]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_removal.c
Get rid of space_map_update() for ms_synced_length
[mirror_zfs.git] / module / zfs / vdev_removal.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 #include <sys/trace_vdev.h>
49
50 /*
51 * This file contains the necessary logic to remove vdevs from a
52 * storage pool. Currently, the only devices that can be removed
53 * are log, cache, and spare devices; and top level vdevs from a pool
54 * w/o raidz or mirrors. (Note that members of a mirror can be removed
55 * by the detach operation.)
56 *
57 * Log vdevs are removed by evacuating them and then turning the vdev
58 * into a hole vdev while holding spa config locks.
59 *
60 * Top level vdevs are removed and converted into an indirect vdev via
61 * a multi-step process:
62 *
63 * - Disable allocations from this device (spa_vdev_remove_top).
64 *
65 * - From a new thread (spa_vdev_remove_thread), copy data from
66 * the removing vdev to a different vdev. The copy happens in open
67 * context (spa_vdev_copy_impl) and issues a sync task
68 * (vdev_mapping_sync) so the sync thread can update the partial
69 * indirect mappings in core and on disk.
70 *
71 * - If a free happens during a removal, it is freed from the
72 * removing vdev, and if it has already been copied, from the new
73 * location as well (free_from_removing_vdev).
74 *
75 * - After the removal is completed, the copy thread converts the vdev
76 * into an indirect vdev (vdev_remove_complete) before instructing
77 * the sync thread to destroy the space maps and finish the removal
78 * (spa_finish_removal).
79 */
80
81 typedef struct vdev_copy_arg {
82 metaslab_t *vca_msp;
83 uint64_t vca_outstanding_bytes;
84 uint64_t vca_read_error_bytes;
85 uint64_t vca_write_error_bytes;
86 kcondvar_t vca_cv;
87 kmutex_t vca_lock;
88 } vdev_copy_arg_t;
89
90 /*
91 * The maximum amount of memory we can use for outstanding i/o while
92 * doing a device removal. This determines how much i/o we can have
93 * in flight concurrently.
94 */
95 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
96
97 /*
98 * The largest contiguous segment that we will attempt to allocate when
99 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
100 * there is a performance problem with attempting to allocate large blocks,
101 * consider decreasing this.
102 */
103 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
104
105 /*
106 * Ignore hard IO errors during device removal. When set if a device
107 * encounters hard IO error during the removal process the removal will
108 * not be cancelled. This can result in a normally recoverable block
109 * becoming permanently damaged and is not recommended.
110 */
111 int zfs_removal_ignore_errors = 0;
112
113 /*
114 * Allow a remap segment to span free chunks of at most this size. The main
115 * impact of a larger span is that we will read and write larger, more
116 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
117 * for iops. The value here was chosen to align with
118 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
119 * reads (but there's no reason it has to be the same).
120 *
121 * Additionally, a higher span will have the following relatively minor
122 * effects:
123 * - the mapping will be smaller, since one entry can cover more allocated
124 * segments
125 * - more of the fragmentation in the removing device will be preserved
126 * - we'll do larger allocations, which may fail and fall back on smaller
127 * allocations
128 */
129 int vdev_removal_max_span = 32 * 1024;
130
131 /*
132 * This is used by the test suite so that it can ensure that certain
133 * actions happen while in the middle of a removal.
134 */
135 int zfs_removal_suspend_progress = 0;
136
137 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
138
139 static void spa_vdev_remove_thread(void *arg);
140 static int spa_vdev_remove_cancel_impl(spa_t *spa);
141
142 static void
143 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
144 {
145 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
146 DMU_POOL_DIRECTORY_OBJECT,
147 DMU_POOL_REMOVING, sizeof (uint64_t),
148 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
149 &spa->spa_removing_phys, tx));
150 }
151
152 static nvlist_t *
153 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
154 {
155 for (int i = 0; i < count; i++) {
156 uint64_t guid =
157 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
158
159 if (guid == target_guid)
160 return (nvpp[i]);
161 }
162
163 return (NULL);
164 }
165
166 static void
167 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
168 nvlist_t *dev_to_remove)
169 {
170 nvlist_t **newdev = NULL;
171
172 if (count > 1)
173 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
174
175 for (int i = 0, j = 0; i < count; i++) {
176 if (dev[i] == dev_to_remove)
177 continue;
178 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
179 }
180
181 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
182 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
183
184 for (int i = 0; i < count - 1; i++)
185 nvlist_free(newdev[i]);
186
187 if (count > 1)
188 kmem_free(newdev, (count - 1) * sizeof (void *));
189 }
190
191 static spa_vdev_removal_t *
192 spa_vdev_removal_create(vdev_t *vd)
193 {
194 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
195 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
196 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
197 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
198 svr->svr_vdev_id = vd->vdev_id;
199
200 for (int i = 0; i < TXG_SIZE; i++) {
201 svr->svr_frees[i] = range_tree_create(NULL, NULL);
202 list_create(&svr->svr_new_segments[i],
203 sizeof (vdev_indirect_mapping_entry_t),
204 offsetof(vdev_indirect_mapping_entry_t, vime_node));
205 }
206
207 return (svr);
208 }
209
210 void
211 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
212 {
213 for (int i = 0; i < TXG_SIZE; i++) {
214 ASSERT0(svr->svr_bytes_done[i]);
215 ASSERT0(svr->svr_max_offset_to_sync[i]);
216 range_tree_destroy(svr->svr_frees[i]);
217 list_destroy(&svr->svr_new_segments[i]);
218 }
219
220 range_tree_destroy(svr->svr_allocd_segs);
221 mutex_destroy(&svr->svr_lock);
222 cv_destroy(&svr->svr_cv);
223 kmem_free(svr, sizeof (*svr));
224 }
225
226 /*
227 * This is called as a synctask in the txg in which we will mark this vdev
228 * as removing (in the config stored in the MOS).
229 *
230 * It begins the evacuation of a toplevel vdev by:
231 * - initializing the spa_removing_phys which tracks this removal
232 * - computing the amount of space to remove for accounting purposes
233 * - dirtying all dbufs in the spa_config_object
234 * - creating the spa_vdev_removal
235 * - starting the spa_vdev_remove_thread
236 */
237 static void
238 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
239 {
240 int vdev_id = (uintptr_t)arg;
241 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
242 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
243 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
244 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
245 spa_vdev_removal_t *svr = NULL;
246 ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
247
248 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
249 svr = spa_vdev_removal_create(vd);
250
251 ASSERT(vd->vdev_removing);
252 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
253
254 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
255 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
256 /*
257 * By activating the OBSOLETE_COUNTS feature, we prevent
258 * the pool from being downgraded and ensure that the
259 * refcounts are precise.
260 */
261 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
262 uint64_t one = 1;
263 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
264 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
265 &one, tx));
266 ASSERTV(boolean_t are_precise);
267 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
268 ASSERT3B(are_precise, ==, B_TRUE);
269 }
270
271 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
272 vd->vdev_indirect_mapping =
273 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
274 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
275 vd->vdev_indirect_births =
276 vdev_indirect_births_open(mos, vic->vic_births_object);
277 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
278 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
279 spa->spa_removing_phys.sr_end_time = 0;
280 spa->spa_removing_phys.sr_state = DSS_SCANNING;
281 spa->spa_removing_phys.sr_to_copy = 0;
282 spa->spa_removing_phys.sr_copied = 0;
283
284 /*
285 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
286 * there may be space in the defer tree, which is free, but still
287 * counted in vs_alloc.
288 */
289 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
290 metaslab_t *ms = vd->vdev_ms[i];
291 if (ms->ms_sm == NULL)
292 continue;
293
294 spa->spa_removing_phys.sr_to_copy +=
295 metaslab_allocated_space(ms);
296
297 /*
298 * Space which we are freeing this txg does not need to
299 * be copied.
300 */
301 spa->spa_removing_phys.sr_to_copy -=
302 range_tree_space(ms->ms_freeing);
303
304 ASSERT0(range_tree_space(ms->ms_freed));
305 for (int t = 0; t < TXG_SIZE; t++)
306 ASSERT0(range_tree_space(ms->ms_allocating[t]));
307 }
308
309 /*
310 * Sync tasks are called before metaslab_sync(), so there should
311 * be no already-synced metaslabs in the TXG_CLEAN list.
312 */
313 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
314
315 spa_sync_removing_state(spa, tx);
316
317 /*
318 * All blocks that we need to read the most recent mapping must be
319 * stored on concrete vdevs. Therefore, we must dirty anything that
320 * is read before spa_remove_init(). Specifically, the
321 * spa_config_object. (Note that although we already modified the
322 * spa_config_object in spa_sync_removing_state, that may not have
323 * modified all blocks of the object.)
324 */
325 dmu_object_info_t doi;
326 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
327 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
328 dmu_buf_t *dbuf;
329 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
330 offset, FTAG, &dbuf, 0));
331 dmu_buf_will_dirty(dbuf, tx);
332 offset += dbuf->db_size;
333 dmu_buf_rele(dbuf, FTAG);
334 }
335
336 /*
337 * Now that we've allocated the im_object, dirty the vdev to ensure
338 * that the object gets written to the config on disk.
339 */
340 vdev_config_dirty(vd);
341
342 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
343 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
344 vic->vic_mapping_object);
345
346 spa_history_log_internal(spa, "vdev remove started", tx,
347 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
348 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
349 /*
350 * Setting spa_vdev_removal causes subsequent frees to call
351 * free_from_removing_vdev(). Note that we don't need any locking
352 * because we are the sync thread, and metaslab_free_impl() is only
353 * called from syncing context (potentially from a zio taskq thread,
354 * but in any case only when there are outstanding free i/os, which
355 * there are not).
356 */
357 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
358 spa->spa_vdev_removal = svr;
359 svr->svr_thread = thread_create(NULL, 0,
360 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
361 }
362
363 /*
364 * When we are opening a pool, we must read the mapping for each
365 * indirect vdev in order from most recently removed to least
366 * recently removed. We do this because the blocks for the mapping
367 * of older indirect vdevs may be stored on more recently removed vdevs.
368 * In order to read each indirect mapping object, we must have
369 * initialized all more recently removed vdevs.
370 */
371 int
372 spa_remove_init(spa_t *spa)
373 {
374 int error;
375
376 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
377 DMU_POOL_DIRECTORY_OBJECT,
378 DMU_POOL_REMOVING, sizeof (uint64_t),
379 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
380 &spa->spa_removing_phys);
381
382 if (error == ENOENT) {
383 spa->spa_removing_phys.sr_state = DSS_NONE;
384 spa->spa_removing_phys.sr_removing_vdev = -1;
385 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
386 spa->spa_indirect_vdevs_loaded = B_TRUE;
387 return (0);
388 } else if (error != 0) {
389 return (error);
390 }
391
392 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
393 /*
394 * We are currently removing a vdev. Create and
395 * initialize a spa_vdev_removal_t from the bonus
396 * buffer of the removing vdevs vdev_im_object, and
397 * initialize its partial mapping.
398 */
399 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
400 vdev_t *vd = vdev_lookup_top(spa,
401 spa->spa_removing_phys.sr_removing_vdev);
402
403 if (vd == NULL) {
404 spa_config_exit(spa, SCL_STATE, FTAG);
405 return (EINVAL);
406 }
407
408 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
409
410 ASSERT(vdev_is_concrete(vd));
411 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
412 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
413 ASSERT(vd->vdev_removing);
414
415 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
416 spa->spa_meta_objset, vic->vic_mapping_object);
417 vd->vdev_indirect_births = vdev_indirect_births_open(
418 spa->spa_meta_objset, vic->vic_births_object);
419 spa_config_exit(spa, SCL_STATE, FTAG);
420
421 spa->spa_vdev_removal = svr;
422 }
423
424 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
425 uint64_t indirect_vdev_id =
426 spa->spa_removing_phys.sr_prev_indirect_vdev;
427 while (indirect_vdev_id != UINT64_MAX) {
428 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
429 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
430
431 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
432 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
433 spa->spa_meta_objset, vic->vic_mapping_object);
434 vd->vdev_indirect_births = vdev_indirect_births_open(
435 spa->spa_meta_objset, vic->vic_births_object);
436
437 indirect_vdev_id = vic->vic_prev_indirect_vdev;
438 }
439 spa_config_exit(spa, SCL_STATE, FTAG);
440
441 /*
442 * Now that we've loaded all the indirect mappings, we can allow
443 * reads from other blocks (e.g. via predictive prefetch).
444 */
445 spa->spa_indirect_vdevs_loaded = B_TRUE;
446 return (0);
447 }
448
449 void
450 spa_restart_removal(spa_t *spa)
451 {
452 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
453
454 if (svr == NULL)
455 return;
456
457 /*
458 * In general when this function is called there is no
459 * removal thread running. The only scenario where this
460 * is not true is during spa_import() where this function
461 * is called twice [once from spa_import_impl() and
462 * spa_async_resume()]. Thus, in the scenario where we
463 * import a pool that has an ongoing removal we don't
464 * want to spawn a second thread.
465 */
466 if (svr->svr_thread != NULL)
467 return;
468
469 if (!spa_writeable(spa))
470 return;
471
472 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
473 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
474 0, &p0, TS_RUN, minclsyspri);
475 }
476
477 /*
478 * Process freeing from a device which is in the middle of being removed.
479 * We must handle this carefully so that we attempt to copy freed data,
480 * and we correctly free already-copied data.
481 */
482 void
483 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
484 {
485 spa_t *spa = vd->vdev_spa;
486 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
487 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
488 uint64_t txg = spa_syncing_txg(spa);
489 uint64_t max_offset_yet = 0;
490
491 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
492 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
493 vdev_indirect_mapping_object(vim));
494 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
495
496 mutex_enter(&svr->svr_lock);
497
498 /*
499 * Remove the segment from the removing vdev's spacemap. This
500 * ensures that we will not attempt to copy this space (if the
501 * removal thread has not yet visited it), and also ensures
502 * that we know what is actually allocated on the new vdevs
503 * (needed if we cancel the removal).
504 *
505 * Note: we must do the metaslab_free_concrete() with the svr_lock
506 * held, so that the remove_thread can not load this metaslab and then
507 * visit this offset between the time that we metaslab_free_concrete()
508 * and when we check to see if it has been visited.
509 *
510 * Note: The checkpoint flag is set to false as having/taking
511 * a checkpoint and removing a device can't happen at the same
512 * time.
513 */
514 ASSERT(!spa_has_checkpoint(spa));
515 metaslab_free_concrete(vd, offset, size, B_FALSE);
516
517 uint64_t synced_size = 0;
518 uint64_t synced_offset = 0;
519 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
520 if (offset < max_offset_synced) {
521 /*
522 * The mapping for this offset is already on disk.
523 * Free from the new location.
524 *
525 * Note that we use svr_max_synced_offset because it is
526 * updated atomically with respect to the in-core mapping.
527 * By contrast, vim_max_offset is not.
528 *
529 * This block may be split between a synced entry and an
530 * in-flight or unvisited entry. Only process the synced
531 * portion of it here.
532 */
533 synced_size = MIN(size, max_offset_synced - offset);
534 synced_offset = offset;
535
536 ASSERT3U(max_offset_yet, <=, max_offset_synced);
537 max_offset_yet = max_offset_synced;
538
539 DTRACE_PROBE3(remove__free__synced,
540 spa_t *, spa,
541 uint64_t, offset,
542 uint64_t, synced_size);
543
544 size -= synced_size;
545 offset += synced_size;
546 }
547
548 /*
549 * Look at all in-flight txgs starting from the currently syncing one
550 * and see if a section of this free is being copied. By starting from
551 * this txg and iterating forward, we might find that this region
552 * was copied in two different txgs and handle it appropriately.
553 */
554 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
555 int txgoff = (txg + i) & TXG_MASK;
556 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
557 /*
558 * The mapping for this offset is in flight, and
559 * will be synced in txg+i.
560 */
561 uint64_t inflight_size = MIN(size,
562 svr->svr_max_offset_to_sync[txgoff] - offset);
563
564 DTRACE_PROBE4(remove__free__inflight,
565 spa_t *, spa,
566 uint64_t, offset,
567 uint64_t, inflight_size,
568 uint64_t, txg + i);
569
570 /*
571 * We copy data in order of increasing offset.
572 * Therefore the max_offset_to_sync[] must increase
573 * (or be zero, indicating that nothing is being
574 * copied in that txg).
575 */
576 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
577 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
578 >=, max_offset_yet);
579 max_offset_yet =
580 svr->svr_max_offset_to_sync[txgoff];
581 }
582
583 /*
584 * We've already committed to copying this segment:
585 * we have allocated space elsewhere in the pool for
586 * it and have an IO outstanding to copy the data. We
587 * cannot free the space before the copy has
588 * completed, or else the copy IO might overwrite any
589 * new data. To free that space, we record the
590 * segment in the appropriate svr_frees tree and free
591 * the mapped space later, in the txg where we have
592 * completed the copy and synced the mapping (see
593 * vdev_mapping_sync).
594 */
595 range_tree_add(svr->svr_frees[txgoff],
596 offset, inflight_size);
597 size -= inflight_size;
598 offset += inflight_size;
599
600 /*
601 * This space is already accounted for as being
602 * done, because it is being copied in txg+i.
603 * However, if i!=0, then it is being copied in
604 * a future txg. If we crash after this txg
605 * syncs but before txg+i syncs, then the space
606 * will be free. Therefore we must account
607 * for the space being done in *this* txg
608 * (when it is freed) rather than the future txg
609 * (when it will be copied).
610 */
611 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
612 inflight_size);
613 svr->svr_bytes_done[txgoff] -= inflight_size;
614 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
615 }
616 }
617 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
618
619 if (size > 0) {
620 /*
621 * The copy thread has not yet visited this offset. Ensure
622 * that it doesn't.
623 */
624
625 DTRACE_PROBE3(remove__free__unvisited,
626 spa_t *, spa,
627 uint64_t, offset,
628 uint64_t, size);
629
630 if (svr->svr_allocd_segs != NULL)
631 range_tree_clear(svr->svr_allocd_segs, offset, size);
632
633 /*
634 * Since we now do not need to copy this data, for
635 * accounting purposes we have done our job and can count
636 * it as completed.
637 */
638 svr->svr_bytes_done[txg & TXG_MASK] += size;
639 }
640 mutex_exit(&svr->svr_lock);
641
642 /*
643 * Now that we have dropped svr_lock, process the synced portion
644 * of this free.
645 */
646 if (synced_size > 0) {
647 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
648
649 /*
650 * Note: this can only be called from syncing context,
651 * and the vdev_indirect_mapping is only changed from the
652 * sync thread, so we don't need svr_lock while doing
653 * metaslab_free_impl_cb.
654 */
655 boolean_t checkpoint = B_FALSE;
656 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
657 metaslab_free_impl_cb, &checkpoint);
658 }
659 }
660
661 /*
662 * Stop an active removal and update the spa_removing phys.
663 */
664 static void
665 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
666 {
667 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
668 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
669
670 /* Ensure the removal thread has completed before we free the svr. */
671 spa_vdev_remove_suspend(spa);
672
673 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
674
675 if (state == DSS_FINISHED) {
676 spa_removing_phys_t *srp = &spa->spa_removing_phys;
677 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
678 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
679
680 if (srp->sr_prev_indirect_vdev != -1) {
681 vdev_t *pvd;
682 pvd = vdev_lookup_top(spa,
683 srp->sr_prev_indirect_vdev);
684 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
685 }
686
687 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
688 srp->sr_prev_indirect_vdev = vd->vdev_id;
689 }
690 spa->spa_removing_phys.sr_state = state;
691 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
692
693 spa->spa_vdev_removal = NULL;
694 spa_vdev_removal_destroy(svr);
695
696 spa_sync_removing_state(spa, tx);
697
698 vdev_config_dirty(spa->spa_root_vdev);
699 }
700
701 static void
702 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
703 {
704 vdev_t *vd = arg;
705 vdev_indirect_mark_obsolete(vd, offset, size);
706 boolean_t checkpoint = B_FALSE;
707 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
708 metaslab_free_impl_cb, &checkpoint);
709 }
710
711 /*
712 * On behalf of the removal thread, syncs an incremental bit more of
713 * the indirect mapping to disk and updates the in-memory mapping.
714 * Called as a sync task in every txg that the removal thread makes progress.
715 */
716 static void
717 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
718 {
719 spa_vdev_removal_t *svr = arg;
720 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
721 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
722 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
723 uint64_t txg = dmu_tx_get_txg(tx);
724 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
725
726 ASSERT(vic->vic_mapping_object != 0);
727 ASSERT3U(txg, ==, spa_syncing_txg(spa));
728
729 vdev_indirect_mapping_add_entries(vim,
730 &svr->svr_new_segments[txg & TXG_MASK], tx);
731 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
732 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
733
734 /*
735 * Free the copied data for anything that was freed while the
736 * mapping entries were in flight.
737 */
738 mutex_enter(&svr->svr_lock);
739 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
740 free_mapped_segment_cb, vd);
741 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
742 vdev_indirect_mapping_max_offset(vim));
743 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
744 mutex_exit(&svr->svr_lock);
745
746 spa_sync_removing_state(spa, tx);
747 }
748
749 typedef struct vdev_copy_segment_arg {
750 spa_t *vcsa_spa;
751 dva_t *vcsa_dest_dva;
752 uint64_t vcsa_txg;
753 range_tree_t *vcsa_obsolete_segs;
754 } vdev_copy_segment_arg_t;
755
756 static void
757 unalloc_seg(void *arg, uint64_t start, uint64_t size)
758 {
759 vdev_copy_segment_arg_t *vcsa = arg;
760 spa_t *spa = vcsa->vcsa_spa;
761 blkptr_t bp = { { { {0} } } };
762
763 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
764 BP_SET_LSIZE(&bp, size);
765 BP_SET_PSIZE(&bp, size);
766 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
767 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
768 BP_SET_TYPE(&bp, DMU_OT_NONE);
769 BP_SET_LEVEL(&bp, 0);
770 BP_SET_DEDUP(&bp, 0);
771 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
772
773 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
774 DVA_SET_OFFSET(&bp.blk_dva[0],
775 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
776 DVA_SET_ASIZE(&bp.blk_dva[0], size);
777
778 zio_free(spa, vcsa->vcsa_txg, &bp);
779 }
780
781 /*
782 * All reads and writes associated with a call to spa_vdev_copy_segment()
783 * are done.
784 */
785 static void
786 spa_vdev_copy_segment_done(zio_t *zio)
787 {
788 vdev_copy_segment_arg_t *vcsa = zio->io_private;
789
790 range_tree_vacate(vcsa->vcsa_obsolete_segs,
791 unalloc_seg, vcsa);
792 range_tree_destroy(vcsa->vcsa_obsolete_segs);
793 kmem_free(vcsa, sizeof (*vcsa));
794
795 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
796 }
797
798 /*
799 * The write of the new location is done.
800 */
801 static void
802 spa_vdev_copy_segment_write_done(zio_t *zio)
803 {
804 vdev_copy_arg_t *vca = zio->io_private;
805
806 abd_free(zio->io_abd);
807
808 mutex_enter(&vca->vca_lock);
809 vca->vca_outstanding_bytes -= zio->io_size;
810
811 if (zio->io_error != 0)
812 vca->vca_write_error_bytes += zio->io_size;
813
814 cv_signal(&vca->vca_cv);
815 mutex_exit(&vca->vca_lock);
816 }
817
818 /*
819 * The read of the old location is done. The parent zio is the write to
820 * the new location. Allow it to start.
821 */
822 static void
823 spa_vdev_copy_segment_read_done(zio_t *zio)
824 {
825 vdev_copy_arg_t *vca = zio->io_private;
826
827 if (zio->io_error != 0) {
828 mutex_enter(&vca->vca_lock);
829 vca->vca_read_error_bytes += zio->io_size;
830 mutex_exit(&vca->vca_lock);
831 }
832
833 zio_nowait(zio_unique_parent(zio));
834 }
835
836 /*
837 * If the old and new vdevs are mirrors, we will read both sides of the old
838 * mirror, and write each copy to the corresponding side of the new mirror.
839 * If the old and new vdevs have a different number of children, we will do
840 * this as best as possible. Since we aren't verifying checksums, this
841 * ensures that as long as there's a good copy of the data, we'll have a
842 * good copy after the removal, even if there's silent damage to one side
843 * of the mirror. If we're removing a mirror that has some silent damage,
844 * we'll have exactly the same damage in the new location (assuming that
845 * the new location is also a mirror).
846 *
847 * We accomplish this by creating a tree of zio_t's, with as many writes as
848 * there are "children" of the new vdev (a non-redundant vdev counts as one
849 * child, a 2-way mirror has 2 children, etc). Each write has an associated
850 * read from a child of the old vdev. Typically there will be the same
851 * number of children of the old and new vdevs. However, if there are more
852 * children of the new vdev, some child(ren) of the old vdev will be issued
853 * multiple reads. If there are more children of the old vdev, some copies
854 * will be dropped.
855 *
856 * For example, the tree of zio_t's for a 2-way mirror is:
857 *
858 * null
859 * / \
860 * write(new vdev, child 0) write(new vdev, child 1)
861 * | |
862 * read(old vdev, child 0) read(old vdev, child 1)
863 *
864 * Child zio's complete before their parents complete. However, zio's
865 * created with zio_vdev_child_io() may be issued before their children
866 * complete. In this case we need to make sure that the children (reads)
867 * complete before the parents (writes) are *issued*. We do this by not
868 * calling zio_nowait() on each write until its corresponding read has
869 * completed.
870 *
871 * The spa_config_lock must be held while zio's created by
872 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
873 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
874 * zio is needed to release the spa_config_lock after all the reads and
875 * writes complete. (Note that we can't grab the config lock for each read,
876 * because it is not reentrant - we could deadlock with a thread waiting
877 * for a write lock.)
878 */
879 static void
880 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
881 vdev_t *source_vd, uint64_t source_offset,
882 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
883 {
884 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
885
886 /*
887 * If the destination child in unwritable then there is no point
888 * in issuing the source reads which cannot be written.
889 */
890 if (!vdev_writeable(dest_child_vd))
891 return;
892
893 mutex_enter(&vca->vca_lock);
894 vca->vca_outstanding_bytes += size;
895 mutex_exit(&vca->vca_lock);
896
897 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
898
899 vdev_t *source_child_vd = NULL;
900 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
901 /*
902 * Source and dest are both mirrors. Copy from the same
903 * child id as we are copying to (wrapping around if there
904 * are more dest children than source children). If the
905 * preferred source child is unreadable select another.
906 */
907 for (int i = 0; i < source_vd->vdev_children; i++) {
908 source_child_vd = source_vd->vdev_child[
909 (dest_id + i) % source_vd->vdev_children];
910 if (vdev_readable(source_child_vd))
911 break;
912 }
913 } else {
914 source_child_vd = source_vd;
915 }
916
917 /*
918 * There should always be at least one readable source child or
919 * the pool would be in a suspended state. Somehow selecting an
920 * unreadable child would result in IO errors, the removal process
921 * being cancelled, and the pool reverting to its pre-removal state.
922 */
923 ASSERT3P(source_child_vd, !=, NULL);
924
925 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
926 dest_child_vd, dest_offset, abd, size,
927 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
928 ZIO_FLAG_CANFAIL,
929 spa_vdev_copy_segment_write_done, vca);
930
931 zio_nowait(zio_vdev_child_io(write_zio, NULL,
932 source_child_vd, source_offset, abd, size,
933 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
934 ZIO_FLAG_CANFAIL,
935 spa_vdev_copy_segment_read_done, vca));
936 }
937
938 /*
939 * Allocate a new location for this segment, and create the zio_t's to
940 * read from the old location and write to the new location.
941 */
942 static int
943 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
944 uint64_t maxalloc, uint64_t txg,
945 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
946 {
947 metaslab_group_t *mg = vd->vdev_mg;
948 spa_t *spa = vd->vdev_spa;
949 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
950 vdev_indirect_mapping_entry_t *entry;
951 dva_t dst = {{ 0 }};
952 uint64_t start = range_tree_min(segs);
953
954 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
955
956 uint64_t size = range_tree_span(segs);
957 if (range_tree_span(segs) > maxalloc) {
958 /*
959 * We can't allocate all the segments. Prefer to end
960 * the allocation at the end of a segment, thus avoiding
961 * additional split blocks.
962 */
963 range_seg_t search;
964 avl_index_t where;
965 search.rs_start = start + maxalloc;
966 search.rs_end = search.rs_start;
967 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
968 if (rs == NULL) {
969 rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
970 } else {
971 rs = AVL_PREV(&segs->rt_root, rs);
972 }
973 if (rs != NULL) {
974 size = rs->rs_end - start;
975 } else {
976 /*
977 * There are no segments that end before maxalloc.
978 * I.e. the first segment is larger than maxalloc,
979 * so we must split it.
980 */
981 size = maxalloc;
982 }
983 }
984 ASSERT3U(size, <=, maxalloc);
985
986 /*
987 * An allocation class might not have any remaining vdevs or space
988 */
989 metaslab_class_t *mc = mg->mg_class;
990 if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
991 mc = spa_normal_class(spa);
992 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
993 zal, 0);
994 if (error == ENOSPC && mc != spa_normal_class(spa)) {
995 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
996 &dst, 0, NULL, txg, 0, zal, 0);
997 }
998 if (error != 0)
999 return (error);
1000
1001 /*
1002 * Determine the ranges that are not actually needed. Offsets are
1003 * relative to the start of the range to be copied (i.e. relative to the
1004 * local variable "start").
1005 */
1006 range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
1007
1008 range_seg_t *rs = avl_first(&segs->rt_root);
1009 ASSERT3U(rs->rs_start, ==, start);
1010 uint64_t prev_seg_end = rs->rs_end;
1011 while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
1012 if (rs->rs_start >= start + size) {
1013 break;
1014 } else {
1015 range_tree_add(obsolete_segs,
1016 prev_seg_end - start,
1017 rs->rs_start - prev_seg_end);
1018 }
1019 prev_seg_end = rs->rs_end;
1020 }
1021 /* We don't end in the middle of an obsolete range */
1022 ASSERT3U(start + size, <=, prev_seg_end);
1023
1024 range_tree_clear(segs, start, size);
1025
1026 /*
1027 * We can't have any padding of the allocated size, otherwise we will
1028 * misunderstand what's allocated, and the size of the mapping.
1029 * The caller ensures this will be true by passing in a size that is
1030 * aligned to the worst (highest) ashift in the pool.
1031 */
1032 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
1033
1034 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1035 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1036 entry->vime_mapping.vimep_dst = dst;
1037 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1038 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1039 }
1040
1041 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1042 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1043 vcsa->vcsa_obsolete_segs = obsolete_segs;
1044 vcsa->vcsa_spa = spa;
1045 vcsa->vcsa_txg = txg;
1046
1047 /*
1048 * See comment before spa_vdev_copy_one_child().
1049 */
1050 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1051 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1052 spa_vdev_copy_segment_done, vcsa, 0);
1053 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1054 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1055 for (int i = 0; i < dest_vd->vdev_children; i++) {
1056 vdev_t *child = dest_vd->vdev_child[i];
1057 spa_vdev_copy_one_child(vca, nzio, vd, start,
1058 child, DVA_GET_OFFSET(&dst), i, size);
1059 }
1060 } else {
1061 spa_vdev_copy_one_child(vca, nzio, vd, start,
1062 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1063 }
1064 zio_nowait(nzio);
1065
1066 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1067 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1068 vdev_dirty(vd, 0, NULL, txg);
1069
1070 return (0);
1071 }
1072
1073 /*
1074 * Complete the removal of a toplevel vdev. This is called as a
1075 * synctask in the same txg that we will sync out the new config (to the
1076 * MOS object) which indicates that this vdev is indirect.
1077 */
1078 static void
1079 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1080 {
1081 spa_vdev_removal_t *svr = arg;
1082 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1083 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1084
1085 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1086
1087 for (int i = 0; i < TXG_SIZE; i++) {
1088 ASSERT0(svr->svr_bytes_done[i]);
1089 }
1090
1091 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1092 spa->spa_removing_phys.sr_to_copy);
1093
1094 vdev_destroy_spacemaps(vd, tx);
1095
1096 /* destroy leaf zaps, if any */
1097 ASSERT3P(svr->svr_zaplist, !=, NULL);
1098 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1099 pair != NULL;
1100 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1101 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1102 }
1103 fnvlist_free(svr->svr_zaplist);
1104
1105 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1106 /* vd->vdev_path is not available here */
1107 spa_history_log_internal(spa, "vdev remove completed", tx,
1108 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1109 }
1110
1111 static void
1112 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1113 {
1114 ASSERT3P(zlist, !=, NULL);
1115 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1116
1117 if (vd->vdev_leaf_zap != 0) {
1118 char zkey[32];
1119 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1120 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1121 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1122 }
1123
1124 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1125 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1126 }
1127 }
1128
1129 static void
1130 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1131 {
1132 vdev_t *ivd;
1133 dmu_tx_t *tx;
1134 spa_t *spa = vd->vdev_spa;
1135 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1136
1137 /*
1138 * First, build a list of leaf zaps to be destroyed.
1139 * This is passed to the sync context thread,
1140 * which does the actual unlinking.
1141 */
1142 svr->svr_zaplist = fnvlist_alloc();
1143 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1144
1145 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1146 ivd->vdev_removing = 0;
1147
1148 vd->vdev_leaf_zap = 0;
1149
1150 vdev_remove_child(ivd, vd);
1151 vdev_compact_children(ivd);
1152
1153 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1154
1155 mutex_enter(&svr->svr_lock);
1156 svr->svr_thread = NULL;
1157 cv_broadcast(&svr->svr_cv);
1158 mutex_exit(&svr->svr_lock);
1159
1160 /* After this, we can not use svr. */
1161 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1162 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1163 0, ZFS_SPACE_CHECK_NONE, tx);
1164 dmu_tx_commit(tx);
1165 }
1166
1167 /*
1168 * Complete the removal of a toplevel vdev. This is called in open
1169 * context by the removal thread after we have copied all vdev's data.
1170 */
1171 static void
1172 vdev_remove_complete(spa_t *spa)
1173 {
1174 uint64_t txg;
1175
1176 /*
1177 * Wait for any deferred frees to be synced before we call
1178 * vdev_metaslab_fini()
1179 */
1180 txg_wait_synced(spa->spa_dsl_pool, 0);
1181 txg = spa_vdev_enter(spa);
1182 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1183 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1184
1185 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1186 ESC_ZFS_VDEV_REMOVE_DEV);
1187
1188 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1189 vd->vdev_id, txg);
1190
1191 /*
1192 * Discard allocation state.
1193 */
1194 if (vd->vdev_mg != NULL) {
1195 vdev_metaslab_fini(vd);
1196 metaslab_group_destroy(vd->vdev_mg);
1197 vd->vdev_mg = NULL;
1198 }
1199 ASSERT0(vd->vdev_stat.vs_space);
1200 ASSERT0(vd->vdev_stat.vs_dspace);
1201
1202 vdev_remove_replace_with_indirect(vd, txg);
1203
1204 /*
1205 * We now release the locks, allowing spa_sync to run and finish the
1206 * removal via vdev_remove_complete_sync in syncing context.
1207 *
1208 * Note that we hold on to the vdev_t that has been replaced. Since
1209 * it isn't part of the vdev tree any longer, it can't be concurrently
1210 * manipulated, even while we don't have the config lock.
1211 */
1212 (void) spa_vdev_exit(spa, NULL, txg, 0);
1213
1214 /*
1215 * Top ZAP should have been transferred to the indirect vdev in
1216 * vdev_remove_replace_with_indirect.
1217 */
1218 ASSERT0(vd->vdev_top_zap);
1219
1220 /*
1221 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1222 */
1223 ASSERT0(vd->vdev_leaf_zap);
1224
1225 txg = spa_vdev_enter(spa);
1226 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1227 /*
1228 * Request to update the config and the config cachefile.
1229 */
1230 vdev_config_dirty(spa->spa_root_vdev);
1231 (void) spa_vdev_exit(spa, vd, txg, 0);
1232
1233 if (ev != NULL)
1234 spa_event_post(ev);
1235 }
1236
1237 /*
1238 * Evacuates a segment of size at most max_alloc from the vdev
1239 * via repeated calls to spa_vdev_copy_segment. If an allocation
1240 * fails, the pool is probably too fragmented to handle such a
1241 * large size, so decrease max_alloc so that the caller will not try
1242 * this size again this txg.
1243 */
1244 static void
1245 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1246 uint64_t *max_alloc, dmu_tx_t *tx)
1247 {
1248 uint64_t txg = dmu_tx_get_txg(tx);
1249 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1250
1251 mutex_enter(&svr->svr_lock);
1252
1253 /*
1254 * Determine how big of a chunk to copy. We can allocate up
1255 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1256 * bytes of unallocated space at a time. "segs" will track the
1257 * allocated segments that we are copying. We may also be copying
1258 * free segments (of up to vdev_removal_max_span bytes).
1259 */
1260 range_tree_t *segs = range_tree_create(NULL, NULL);
1261 for (;;) {
1262 range_seg_t *rs = range_tree_first(svr->svr_allocd_segs);
1263
1264 if (rs == NULL)
1265 break;
1266
1267 uint64_t seg_length;
1268
1269 if (range_tree_is_empty(segs)) {
1270 /* need to truncate the first seg based on max_alloc */
1271 seg_length =
1272 MIN(rs->rs_end - rs->rs_start, *max_alloc);
1273 } else {
1274 if (rs->rs_start - range_tree_max(segs) >
1275 vdev_removal_max_span) {
1276 /*
1277 * Including this segment would cause us to
1278 * copy a larger unneeded chunk than is allowed.
1279 */
1280 break;
1281 } else if (rs->rs_end - range_tree_min(segs) >
1282 *max_alloc) {
1283 /*
1284 * This additional segment would extend past
1285 * max_alloc. Rather than splitting this
1286 * segment, leave it for the next mapping.
1287 */
1288 break;
1289 } else {
1290 seg_length = rs->rs_end - rs->rs_start;
1291 }
1292 }
1293
1294 range_tree_add(segs, rs->rs_start, seg_length);
1295 range_tree_remove(svr->svr_allocd_segs,
1296 rs->rs_start, seg_length);
1297 }
1298
1299 if (range_tree_is_empty(segs)) {
1300 mutex_exit(&svr->svr_lock);
1301 range_tree_destroy(segs);
1302 return;
1303 }
1304
1305 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1306 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1307 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1308 }
1309
1310 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1311
1312 /*
1313 * Note: this is the amount of *allocated* space
1314 * that we are taking care of each txg.
1315 */
1316 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1317
1318 mutex_exit(&svr->svr_lock);
1319
1320 zio_alloc_list_t zal;
1321 metaslab_trace_init(&zal);
1322 uint64_t thismax = SPA_MAXBLOCKSIZE;
1323 while (!range_tree_is_empty(segs)) {
1324 int error = spa_vdev_copy_segment(vd,
1325 segs, thismax, txg, vca, &zal);
1326
1327 if (error == ENOSPC) {
1328 /*
1329 * Cut our segment in half, and don't try this
1330 * segment size again this txg. Note that the
1331 * allocation size must be aligned to the highest
1332 * ashift in the pool, so that the allocation will
1333 * not be padded out to a multiple of the ashift,
1334 * which could cause us to think that this mapping
1335 * is larger than we intended.
1336 */
1337 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1338 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1339 uint64_t attempted =
1340 MIN(range_tree_span(segs), thismax);
1341 thismax = P2ROUNDUP(attempted / 2,
1342 1 << spa->spa_max_ashift);
1343 /*
1344 * The minimum-size allocation can not fail.
1345 */
1346 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1347 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1348 } else {
1349 ASSERT0(error);
1350
1351 /*
1352 * We've performed an allocation, so reset the
1353 * alloc trace list.
1354 */
1355 metaslab_trace_fini(&zal);
1356 metaslab_trace_init(&zal);
1357 }
1358 }
1359 metaslab_trace_fini(&zal);
1360 range_tree_destroy(segs);
1361 }
1362
1363 /*
1364 * The removal thread operates in open context. It iterates over all
1365 * allocated space in the vdev, by loading each metaslab's spacemap.
1366 * For each contiguous segment of allocated space (capping the segment
1367 * size at SPA_MAXBLOCKSIZE), we:
1368 * - Allocate space for it on another vdev.
1369 * - Create a new mapping from the old location to the new location
1370 * (as a record in svr_new_segments).
1371 * - Initiate a physical read zio to get the data off the removing disk.
1372 * - In the read zio's done callback, initiate a physical write zio to
1373 * write it to the new vdev.
1374 * Note that all of this will take effect when a particular TXG syncs.
1375 * The sync thread ensures that all the phys reads and writes for the syncing
1376 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1377 * (see vdev_mapping_sync()).
1378 */
1379 static void
1380 spa_vdev_remove_thread(void *arg)
1381 {
1382 spa_t *spa = arg;
1383 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1384 vdev_copy_arg_t vca;
1385 uint64_t max_alloc = zfs_remove_max_segment;
1386 uint64_t last_txg = 0;
1387
1388 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1389 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1390 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1391 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1392
1393 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1394 ASSERT(vdev_is_concrete(vd));
1395 ASSERT(vd->vdev_removing);
1396 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1397 ASSERT(vim != NULL);
1398
1399 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1400 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1401 vca.vca_outstanding_bytes = 0;
1402 vca.vca_read_error_bytes = 0;
1403 vca.vca_write_error_bytes = 0;
1404
1405 mutex_enter(&svr->svr_lock);
1406
1407 /*
1408 * Start from vim_max_offset so we pick up where we left off
1409 * if we are restarting the removal after opening the pool.
1410 */
1411 uint64_t msi;
1412 for (msi = start_offset >> vd->vdev_ms_shift;
1413 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1414 metaslab_t *msp = vd->vdev_ms[msi];
1415 ASSERT3U(msi, <=, vd->vdev_ms_count);
1416
1417 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1418
1419 mutex_enter(&msp->ms_sync_lock);
1420 mutex_enter(&msp->ms_lock);
1421
1422 /*
1423 * Assert nothing in flight -- ms_*tree is empty.
1424 */
1425 for (int i = 0; i < TXG_SIZE; i++) {
1426 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1427 }
1428
1429 /*
1430 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1431 * read the allocated segments from the space map object
1432 * into svr_allocd_segs. Since we do this while holding
1433 * svr_lock and ms_sync_lock, concurrent frees (which
1434 * would have modified the space map) will wait for us
1435 * to finish loading the spacemap, and then take the
1436 * appropriate action (see free_from_removing_vdev()).
1437 */
1438 if (msp->ms_sm != NULL) {
1439 VERIFY0(space_map_load(msp->ms_sm,
1440 svr->svr_allocd_segs, SM_ALLOC));
1441
1442 range_tree_walk(msp->ms_freeing,
1443 range_tree_remove, svr->svr_allocd_segs);
1444
1445 /*
1446 * When we are resuming from a paused removal (i.e.
1447 * when importing a pool with a removal in progress),
1448 * discard any state that we have already processed.
1449 */
1450 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1451 }
1452 mutex_exit(&msp->ms_lock);
1453 mutex_exit(&msp->ms_sync_lock);
1454
1455 vca.vca_msp = msp;
1456 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1457 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1458 msp->ms_id);
1459
1460 while (!svr->svr_thread_exit &&
1461 !range_tree_is_empty(svr->svr_allocd_segs)) {
1462
1463 mutex_exit(&svr->svr_lock);
1464
1465 /*
1466 * We need to periodically drop the config lock so that
1467 * writers can get in. Additionally, we can't wait
1468 * for a txg to sync while holding a config lock
1469 * (since a waiting writer could cause a 3-way deadlock
1470 * with the sync thread, which also gets a config
1471 * lock for reader). So we can't hold the config lock
1472 * while calling dmu_tx_assign().
1473 */
1474 spa_config_exit(spa, SCL_CONFIG, FTAG);
1475
1476 /*
1477 * This delay will pause the removal around the point
1478 * specified by zfs_removal_suspend_progress. We do this
1479 * solely from the test suite or during debugging.
1480 */
1481 uint64_t bytes_copied =
1482 spa->spa_removing_phys.sr_copied;
1483 for (int i = 0; i < TXG_SIZE; i++)
1484 bytes_copied += svr->svr_bytes_done[i];
1485 while (zfs_removal_suspend_progress &&
1486 !svr->svr_thread_exit)
1487 delay(hz);
1488
1489 mutex_enter(&vca.vca_lock);
1490 while (vca.vca_outstanding_bytes >
1491 zfs_remove_max_copy_bytes) {
1492 cv_wait(&vca.vca_cv, &vca.vca_lock);
1493 }
1494 mutex_exit(&vca.vca_lock);
1495
1496 dmu_tx_t *tx =
1497 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1498 dmu_tx_hold_space(tx, SPA_MAXBLOCKSIZE);
1499 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1500 uint64_t txg = dmu_tx_get_txg(tx);
1501
1502 /*
1503 * Reacquire the vdev_config lock. The vdev_t
1504 * that we're removing may have changed, e.g. due
1505 * to a vdev_attach or vdev_detach.
1506 */
1507 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1508 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1509
1510 if (txg != last_txg)
1511 max_alloc = zfs_remove_max_segment;
1512 last_txg = txg;
1513
1514 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1515
1516 dmu_tx_commit(tx);
1517 mutex_enter(&svr->svr_lock);
1518 }
1519
1520 mutex_enter(&vca.vca_lock);
1521 if (zfs_removal_ignore_errors == 0 &&
1522 (vca.vca_read_error_bytes > 0 ||
1523 vca.vca_write_error_bytes > 0)) {
1524 svr->svr_thread_exit = B_TRUE;
1525 }
1526 mutex_exit(&vca.vca_lock);
1527 }
1528
1529 mutex_exit(&svr->svr_lock);
1530
1531 spa_config_exit(spa, SCL_CONFIG, FTAG);
1532
1533 /*
1534 * Wait for all copies to finish before cleaning up the vca.
1535 */
1536 txg_wait_synced(spa->spa_dsl_pool, 0);
1537 ASSERT0(vca.vca_outstanding_bytes);
1538
1539 mutex_destroy(&vca.vca_lock);
1540 cv_destroy(&vca.vca_cv);
1541
1542 if (svr->svr_thread_exit) {
1543 mutex_enter(&svr->svr_lock);
1544 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1545 svr->svr_thread = NULL;
1546 cv_broadcast(&svr->svr_cv);
1547 mutex_exit(&svr->svr_lock);
1548
1549 /*
1550 * During the removal process an unrecoverable read or write
1551 * error was encountered. The removal process must be
1552 * cancelled or this damage may become permanent.
1553 */
1554 if (zfs_removal_ignore_errors == 0 &&
1555 (vca.vca_read_error_bytes > 0 ||
1556 vca.vca_write_error_bytes > 0)) {
1557 zfs_dbgmsg("canceling removal due to IO errors: "
1558 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1559 vca.vca_read_error_bytes,
1560 vca.vca_write_error_bytes);
1561 spa_vdev_remove_cancel_impl(spa);
1562 }
1563 } else {
1564 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1565 vdev_remove_complete(spa);
1566 }
1567 }
1568
1569 void
1570 spa_vdev_remove_suspend(spa_t *spa)
1571 {
1572 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1573
1574 if (svr == NULL)
1575 return;
1576
1577 mutex_enter(&svr->svr_lock);
1578 svr->svr_thread_exit = B_TRUE;
1579 while (svr->svr_thread != NULL)
1580 cv_wait(&svr->svr_cv, &svr->svr_lock);
1581 svr->svr_thread_exit = B_FALSE;
1582 mutex_exit(&svr->svr_lock);
1583 }
1584
1585 /* ARGSUSED */
1586 static int
1587 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1588 {
1589 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1590
1591 if (spa->spa_vdev_removal == NULL)
1592 return (ENOTACTIVE);
1593 return (0);
1594 }
1595
1596 /*
1597 * Cancel a removal by freeing all entries from the partial mapping
1598 * and marking the vdev as no longer being removing.
1599 */
1600 /* ARGSUSED */
1601 static void
1602 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1603 {
1604 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1605 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1606 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1607 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1608 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1609 objset_t *mos = spa->spa_meta_objset;
1610
1611 ASSERT3P(svr->svr_thread, ==, NULL);
1612
1613 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1614
1615 boolean_t are_precise;
1616 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1617 if (are_precise) {
1618 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1619 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1620 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1621 }
1622
1623 uint64_t obsolete_sm_object;
1624 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1625 if (obsolete_sm_object != 0) {
1626 ASSERT(vd->vdev_obsolete_sm != NULL);
1627 ASSERT3U(obsolete_sm_object, ==,
1628 space_map_object(vd->vdev_obsolete_sm));
1629
1630 space_map_free(vd->vdev_obsolete_sm, tx);
1631 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1632 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1633 space_map_close(vd->vdev_obsolete_sm);
1634 vd->vdev_obsolete_sm = NULL;
1635 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1636 }
1637 for (int i = 0; i < TXG_SIZE; i++) {
1638 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1639 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1640 vdev_indirect_mapping_max_offset(vim));
1641 }
1642
1643 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1644 metaslab_t *msp = vd->vdev_ms[msi];
1645
1646 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1647 break;
1648
1649 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1650
1651 mutex_enter(&msp->ms_lock);
1652
1653 /*
1654 * Assert nothing in flight -- ms_*tree is empty.
1655 */
1656 for (int i = 0; i < TXG_SIZE; i++)
1657 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1658 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1659 ASSERT0(range_tree_space(msp->ms_defer[i]));
1660 ASSERT0(range_tree_space(msp->ms_freed));
1661
1662 if (msp->ms_sm != NULL) {
1663 mutex_enter(&svr->svr_lock);
1664 VERIFY0(space_map_load(msp->ms_sm,
1665 svr->svr_allocd_segs, SM_ALLOC));
1666 range_tree_walk(msp->ms_freeing,
1667 range_tree_remove, svr->svr_allocd_segs);
1668
1669 /*
1670 * Clear everything past what has been synced,
1671 * because we have not allocated mappings for it yet.
1672 */
1673 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1674 uint64_t sm_end = msp->ms_sm->sm_start +
1675 msp->ms_sm->sm_size;
1676 if (sm_end > syncd)
1677 range_tree_clear(svr->svr_allocd_segs,
1678 syncd, sm_end - syncd);
1679
1680 mutex_exit(&svr->svr_lock);
1681 }
1682 mutex_exit(&msp->ms_lock);
1683
1684 mutex_enter(&svr->svr_lock);
1685 range_tree_vacate(svr->svr_allocd_segs,
1686 free_mapped_segment_cb, vd);
1687 mutex_exit(&svr->svr_lock);
1688 }
1689
1690 /*
1691 * Note: this must happen after we invoke free_mapped_segment_cb,
1692 * because it adds to the obsolete_segments.
1693 */
1694 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1695
1696 ASSERT3U(vic->vic_mapping_object, ==,
1697 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1698 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1699 vd->vdev_indirect_mapping = NULL;
1700 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1701 vic->vic_mapping_object = 0;
1702
1703 ASSERT3U(vic->vic_births_object, ==,
1704 vdev_indirect_births_object(vd->vdev_indirect_births));
1705 vdev_indirect_births_close(vd->vdev_indirect_births);
1706 vd->vdev_indirect_births = NULL;
1707 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1708 vic->vic_births_object = 0;
1709
1710 /*
1711 * We may have processed some frees from the removing vdev in this
1712 * txg, thus increasing svr_bytes_done; discard that here to
1713 * satisfy the assertions in spa_vdev_removal_destroy().
1714 * Note that future txg's can not have any bytes_done, because
1715 * future TXG's are only modified from open context, and we have
1716 * already shut down the copying thread.
1717 */
1718 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1719 spa_finish_removal(spa, DSS_CANCELED, tx);
1720
1721 vd->vdev_removing = B_FALSE;
1722 vdev_config_dirty(vd);
1723
1724 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1725 vd->vdev_id, dmu_tx_get_txg(tx));
1726 spa_history_log_internal(spa, "vdev remove canceled", tx,
1727 "%s vdev %llu %s", spa_name(spa),
1728 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1729 }
1730
1731 static int
1732 spa_vdev_remove_cancel_impl(spa_t *spa)
1733 {
1734 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1735
1736 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1737 spa_vdev_remove_cancel_sync, NULL, 0,
1738 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1739
1740 if (error == 0) {
1741 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1742 vdev_t *vd = vdev_lookup_top(spa, vdid);
1743 metaslab_group_activate(vd->vdev_mg);
1744 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1745 }
1746
1747 return (error);
1748 }
1749
1750 int
1751 spa_vdev_remove_cancel(spa_t *spa)
1752 {
1753 spa_vdev_remove_suspend(spa);
1754
1755 if (spa->spa_vdev_removal == NULL)
1756 return (ENOTACTIVE);
1757
1758 return (spa_vdev_remove_cancel_impl(spa));
1759 }
1760
1761 void
1762 svr_sync(spa_t *spa, dmu_tx_t *tx)
1763 {
1764 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1765 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1766
1767 if (svr == NULL)
1768 return;
1769
1770 /*
1771 * This check is necessary so that we do not dirty the
1772 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1773 * is nothing to do. Dirtying it every time would prevent us
1774 * from syncing-to-convergence.
1775 */
1776 if (svr->svr_bytes_done[txgoff] == 0)
1777 return;
1778
1779 /*
1780 * Update progress accounting.
1781 */
1782 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1783 svr->svr_bytes_done[txgoff] = 0;
1784
1785 spa_sync_removing_state(spa, tx);
1786 }
1787
1788 static void
1789 vdev_remove_make_hole_and_free(vdev_t *vd)
1790 {
1791 uint64_t id = vd->vdev_id;
1792 spa_t *spa = vd->vdev_spa;
1793 vdev_t *rvd = spa->spa_root_vdev;
1794 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1795
1796 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1797 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1798
1799 vdev_free(vd);
1800
1801 if (last_vdev) {
1802 vdev_compact_children(rvd);
1803 } else {
1804 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1805 vdev_add_child(rvd, vd);
1806 }
1807 vdev_config_dirty(rvd);
1808
1809 /*
1810 * Reassess the health of our root vdev.
1811 */
1812 vdev_reopen(rvd);
1813 }
1814
1815 /*
1816 * Remove a log device. The config lock is held for the specified TXG.
1817 */
1818 static int
1819 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1820 {
1821 metaslab_group_t *mg = vd->vdev_mg;
1822 spa_t *spa = vd->vdev_spa;
1823 int error = 0;
1824
1825 ASSERT(vd->vdev_islog);
1826 ASSERT(vd == vd->vdev_top);
1827 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1828
1829 /*
1830 * Stop allocating from this vdev.
1831 */
1832 metaslab_group_passivate(mg);
1833
1834 /*
1835 * Wait for the youngest allocations and frees to sync,
1836 * and then wait for the deferral of those frees to finish.
1837 */
1838 spa_vdev_config_exit(spa, NULL,
1839 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1840
1841 /*
1842 * Evacuate the device. We don't hold the config lock as
1843 * writer since we need to do I/O but we do keep the
1844 * spa_namespace_lock held. Once this completes the device
1845 * should no longer have any blocks allocated on it.
1846 */
1847 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1848 if (vd->vdev_stat.vs_alloc != 0)
1849 error = spa_reset_logs(spa);
1850
1851 *txg = spa_vdev_config_enter(spa);
1852
1853 if (error != 0) {
1854 metaslab_group_activate(mg);
1855 return (error);
1856 }
1857 ASSERT0(vd->vdev_stat.vs_alloc);
1858
1859 /*
1860 * The evacuation succeeded. Remove any remaining MOS metadata
1861 * associated with this vdev, and wait for these changes to sync.
1862 */
1863 vd->vdev_removing = B_TRUE;
1864
1865 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1866 vdev_config_dirty(vd);
1867
1868 vdev_metaslab_fini(vd);
1869
1870 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1871
1872 /* Stop initializing */
1873 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1874
1875 *txg = spa_vdev_config_enter(spa);
1876
1877 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1878 ESC_ZFS_VDEV_REMOVE_DEV);
1879 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1880 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1881
1882 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1883 ASSERT0(vd->vdev_top_zap);
1884 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1885 ASSERT0(vd->vdev_leaf_zap);
1886
1887 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1888
1889 if (list_link_active(&vd->vdev_state_dirty_node))
1890 vdev_state_clean(vd);
1891 if (list_link_active(&vd->vdev_config_dirty_node))
1892 vdev_config_clean(vd);
1893
1894 ASSERT0(vd->vdev_stat.vs_alloc);
1895
1896 /*
1897 * Clean up the vdev namespace.
1898 */
1899 vdev_remove_make_hole_and_free(vd);
1900
1901 if (ev != NULL)
1902 spa_event_post(ev);
1903
1904 return (0);
1905 }
1906
1907 static int
1908 spa_vdev_remove_top_check(vdev_t *vd)
1909 {
1910 spa_t *spa = vd->vdev_spa;
1911
1912 if (vd != vd->vdev_top)
1913 return (SET_ERROR(ENOTSUP));
1914
1915 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1916 return (SET_ERROR(ENOTSUP));
1917
1918 /* available space in the pool's normal class */
1919 uint64_t available = dsl_dir_space_available(
1920 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1921
1922 metaslab_class_t *mc = vd->vdev_mg->mg_class;
1923
1924 /*
1925 * When removing a vdev from an allocation class that has
1926 * remaining vdevs, include available space from the class.
1927 */
1928 if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1929 uint64_t class_avail = metaslab_class_get_space(mc) -
1930 metaslab_class_get_alloc(mc);
1931
1932 /* add class space, adjusted for overhead */
1933 available += (class_avail * 94) / 100;
1934 }
1935
1936 /*
1937 * There has to be enough free space to remove the
1938 * device and leave double the "slop" space (i.e. we
1939 * must leave at least 3% of the pool free, in addition to
1940 * the normal slop space).
1941 */
1942 if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1943 return (SET_ERROR(ENOSPC));
1944 }
1945
1946 /*
1947 * There can not be a removal in progress.
1948 */
1949 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1950 return (SET_ERROR(EBUSY));
1951
1952 /*
1953 * The device must have all its data.
1954 */
1955 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1956 !vdev_dtl_empty(vd, DTL_OUTAGE))
1957 return (SET_ERROR(EBUSY));
1958
1959 /*
1960 * The device must be healthy.
1961 */
1962 if (!vdev_readable(vd))
1963 return (SET_ERROR(EIO));
1964
1965 /*
1966 * All vdevs in normal class must have the same ashift.
1967 */
1968 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1969 return (SET_ERROR(EINVAL));
1970 }
1971
1972 /*
1973 * All vdevs in normal class must have the same ashift
1974 * and not be raidz.
1975 */
1976 vdev_t *rvd = spa->spa_root_vdev;
1977 int num_indirect = 0;
1978 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1979 vdev_t *cvd = rvd->vdev_child[id];
1980 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1981 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1982 if (cvd->vdev_ops == &vdev_indirect_ops)
1983 num_indirect++;
1984 if (!vdev_is_concrete(cvd))
1985 continue;
1986 if (cvd->vdev_ops == &vdev_raidz_ops)
1987 return (SET_ERROR(EINVAL));
1988 /*
1989 * Need the mirror to be mirror of leaf vdevs only
1990 */
1991 if (cvd->vdev_ops == &vdev_mirror_ops) {
1992 for (uint64_t cid = 0;
1993 cid < cvd->vdev_children; cid++) {
1994 if (!cvd->vdev_child[cid]->vdev_ops->
1995 vdev_op_leaf)
1996 return (SET_ERROR(EINVAL));
1997 }
1998 }
1999 }
2000
2001 return (0);
2002 }
2003
2004 /*
2005 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2006 * The config lock is held for the specified TXG. Once initiated,
2007 * evacuation of all allocated space (copying it to other vdevs) happens
2008 * in the background (see spa_vdev_remove_thread()), and can be canceled
2009 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2010 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2011 */
2012 static int
2013 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2014 {
2015 spa_t *spa = vd->vdev_spa;
2016 int error;
2017
2018 /*
2019 * Check for errors up-front, so that we don't waste time
2020 * passivating the metaslab group and clearing the ZIL if there
2021 * are errors.
2022 */
2023 error = spa_vdev_remove_top_check(vd);
2024 if (error != 0)
2025 return (error);
2026
2027 /*
2028 * Stop allocating from this vdev. Note that we must check
2029 * that this is not the only device in the pool before
2030 * passivating, otherwise we will not be able to make
2031 * progress because we can't allocate from any vdevs.
2032 * The above check for sufficient free space serves this
2033 * purpose.
2034 */
2035 metaslab_group_t *mg = vd->vdev_mg;
2036 metaslab_group_passivate(mg);
2037
2038 /*
2039 * Wait for the youngest allocations and frees to sync,
2040 * and then wait for the deferral of those frees to finish.
2041 */
2042 spa_vdev_config_exit(spa, NULL,
2043 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2044
2045 /*
2046 * We must ensure that no "stubby" log blocks are allocated
2047 * on the device to be removed. These blocks could be
2048 * written at any time, including while we are in the middle
2049 * of copying them.
2050 */
2051 error = spa_reset_logs(spa);
2052
2053 /*
2054 * We stop any initializing that is currently in progress but leave
2055 * the state as "active". This will allow the initializing to resume
2056 * if the removal is canceled sometime later.
2057 */
2058 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2059
2060 *txg = spa_vdev_config_enter(spa);
2061
2062 /*
2063 * Things might have changed while the config lock was dropped
2064 * (e.g. space usage). Check for errors again.
2065 */
2066 if (error == 0)
2067 error = spa_vdev_remove_top_check(vd);
2068
2069 if (error != 0) {
2070 metaslab_group_activate(mg);
2071 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2072 return (error);
2073 }
2074
2075 vd->vdev_removing = B_TRUE;
2076
2077 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2078 vdev_config_dirty(vd);
2079 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2080 dsl_sync_task_nowait(spa->spa_dsl_pool,
2081 vdev_remove_initiate_sync,
2082 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2083 dmu_tx_commit(tx);
2084
2085 return (0);
2086 }
2087
2088 /*
2089 * Remove a device from the pool.
2090 *
2091 * Removing a device from the vdev namespace requires several steps
2092 * and can take a significant amount of time. As a result we use
2093 * the spa_vdev_config_[enter/exit] functions which allow us to
2094 * grab and release the spa_config_lock while still holding the namespace
2095 * lock. During each step the configuration is synced out.
2096 */
2097 int
2098 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2099 {
2100 vdev_t *vd;
2101 nvlist_t **spares, **l2cache, *nv;
2102 uint64_t txg = 0;
2103 uint_t nspares, nl2cache;
2104 int error = 0;
2105 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2106 sysevent_t *ev = NULL;
2107 char *vd_type = NULL, *vd_path = NULL;
2108
2109 ASSERT(spa_writeable(spa));
2110
2111 if (!locked)
2112 txg = spa_vdev_enter(spa);
2113
2114 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2115 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2116 error = (spa_has_checkpoint(spa)) ?
2117 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2118
2119 if (!locked)
2120 return (spa_vdev_exit(spa, NULL, txg, error));
2121
2122 return (error);
2123 }
2124
2125 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2126
2127 if (spa->spa_spares.sav_vdevs != NULL &&
2128 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2129 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2130 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2131 /*
2132 * Only remove the hot spare if it's not currently in use
2133 * in this pool.
2134 */
2135 if (vd == NULL || unspare) {
2136 if (vd == NULL)
2137 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2138 ev = spa_event_create(spa, vd, NULL,
2139 ESC_ZFS_VDEV_REMOVE_AUX);
2140
2141 vd_type = VDEV_TYPE_SPARE;
2142 vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2143 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2144 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2145 spa_load_spares(spa);
2146 spa->spa_spares.sav_sync = B_TRUE;
2147 } else {
2148 error = SET_ERROR(EBUSY);
2149 }
2150 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2151 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2152 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2153 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2154 vd_type = VDEV_TYPE_L2CACHE;
2155 vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2156 /*
2157 * Cache devices can always be removed.
2158 */
2159 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2160 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2161 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2162 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2163 spa_load_l2cache(spa);
2164 spa->spa_l2cache.sav_sync = B_TRUE;
2165 } else if (vd != NULL && vd->vdev_islog) {
2166 ASSERT(!locked);
2167 vd_type = "log";
2168 vd_path = (vd->vdev_path != NULL) ? vd->vdev_path : "-";
2169 error = spa_vdev_remove_log(vd, &txg);
2170 } else if (vd != NULL) {
2171 ASSERT(!locked);
2172 error = spa_vdev_remove_top(vd, &txg);
2173 } else {
2174 /*
2175 * There is no vdev of any kind with the specified guid.
2176 */
2177 error = SET_ERROR(ENOENT);
2178 }
2179
2180 if (!locked)
2181 error = spa_vdev_exit(spa, NULL, txg, error);
2182
2183 /*
2184 * Logging must be done outside the spa config lock. Otherwise,
2185 * this code path could end up holding the spa config lock while
2186 * waiting for a txg_sync so it can write to the internal log.
2187 * Doing that would prevent the txg sync from actually happening,
2188 * causing a deadlock.
2189 */
2190 if (error == 0 && vd_type != NULL && vd_path != NULL) {
2191 spa_history_log_internal(spa, "vdev remove", NULL,
2192 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2193 }
2194
2195 if (ev != NULL)
2196 spa_event_post(ev);
2197
2198 return (error);
2199 }
2200
2201 int
2202 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2203 {
2204 prs->prs_state = spa->spa_removing_phys.sr_state;
2205
2206 if (prs->prs_state == DSS_NONE)
2207 return (SET_ERROR(ENOENT));
2208
2209 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2210 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2211 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2212 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2213 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2214
2215 prs->prs_mapping_memory = 0;
2216 uint64_t indirect_vdev_id =
2217 spa->spa_removing_phys.sr_prev_indirect_vdev;
2218 while (indirect_vdev_id != -1) {
2219 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2220 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2221 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2222
2223 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2224 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2225 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2226 }
2227
2228 return (0);
2229 }
2230
2231 #if defined(_KERNEL)
2232 module_param(zfs_removal_ignore_errors, int, 0644);
2233 MODULE_PARM_DESC(zfs_removal_ignore_errors,
2234 "Ignore hard IO errors when removing device");
2235
2236 module_param(zfs_remove_max_segment, int, 0644);
2237 MODULE_PARM_DESC(zfs_remove_max_segment,
2238 "Largest contiguous segment to allocate when removing device");
2239
2240 module_param(vdev_removal_max_span, int, 0644);
2241 MODULE_PARM_DESC(vdev_removal_max_span,
2242 "Largest span of free chunks a remap segment can span");
2243
2244 /* BEGIN CSTYLED */
2245 module_param(zfs_removal_suspend_progress, int, 0644);
2246 MODULE_PARM_DESC(zfs_removal_suspend_progress,
2247 "Pause device removal after this many bytes are copied "
2248 "(debug use only - causes removal to hang)");
2249 /* END CSTYLED */
2250
2251 EXPORT_SYMBOL(free_from_removing_vdev);
2252 EXPORT_SYMBOL(spa_removal_get_stats);
2253 EXPORT_SYMBOL(spa_remove_init);
2254 EXPORT_SYMBOL(spa_restart_removal);
2255 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2256 EXPORT_SYMBOL(spa_vdev_remove);
2257 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2258 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2259 EXPORT_SYMBOL(svr_sync);
2260 #endif