]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Rebase master to b117
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/vdev_impl.h>
29 #include <sys/zio.h>
30 #include <sys/avl.h>
31
32 /*
33 * These tunables are for performance analysis.
34 */
35 /*
36 * zfs_vdev_max_pending is the maximum number of i/os concurrently
37 * pending to each device. zfs_vdev_min_pending is the initial number
38 * of i/os pending to each device (before it starts ramping up to
39 * max_pending).
40 */
41 int zfs_vdev_max_pending = 35;
42 int zfs_vdev_min_pending = 4;
43
44 /* deadline = pri + (lbolt >> time_shift) */
45 int zfs_vdev_time_shift = 6;
46
47 /* exponential I/O issue ramp-up rate */
48 int zfs_vdev_ramp_rate = 2;
49
50 /*
51 * To reduce IOPs, we aggregate small adjacent i/os into one large i/o.
52 * For read i/os, we also aggregate across small adjacency gaps.
53 */
54 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
55 int zfs_vdev_read_gap_limit = 32 << 10;
56
57 /*
58 * Virtual device vector for disk I/O scheduling.
59 */
60 int
61 vdev_queue_deadline_compare(const void *x1, const void *x2)
62 {
63 const zio_t *z1 = x1;
64 const zio_t *z2 = x2;
65
66 if (z1->io_deadline < z2->io_deadline)
67 return (-1);
68 if (z1->io_deadline > z2->io_deadline)
69 return (1);
70
71 if (z1->io_offset < z2->io_offset)
72 return (-1);
73 if (z1->io_offset > z2->io_offset)
74 return (1);
75
76 if (z1 < z2)
77 return (-1);
78 if (z1 > z2)
79 return (1);
80
81 return (0);
82 }
83
84 int
85 vdev_queue_offset_compare(const void *x1, const void *x2)
86 {
87 const zio_t *z1 = x1;
88 const zio_t *z2 = x2;
89
90 if (z1->io_offset < z2->io_offset)
91 return (-1);
92 if (z1->io_offset > z2->io_offset)
93 return (1);
94
95 if (z1 < z2)
96 return (-1);
97 if (z1 > z2)
98 return (1);
99
100 return (0);
101 }
102
103 void
104 vdev_queue_init(vdev_t *vd)
105 {
106 vdev_queue_t *vq = &vd->vdev_queue;
107
108 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
109
110 avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
111 sizeof (zio_t), offsetof(struct zio, io_deadline_node));
112
113 avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
114 sizeof (zio_t), offsetof(struct zio, io_offset_node));
115
116 avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
117 sizeof (zio_t), offsetof(struct zio, io_offset_node));
118
119 avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
120 sizeof (zio_t), offsetof(struct zio, io_offset_node));
121 }
122
123 void
124 vdev_queue_fini(vdev_t *vd)
125 {
126 vdev_queue_t *vq = &vd->vdev_queue;
127
128 avl_destroy(&vq->vq_deadline_tree);
129 avl_destroy(&vq->vq_read_tree);
130 avl_destroy(&vq->vq_write_tree);
131 avl_destroy(&vq->vq_pending_tree);
132
133 mutex_destroy(&vq->vq_lock);
134 }
135
136 static void
137 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
138 {
139 avl_add(&vq->vq_deadline_tree, zio);
140 avl_add(zio->io_vdev_tree, zio);
141 }
142
143 static void
144 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
145 {
146 avl_remove(&vq->vq_deadline_tree, zio);
147 avl_remove(zio->io_vdev_tree, zio);
148 }
149
150 static void
151 vdev_queue_agg_io_done(zio_t *aio)
152 {
153 zio_t *pio;
154
155 while ((pio = zio_walk_parents(aio)) != NULL)
156 if (aio->io_type == ZIO_TYPE_READ)
157 bcopy((char *)aio->io_data + (pio->io_offset -
158 aio->io_offset), pio->io_data, pio->io_size);
159
160 zio_buf_free(aio->io_data, aio->io_size);
161 }
162
163 /*
164 * Compute the range spanned by two i/os, which is the endpoint of the last
165 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
166 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
167 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
168 */
169 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
170 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
171
172 static zio_t *
173 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
174 {
175 zio_t *fio, *lio, *aio, *dio, *nio;
176 avl_tree_t *t;
177 int flags;
178 uint64_t maxspan = zfs_vdev_aggregation_limit;
179 uint64_t maxgap;
180
181 ASSERT(MUTEX_HELD(&vq->vq_lock));
182
183 if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
184 avl_numnodes(&vq->vq_deadline_tree) == 0)
185 return (NULL);
186
187 fio = lio = avl_first(&vq->vq_deadline_tree);
188
189 t = fio->io_vdev_tree;
190 flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
191 maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
192
193 if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
194 /*
195 * We can aggregate I/Os that are adjacent and of the
196 * same flavor, as expressed by the AGG_INHERIT flags.
197 * The latter is necessary so that certain attributes
198 * of the I/O, such as whether it's a normal I/O or a
199 * scrub/resilver, can be preserved in the aggregate.
200 */
201 while ((dio = AVL_PREV(t, fio)) != NULL &&
202 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
203 IO_SPAN(dio, lio) <= maxspan && IO_GAP(dio, fio) <= maxgap)
204 fio = dio;
205
206 while ((dio = AVL_NEXT(t, lio)) != NULL &&
207 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
208 IO_SPAN(fio, dio) <= maxspan && IO_GAP(lio, dio) <= maxgap)
209 lio = dio;
210 }
211
212 if (fio != lio) {
213 uint64_t size = IO_SPAN(fio, lio);
214 ASSERT(size <= zfs_vdev_aggregation_limit);
215
216 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
217 zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_NOW,
218 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
219 vdev_queue_agg_io_done, NULL);
220
221 nio = fio;
222 do {
223 dio = nio;
224 nio = AVL_NEXT(t, dio);
225 ASSERT(dio->io_type == aio->io_type);
226 ASSERT(dio->io_vdev_tree == t);
227
228 if (dio->io_type == ZIO_TYPE_WRITE)
229 bcopy(dio->io_data, (char *)aio->io_data +
230 (dio->io_offset - aio->io_offset),
231 dio->io_size);
232
233 zio_add_child(dio, aio);
234 vdev_queue_io_remove(vq, dio);
235 zio_vdev_io_bypass(dio);
236 zio_execute(dio);
237 } while (dio != lio);
238
239 avl_add(&vq->vq_pending_tree, aio);
240
241 return (aio);
242 }
243
244 ASSERT(fio->io_vdev_tree == t);
245 vdev_queue_io_remove(vq, fio);
246
247 avl_add(&vq->vq_pending_tree, fio);
248
249 return (fio);
250 }
251
252 zio_t *
253 vdev_queue_io(zio_t *zio)
254 {
255 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
256 zio_t *nio;
257
258 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
259
260 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
261 return (zio);
262
263 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
264
265 if (zio->io_type == ZIO_TYPE_READ)
266 zio->io_vdev_tree = &vq->vq_read_tree;
267 else
268 zio->io_vdev_tree = &vq->vq_write_tree;
269
270 mutex_enter(&vq->vq_lock);
271
272 zio->io_deadline = (lbolt64 >> zfs_vdev_time_shift) + zio->io_priority;
273
274 vdev_queue_io_add(vq, zio);
275
276 nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
277
278 mutex_exit(&vq->vq_lock);
279
280 if (nio == NULL)
281 return (NULL);
282
283 if (nio->io_done == vdev_queue_agg_io_done) {
284 zio_nowait(nio);
285 return (NULL);
286 }
287
288 return (nio);
289 }
290
291 void
292 vdev_queue_io_done(zio_t *zio)
293 {
294 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
295
296 mutex_enter(&vq->vq_lock);
297
298 avl_remove(&vq->vq_pending_tree, zio);
299
300 for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
301 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
302 if (nio == NULL)
303 break;
304 mutex_exit(&vq->vq_lock);
305 if (nio->io_done == vdev_queue_agg_io_done) {
306 zio_nowait(nio);
307 } else {
308 zio_vdev_io_reissue(nio);
309 zio_execute(nio);
310 }
311 mutex_enter(&vq->vq_lock);
312 }
313
314 mutex_exit(&vq->vq_lock);
315 }