]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/process.c
nmi_backtrace: generate one-line reports for idle cpus
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
61c4628b
SS
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
389d1fb1 7#include <linux/prctl.h>
61c4628b
SS
8#include <linux/slab.h>
9#include <linux/sched.h>
186f4360
PG
10#include <linux/init.h>
11#include <linux/export.h>
7f424a8b 12#include <linux/pm.h>
162a688e 13#include <linux/tick.h>
9d62dcdf 14#include <linux/random.h>
7c68af6e 15#include <linux/user-return-notifier.h>
814e2c84
AI
16#include <linux/dmi.h>
17#include <linux/utsname.h>
90e24014
RW
18#include <linux/stackprotector.h>
19#include <linux/tick.h>
20#include <linux/cpuidle.h>
61613521 21#include <trace/events/power.h>
24f1e32c 22#include <linux/hw_breakpoint.h>
93789b32 23#include <asm/cpu.h>
d3ec5cae 24#include <asm/apic.h>
2c1b284e 25#include <asm/syscalls.h>
389d1fb1
JF
26#include <asm/idle.h>
27#include <asm/uaccess.h>
b253149b 28#include <asm/mwait.h>
78f7f1e5 29#include <asm/fpu/internal.h>
66cb5917 30#include <asm/debugreg.h>
90e24014 31#include <asm/nmi.h>
375074cc 32#include <asm/tlbflush.h>
8838eb6c 33#include <asm/mce.h>
9fda6a06 34#include <asm/vm86.h>
7b32aead 35#include <asm/switch_to.h>
90e24014 36
45046892
TG
37/*
38 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
39 * no more per-task TSS's. The TSS size is kept cacheline-aligned
40 * so they are allowed to end up in the .data..cacheline_aligned
41 * section. Since TSS's are completely CPU-local, we want them
42 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43 */
d0a0de21
AL
44__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
45 .x86_tss = {
d9e05cc5 46 .sp0 = TOP_OF_INIT_STACK,
d0a0de21
AL
47#ifdef CONFIG_X86_32
48 .ss0 = __KERNEL_DS,
49 .ss1 = __KERNEL_CS,
50 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
51#endif
52 },
53#ifdef CONFIG_X86_32
54 /*
55 * Note that the .io_bitmap member must be extra-big. This is because
56 * the CPU will access an additional byte beyond the end of the IO
57 * permission bitmap. The extra byte must be all 1 bits, and must
58 * be within the limit.
59 */
60 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
61#endif
2a41aa4f
AL
62#ifdef CONFIG_X86_32
63 .SYSENTER_stack_canary = STACK_END_MAGIC,
64#endif
d0a0de21 65};
de71ad2c 66EXPORT_PER_CPU_SYMBOL(cpu_tss);
45046892 67
90e24014
RW
68#ifdef CONFIG_X86_64
69static DEFINE_PER_CPU(unsigned char, is_idle);
70static ATOMIC_NOTIFIER_HEAD(idle_notifier);
71
72void idle_notifier_register(struct notifier_block *n)
73{
74 atomic_notifier_chain_register(&idle_notifier, n);
75}
76EXPORT_SYMBOL_GPL(idle_notifier_register);
77
78void idle_notifier_unregister(struct notifier_block *n)
79{
80 atomic_notifier_chain_unregister(&idle_notifier, n);
81}
82EXPORT_SYMBOL_GPL(idle_notifier_unregister);
83#endif
c1e3b377 84
55ccf3fe
SS
85/*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
61c4628b
SS
89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90{
5aaeb5c0 91 memcpy(dst, src, arch_task_struct_size);
2459ee86
AL
92#ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94#endif
f1853505 95
c69e098b 96 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
61c4628b 97}
7f424a8b 98
389d1fb1
JF
99/*
100 * Free current thread data structures etc..
101 */
e6464694 102void exit_thread(struct task_struct *tsk)
389d1fb1 103{
e6464694 104 struct thread_struct *t = &tsk->thread;
250981e6 105 unsigned long *bp = t->io_bitmap_ptr;
ca6787ba 106 struct fpu *fpu = &t->fpu;
389d1fb1 107
250981e6 108 if (bp) {
24933b82 109 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
389d1fb1 110
389d1fb1
JF
111 t->io_bitmap_ptr = NULL;
112 clear_thread_flag(TIF_IO_BITMAP);
113 /*
114 * Careful, clear this in the TSS too:
115 */
116 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
117 t->io_bitmap_max = 0;
118 put_cpu();
250981e6 119 kfree(bp);
389d1fb1 120 }
1dcc8d7b 121
9fda6a06
BG
122 free_vm86(t);
123
50338615 124 fpu__drop(fpu);
389d1fb1
JF
125}
126
127void flush_thread(void)
128{
129 struct task_struct *tsk = current;
130
24f1e32c 131 flush_ptrace_hw_breakpoint(tsk);
389d1fb1 132 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110d7f75 133
04c8e01d 134 fpu__clear(&tsk->thread.fpu);
389d1fb1
JF
135}
136
137static void hard_disable_TSC(void)
138{
375074cc 139 cr4_set_bits(X86_CR4_TSD);
389d1fb1
JF
140}
141
142void disable_TSC(void)
143{
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 hard_disable_TSC();
151 preempt_enable();
152}
153
154static void hard_enable_TSC(void)
155{
375074cc 156 cr4_clear_bits(X86_CR4_TSD);
389d1fb1
JF
157}
158
159static void enable_TSC(void)
160{
161 preempt_disable();
162 if (test_and_clear_thread_flag(TIF_NOTSC))
163 /*
164 * Must flip the CPU state synchronously with
165 * TIF_NOTSC in the current running context.
166 */
167 hard_enable_TSC();
168 preempt_enable();
169}
170
171int get_tsc_mode(unsigned long adr)
172{
173 unsigned int val;
174
175 if (test_thread_flag(TIF_NOTSC))
176 val = PR_TSC_SIGSEGV;
177 else
178 val = PR_TSC_ENABLE;
179
180 return put_user(val, (unsigned int __user *)adr);
181}
182
183int set_tsc_mode(unsigned int val)
184{
185 if (val == PR_TSC_SIGSEGV)
186 disable_TSC();
187 else if (val == PR_TSC_ENABLE)
188 enable_TSC();
189 else
190 return -EINVAL;
191
192 return 0;
193}
194
195void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
196 struct tss_struct *tss)
197{
198 struct thread_struct *prev, *next;
199
200 prev = &prev_p->thread;
201 next = &next_p->thread;
202
ea8e61b7
PZ
203 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
204 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
205 unsigned long debugctl = get_debugctlmsr();
206
207 debugctl &= ~DEBUGCTLMSR_BTF;
208 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
209 debugctl |= DEBUGCTLMSR_BTF;
210
211 update_debugctlmsr(debugctl);
212 }
389d1fb1 213
389d1fb1
JF
214 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
215 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
216 /* prev and next are different */
217 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
218 hard_disable_TSC();
219 else
220 hard_enable_TSC();
221 }
222
223 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
224 /*
225 * Copy the relevant range of the IO bitmap.
226 * Normally this is 128 bytes or less:
227 */
228 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
229 max(prev->io_bitmap_max, next->io_bitmap_max));
230 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
231 /*
232 * Clear any possible leftover bits:
233 */
234 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
235 }
7c68af6e 236 propagate_user_return_notify(prev_p, next_p);
389d1fb1
JF
237}
238
00dba564
TG
239/*
240 * Idle related variables and functions
241 */
d1896049 242unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
00dba564
TG
243EXPORT_SYMBOL(boot_option_idle_override);
244
a476bda3 245static void (*x86_idle)(void);
00dba564 246
90e24014
RW
247#ifndef CONFIG_SMP
248static inline void play_dead(void)
249{
250 BUG();
251}
252#endif
253
254#ifdef CONFIG_X86_64
255void enter_idle(void)
256{
c6ae41e7 257 this_cpu_write(is_idle, 1);
90e24014
RW
258 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
259}
260
261static void __exit_idle(void)
262{
263 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
264 return;
265 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
266}
267
268/* Called from interrupts to signify idle end */
269void exit_idle(void)
270{
271 /* idle loop has pid 0 */
272 if (current->pid)
273 return;
274 __exit_idle();
275}
276#endif
277
7d1a9417
TG
278void arch_cpu_idle_enter(void)
279{
280 local_touch_nmi();
281 enter_idle();
282}
90e24014 283
7d1a9417
TG
284void arch_cpu_idle_exit(void)
285{
286 __exit_idle();
287}
90e24014 288
7d1a9417
TG
289void arch_cpu_idle_dead(void)
290{
291 play_dead();
292}
90e24014 293
7d1a9417
TG
294/*
295 * Called from the generic idle code.
296 */
297void arch_cpu_idle(void)
298{
16f8b05a 299 x86_idle();
90e24014
RW
300}
301
00dba564 302/*
7d1a9417 303 * We use this if we don't have any better idle routine..
00dba564 304 */
6727ad9e 305void __cpuidle default_idle(void)
00dba564 306{
4d0e42cc 307 trace_cpu_idle_rcuidle(1, smp_processor_id());
7d1a9417 308 safe_halt();
4d0e42cc 309 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
00dba564 310}
60b8b1de 311#ifdef CONFIG_APM_MODULE
00dba564
TG
312EXPORT_SYMBOL(default_idle);
313#endif
314
6a377ddc
LB
315#ifdef CONFIG_XEN
316bool xen_set_default_idle(void)
e5fd47bf 317{
a476bda3 318 bool ret = !!x86_idle;
e5fd47bf 319
a476bda3 320 x86_idle = default_idle;
e5fd47bf
KRW
321
322 return ret;
323}
6a377ddc 324#endif
d3ec5cae
IV
325void stop_this_cpu(void *dummy)
326{
327 local_irq_disable();
328 /*
329 * Remove this CPU:
330 */
4f062896 331 set_cpu_online(smp_processor_id(), false);
d3ec5cae 332 disable_local_APIC();
8838eb6c 333 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
d3ec5cae 334
27be4570
LB
335 for (;;)
336 halt();
7f424a8b
PZ
337}
338
02c68a02
LB
339bool amd_e400_c1e_detected;
340EXPORT_SYMBOL(amd_e400_c1e_detected);
aa276e1c 341
02c68a02 342static cpumask_var_t amd_e400_c1e_mask;
4faac97d 343
02c68a02 344void amd_e400_remove_cpu(int cpu)
4faac97d 345{
02c68a02
LB
346 if (amd_e400_c1e_mask != NULL)
347 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
4faac97d
TG
348}
349
aa276e1c 350/*
02c68a02 351 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
aa276e1c
TG
352 * pending message MSR. If we detect C1E, then we handle it the same
353 * way as C3 power states (local apic timer and TSC stop)
354 */
02c68a02 355static void amd_e400_idle(void)
aa276e1c 356{
02c68a02 357 if (!amd_e400_c1e_detected) {
aa276e1c
TG
358 u32 lo, hi;
359
360 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
e8c534ec 361
aa276e1c 362 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
02c68a02 363 amd_e400_c1e_detected = true;
40fb1715 364 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
09bfeea1 365 mark_tsc_unstable("TSC halt in AMD C1E");
c767a54b 366 pr_info("System has AMD C1E enabled\n");
aa276e1c
TG
367 }
368 }
369
02c68a02 370 if (amd_e400_c1e_detected) {
aa276e1c
TG
371 int cpu = smp_processor_id();
372
02c68a02
LB
373 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
374 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
162a688e
TG
375 /* Force broadcast so ACPI can not interfere. */
376 tick_broadcast_force();
c767a54b 377 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
aa276e1c 378 }
435c350e 379 tick_broadcast_enter();
0beefa20 380
aa276e1c 381 default_idle();
0beefa20
TG
382
383 /*
384 * The switch back from broadcast mode needs to be
385 * called with interrupts disabled.
386 */
ea811747 387 local_irq_disable();
435c350e 388 tick_broadcast_exit();
ea811747 389 local_irq_enable();
aa276e1c
TG
390 } else
391 default_idle();
392}
393
b253149b
LB
394/*
395 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
396 * We can't rely on cpuidle installing MWAIT, because it will not load
397 * on systems that support only C1 -- so the boot default must be MWAIT.
398 *
399 * Some AMD machines are the opposite, they depend on using HALT.
400 *
401 * So for default C1, which is used during boot until cpuidle loads,
402 * use MWAIT-C1 on Intel HW that has it, else use HALT.
403 */
404static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
405{
406 if (c->x86_vendor != X86_VENDOR_INTEL)
407 return 0;
408
08e237fa 409 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
b253149b
LB
410 return 0;
411
412 return 1;
413}
414
415/*
0fb0328d
HR
416 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
417 * with interrupts enabled and no flags, which is backwards compatible with the
418 * original MWAIT implementation.
b253149b 419 */
6727ad9e 420static __cpuidle void mwait_idle(void)
b253149b 421{
f8e617f4 422 if (!current_set_polling_and_test()) {
e43d0189 423 trace_cpu_idle_rcuidle(1, smp_processor_id());
f8e617f4 424 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
ca59809f 425 mb(); /* quirk */
b253149b 426 clflush((void *)&current_thread_info()->flags);
ca59809f 427 mb(); /* quirk */
f8e617f4 428 }
b253149b
LB
429
430 __monitor((void *)&current_thread_info()->flags, 0, 0);
b253149b
LB
431 if (!need_resched())
432 __sti_mwait(0, 0);
433 else
434 local_irq_enable();
e43d0189 435 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
f8e617f4 436 } else {
b253149b 437 local_irq_enable();
f8e617f4
MG
438 }
439 __current_clr_polling();
b253149b
LB
440}
441
148f9bb8 442void select_idle_routine(const struct cpuinfo_x86 *c)
7f424a8b 443{
3e5095d1 444#ifdef CONFIG_SMP
7d1a9417 445 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
c767a54b 446 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
7f424a8b 447#endif
7d1a9417 448 if (x86_idle || boot_option_idle_override == IDLE_POLL)
6ddd2a27
TG
449 return;
450
7d7dc116 451 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
9d8888c2 452 /* E400: APIC timer interrupt does not wake up CPU from C1e */
c767a54b 453 pr_info("using AMD E400 aware idle routine\n");
a476bda3 454 x86_idle = amd_e400_idle;
b253149b
LB
455 } else if (prefer_mwait_c1_over_halt(c)) {
456 pr_info("using mwait in idle threads\n");
457 x86_idle = mwait_idle;
6ddd2a27 458 } else
a476bda3 459 x86_idle = default_idle;
7f424a8b
PZ
460}
461
02c68a02 462void __init init_amd_e400_c1e_mask(void)
30e1e6d1 463{
02c68a02 464 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
a476bda3 465 if (x86_idle == amd_e400_idle)
02c68a02 466 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
30e1e6d1
RR
467}
468
7f424a8b
PZ
469static int __init idle_setup(char *str)
470{
ab6bc3e3
CG
471 if (!str)
472 return -EINVAL;
473
7f424a8b 474 if (!strcmp(str, "poll")) {
c767a54b 475 pr_info("using polling idle threads\n");
d1896049 476 boot_option_idle_override = IDLE_POLL;
7d1a9417 477 cpu_idle_poll_ctrl(true);
d1896049 478 } else if (!strcmp(str, "halt")) {
c1e3b377
ZY
479 /*
480 * When the boot option of idle=halt is added, halt is
481 * forced to be used for CPU idle. In such case CPU C2/C3
482 * won't be used again.
483 * To continue to load the CPU idle driver, don't touch
484 * the boot_option_idle_override.
485 */
a476bda3 486 x86_idle = default_idle;
d1896049 487 boot_option_idle_override = IDLE_HALT;
da5e09a1
ZY
488 } else if (!strcmp(str, "nomwait")) {
489 /*
490 * If the boot option of "idle=nomwait" is added,
491 * it means that mwait will be disabled for CPU C2/C3
492 * states. In such case it won't touch the variable
493 * of boot_option_idle_override.
494 */
d1896049 495 boot_option_idle_override = IDLE_NOMWAIT;
c1e3b377 496 } else
7f424a8b
PZ
497 return -1;
498
7f424a8b
PZ
499 return 0;
500}
501early_param("idle", idle_setup);
502
9d62dcdf
AW
503unsigned long arch_align_stack(unsigned long sp)
504{
505 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
506 sp -= get_random_int() % 8192;
507 return sp & ~0xf;
508}
509
510unsigned long arch_randomize_brk(struct mm_struct *mm)
511{
512 unsigned long range_end = mm->brk + 0x02000000;
513 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
514}
515
ffcb043b
BG
516/*
517 * Return saved PC of a blocked thread.
518 * What is this good for? it will be always the scheduler or ret_from_fork.
519 */
520unsigned long thread_saved_pc(struct task_struct *tsk)
521{
522 struct inactive_task_frame *frame =
523 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
524 return READ_ONCE_NOCHECK(frame->ret_addr);
525}
526
7ba78053
TG
527/*
528 * Called from fs/proc with a reference on @p to find the function
529 * which called into schedule(). This needs to be done carefully
530 * because the task might wake up and we might look at a stack
531 * changing under us.
532 */
533unsigned long get_wchan(struct task_struct *p)
534{
74327a3e 535 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
7ba78053
TG
536 int count = 0;
537
538 if (!p || p == current || p->state == TASK_RUNNING)
539 return 0;
540
74327a3e
AL
541 if (!try_get_task_stack(p))
542 return 0;
543
7ba78053
TG
544 start = (unsigned long)task_stack_page(p);
545 if (!start)
74327a3e 546 goto out;
7ba78053
TG
547
548 /*
549 * Layout of the stack page:
550 *
551 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
552 * PADDING
553 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
554 * stack
15f4eae7 555 * ----------- bottom = start
7ba78053
TG
556 *
557 * The tasks stack pointer points at the location where the
558 * framepointer is stored. The data on the stack is:
559 * ... IP FP ... IP FP
560 *
561 * We need to read FP and IP, so we need to adjust the upper
562 * bound by another unsigned long.
563 */
564 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
565 top -= 2 * sizeof(unsigned long);
15f4eae7 566 bottom = start;
7ba78053
TG
567
568 sp = READ_ONCE(p->thread.sp);
569 if (sp < bottom || sp > top)
74327a3e 570 goto out;
7ba78053 571
7b32aead 572 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
7ba78053
TG
573 do {
574 if (fp < bottom || fp > top)
74327a3e 575 goto out;
f7d27c35 576 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
74327a3e
AL
577 if (!in_sched_functions(ip)) {
578 ret = ip;
579 goto out;
580 }
f7d27c35 581 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
7ba78053 582 } while (count++ < 16 && p->state != TASK_RUNNING);
74327a3e
AL
583
584out:
585 put_task_stack(p);
586 return ret;
7ba78053 587}