]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: reorganize throtl_get_tg() and blk_throtl_bio()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
1da177e4
LT
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
797e7dbb 156
143a87f4
TH
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
143a87f4
TH
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
7ba1ba12 168
143a87f4
TH
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
7ba1ba12 171
143a87f4
TH
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
3cca6dc1 200static void blk_delay_work(struct work_struct *work)
1da177e4 201{
3cca6dc1 202 struct request_queue *q;
1da177e4 203
3cca6dc1
JA
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
24ecfbe2 206 __blk_run_queue(q);
3cca6dc1 207 spin_unlock_irq(q->queue_lock);
1da177e4 208}
1da177e4
LT
209
210/**
3cca6dc1
JA
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
1da177e4
LT
214 *
215 * Description:
3cca6dc1
JA
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 221{
4521cc4e
JA
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
2ad8b1ef 224}
3cca6dc1 225EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 226
1da177e4
LT
227/**
228 * blk_start_queue - restart a previously stopped queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
165125e1 236void blk_start_queue(struct request_queue *q)
1da177e4 237{
a038e253
PBG
238 WARN_ON(!irqs_disabled());
239
75ad23bc 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 241 __blk_run_queue(q);
1da177e4 242}
1da177e4
LT
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
165125e1 247 * @q: The &struct request_queue in question
1da177e4
LT
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
165125e1 259void blk_stop_queue(struct request_queue *q)
1da177e4 260{
ad3d9d7e 261 __cancel_delayed_work(&q->delay_work);
75ad23bc 262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
59c51591 275 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
da527770
VG
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
1da177e4
LT
283 */
284void blk_sync_queue(struct request_queue *q)
285{
70ed28b9 286 del_timer_sync(&q->timeout);
3cca6dc1 287 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
288}
289EXPORT_SYMBOL(blk_sync_queue);
290
291/**
80a4b58e 292 * __blk_run_queue - run a single device queue
1da177e4 293 * @q: The queue to run
80a4b58e
JA
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 297 * held and interrupts disabled.
1da177e4 298 */
24ecfbe2 299void __blk_run_queue(struct request_queue *q)
1da177e4 300{
a538cd03
TH
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
c21e6beb 304 q->request_fn(q);
75ad23bc
NP
305}
306EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 307
24ecfbe2
CH
308/**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316void blk_run_queue_async(struct request_queue *q)
317{
3ec717b7
SL
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
24ecfbe2 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 321 }
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5
TH
349/**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 *
353 * Drain ELV_PRIV requests from @q. The caller is responsible for ensuring
354 * that no new requests which need to be drained are queued.
355 */
356void blk_drain_queue(struct request_queue *q)
357{
358 while (true) {
359 int nr_rqs;
360
361 spin_lock_irq(q->queue_lock);
362
363 elv_drain_elevator(q);
364
365 __blk_run_queue(q);
366 nr_rqs = q->rq.elvpriv;
367
368 spin_unlock_irq(q->queue_lock);
369
370 if (!nr_rqs)
371 break;
372 msleep(10);
373 }
374}
375
c94a96ac 376/*
777eb1bf
HR
377 * Note: If a driver supplied the queue lock, it is disconnected
378 * by this function. The actual state of the lock doesn't matter
379 * here as the request_queue isn't accessible after this point
380 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
c94a96ac 381 */
6728cb0e 382void blk_cleanup_queue(struct request_queue *q)
483f4afc 383{
e3335de9
JA
384 /*
385 * We know we have process context here, so we can be a little
386 * cautious and ensure that pending block actions on this device
387 * are done before moving on. Going into this function, we should
388 * not have processes doing IO to this device.
389 */
390 blk_sync_queue(q);
391
31373d09 392 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 393 mutex_lock(&q->sysfs_lock);
75ad23bc 394 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
395 mutex_unlock(&q->sysfs_lock);
396
777eb1bf
HR
397 if (q->queue_lock != &q->__queue_lock)
398 q->queue_lock = &q->__queue_lock;
da527770 399
483f4afc
AV
400 blk_put_queue(q);
401}
1da177e4
LT
402EXPORT_SYMBOL(blk_cleanup_queue);
403
165125e1 404static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
405{
406 struct request_list *rl = &q->rq;
407
1abec4fd
MS
408 if (unlikely(rl->rq_pool))
409 return 0;
410
1faa16d2
JA
411 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
412 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 413 rl->elvpriv = 0;
1faa16d2
JA
414 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
415 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 416
1946089a
CL
417 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
418 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
419
420 if (!rl->rq_pool)
421 return -ENOMEM;
422
423 return 0;
424}
425
165125e1 426struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 427{
1946089a
CL
428 return blk_alloc_queue_node(gfp_mask, -1);
429}
430EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 431
165125e1 432struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 433{
165125e1 434 struct request_queue *q;
e0bf68dd 435 int err;
1946089a 436
8324aa91 437 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 438 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
439 if (!q)
440 return NULL;
441
0989a025
JA
442 q->backing_dev_info.ra_pages =
443 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
444 q->backing_dev_info.state = 0;
445 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 446 q->backing_dev_info.name = "block";
0989a025 447
e0bf68dd
PZ
448 err = bdi_init(&q->backing_dev_info);
449 if (err) {
8324aa91 450 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
451 return NULL;
452 }
453
e43473b7
VG
454 if (blk_throtl_init(q)) {
455 kmem_cache_free(blk_requestq_cachep, q);
456 return NULL;
457 }
458
31373d09
MG
459 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
460 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
461 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
462 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
463 INIT_LIST_HEAD(&q->flush_queue[0]);
464 INIT_LIST_HEAD(&q->flush_queue[1]);
465 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 466 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 467
8324aa91 468 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 469
483f4afc 470 mutex_init(&q->sysfs_lock);
e7e72bf6 471 spin_lock_init(&q->__queue_lock);
483f4afc 472
c94a96ac
VG
473 /*
474 * By default initialize queue_lock to internal lock and driver can
475 * override it later if need be.
476 */
477 q->queue_lock = &q->__queue_lock;
478
1da177e4
LT
479 return q;
480}
1946089a 481EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
482
483/**
484 * blk_init_queue - prepare a request queue for use with a block device
485 * @rfn: The function to be called to process requests that have been
486 * placed on the queue.
487 * @lock: Request queue spin lock
488 *
489 * Description:
490 * If a block device wishes to use the standard request handling procedures,
491 * which sorts requests and coalesces adjacent requests, then it must
492 * call blk_init_queue(). The function @rfn will be called when there
493 * are requests on the queue that need to be processed. If the device
494 * supports plugging, then @rfn may not be called immediately when requests
495 * are available on the queue, but may be called at some time later instead.
496 * Plugged queues are generally unplugged when a buffer belonging to one
497 * of the requests on the queue is needed, or due to memory pressure.
498 *
499 * @rfn is not required, or even expected, to remove all requests off the
500 * queue, but only as many as it can handle at a time. If it does leave
501 * requests on the queue, it is responsible for arranging that the requests
502 * get dealt with eventually.
503 *
504 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
505 * request queue; this lock will be taken also from interrupt context, so irq
506 * disabling is needed for it.
1da177e4 507 *
710027a4 508 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
509 * it didn't succeed.
510 *
511 * Note:
512 * blk_init_queue() must be paired with a blk_cleanup_queue() call
513 * when the block device is deactivated (such as at module unload).
514 **/
1946089a 515
165125e1 516struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 517{
1946089a
CL
518 return blk_init_queue_node(rfn, lock, -1);
519}
520EXPORT_SYMBOL(blk_init_queue);
521
165125e1 522struct request_queue *
1946089a
CL
523blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
524{
c86d1b8a 525 struct request_queue *uninit_q, *q;
1da177e4 526
c86d1b8a
MS
527 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
528 if (!uninit_q)
529 return NULL;
530
531 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
532 if (!q)
533 blk_cleanup_queue(uninit_q);
534
535 return q;
01effb0d
MS
536}
537EXPORT_SYMBOL(blk_init_queue_node);
538
539struct request_queue *
540blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
541 spinlock_t *lock)
542{
543 return blk_init_allocated_queue_node(q, rfn, lock, -1);
544}
545EXPORT_SYMBOL(blk_init_allocated_queue);
546
547struct request_queue *
548blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
549 spinlock_t *lock, int node_id)
550{
1da177e4
LT
551 if (!q)
552 return NULL;
553
1946089a 554 q->node = node_id;
c86d1b8a 555 if (blk_init_free_list(q))
8669aafd 556 return NULL;
1da177e4
LT
557
558 q->request_fn = rfn;
1da177e4 559 q->prep_rq_fn = NULL;
28018c24 560 q->unprep_rq_fn = NULL;
bc58ba94 561 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
562
563 /* Override internal queue lock with supplied lock pointer */
564 if (lock)
565 q->queue_lock = lock;
1da177e4 566
f3b144aa
JA
567 /*
568 * This also sets hw/phys segments, boundary and size
569 */
c20e8de2 570 blk_queue_make_request(q, blk_queue_bio);
1da177e4 571
44ec9542
AS
572 q->sg_reserved_size = INT_MAX;
573
1da177e4
LT
574 /*
575 * all done
576 */
577 if (!elevator_init(q, NULL)) {
578 blk_queue_congestion_threshold(q);
579 return q;
580 }
581
1da177e4
LT
582 return NULL;
583}
01effb0d 584EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 585
165125e1 586int blk_get_queue(struct request_queue *q)
1da177e4 587{
fde6ad22 588 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 589 kobject_get(&q->kobj);
1da177e4
LT
590 return 0;
591 }
592
593 return 1;
594}
d86e0e83 595EXPORT_SYMBOL(blk_get_queue);
1da177e4 596
165125e1 597static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 598{
4aff5e23 599 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 600 elv_put_request(q, rq);
1da177e4
LT
601 mempool_free(rq, q->rq.rq_pool);
602}
603
1ea25ecb 604static struct request *
75eb6c37 605blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
606{
607 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
608
609 if (!rq)
610 return NULL;
611
2a4aa30c 612 blk_rq_init(q, rq);
1afb20f3 613
42dad764 614 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 615
75eb6c37
TH
616 if ((flags & REQ_ELVPRIV) &&
617 unlikely(elv_set_request(q, rq, gfp_mask))) {
618 mempool_free(rq, q->rq.rq_pool);
619 return NULL;
cb98fc8b 620 }
1da177e4 621
cb98fc8b 622 return rq;
1da177e4
LT
623}
624
625/*
626 * ioc_batching returns true if the ioc is a valid batching request and
627 * should be given priority access to a request.
628 */
165125e1 629static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
630{
631 if (!ioc)
632 return 0;
633
634 /*
635 * Make sure the process is able to allocate at least 1 request
636 * even if the batch times out, otherwise we could theoretically
637 * lose wakeups.
638 */
639 return ioc->nr_batch_requests == q->nr_batching ||
640 (ioc->nr_batch_requests > 0
641 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
642}
643
644/*
645 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
646 * will cause the process to be a "batcher" on all queues in the system. This
647 * is the behaviour we want though - once it gets a wakeup it should be given
648 * a nice run.
649 */
165125e1 650static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
651{
652 if (!ioc || ioc_batching(q, ioc))
653 return;
654
655 ioc->nr_batch_requests = q->nr_batching;
656 ioc->last_waited = jiffies;
657}
658
1faa16d2 659static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
660{
661 struct request_list *rl = &q->rq;
662
1faa16d2
JA
663 if (rl->count[sync] < queue_congestion_off_threshold(q))
664 blk_clear_queue_congested(q, sync);
1da177e4 665
1faa16d2
JA
666 if (rl->count[sync] + 1 <= q->nr_requests) {
667 if (waitqueue_active(&rl->wait[sync]))
668 wake_up(&rl->wait[sync]);
1da177e4 669
1faa16d2 670 blk_clear_queue_full(q, sync);
1da177e4
LT
671 }
672}
673
674/*
675 * A request has just been released. Account for it, update the full and
676 * congestion status, wake up any waiters. Called under q->queue_lock.
677 */
75eb6c37 678static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
679{
680 struct request_list *rl = &q->rq;
75eb6c37 681 int sync = rw_is_sync(flags);
1da177e4 682
1faa16d2 683 rl->count[sync]--;
75eb6c37 684 if (flags & REQ_ELVPRIV)
cb98fc8b 685 rl->elvpriv--;
1da177e4 686
1faa16d2 687 __freed_request(q, sync);
1da177e4 688
1faa16d2
JA
689 if (unlikely(rl->starved[sync ^ 1]))
690 __freed_request(q, sync ^ 1);
1da177e4
LT
691}
692
9d5a4e94
MS
693/*
694 * Determine if elevator data should be initialized when allocating the
695 * request associated with @bio.
696 */
697static bool blk_rq_should_init_elevator(struct bio *bio)
698{
699 if (!bio)
700 return true;
701
702 /*
703 * Flush requests do not use the elevator so skip initialization.
704 * This allows a request to share the flush and elevator data.
705 */
706 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
707 return false;
708
709 return true;
710}
711
1da177e4 712/*
d6344532
NP
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 716 */
165125e1 717static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 718 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
719{
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
88ee5ef1 722 struct io_context *ioc = NULL;
1faa16d2 723 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 724 int may_queue;
88ee5ef1 725
7749a8d4 726 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
729
1faa16d2
JA
730 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 732 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
733 /*
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
738 */
1faa16d2 739 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 740 ioc_set_batching(q, ioc);
1faa16d2 741 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
745 /*
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
749 */
750 goto out;
751 }
752 }
1da177e4 753 }
1faa16d2 754 blk_set_queue_congested(q, is_sync);
1da177e4
LT
755 }
756
082cf69e
JA
757 /*
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
761 */
1faa16d2 762 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 763 goto out;
fd782a4a 764
1faa16d2
JA
765 rl->count[is_sync]++;
766 rl->starved[is_sync] = 0;
cb98fc8b 767
75eb6c37
TH
768 if (blk_rq_should_init_elevator(bio) &&
769 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
770 rw_flags |= REQ_ELVPRIV;
771 rl->elvpriv++;
9d5a4e94 772 }
cb98fc8b 773
f253b86b
JA
774 if (blk_queue_io_stat(q))
775 rw_flags |= REQ_IO_STAT;
1da177e4
LT
776 spin_unlock_irq(q->queue_lock);
777
75eb6c37 778 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 779 if (unlikely(!rq)) {
1da177e4
LT
780 /*
781 * Allocation failed presumably due to memory. Undo anything
782 * we might have messed up.
783 *
784 * Allocating task should really be put onto the front of the
785 * wait queue, but this is pretty rare.
786 */
787 spin_lock_irq(q->queue_lock);
75eb6c37 788 freed_request(q, rw_flags);
1da177e4
LT
789
790 /*
791 * in the very unlikely event that allocation failed and no
792 * requests for this direction was pending, mark us starved
793 * so that freeing of a request in the other direction will
794 * notice us. another possible fix would be to split the
795 * rq mempool into READ and WRITE
796 */
797rq_starved:
1faa16d2
JA
798 if (unlikely(rl->count[is_sync] == 0))
799 rl->starved[is_sync] = 1;
1da177e4 800
1da177e4
LT
801 goto out;
802 }
803
88ee5ef1
JA
804 /*
805 * ioc may be NULL here, and ioc_batching will be false. That's
806 * OK, if the queue is under the request limit then requests need
807 * not count toward the nr_batch_requests limit. There will always
808 * be some limit enforced by BLK_BATCH_TIME.
809 */
1da177e4
LT
810 if (ioc_batching(q, ioc))
811 ioc->nr_batch_requests--;
6728cb0e 812
1faa16d2 813 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 814out:
1da177e4
LT
815 return rq;
816}
817
818/*
7eaceacc
JA
819 * No available requests for this queue, wait for some requests to become
820 * available.
d6344532
NP
821 *
822 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 823 */
165125e1 824static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 825 struct bio *bio)
1da177e4 826{
1faa16d2 827 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
828 struct request *rq;
829
7749a8d4 830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
831 while (!rq) {
832 DEFINE_WAIT(wait);
05caf8db 833 struct io_context *ioc;
1da177e4
LT
834 struct request_list *rl = &q->rq;
835
1faa16d2 836 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
837 TASK_UNINTERRUPTIBLE);
838
1faa16d2 839 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 840
05caf8db
ZY
841 spin_unlock_irq(q->queue_lock);
842 io_schedule();
1da177e4 843
05caf8db
ZY
844 /*
845 * After sleeping, we become a "batching" process and
846 * will be able to allocate at least one request, and
847 * up to a big batch of them for a small period time.
848 * See ioc_batching, ioc_set_batching
849 */
850 ioc = current_io_context(GFP_NOIO, q->node);
851 ioc_set_batching(q, ioc);
d6344532 852
05caf8db 853 spin_lock_irq(q->queue_lock);
1faa16d2 854 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
855
856 rq = get_request(q, rw_flags, bio, GFP_NOIO);
857 };
1da177e4
LT
858
859 return rq;
860}
861
165125e1 862struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
863{
864 struct request *rq;
865
bfe159a5
JB
866 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
867 return NULL;
868
1da177e4
LT
869 BUG_ON(rw != READ && rw != WRITE);
870
d6344532
NP
871 spin_lock_irq(q->queue_lock);
872 if (gfp_mask & __GFP_WAIT) {
22e2c507 873 rq = get_request_wait(q, rw, NULL);
d6344532 874 } else {
22e2c507 875 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
876 if (!rq)
877 spin_unlock_irq(q->queue_lock);
878 }
879 /* q->queue_lock is unlocked at this point */
1da177e4
LT
880
881 return rq;
882}
1da177e4
LT
883EXPORT_SYMBOL(blk_get_request);
884
dc72ef4a 885/**
79eb63e9 886 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 887 * @q: target request queue
79eb63e9
BH
888 * @bio: The bio describing the memory mappings that will be submitted for IO.
889 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 890 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 891 *
79eb63e9
BH
892 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
893 * type commands. Where the struct request needs to be farther initialized by
894 * the caller. It is passed a &struct bio, which describes the memory info of
895 * the I/O transfer.
dc72ef4a 896 *
79eb63e9
BH
897 * The caller of blk_make_request must make sure that bi_io_vec
898 * are set to describe the memory buffers. That bio_data_dir() will return
899 * the needed direction of the request. (And all bio's in the passed bio-chain
900 * are properly set accordingly)
901 *
902 * If called under none-sleepable conditions, mapped bio buffers must not
903 * need bouncing, by calling the appropriate masked or flagged allocator,
904 * suitable for the target device. Otherwise the call to blk_queue_bounce will
905 * BUG.
53674ac5
JA
906 *
907 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
908 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
909 * anything but the first bio in the chain. Otherwise you risk waiting for IO
910 * completion of a bio that hasn't been submitted yet, thus resulting in a
911 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
912 * of bio_alloc(), as that avoids the mempool deadlock.
913 * If possible a big IO should be split into smaller parts when allocation
914 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 915 */
79eb63e9
BH
916struct request *blk_make_request(struct request_queue *q, struct bio *bio,
917 gfp_t gfp_mask)
dc72ef4a 918{
79eb63e9
BH
919 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
920
921 if (unlikely(!rq))
922 return ERR_PTR(-ENOMEM);
923
924 for_each_bio(bio) {
925 struct bio *bounce_bio = bio;
926 int ret;
927
928 blk_queue_bounce(q, &bounce_bio);
929 ret = blk_rq_append_bio(q, rq, bounce_bio);
930 if (unlikely(ret)) {
931 blk_put_request(rq);
932 return ERR_PTR(ret);
933 }
934 }
935
936 return rq;
dc72ef4a 937}
79eb63e9 938EXPORT_SYMBOL(blk_make_request);
dc72ef4a 939
1da177e4
LT
940/**
941 * blk_requeue_request - put a request back on queue
942 * @q: request queue where request should be inserted
943 * @rq: request to be inserted
944 *
945 * Description:
946 * Drivers often keep queueing requests until the hardware cannot accept
947 * more, when that condition happens we need to put the request back
948 * on the queue. Must be called with queue lock held.
949 */
165125e1 950void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 951{
242f9dcb
JA
952 blk_delete_timer(rq);
953 blk_clear_rq_complete(rq);
5f3ea37c 954 trace_block_rq_requeue(q, rq);
2056a782 955
1da177e4
LT
956 if (blk_rq_tagged(rq))
957 blk_queue_end_tag(q, rq);
958
ba396a6c
JB
959 BUG_ON(blk_queued_rq(rq));
960
1da177e4
LT
961 elv_requeue_request(q, rq);
962}
1da177e4
LT
963EXPORT_SYMBOL(blk_requeue_request);
964
73c10101
JA
965static void add_acct_request(struct request_queue *q, struct request *rq,
966 int where)
967{
968 drive_stat_acct(rq, 1);
7eaceacc 969 __elv_add_request(q, rq, where);
73c10101
JA
970}
971
1da177e4 972/**
710027a4 973 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
974 * @q: request queue where request should be inserted
975 * @rq: request to be inserted
976 * @at_head: insert request at head or tail of queue
977 * @data: private data
1da177e4
LT
978 *
979 * Description:
980 * Many block devices need to execute commands asynchronously, so they don't
981 * block the whole kernel from preemption during request execution. This is
982 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
983 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
984 * be scheduled for actual execution by the request queue.
1da177e4
LT
985 *
986 * We have the option of inserting the head or the tail of the queue.
987 * Typically we use the tail for new ioctls and so forth. We use the head
988 * of the queue for things like a QUEUE_FULL message from a device, or a
989 * host that is unable to accept a particular command.
990 */
165125e1 991void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 992 int at_head, void *data)
1da177e4 993{
867d1191 994 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
995 unsigned long flags;
996
997 /*
998 * tell I/O scheduler that this isn't a regular read/write (ie it
999 * must not attempt merges on this) and that it acts as a soft
1000 * barrier
1001 */
4aff5e23 1002 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1003
1004 rq->special = data;
1005
1006 spin_lock_irqsave(q->queue_lock, flags);
1007
1008 /*
1009 * If command is tagged, release the tag
1010 */
867d1191
TH
1011 if (blk_rq_tagged(rq))
1012 blk_queue_end_tag(q, rq);
1da177e4 1013
73c10101 1014 add_acct_request(q, rq, where);
24ecfbe2 1015 __blk_run_queue(q);
1da177e4
LT
1016 spin_unlock_irqrestore(q->queue_lock, flags);
1017}
1da177e4
LT
1018EXPORT_SYMBOL(blk_insert_request);
1019
074a7aca
TH
1020static void part_round_stats_single(int cpu, struct hd_struct *part,
1021 unsigned long now)
1022{
1023 if (now == part->stamp)
1024 return;
1025
316d315b 1026 if (part_in_flight(part)) {
074a7aca 1027 __part_stat_add(cpu, part, time_in_queue,
316d315b 1028 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1029 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1030 }
1031 part->stamp = now;
1032}
1033
1034/**
496aa8a9
RD
1035 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1036 * @cpu: cpu number for stats access
1037 * @part: target partition
1da177e4
LT
1038 *
1039 * The average IO queue length and utilisation statistics are maintained
1040 * by observing the current state of the queue length and the amount of
1041 * time it has been in this state for.
1042 *
1043 * Normally, that accounting is done on IO completion, but that can result
1044 * in more than a second's worth of IO being accounted for within any one
1045 * second, leading to >100% utilisation. To deal with that, we call this
1046 * function to do a round-off before returning the results when reading
1047 * /proc/diskstats. This accounts immediately for all queue usage up to
1048 * the current jiffies and restarts the counters again.
1049 */
c9959059 1050void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1051{
1052 unsigned long now = jiffies;
1053
074a7aca
TH
1054 if (part->partno)
1055 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1056 part_round_stats_single(cpu, part, now);
6f2576af 1057}
074a7aca 1058EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1059
1da177e4
LT
1060/*
1061 * queue lock must be held
1062 */
165125e1 1063void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1064{
1da177e4
LT
1065 if (unlikely(!q))
1066 return;
1067 if (unlikely(--req->ref_count))
1068 return;
1069
8922e16c
TH
1070 elv_completed_request(q, req);
1071
1cd96c24
BH
1072 /* this is a bio leak */
1073 WARN_ON(req->bio != NULL);
1074
1da177e4
LT
1075 /*
1076 * Request may not have originated from ll_rw_blk. if not,
1077 * it didn't come out of our reserved rq pools
1078 */
49171e5c 1079 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1080 unsigned int flags = req->cmd_flags;
1da177e4 1081
1da177e4 1082 BUG_ON(!list_empty(&req->queuelist));
9817064b 1083 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1084
1085 blk_free_request(q, req);
75eb6c37 1086 freed_request(q, flags);
1da177e4
LT
1087 }
1088}
6e39b69e
MC
1089EXPORT_SYMBOL_GPL(__blk_put_request);
1090
1da177e4
LT
1091void blk_put_request(struct request *req)
1092{
8922e16c 1093 unsigned long flags;
165125e1 1094 struct request_queue *q = req->q;
8922e16c 1095
52a93ba8
FT
1096 spin_lock_irqsave(q->queue_lock, flags);
1097 __blk_put_request(q, req);
1098 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1099}
1da177e4
LT
1100EXPORT_SYMBOL(blk_put_request);
1101
66ac0280
CH
1102/**
1103 * blk_add_request_payload - add a payload to a request
1104 * @rq: request to update
1105 * @page: page backing the payload
1106 * @len: length of the payload.
1107 *
1108 * This allows to later add a payload to an already submitted request by
1109 * a block driver. The driver needs to take care of freeing the payload
1110 * itself.
1111 *
1112 * Note that this is a quite horrible hack and nothing but handling of
1113 * discard requests should ever use it.
1114 */
1115void blk_add_request_payload(struct request *rq, struct page *page,
1116 unsigned int len)
1117{
1118 struct bio *bio = rq->bio;
1119
1120 bio->bi_io_vec->bv_page = page;
1121 bio->bi_io_vec->bv_offset = 0;
1122 bio->bi_io_vec->bv_len = len;
1123
1124 bio->bi_size = len;
1125 bio->bi_vcnt = 1;
1126 bio->bi_phys_segments = 1;
1127
1128 rq->__data_len = rq->resid_len = len;
1129 rq->nr_phys_segments = 1;
1130 rq->buffer = bio_data(bio);
1131}
1132EXPORT_SYMBOL_GPL(blk_add_request_payload);
1133
73c10101
JA
1134static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1135 struct bio *bio)
1136{
1137 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1138
73c10101
JA
1139 if (!ll_back_merge_fn(q, req, bio))
1140 return false;
1141
1142 trace_block_bio_backmerge(q, bio);
1143
1144 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1145 blk_rq_set_mixed_merge(req);
1146
1147 req->biotail->bi_next = bio;
1148 req->biotail = bio;
1149 req->__data_len += bio->bi_size;
1150 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1151
1152 drive_stat_acct(req, 0);
95cf3dd9 1153 elv_bio_merged(q, req, bio);
73c10101
JA
1154 return true;
1155}
1156
1157static bool bio_attempt_front_merge(struct request_queue *q,
1158 struct request *req, struct bio *bio)
1159{
1160 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1161
73c10101
JA
1162 if (!ll_front_merge_fn(q, req, bio))
1163 return false;
1164
1165 trace_block_bio_frontmerge(q, bio);
1166
1167 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1168 blk_rq_set_mixed_merge(req);
1169
73c10101
JA
1170 bio->bi_next = req->bio;
1171 req->bio = bio;
1172
1173 /*
1174 * may not be valid. if the low level driver said
1175 * it didn't need a bounce buffer then it better
1176 * not touch req->buffer either...
1177 */
1178 req->buffer = bio_data(bio);
1179 req->__sector = bio->bi_sector;
1180 req->__data_len += bio->bi_size;
1181 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1182
1183 drive_stat_acct(req, 0);
95cf3dd9 1184 elv_bio_merged(q, req, bio);
73c10101
JA
1185 return true;
1186}
1187
1188/*
1189 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1190 * true if merge was successful, otherwise false.
73c10101
JA
1191 */
1192static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
56ebdaf2 1193 struct bio *bio, unsigned int *request_count)
73c10101
JA
1194{
1195 struct blk_plug *plug;
1196 struct request *rq;
1197 bool ret = false;
1198
1199 plug = tsk->plug;
1200 if (!plug)
1201 goto out;
56ebdaf2 1202 *request_count = 0;
73c10101
JA
1203
1204 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1205 int el_ret;
1206
56ebdaf2
SL
1207 (*request_count)++;
1208
73c10101
JA
1209 if (rq->q != q)
1210 continue;
1211
1212 el_ret = elv_try_merge(rq, bio);
1213 if (el_ret == ELEVATOR_BACK_MERGE) {
1214 ret = bio_attempt_back_merge(q, rq, bio);
1215 if (ret)
1216 break;
1217 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1218 ret = bio_attempt_front_merge(q, rq, bio);
1219 if (ret)
1220 break;
1221 }
1222 }
1223out:
1224 return ret;
1225}
1226
86db1e29 1227void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1228{
c7c22e4d 1229 req->cpu = bio->bi_comp_cpu;
4aff5e23 1230 req->cmd_type = REQ_TYPE_FS;
52d9e675 1231
7b6d91da
CH
1232 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1233 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1234 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1235
52d9e675 1236 req->errors = 0;
a2dec7b3 1237 req->__sector = bio->bi_sector;
52d9e675 1238 req->ioprio = bio_prio(bio);
bc1c56fd 1239 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1240}
1241
5a7bbad2 1242void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1243{
5e00d1b5 1244 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1245 struct blk_plug *plug;
1246 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1247 struct request *req;
56ebdaf2 1248 unsigned int request_count = 0;
1da177e4 1249
1da177e4
LT
1250 /*
1251 * low level driver can indicate that it wants pages above a
1252 * certain limit bounced to low memory (ie for highmem, or even
1253 * ISA dma in theory)
1254 */
1255 blk_queue_bounce(q, &bio);
1256
4fed947c 1257 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1258 spin_lock_irq(q->queue_lock);
ae1b1539 1259 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1260 goto get_rq;
1261 }
1262
73c10101
JA
1263 /*
1264 * Check if we can merge with the plugged list before grabbing
1265 * any locks.
1266 */
56ebdaf2 1267 if (attempt_plug_merge(current, q, bio, &request_count))
5a7bbad2 1268 return;
1da177e4 1269
73c10101 1270 spin_lock_irq(q->queue_lock);
2056a782 1271
73c10101
JA
1272 el_ret = elv_merge(q, &req, bio);
1273 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1274 if (bio_attempt_back_merge(q, req, bio)) {
1275 if (!attempt_back_merge(q, req))
1276 elv_merged_request(q, req, el_ret);
1277 goto out_unlock;
1278 }
1279 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1280 if (bio_attempt_front_merge(q, req, bio)) {
1281 if (!attempt_front_merge(q, req))
1282 elv_merged_request(q, req, el_ret);
1283 goto out_unlock;
80a761fd 1284 }
1da177e4
LT
1285 }
1286
450991bc 1287get_rq:
7749a8d4
JA
1288 /*
1289 * This sync check and mask will be re-done in init_request_from_bio(),
1290 * but we need to set it earlier to expose the sync flag to the
1291 * rq allocator and io schedulers.
1292 */
1293 rw_flags = bio_data_dir(bio);
1294 if (sync)
7b6d91da 1295 rw_flags |= REQ_SYNC;
7749a8d4 1296
1da177e4 1297 /*
450991bc 1298 * Grab a free request. This is might sleep but can not fail.
d6344532 1299 * Returns with the queue unlocked.
450991bc 1300 */
7749a8d4 1301 req = get_request_wait(q, rw_flags, bio);
d6344532 1302
450991bc
NP
1303 /*
1304 * After dropping the lock and possibly sleeping here, our request
1305 * may now be mergeable after it had proven unmergeable (above).
1306 * We don't worry about that case for efficiency. It won't happen
1307 * often, and the elevators are able to handle it.
1da177e4 1308 */
52d9e675 1309 init_request_from_bio(req, bio);
1da177e4 1310
c7c22e4d 1311 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
5757a6d7 1312 bio_flagged(bio, BIO_CPU_AFFINE))
11ccf116 1313 req->cpu = raw_smp_processor_id();
73c10101
JA
1314
1315 plug = current->plug;
721a9602 1316 if (plug) {
dc6d36c9
JA
1317 /*
1318 * If this is the first request added after a plug, fire
1319 * of a plug trace. If others have been added before, check
1320 * if we have multiple devices in this plug. If so, make a
1321 * note to sort the list before dispatch.
1322 */
1323 if (list_empty(&plug->list))
1324 trace_block_plug(q);
1325 else if (!plug->should_sort) {
73c10101
JA
1326 struct request *__rq;
1327
1328 __rq = list_entry_rq(plug->list.prev);
1329 if (__rq->q != q)
1330 plug->should_sort = 1;
1331 }
56ebdaf2 1332 if (request_count >= BLK_MAX_REQUEST_COUNT)
55c022bb 1333 blk_flush_plug_list(plug, false);
73c10101
JA
1334 list_add_tail(&req->queuelist, &plug->list);
1335 drive_stat_acct(req, 1);
1336 } else {
1337 spin_lock_irq(q->queue_lock);
1338 add_acct_request(q, req, where);
24ecfbe2 1339 __blk_run_queue(q);
73c10101
JA
1340out_unlock:
1341 spin_unlock_irq(q->queue_lock);
1342 }
1da177e4 1343}
c20e8de2 1344EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1345
1346/*
1347 * If bio->bi_dev is a partition, remap the location
1348 */
1349static inline void blk_partition_remap(struct bio *bio)
1350{
1351 struct block_device *bdev = bio->bi_bdev;
1352
bf2de6f5 1353 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1354 struct hd_struct *p = bdev->bd_part;
1355
1da177e4
LT
1356 bio->bi_sector += p->start_sect;
1357 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1358
d07335e5
MS
1359 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1360 bdev->bd_dev,
1361 bio->bi_sector - p->start_sect);
1da177e4
LT
1362 }
1363}
1364
1da177e4
LT
1365static void handle_bad_sector(struct bio *bio)
1366{
1367 char b[BDEVNAME_SIZE];
1368
1369 printk(KERN_INFO "attempt to access beyond end of device\n");
1370 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1371 bdevname(bio->bi_bdev, b),
1372 bio->bi_rw,
1373 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1374 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1375
1376 set_bit(BIO_EOF, &bio->bi_flags);
1377}
1378
c17bb495
AM
1379#ifdef CONFIG_FAIL_MAKE_REQUEST
1380
1381static DECLARE_FAULT_ATTR(fail_make_request);
1382
1383static int __init setup_fail_make_request(char *str)
1384{
1385 return setup_fault_attr(&fail_make_request, str);
1386}
1387__setup("fail_make_request=", setup_fail_make_request);
1388
b2c9cd37 1389static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1390{
b2c9cd37 1391 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1392}
1393
1394static int __init fail_make_request_debugfs(void)
1395{
dd48c085
AM
1396 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1397 NULL, &fail_make_request);
1398
1399 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1400}
1401
1402late_initcall(fail_make_request_debugfs);
1403
1404#else /* CONFIG_FAIL_MAKE_REQUEST */
1405
b2c9cd37
AM
1406static inline bool should_fail_request(struct hd_struct *part,
1407 unsigned int bytes)
c17bb495 1408{
b2c9cd37 1409 return false;
c17bb495
AM
1410}
1411
1412#endif /* CONFIG_FAIL_MAKE_REQUEST */
1413
c07e2b41
JA
1414/*
1415 * Check whether this bio extends beyond the end of the device.
1416 */
1417static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1418{
1419 sector_t maxsector;
1420
1421 if (!nr_sectors)
1422 return 0;
1423
1424 /* Test device or partition size, when known. */
77304d2a 1425 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1426 if (maxsector) {
1427 sector_t sector = bio->bi_sector;
1428
1429 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1430 /*
1431 * This may well happen - the kernel calls bread()
1432 * without checking the size of the device, e.g., when
1433 * mounting a device.
1434 */
1435 handle_bad_sector(bio);
1436 return 1;
1437 }
1438 }
1439
1440 return 0;
1441}
1442
27a84d54
CH
1443static noinline_for_stack bool
1444generic_make_request_checks(struct bio *bio)
1da177e4 1445{
165125e1 1446 struct request_queue *q;
5a7bbad2 1447 int nr_sectors = bio_sectors(bio);
51fd77bd 1448 int err = -EIO;
5a7bbad2
CH
1449 char b[BDEVNAME_SIZE];
1450 struct hd_struct *part;
1da177e4
LT
1451
1452 might_sleep();
1da177e4 1453
c07e2b41
JA
1454 if (bio_check_eod(bio, nr_sectors))
1455 goto end_io;
1da177e4 1456
5a7bbad2
CH
1457 q = bdev_get_queue(bio->bi_bdev);
1458 if (unlikely(!q)) {
1459 printk(KERN_ERR
1460 "generic_make_request: Trying to access "
1461 "nonexistent block-device %s (%Lu)\n",
1462 bdevname(bio->bi_bdev, b),
1463 (long long) bio->bi_sector);
1464 goto end_io;
1465 }
c17bb495 1466
5a7bbad2
CH
1467 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1468 nr_sectors > queue_max_hw_sectors(q))) {
1469 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1470 bdevname(bio->bi_bdev, b),
1471 bio_sectors(bio),
1472 queue_max_hw_sectors(q));
1473 goto end_io;
1474 }
1da177e4 1475
5a7bbad2
CH
1476 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1477 goto end_io;
7ba1ba12 1478
5a7bbad2
CH
1479 part = bio->bi_bdev->bd_part;
1480 if (should_fail_request(part, bio->bi_size) ||
1481 should_fail_request(&part_to_disk(part)->part0,
1482 bio->bi_size))
1483 goto end_io;
2056a782 1484
5a7bbad2
CH
1485 /*
1486 * If this device has partitions, remap block n
1487 * of partition p to block n+start(p) of the disk.
1488 */
1489 blk_partition_remap(bio);
2056a782 1490
5a7bbad2
CH
1491 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1492 goto end_io;
a7384677 1493
5a7bbad2
CH
1494 if (bio_check_eod(bio, nr_sectors))
1495 goto end_io;
1e87901e 1496
5a7bbad2
CH
1497 /*
1498 * Filter flush bio's early so that make_request based
1499 * drivers without flush support don't have to worry
1500 * about them.
1501 */
1502 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1503 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1504 if (!nr_sectors) {
1505 err = 0;
51fd77bd
JA
1506 goto end_io;
1507 }
5a7bbad2 1508 }
5ddfe969 1509
5a7bbad2
CH
1510 if ((bio->bi_rw & REQ_DISCARD) &&
1511 (!blk_queue_discard(q) ||
1512 ((bio->bi_rw & REQ_SECURE) &&
1513 !blk_queue_secdiscard(q)))) {
1514 err = -EOPNOTSUPP;
1515 goto end_io;
1516 }
01edede4 1517
bc16a4f9
TH
1518 if (blk_throtl_bio(q, bio))
1519 return false; /* throttled, will be resubmitted later */
27a84d54 1520
5a7bbad2 1521 trace_block_bio_queue(q, bio);
27a84d54 1522 return true;
a7384677
TH
1523
1524end_io:
1525 bio_endio(bio, err);
27a84d54 1526 return false;
1da177e4
LT
1527}
1528
27a84d54
CH
1529/**
1530 * generic_make_request - hand a buffer to its device driver for I/O
1531 * @bio: The bio describing the location in memory and on the device.
1532 *
1533 * generic_make_request() is used to make I/O requests of block
1534 * devices. It is passed a &struct bio, which describes the I/O that needs
1535 * to be done.
1536 *
1537 * generic_make_request() does not return any status. The
1538 * success/failure status of the request, along with notification of
1539 * completion, is delivered asynchronously through the bio->bi_end_io
1540 * function described (one day) else where.
1541 *
1542 * The caller of generic_make_request must make sure that bi_io_vec
1543 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1544 * set to describe the device address, and the
1545 * bi_end_io and optionally bi_private are set to describe how
1546 * completion notification should be signaled.
1547 *
1548 * generic_make_request and the drivers it calls may use bi_next if this
1549 * bio happens to be merged with someone else, and may resubmit the bio to
1550 * a lower device by calling into generic_make_request recursively, which
1551 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1552 */
1553void generic_make_request(struct bio *bio)
1554{
bddd87c7
AM
1555 struct bio_list bio_list_on_stack;
1556
27a84d54
CH
1557 if (!generic_make_request_checks(bio))
1558 return;
1559
1560 /*
1561 * We only want one ->make_request_fn to be active at a time, else
1562 * stack usage with stacked devices could be a problem. So use
1563 * current->bio_list to keep a list of requests submited by a
1564 * make_request_fn function. current->bio_list is also used as a
1565 * flag to say if generic_make_request is currently active in this
1566 * task or not. If it is NULL, then no make_request is active. If
1567 * it is non-NULL, then a make_request is active, and new requests
1568 * should be added at the tail
1569 */
bddd87c7 1570 if (current->bio_list) {
bddd87c7 1571 bio_list_add(current->bio_list, bio);
d89d8796
NB
1572 return;
1573 }
27a84d54 1574
d89d8796
NB
1575 /* following loop may be a bit non-obvious, and so deserves some
1576 * explanation.
1577 * Before entering the loop, bio->bi_next is NULL (as all callers
1578 * ensure that) so we have a list with a single bio.
1579 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1580 * we assign bio_list to a pointer to the bio_list_on_stack,
1581 * thus initialising the bio_list of new bios to be
27a84d54 1582 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1583 * through a recursive call to generic_make_request. If it
1584 * did, we find a non-NULL value in bio_list and re-enter the loop
1585 * from the top. In this case we really did just take the bio
bddd87c7 1586 * of the top of the list (no pretending) and so remove it from
27a84d54 1587 * bio_list, and call into ->make_request() again.
d89d8796
NB
1588 */
1589 BUG_ON(bio->bi_next);
bddd87c7
AM
1590 bio_list_init(&bio_list_on_stack);
1591 current->bio_list = &bio_list_on_stack;
d89d8796 1592 do {
27a84d54
CH
1593 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1594
1595 q->make_request_fn(q, bio);
1596
bddd87c7 1597 bio = bio_list_pop(current->bio_list);
d89d8796 1598 } while (bio);
bddd87c7 1599 current->bio_list = NULL; /* deactivate */
d89d8796 1600}
1da177e4
LT
1601EXPORT_SYMBOL(generic_make_request);
1602
1603/**
710027a4 1604 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1605 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1606 * @bio: The &struct bio which describes the I/O
1607 *
1608 * submit_bio() is very similar in purpose to generic_make_request(), and
1609 * uses that function to do most of the work. Both are fairly rough
710027a4 1610 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1611 *
1612 */
1613void submit_bio(int rw, struct bio *bio)
1614{
1615 int count = bio_sectors(bio);
1616
22e2c507 1617 bio->bi_rw |= rw;
1da177e4 1618
bf2de6f5
JA
1619 /*
1620 * If it's a regular read/write or a barrier with data attached,
1621 * go through the normal accounting stuff before submission.
1622 */
3ffb52e7 1623 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1624 if (rw & WRITE) {
1625 count_vm_events(PGPGOUT, count);
1626 } else {
1627 task_io_account_read(bio->bi_size);
1628 count_vm_events(PGPGIN, count);
1629 }
1630
1631 if (unlikely(block_dump)) {
1632 char b[BDEVNAME_SIZE];
8dcbdc74 1633 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1634 current->comm, task_pid_nr(current),
bf2de6f5
JA
1635 (rw & WRITE) ? "WRITE" : "READ",
1636 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1637 bdevname(bio->bi_bdev, b),
1638 count);
bf2de6f5 1639 }
1da177e4
LT
1640 }
1641
1642 generic_make_request(bio);
1643}
1da177e4
LT
1644EXPORT_SYMBOL(submit_bio);
1645
82124d60
KU
1646/**
1647 * blk_rq_check_limits - Helper function to check a request for the queue limit
1648 * @q: the queue
1649 * @rq: the request being checked
1650 *
1651 * Description:
1652 * @rq may have been made based on weaker limitations of upper-level queues
1653 * in request stacking drivers, and it may violate the limitation of @q.
1654 * Since the block layer and the underlying device driver trust @rq
1655 * after it is inserted to @q, it should be checked against @q before
1656 * the insertion using this generic function.
1657 *
1658 * This function should also be useful for request stacking drivers
eef35c2d 1659 * in some cases below, so export this function.
82124d60
KU
1660 * Request stacking drivers like request-based dm may change the queue
1661 * limits while requests are in the queue (e.g. dm's table swapping).
1662 * Such request stacking drivers should check those requests agaist
1663 * the new queue limits again when they dispatch those requests,
1664 * although such checkings are also done against the old queue limits
1665 * when submitting requests.
1666 */
1667int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1668{
3383977f
S
1669 if (rq->cmd_flags & REQ_DISCARD)
1670 return 0;
1671
ae03bf63
MP
1672 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1673 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1674 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1675 return -EIO;
1676 }
1677
1678 /*
1679 * queue's settings related to segment counting like q->bounce_pfn
1680 * may differ from that of other stacking queues.
1681 * Recalculate it to check the request correctly on this queue's
1682 * limitation.
1683 */
1684 blk_recalc_rq_segments(rq);
8a78362c 1685 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1686 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1687 return -EIO;
1688 }
1689
1690 return 0;
1691}
1692EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1693
1694/**
1695 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1696 * @q: the queue to submit the request
1697 * @rq: the request being queued
1698 */
1699int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1700{
1701 unsigned long flags;
4853abaa 1702 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1703
1704 if (blk_rq_check_limits(q, rq))
1705 return -EIO;
1706
b2c9cd37
AM
1707 if (rq->rq_disk &&
1708 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1709 return -EIO;
82124d60
KU
1710
1711 spin_lock_irqsave(q->queue_lock, flags);
1712
1713 /*
1714 * Submitting request must be dequeued before calling this function
1715 * because it will be linked to another request_queue
1716 */
1717 BUG_ON(blk_queued_rq(rq));
1718
4853abaa
JM
1719 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1720 where = ELEVATOR_INSERT_FLUSH;
1721
1722 add_acct_request(q, rq, where);
82124d60
KU
1723 spin_unlock_irqrestore(q->queue_lock, flags);
1724
1725 return 0;
1726}
1727EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1728
80a761fd
TH
1729/**
1730 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1731 * @rq: request to examine
1732 *
1733 * Description:
1734 * A request could be merge of IOs which require different failure
1735 * handling. This function determines the number of bytes which
1736 * can be failed from the beginning of the request without
1737 * crossing into area which need to be retried further.
1738 *
1739 * Return:
1740 * The number of bytes to fail.
1741 *
1742 * Context:
1743 * queue_lock must be held.
1744 */
1745unsigned int blk_rq_err_bytes(const struct request *rq)
1746{
1747 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1748 unsigned int bytes = 0;
1749 struct bio *bio;
1750
1751 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1752 return blk_rq_bytes(rq);
1753
1754 /*
1755 * Currently the only 'mixing' which can happen is between
1756 * different fastfail types. We can safely fail portions
1757 * which have all the failfast bits that the first one has -
1758 * the ones which are at least as eager to fail as the first
1759 * one.
1760 */
1761 for (bio = rq->bio; bio; bio = bio->bi_next) {
1762 if ((bio->bi_rw & ff) != ff)
1763 break;
1764 bytes += bio->bi_size;
1765 }
1766
1767 /* this could lead to infinite loop */
1768 BUG_ON(blk_rq_bytes(rq) && !bytes);
1769 return bytes;
1770}
1771EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1772
bc58ba94
JA
1773static void blk_account_io_completion(struct request *req, unsigned int bytes)
1774{
c2553b58 1775 if (blk_do_io_stat(req)) {
bc58ba94
JA
1776 const int rw = rq_data_dir(req);
1777 struct hd_struct *part;
1778 int cpu;
1779
1780 cpu = part_stat_lock();
09e099d4 1781 part = req->part;
bc58ba94
JA
1782 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1783 part_stat_unlock();
1784 }
1785}
1786
1787static void blk_account_io_done(struct request *req)
1788{
bc58ba94 1789 /*
dd4c133f
TH
1790 * Account IO completion. flush_rq isn't accounted as a
1791 * normal IO on queueing nor completion. Accounting the
1792 * containing request is enough.
bc58ba94 1793 */
414b4ff5 1794 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1795 unsigned long duration = jiffies - req->start_time;
1796 const int rw = rq_data_dir(req);
1797 struct hd_struct *part;
1798 int cpu;
1799
1800 cpu = part_stat_lock();
09e099d4 1801 part = req->part;
bc58ba94
JA
1802
1803 part_stat_inc(cpu, part, ios[rw]);
1804 part_stat_add(cpu, part, ticks[rw], duration);
1805 part_round_stats(cpu, part);
316d315b 1806 part_dec_in_flight(part, rw);
bc58ba94 1807
6c23a968 1808 hd_struct_put(part);
bc58ba94
JA
1809 part_stat_unlock();
1810 }
1811}
1812
3bcddeac 1813/**
9934c8c0
TH
1814 * blk_peek_request - peek at the top of a request queue
1815 * @q: request queue to peek at
1816 *
1817 * Description:
1818 * Return the request at the top of @q. The returned request
1819 * should be started using blk_start_request() before LLD starts
1820 * processing it.
1821 *
1822 * Return:
1823 * Pointer to the request at the top of @q if available. Null
1824 * otherwise.
1825 *
1826 * Context:
1827 * queue_lock must be held.
1828 */
1829struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1830{
1831 struct request *rq;
1832 int ret;
1833
1834 while ((rq = __elv_next_request(q)) != NULL) {
1835 if (!(rq->cmd_flags & REQ_STARTED)) {
1836 /*
1837 * This is the first time the device driver
1838 * sees this request (possibly after
1839 * requeueing). Notify IO scheduler.
1840 */
33659ebb 1841 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1842 elv_activate_rq(q, rq);
1843
1844 /*
1845 * just mark as started even if we don't start
1846 * it, a request that has been delayed should
1847 * not be passed by new incoming requests
1848 */
1849 rq->cmd_flags |= REQ_STARTED;
1850 trace_block_rq_issue(q, rq);
1851 }
1852
1853 if (!q->boundary_rq || q->boundary_rq == rq) {
1854 q->end_sector = rq_end_sector(rq);
1855 q->boundary_rq = NULL;
1856 }
1857
1858 if (rq->cmd_flags & REQ_DONTPREP)
1859 break;
1860
2e46e8b2 1861 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1862 /*
1863 * make sure space for the drain appears we
1864 * know we can do this because max_hw_segments
1865 * has been adjusted to be one fewer than the
1866 * device can handle
1867 */
1868 rq->nr_phys_segments++;
1869 }
1870
1871 if (!q->prep_rq_fn)
1872 break;
1873
1874 ret = q->prep_rq_fn(q, rq);
1875 if (ret == BLKPREP_OK) {
1876 break;
1877 } else if (ret == BLKPREP_DEFER) {
1878 /*
1879 * the request may have been (partially) prepped.
1880 * we need to keep this request in the front to
1881 * avoid resource deadlock. REQ_STARTED will
1882 * prevent other fs requests from passing this one.
1883 */
2e46e8b2 1884 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1885 !(rq->cmd_flags & REQ_DONTPREP)) {
1886 /*
1887 * remove the space for the drain we added
1888 * so that we don't add it again
1889 */
1890 --rq->nr_phys_segments;
1891 }
1892
1893 rq = NULL;
1894 break;
1895 } else if (ret == BLKPREP_KILL) {
1896 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1897 /*
1898 * Mark this request as started so we don't trigger
1899 * any debug logic in the end I/O path.
1900 */
1901 blk_start_request(rq);
40cbbb78 1902 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1903 } else {
1904 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1905 break;
1906 }
1907 }
1908
1909 return rq;
1910}
9934c8c0 1911EXPORT_SYMBOL(blk_peek_request);
158dbda0 1912
9934c8c0 1913void blk_dequeue_request(struct request *rq)
158dbda0 1914{
9934c8c0
TH
1915 struct request_queue *q = rq->q;
1916
158dbda0
TH
1917 BUG_ON(list_empty(&rq->queuelist));
1918 BUG_ON(ELV_ON_HASH(rq));
1919
1920 list_del_init(&rq->queuelist);
1921
1922 /*
1923 * the time frame between a request being removed from the lists
1924 * and to it is freed is accounted as io that is in progress at
1925 * the driver side.
1926 */
9195291e 1927 if (blk_account_rq(rq)) {
0a7ae2ff 1928 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1929 set_io_start_time_ns(rq);
1930 }
158dbda0
TH
1931}
1932
9934c8c0
TH
1933/**
1934 * blk_start_request - start request processing on the driver
1935 * @req: request to dequeue
1936 *
1937 * Description:
1938 * Dequeue @req and start timeout timer on it. This hands off the
1939 * request to the driver.
1940 *
1941 * Block internal functions which don't want to start timer should
1942 * call blk_dequeue_request().
1943 *
1944 * Context:
1945 * queue_lock must be held.
1946 */
1947void blk_start_request(struct request *req)
1948{
1949 blk_dequeue_request(req);
1950
1951 /*
5f49f631
TH
1952 * We are now handing the request to the hardware, initialize
1953 * resid_len to full count and add the timeout handler.
9934c8c0 1954 */
5f49f631 1955 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1956 if (unlikely(blk_bidi_rq(req)))
1957 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1958
9934c8c0
TH
1959 blk_add_timer(req);
1960}
1961EXPORT_SYMBOL(blk_start_request);
1962
1963/**
1964 * blk_fetch_request - fetch a request from a request queue
1965 * @q: request queue to fetch a request from
1966 *
1967 * Description:
1968 * Return the request at the top of @q. The request is started on
1969 * return and LLD can start processing it immediately.
1970 *
1971 * Return:
1972 * Pointer to the request at the top of @q if available. Null
1973 * otherwise.
1974 *
1975 * Context:
1976 * queue_lock must be held.
1977 */
1978struct request *blk_fetch_request(struct request_queue *q)
1979{
1980 struct request *rq;
1981
1982 rq = blk_peek_request(q);
1983 if (rq)
1984 blk_start_request(rq);
1985 return rq;
1986}
1987EXPORT_SYMBOL(blk_fetch_request);
1988
3bcddeac 1989/**
2e60e022 1990 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1991 * @req: the request being processed
710027a4 1992 * @error: %0 for success, < %0 for error
8ebf9756 1993 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1994 *
1995 * Description:
8ebf9756
RD
1996 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1997 * the request structure even if @req doesn't have leftover.
1998 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1999 *
2000 * This special helper function is only for request stacking drivers
2001 * (e.g. request-based dm) so that they can handle partial completion.
2002 * Actual device drivers should use blk_end_request instead.
2003 *
2004 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2005 * %false return from this function.
3bcddeac
KU
2006 *
2007 * Return:
2e60e022
TH
2008 * %false - this request doesn't have any more data
2009 * %true - this request has more data
3bcddeac 2010 **/
2e60e022 2011bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2012{
5450d3e1 2013 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2014 struct bio *bio;
2015
2e60e022
TH
2016 if (!req->bio)
2017 return false;
2018
5f3ea37c 2019 trace_block_rq_complete(req->q, req);
2056a782 2020
1da177e4 2021 /*
6f41469c
TH
2022 * For fs requests, rq is just carrier of independent bio's
2023 * and each partial completion should be handled separately.
2024 * Reset per-request error on each partial completion.
2025 *
2026 * TODO: tj: This is too subtle. It would be better to let
2027 * low level drivers do what they see fit.
1da177e4 2028 */
33659ebb 2029 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2030 req->errors = 0;
2031
33659ebb
CH
2032 if (error && req->cmd_type == REQ_TYPE_FS &&
2033 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2034 char *error_type;
2035
2036 switch (error) {
2037 case -ENOLINK:
2038 error_type = "recoverable transport";
2039 break;
2040 case -EREMOTEIO:
2041 error_type = "critical target";
2042 break;
2043 case -EBADE:
2044 error_type = "critical nexus";
2045 break;
2046 case -EIO:
2047 default:
2048 error_type = "I/O";
2049 break;
2050 }
2051 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2052 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2053 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2054 }
2055
bc58ba94 2056 blk_account_io_completion(req, nr_bytes);
d72d904a 2057
1da177e4
LT
2058 total_bytes = bio_nbytes = 0;
2059 while ((bio = req->bio) != NULL) {
2060 int nbytes;
2061
2062 if (nr_bytes >= bio->bi_size) {
2063 req->bio = bio->bi_next;
2064 nbytes = bio->bi_size;
5bb23a68 2065 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2066 next_idx = 0;
2067 bio_nbytes = 0;
2068 } else {
2069 int idx = bio->bi_idx + next_idx;
2070
af498d7f 2071 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2072 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2073 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2074 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2075 break;
2076 }
2077
2078 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2079 BIO_BUG_ON(nbytes > bio->bi_size);
2080
2081 /*
2082 * not a complete bvec done
2083 */
2084 if (unlikely(nbytes > nr_bytes)) {
2085 bio_nbytes += nr_bytes;
2086 total_bytes += nr_bytes;
2087 break;
2088 }
2089
2090 /*
2091 * advance to the next vector
2092 */
2093 next_idx++;
2094 bio_nbytes += nbytes;
2095 }
2096
2097 total_bytes += nbytes;
2098 nr_bytes -= nbytes;
2099
6728cb0e
JA
2100 bio = req->bio;
2101 if (bio) {
1da177e4
LT
2102 /*
2103 * end more in this run, or just return 'not-done'
2104 */
2105 if (unlikely(nr_bytes <= 0))
2106 break;
2107 }
2108 }
2109
2110 /*
2111 * completely done
2112 */
2e60e022
TH
2113 if (!req->bio) {
2114 /*
2115 * Reset counters so that the request stacking driver
2116 * can find how many bytes remain in the request
2117 * later.
2118 */
a2dec7b3 2119 req->__data_len = 0;
2e60e022
TH
2120 return false;
2121 }
1da177e4
LT
2122
2123 /*
2124 * if the request wasn't completed, update state
2125 */
2126 if (bio_nbytes) {
5bb23a68 2127 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2128 bio->bi_idx += next_idx;
2129 bio_iovec(bio)->bv_offset += nr_bytes;
2130 bio_iovec(bio)->bv_len -= nr_bytes;
2131 }
2132
a2dec7b3 2133 req->__data_len -= total_bytes;
2e46e8b2
TH
2134 req->buffer = bio_data(req->bio);
2135
2136 /* update sector only for requests with clear definition of sector */
33659ebb 2137 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2138 req->__sector += total_bytes >> 9;
2e46e8b2 2139
80a761fd
TH
2140 /* mixed attributes always follow the first bio */
2141 if (req->cmd_flags & REQ_MIXED_MERGE) {
2142 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2143 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2144 }
2145
2e46e8b2
TH
2146 /*
2147 * If total number of sectors is less than the first segment
2148 * size, something has gone terribly wrong.
2149 */
2150 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2151 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2152 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2153 }
2154
2155 /* recalculate the number of segments */
1da177e4 2156 blk_recalc_rq_segments(req);
2e46e8b2 2157
2e60e022 2158 return true;
1da177e4 2159}
2e60e022 2160EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2161
2e60e022
TH
2162static bool blk_update_bidi_request(struct request *rq, int error,
2163 unsigned int nr_bytes,
2164 unsigned int bidi_bytes)
5efccd17 2165{
2e60e022
TH
2166 if (blk_update_request(rq, error, nr_bytes))
2167 return true;
5efccd17 2168
2e60e022
TH
2169 /* Bidi request must be completed as a whole */
2170 if (unlikely(blk_bidi_rq(rq)) &&
2171 blk_update_request(rq->next_rq, error, bidi_bytes))
2172 return true;
5efccd17 2173
e2e1a148
JA
2174 if (blk_queue_add_random(rq->q))
2175 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2176
2177 return false;
1da177e4
LT
2178}
2179
28018c24
JB
2180/**
2181 * blk_unprep_request - unprepare a request
2182 * @req: the request
2183 *
2184 * This function makes a request ready for complete resubmission (or
2185 * completion). It happens only after all error handling is complete,
2186 * so represents the appropriate moment to deallocate any resources
2187 * that were allocated to the request in the prep_rq_fn. The queue
2188 * lock is held when calling this.
2189 */
2190void blk_unprep_request(struct request *req)
2191{
2192 struct request_queue *q = req->q;
2193
2194 req->cmd_flags &= ~REQ_DONTPREP;
2195 if (q->unprep_rq_fn)
2196 q->unprep_rq_fn(q, req);
2197}
2198EXPORT_SYMBOL_GPL(blk_unprep_request);
2199
1da177e4
LT
2200/*
2201 * queue lock must be held
2202 */
2e60e022 2203static void blk_finish_request(struct request *req, int error)
1da177e4 2204{
b8286239
KU
2205 if (blk_rq_tagged(req))
2206 blk_queue_end_tag(req->q, req);
2207
ba396a6c 2208 BUG_ON(blk_queued_rq(req));
1da177e4 2209
33659ebb 2210 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2211 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2212
e78042e5
MA
2213 blk_delete_timer(req);
2214
28018c24
JB
2215 if (req->cmd_flags & REQ_DONTPREP)
2216 blk_unprep_request(req);
2217
2218
bc58ba94 2219 blk_account_io_done(req);
b8286239 2220
1da177e4 2221 if (req->end_io)
8ffdc655 2222 req->end_io(req, error);
b8286239
KU
2223 else {
2224 if (blk_bidi_rq(req))
2225 __blk_put_request(req->next_rq->q, req->next_rq);
2226
1da177e4 2227 __blk_put_request(req->q, req);
b8286239 2228 }
1da177e4
LT
2229}
2230
3b11313a 2231/**
2e60e022
TH
2232 * blk_end_bidi_request - Complete a bidi request
2233 * @rq: the request to complete
2234 * @error: %0 for success, < %0 for error
2235 * @nr_bytes: number of bytes to complete @rq
2236 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2237 *
2238 * Description:
e3a04fe3 2239 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2240 * Drivers that supports bidi can safely call this member for any
2241 * type of request, bidi or uni. In the later case @bidi_bytes is
2242 * just ignored.
336cdb40
KU
2243 *
2244 * Return:
2e60e022
TH
2245 * %false - we are done with this request
2246 * %true - still buffers pending for this request
a0cd1285 2247 **/
b1f74493 2248static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2249 unsigned int nr_bytes, unsigned int bidi_bytes)
2250{
336cdb40 2251 struct request_queue *q = rq->q;
2e60e022 2252 unsigned long flags;
32fab448 2253
2e60e022
TH
2254 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2255 return true;
32fab448 2256
336cdb40 2257 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2258 blk_finish_request(rq, error);
336cdb40
KU
2259 spin_unlock_irqrestore(q->queue_lock, flags);
2260
2e60e022 2261 return false;
32fab448
KU
2262}
2263
336cdb40 2264/**
2e60e022
TH
2265 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2266 * @rq: the request to complete
710027a4 2267 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2268 * @nr_bytes: number of bytes to complete @rq
2269 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2270 *
2271 * Description:
2e60e022
TH
2272 * Identical to blk_end_bidi_request() except that queue lock is
2273 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2274 *
2275 * Return:
2e60e022
TH
2276 * %false - we are done with this request
2277 * %true - still buffers pending for this request
336cdb40 2278 **/
4853abaa 2279bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2280 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2281{
2e60e022
TH
2282 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2283 return true;
336cdb40 2284
2e60e022 2285 blk_finish_request(rq, error);
336cdb40 2286
2e60e022 2287 return false;
336cdb40 2288}
e19a3ab0
KU
2289
2290/**
2291 * blk_end_request - Helper function for drivers to complete the request.
2292 * @rq: the request being processed
710027a4 2293 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2294 * @nr_bytes: number of bytes to complete
2295 *
2296 * Description:
2297 * Ends I/O on a number of bytes attached to @rq.
2298 * If @rq has leftover, sets it up for the next range of segments.
2299 *
2300 * Return:
b1f74493
FT
2301 * %false - we are done with this request
2302 * %true - still buffers pending for this request
e19a3ab0 2303 **/
b1f74493 2304bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2305{
b1f74493 2306 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2307}
56ad1740 2308EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2309
2310/**
b1f74493
FT
2311 * blk_end_request_all - Helper function for drives to finish the request.
2312 * @rq: the request to finish
8ebf9756 2313 * @error: %0 for success, < %0 for error
336cdb40
KU
2314 *
2315 * Description:
b1f74493
FT
2316 * Completely finish @rq.
2317 */
2318void blk_end_request_all(struct request *rq, int error)
336cdb40 2319{
b1f74493
FT
2320 bool pending;
2321 unsigned int bidi_bytes = 0;
336cdb40 2322
b1f74493
FT
2323 if (unlikely(blk_bidi_rq(rq)))
2324 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2325
b1f74493
FT
2326 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2327 BUG_ON(pending);
2328}
56ad1740 2329EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2330
b1f74493
FT
2331/**
2332 * blk_end_request_cur - Helper function to finish the current request chunk.
2333 * @rq: the request to finish the current chunk for
8ebf9756 2334 * @error: %0 for success, < %0 for error
b1f74493
FT
2335 *
2336 * Description:
2337 * Complete the current consecutively mapped chunk from @rq.
2338 *
2339 * Return:
2340 * %false - we are done with this request
2341 * %true - still buffers pending for this request
2342 */
2343bool blk_end_request_cur(struct request *rq, int error)
2344{
2345 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2346}
56ad1740 2347EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2348
80a761fd
TH
2349/**
2350 * blk_end_request_err - Finish a request till the next failure boundary.
2351 * @rq: the request to finish till the next failure boundary for
2352 * @error: must be negative errno
2353 *
2354 * Description:
2355 * Complete @rq till the next failure boundary.
2356 *
2357 * Return:
2358 * %false - we are done with this request
2359 * %true - still buffers pending for this request
2360 */
2361bool blk_end_request_err(struct request *rq, int error)
2362{
2363 WARN_ON(error >= 0);
2364 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2365}
2366EXPORT_SYMBOL_GPL(blk_end_request_err);
2367
e3a04fe3 2368/**
b1f74493
FT
2369 * __blk_end_request - Helper function for drivers to complete the request.
2370 * @rq: the request being processed
2371 * @error: %0 for success, < %0 for error
2372 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2373 *
2374 * Description:
b1f74493 2375 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2376 *
2377 * Return:
b1f74493
FT
2378 * %false - we are done with this request
2379 * %true - still buffers pending for this request
e3a04fe3 2380 **/
b1f74493 2381bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2382{
b1f74493 2383 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2384}
56ad1740 2385EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2386
32fab448 2387/**
b1f74493
FT
2388 * __blk_end_request_all - Helper function for drives to finish the request.
2389 * @rq: the request to finish
8ebf9756 2390 * @error: %0 for success, < %0 for error
32fab448
KU
2391 *
2392 * Description:
b1f74493 2393 * Completely finish @rq. Must be called with queue lock held.
32fab448 2394 */
b1f74493 2395void __blk_end_request_all(struct request *rq, int error)
32fab448 2396{
b1f74493
FT
2397 bool pending;
2398 unsigned int bidi_bytes = 0;
2399
2400 if (unlikely(blk_bidi_rq(rq)))
2401 bidi_bytes = blk_rq_bytes(rq->next_rq);
2402
2403 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2404 BUG_ON(pending);
32fab448 2405}
56ad1740 2406EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2407
e19a3ab0 2408/**
b1f74493
FT
2409 * __blk_end_request_cur - Helper function to finish the current request chunk.
2410 * @rq: the request to finish the current chunk for
8ebf9756 2411 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2412 *
2413 * Description:
b1f74493
FT
2414 * Complete the current consecutively mapped chunk from @rq. Must
2415 * be called with queue lock held.
e19a3ab0
KU
2416 *
2417 * Return:
b1f74493
FT
2418 * %false - we are done with this request
2419 * %true - still buffers pending for this request
2420 */
2421bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2422{
b1f74493 2423 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2424}
56ad1740 2425EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2426
80a761fd
TH
2427/**
2428 * __blk_end_request_err - Finish a request till the next failure boundary.
2429 * @rq: the request to finish till the next failure boundary for
2430 * @error: must be negative errno
2431 *
2432 * Description:
2433 * Complete @rq till the next failure boundary. Must be called
2434 * with queue lock held.
2435 *
2436 * Return:
2437 * %false - we are done with this request
2438 * %true - still buffers pending for this request
2439 */
2440bool __blk_end_request_err(struct request *rq, int error)
2441{
2442 WARN_ON(error >= 0);
2443 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2444}
2445EXPORT_SYMBOL_GPL(__blk_end_request_err);
2446
86db1e29
JA
2447void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2448 struct bio *bio)
1da177e4 2449{
a82afdfc 2450 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2451 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2452
fb2dce86
DW
2453 if (bio_has_data(bio)) {
2454 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2455 rq->buffer = bio_data(bio);
2456 }
a2dec7b3 2457 rq->__data_len = bio->bi_size;
1da177e4 2458 rq->bio = rq->biotail = bio;
1da177e4 2459
66846572
N
2460 if (bio->bi_bdev)
2461 rq->rq_disk = bio->bi_bdev->bd_disk;
2462}
1da177e4 2463
2d4dc890
IL
2464#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2465/**
2466 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2467 * @rq: the request to be flushed
2468 *
2469 * Description:
2470 * Flush all pages in @rq.
2471 */
2472void rq_flush_dcache_pages(struct request *rq)
2473{
2474 struct req_iterator iter;
2475 struct bio_vec *bvec;
2476
2477 rq_for_each_segment(bvec, rq, iter)
2478 flush_dcache_page(bvec->bv_page);
2479}
2480EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2481#endif
2482
ef9e3fac
KU
2483/**
2484 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2485 * @q : the queue of the device being checked
2486 *
2487 * Description:
2488 * Check if underlying low-level drivers of a device are busy.
2489 * If the drivers want to export their busy state, they must set own
2490 * exporting function using blk_queue_lld_busy() first.
2491 *
2492 * Basically, this function is used only by request stacking drivers
2493 * to stop dispatching requests to underlying devices when underlying
2494 * devices are busy. This behavior helps more I/O merging on the queue
2495 * of the request stacking driver and prevents I/O throughput regression
2496 * on burst I/O load.
2497 *
2498 * Return:
2499 * 0 - Not busy (The request stacking driver should dispatch request)
2500 * 1 - Busy (The request stacking driver should stop dispatching request)
2501 */
2502int blk_lld_busy(struct request_queue *q)
2503{
2504 if (q->lld_busy_fn)
2505 return q->lld_busy_fn(q);
2506
2507 return 0;
2508}
2509EXPORT_SYMBOL_GPL(blk_lld_busy);
2510
b0fd271d
KU
2511/**
2512 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2513 * @rq: the clone request to be cleaned up
2514 *
2515 * Description:
2516 * Free all bios in @rq for a cloned request.
2517 */
2518void blk_rq_unprep_clone(struct request *rq)
2519{
2520 struct bio *bio;
2521
2522 while ((bio = rq->bio) != NULL) {
2523 rq->bio = bio->bi_next;
2524
2525 bio_put(bio);
2526 }
2527}
2528EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2529
2530/*
2531 * Copy attributes of the original request to the clone request.
2532 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2533 */
2534static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2535{
2536 dst->cpu = src->cpu;
3a2edd0d 2537 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2538 dst->cmd_type = src->cmd_type;
2539 dst->__sector = blk_rq_pos(src);
2540 dst->__data_len = blk_rq_bytes(src);
2541 dst->nr_phys_segments = src->nr_phys_segments;
2542 dst->ioprio = src->ioprio;
2543 dst->extra_len = src->extra_len;
2544}
2545
2546/**
2547 * blk_rq_prep_clone - Helper function to setup clone request
2548 * @rq: the request to be setup
2549 * @rq_src: original request to be cloned
2550 * @bs: bio_set that bios for clone are allocated from
2551 * @gfp_mask: memory allocation mask for bio
2552 * @bio_ctr: setup function to be called for each clone bio.
2553 * Returns %0 for success, non %0 for failure.
2554 * @data: private data to be passed to @bio_ctr
2555 *
2556 * Description:
2557 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2558 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2559 * are not copied, and copying such parts is the caller's responsibility.
2560 * Also, pages which the original bios are pointing to are not copied
2561 * and the cloned bios just point same pages.
2562 * So cloned bios must be completed before original bios, which means
2563 * the caller must complete @rq before @rq_src.
2564 */
2565int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2566 struct bio_set *bs, gfp_t gfp_mask,
2567 int (*bio_ctr)(struct bio *, struct bio *, void *),
2568 void *data)
2569{
2570 struct bio *bio, *bio_src;
2571
2572 if (!bs)
2573 bs = fs_bio_set;
2574
2575 blk_rq_init(NULL, rq);
2576
2577 __rq_for_each_bio(bio_src, rq_src) {
2578 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2579 if (!bio)
2580 goto free_and_out;
2581
2582 __bio_clone(bio, bio_src);
2583
2584 if (bio_integrity(bio_src) &&
7878cba9 2585 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2586 goto free_and_out;
2587
2588 if (bio_ctr && bio_ctr(bio, bio_src, data))
2589 goto free_and_out;
2590
2591 if (rq->bio) {
2592 rq->biotail->bi_next = bio;
2593 rq->biotail = bio;
2594 } else
2595 rq->bio = rq->biotail = bio;
2596 }
2597
2598 __blk_rq_prep_clone(rq, rq_src);
2599
2600 return 0;
2601
2602free_and_out:
2603 if (bio)
2604 bio_free(bio, bs);
2605 blk_rq_unprep_clone(rq);
2606
2607 return -ENOMEM;
2608}
2609EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2610
18887ad9 2611int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2612{
2613 return queue_work(kblockd_workqueue, work);
2614}
1da177e4
LT
2615EXPORT_SYMBOL(kblockd_schedule_work);
2616
e43473b7
VG
2617int kblockd_schedule_delayed_work(struct request_queue *q,
2618 struct delayed_work *dwork, unsigned long delay)
2619{
2620 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2621}
2622EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2623
73c10101
JA
2624#define PLUG_MAGIC 0x91827364
2625
75df7136
SJ
2626/**
2627 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2628 * @plug: The &struct blk_plug that needs to be initialized
2629 *
2630 * Description:
2631 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2632 * pending I/O should the task end up blocking between blk_start_plug() and
2633 * blk_finish_plug(). This is important from a performance perspective, but
2634 * also ensures that we don't deadlock. For instance, if the task is blocking
2635 * for a memory allocation, memory reclaim could end up wanting to free a
2636 * page belonging to that request that is currently residing in our private
2637 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2638 * this kind of deadlock.
2639 */
73c10101
JA
2640void blk_start_plug(struct blk_plug *plug)
2641{
2642 struct task_struct *tsk = current;
2643
2644 plug->magic = PLUG_MAGIC;
2645 INIT_LIST_HEAD(&plug->list);
048c9374 2646 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2647 plug->should_sort = 0;
2648
2649 /*
2650 * If this is a nested plug, don't actually assign it. It will be
2651 * flushed on its own.
2652 */
2653 if (!tsk->plug) {
2654 /*
2655 * Store ordering should not be needed here, since a potential
2656 * preempt will imply a full memory barrier
2657 */
2658 tsk->plug = plug;
2659 }
2660}
2661EXPORT_SYMBOL(blk_start_plug);
2662
2663static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2664{
2665 struct request *rqa = container_of(a, struct request, queuelist);
2666 struct request *rqb = container_of(b, struct request, queuelist);
2667
f83e8261 2668 return !(rqa->q <= rqb->q);
73c10101
JA
2669}
2670
49cac01e
JA
2671/*
2672 * If 'from_schedule' is true, then postpone the dispatch of requests
2673 * until a safe kblockd context. We due this to avoid accidental big
2674 * additional stack usage in driver dispatch, in places where the originally
2675 * plugger did not intend it.
2676 */
f6603783 2677static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2678 bool from_schedule)
99e22598 2679 __releases(q->queue_lock)
94b5eb28 2680{
49cac01e 2681 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2682
2683 /*
2684 * If we are punting this to kblockd, then we can safely drop
2685 * the queue_lock before waking kblockd (which needs to take
2686 * this lock).
2687 */
2688 if (from_schedule) {
2689 spin_unlock(q->queue_lock);
24ecfbe2 2690 blk_run_queue_async(q);
99e22598 2691 } else {
24ecfbe2 2692 __blk_run_queue(q);
99e22598
JA
2693 spin_unlock(q->queue_lock);
2694 }
2695
94b5eb28
JA
2696}
2697
048c9374
N
2698static void flush_plug_callbacks(struct blk_plug *plug)
2699{
2700 LIST_HEAD(callbacks);
2701
2702 if (list_empty(&plug->cb_list))
2703 return;
2704
2705 list_splice_init(&plug->cb_list, &callbacks);
2706
2707 while (!list_empty(&callbacks)) {
2708 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2709 struct blk_plug_cb,
2710 list);
2711 list_del(&cb->list);
2712 cb->callback(cb);
2713 }
2714}
2715
49cac01e 2716void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2717{
2718 struct request_queue *q;
2719 unsigned long flags;
2720 struct request *rq;
109b8129 2721 LIST_HEAD(list);
94b5eb28 2722 unsigned int depth;
73c10101
JA
2723
2724 BUG_ON(plug->magic != PLUG_MAGIC);
2725
048c9374 2726 flush_plug_callbacks(plug);
73c10101
JA
2727 if (list_empty(&plug->list))
2728 return;
2729
109b8129
N
2730 list_splice_init(&plug->list, &list);
2731
2732 if (plug->should_sort) {
2733 list_sort(NULL, &list, plug_rq_cmp);
2734 plug->should_sort = 0;
2735 }
73c10101
JA
2736
2737 q = NULL;
94b5eb28 2738 depth = 0;
18811272
JA
2739
2740 /*
2741 * Save and disable interrupts here, to avoid doing it for every
2742 * queue lock we have to take.
2743 */
73c10101 2744 local_irq_save(flags);
109b8129
N
2745 while (!list_empty(&list)) {
2746 rq = list_entry_rq(list.next);
73c10101 2747 list_del_init(&rq->queuelist);
73c10101
JA
2748 BUG_ON(!rq->q);
2749 if (rq->q != q) {
99e22598
JA
2750 /*
2751 * This drops the queue lock
2752 */
2753 if (q)
49cac01e 2754 queue_unplugged(q, depth, from_schedule);
73c10101 2755 q = rq->q;
94b5eb28 2756 depth = 0;
73c10101
JA
2757 spin_lock(q->queue_lock);
2758 }
73c10101
JA
2759 /*
2760 * rq is already accounted, so use raw insert
2761 */
401a18e9
JA
2762 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2763 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2764 else
2765 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2766
2767 depth++;
73c10101
JA
2768 }
2769
99e22598
JA
2770 /*
2771 * This drops the queue lock
2772 */
2773 if (q)
49cac01e 2774 queue_unplugged(q, depth, from_schedule);
73c10101 2775
73c10101
JA
2776 local_irq_restore(flags);
2777}
73c10101
JA
2778
2779void blk_finish_plug(struct blk_plug *plug)
2780{
f6603783 2781 blk_flush_plug_list(plug, false);
73c10101 2782
88b996cd
CH
2783 if (plug == current->plug)
2784 current->plug = NULL;
73c10101 2785}
88b996cd 2786EXPORT_SYMBOL(blk_finish_plug);
73c10101 2787
1da177e4
LT
2788int __init blk_dev_init(void)
2789{
9eb55b03
NK
2790 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2791 sizeof(((struct request *)0)->cmd_flags));
2792
89b90be2
TH
2793 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2794 kblockd_workqueue = alloc_workqueue("kblockd",
2795 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2796 if (!kblockd_workqueue)
2797 panic("Failed to create kblockd\n");
2798
2799 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2800 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2801
8324aa91 2802 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2803 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2804
d38ecf93 2805 return 0;
1da177e4 2806}