]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_indirect.c
Get rid of space_map_update() for ms_synced_length
[mirror_zfs.git] / module / zfs / vdev_indirect.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18 */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
53 *
54 * - frees and claims to this vdev use the callback to free or claim
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61 /*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127 /*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
174 int zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
191 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
215 */
216 int zfs_reconstruct_indirect_combinations_max = 4096;
217
218 /*
219 * Enable to simulate damaged segments and validate reconstruction. This
220 * is intentionally not exposed as a module parameter.
221 */
222 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
223
224 /*
225 * The indirect_child_t represents the vdev that we will read from, when we
226 * need to read all copies of the data (e.g. for scrub or reconstruction).
227 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
228 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
229 * ic_vdev is a child of the mirror.
230 */
231 typedef struct indirect_child {
232 abd_t *ic_data;
233 vdev_t *ic_vdev;
234
235 /*
236 * ic_duplicate is NULL when the ic_data contents are unique, when it
237 * is determined to be a duplicate it references the primary child.
238 */
239 struct indirect_child *ic_duplicate;
240 list_node_t ic_node; /* node on is_unique_child */
241 } indirect_child_t;
242
243 /*
244 * The indirect_split_t represents one mapped segment of an i/o to the
245 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
246 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
247 * For split blocks, there will be several of these.
248 */
249 typedef struct indirect_split {
250 list_node_t is_node; /* link on iv_splits */
251
252 /*
253 * is_split_offset is the offset into the i/o.
254 * This is the sum of the previous splits' is_size's.
255 */
256 uint64_t is_split_offset;
257
258 vdev_t *is_vdev; /* top-level vdev */
259 uint64_t is_target_offset; /* offset on is_vdev */
260 uint64_t is_size;
261 int is_children; /* number of entries in is_child[] */
262 int is_unique_children; /* number of entries in is_unique_child */
263 list_t is_unique_child;
264
265 /*
266 * is_good_child is the child that we are currently using to
267 * attempt reconstruction.
268 */
269 indirect_child_t *is_good_child;
270
271 indirect_child_t is_child[1]; /* variable-length */
272 } indirect_split_t;
273
274 /*
275 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
276 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
277 */
278 typedef struct indirect_vsd {
279 boolean_t iv_split_block;
280 boolean_t iv_reconstruct;
281 uint64_t iv_unique_combinations;
282 uint64_t iv_attempts;
283 uint64_t iv_attempts_max;
284
285 list_t iv_splits; /* list of indirect_split_t's */
286 } indirect_vsd_t;
287
288 static void
289 vdev_indirect_map_free(zio_t *zio)
290 {
291 indirect_vsd_t *iv = zio->io_vsd;
292
293 indirect_split_t *is;
294 while ((is = list_head(&iv->iv_splits)) != NULL) {
295 for (int c = 0; c < is->is_children; c++) {
296 indirect_child_t *ic = &is->is_child[c];
297 if (ic->ic_data != NULL)
298 abd_free(ic->ic_data);
299 }
300 list_remove(&iv->iv_splits, is);
301
302 indirect_child_t *ic;
303 while ((ic = list_head(&is->is_unique_child)) != NULL)
304 list_remove(&is->is_unique_child, ic);
305
306 list_destroy(&is->is_unique_child);
307
308 kmem_free(is,
309 offsetof(indirect_split_t, is_child[is->is_children]));
310 }
311 kmem_free(iv, sizeof (*iv));
312 }
313
314 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
315 .vsd_free = vdev_indirect_map_free,
316 .vsd_cksum_report = zio_vsd_default_cksum_report
317 };
318
319 /*
320 * Mark the given offset and size as being obsolete.
321 */
322 void
323 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
324 {
325 spa_t *spa = vd->vdev_spa;
326
327 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
328 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
329 ASSERT(size > 0);
330 VERIFY(vdev_indirect_mapping_entry_for_offset(
331 vd->vdev_indirect_mapping, offset) != NULL);
332
333 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
334 mutex_enter(&vd->vdev_obsolete_lock);
335 range_tree_add(vd->vdev_obsolete_segments, offset, size);
336 mutex_exit(&vd->vdev_obsolete_lock);
337 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
338 }
339 }
340
341 /*
342 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
343 * wrapper is provided because the DMU does not know about vdev_t's and
344 * cannot directly call vdev_indirect_mark_obsolete.
345 */
346 void
347 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
348 uint64_t size, dmu_tx_t *tx)
349 {
350 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
351 ASSERT(dmu_tx_is_syncing(tx));
352
353 /* The DMU can only remap indirect vdevs. */
354 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
355 vdev_indirect_mark_obsolete(vd, offset, size);
356 }
357
358 static spa_condensing_indirect_t *
359 spa_condensing_indirect_create(spa_t *spa)
360 {
361 spa_condensing_indirect_phys_t *scip =
362 &spa->spa_condensing_indirect_phys;
363 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
364 objset_t *mos = spa->spa_meta_objset;
365
366 for (int i = 0; i < TXG_SIZE; i++) {
367 list_create(&sci->sci_new_mapping_entries[i],
368 sizeof (vdev_indirect_mapping_entry_t),
369 offsetof(vdev_indirect_mapping_entry_t, vime_node));
370 }
371
372 sci->sci_new_mapping =
373 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
374
375 return (sci);
376 }
377
378 static void
379 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
380 {
381 for (int i = 0; i < TXG_SIZE; i++)
382 list_destroy(&sci->sci_new_mapping_entries[i]);
383
384 if (sci->sci_new_mapping != NULL)
385 vdev_indirect_mapping_close(sci->sci_new_mapping);
386
387 kmem_free(sci, sizeof (*sci));
388 }
389
390 boolean_t
391 vdev_indirect_should_condense(vdev_t *vd)
392 {
393 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
394 spa_t *spa = vd->vdev_spa;
395
396 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
397
398 if (!zfs_condense_indirect_vdevs_enable)
399 return (B_FALSE);
400
401 /*
402 * We can only condense one indirect vdev at a time.
403 */
404 if (spa->spa_condensing_indirect != NULL)
405 return (B_FALSE);
406
407 if (spa_shutting_down(spa))
408 return (B_FALSE);
409
410 /*
411 * The mapping object size must not change while we are
412 * condensing, so we can only condense indirect vdevs
413 * (not vdevs that are still in the middle of being removed).
414 */
415 if (vd->vdev_ops != &vdev_indirect_ops)
416 return (B_FALSE);
417
418 /*
419 * If nothing new has been marked obsolete, there is no
420 * point in condensing.
421 */
422 ASSERTV(uint64_t obsolete_sm_obj);
423 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
424 if (vd->vdev_obsolete_sm == NULL) {
425 ASSERT0(obsolete_sm_obj);
426 return (B_FALSE);
427 }
428
429 ASSERT(vd->vdev_obsolete_sm != NULL);
430
431 ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
432
433 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
434 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
435 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
436 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
437
438 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
439
440 /*
441 * If a high percentage of the bytes that are mapped have become
442 * obsolete, condense (unless the mapping is already small enough).
443 * This has a good chance of reducing the amount of memory used
444 * by the mapping.
445 */
446 if (bytes_obsolete * 100 / bytes_mapped >=
447 zfs_indirect_condense_obsolete_pct &&
448 mapping_size > zfs_condense_min_mapping_bytes) {
449 zfs_dbgmsg("should condense vdev %llu because obsolete "
450 "spacemap covers %d%% of %lluMB mapping",
451 (u_longlong_t)vd->vdev_id,
452 (int)(bytes_obsolete * 100 / bytes_mapped),
453 (u_longlong_t)bytes_mapped / 1024 / 1024);
454 return (B_TRUE);
455 }
456
457 /*
458 * If the obsolete space map takes up too much space on disk,
459 * condense in order to free up this disk space.
460 */
461 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
462 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
463 "length %lluMB >= max size %lluMB",
464 (u_longlong_t)vd->vdev_id,
465 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
466 (u_longlong_t)zfs_condense_max_obsolete_bytes /
467 1024 / 1024);
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * This sync task completes (finishes) a condense, deleting the old
476 * mapping and replacing it with the new one.
477 */
478 static void
479 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
480 {
481 spa_condensing_indirect_t *sci = arg;
482 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
483 spa_condensing_indirect_phys_t *scip =
484 &spa->spa_condensing_indirect_phys;
485 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
486 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
487 objset_t *mos = spa->spa_meta_objset;
488 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
489 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
490 uint64_t new_count =
491 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
492
493 ASSERT(dmu_tx_is_syncing(tx));
494 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
495 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
496 for (int i = 0; i < TXG_SIZE; i++) {
497 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
498 }
499 ASSERT(vic->vic_mapping_object != 0);
500 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
501 ASSERT(scip->scip_next_mapping_object != 0);
502 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
503
504 /*
505 * Reset vdev_indirect_mapping to refer to the new object.
506 */
507 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
508 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
509 vd->vdev_indirect_mapping = sci->sci_new_mapping;
510 rw_exit(&vd->vdev_indirect_rwlock);
511
512 sci->sci_new_mapping = NULL;
513 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
514 vic->vic_mapping_object = scip->scip_next_mapping_object;
515 scip->scip_next_mapping_object = 0;
516
517 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
518 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
519 scip->scip_prev_obsolete_sm_object = 0;
520
521 scip->scip_vdev = 0;
522
523 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
524 DMU_POOL_CONDENSING_INDIRECT, tx));
525 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
526 spa->spa_condensing_indirect = NULL;
527
528 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
529 "new mapping object %llu has %llu entries "
530 "(was %llu entries)",
531 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
532 new_count, old_count);
533
534 vdev_config_dirty(spa->spa_root_vdev);
535 }
536
537 /*
538 * This sync task appends entries to the new mapping object.
539 */
540 static void
541 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
542 {
543 spa_condensing_indirect_t *sci = arg;
544 uint64_t txg = dmu_tx_get_txg(tx);
545 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
546
547 ASSERT(dmu_tx_is_syncing(tx));
548 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
549
550 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
551 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
552 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
553 }
554
555 /*
556 * Open-context function to add one entry to the new mapping. The new
557 * entry will be remembered and written from syncing context.
558 */
559 static void
560 spa_condense_indirect_commit_entry(spa_t *spa,
561 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
562 {
563 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
564
565 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
566
567 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
568 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
569 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
570 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
571
572 /*
573 * If we are the first entry committed this txg, kick off the sync
574 * task to write to the MOS on our behalf.
575 */
576 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
577 dsl_sync_task_nowait(dmu_tx_pool(tx),
578 spa_condense_indirect_commit_sync, sci,
579 0, ZFS_SPACE_CHECK_NONE, tx);
580 }
581
582 vdev_indirect_mapping_entry_t *vime =
583 kmem_alloc(sizeof (*vime), KM_SLEEP);
584 vime->vime_mapping = *vimep;
585 vime->vime_obsolete_count = count;
586 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
587
588 dmu_tx_commit(tx);
589 }
590
591 static void
592 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
593 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
594 {
595 spa_t *spa = vd->vdev_spa;
596 uint64_t mapi = start_index;
597 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
598 uint64_t old_num_entries =
599 vdev_indirect_mapping_num_entries(old_mapping);
600
601 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
602 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
603
604 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
605 (u_longlong_t)vd->vdev_id,
606 (u_longlong_t)mapi);
607
608 while (mapi < old_num_entries) {
609
610 if (zthr_iscancelled(zthr)) {
611 zfs_dbgmsg("pausing condense of vdev %llu "
612 "at index %llu", (u_longlong_t)vd->vdev_id,
613 (u_longlong_t)mapi);
614 break;
615 }
616
617 vdev_indirect_mapping_entry_phys_t *entry =
618 &old_mapping->vim_entries[mapi];
619 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
620 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
621 if (obsolete_counts[mapi] < entry_size) {
622 spa_condense_indirect_commit_entry(spa, entry,
623 obsolete_counts[mapi]);
624
625 /*
626 * This delay may be requested for testing, debugging,
627 * or performance reasons.
628 */
629 hrtime_t now = gethrtime();
630 hrtime_t sleep_until = now + MSEC2NSEC(
631 zfs_condense_indirect_commit_entry_delay_ms);
632 zfs_sleep_until(sleep_until);
633 }
634
635 mapi++;
636 }
637 }
638
639 /* ARGSUSED */
640 static boolean_t
641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
642 {
643 spa_t *spa = arg;
644
645 return (spa->spa_condensing_indirect != NULL);
646 }
647
648 /* ARGSUSED */
649 static void
650 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
651 {
652 spa_t *spa = arg;
653 vdev_t *vd;
654
655 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
657 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
658 ASSERT3P(vd, !=, NULL);
659 spa_config_exit(spa, SCL_VDEV, FTAG);
660
661 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
662 spa_condensing_indirect_phys_t *scip =
663 &spa->spa_condensing_indirect_phys;
664 uint32_t *counts;
665 uint64_t start_index;
666 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
667 space_map_t *prev_obsolete_sm = NULL;
668
669 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
670 ASSERT(scip->scip_next_mapping_object != 0);
671 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
672 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
673
674 for (int i = 0; i < TXG_SIZE; i++) {
675 /*
676 * The list must start out empty in order for the
677 * _commit_sync() sync task to be properly registered
678 * on the first call to _commit_entry(); so it's wise
679 * to double check and ensure we actually are starting
680 * with empty lists.
681 */
682 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
683 }
684
685 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
686 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
687 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
688 if (prev_obsolete_sm != NULL) {
689 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
690 counts, prev_obsolete_sm);
691 }
692 space_map_close(prev_obsolete_sm);
693
694 /*
695 * Generate new mapping. Determine what index to continue from
696 * based on the max offset that we've already written in the
697 * new mapping.
698 */
699 uint64_t max_offset =
700 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
701 if (max_offset == 0) {
702 /* We haven't written anything to the new mapping yet. */
703 start_index = 0;
704 } else {
705 /*
706 * Pick up from where we left off. _entry_for_offset()
707 * returns a pointer into the vim_entries array. If
708 * max_offset is greater than any of the mappings
709 * contained in the table NULL will be returned and
710 * that indicates we've exhausted our iteration of the
711 * old_mapping.
712 */
713
714 vdev_indirect_mapping_entry_phys_t *entry =
715 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
716 max_offset);
717
718 if (entry == NULL) {
719 /*
720 * We've already written the whole new mapping.
721 * This special value will cause us to skip the
722 * generate_new_mapping step and just do the sync
723 * task to complete the condense.
724 */
725 start_index = UINT64_MAX;
726 } else {
727 start_index = entry - old_mapping->vim_entries;
728 ASSERT3U(start_index, <,
729 vdev_indirect_mapping_num_entries(old_mapping));
730 }
731 }
732
733 spa_condense_indirect_generate_new_mapping(vd, counts,
734 start_index, zthr);
735
736 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
737
738 /*
739 * If the zthr has received a cancellation signal while running
740 * in generate_new_mapping() or at any point after that, then bail
741 * early. We don't want to complete the condense if the spa is
742 * shutting down.
743 */
744 if (zthr_iscancelled(zthr))
745 return;
746
747 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
748 spa_condense_indirect_complete_sync, sci, 0,
749 ZFS_SPACE_CHECK_EXTRA_RESERVED));
750 }
751
752 /*
753 * Sync task to begin the condensing process.
754 */
755 void
756 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
757 {
758 spa_t *spa = vd->vdev_spa;
759 spa_condensing_indirect_phys_t *scip =
760 &spa->spa_condensing_indirect_phys;
761
762 ASSERT0(scip->scip_next_mapping_object);
763 ASSERT0(scip->scip_prev_obsolete_sm_object);
764 ASSERT0(scip->scip_vdev);
765 ASSERT(dmu_tx_is_syncing(tx));
766 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
767 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
768 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
769
770 uint64_t obsolete_sm_obj;
771 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
772 ASSERT3U(obsolete_sm_obj, !=, 0);
773
774 scip->scip_vdev = vd->vdev_id;
775 scip->scip_next_mapping_object =
776 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
777
778 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
779
780 /*
781 * We don't need to allocate a new space map object, since
782 * vdev_indirect_sync_obsolete will allocate one when needed.
783 */
784 space_map_close(vd->vdev_obsolete_sm);
785 vd->vdev_obsolete_sm = NULL;
786 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
787 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
788
789 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
790 DMU_POOL_DIRECTORY_OBJECT,
791 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
792 sizeof (*scip) / sizeof (uint64_t), scip, tx));
793
794 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
795 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
796
797 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
798 "posm=%llu nm=%llu",
799 vd->vdev_id, dmu_tx_get_txg(tx),
800 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
801 (u_longlong_t)scip->scip_next_mapping_object);
802
803 zthr_wakeup(spa->spa_condense_zthr);
804 }
805
806 /*
807 * Sync to the given vdev's obsolete space map any segments that are no longer
808 * referenced as of the given txg.
809 *
810 * If the obsolete space map doesn't exist yet, create and open it.
811 */
812 void
813 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
814 {
815 spa_t *spa = vd->vdev_spa;
816 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
817
818 ASSERT3U(vic->vic_mapping_object, !=, 0);
819 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
820 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
821 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
822
823 uint64_t obsolete_sm_object;
824 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
825 if (obsolete_sm_object == 0) {
826 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
827 vdev_standard_sm_blksz, tx);
828
829 ASSERT(vd->vdev_top_zap != 0);
830 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
831 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
832 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
833 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
834 ASSERT3U(obsolete_sm_object, !=, 0);
835
836 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
837 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
838 spa->spa_meta_objset, obsolete_sm_object,
839 0, vd->vdev_asize, 0));
840 }
841
842 ASSERT(vd->vdev_obsolete_sm != NULL);
843 ASSERT3U(obsolete_sm_object, ==,
844 space_map_object(vd->vdev_obsolete_sm));
845
846 space_map_write(vd->vdev_obsolete_sm,
847 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
848 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
849 }
850
851 int
852 spa_condense_init(spa_t *spa)
853 {
854 int error = zap_lookup(spa->spa_meta_objset,
855 DMU_POOL_DIRECTORY_OBJECT,
856 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
857 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
858 &spa->spa_condensing_indirect_phys);
859 if (error == 0) {
860 if (spa_writeable(spa)) {
861 spa->spa_condensing_indirect =
862 spa_condensing_indirect_create(spa);
863 }
864 return (0);
865 } else if (error == ENOENT) {
866 return (0);
867 } else {
868 return (error);
869 }
870 }
871
872 void
873 spa_condense_fini(spa_t *spa)
874 {
875 if (spa->spa_condensing_indirect != NULL) {
876 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
877 spa->spa_condensing_indirect = NULL;
878 }
879 }
880
881 void
882 spa_start_indirect_condensing_thread(spa_t *spa)
883 {
884 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
885 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
886 spa_condense_indirect_thread, spa);
887 }
888
889 /*
890 * Gets the obsolete spacemap object from the vdev's ZAP. On success sm_obj
891 * will contain either the obsolete spacemap object or zero if none exists.
892 * All other errors are returned to the caller.
893 */
894 int
895 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
896 {
897 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
898
899 if (vd->vdev_top_zap == 0) {
900 *sm_obj = 0;
901 return (0);
902 }
903
904 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
905 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
906 if (error == ENOENT) {
907 *sm_obj = 0;
908 error = 0;
909 }
910
911 return (error);
912 }
913
914 /*
915 * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
916 * On success are_precise will be set to reflect if the counts are precise.
917 * All other errors are returned to the caller.
918 */
919 int
920 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
921 {
922 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
923
924 if (vd->vdev_top_zap == 0) {
925 *are_precise = B_FALSE;
926 return (0);
927 }
928
929 uint64_t val = 0;
930 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
931 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
932 if (error == 0) {
933 *are_precise = (val != 0);
934 } else if (error == ENOENT) {
935 *are_precise = B_FALSE;
936 error = 0;
937 }
938
939 return (error);
940 }
941
942 /* ARGSUSED */
943 static void
944 vdev_indirect_close(vdev_t *vd)
945 {
946 }
947
948 /* ARGSUSED */
949 static int
950 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
951 uint64_t *ashift)
952 {
953 *psize = *max_psize = vd->vdev_asize +
954 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
955 *ashift = vd->vdev_ashift;
956 return (0);
957 }
958
959 typedef struct remap_segment {
960 vdev_t *rs_vd;
961 uint64_t rs_offset;
962 uint64_t rs_asize;
963 uint64_t rs_split_offset;
964 list_node_t rs_node;
965 } remap_segment_t;
966
967 remap_segment_t *
968 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
969 {
970 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
971 rs->rs_vd = vd;
972 rs->rs_offset = offset;
973 rs->rs_asize = asize;
974 rs->rs_split_offset = split_offset;
975 return (rs);
976 }
977
978 /*
979 * Given an indirect vdev and an extent on that vdev, it duplicates the
980 * physical entries of the indirect mapping that correspond to the extent
981 * to a new array and returns a pointer to it. In addition, copied_entries
982 * is populated with the number of mapping entries that were duplicated.
983 *
984 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
985 * This ensures that the mapping won't change due to condensing as we
986 * copy over its contents.
987 *
988 * Finally, since we are doing an allocation, it is up to the caller to
989 * free the array allocated in this function.
990 */
991 vdev_indirect_mapping_entry_phys_t *
992 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
993 uint64_t asize, uint64_t *copied_entries)
994 {
995 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
996 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
997 uint64_t entries = 0;
998
999 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1000
1001 vdev_indirect_mapping_entry_phys_t *first_mapping =
1002 vdev_indirect_mapping_entry_for_offset(vim, offset);
1003 ASSERT3P(first_mapping, !=, NULL);
1004
1005 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1006 while (asize > 0) {
1007 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1008
1009 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1010 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1011
1012 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1013 uint64_t inner_size = MIN(asize, size - inner_offset);
1014
1015 offset += inner_size;
1016 asize -= inner_size;
1017 entries++;
1018 m++;
1019 }
1020
1021 size_t copy_length = entries * sizeof (*first_mapping);
1022 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1023 bcopy(first_mapping, duplicate_mappings, copy_length);
1024 *copied_entries = entries;
1025
1026 return (duplicate_mappings);
1027 }
1028
1029 /*
1030 * Goes through the relevant indirect mappings until it hits a concrete vdev
1031 * and issues the callback. On the way to the concrete vdev, if any other
1032 * indirect vdevs are encountered, then the callback will also be called on
1033 * each of those indirect vdevs. For example, if the segment is mapped to
1034 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1035 * mapped to segment B on concrete vdev 2, then the callback will be called on
1036 * both vdev 1 and vdev 2.
1037 *
1038 * While the callback passed to vdev_indirect_remap() is called on every vdev
1039 * the function encounters, certain callbacks only care about concrete vdevs.
1040 * These types of callbacks should return immediately and explicitly when they
1041 * are called on an indirect vdev.
1042 *
1043 * Because there is a possibility that a DVA section in the indirect device
1044 * has been split into multiple sections in our mapping, we keep track
1045 * of the relevant contiguous segments of the new location (remap_segment_t)
1046 * in a stack. This way we can call the callback for each of the new sections
1047 * created by a single section of the indirect device. Note though, that in
1048 * this scenario the callbacks in each split block won't occur in-order in
1049 * terms of offset, so callers should not make any assumptions about that.
1050 *
1051 * For callbacks that don't handle split blocks and immediately return when
1052 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1053 * assume that its callback will be applied from the first indirect vdev
1054 * encountered to the last one and then the concrete vdev, in that order.
1055 */
1056 static void
1057 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1058 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1059 {
1060 list_t stack;
1061 spa_t *spa = vd->vdev_spa;
1062
1063 list_create(&stack, sizeof (remap_segment_t),
1064 offsetof(remap_segment_t, rs_node));
1065
1066 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1067 rs != NULL; rs = list_remove_head(&stack)) {
1068 vdev_t *v = rs->rs_vd;
1069 uint64_t num_entries = 0;
1070
1071 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1072 ASSERT(rs->rs_asize > 0);
1073
1074 /*
1075 * Note: As this function can be called from open context
1076 * (e.g. zio_read()), we need the following rwlock to
1077 * prevent the mapping from being changed by condensing.
1078 *
1079 * So we grab the lock and we make a copy of the entries
1080 * that are relevant to the extent that we are working on.
1081 * Once that is done, we drop the lock and iterate over
1082 * our copy of the mapping. Once we are done with the with
1083 * the remap segment and we free it, we also free our copy
1084 * of the indirect mapping entries that are relevant to it.
1085 *
1086 * This way we don't need to wait until the function is
1087 * finished with a segment, to condense it. In addition, we
1088 * don't need a recursive rwlock for the case that a call to
1089 * vdev_indirect_remap() needs to call itself (through the
1090 * codepath of its callback) for the same vdev in the middle
1091 * of its execution.
1092 */
1093 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1094 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1095
1096 vdev_indirect_mapping_entry_phys_t *mapping =
1097 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1098 rs->rs_offset, rs->rs_asize, &num_entries);
1099 ASSERT3P(mapping, !=, NULL);
1100 ASSERT3U(num_entries, >, 0);
1101 rw_exit(&v->vdev_indirect_rwlock);
1102
1103 for (uint64_t i = 0; i < num_entries; i++) {
1104 /*
1105 * Note: the vdev_indirect_mapping can not change
1106 * while we are running. It only changes while the
1107 * removal is in progress, and then only from syncing
1108 * context. While a removal is in progress, this
1109 * function is only called for frees, which also only
1110 * happen from syncing context.
1111 */
1112 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1113
1114 ASSERT3P(m, !=, NULL);
1115 ASSERT3U(rs->rs_asize, >, 0);
1116
1117 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1118 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1119 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1120
1121 ASSERT3U(rs->rs_offset, >=,
1122 DVA_MAPPING_GET_SRC_OFFSET(m));
1123 ASSERT3U(rs->rs_offset, <,
1124 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1125 ASSERT3U(dst_vdev, !=, v->vdev_id);
1126
1127 uint64_t inner_offset = rs->rs_offset -
1128 DVA_MAPPING_GET_SRC_OFFSET(m);
1129 uint64_t inner_size =
1130 MIN(rs->rs_asize, size - inner_offset);
1131
1132 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1133 ASSERT3P(dst_v, !=, NULL);
1134
1135 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1136 list_insert_head(&stack,
1137 rs_alloc(dst_v, dst_offset + inner_offset,
1138 inner_size, rs->rs_split_offset));
1139
1140 }
1141
1142 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1143 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1144 /*
1145 * Note: This clause exists only solely for
1146 * testing purposes. We use it to ensure that
1147 * split blocks work and that the callbacks
1148 * using them yield the same result if issued
1149 * in reverse order.
1150 */
1151 uint64_t inner_half = inner_size / 2;
1152
1153 func(rs->rs_split_offset + inner_half, dst_v,
1154 dst_offset + inner_offset + inner_half,
1155 inner_half, arg);
1156
1157 func(rs->rs_split_offset, dst_v,
1158 dst_offset + inner_offset,
1159 inner_half, arg);
1160 } else {
1161 func(rs->rs_split_offset, dst_v,
1162 dst_offset + inner_offset,
1163 inner_size, arg);
1164 }
1165
1166 rs->rs_offset += inner_size;
1167 rs->rs_asize -= inner_size;
1168 rs->rs_split_offset += inner_size;
1169 }
1170 VERIFY0(rs->rs_asize);
1171
1172 kmem_free(mapping, num_entries * sizeof (*mapping));
1173 kmem_free(rs, sizeof (remap_segment_t));
1174 }
1175 list_destroy(&stack);
1176 }
1177
1178 static void
1179 vdev_indirect_child_io_done(zio_t *zio)
1180 {
1181 zio_t *pio = zio->io_private;
1182
1183 mutex_enter(&pio->io_lock);
1184 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1185 mutex_exit(&pio->io_lock);
1186
1187 abd_put(zio->io_abd);
1188 }
1189
1190 /*
1191 * This is a callback for vdev_indirect_remap() which allocates an
1192 * indirect_split_t for each split segment and adds it to iv_splits.
1193 */
1194 static void
1195 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1196 uint64_t size, void *arg)
1197 {
1198 zio_t *zio = arg;
1199 indirect_vsd_t *iv = zio->io_vsd;
1200
1201 ASSERT3P(vd, !=, NULL);
1202
1203 if (vd->vdev_ops == &vdev_indirect_ops)
1204 return;
1205
1206 int n = 1;
1207 if (vd->vdev_ops == &vdev_mirror_ops)
1208 n = vd->vdev_children;
1209
1210 indirect_split_t *is =
1211 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1212
1213 is->is_children = n;
1214 is->is_size = size;
1215 is->is_split_offset = split_offset;
1216 is->is_target_offset = offset;
1217 is->is_vdev = vd;
1218 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1219 offsetof(indirect_child_t, ic_node));
1220
1221 /*
1222 * Note that we only consider multiple copies of the data for
1223 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1224 * though they use the same ops as mirror, because there's only one
1225 * "good" copy under the replacing/spare.
1226 */
1227 if (vd->vdev_ops == &vdev_mirror_ops) {
1228 for (int i = 0; i < n; i++) {
1229 is->is_child[i].ic_vdev = vd->vdev_child[i];
1230 list_link_init(&is->is_child[i].ic_node);
1231 }
1232 } else {
1233 is->is_child[0].ic_vdev = vd;
1234 }
1235
1236 list_insert_tail(&iv->iv_splits, is);
1237 }
1238
1239 static void
1240 vdev_indirect_read_split_done(zio_t *zio)
1241 {
1242 indirect_child_t *ic = zio->io_private;
1243
1244 if (zio->io_error != 0) {
1245 /*
1246 * Clear ic_data to indicate that we do not have data for this
1247 * child.
1248 */
1249 abd_free(ic->ic_data);
1250 ic->ic_data = NULL;
1251 }
1252 }
1253
1254 /*
1255 * Issue reads for all copies (mirror children) of all splits.
1256 */
1257 static void
1258 vdev_indirect_read_all(zio_t *zio)
1259 {
1260 indirect_vsd_t *iv = zio->io_vsd;
1261
1262 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1263
1264 for (indirect_split_t *is = list_head(&iv->iv_splits);
1265 is != NULL; is = list_next(&iv->iv_splits, is)) {
1266 for (int i = 0; i < is->is_children; i++) {
1267 indirect_child_t *ic = &is->is_child[i];
1268
1269 if (!vdev_readable(ic->ic_vdev))
1270 continue;
1271
1272 /*
1273 * Note, we may read from a child whose DTL
1274 * indicates that the data may not be present here.
1275 * While this might result in a few i/os that will
1276 * likely return incorrect data, it simplifies the
1277 * code since we can treat scrub and resilver
1278 * identically. (The incorrect data will be
1279 * detected and ignored when we verify the
1280 * checksum.)
1281 */
1282
1283 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1284 is->is_size);
1285 ic->ic_duplicate = NULL;
1286
1287 zio_nowait(zio_vdev_child_io(zio, NULL,
1288 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1289 is->is_size, zio->io_type, zio->io_priority, 0,
1290 vdev_indirect_read_split_done, ic));
1291 }
1292 }
1293 iv->iv_reconstruct = B_TRUE;
1294 }
1295
1296 static void
1297 vdev_indirect_io_start(zio_t *zio)
1298 {
1299 ASSERTV(spa_t *spa = zio->io_spa);
1300 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1301 list_create(&iv->iv_splits,
1302 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1303
1304 zio->io_vsd = iv;
1305 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1306
1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1308 if (zio->io_type != ZIO_TYPE_READ) {
1309 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1310 /*
1311 * Note: this code can handle other kinds of writes,
1312 * but we don't expect them.
1313 */
1314 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1315 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1316 }
1317
1318 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1319 vdev_indirect_gather_splits, zio);
1320
1321 indirect_split_t *first = list_head(&iv->iv_splits);
1322 if (first->is_size == zio->io_size) {
1323 /*
1324 * This is not a split block; we are pointing to the entire
1325 * data, which will checksum the same as the original data.
1326 * Pass the BP down so that the child i/o can verify the
1327 * checksum, and try a different location if available
1328 * (e.g. on a mirror).
1329 *
1330 * While this special case could be handled the same as the
1331 * general (split block) case, doing it this way ensures
1332 * that the vast majority of blocks on indirect vdevs
1333 * (which are not split) are handled identically to blocks
1334 * on non-indirect vdevs. This allows us to be less strict
1335 * about performance in the general (but rare) case.
1336 */
1337 ASSERT0(first->is_split_offset);
1338 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1339 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1340 first->is_vdev, first->is_target_offset,
1341 abd_get_offset(zio->io_abd, 0),
1342 zio->io_size, zio->io_type, zio->io_priority, 0,
1343 vdev_indirect_child_io_done, zio));
1344 } else {
1345 iv->iv_split_block = B_TRUE;
1346 if (zio->io_type == ZIO_TYPE_READ &&
1347 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1348 /*
1349 * Read all copies. Note that for simplicity,
1350 * we don't bother consulting the DTL in the
1351 * resilver case.
1352 */
1353 vdev_indirect_read_all(zio);
1354 } else {
1355 /*
1356 * If this is a read zio, we read one copy of each
1357 * split segment, from the top-level vdev. Since
1358 * we don't know the checksum of each split
1359 * individually, the child zio can't ensure that
1360 * we get the right data. E.g. if it's a mirror,
1361 * it will just read from a random (healthy) leaf
1362 * vdev. We have to verify the checksum in
1363 * vdev_indirect_io_done().
1364 *
1365 * For write zios, the vdev code will ensure we write
1366 * to all children.
1367 */
1368 for (indirect_split_t *is = list_head(&iv->iv_splits);
1369 is != NULL; is = list_next(&iv->iv_splits, is)) {
1370 zio_nowait(zio_vdev_child_io(zio, NULL,
1371 is->is_vdev, is->is_target_offset,
1372 abd_get_offset(zio->io_abd,
1373 is->is_split_offset), is->is_size,
1374 zio->io_type, zio->io_priority, 0,
1375 vdev_indirect_child_io_done, zio));
1376 }
1377
1378 }
1379 }
1380
1381 zio_execute(zio);
1382 }
1383
1384 /*
1385 * Report a checksum error for a child.
1386 */
1387 static void
1388 vdev_indirect_checksum_error(zio_t *zio,
1389 indirect_split_t *is, indirect_child_t *ic)
1390 {
1391 vdev_t *vd = ic->ic_vdev;
1392
1393 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1394 return;
1395
1396 mutex_enter(&vd->vdev_stat_lock);
1397 vd->vdev_stat.vs_checksum_errors++;
1398 mutex_exit(&vd->vdev_stat_lock);
1399
1400 zio_bad_cksum_t zbc = {{{ 0 }}};
1401 abd_t *bad_abd = ic->ic_data;
1402 abd_t *good_abd = is->is_good_child->ic_data;
1403 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1404 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1405 }
1406
1407 /*
1408 * Issue repair i/os for any incorrect copies. We do this by comparing
1409 * each split segment's correct data (is_good_child's ic_data) with each
1410 * other copy of the data. If they differ, then we overwrite the bad data
1411 * with the good copy. Note that we do this without regard for the DTL's,
1412 * which simplifies this code and also issues the optimal number of writes
1413 * (based on which copies actually read bad data, as opposed to which we
1414 * think might be wrong). For the same reason, we always use
1415 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1416 */
1417 static void
1418 vdev_indirect_repair(zio_t *zio)
1419 {
1420 indirect_vsd_t *iv = zio->io_vsd;
1421
1422 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1423
1424 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1425 flags |= ZIO_FLAG_SELF_HEAL;
1426
1427 if (!spa_writeable(zio->io_spa))
1428 return;
1429
1430 for (indirect_split_t *is = list_head(&iv->iv_splits);
1431 is != NULL; is = list_next(&iv->iv_splits, is)) {
1432 for (int c = 0; c < is->is_children; c++) {
1433 indirect_child_t *ic = &is->is_child[c];
1434 if (ic == is->is_good_child)
1435 continue;
1436 if (ic->ic_data == NULL)
1437 continue;
1438 if (ic->ic_duplicate == is->is_good_child)
1439 continue;
1440
1441 zio_nowait(zio_vdev_child_io(zio, NULL,
1442 ic->ic_vdev, is->is_target_offset,
1443 is->is_good_child->ic_data, is->is_size,
1444 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1445 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1446 NULL, NULL));
1447
1448 vdev_indirect_checksum_error(zio, is, ic);
1449 }
1450 }
1451 }
1452
1453 /*
1454 * Report checksum errors on all children that we read from.
1455 */
1456 static void
1457 vdev_indirect_all_checksum_errors(zio_t *zio)
1458 {
1459 indirect_vsd_t *iv = zio->io_vsd;
1460
1461 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1462 return;
1463
1464 for (indirect_split_t *is = list_head(&iv->iv_splits);
1465 is != NULL; is = list_next(&iv->iv_splits, is)) {
1466 for (int c = 0; c < is->is_children; c++) {
1467 indirect_child_t *ic = &is->is_child[c];
1468
1469 if (ic->ic_data == NULL)
1470 continue;
1471
1472 vdev_t *vd = ic->ic_vdev;
1473
1474 mutex_enter(&vd->vdev_stat_lock);
1475 vd->vdev_stat.vs_checksum_errors++;
1476 mutex_exit(&vd->vdev_stat_lock);
1477
1478 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1479 is->is_target_offset, is->is_size,
1480 NULL, NULL, NULL);
1481 }
1482 }
1483 }
1484
1485 /*
1486 * Copy data from all the splits to a main zio then validate the checksum.
1487 * If then checksum is successfully validated return success.
1488 */
1489 static int
1490 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1491 {
1492 zio_bad_cksum_t zbc;
1493
1494 for (indirect_split_t *is = list_head(&iv->iv_splits);
1495 is != NULL; is = list_next(&iv->iv_splits, is)) {
1496
1497 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1498 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1499
1500 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1501 is->is_split_offset, 0, is->is_size);
1502 }
1503
1504 return (zio_checksum_error(zio, &zbc));
1505 }
1506
1507 /*
1508 * There are relatively few possible combinations making it feasible to
1509 * deterministically check them all. We do this by setting the good_child
1510 * to the next unique split version. If we reach the end of the list then
1511 * "carry over" to the next unique split version (like counting in base
1512 * is_unique_children, but each digit can have a different base).
1513 */
1514 static int
1515 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1516 {
1517 boolean_t more = B_TRUE;
1518
1519 iv->iv_attempts = 0;
1520
1521 for (indirect_split_t *is = list_head(&iv->iv_splits);
1522 is != NULL; is = list_next(&iv->iv_splits, is))
1523 is->is_good_child = list_head(&is->is_unique_child);
1524
1525 while (more == B_TRUE) {
1526 iv->iv_attempts++;
1527 more = B_FALSE;
1528
1529 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1530 return (0);
1531
1532 for (indirect_split_t *is = list_head(&iv->iv_splits);
1533 is != NULL; is = list_next(&iv->iv_splits, is)) {
1534 is->is_good_child = list_next(&is->is_unique_child,
1535 is->is_good_child);
1536 if (is->is_good_child != NULL) {
1537 more = B_TRUE;
1538 break;
1539 }
1540
1541 is->is_good_child = list_head(&is->is_unique_child);
1542 }
1543 }
1544
1545 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1546
1547 return (SET_ERROR(ECKSUM));
1548 }
1549
1550 /*
1551 * There are too many combinations to try all of them in a reasonable amount
1552 * of time. So try a fixed number of random combinations from the unique
1553 * split versions, after which we'll consider the block unrecoverable.
1554 */
1555 static int
1556 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1557 {
1558 iv->iv_attempts = 0;
1559
1560 while (iv->iv_attempts < iv->iv_attempts_max) {
1561 iv->iv_attempts++;
1562
1563 for (indirect_split_t *is = list_head(&iv->iv_splits);
1564 is != NULL; is = list_next(&iv->iv_splits, is)) {
1565 indirect_child_t *ic = list_head(&is->is_unique_child);
1566 int children = is->is_unique_children;
1567
1568 for (int i = spa_get_random(children); i > 0; i--)
1569 ic = list_next(&is->is_unique_child, ic);
1570
1571 ASSERT3P(ic, !=, NULL);
1572 is->is_good_child = ic;
1573 }
1574
1575 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1576 return (0);
1577 }
1578
1579 return (SET_ERROR(ECKSUM));
1580 }
1581
1582 /*
1583 * This is a validation function for reconstruction. It randomly selects
1584 * a good combination, if one can be found, and then it intentionally
1585 * damages all other segment copes by zeroing them. This forces the
1586 * reconstruction algorithm to locate the one remaining known good copy.
1587 */
1588 static int
1589 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1590 {
1591 int error;
1592
1593 /* Presume all the copies are unique for initial selection. */
1594 for (indirect_split_t *is = list_head(&iv->iv_splits);
1595 is != NULL; is = list_next(&iv->iv_splits, is)) {
1596 is->is_unique_children = 0;
1597
1598 for (int i = 0; i < is->is_children; i++) {
1599 indirect_child_t *ic = &is->is_child[i];
1600 if (ic->ic_data != NULL) {
1601 is->is_unique_children++;
1602 list_insert_tail(&is->is_unique_child, ic);
1603 }
1604 }
1605
1606 if (list_is_empty(&is->is_unique_child)) {
1607 error = SET_ERROR(EIO);
1608 goto out;
1609 }
1610 }
1611
1612 /*
1613 * Set each is_good_child to a randomly-selected child which
1614 * is known to contain validated data.
1615 */
1616 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1617 if (error)
1618 goto out;
1619
1620 /*
1621 * Damage all but the known good copy by zeroing it. This will
1622 * result in two or less unique copies per indirect_child_t.
1623 * Both may need to be checked in order to reconstruct the block.
1624 * Set iv->iv_attempts_max such that all unique combinations will
1625 * enumerated, but limit the damage to at most 12 indirect splits.
1626 */
1627 iv->iv_attempts_max = 1;
1628
1629 for (indirect_split_t *is = list_head(&iv->iv_splits);
1630 is != NULL; is = list_next(&iv->iv_splits, is)) {
1631 for (int c = 0; c < is->is_children; c++) {
1632 indirect_child_t *ic = &is->is_child[c];
1633
1634 if (ic == is->is_good_child)
1635 continue;
1636 if (ic->ic_data == NULL)
1637 continue;
1638
1639 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1640 }
1641
1642 iv->iv_attempts_max *= 2;
1643 if (iv->iv_attempts_max >= (1ULL << 12)) {
1644 iv->iv_attempts_max = UINT64_MAX;
1645 break;
1646 }
1647 }
1648
1649 out:
1650 /* Empty the unique children lists so they can be reconstructed. */
1651 for (indirect_split_t *is = list_head(&iv->iv_splits);
1652 is != NULL; is = list_next(&iv->iv_splits, is)) {
1653 indirect_child_t *ic;
1654 while ((ic = list_head(&is->is_unique_child)) != NULL)
1655 list_remove(&is->is_unique_child, ic);
1656
1657 is->is_unique_children = 0;
1658 }
1659
1660 return (error);
1661 }
1662
1663 /*
1664 * This function is called when we have read all copies of the data and need
1665 * to try to find a combination of copies that gives us the right checksum.
1666 *
1667 * If we pointed to any mirror vdevs, this effectively does the job of the
1668 * mirror. The mirror vdev code can't do its own job because we don't know
1669 * the checksum of each split segment individually.
1670 *
1671 * We have to try every unique combination of copies of split segments, until
1672 * we find one that checksums correctly. Duplicate segment copies are first
1673 * identified and latter skipped during reconstruction. This optimization
1674 * reduces the search space and ensures that of the remaining combinations
1675 * at most one is correct.
1676 *
1677 * When the total number of combinations is small they can all be checked.
1678 * For example, if we have 3 segments in the split, and each points to a
1679 * 2-way mirror with unique copies, we will have the following pieces of data:
1680 *
1681 * | mirror child
1682 * split | [0] [1]
1683 * ======|=====================
1684 * A | data_A_0 data_A_1
1685 * B | data_B_0 data_B_1
1686 * C | data_C_0 data_C_1
1687 *
1688 * We will try the following (mirror children)^(number of splits) (2^3=8)
1689 * combinations, which is similar to bitwise-little-endian counting in
1690 * binary. In general each "digit" corresponds to a split segment, and the
1691 * base of each digit is is_children, which can be different for each
1692 * digit.
1693 *
1694 * "low bit" "high bit"
1695 * v v
1696 * data_A_0 data_B_0 data_C_0
1697 * data_A_1 data_B_0 data_C_0
1698 * data_A_0 data_B_1 data_C_0
1699 * data_A_1 data_B_1 data_C_0
1700 * data_A_0 data_B_0 data_C_1
1701 * data_A_1 data_B_0 data_C_1
1702 * data_A_0 data_B_1 data_C_1
1703 * data_A_1 data_B_1 data_C_1
1704 *
1705 * Note that the split segments may be on the same or different top-level
1706 * vdevs. In either case, we may need to try lots of combinations (see
1707 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1708 * has small silent errors on all of its children, we can still reconstruct
1709 * the correct data, as long as those errors are at sufficiently-separated
1710 * offsets (specifically, separated by the largest block size - default of
1711 * 128KB, but up to 16MB).
1712 */
1713 static void
1714 vdev_indirect_reconstruct_io_done(zio_t *zio)
1715 {
1716 indirect_vsd_t *iv = zio->io_vsd;
1717 boolean_t known_good = B_FALSE;
1718 int error;
1719
1720 iv->iv_unique_combinations = 1;
1721 iv->iv_attempts_max = UINT64_MAX;
1722
1723 if (zfs_reconstruct_indirect_combinations_max > 0)
1724 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1725
1726 /*
1727 * If nonzero, every 1/x blocks will be damaged, in order to validate
1728 * reconstruction when there are split segments with damaged copies.
1729 * Known_good will be TRUE when reconstruction is known to be possible.
1730 */
1731 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1732 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1733 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1734
1735 /*
1736 * Determine the unique children for a split segment and add them
1737 * to the is_unique_child list. By restricting reconstruction
1738 * to these children, only unique combinations will be considered.
1739 * This can vastly reduce the search space when there are a large
1740 * number of indirect splits.
1741 */
1742 for (indirect_split_t *is = list_head(&iv->iv_splits);
1743 is != NULL; is = list_next(&iv->iv_splits, is)) {
1744 is->is_unique_children = 0;
1745
1746 for (int i = 0; i < is->is_children; i++) {
1747 indirect_child_t *ic_i = &is->is_child[i];
1748
1749 if (ic_i->ic_data == NULL ||
1750 ic_i->ic_duplicate != NULL)
1751 continue;
1752
1753 for (int j = i + 1; j < is->is_children; j++) {
1754 indirect_child_t *ic_j = &is->is_child[j];
1755
1756 if (ic_j->ic_data == NULL ||
1757 ic_j->ic_duplicate != NULL)
1758 continue;
1759
1760 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1761 ic_j->ic_duplicate = ic_i;
1762 }
1763
1764 is->is_unique_children++;
1765 list_insert_tail(&is->is_unique_child, ic_i);
1766 }
1767
1768 /* Reconstruction is impossible, no valid children */
1769 EQUIV(list_is_empty(&is->is_unique_child),
1770 is->is_unique_children == 0);
1771 if (list_is_empty(&is->is_unique_child)) {
1772 zio->io_error = EIO;
1773 vdev_indirect_all_checksum_errors(zio);
1774 zio_checksum_verified(zio);
1775 return;
1776 }
1777
1778 iv->iv_unique_combinations *= is->is_unique_children;
1779 }
1780
1781 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1782 error = vdev_indirect_splits_enumerate_all(iv, zio);
1783 else
1784 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1785
1786 if (error != 0) {
1787 /* All attempted combinations failed. */
1788 ASSERT3B(known_good, ==, B_FALSE);
1789 zio->io_error = error;
1790 vdev_indirect_all_checksum_errors(zio);
1791 } else {
1792 /*
1793 * The checksum has been successfully validated. Issue
1794 * repair I/Os to any copies of splits which don't match
1795 * the validated version.
1796 */
1797 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1798 vdev_indirect_repair(zio);
1799 zio_checksum_verified(zio);
1800 }
1801 }
1802
1803 static void
1804 vdev_indirect_io_done(zio_t *zio)
1805 {
1806 indirect_vsd_t *iv = zio->io_vsd;
1807
1808 if (iv->iv_reconstruct) {
1809 /*
1810 * We have read all copies of the data (e.g. from mirrors),
1811 * either because this was a scrub/resilver, or because the
1812 * one-copy read didn't checksum correctly.
1813 */
1814 vdev_indirect_reconstruct_io_done(zio);
1815 return;
1816 }
1817
1818 if (!iv->iv_split_block) {
1819 /*
1820 * This was not a split block, so we passed the BP down,
1821 * and the checksum was handled by the (one) child zio.
1822 */
1823 return;
1824 }
1825
1826 zio_bad_cksum_t zbc;
1827 int ret = zio_checksum_error(zio, &zbc);
1828 if (ret == 0) {
1829 zio_checksum_verified(zio);
1830 return;
1831 }
1832
1833 /*
1834 * The checksum didn't match. Read all copies of all splits, and
1835 * then we will try to reconstruct. The next time
1836 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1837 */
1838 vdev_indirect_read_all(zio);
1839
1840 zio_vdev_io_redone(zio);
1841 }
1842
1843 vdev_ops_t vdev_indirect_ops = {
1844 vdev_indirect_open,
1845 vdev_indirect_close,
1846 vdev_default_asize,
1847 vdev_indirect_io_start,
1848 vdev_indirect_io_done,
1849 NULL,
1850 NULL,
1851 NULL,
1852 NULL,
1853 vdev_indirect_remap,
1854 NULL,
1855 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1856 B_FALSE /* leaf vdev */
1857 };
1858
1859 #if defined(_KERNEL)
1860 EXPORT_SYMBOL(rs_alloc);
1861 EXPORT_SYMBOL(spa_condense_fini);
1862 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1863 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1864 EXPORT_SYMBOL(spa_condense_init);
1865 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1866 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1867 EXPORT_SYMBOL(vdev_indirect_should_condense);
1868 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1869 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1870 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1871
1872 module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1873 MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1874 "Whether to attempt condensing indirect vdev mappings");
1875
1876 /* CSTYLED */
1877 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1878 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1879 "Minimum size of vdev mapping to condense");
1880
1881 /* CSTYLED */
1882 module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1883 MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1884 "Minimum size obsolete spacemap to attempt condensing");
1885
1886 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1887 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1888 "Delay while condensing vdev mapping");
1889
1890 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1891 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1892 "Maximum number of combinations when reconstructing split segments");
1893 #endif