]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: add blk_queue_dead()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
1da177e4
LT
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
797e7dbb 156
143a87f4
TH
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
143a87f4
TH
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
7ba1ba12 168
143a87f4
TH
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
7ba1ba12 171
143a87f4
TH
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
3cca6dc1 200static void blk_delay_work(struct work_struct *work)
1da177e4 201{
3cca6dc1 202 struct request_queue *q;
1da177e4 203
3cca6dc1
JA
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
24ecfbe2 206 __blk_run_queue(q);
3cca6dc1 207 spin_unlock_irq(q->queue_lock);
1da177e4 208}
1da177e4
LT
209
210/**
3cca6dc1
JA
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
1da177e4
LT
214 *
215 * Description:
3cca6dc1
JA
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 221{
4521cc4e
JA
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
2ad8b1ef 224}
3cca6dc1 225EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 226
1da177e4
LT
227/**
228 * blk_start_queue - restart a previously stopped queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
165125e1 236void blk_start_queue(struct request_queue *q)
1da177e4 237{
a038e253
PBG
238 WARN_ON(!irqs_disabled());
239
75ad23bc 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 241 __blk_run_queue(q);
1da177e4 242}
1da177e4
LT
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
165125e1 247 * @q: The &struct request_queue in question
1da177e4
LT
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
165125e1 259void blk_stop_queue(struct request_queue *q)
1da177e4 260{
ad3d9d7e 261 __cancel_delayed_work(&q->delay_work);
75ad23bc 262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
59c51591 275 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
da527770
VG
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
1da177e4
LT
283 */
284void blk_sync_queue(struct request_queue *q)
285{
70ed28b9 286 del_timer_sync(&q->timeout);
3cca6dc1 287 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
288}
289EXPORT_SYMBOL(blk_sync_queue);
290
291/**
80a4b58e 292 * __blk_run_queue - run a single device queue
1da177e4 293 * @q: The queue to run
80a4b58e
JA
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 297 * held and interrupts disabled.
1da177e4 298 */
24ecfbe2 299void __blk_run_queue(struct request_queue *q)
1da177e4 300{
a538cd03
TH
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
c21e6beb 304 q->request_fn(q);
75ad23bc
NP
305}
306EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 307
24ecfbe2
CH
308/**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316void blk_run_queue_async(struct request_queue *q)
317{
3ec717b7
SL
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
24ecfbe2 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 321 }
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5
TH
349/**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
c9a929dd 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 353 *
c9a929dd
TH
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 357 */
c9a929dd 358void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
359{
360 while (true) {
361 int nr_rqs;
362
363 spin_lock_irq(q->queue_lock);
364
365 elv_drain_elevator(q);
c9a929dd
TH
366 if (drain_all)
367 blk_throtl_drain(q);
e3c78ca5
TH
368
369 __blk_run_queue(q);
c9a929dd
TH
370
371 if (drain_all)
372 nr_rqs = q->rq.count[0] + q->rq.count[1];
373 else
374 nr_rqs = q->rq.elvpriv;
e3c78ca5
TH
375
376 spin_unlock_irq(q->queue_lock);
377
378 if (!nr_rqs)
379 break;
380 msleep(10);
381 }
382}
383
c9a929dd
TH
384/**
385 * blk_cleanup_queue - shutdown a request queue
386 * @q: request queue to shutdown
387 *
388 * Mark @q DEAD, drain all pending requests, destroy and put it. All
389 * future requests will be failed immediately with -ENODEV.
c94a96ac 390 */
6728cb0e 391void blk_cleanup_queue(struct request_queue *q)
483f4afc 392{
c9a929dd 393 spinlock_t *lock = q->queue_lock;
e3335de9 394
c9a929dd 395 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 396 mutex_lock(&q->sysfs_lock);
75ad23bc 397 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
398
399 spin_lock_irq(lock);
400 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
401 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
402 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 403
777eb1bf
HR
404 if (q->queue_lock != &q->__queue_lock)
405 q->queue_lock = &q->__queue_lock;
da527770 406
c9a929dd
TH
407 spin_unlock_irq(lock);
408 mutex_unlock(&q->sysfs_lock);
409
6dd9ad7d
TH
410 /*
411 * Drain all requests queued before DEAD marking. The caller might
412 * be trying to tear down @q before its elevator is initialized, in
413 * which case we don't want to call into draining.
414 */
415 if (q->elevator)
416 blk_drain_queue(q, true);
c9a929dd
TH
417
418 /* @q won't process any more request, flush async actions */
419 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
420 blk_sync_queue(q);
421
422 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
423 blk_put_queue(q);
424}
1da177e4
LT
425EXPORT_SYMBOL(blk_cleanup_queue);
426
165125e1 427static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
428{
429 struct request_list *rl = &q->rq;
430
1abec4fd
MS
431 if (unlikely(rl->rq_pool))
432 return 0;
433
1faa16d2
JA
434 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
435 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 436 rl->elvpriv = 0;
1faa16d2
JA
437 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
438 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 439
1946089a
CL
440 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
441 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
442
443 if (!rl->rq_pool)
444 return -ENOMEM;
445
446 return 0;
447}
448
165125e1 449struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 450{
1946089a
CL
451 return blk_alloc_queue_node(gfp_mask, -1);
452}
453EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 454
165125e1 455struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 456{
165125e1 457 struct request_queue *q;
e0bf68dd 458 int err;
1946089a 459
8324aa91 460 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 461 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
462 if (!q)
463 return NULL;
464
0989a025
JA
465 q->backing_dev_info.ra_pages =
466 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
467 q->backing_dev_info.state = 0;
468 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 469 q->backing_dev_info.name = "block";
0989a025 470
e0bf68dd
PZ
471 err = bdi_init(&q->backing_dev_info);
472 if (err) {
8324aa91 473 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
474 return NULL;
475 }
476
e43473b7
VG
477 if (blk_throtl_init(q)) {
478 kmem_cache_free(blk_requestq_cachep, q);
479 return NULL;
480 }
481
31373d09
MG
482 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
483 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
484 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
485 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
486 INIT_LIST_HEAD(&q->flush_queue[0]);
487 INIT_LIST_HEAD(&q->flush_queue[1]);
488 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 489 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 490
8324aa91 491 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 492
483f4afc 493 mutex_init(&q->sysfs_lock);
e7e72bf6 494 spin_lock_init(&q->__queue_lock);
483f4afc 495
c94a96ac
VG
496 /*
497 * By default initialize queue_lock to internal lock and driver can
498 * override it later if need be.
499 */
500 q->queue_lock = &q->__queue_lock;
501
1da177e4
LT
502 return q;
503}
1946089a 504EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
505
506/**
507 * blk_init_queue - prepare a request queue for use with a block device
508 * @rfn: The function to be called to process requests that have been
509 * placed on the queue.
510 * @lock: Request queue spin lock
511 *
512 * Description:
513 * If a block device wishes to use the standard request handling procedures,
514 * which sorts requests and coalesces adjacent requests, then it must
515 * call blk_init_queue(). The function @rfn will be called when there
516 * are requests on the queue that need to be processed. If the device
517 * supports plugging, then @rfn may not be called immediately when requests
518 * are available on the queue, but may be called at some time later instead.
519 * Plugged queues are generally unplugged when a buffer belonging to one
520 * of the requests on the queue is needed, or due to memory pressure.
521 *
522 * @rfn is not required, or even expected, to remove all requests off the
523 * queue, but only as many as it can handle at a time. If it does leave
524 * requests on the queue, it is responsible for arranging that the requests
525 * get dealt with eventually.
526 *
527 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
528 * request queue; this lock will be taken also from interrupt context, so irq
529 * disabling is needed for it.
1da177e4 530 *
710027a4 531 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
532 * it didn't succeed.
533 *
534 * Note:
535 * blk_init_queue() must be paired with a blk_cleanup_queue() call
536 * when the block device is deactivated (such as at module unload).
537 **/
1946089a 538
165125e1 539struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 540{
1946089a
CL
541 return blk_init_queue_node(rfn, lock, -1);
542}
543EXPORT_SYMBOL(blk_init_queue);
544
165125e1 545struct request_queue *
1946089a
CL
546blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
547{
c86d1b8a 548 struct request_queue *uninit_q, *q;
1da177e4 549
c86d1b8a
MS
550 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
551 if (!uninit_q)
552 return NULL;
553
554 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
555 if (!q)
556 blk_cleanup_queue(uninit_q);
557
558 return q;
01effb0d
MS
559}
560EXPORT_SYMBOL(blk_init_queue_node);
561
562struct request_queue *
563blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
564 spinlock_t *lock)
565{
566 return blk_init_allocated_queue_node(q, rfn, lock, -1);
567}
568EXPORT_SYMBOL(blk_init_allocated_queue);
569
570struct request_queue *
571blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
572 spinlock_t *lock, int node_id)
573{
1da177e4
LT
574 if (!q)
575 return NULL;
576
1946089a 577 q->node = node_id;
c86d1b8a 578 if (blk_init_free_list(q))
8669aafd 579 return NULL;
1da177e4
LT
580
581 q->request_fn = rfn;
1da177e4 582 q->prep_rq_fn = NULL;
28018c24 583 q->unprep_rq_fn = NULL;
bc58ba94 584 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
585
586 /* Override internal queue lock with supplied lock pointer */
587 if (lock)
588 q->queue_lock = lock;
1da177e4 589
f3b144aa
JA
590 /*
591 * This also sets hw/phys segments, boundary and size
592 */
c20e8de2 593 blk_queue_make_request(q, blk_queue_bio);
1da177e4 594
44ec9542
AS
595 q->sg_reserved_size = INT_MAX;
596
1da177e4
LT
597 /*
598 * all done
599 */
600 if (!elevator_init(q, NULL)) {
601 blk_queue_congestion_threshold(q);
602 return q;
603 }
604
1da177e4
LT
605 return NULL;
606}
01effb0d 607EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 608
165125e1 609int blk_get_queue(struct request_queue *q)
1da177e4 610{
34f6055c 611 if (likely(!blk_queue_dead(q))) {
483f4afc 612 kobject_get(&q->kobj);
1da177e4
LT
613 return 0;
614 }
615
616 return 1;
617}
d86e0e83 618EXPORT_SYMBOL(blk_get_queue);
1da177e4 619
165125e1 620static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 621{
4aff5e23 622 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 623 elv_put_request(q, rq);
1da177e4
LT
624 mempool_free(rq, q->rq.rq_pool);
625}
626
1ea25ecb 627static struct request *
75eb6c37 628blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
629{
630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
631
632 if (!rq)
633 return NULL;
634
2a4aa30c 635 blk_rq_init(q, rq);
1afb20f3 636
42dad764 637 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 638
75eb6c37
TH
639 if ((flags & REQ_ELVPRIV) &&
640 unlikely(elv_set_request(q, rq, gfp_mask))) {
641 mempool_free(rq, q->rq.rq_pool);
642 return NULL;
cb98fc8b 643 }
1da177e4 644
cb98fc8b 645 return rq;
1da177e4
LT
646}
647
648/*
649 * ioc_batching returns true if the ioc is a valid batching request and
650 * should be given priority access to a request.
651 */
165125e1 652static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
653{
654 if (!ioc)
655 return 0;
656
657 /*
658 * Make sure the process is able to allocate at least 1 request
659 * even if the batch times out, otherwise we could theoretically
660 * lose wakeups.
661 */
662 return ioc->nr_batch_requests == q->nr_batching ||
663 (ioc->nr_batch_requests > 0
664 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
665}
666
667/*
668 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
669 * will cause the process to be a "batcher" on all queues in the system. This
670 * is the behaviour we want though - once it gets a wakeup it should be given
671 * a nice run.
672 */
165125e1 673static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
674{
675 if (!ioc || ioc_batching(q, ioc))
676 return;
677
678 ioc->nr_batch_requests = q->nr_batching;
679 ioc->last_waited = jiffies;
680}
681
1faa16d2 682static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
683{
684 struct request_list *rl = &q->rq;
685
1faa16d2
JA
686 if (rl->count[sync] < queue_congestion_off_threshold(q))
687 blk_clear_queue_congested(q, sync);
1da177e4 688
1faa16d2
JA
689 if (rl->count[sync] + 1 <= q->nr_requests) {
690 if (waitqueue_active(&rl->wait[sync]))
691 wake_up(&rl->wait[sync]);
1da177e4 692
1faa16d2 693 blk_clear_queue_full(q, sync);
1da177e4
LT
694 }
695}
696
697/*
698 * A request has just been released. Account for it, update the full and
699 * congestion status, wake up any waiters. Called under q->queue_lock.
700 */
75eb6c37 701static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
702{
703 struct request_list *rl = &q->rq;
75eb6c37 704 int sync = rw_is_sync(flags);
1da177e4 705
1faa16d2 706 rl->count[sync]--;
75eb6c37 707 if (flags & REQ_ELVPRIV)
cb98fc8b 708 rl->elvpriv--;
1da177e4 709
1faa16d2 710 __freed_request(q, sync);
1da177e4 711
1faa16d2
JA
712 if (unlikely(rl->starved[sync ^ 1]))
713 __freed_request(q, sync ^ 1);
1da177e4
LT
714}
715
9d5a4e94
MS
716/*
717 * Determine if elevator data should be initialized when allocating the
718 * request associated with @bio.
719 */
720static bool blk_rq_should_init_elevator(struct bio *bio)
721{
722 if (!bio)
723 return true;
724
725 /*
726 * Flush requests do not use the elevator so skip initialization.
727 * This allows a request to share the flush and elevator data.
728 */
729 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
730 return false;
731
732 return true;
733}
734
da8303c6
TH
735/**
736 * get_request - get a free request
737 * @q: request_queue to allocate request from
738 * @rw_flags: RW and SYNC flags
739 * @bio: bio to allocate request for (can be %NULL)
740 * @gfp_mask: allocation mask
741 *
742 * Get a free request from @q. This function may fail under memory
743 * pressure or if @q is dead.
744 *
745 * Must be callled with @q->queue_lock held and,
746 * Returns %NULL on failure, with @q->queue_lock held.
747 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 748 */
165125e1 749static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 750 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
751{
752 struct request *rq = NULL;
753 struct request_list *rl = &q->rq;
88ee5ef1 754 struct io_context *ioc = NULL;
1faa16d2 755 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 756 int may_queue;
88ee5ef1 757
34f6055c 758 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
759 return NULL;
760
7749a8d4 761 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
762 if (may_queue == ELV_MQUEUE_NO)
763 goto rq_starved;
764
1faa16d2
JA
765 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
766 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 767 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
768 /*
769 * The queue will fill after this allocation, so set
770 * it as full, and mark this process as "batching".
771 * This process will be allowed to complete a batch of
772 * requests, others will be blocked.
773 */
1faa16d2 774 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 775 ioc_set_batching(q, ioc);
1faa16d2 776 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
777 } else {
778 if (may_queue != ELV_MQUEUE_MUST
779 && !ioc_batching(q, ioc)) {
780 /*
781 * The queue is full and the allocating
782 * process is not a "batcher", and not
783 * exempted by the IO scheduler
784 */
785 goto out;
786 }
787 }
1da177e4 788 }
1faa16d2 789 blk_set_queue_congested(q, is_sync);
1da177e4
LT
790 }
791
082cf69e
JA
792 /*
793 * Only allow batching queuers to allocate up to 50% over the defined
794 * limit of requests, otherwise we could have thousands of requests
795 * allocated with any setting of ->nr_requests
796 */
1faa16d2 797 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 798 goto out;
fd782a4a 799
1faa16d2
JA
800 rl->count[is_sync]++;
801 rl->starved[is_sync] = 0;
cb98fc8b 802
75eb6c37
TH
803 if (blk_rq_should_init_elevator(bio) &&
804 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
805 rw_flags |= REQ_ELVPRIV;
806 rl->elvpriv++;
9d5a4e94 807 }
cb98fc8b 808
f253b86b
JA
809 if (blk_queue_io_stat(q))
810 rw_flags |= REQ_IO_STAT;
1da177e4
LT
811 spin_unlock_irq(q->queue_lock);
812
75eb6c37 813 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 814 if (unlikely(!rq)) {
1da177e4
LT
815 /*
816 * Allocation failed presumably due to memory. Undo anything
817 * we might have messed up.
818 *
819 * Allocating task should really be put onto the front of the
820 * wait queue, but this is pretty rare.
821 */
822 spin_lock_irq(q->queue_lock);
75eb6c37 823 freed_request(q, rw_flags);
1da177e4
LT
824
825 /*
826 * in the very unlikely event that allocation failed and no
827 * requests for this direction was pending, mark us starved
828 * so that freeing of a request in the other direction will
829 * notice us. another possible fix would be to split the
830 * rq mempool into READ and WRITE
831 */
832rq_starved:
1faa16d2
JA
833 if (unlikely(rl->count[is_sync] == 0))
834 rl->starved[is_sync] = 1;
1da177e4 835
1da177e4
LT
836 goto out;
837 }
838
88ee5ef1
JA
839 /*
840 * ioc may be NULL here, and ioc_batching will be false. That's
841 * OK, if the queue is under the request limit then requests need
842 * not count toward the nr_batch_requests limit. There will always
843 * be some limit enforced by BLK_BATCH_TIME.
844 */
1da177e4
LT
845 if (ioc_batching(q, ioc))
846 ioc->nr_batch_requests--;
6728cb0e 847
1faa16d2 848 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 849out:
1da177e4
LT
850 return rq;
851}
852
da8303c6
TH
853/**
854 * get_request_wait - get a free request with retry
855 * @q: request_queue to allocate request from
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
858 *
859 * Get a free request from @q. This function keeps retrying under memory
860 * pressure and fails iff @q is dead.
d6344532 861 *
da8303c6
TH
862 * Must be callled with @q->queue_lock held and,
863 * Returns %NULL on failure, with @q->queue_lock held.
864 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 865 */
165125e1 866static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 867 struct bio *bio)
1da177e4 868{
1faa16d2 869 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
870 struct request *rq;
871
7749a8d4 872 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
873 while (!rq) {
874 DEFINE_WAIT(wait);
05caf8db 875 struct io_context *ioc;
1da177e4
LT
876 struct request_list *rl = &q->rq;
877
34f6055c 878 if (unlikely(blk_queue_dead(q)))
da8303c6
TH
879 return NULL;
880
1faa16d2 881 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
882 TASK_UNINTERRUPTIBLE);
883
1faa16d2 884 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 885
05caf8db
ZY
886 spin_unlock_irq(q->queue_lock);
887 io_schedule();
1da177e4 888
05caf8db
ZY
889 /*
890 * After sleeping, we become a "batching" process and
891 * will be able to allocate at least one request, and
892 * up to a big batch of them for a small period time.
893 * See ioc_batching, ioc_set_batching
894 */
895 ioc = current_io_context(GFP_NOIO, q->node);
896 ioc_set_batching(q, ioc);
d6344532 897
05caf8db 898 spin_lock_irq(q->queue_lock);
1faa16d2 899 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
900
901 rq = get_request(q, rw_flags, bio, GFP_NOIO);
902 };
1da177e4
LT
903
904 return rq;
905}
906
165125e1 907struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
908{
909 struct request *rq;
910
911 BUG_ON(rw != READ && rw != WRITE);
912
d6344532 913 spin_lock_irq(q->queue_lock);
da8303c6 914 if (gfp_mask & __GFP_WAIT)
22e2c507 915 rq = get_request_wait(q, rw, NULL);
da8303c6 916 else
22e2c507 917 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
918 if (!rq)
919 spin_unlock_irq(q->queue_lock);
d6344532 920 /* q->queue_lock is unlocked at this point */
1da177e4
LT
921
922 return rq;
923}
1da177e4
LT
924EXPORT_SYMBOL(blk_get_request);
925
dc72ef4a 926/**
79eb63e9 927 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 928 * @q: target request queue
79eb63e9
BH
929 * @bio: The bio describing the memory mappings that will be submitted for IO.
930 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 931 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 932 *
79eb63e9
BH
933 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
934 * type commands. Where the struct request needs to be farther initialized by
935 * the caller. It is passed a &struct bio, which describes the memory info of
936 * the I/O transfer.
dc72ef4a 937 *
79eb63e9
BH
938 * The caller of blk_make_request must make sure that bi_io_vec
939 * are set to describe the memory buffers. That bio_data_dir() will return
940 * the needed direction of the request. (And all bio's in the passed bio-chain
941 * are properly set accordingly)
942 *
943 * If called under none-sleepable conditions, mapped bio buffers must not
944 * need bouncing, by calling the appropriate masked or flagged allocator,
945 * suitable for the target device. Otherwise the call to blk_queue_bounce will
946 * BUG.
53674ac5
JA
947 *
948 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
949 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
950 * anything but the first bio in the chain. Otherwise you risk waiting for IO
951 * completion of a bio that hasn't been submitted yet, thus resulting in a
952 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
953 * of bio_alloc(), as that avoids the mempool deadlock.
954 * If possible a big IO should be split into smaller parts when allocation
955 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 956 */
79eb63e9
BH
957struct request *blk_make_request(struct request_queue *q, struct bio *bio,
958 gfp_t gfp_mask)
dc72ef4a 959{
79eb63e9
BH
960 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
961
962 if (unlikely(!rq))
963 return ERR_PTR(-ENOMEM);
964
965 for_each_bio(bio) {
966 struct bio *bounce_bio = bio;
967 int ret;
968
969 blk_queue_bounce(q, &bounce_bio);
970 ret = blk_rq_append_bio(q, rq, bounce_bio);
971 if (unlikely(ret)) {
972 blk_put_request(rq);
973 return ERR_PTR(ret);
974 }
975 }
976
977 return rq;
dc72ef4a 978}
79eb63e9 979EXPORT_SYMBOL(blk_make_request);
dc72ef4a 980
1da177e4
LT
981/**
982 * blk_requeue_request - put a request back on queue
983 * @q: request queue where request should be inserted
984 * @rq: request to be inserted
985 *
986 * Description:
987 * Drivers often keep queueing requests until the hardware cannot accept
988 * more, when that condition happens we need to put the request back
989 * on the queue. Must be called with queue lock held.
990 */
165125e1 991void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 992{
242f9dcb
JA
993 blk_delete_timer(rq);
994 blk_clear_rq_complete(rq);
5f3ea37c 995 trace_block_rq_requeue(q, rq);
2056a782 996
1da177e4
LT
997 if (blk_rq_tagged(rq))
998 blk_queue_end_tag(q, rq);
999
ba396a6c
JB
1000 BUG_ON(blk_queued_rq(rq));
1001
1da177e4
LT
1002 elv_requeue_request(q, rq);
1003}
1da177e4
LT
1004EXPORT_SYMBOL(blk_requeue_request);
1005
73c10101
JA
1006static void add_acct_request(struct request_queue *q, struct request *rq,
1007 int where)
1008{
1009 drive_stat_acct(rq, 1);
7eaceacc 1010 __elv_add_request(q, rq, where);
73c10101
JA
1011}
1012
074a7aca
TH
1013static void part_round_stats_single(int cpu, struct hd_struct *part,
1014 unsigned long now)
1015{
1016 if (now == part->stamp)
1017 return;
1018
316d315b 1019 if (part_in_flight(part)) {
074a7aca 1020 __part_stat_add(cpu, part, time_in_queue,
316d315b 1021 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1022 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1023 }
1024 part->stamp = now;
1025}
1026
1027/**
496aa8a9
RD
1028 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1029 * @cpu: cpu number for stats access
1030 * @part: target partition
1da177e4
LT
1031 *
1032 * The average IO queue length and utilisation statistics are maintained
1033 * by observing the current state of the queue length and the amount of
1034 * time it has been in this state for.
1035 *
1036 * Normally, that accounting is done on IO completion, but that can result
1037 * in more than a second's worth of IO being accounted for within any one
1038 * second, leading to >100% utilisation. To deal with that, we call this
1039 * function to do a round-off before returning the results when reading
1040 * /proc/diskstats. This accounts immediately for all queue usage up to
1041 * the current jiffies and restarts the counters again.
1042 */
c9959059 1043void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1044{
1045 unsigned long now = jiffies;
1046
074a7aca
TH
1047 if (part->partno)
1048 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1049 part_round_stats_single(cpu, part, now);
6f2576af 1050}
074a7aca 1051EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1052
1da177e4
LT
1053/*
1054 * queue lock must be held
1055 */
165125e1 1056void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1057{
1da177e4
LT
1058 if (unlikely(!q))
1059 return;
1060 if (unlikely(--req->ref_count))
1061 return;
1062
8922e16c
TH
1063 elv_completed_request(q, req);
1064
1cd96c24
BH
1065 /* this is a bio leak */
1066 WARN_ON(req->bio != NULL);
1067
1da177e4
LT
1068 /*
1069 * Request may not have originated from ll_rw_blk. if not,
1070 * it didn't come out of our reserved rq pools
1071 */
49171e5c 1072 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1073 unsigned int flags = req->cmd_flags;
1da177e4 1074
1da177e4 1075 BUG_ON(!list_empty(&req->queuelist));
9817064b 1076 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1077
1078 blk_free_request(q, req);
75eb6c37 1079 freed_request(q, flags);
1da177e4
LT
1080 }
1081}
6e39b69e
MC
1082EXPORT_SYMBOL_GPL(__blk_put_request);
1083
1da177e4
LT
1084void blk_put_request(struct request *req)
1085{
8922e16c 1086 unsigned long flags;
165125e1 1087 struct request_queue *q = req->q;
8922e16c 1088
52a93ba8
FT
1089 spin_lock_irqsave(q->queue_lock, flags);
1090 __blk_put_request(q, req);
1091 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1092}
1da177e4
LT
1093EXPORT_SYMBOL(blk_put_request);
1094
66ac0280
CH
1095/**
1096 * blk_add_request_payload - add a payload to a request
1097 * @rq: request to update
1098 * @page: page backing the payload
1099 * @len: length of the payload.
1100 *
1101 * This allows to later add a payload to an already submitted request by
1102 * a block driver. The driver needs to take care of freeing the payload
1103 * itself.
1104 *
1105 * Note that this is a quite horrible hack and nothing but handling of
1106 * discard requests should ever use it.
1107 */
1108void blk_add_request_payload(struct request *rq, struct page *page,
1109 unsigned int len)
1110{
1111 struct bio *bio = rq->bio;
1112
1113 bio->bi_io_vec->bv_page = page;
1114 bio->bi_io_vec->bv_offset = 0;
1115 bio->bi_io_vec->bv_len = len;
1116
1117 bio->bi_size = len;
1118 bio->bi_vcnt = 1;
1119 bio->bi_phys_segments = 1;
1120
1121 rq->__data_len = rq->resid_len = len;
1122 rq->nr_phys_segments = 1;
1123 rq->buffer = bio_data(bio);
1124}
1125EXPORT_SYMBOL_GPL(blk_add_request_payload);
1126
73c10101
JA
1127static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1128 struct bio *bio)
1129{
1130 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1131
73c10101
JA
1132 if (!ll_back_merge_fn(q, req, bio))
1133 return false;
1134
1135 trace_block_bio_backmerge(q, bio);
1136
1137 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1138 blk_rq_set_mixed_merge(req);
1139
1140 req->biotail->bi_next = bio;
1141 req->biotail = bio;
1142 req->__data_len += bio->bi_size;
1143 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1144
1145 drive_stat_acct(req, 0);
95cf3dd9 1146 elv_bio_merged(q, req, bio);
73c10101
JA
1147 return true;
1148}
1149
1150static bool bio_attempt_front_merge(struct request_queue *q,
1151 struct request *req, struct bio *bio)
1152{
1153 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1154
73c10101
JA
1155 if (!ll_front_merge_fn(q, req, bio))
1156 return false;
1157
1158 trace_block_bio_frontmerge(q, bio);
1159
1160 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1161 blk_rq_set_mixed_merge(req);
1162
73c10101
JA
1163 bio->bi_next = req->bio;
1164 req->bio = bio;
1165
1166 /*
1167 * may not be valid. if the low level driver said
1168 * it didn't need a bounce buffer then it better
1169 * not touch req->buffer either...
1170 */
1171 req->buffer = bio_data(bio);
1172 req->__sector = bio->bi_sector;
1173 req->__data_len += bio->bi_size;
1174 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1175
1176 drive_stat_acct(req, 0);
95cf3dd9 1177 elv_bio_merged(q, req, bio);
73c10101
JA
1178 return true;
1179}
1180
bd87b589
TH
1181/**
1182 * attempt_plug_merge - try to merge with %current's plugged list
1183 * @q: request_queue new bio is being queued at
1184 * @bio: new bio being queued
1185 * @request_count: out parameter for number of traversed plugged requests
1186 *
1187 * Determine whether @bio being queued on @q can be merged with a request
1188 * on %current's plugged list. Returns %true if merge was successful,
1189 * otherwise %false.
1190 *
1191 * This function is called without @q->queue_lock; however, elevator is
1192 * accessed iff there already are requests on the plugged list which in
1193 * turn guarantees validity of the elevator.
1194 *
1195 * Note that, on successful merge, elevator operation
1196 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1197 * must be ready for this.
73c10101 1198 */
bd87b589
TH
1199static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1200 unsigned int *request_count)
73c10101
JA
1201{
1202 struct blk_plug *plug;
1203 struct request *rq;
1204 bool ret = false;
1205
bd87b589 1206 plug = current->plug;
73c10101
JA
1207 if (!plug)
1208 goto out;
56ebdaf2 1209 *request_count = 0;
73c10101
JA
1210
1211 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1212 int el_ret;
1213
56ebdaf2
SL
1214 (*request_count)++;
1215
73c10101
JA
1216 if (rq->q != q)
1217 continue;
1218
1219 el_ret = elv_try_merge(rq, bio);
1220 if (el_ret == ELEVATOR_BACK_MERGE) {
1221 ret = bio_attempt_back_merge(q, rq, bio);
1222 if (ret)
1223 break;
1224 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1225 ret = bio_attempt_front_merge(q, rq, bio);
1226 if (ret)
1227 break;
1228 }
1229 }
1230out:
1231 return ret;
1232}
1233
86db1e29 1234void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1235{
4aff5e23 1236 req->cmd_type = REQ_TYPE_FS;
52d9e675 1237
7b6d91da
CH
1238 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1239 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1240 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1241
52d9e675 1242 req->errors = 0;
a2dec7b3 1243 req->__sector = bio->bi_sector;
52d9e675 1244 req->ioprio = bio_prio(bio);
bc1c56fd 1245 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1246}
1247
5a7bbad2 1248void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1249{
5e00d1b5 1250 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1251 struct blk_plug *plug;
1252 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1253 struct request *req;
56ebdaf2 1254 unsigned int request_count = 0;
1da177e4 1255
1da177e4
LT
1256 /*
1257 * low level driver can indicate that it wants pages above a
1258 * certain limit bounced to low memory (ie for highmem, or even
1259 * ISA dma in theory)
1260 */
1261 blk_queue_bounce(q, &bio);
1262
4fed947c 1263 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1264 spin_lock_irq(q->queue_lock);
ae1b1539 1265 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1266 goto get_rq;
1267 }
1268
73c10101
JA
1269 /*
1270 * Check if we can merge with the plugged list before grabbing
1271 * any locks.
1272 */
bd87b589 1273 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1274 return;
1da177e4 1275
73c10101 1276 spin_lock_irq(q->queue_lock);
2056a782 1277
73c10101
JA
1278 el_ret = elv_merge(q, &req, bio);
1279 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1280 if (bio_attempt_back_merge(q, req, bio)) {
1281 if (!attempt_back_merge(q, req))
1282 elv_merged_request(q, req, el_ret);
1283 goto out_unlock;
1284 }
1285 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1286 if (bio_attempt_front_merge(q, req, bio)) {
1287 if (!attempt_front_merge(q, req))
1288 elv_merged_request(q, req, el_ret);
1289 goto out_unlock;
80a761fd 1290 }
1da177e4
LT
1291 }
1292
450991bc 1293get_rq:
7749a8d4
JA
1294 /*
1295 * This sync check and mask will be re-done in init_request_from_bio(),
1296 * but we need to set it earlier to expose the sync flag to the
1297 * rq allocator and io schedulers.
1298 */
1299 rw_flags = bio_data_dir(bio);
1300 if (sync)
7b6d91da 1301 rw_flags |= REQ_SYNC;
7749a8d4 1302
1da177e4 1303 /*
450991bc 1304 * Grab a free request. This is might sleep but can not fail.
d6344532 1305 * Returns with the queue unlocked.
450991bc 1306 */
7749a8d4 1307 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1308 if (unlikely(!req)) {
1309 bio_endio(bio, -ENODEV); /* @q is dead */
1310 goto out_unlock;
1311 }
d6344532 1312
450991bc
NP
1313 /*
1314 * After dropping the lock and possibly sleeping here, our request
1315 * may now be mergeable after it had proven unmergeable (above).
1316 * We don't worry about that case for efficiency. It won't happen
1317 * often, and the elevators are able to handle it.
1da177e4 1318 */
52d9e675 1319 init_request_from_bio(req, bio);
1da177e4 1320
9562ad9a 1321 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1322 req->cpu = raw_smp_processor_id();
73c10101
JA
1323
1324 plug = current->plug;
721a9602 1325 if (plug) {
dc6d36c9
JA
1326 /*
1327 * If this is the first request added after a plug, fire
1328 * of a plug trace. If others have been added before, check
1329 * if we have multiple devices in this plug. If so, make a
1330 * note to sort the list before dispatch.
1331 */
1332 if (list_empty(&plug->list))
1333 trace_block_plug(q);
3540d5e8
SL
1334 else {
1335 if (!plug->should_sort) {
1336 struct request *__rq;
73c10101 1337
3540d5e8
SL
1338 __rq = list_entry_rq(plug->list.prev);
1339 if (__rq->q != q)
1340 plug->should_sort = 1;
1341 }
019ceb7d 1342 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1343 blk_flush_plug_list(plug, false);
019ceb7d
SL
1344 trace_block_plug(q);
1345 }
73c10101 1346 }
73c10101
JA
1347 list_add_tail(&req->queuelist, &plug->list);
1348 drive_stat_acct(req, 1);
1349 } else {
1350 spin_lock_irq(q->queue_lock);
1351 add_acct_request(q, req, where);
24ecfbe2 1352 __blk_run_queue(q);
73c10101
JA
1353out_unlock:
1354 spin_unlock_irq(q->queue_lock);
1355 }
1da177e4 1356}
c20e8de2 1357EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1358
1359/*
1360 * If bio->bi_dev is a partition, remap the location
1361 */
1362static inline void blk_partition_remap(struct bio *bio)
1363{
1364 struct block_device *bdev = bio->bi_bdev;
1365
bf2de6f5 1366 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1367 struct hd_struct *p = bdev->bd_part;
1368
1da177e4
LT
1369 bio->bi_sector += p->start_sect;
1370 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1371
d07335e5
MS
1372 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1373 bdev->bd_dev,
1374 bio->bi_sector - p->start_sect);
1da177e4
LT
1375 }
1376}
1377
1da177e4
LT
1378static void handle_bad_sector(struct bio *bio)
1379{
1380 char b[BDEVNAME_SIZE];
1381
1382 printk(KERN_INFO "attempt to access beyond end of device\n");
1383 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1384 bdevname(bio->bi_bdev, b),
1385 bio->bi_rw,
1386 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1387 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1388
1389 set_bit(BIO_EOF, &bio->bi_flags);
1390}
1391
c17bb495
AM
1392#ifdef CONFIG_FAIL_MAKE_REQUEST
1393
1394static DECLARE_FAULT_ATTR(fail_make_request);
1395
1396static int __init setup_fail_make_request(char *str)
1397{
1398 return setup_fault_attr(&fail_make_request, str);
1399}
1400__setup("fail_make_request=", setup_fail_make_request);
1401
b2c9cd37 1402static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1403{
b2c9cd37 1404 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1405}
1406
1407static int __init fail_make_request_debugfs(void)
1408{
dd48c085
AM
1409 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1410 NULL, &fail_make_request);
1411
1412 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1413}
1414
1415late_initcall(fail_make_request_debugfs);
1416
1417#else /* CONFIG_FAIL_MAKE_REQUEST */
1418
b2c9cd37
AM
1419static inline bool should_fail_request(struct hd_struct *part,
1420 unsigned int bytes)
c17bb495 1421{
b2c9cd37 1422 return false;
c17bb495
AM
1423}
1424
1425#endif /* CONFIG_FAIL_MAKE_REQUEST */
1426
c07e2b41
JA
1427/*
1428 * Check whether this bio extends beyond the end of the device.
1429 */
1430static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1431{
1432 sector_t maxsector;
1433
1434 if (!nr_sectors)
1435 return 0;
1436
1437 /* Test device or partition size, when known. */
77304d2a 1438 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1439 if (maxsector) {
1440 sector_t sector = bio->bi_sector;
1441
1442 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1443 /*
1444 * This may well happen - the kernel calls bread()
1445 * without checking the size of the device, e.g., when
1446 * mounting a device.
1447 */
1448 handle_bad_sector(bio);
1449 return 1;
1450 }
1451 }
1452
1453 return 0;
1454}
1455
27a84d54
CH
1456static noinline_for_stack bool
1457generic_make_request_checks(struct bio *bio)
1da177e4 1458{
165125e1 1459 struct request_queue *q;
5a7bbad2 1460 int nr_sectors = bio_sectors(bio);
51fd77bd 1461 int err = -EIO;
5a7bbad2
CH
1462 char b[BDEVNAME_SIZE];
1463 struct hd_struct *part;
1da177e4
LT
1464
1465 might_sleep();
1da177e4 1466
c07e2b41
JA
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1da177e4 1469
5a7bbad2
CH
1470 q = bdev_get_queue(bio->bi_bdev);
1471 if (unlikely(!q)) {
1472 printk(KERN_ERR
1473 "generic_make_request: Trying to access "
1474 "nonexistent block-device %s (%Lu)\n",
1475 bdevname(bio->bi_bdev, b),
1476 (long long) bio->bi_sector);
1477 goto end_io;
1478 }
c17bb495 1479
5a7bbad2
CH
1480 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1481 nr_sectors > queue_max_hw_sectors(q))) {
1482 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1483 bdevname(bio->bi_bdev, b),
1484 bio_sectors(bio),
1485 queue_max_hw_sectors(q));
1486 goto end_io;
1487 }
1da177e4 1488
5a7bbad2
CH
1489 part = bio->bi_bdev->bd_part;
1490 if (should_fail_request(part, bio->bi_size) ||
1491 should_fail_request(&part_to_disk(part)->part0,
1492 bio->bi_size))
1493 goto end_io;
2056a782 1494
5a7bbad2
CH
1495 /*
1496 * If this device has partitions, remap block n
1497 * of partition p to block n+start(p) of the disk.
1498 */
1499 blk_partition_remap(bio);
2056a782 1500
5a7bbad2
CH
1501 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1502 goto end_io;
a7384677 1503
5a7bbad2
CH
1504 if (bio_check_eod(bio, nr_sectors))
1505 goto end_io;
1e87901e 1506
5a7bbad2
CH
1507 /*
1508 * Filter flush bio's early so that make_request based
1509 * drivers without flush support don't have to worry
1510 * about them.
1511 */
1512 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1513 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1514 if (!nr_sectors) {
1515 err = 0;
51fd77bd
JA
1516 goto end_io;
1517 }
5a7bbad2 1518 }
5ddfe969 1519
5a7bbad2
CH
1520 if ((bio->bi_rw & REQ_DISCARD) &&
1521 (!blk_queue_discard(q) ||
1522 ((bio->bi_rw & REQ_SECURE) &&
1523 !blk_queue_secdiscard(q)))) {
1524 err = -EOPNOTSUPP;
1525 goto end_io;
1526 }
01edede4 1527
bc16a4f9
TH
1528 if (blk_throtl_bio(q, bio))
1529 return false; /* throttled, will be resubmitted later */
27a84d54 1530
5a7bbad2 1531 trace_block_bio_queue(q, bio);
27a84d54 1532 return true;
a7384677
TH
1533
1534end_io:
1535 bio_endio(bio, err);
27a84d54 1536 return false;
1da177e4
LT
1537}
1538
27a84d54
CH
1539/**
1540 * generic_make_request - hand a buffer to its device driver for I/O
1541 * @bio: The bio describing the location in memory and on the device.
1542 *
1543 * generic_make_request() is used to make I/O requests of block
1544 * devices. It is passed a &struct bio, which describes the I/O that needs
1545 * to be done.
1546 *
1547 * generic_make_request() does not return any status. The
1548 * success/failure status of the request, along with notification of
1549 * completion, is delivered asynchronously through the bio->bi_end_io
1550 * function described (one day) else where.
1551 *
1552 * The caller of generic_make_request must make sure that bi_io_vec
1553 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1554 * set to describe the device address, and the
1555 * bi_end_io and optionally bi_private are set to describe how
1556 * completion notification should be signaled.
1557 *
1558 * generic_make_request and the drivers it calls may use bi_next if this
1559 * bio happens to be merged with someone else, and may resubmit the bio to
1560 * a lower device by calling into generic_make_request recursively, which
1561 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1562 */
1563void generic_make_request(struct bio *bio)
1564{
bddd87c7
AM
1565 struct bio_list bio_list_on_stack;
1566
27a84d54
CH
1567 if (!generic_make_request_checks(bio))
1568 return;
1569
1570 /*
1571 * We only want one ->make_request_fn to be active at a time, else
1572 * stack usage with stacked devices could be a problem. So use
1573 * current->bio_list to keep a list of requests submited by a
1574 * make_request_fn function. current->bio_list is also used as a
1575 * flag to say if generic_make_request is currently active in this
1576 * task or not. If it is NULL, then no make_request is active. If
1577 * it is non-NULL, then a make_request is active, and new requests
1578 * should be added at the tail
1579 */
bddd87c7 1580 if (current->bio_list) {
bddd87c7 1581 bio_list_add(current->bio_list, bio);
d89d8796
NB
1582 return;
1583 }
27a84d54 1584
d89d8796
NB
1585 /* following loop may be a bit non-obvious, and so deserves some
1586 * explanation.
1587 * Before entering the loop, bio->bi_next is NULL (as all callers
1588 * ensure that) so we have a list with a single bio.
1589 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1590 * we assign bio_list to a pointer to the bio_list_on_stack,
1591 * thus initialising the bio_list of new bios to be
27a84d54 1592 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1593 * through a recursive call to generic_make_request. If it
1594 * did, we find a non-NULL value in bio_list and re-enter the loop
1595 * from the top. In this case we really did just take the bio
bddd87c7 1596 * of the top of the list (no pretending) and so remove it from
27a84d54 1597 * bio_list, and call into ->make_request() again.
d89d8796
NB
1598 */
1599 BUG_ON(bio->bi_next);
bddd87c7
AM
1600 bio_list_init(&bio_list_on_stack);
1601 current->bio_list = &bio_list_on_stack;
d89d8796 1602 do {
27a84d54
CH
1603 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1604
1605 q->make_request_fn(q, bio);
1606
bddd87c7 1607 bio = bio_list_pop(current->bio_list);
d89d8796 1608 } while (bio);
bddd87c7 1609 current->bio_list = NULL; /* deactivate */
d89d8796 1610}
1da177e4
LT
1611EXPORT_SYMBOL(generic_make_request);
1612
1613/**
710027a4 1614 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1615 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1616 * @bio: The &struct bio which describes the I/O
1617 *
1618 * submit_bio() is very similar in purpose to generic_make_request(), and
1619 * uses that function to do most of the work. Both are fairly rough
710027a4 1620 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1621 *
1622 */
1623void submit_bio(int rw, struct bio *bio)
1624{
1625 int count = bio_sectors(bio);
1626
22e2c507 1627 bio->bi_rw |= rw;
1da177e4 1628
bf2de6f5
JA
1629 /*
1630 * If it's a regular read/write or a barrier with data attached,
1631 * go through the normal accounting stuff before submission.
1632 */
3ffb52e7 1633 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1634 if (rw & WRITE) {
1635 count_vm_events(PGPGOUT, count);
1636 } else {
1637 task_io_account_read(bio->bi_size);
1638 count_vm_events(PGPGIN, count);
1639 }
1640
1641 if (unlikely(block_dump)) {
1642 char b[BDEVNAME_SIZE];
8dcbdc74 1643 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1644 current->comm, task_pid_nr(current),
bf2de6f5
JA
1645 (rw & WRITE) ? "WRITE" : "READ",
1646 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1647 bdevname(bio->bi_bdev, b),
1648 count);
bf2de6f5 1649 }
1da177e4
LT
1650 }
1651
1652 generic_make_request(bio);
1653}
1da177e4
LT
1654EXPORT_SYMBOL(submit_bio);
1655
82124d60
KU
1656/**
1657 * blk_rq_check_limits - Helper function to check a request for the queue limit
1658 * @q: the queue
1659 * @rq: the request being checked
1660 *
1661 * Description:
1662 * @rq may have been made based on weaker limitations of upper-level queues
1663 * in request stacking drivers, and it may violate the limitation of @q.
1664 * Since the block layer and the underlying device driver trust @rq
1665 * after it is inserted to @q, it should be checked against @q before
1666 * the insertion using this generic function.
1667 *
1668 * This function should also be useful for request stacking drivers
eef35c2d 1669 * in some cases below, so export this function.
82124d60
KU
1670 * Request stacking drivers like request-based dm may change the queue
1671 * limits while requests are in the queue (e.g. dm's table swapping).
1672 * Such request stacking drivers should check those requests agaist
1673 * the new queue limits again when they dispatch those requests,
1674 * although such checkings are also done against the old queue limits
1675 * when submitting requests.
1676 */
1677int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1678{
3383977f
S
1679 if (rq->cmd_flags & REQ_DISCARD)
1680 return 0;
1681
ae03bf63
MP
1682 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1683 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1684 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1685 return -EIO;
1686 }
1687
1688 /*
1689 * queue's settings related to segment counting like q->bounce_pfn
1690 * may differ from that of other stacking queues.
1691 * Recalculate it to check the request correctly on this queue's
1692 * limitation.
1693 */
1694 blk_recalc_rq_segments(rq);
8a78362c 1695 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1696 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1697 return -EIO;
1698 }
1699
1700 return 0;
1701}
1702EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1703
1704/**
1705 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1706 * @q: the queue to submit the request
1707 * @rq: the request being queued
1708 */
1709int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1710{
1711 unsigned long flags;
4853abaa 1712 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1713
1714 if (blk_rq_check_limits(q, rq))
1715 return -EIO;
1716
b2c9cd37
AM
1717 if (rq->rq_disk &&
1718 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1719 return -EIO;
82124d60
KU
1720
1721 spin_lock_irqsave(q->queue_lock, flags);
1722
1723 /*
1724 * Submitting request must be dequeued before calling this function
1725 * because it will be linked to another request_queue
1726 */
1727 BUG_ON(blk_queued_rq(rq));
1728
4853abaa
JM
1729 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1730 where = ELEVATOR_INSERT_FLUSH;
1731
1732 add_acct_request(q, rq, where);
e67b77c7
JM
1733 if (where == ELEVATOR_INSERT_FLUSH)
1734 __blk_run_queue(q);
82124d60
KU
1735 spin_unlock_irqrestore(q->queue_lock, flags);
1736
1737 return 0;
1738}
1739EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1740
80a761fd
TH
1741/**
1742 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1743 * @rq: request to examine
1744 *
1745 * Description:
1746 * A request could be merge of IOs which require different failure
1747 * handling. This function determines the number of bytes which
1748 * can be failed from the beginning of the request without
1749 * crossing into area which need to be retried further.
1750 *
1751 * Return:
1752 * The number of bytes to fail.
1753 *
1754 * Context:
1755 * queue_lock must be held.
1756 */
1757unsigned int blk_rq_err_bytes(const struct request *rq)
1758{
1759 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1760 unsigned int bytes = 0;
1761 struct bio *bio;
1762
1763 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1764 return blk_rq_bytes(rq);
1765
1766 /*
1767 * Currently the only 'mixing' which can happen is between
1768 * different fastfail types. We can safely fail portions
1769 * which have all the failfast bits that the first one has -
1770 * the ones which are at least as eager to fail as the first
1771 * one.
1772 */
1773 for (bio = rq->bio; bio; bio = bio->bi_next) {
1774 if ((bio->bi_rw & ff) != ff)
1775 break;
1776 bytes += bio->bi_size;
1777 }
1778
1779 /* this could lead to infinite loop */
1780 BUG_ON(blk_rq_bytes(rq) && !bytes);
1781 return bytes;
1782}
1783EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1784
bc58ba94
JA
1785static void blk_account_io_completion(struct request *req, unsigned int bytes)
1786{
c2553b58 1787 if (blk_do_io_stat(req)) {
bc58ba94
JA
1788 const int rw = rq_data_dir(req);
1789 struct hd_struct *part;
1790 int cpu;
1791
1792 cpu = part_stat_lock();
09e099d4 1793 part = req->part;
bc58ba94
JA
1794 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1795 part_stat_unlock();
1796 }
1797}
1798
1799static void blk_account_io_done(struct request *req)
1800{
bc58ba94 1801 /*
dd4c133f
TH
1802 * Account IO completion. flush_rq isn't accounted as a
1803 * normal IO on queueing nor completion. Accounting the
1804 * containing request is enough.
bc58ba94 1805 */
414b4ff5 1806 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1807 unsigned long duration = jiffies - req->start_time;
1808 const int rw = rq_data_dir(req);
1809 struct hd_struct *part;
1810 int cpu;
1811
1812 cpu = part_stat_lock();
09e099d4 1813 part = req->part;
bc58ba94
JA
1814
1815 part_stat_inc(cpu, part, ios[rw]);
1816 part_stat_add(cpu, part, ticks[rw], duration);
1817 part_round_stats(cpu, part);
316d315b 1818 part_dec_in_flight(part, rw);
bc58ba94 1819
6c23a968 1820 hd_struct_put(part);
bc58ba94
JA
1821 part_stat_unlock();
1822 }
1823}
1824
3bcddeac 1825/**
9934c8c0
TH
1826 * blk_peek_request - peek at the top of a request queue
1827 * @q: request queue to peek at
1828 *
1829 * Description:
1830 * Return the request at the top of @q. The returned request
1831 * should be started using blk_start_request() before LLD starts
1832 * processing it.
1833 *
1834 * Return:
1835 * Pointer to the request at the top of @q if available. Null
1836 * otherwise.
1837 *
1838 * Context:
1839 * queue_lock must be held.
1840 */
1841struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1842{
1843 struct request *rq;
1844 int ret;
1845
1846 while ((rq = __elv_next_request(q)) != NULL) {
1847 if (!(rq->cmd_flags & REQ_STARTED)) {
1848 /*
1849 * This is the first time the device driver
1850 * sees this request (possibly after
1851 * requeueing). Notify IO scheduler.
1852 */
33659ebb 1853 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1854 elv_activate_rq(q, rq);
1855
1856 /*
1857 * just mark as started even if we don't start
1858 * it, a request that has been delayed should
1859 * not be passed by new incoming requests
1860 */
1861 rq->cmd_flags |= REQ_STARTED;
1862 trace_block_rq_issue(q, rq);
1863 }
1864
1865 if (!q->boundary_rq || q->boundary_rq == rq) {
1866 q->end_sector = rq_end_sector(rq);
1867 q->boundary_rq = NULL;
1868 }
1869
1870 if (rq->cmd_flags & REQ_DONTPREP)
1871 break;
1872
2e46e8b2 1873 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1874 /*
1875 * make sure space for the drain appears we
1876 * know we can do this because max_hw_segments
1877 * has been adjusted to be one fewer than the
1878 * device can handle
1879 */
1880 rq->nr_phys_segments++;
1881 }
1882
1883 if (!q->prep_rq_fn)
1884 break;
1885
1886 ret = q->prep_rq_fn(q, rq);
1887 if (ret == BLKPREP_OK) {
1888 break;
1889 } else if (ret == BLKPREP_DEFER) {
1890 /*
1891 * the request may have been (partially) prepped.
1892 * we need to keep this request in the front to
1893 * avoid resource deadlock. REQ_STARTED will
1894 * prevent other fs requests from passing this one.
1895 */
2e46e8b2 1896 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1897 !(rq->cmd_flags & REQ_DONTPREP)) {
1898 /*
1899 * remove the space for the drain we added
1900 * so that we don't add it again
1901 */
1902 --rq->nr_phys_segments;
1903 }
1904
1905 rq = NULL;
1906 break;
1907 } else if (ret == BLKPREP_KILL) {
1908 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1909 /*
1910 * Mark this request as started so we don't trigger
1911 * any debug logic in the end I/O path.
1912 */
1913 blk_start_request(rq);
40cbbb78 1914 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1915 } else {
1916 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1917 break;
1918 }
1919 }
1920
1921 return rq;
1922}
9934c8c0 1923EXPORT_SYMBOL(blk_peek_request);
158dbda0 1924
9934c8c0 1925void blk_dequeue_request(struct request *rq)
158dbda0 1926{
9934c8c0
TH
1927 struct request_queue *q = rq->q;
1928
158dbda0
TH
1929 BUG_ON(list_empty(&rq->queuelist));
1930 BUG_ON(ELV_ON_HASH(rq));
1931
1932 list_del_init(&rq->queuelist);
1933
1934 /*
1935 * the time frame between a request being removed from the lists
1936 * and to it is freed is accounted as io that is in progress at
1937 * the driver side.
1938 */
9195291e 1939 if (blk_account_rq(rq)) {
0a7ae2ff 1940 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1941 set_io_start_time_ns(rq);
1942 }
158dbda0
TH
1943}
1944
9934c8c0
TH
1945/**
1946 * blk_start_request - start request processing on the driver
1947 * @req: request to dequeue
1948 *
1949 * Description:
1950 * Dequeue @req and start timeout timer on it. This hands off the
1951 * request to the driver.
1952 *
1953 * Block internal functions which don't want to start timer should
1954 * call blk_dequeue_request().
1955 *
1956 * Context:
1957 * queue_lock must be held.
1958 */
1959void blk_start_request(struct request *req)
1960{
1961 blk_dequeue_request(req);
1962
1963 /*
5f49f631
TH
1964 * We are now handing the request to the hardware, initialize
1965 * resid_len to full count and add the timeout handler.
9934c8c0 1966 */
5f49f631 1967 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1968 if (unlikely(blk_bidi_rq(req)))
1969 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1970
9934c8c0
TH
1971 blk_add_timer(req);
1972}
1973EXPORT_SYMBOL(blk_start_request);
1974
1975/**
1976 * blk_fetch_request - fetch a request from a request queue
1977 * @q: request queue to fetch a request from
1978 *
1979 * Description:
1980 * Return the request at the top of @q. The request is started on
1981 * return and LLD can start processing it immediately.
1982 *
1983 * Return:
1984 * Pointer to the request at the top of @q if available. Null
1985 * otherwise.
1986 *
1987 * Context:
1988 * queue_lock must be held.
1989 */
1990struct request *blk_fetch_request(struct request_queue *q)
1991{
1992 struct request *rq;
1993
1994 rq = blk_peek_request(q);
1995 if (rq)
1996 blk_start_request(rq);
1997 return rq;
1998}
1999EXPORT_SYMBOL(blk_fetch_request);
2000
3bcddeac 2001/**
2e60e022 2002 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2003 * @req: the request being processed
710027a4 2004 * @error: %0 for success, < %0 for error
8ebf9756 2005 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2006 *
2007 * Description:
8ebf9756
RD
2008 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2009 * the request structure even if @req doesn't have leftover.
2010 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2011 *
2012 * This special helper function is only for request stacking drivers
2013 * (e.g. request-based dm) so that they can handle partial completion.
2014 * Actual device drivers should use blk_end_request instead.
2015 *
2016 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2017 * %false return from this function.
3bcddeac
KU
2018 *
2019 * Return:
2e60e022
TH
2020 * %false - this request doesn't have any more data
2021 * %true - this request has more data
3bcddeac 2022 **/
2e60e022 2023bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2024{
5450d3e1 2025 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2026 struct bio *bio;
2027
2e60e022
TH
2028 if (!req->bio)
2029 return false;
2030
5f3ea37c 2031 trace_block_rq_complete(req->q, req);
2056a782 2032
1da177e4 2033 /*
6f41469c
TH
2034 * For fs requests, rq is just carrier of independent bio's
2035 * and each partial completion should be handled separately.
2036 * Reset per-request error on each partial completion.
2037 *
2038 * TODO: tj: This is too subtle. It would be better to let
2039 * low level drivers do what they see fit.
1da177e4 2040 */
33659ebb 2041 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2042 req->errors = 0;
2043
33659ebb
CH
2044 if (error && req->cmd_type == REQ_TYPE_FS &&
2045 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2046 char *error_type;
2047
2048 switch (error) {
2049 case -ENOLINK:
2050 error_type = "recoverable transport";
2051 break;
2052 case -EREMOTEIO:
2053 error_type = "critical target";
2054 break;
2055 case -EBADE:
2056 error_type = "critical nexus";
2057 break;
2058 case -EIO:
2059 default:
2060 error_type = "I/O";
2061 break;
2062 }
2063 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2064 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2065 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2066 }
2067
bc58ba94 2068 blk_account_io_completion(req, nr_bytes);
d72d904a 2069
1da177e4
LT
2070 total_bytes = bio_nbytes = 0;
2071 while ((bio = req->bio) != NULL) {
2072 int nbytes;
2073
2074 if (nr_bytes >= bio->bi_size) {
2075 req->bio = bio->bi_next;
2076 nbytes = bio->bi_size;
5bb23a68 2077 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2078 next_idx = 0;
2079 bio_nbytes = 0;
2080 } else {
2081 int idx = bio->bi_idx + next_idx;
2082
af498d7f 2083 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2084 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2085 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2086 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2087 break;
2088 }
2089
2090 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2091 BIO_BUG_ON(nbytes > bio->bi_size);
2092
2093 /*
2094 * not a complete bvec done
2095 */
2096 if (unlikely(nbytes > nr_bytes)) {
2097 bio_nbytes += nr_bytes;
2098 total_bytes += nr_bytes;
2099 break;
2100 }
2101
2102 /*
2103 * advance to the next vector
2104 */
2105 next_idx++;
2106 bio_nbytes += nbytes;
2107 }
2108
2109 total_bytes += nbytes;
2110 nr_bytes -= nbytes;
2111
6728cb0e
JA
2112 bio = req->bio;
2113 if (bio) {
1da177e4
LT
2114 /*
2115 * end more in this run, or just return 'not-done'
2116 */
2117 if (unlikely(nr_bytes <= 0))
2118 break;
2119 }
2120 }
2121
2122 /*
2123 * completely done
2124 */
2e60e022
TH
2125 if (!req->bio) {
2126 /*
2127 * Reset counters so that the request stacking driver
2128 * can find how many bytes remain in the request
2129 * later.
2130 */
a2dec7b3 2131 req->__data_len = 0;
2e60e022
TH
2132 return false;
2133 }
1da177e4
LT
2134
2135 /*
2136 * if the request wasn't completed, update state
2137 */
2138 if (bio_nbytes) {
5bb23a68 2139 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2140 bio->bi_idx += next_idx;
2141 bio_iovec(bio)->bv_offset += nr_bytes;
2142 bio_iovec(bio)->bv_len -= nr_bytes;
2143 }
2144
a2dec7b3 2145 req->__data_len -= total_bytes;
2e46e8b2
TH
2146 req->buffer = bio_data(req->bio);
2147
2148 /* update sector only for requests with clear definition of sector */
33659ebb 2149 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2150 req->__sector += total_bytes >> 9;
2e46e8b2 2151
80a761fd
TH
2152 /* mixed attributes always follow the first bio */
2153 if (req->cmd_flags & REQ_MIXED_MERGE) {
2154 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2155 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2156 }
2157
2e46e8b2
TH
2158 /*
2159 * If total number of sectors is less than the first segment
2160 * size, something has gone terribly wrong.
2161 */
2162 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2163 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2164 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2165 }
2166
2167 /* recalculate the number of segments */
1da177e4 2168 blk_recalc_rq_segments(req);
2e46e8b2 2169
2e60e022 2170 return true;
1da177e4 2171}
2e60e022 2172EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2173
2e60e022
TH
2174static bool blk_update_bidi_request(struct request *rq, int error,
2175 unsigned int nr_bytes,
2176 unsigned int bidi_bytes)
5efccd17 2177{
2e60e022
TH
2178 if (blk_update_request(rq, error, nr_bytes))
2179 return true;
5efccd17 2180
2e60e022
TH
2181 /* Bidi request must be completed as a whole */
2182 if (unlikely(blk_bidi_rq(rq)) &&
2183 blk_update_request(rq->next_rq, error, bidi_bytes))
2184 return true;
5efccd17 2185
e2e1a148
JA
2186 if (blk_queue_add_random(rq->q))
2187 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2188
2189 return false;
1da177e4
LT
2190}
2191
28018c24
JB
2192/**
2193 * blk_unprep_request - unprepare a request
2194 * @req: the request
2195 *
2196 * This function makes a request ready for complete resubmission (or
2197 * completion). It happens only after all error handling is complete,
2198 * so represents the appropriate moment to deallocate any resources
2199 * that were allocated to the request in the prep_rq_fn. The queue
2200 * lock is held when calling this.
2201 */
2202void blk_unprep_request(struct request *req)
2203{
2204 struct request_queue *q = req->q;
2205
2206 req->cmd_flags &= ~REQ_DONTPREP;
2207 if (q->unprep_rq_fn)
2208 q->unprep_rq_fn(q, req);
2209}
2210EXPORT_SYMBOL_GPL(blk_unprep_request);
2211
1da177e4
LT
2212/*
2213 * queue lock must be held
2214 */
2e60e022 2215static void blk_finish_request(struct request *req, int error)
1da177e4 2216{
b8286239
KU
2217 if (blk_rq_tagged(req))
2218 blk_queue_end_tag(req->q, req);
2219
ba396a6c 2220 BUG_ON(blk_queued_rq(req));
1da177e4 2221
33659ebb 2222 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2223 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2224
e78042e5
MA
2225 blk_delete_timer(req);
2226
28018c24
JB
2227 if (req->cmd_flags & REQ_DONTPREP)
2228 blk_unprep_request(req);
2229
2230
bc58ba94 2231 blk_account_io_done(req);
b8286239 2232
1da177e4 2233 if (req->end_io)
8ffdc655 2234 req->end_io(req, error);
b8286239
KU
2235 else {
2236 if (blk_bidi_rq(req))
2237 __blk_put_request(req->next_rq->q, req->next_rq);
2238
1da177e4 2239 __blk_put_request(req->q, req);
b8286239 2240 }
1da177e4
LT
2241}
2242
3b11313a 2243/**
2e60e022
TH
2244 * blk_end_bidi_request - Complete a bidi request
2245 * @rq: the request to complete
2246 * @error: %0 for success, < %0 for error
2247 * @nr_bytes: number of bytes to complete @rq
2248 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2249 *
2250 * Description:
e3a04fe3 2251 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2252 * Drivers that supports bidi can safely call this member for any
2253 * type of request, bidi or uni. In the later case @bidi_bytes is
2254 * just ignored.
336cdb40
KU
2255 *
2256 * Return:
2e60e022
TH
2257 * %false - we are done with this request
2258 * %true - still buffers pending for this request
a0cd1285 2259 **/
b1f74493 2260static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2261 unsigned int nr_bytes, unsigned int bidi_bytes)
2262{
336cdb40 2263 struct request_queue *q = rq->q;
2e60e022 2264 unsigned long flags;
32fab448 2265
2e60e022
TH
2266 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2267 return true;
32fab448 2268
336cdb40 2269 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2270 blk_finish_request(rq, error);
336cdb40
KU
2271 spin_unlock_irqrestore(q->queue_lock, flags);
2272
2e60e022 2273 return false;
32fab448
KU
2274}
2275
336cdb40 2276/**
2e60e022
TH
2277 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2278 * @rq: the request to complete
710027a4 2279 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2280 * @nr_bytes: number of bytes to complete @rq
2281 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2282 *
2283 * Description:
2e60e022
TH
2284 * Identical to blk_end_bidi_request() except that queue lock is
2285 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2286 *
2287 * Return:
2e60e022
TH
2288 * %false - we are done with this request
2289 * %true - still buffers pending for this request
336cdb40 2290 **/
4853abaa 2291bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2292 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2293{
2e60e022
TH
2294 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2295 return true;
336cdb40 2296
2e60e022 2297 blk_finish_request(rq, error);
336cdb40 2298
2e60e022 2299 return false;
336cdb40 2300}
e19a3ab0
KU
2301
2302/**
2303 * blk_end_request - Helper function for drivers to complete the request.
2304 * @rq: the request being processed
710027a4 2305 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2306 * @nr_bytes: number of bytes to complete
2307 *
2308 * Description:
2309 * Ends I/O on a number of bytes attached to @rq.
2310 * If @rq has leftover, sets it up for the next range of segments.
2311 *
2312 * Return:
b1f74493
FT
2313 * %false - we are done with this request
2314 * %true - still buffers pending for this request
e19a3ab0 2315 **/
b1f74493 2316bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2317{
b1f74493 2318 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2319}
56ad1740 2320EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2321
2322/**
b1f74493
FT
2323 * blk_end_request_all - Helper function for drives to finish the request.
2324 * @rq: the request to finish
8ebf9756 2325 * @error: %0 for success, < %0 for error
336cdb40
KU
2326 *
2327 * Description:
b1f74493
FT
2328 * Completely finish @rq.
2329 */
2330void blk_end_request_all(struct request *rq, int error)
336cdb40 2331{
b1f74493
FT
2332 bool pending;
2333 unsigned int bidi_bytes = 0;
336cdb40 2334
b1f74493
FT
2335 if (unlikely(blk_bidi_rq(rq)))
2336 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2337
b1f74493
FT
2338 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2339 BUG_ON(pending);
2340}
56ad1740 2341EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2342
b1f74493
FT
2343/**
2344 * blk_end_request_cur - Helper function to finish the current request chunk.
2345 * @rq: the request to finish the current chunk for
8ebf9756 2346 * @error: %0 for success, < %0 for error
b1f74493
FT
2347 *
2348 * Description:
2349 * Complete the current consecutively mapped chunk from @rq.
2350 *
2351 * Return:
2352 * %false - we are done with this request
2353 * %true - still buffers pending for this request
2354 */
2355bool blk_end_request_cur(struct request *rq, int error)
2356{
2357 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2358}
56ad1740 2359EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2360
80a761fd
TH
2361/**
2362 * blk_end_request_err - Finish a request till the next failure boundary.
2363 * @rq: the request to finish till the next failure boundary for
2364 * @error: must be negative errno
2365 *
2366 * Description:
2367 * Complete @rq till the next failure boundary.
2368 *
2369 * Return:
2370 * %false - we are done with this request
2371 * %true - still buffers pending for this request
2372 */
2373bool blk_end_request_err(struct request *rq, int error)
2374{
2375 WARN_ON(error >= 0);
2376 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2377}
2378EXPORT_SYMBOL_GPL(blk_end_request_err);
2379
e3a04fe3 2380/**
b1f74493
FT
2381 * __blk_end_request - Helper function for drivers to complete the request.
2382 * @rq: the request being processed
2383 * @error: %0 for success, < %0 for error
2384 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2385 *
2386 * Description:
b1f74493 2387 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2388 *
2389 * Return:
b1f74493
FT
2390 * %false - we are done with this request
2391 * %true - still buffers pending for this request
e3a04fe3 2392 **/
b1f74493 2393bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2394{
b1f74493 2395 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2396}
56ad1740 2397EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2398
32fab448 2399/**
b1f74493
FT
2400 * __blk_end_request_all - Helper function for drives to finish the request.
2401 * @rq: the request to finish
8ebf9756 2402 * @error: %0 for success, < %0 for error
32fab448
KU
2403 *
2404 * Description:
b1f74493 2405 * Completely finish @rq. Must be called with queue lock held.
32fab448 2406 */
b1f74493 2407void __blk_end_request_all(struct request *rq, int error)
32fab448 2408{
b1f74493
FT
2409 bool pending;
2410 unsigned int bidi_bytes = 0;
2411
2412 if (unlikely(blk_bidi_rq(rq)))
2413 bidi_bytes = blk_rq_bytes(rq->next_rq);
2414
2415 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2416 BUG_ON(pending);
32fab448 2417}
56ad1740 2418EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2419
e19a3ab0 2420/**
b1f74493
FT
2421 * __blk_end_request_cur - Helper function to finish the current request chunk.
2422 * @rq: the request to finish the current chunk for
8ebf9756 2423 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2424 *
2425 * Description:
b1f74493
FT
2426 * Complete the current consecutively mapped chunk from @rq. Must
2427 * be called with queue lock held.
e19a3ab0
KU
2428 *
2429 * Return:
b1f74493
FT
2430 * %false - we are done with this request
2431 * %true - still buffers pending for this request
2432 */
2433bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2434{
b1f74493 2435 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2436}
56ad1740 2437EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2438
80a761fd
TH
2439/**
2440 * __blk_end_request_err - Finish a request till the next failure boundary.
2441 * @rq: the request to finish till the next failure boundary for
2442 * @error: must be negative errno
2443 *
2444 * Description:
2445 * Complete @rq till the next failure boundary. Must be called
2446 * with queue lock held.
2447 *
2448 * Return:
2449 * %false - we are done with this request
2450 * %true - still buffers pending for this request
2451 */
2452bool __blk_end_request_err(struct request *rq, int error)
2453{
2454 WARN_ON(error >= 0);
2455 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2456}
2457EXPORT_SYMBOL_GPL(__blk_end_request_err);
2458
86db1e29
JA
2459void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2460 struct bio *bio)
1da177e4 2461{
a82afdfc 2462 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2463 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2464
fb2dce86
DW
2465 if (bio_has_data(bio)) {
2466 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2467 rq->buffer = bio_data(bio);
2468 }
a2dec7b3 2469 rq->__data_len = bio->bi_size;
1da177e4 2470 rq->bio = rq->biotail = bio;
1da177e4 2471
66846572
N
2472 if (bio->bi_bdev)
2473 rq->rq_disk = bio->bi_bdev->bd_disk;
2474}
1da177e4 2475
2d4dc890
IL
2476#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2477/**
2478 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2479 * @rq: the request to be flushed
2480 *
2481 * Description:
2482 * Flush all pages in @rq.
2483 */
2484void rq_flush_dcache_pages(struct request *rq)
2485{
2486 struct req_iterator iter;
2487 struct bio_vec *bvec;
2488
2489 rq_for_each_segment(bvec, rq, iter)
2490 flush_dcache_page(bvec->bv_page);
2491}
2492EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2493#endif
2494
ef9e3fac
KU
2495/**
2496 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2497 * @q : the queue of the device being checked
2498 *
2499 * Description:
2500 * Check if underlying low-level drivers of a device are busy.
2501 * If the drivers want to export their busy state, they must set own
2502 * exporting function using blk_queue_lld_busy() first.
2503 *
2504 * Basically, this function is used only by request stacking drivers
2505 * to stop dispatching requests to underlying devices when underlying
2506 * devices are busy. This behavior helps more I/O merging on the queue
2507 * of the request stacking driver and prevents I/O throughput regression
2508 * on burst I/O load.
2509 *
2510 * Return:
2511 * 0 - Not busy (The request stacking driver should dispatch request)
2512 * 1 - Busy (The request stacking driver should stop dispatching request)
2513 */
2514int blk_lld_busy(struct request_queue *q)
2515{
2516 if (q->lld_busy_fn)
2517 return q->lld_busy_fn(q);
2518
2519 return 0;
2520}
2521EXPORT_SYMBOL_GPL(blk_lld_busy);
2522
b0fd271d
KU
2523/**
2524 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2525 * @rq: the clone request to be cleaned up
2526 *
2527 * Description:
2528 * Free all bios in @rq for a cloned request.
2529 */
2530void blk_rq_unprep_clone(struct request *rq)
2531{
2532 struct bio *bio;
2533
2534 while ((bio = rq->bio) != NULL) {
2535 rq->bio = bio->bi_next;
2536
2537 bio_put(bio);
2538 }
2539}
2540EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2541
2542/*
2543 * Copy attributes of the original request to the clone request.
2544 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2545 */
2546static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2547{
2548 dst->cpu = src->cpu;
3a2edd0d 2549 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2550 dst->cmd_type = src->cmd_type;
2551 dst->__sector = blk_rq_pos(src);
2552 dst->__data_len = blk_rq_bytes(src);
2553 dst->nr_phys_segments = src->nr_phys_segments;
2554 dst->ioprio = src->ioprio;
2555 dst->extra_len = src->extra_len;
2556}
2557
2558/**
2559 * blk_rq_prep_clone - Helper function to setup clone request
2560 * @rq: the request to be setup
2561 * @rq_src: original request to be cloned
2562 * @bs: bio_set that bios for clone are allocated from
2563 * @gfp_mask: memory allocation mask for bio
2564 * @bio_ctr: setup function to be called for each clone bio.
2565 * Returns %0 for success, non %0 for failure.
2566 * @data: private data to be passed to @bio_ctr
2567 *
2568 * Description:
2569 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2570 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2571 * are not copied, and copying such parts is the caller's responsibility.
2572 * Also, pages which the original bios are pointing to are not copied
2573 * and the cloned bios just point same pages.
2574 * So cloned bios must be completed before original bios, which means
2575 * the caller must complete @rq before @rq_src.
2576 */
2577int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2578 struct bio_set *bs, gfp_t gfp_mask,
2579 int (*bio_ctr)(struct bio *, struct bio *, void *),
2580 void *data)
2581{
2582 struct bio *bio, *bio_src;
2583
2584 if (!bs)
2585 bs = fs_bio_set;
2586
2587 blk_rq_init(NULL, rq);
2588
2589 __rq_for_each_bio(bio_src, rq_src) {
2590 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2591 if (!bio)
2592 goto free_and_out;
2593
2594 __bio_clone(bio, bio_src);
2595
2596 if (bio_integrity(bio_src) &&
7878cba9 2597 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2598 goto free_and_out;
2599
2600 if (bio_ctr && bio_ctr(bio, bio_src, data))
2601 goto free_and_out;
2602
2603 if (rq->bio) {
2604 rq->biotail->bi_next = bio;
2605 rq->biotail = bio;
2606 } else
2607 rq->bio = rq->biotail = bio;
2608 }
2609
2610 __blk_rq_prep_clone(rq, rq_src);
2611
2612 return 0;
2613
2614free_and_out:
2615 if (bio)
2616 bio_free(bio, bs);
2617 blk_rq_unprep_clone(rq);
2618
2619 return -ENOMEM;
2620}
2621EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2622
18887ad9 2623int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2624{
2625 return queue_work(kblockd_workqueue, work);
2626}
1da177e4
LT
2627EXPORT_SYMBOL(kblockd_schedule_work);
2628
e43473b7
VG
2629int kblockd_schedule_delayed_work(struct request_queue *q,
2630 struct delayed_work *dwork, unsigned long delay)
2631{
2632 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2633}
2634EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2635
73c10101
JA
2636#define PLUG_MAGIC 0x91827364
2637
75df7136
SJ
2638/**
2639 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2640 * @plug: The &struct blk_plug that needs to be initialized
2641 *
2642 * Description:
2643 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2644 * pending I/O should the task end up blocking between blk_start_plug() and
2645 * blk_finish_plug(). This is important from a performance perspective, but
2646 * also ensures that we don't deadlock. For instance, if the task is blocking
2647 * for a memory allocation, memory reclaim could end up wanting to free a
2648 * page belonging to that request that is currently residing in our private
2649 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2650 * this kind of deadlock.
2651 */
73c10101
JA
2652void blk_start_plug(struct blk_plug *plug)
2653{
2654 struct task_struct *tsk = current;
2655
2656 plug->magic = PLUG_MAGIC;
2657 INIT_LIST_HEAD(&plug->list);
048c9374 2658 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2659 plug->should_sort = 0;
2660
2661 /*
2662 * If this is a nested plug, don't actually assign it. It will be
2663 * flushed on its own.
2664 */
2665 if (!tsk->plug) {
2666 /*
2667 * Store ordering should not be needed here, since a potential
2668 * preempt will imply a full memory barrier
2669 */
2670 tsk->plug = plug;
2671 }
2672}
2673EXPORT_SYMBOL(blk_start_plug);
2674
2675static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2676{
2677 struct request *rqa = container_of(a, struct request, queuelist);
2678 struct request *rqb = container_of(b, struct request, queuelist);
2679
f83e8261 2680 return !(rqa->q <= rqb->q);
73c10101
JA
2681}
2682
49cac01e
JA
2683/*
2684 * If 'from_schedule' is true, then postpone the dispatch of requests
2685 * until a safe kblockd context. We due this to avoid accidental big
2686 * additional stack usage in driver dispatch, in places where the originally
2687 * plugger did not intend it.
2688 */
f6603783 2689static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2690 bool from_schedule)
99e22598 2691 __releases(q->queue_lock)
94b5eb28 2692{
49cac01e 2693 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2694
2695 /*
2696 * If we are punting this to kblockd, then we can safely drop
2697 * the queue_lock before waking kblockd (which needs to take
2698 * this lock).
2699 */
2700 if (from_schedule) {
2701 spin_unlock(q->queue_lock);
24ecfbe2 2702 blk_run_queue_async(q);
99e22598 2703 } else {
24ecfbe2 2704 __blk_run_queue(q);
99e22598
JA
2705 spin_unlock(q->queue_lock);
2706 }
2707
94b5eb28
JA
2708}
2709
048c9374
N
2710static void flush_plug_callbacks(struct blk_plug *plug)
2711{
2712 LIST_HEAD(callbacks);
2713
2714 if (list_empty(&plug->cb_list))
2715 return;
2716
2717 list_splice_init(&plug->cb_list, &callbacks);
2718
2719 while (!list_empty(&callbacks)) {
2720 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2721 struct blk_plug_cb,
2722 list);
2723 list_del(&cb->list);
2724 cb->callback(cb);
2725 }
2726}
2727
49cac01e 2728void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2729{
2730 struct request_queue *q;
2731 unsigned long flags;
2732 struct request *rq;
109b8129 2733 LIST_HEAD(list);
94b5eb28 2734 unsigned int depth;
73c10101
JA
2735
2736 BUG_ON(plug->magic != PLUG_MAGIC);
2737
048c9374 2738 flush_plug_callbacks(plug);
73c10101
JA
2739 if (list_empty(&plug->list))
2740 return;
2741
109b8129
N
2742 list_splice_init(&plug->list, &list);
2743
2744 if (plug->should_sort) {
2745 list_sort(NULL, &list, plug_rq_cmp);
2746 plug->should_sort = 0;
2747 }
73c10101
JA
2748
2749 q = NULL;
94b5eb28 2750 depth = 0;
18811272
JA
2751
2752 /*
2753 * Save and disable interrupts here, to avoid doing it for every
2754 * queue lock we have to take.
2755 */
73c10101 2756 local_irq_save(flags);
109b8129
N
2757 while (!list_empty(&list)) {
2758 rq = list_entry_rq(list.next);
73c10101 2759 list_del_init(&rq->queuelist);
73c10101
JA
2760 BUG_ON(!rq->q);
2761 if (rq->q != q) {
99e22598
JA
2762 /*
2763 * This drops the queue lock
2764 */
2765 if (q)
49cac01e 2766 queue_unplugged(q, depth, from_schedule);
73c10101 2767 q = rq->q;
94b5eb28 2768 depth = 0;
73c10101
JA
2769 spin_lock(q->queue_lock);
2770 }
73c10101
JA
2771 /*
2772 * rq is already accounted, so use raw insert
2773 */
401a18e9
JA
2774 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2775 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2776 else
2777 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2778
2779 depth++;
73c10101
JA
2780 }
2781
99e22598
JA
2782 /*
2783 * This drops the queue lock
2784 */
2785 if (q)
49cac01e 2786 queue_unplugged(q, depth, from_schedule);
73c10101 2787
73c10101
JA
2788 local_irq_restore(flags);
2789}
73c10101
JA
2790
2791void blk_finish_plug(struct blk_plug *plug)
2792{
f6603783 2793 blk_flush_plug_list(plug, false);
73c10101 2794
88b996cd
CH
2795 if (plug == current->plug)
2796 current->plug = NULL;
73c10101 2797}
88b996cd 2798EXPORT_SYMBOL(blk_finish_plug);
73c10101 2799
1da177e4
LT
2800int __init blk_dev_init(void)
2801{
9eb55b03
NK
2802 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2803 sizeof(((struct request *)0)->cmd_flags));
2804
89b90be2
TH
2805 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2806 kblockd_workqueue = alloc_workqueue("kblockd",
2807 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2808 if (!kblockd_workqueue)
2809 panic("Failed to create kblockd\n");
2810
2811 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2812 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2813
8324aa91 2814 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2815 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2816
d38ecf93 2817 return 0;
1da177e4 2818}