 * It's possible the vdev we're using as the hint no
3451 * longer exists or its mg has been closed (e.g. by
3452 * device removal). Consult the rotor when
3453 * all else fails.
3454 */
3455 if (vd != NULL && vd->vdev_mg != NULL) {
3456 mg = vd->vdev_mg;
3457
3458 if (flags & METASLAB_HINTBP_AVOID &&
3459 mg->mg_next != NULL)
3460 mg = mg->mg_next;
3461 } else {
3462 mg = mc->mc_rotor;
3463 }
3464 } else if (d != 0) {
3465 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3466 mg = vd->vdev_mg->mg_next;
3467 } else if (flags & METASLAB_FASTWRITE) {
3468 mg = fast_mg = mc->mc_rotor;
3469
3470 do {
3471 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3472 mg->mg_vd->vdev_pending_fastwrite)
3473 mg = fast_mg;
3474 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3475
3476 } else {
3477 ASSERT(mc->mc_rotor != NULL);
3478 mg = mc->mc_rotor;
3479 }
3480
3481 /*
3482 * If the hint put us into the wrong metaslab class, or into a
3483 * metaslab group that has been passivated, just follow the rotor.
3484 */
3485 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3486 mg = mc->mc_rotor;
3487
3488 rotor = mg;
3489 top:
3490 do {
3491 boolean_t allocatable;
3492
3493 ASSERT(mg->mg_activation_count == 1);
3494 vd = mg->mg_vd;
3495
3496 /*
3497 * Don't allocate from faulted devices.
3498 */
3499 if (try_hard) {
3500 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3501 allocatable = vdev_allocatable(vd);
3502 spa_config_exit(spa, SCL_ZIO, FTAG);
3503 } else {
3504 allocatable = vdev_allocatable(vd);
3505 }
3506
3507 /*
3508 * Determine if the selected metaslab group is eligible
3509 * for allocations. If we're ganging then don't allow
3510 * this metaslab group to skip allocations since that would
3511 * inadvertently return ENOSPC and suspend the pool
3512 * even though space is still available.
3513 */
3514 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3515 allocatable = metaslab_group_allocatable(mg, rotor,
3516 psize, allocator, d);
3517 }
3518
3519 if (!allocatable) {
3520 metaslab_trace_add(zal, mg, NULL, psize, d,
3521 TRACE_NOT_ALLOCATABLE, allocator);
3522 goto next;
3523 }
3524
3525 ASSERT(mg->mg_initialized);
3526
3527 /*
3528 * Avoid writing single-copy data to a failing,
3529 * non-redundant vdev, unless we've already tried all
3530 * other vdevs.
3531 */
3532 if ((vd->vdev_stat.vs_write_errors > 0 ||
3533 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3534 d == 0 && !try_hard && vd->vdev_children == 0) {
3535 metaslab_trace_add(zal, mg, NULL, psize, d,
3536 TRACE_VDEV_ERROR, allocator);
3537 goto next;
3538 }
3539
3540 ASSERT(mg->mg_class == mc);
3541
3542 uint64_t asize = vdev_psize_to_asize(vd, psize);
3543 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3544
3545 /*
3546 * If we don't need to try hard, then require that the
3547 * block be on an different metaslab from any other DVAs
3548 * in this BP (unique=true). If we are trying hard, then
3549 * allow any metaslab to be used (unique=false).
3550 */
3551 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3552 !try_hard, dva, d, allocator);
3553
3554 if (offset != -1ULL) {
3555 /*
3556 * If we've just selected this metaslab group,
3557 * figure out whether the corresponding vdev is
3558 * over- or under-used relative to the pool,
3559 * and set an allocation bias to even it out.
3560 *
3561 * Bias is also used to compensate for unequally
3562 * sized vdevs so that space is allocated fairly.
3563 */
3564 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3565 vdev_stat_t *vs = &vd->vdev_stat;
3566 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3567 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3568 int64_t ratio;
3569
3570 /*
3571 * Calculate how much more or less we should
3572 * try to allocate from this device during
3573 * this iteration around the rotor.
3574 *
3575 * This basically introduces a zero-centered
3576 * bias towards the devices with the most
3577 * free space, while compensating for vdev
3578 * size differences.
3579 *
3580 * Examples:
3581 * vdev V1 = 16M/128M
3582 * vdev V2 = 16M/128M
3583 * ratio(V1) = 100% ratio(V2) = 100%
3584 *
3585 * vdev V1 = 16M/128M
3586 * vdev V2 = 64M/128M
3587 * ratio(V1) = 127% ratio(V2) = 72%
3588 *
3589 * vdev V1 = 16M/128M
3590 * vdev V2 = 64M/512M
3591 * ratio(V1) = 40% ratio(V2) = 160%
3592 */
3593 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3594 (mc_free + 1);
3595 mg->mg_bias = ((ratio - 100) *
3596 (int64_t)mg->mg_aliquot) / 100;
3597 } else if (!metaslab_bias_enabled) {
3598 mg->mg_bias = 0;
3599 }
3600
3601 if ((flags & METASLAB_FASTWRITE) ||
3602 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3603 mg->mg_aliquot + mg->mg_bias) {
3604 mc->mc_rotor = mg->mg_next;
3605 mc->mc_aliquot = 0;
3606 }
3607
3608 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3609 DVA_SET_OFFSET(&dva[d], offset);
3610 DVA_SET_GANG(&dva[d],
3611 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3612 DVA_SET_ASIZE(&dva[d], asize);
3613
3614 if (flags & METASLAB_FASTWRITE) {
3615 atomic_add_64(&vd->vdev_pending_fastwrite,
3616 psize);
3617 }
3618
3619 return (0);
3620 }
3621 next:
3622 mc->mc_rotor = mg->mg_next;
3623 mc->mc_aliquot = 0;
3624 } while ((mg = mg->mg_next) != rotor);
3625
3626 /*
3627 * If we haven't tried hard, do so now.
3628 */
3629 if (!try_hard) {
3630 try_hard = B_TRUE;
3631 goto top;
3632 }
3633
3634 bzero(&dva[d], sizeof (dva_t));
3635
3636 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3637 return (SET_ERROR(ENOSPC));
3638 }
3639
3640 void
3641 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3642 boolean_t checkpoint)
3643 {
3644 metaslab_t *msp;
3645 spa_t *spa = vd->vdev_spa;
3646
3647 ASSERT(vdev_is_concrete(vd));
3648 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3649 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3650
3651 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3652
3653 VERIFY(!msp->ms_condensing);
3654 VERIFY3U(offset, >=, msp->ms_start);
3655 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3656 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3657 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3658
3659 metaslab_check_free_impl(vd, offset, asize);
3660
3661 mutex_enter(&msp->ms_lock);
3662 if (range_tree_is_empty(msp->ms_freeing) &&
3663 range_tree_is_empty(msp->ms_checkpointing)) {
3664 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3665 }
3666
3667 if (checkpoint) {
3668 ASSERT(spa_has_checkpoint(spa));
3669 range_tree_add(msp->ms_checkpointing, offset, asize);
3670 } else {
3671 range_tree_add(msp->ms_freeing, offset, asize);
3672 }
3673 mutex_exit(&msp->ms_lock);
3674 }
3675
3676 /* ARGSUSED */
3677 void
3678 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3679 uint64_t size, void *arg)
3680 {
3681 boolean_t *checkpoint = arg;
3682
3683 ASSERT3P(checkpoint, !=, NULL);
3684
3685 if (vd->vdev_ops->vdev_op_remap != NULL)
3686 vdev_indirect_mark_obsolete(vd, offset, size);
3687 else
3688 metaslab_free_impl(vd, offset, size, *checkpoint);
3689 }
3690
3691 static void
3692 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3693 boolean_t checkpoint)
3694 {
3695 spa_t *spa = vd->vdev_spa;
3696
3697 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3698
3699 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3700 return;
3701
3702 if (spa->spa_vdev_removal != NULL &&
3703 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3704 vdev_is_concrete(vd)) {
3705 /*
3706 * Note: we check if the vdev is concrete because when
3707 * we complete the removal, we first change the vdev to be
3708 * an indirect vdev (in open context), and then (in syncing
3709 * context) clear spa_vdev_removal.
3710 */
3711 free_from_removing_vdev(vd, offset, size);
3712 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3713 vdev_indirect_mark_obsolete(vd, offset, size);
3714 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3715 metaslab_free_impl_cb, &checkpoint);
3716 } else {
3717 metaslab_free_concrete(vd, offset, size, checkpoint);
3718 }
3719 }
3720
3721 typedef struct remap_blkptr_cb_arg {
3722 blkptr_t *rbca_bp;
3723 spa_remap_cb_t rbca_cb;
3724 vdev_t *rbca_remap_vd;
3725 uint64_t rbca_remap_offset;
3726 void *rbca_cb_arg;
3727 } remap_blkptr_cb_arg_t;
3728
3729 void
3730 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3731 uint64_t size, void *arg)
3732 {
3733 remap_blkptr_cb_arg_t *rbca = arg;
3734 blkptr_t *bp = rbca->rbca_bp;
3735
3736 /* We can not remap split blocks. */
3737 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3738 return;
3739 ASSERT0(inner_offset);
3740
3741 if (rbca->rbca_cb != NULL) {
3742 /*
3743 * At this point we know that we are not handling split
3744 * blocks and we invoke the callback on the previous
3745 * vdev which must be indirect.
3746 */
3747 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3748
3749 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3750 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3751
3752 /* set up remap_blkptr_cb_arg for the next call */
3753 rbca->rbca_remap_vd = vd;
3754 rbca->rbca_remap_offset = offset;
3755 }
3756
3757 /*
3758 * The phys birth time is that of dva[0]. This ensures that we know
3759 * when each dva was written, so that resilver can determine which
3760 * blocks need to be scrubbed (i.e. those written during the time
3761 * the vdev was offline). It also ensures that the key used in
3762 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3763 * we didn't change the phys_birth, a lookup in the ARC for a
3764 * remapped BP could find the data that was previously stored at
3765 * this vdev + offset.
3766 */
3767 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3768 DVA_GET_VDEV(&bp->blk_dva[0]));
3769 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3770 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3771 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3772
3773 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3774 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3775 }
3776
3777 /*
3778 * If the block pointer contains any indirect DVAs, modify them to refer to
3779 * concrete DVAs. Note that this will sometimes not be possible, leaving
3780 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3781 * segments in the mapping (i.e. it is a "split block").
3782 *
3783 * If the BP was remapped, calls the callback on the original dva (note the
3784 * callback can be called multiple times if the original indirect DVA refers
3785 * to another indirect DVA, etc).
3786 *
3787 * Returns TRUE if the BP was remapped.
3788 */
3789 boolean_t
3790 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3791 {
3792 remap_blkptr_cb_arg_t rbca;
3793
3794 if (!zfs_remap_blkptr_enable)
3795 return (B_FALSE);
3796
3797 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3798 return (B_FALSE);
3799
3800 /*
3801 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3802 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3803 */
3804 if (BP_GET_DEDUP(bp))
3805 return (B_FALSE);
3806
3807 /*
3808 * Gang blocks can not be remapped, because
3809 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3810 * the BP used to read the gang block header (GBH) being the same
3811 * as the DVA[0] that we allocated for the GBH.
3812 */
3813 if (BP_IS_GANG(bp))
3814 return (B_FALSE);
3815
3816 /*
3817 * Embedded BP's have no DVA to remap.
3818 */
3819 if (BP_GET_NDVAS(bp) < 1)
3820 return (B_FALSE);
3821
3822 /*
3823 * Note: we only remap dva[0]. If we remapped other dvas, we
3824 * would no longer know what their phys birth txg is.
3825 */
3826 dva_t *dva = &bp->blk_dva[0];
3827
3828 uint64_t offset = DVA_GET_OFFSET(dva);
3829 uint64_t size = DVA_GET_ASIZE(dva);
3830 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3831
3832 if (vd->vdev_ops->vdev_op_remap == NULL)
3833 return (B_FALSE);
3834
3835 rbca.rbca_bp = bp;
3836 rbca.rbca_cb = callback;
3837 rbca.rbca_remap_vd = vd;
3838 rbca.rbca_remap_offset = offset;
3839 rbca.rbca_cb_arg = arg;
3840
3841 /*
3842 * remap_blkptr_cb() will be called in order for each level of
3843 * indirection, until a concrete vdev is reached or a split block is
3844 * encountered. old_vd and old_offset are updated within the callback
3845 * as we go from the one indirect vdev to the next one (either concrete
3846 * or indirect again) in that order.
3847 */
3848 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3849
3850 /* Check if the DVA wasn't remapped because it is a split block */
3851 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3852 return (B_FALSE);
3853
3854 return (B_TRUE);
3855 }
3856
3857 /*
3858 * Undo the allocation of a DVA which happened in the given transaction group.
3859 */
3860 void
3861 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3862 {
3863 metaslab_t *msp;
3864 vdev_t *vd;
3865 uint64_t vdev = DVA_GET_VDEV(dva);
3866 uint64_t offset = DVA_GET_OFFSET(dva);
3867 uint64_t size = DVA_GET_ASIZE(dva);
3868
3869 ASSERT(DVA_IS_VALID(dva));
3870 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3871
3872 if (txg > spa_freeze_txg(spa))
3873 return;
3874
3875 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
3876 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3877 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3878 (u_longlong_t)vdev, (u_longlong_t)offset,
3879 (u_longlong_t)size);
3880 return;
3881 }
3882
3883 ASSERT(!vd->vdev_removing);
3884 ASSERT(vdev_is_concrete(vd));
3885 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3886 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3887
3888 if (DVA_GET_GANG(dva))
3889 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3890
3891 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3892
3893 mutex_enter(&msp->ms_lock);
3894 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3895 offset, size);
3896
3897 VERIFY(!msp->ms_condensing);
3898 VERIFY3U(offset, >=, msp->ms_start);
3899 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3900 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3901 msp->ms_size);
3902 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3903 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3904 range_tree_add(msp->ms_allocatable, offset, size);
3905 mutex_exit(&msp->ms_lock);
3906 }
3907
3908 /*
3909 * Free the block represented by the given DVA.
3910 */
3911 void
3912 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3913 {
3914 uint64_t vdev = DVA_GET_VDEV(dva);
3915 uint64_t offset = DVA_GET_OFFSET(dva);
3916 uint64_t size = DVA_GET_ASIZE(dva);
3917 vdev_t *vd = vdev_lookup_top(spa, vdev);
3918
3919 ASSERT(DVA_IS_VALID(dva));
3920 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3921
3922 if (DVA_GET_GANG(dva)) {
3923 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3924 }
3925
3926 metaslab_free_impl(vd, offset, size, checkpoint);
3927 }
3928
3929 /*
3930 * Reserve some allocation slots. The reservation system must be called
3931 * before we call into the allocator. If there aren't any available slots
3932 * then the I/O will be throttled until an I/O completes and its slots are
3933 * freed up. The function returns true if it was successful in placing
3934 * the reservation.
3935 */
3936 boolean_t
3937 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3938 zio_t *zio, int flags)
3939 {
3940 uint64_t available_slots = 0;
3941 boolean_t slot_reserved = B_FALSE;
3942 uint64_t max = mc->mc_alloc_max_slots[allocator];
3943
3944 ASSERT(mc->mc_alloc_throttle_enabled);
3945 mutex_enter(&mc->mc_lock);
3946
3947 uint64_t reserved_slots =
3948 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
3949 if (reserved_slots < max)
3950 available_slots = max - reserved_slots;
3951
3952 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
3953 flags & METASLAB_MUST_RESERVE) {
3954 /*
3955 * We reserve the slots individually so that we can unreserve
3956 * them individually when an I/O completes.
3957 */
3958 for (int d = 0; d < slots; d++) {
3959 reserved_slots =
3960 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
3961 zio);
3962 }
3963 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3964 slot_reserved = B_TRUE;
3965 }
3966
3967 mutex_exit(&mc->mc_lock);
3968 return (slot_reserved);
3969 }
3970
3971 void
3972 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3973 int allocator, zio_t *zio)
3974 {
3975 ASSERT(mc->mc_alloc_throttle_enabled);
3976 mutex_enter(&mc->mc_lock);
3977 for (int d = 0; d < slots; d++) {
3978 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
3979 zio);
3980 }
3981 mutex_exit(&mc->mc_lock);
3982 }
3983
3984 static int
3985 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3986 uint64_t txg)
3987 {
3988 metaslab_t *msp;
3989 spa_t *spa = vd->vdev_spa;
3990 int error = 0;
3991
3992 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3993 return (SET_ERROR(ENXIO));
3994
3995 ASSERT3P(vd->vdev_ms, !=, NULL);
3996 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3997
3998 mutex_enter(&msp->ms_lock);
3999
4000 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
4001 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
4002 if (error == EBUSY) {
4003 ASSERT(msp->ms_loaded);
4004 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4005 error = 0;
4006 }
4007 }
4008
4009 if (error == 0 &&
4010 !range_tree_contains(msp->ms_allocatable, offset, size))
4011 error = SET_ERROR(ENOENT);
4012
4013 if (error || txg == 0) { /* txg == 0 indicates dry run */
4014 mutex_exit(&msp->ms_lock);
4015 return (error);
4016 }
4017
4018 VERIFY(!msp->ms_condensing);
4019 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4020 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4021 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
4022 msp->ms_size);
4023 range_tree_remove(msp->ms_allocatable, offset, size);
4024
4025 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
4026 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4027 vdev_dirty(vd, VDD_METASLAB, msp, txg);
4028 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
4029 offset, size);
4030 }
4031
4032 mutex_exit(&msp->ms_lock);
4033
4034 return (0);
4035 }
4036
4037 typedef struct metaslab_claim_cb_arg_t {
4038 uint64_t mcca_txg;
4039 int mcca_error;
4040 } metaslab_claim_cb_arg_t;
4041
4042 /* ARGSUSED */
4043 static void
4044 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4045 uint64_t size, void *arg)
4046 {
4047 metaslab_claim_cb_arg_t *mcca_arg = arg;
4048
4049 if (mcca_arg->mcca_error == 0) {
4050 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
4051 size, mcca_arg->mcca_txg);
4052 }
4053 }
4054
4055 int
4056 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
4057 {
4058 if (vd->vdev_ops->vdev_op_remap != NULL) {
4059 metaslab_claim_cb_arg_t arg;
4060
4061 /*
4062 * Only zdb(1M) can claim on indirect vdevs. This is used
4063 * to detect leaks of mapped space (that are not accounted
4064 * for in the obsolete counts, spacemap, or bpobj).
4065 */
4066 ASSERT(!spa_writeable(vd->vdev_spa));
4067 arg.mcca_error = 0;
4068 arg.mcca_txg = txg;
4069
4070 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4071 metaslab_claim_impl_cb, &arg);
4072
4073 if (arg.mcca_error == 0) {
4074 arg.mcca_error = metaslab_claim_concrete(vd,
4075 offset, size, txg);
4076 }
4077 return (arg.mcca_error);
4078 } else {
4079 return (metaslab_claim_concrete(vd, offset, size, txg));
4080 }
4081 }
4082
4083 /*
4084 * Intent log support: upon opening the pool after a crash, notify the SPA
4085 * of blocks that the intent log has allocated for immediate write, but
4086 * which are still considered free by the SPA because the last transaction
4087 * group didn't commit yet.
4088 */
4089 static int
4090 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4091 {
4092 uint64_t vdev = DVA_GET_VDEV(dva);
4093 uint64_t offset = DVA_GET_OFFSET(dva);
4094 uint64_t size = DVA_GET_ASIZE(dva);
4095 vdev_t *vd;
4096
4097 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4098 return (SET_ERROR(ENXIO));
4099 }
4100
4101 ASSERT(DVA_IS_VALID(dva));
4102
4103 if (DVA_GET_GANG(dva))
4104 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4105
4106 return (metaslab_claim_impl(vd, offset, size, txg));
4107 }
4108
4109 int
4110 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4111 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4112 zio_alloc_list_t *zal, zio_t *zio, int allocator)
4113 {
4114 dva_t *dva = bp->blk_dva;
4115 dva_t *hintdva = hintbp->blk_dva;
4116 int error = 0;
4117
4118 ASSERT(bp->blk_birth == 0);
4119 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4120
4121 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4122
4123 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4124 spa_config_exit(spa, SCL_ALLOC, FTAG);
4125 return (SET_ERROR(ENOSPC));
4126 }
4127
4128 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4129 ASSERT(BP_GET_NDVAS(bp) == 0);
4130 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4131 ASSERT3P(zal, !=, NULL);
4132
4133 for (int d = 0; d < ndvas; d++) {
4134 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4135 txg, flags, zal, allocator);
4136 if (error != 0) {
4137 for (d--; d >= 0; d--) {
4138 metaslab_unalloc_dva(spa, &dva[d], txg);
4139 metaslab_group_alloc_decrement(spa,
4140 DVA_GET_VDEV(&dva[d]), zio, flags,
4141 allocator, B_FALSE);
4142 bzero(&dva[d], sizeof (dva_t));
4143 }
4144 spa_config_exit(spa, SCL_ALLOC, FTAG);
4145 return (error);
4146 } else {
4147 /*
4148 * Update the metaslab group's queue depth
4149 * based on the newly allocated dva.
4150 */
4151 metaslab_group_alloc_increment(spa,
4152 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4153 }
4154
4155 }
4156 ASSERT(error == 0);
4157 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4158
4159 spa_config_exit(spa, SCL_ALLOC, FTAG);
4160
4161 BP_SET_BIRTH(bp, txg, 0);
4162
4163 return (0);
4164 }
4165
4166 void
4167 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4168 {
4169 const dva_t *dva = bp->blk_dva;
4170 int ndvas = BP_GET_NDVAS(bp);
4171
4172 ASSERT(!BP_IS_HOLE(bp));
4173 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4174
4175 /*
4176 * If we have a checkpoint for the pool we need to make sure that
4177 * the blocks that we free that are part of the checkpoint won't be
4178 * reused until the checkpoint is discarded or we revert to it.
4179 *
4180 * The checkpoint flag is passed down the metaslab_free code path
4181 * and is set whenever we want to add a block to the checkpoint's
4182 * accounting. That is, we "checkpoint" blocks that existed at the
4183 * time the checkpoint was created and are therefore referenced by
4184 * the checkpointed uberblock.
4185 *
4186 * Note that, we don't checkpoint any blocks if the current
4187 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4188 * normally as they will be referenced by the checkpointed uberblock.
4189 */
4190 boolean_t checkpoint = B_FALSE;
4191 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4192 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4193 /*
4194 * At this point, if the block is part of the checkpoint
4195 * there is no way it was created in the current txg.
4196 */
4197 ASSERT(!now);
4198 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4199 checkpoint = B_TRUE;
4200 }
4201
4202 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4203
4204 for (int d = 0; d < ndvas; d++) {
4205 if (now) {
4206 metaslab_unalloc_dva(spa, &dva[d], txg);
4207 } else {
4208 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4209 metaslab_free_dva(spa, &dva[d], checkpoint);
4210 }
4211 }
4212
4213 spa_config_exit(spa, SCL_FREE, FTAG);
4214 }
4215
4216 int
4217 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4218 {
4219 const dva_t *dva = bp->blk_dva;
4220 int ndvas = BP_GET_NDVAS(bp);
4221 int error = 0;
4222
4223 ASSERT(!BP_IS_HOLE(bp));
4224
4225 if (txg != 0) {
4226 /*
4227 * First do a dry run to make sure all DVAs are claimable,
4228 * so we don't have to unwind from partial failures below.
4229 */
4230 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4231 return (error);
4232 }
4233
4234 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4235
4236 for (int d = 0; d < ndvas; d++) {
4237 error = metaslab_claim_dva(spa, &dva[d], txg);
4238 if (error != 0)
4239 break;
4240 }
4241
4242 spa_config_exit(spa, SCL_ALLOC, FTAG);
4243
4244 ASSERT(error == 0 || txg == 0);
4245
4246 return (error);
4247 }
4248
4249 void
4250 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
4251 {
4252 const dva_t *dva = bp->blk_dva;
4253 int ndvas = BP_GET_NDVAS(bp);
4254 uint64_t psize = BP_GET_PSIZE(bp);
4255 int d;
4256 vdev_t *vd;
4257
4258 ASSERT(!BP_IS_HOLE(bp));
4259 ASSERT(!BP_IS_EMBEDDED(bp));
4260 ASSERT(psize > 0);
4261
4262 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4263
4264 for (d = 0; d < ndvas; d++) {
4265 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4266 continue;
4267 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4268 }
4269
4270 spa_config_exit(spa, SCL_VDEV, FTAG);
4271 }
4272
4273 void
4274 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
4275 {
4276 const dva_t *dva = bp->blk_dva;
4277 int ndvas = BP_GET_NDVAS(bp);
4278 uint64_t psize = BP_GET_PSIZE(bp);
4279 int d;
4280 vdev_t *vd;
4281
4282 ASSERT(!BP_IS_HOLE(bp));
4283 ASSERT(!BP_IS_EMBEDDED(bp));
4284 ASSERT(psize > 0);
4285
4286 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4287
4288 for (d = 0; d < ndvas; d++) {
4289 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4290 continue;
4291 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4292 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4293 }
4294
4295 spa_config_exit(spa, SCL_VDEV, FTAG);
4296 }
4297
4298 /* ARGSUSED */
4299 static void
4300 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4301 uint64_t size, void *arg)
4302 {
4303 if (vd->vdev_ops == &vdev_indirect_ops)
4304 return;
4305
4306 metaslab_check_free_impl(vd, offset, size);
4307 }
4308
4309 static void
4310 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4311 {
4312 metaslab_t *msp;
4313 ASSERTV(spa_t *spa = vd->vdev_spa);
4314
4315 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4316 return;
4317
4318 if (vd->vdev_ops->vdev_op_remap != NULL) {
4319 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4320 metaslab_check_free_impl_cb, NULL);
4321 return;
4322 }
4323
4324 ASSERT(vdev_is_concrete(vd));
4325 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4326 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4327
4328 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4329
4330 mutex_enter(&msp->ms_lock);
4331 if (msp->ms_loaded) {
4332 range_tree_verify_not_present(msp->ms_allocatable,
4333 offset, size);
4334 }
4335
4336 range_tree_verify_not_present(msp->ms_freeing, offset, size);
4337 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
4338 range_tree_verify_not_present(msp->ms_freed, offset, size);
4339 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4340 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
4341 mutex_exit(&msp->ms_lock);
4342 }
4343
4344 void
4345 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4346 {
4347 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4348 return;
4349
4350 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4351 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4352 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4353 vdev_t *vd = vdev_lookup_top(spa, vdev);
4354 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4355 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4356
4357 if (DVA_GET_GANG(&bp->blk_dva[i]))
4358 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4359
4360 ASSERT3P(vd, !=, NULL);
4361
4362 metaslab_check_free_impl(vd, offset, size);
4363 }
4364 spa_config_exit(spa, SCL_VDEV, FTAG);
4365 }
4366
4367 #if defined(_KERNEL)
4368 /* BEGIN CSTYLED */
4369 module_param(metaslab_aliquot, ulong, 0644);
4370 MODULE_PARM_DESC(metaslab_aliquot,
4371 "allocation granularity (a.k.a. stripe size)");
4372
4373 module_param(metaslab_debug_load, int, 0644);
4374 MODULE_PARM_DESC(metaslab_debug_load,
4375 "load all metaslabs when pool is first opened");
4376
4377 module_param(metaslab_debug_unload, int, 0644);
4378 MODULE_PARM_DESC(metaslab_debug_unload,
4379 "prevent metaslabs from being unloaded");
4380
4381 module_param(metaslab_preload_enabled, int, 0644);
4382 MODULE_PARM_DESC(metaslab_preload_enabled,
4383 "preload potential metaslabs during reassessment");
4384
4385 module_param(zfs_mg_noalloc_threshold, int, 0644);
4386 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4387 "percentage of free space for metaslab group to allow allocation");
4388
4389 module_param(zfs_mg_fragmentation_threshold, int, 0644);
4390 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4391 "fragmentation for metaslab group to allow allocation");
4392
4393 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
4394 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4395 "fragmentation for metaslab to allow allocation");
4396
4397 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
4398 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4399 "use the fragmentation metric to prefer less fragmented metaslabs");
4400
4401 module_param(metaslab_lba_weighting_enabled, int, 0644);
4402 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4403 "prefer metaslabs with lower LBAs");
4404
4405 module_param(metaslab_bias_enabled, int, 0644);
4406 MODULE_PARM_DESC(metaslab_bias_enabled,
4407 "enable metaslab group biasing");
4408
4409 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4410 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4411 "enable segment-based metaslab selection");
4412
4413 module_param(zfs_metaslab_switch_threshold, int, 0644);
4414 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4415 "segment-based metaslab selection maximum buckets before switching");
4416
4417 module_param(metaslab_force_ganging, ulong, 0644);
4418 MODULE_PARM_DESC(metaslab_force_ganging,
4419 "blocks larger than this size are forced to be gang blocks");
4420 /* END CSTYLED */
4421
4422 #endif