]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Add linux kernel module support
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/vdev_impl.h>
28 #include <sys/zio.h>
29 #include <sys/avl.h>
30
31 /*
32 * These tunables are for performance analysis.
33 */
34 /*
35 * zfs_vdev_max_pending is the maximum number of i/os concurrently
36 * pending to each device. zfs_vdev_min_pending is the initial number
37 * of i/os pending to each device (before it starts ramping up to
38 * max_pending).
39 */
40 int zfs_vdev_max_pending = 10;
41 int zfs_vdev_min_pending = 4;
42
43 /* deadline = pri + ddi_get_lbolt64() >> time_shift) */
44 int zfs_vdev_time_shift = 6;
45
46 /* exponential I/O issue ramp-up rate */
47 int zfs_vdev_ramp_rate = 2;
48
49 /*
50 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
51 * For read I/Os, we also aggregate across small adjacency gaps; for writes
52 * we include spans of optional I/Os to aid aggregation at the disk even when
53 * they aren't able to help us aggregate at this level.
54 */
55 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
56 int zfs_vdev_read_gap_limit = 32 << 10;
57 int zfs_vdev_write_gap_limit = 4 << 10;
58
59 /*
60 * Virtual device vector for disk I/O scheduling.
61 */
62 int
63 vdev_queue_deadline_compare(const void *x1, const void *x2)
64 {
65 const zio_t *z1 = x1;
66 const zio_t *z2 = x2;
67
68 if (z1->io_deadline < z2->io_deadline)
69 return (-1);
70 if (z1->io_deadline > z2->io_deadline)
71 return (1);
72
73 if (z1->io_offset < z2->io_offset)
74 return (-1);
75 if (z1->io_offset > z2->io_offset)
76 return (1);
77
78 if (z1 < z2)
79 return (-1);
80 if (z1 > z2)
81 return (1);
82
83 return (0);
84 }
85
86 int
87 vdev_queue_offset_compare(const void *x1, const void *x2)
88 {
89 const zio_t *z1 = x1;
90 const zio_t *z2 = x2;
91
92 if (z1->io_offset < z2->io_offset)
93 return (-1);
94 if (z1->io_offset > z2->io_offset)
95 return (1);
96
97 if (z1 < z2)
98 return (-1);
99 if (z1 > z2)
100 return (1);
101
102 return (0);
103 }
104
105 void
106 vdev_queue_init(vdev_t *vd)
107 {
108 vdev_queue_t *vq = &vd->vdev_queue;
109
110 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
111
112 avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
113 sizeof (zio_t), offsetof(struct zio, io_deadline_node));
114
115 avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
116 sizeof (zio_t), offsetof(struct zio, io_offset_node));
117
118 avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
119 sizeof (zio_t), offsetof(struct zio, io_offset_node));
120
121 avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
122 sizeof (zio_t), offsetof(struct zio, io_offset_node));
123 }
124
125 void
126 vdev_queue_fini(vdev_t *vd)
127 {
128 vdev_queue_t *vq = &vd->vdev_queue;
129
130 avl_destroy(&vq->vq_deadline_tree);
131 avl_destroy(&vq->vq_read_tree);
132 avl_destroy(&vq->vq_write_tree);
133 avl_destroy(&vq->vq_pending_tree);
134
135 mutex_destroy(&vq->vq_lock);
136 }
137
138 static void
139 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
140 {
141 avl_add(&vq->vq_deadline_tree, zio);
142 avl_add(zio->io_vdev_tree, zio);
143 }
144
145 static void
146 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
147 {
148 avl_remove(&vq->vq_deadline_tree, zio);
149 avl_remove(zio->io_vdev_tree, zio);
150 }
151
152 static void
153 vdev_queue_agg_io_done(zio_t *aio)
154 {
155 zio_t *pio;
156
157 while ((pio = zio_walk_parents(aio)) != NULL)
158 if (aio->io_type == ZIO_TYPE_READ)
159 bcopy((char *)aio->io_data + (pio->io_offset -
160 aio->io_offset), pio->io_data, pio->io_size);
161
162 zio_buf_free(aio->io_data, aio->io_size);
163 }
164
165 /*
166 * Compute the range spanned by two i/os, which is the endpoint of the last
167 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
168 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
169 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
170 */
171 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
172 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
173
174 static zio_t *
175 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
176 {
177 zio_t *fio, *lio, *aio, *dio, *nio, *mio;
178 avl_tree_t *t;
179 int flags;
180 uint64_t maxspan = zfs_vdev_aggregation_limit;
181 uint64_t maxgap;
182 int stretch;
183
184 again:
185 ASSERT(MUTEX_HELD(&vq->vq_lock));
186
187 if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
188 avl_numnodes(&vq->vq_deadline_tree) == 0)
189 return (NULL);
190
191 fio = lio = avl_first(&vq->vq_deadline_tree);
192
193 t = fio->io_vdev_tree;
194 flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
195 maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
196
197 if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
198 /*
199 * We can aggregate I/Os that are sufficiently adjacent and of
200 * the same flavor, as expressed by the AGG_INHERIT flags.
201 * The latter requirement is necessary so that certain
202 * attributes of the I/O, such as whether it's a normal I/O
203 * or a scrub/resilver, can be preserved in the aggregate.
204 * We can include optional I/Os, but don't allow them
205 * to begin a range as they add no benefit in that situation.
206 */
207
208 /*
209 * We keep track of the last non-optional I/O.
210 */
211 mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
212
213 /*
214 * Walk backwards through sufficiently contiguous I/Os
215 * recording the last non-option I/O.
216 */
217 while ((dio = AVL_PREV(t, fio)) != NULL &&
218 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
219 IO_SPAN(dio, lio) <= maxspan &&
220 IO_GAP(dio, fio) <= maxgap) {
221 fio = dio;
222 if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
223 mio = fio;
224 }
225
226 /*
227 * Skip any initial optional I/Os.
228 */
229 while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
230 fio = AVL_NEXT(t, fio);
231 ASSERT(fio != NULL);
232 }
233
234 /*
235 * Walk forward through sufficiently contiguous I/Os.
236 */
237 while ((dio = AVL_NEXT(t, lio)) != NULL &&
238 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
239 IO_SPAN(fio, dio) <= maxspan &&
240 IO_GAP(lio, dio) <= maxgap) {
241 lio = dio;
242 if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
243 mio = lio;
244 }
245
246 /*
247 * Now that we've established the range of the I/O aggregation
248 * we must decide what to do with trailing optional I/Os.
249 * For reads, there's nothing to do. While we are unable to
250 * aggregate further, it's possible that a trailing optional
251 * I/O would allow the underlying device to aggregate with
252 * subsequent I/Os. We must therefore determine if the next
253 * non-optional I/O is close enough to make aggregation
254 * worthwhile.
255 */
256 stretch = B_FALSE;
257 if (t != &vq->vq_read_tree && mio != NULL) {
258 nio = lio;
259 while ((dio = AVL_NEXT(t, nio)) != NULL &&
260 IO_GAP(nio, dio) == 0 &&
261 IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
262 nio = dio;
263 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
264 stretch = B_TRUE;
265 break;
266 }
267 }
268 }
269
270 if (stretch) {
271 /* This may be a no-op. */
272 VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
273 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
274 } else {
275 while (lio != mio && lio != fio) {
276 ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
277 lio = AVL_PREV(t, lio);
278 ASSERT(lio != NULL);
279 }
280 }
281 }
282
283 if (fio != lio) {
284 uint64_t size = IO_SPAN(fio, lio);
285 ASSERT(size <= zfs_vdev_aggregation_limit);
286
287 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
288 zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
289 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
290 vdev_queue_agg_io_done, NULL);
291
292 nio = fio;
293 do {
294 dio = nio;
295 nio = AVL_NEXT(t, dio);
296 ASSERT(dio->io_type == aio->io_type);
297 ASSERT(dio->io_vdev_tree == t);
298
299 if (dio->io_flags & ZIO_FLAG_NODATA) {
300 ASSERT(dio->io_type == ZIO_TYPE_WRITE);
301 bzero((char *)aio->io_data + (dio->io_offset -
302 aio->io_offset), dio->io_size);
303 } else if (dio->io_type == ZIO_TYPE_WRITE) {
304 bcopy(dio->io_data, (char *)aio->io_data +
305 (dio->io_offset - aio->io_offset),
306 dio->io_size);
307 }
308
309 zio_add_child(dio, aio);
310 vdev_queue_io_remove(vq, dio);
311 zio_vdev_io_bypass(dio);
312 zio_execute(dio);
313 } while (dio != lio);
314
315 avl_add(&vq->vq_pending_tree, aio);
316
317 return (aio);
318 }
319
320 ASSERT(fio->io_vdev_tree == t);
321 vdev_queue_io_remove(vq, fio);
322
323 /*
324 * If the I/O is or was optional and therefore has no data, we need to
325 * simply discard it. We need to drop the vdev queue's lock to avoid a
326 * deadlock that we could encounter since this I/O will complete
327 * immediately.
328 */
329 if (fio->io_flags & ZIO_FLAG_NODATA) {
330 mutex_exit(&vq->vq_lock);
331 zio_vdev_io_bypass(fio);
332 zio_execute(fio);
333 mutex_enter(&vq->vq_lock);
334 goto again;
335 }
336
337 avl_add(&vq->vq_pending_tree, fio);
338
339 return (fio);
340 }
341
342 zio_t *
343 vdev_queue_io(zio_t *zio)
344 {
345 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
346 zio_t *nio;
347
348 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
349
350 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
351 return (zio);
352
353 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
354
355 if (zio->io_type == ZIO_TYPE_READ)
356 zio->io_vdev_tree = &vq->vq_read_tree;
357 else
358 zio->io_vdev_tree = &vq->vq_write_tree;
359
360 mutex_enter(&vq->vq_lock);
361
362 zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
363 zio->io_priority;
364
365 vdev_queue_io_add(vq, zio);
366
367 nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
368
369 mutex_exit(&vq->vq_lock);
370
371 if (nio == NULL)
372 return (NULL);
373
374 if (nio->io_done == vdev_queue_agg_io_done) {
375 zio_nowait(nio);
376 return (NULL);
377 }
378
379 return (nio);
380 }
381
382 void
383 vdev_queue_io_done(zio_t *zio)
384 {
385 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
386 int i;
387
388 mutex_enter(&vq->vq_lock);
389
390 avl_remove(&vq->vq_pending_tree, zio);
391
392 for (i = 0; i < zfs_vdev_ramp_rate; i++) {
393 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
394 if (nio == NULL)
395 break;
396 mutex_exit(&vq->vq_lock);
397 if (nio->io_done == vdev_queue_agg_io_done) {
398 zio_nowait(nio);
399 } else {
400 zio_vdev_io_reissue(nio);
401 zio_execute(nio);
402 }
403 mutex_enter(&vq->vq_lock);
404 }
405
406 mutex_exit(&vq->vq_lock);
407 }
408
409 #if defined(_KERNEL) && defined(HAVE_SPL)
410 module_param(zfs_vdev_max_pending, int, 0644);
411 MODULE_PARM_DESC(zfs_vdev_max_pending, "Maximum pending VDEV IO");
412
413 module_param(zfs_vdev_min_pending, int, 0644);
414 MODULE_PARM_DESC(zfs_vdev_min_pending, "Minimum pending VDEV IO");
415
416 module_param(zfs_vdev_aggregation_limit, int, 0644);
417 MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Maximum VDEV IO aggregation");
418 #endif