]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: drop @tsk from attempt_plug_merge() and explain sync rules
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
1da177e4
LT
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
797e7dbb 156
143a87f4
TH
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
143a87f4
TH
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
7ba1ba12 168
143a87f4
TH
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
7ba1ba12 171
143a87f4
TH
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
3cca6dc1 200static void blk_delay_work(struct work_struct *work)
1da177e4 201{
3cca6dc1 202 struct request_queue *q;
1da177e4 203
3cca6dc1
JA
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
24ecfbe2 206 __blk_run_queue(q);
3cca6dc1 207 spin_unlock_irq(q->queue_lock);
1da177e4 208}
1da177e4
LT
209
210/**
3cca6dc1
JA
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
1da177e4
LT
214 *
215 * Description:
3cca6dc1
JA
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 221{
4521cc4e
JA
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
2ad8b1ef 224}
3cca6dc1 225EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 226
1da177e4
LT
227/**
228 * blk_start_queue - restart a previously stopped queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
165125e1 236void blk_start_queue(struct request_queue *q)
1da177e4 237{
a038e253
PBG
238 WARN_ON(!irqs_disabled());
239
75ad23bc 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 241 __blk_run_queue(q);
1da177e4 242}
1da177e4
LT
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
165125e1 247 * @q: The &struct request_queue in question
1da177e4
LT
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
165125e1 259void blk_stop_queue(struct request_queue *q)
1da177e4 260{
ad3d9d7e 261 __cancel_delayed_work(&q->delay_work);
75ad23bc 262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
59c51591 275 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
da527770
VG
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
1da177e4
LT
283 */
284void blk_sync_queue(struct request_queue *q)
285{
70ed28b9 286 del_timer_sync(&q->timeout);
3cca6dc1 287 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
288}
289EXPORT_SYMBOL(blk_sync_queue);
290
291/**
80a4b58e 292 * __blk_run_queue - run a single device queue
1da177e4 293 * @q: The queue to run
80a4b58e
JA
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 297 * held and interrupts disabled.
1da177e4 298 */
24ecfbe2 299void __blk_run_queue(struct request_queue *q)
1da177e4 300{
a538cd03
TH
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
c21e6beb 304 q->request_fn(q);
75ad23bc
NP
305}
306EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 307
24ecfbe2
CH
308/**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316void blk_run_queue_async(struct request_queue *q)
317{
3ec717b7
SL
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
24ecfbe2 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 321 }
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5
TH
349/**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 *
353 * Drain ELV_PRIV requests from @q. The caller is responsible for ensuring
354 * that no new requests which need to be drained are queued.
355 */
356void blk_drain_queue(struct request_queue *q)
357{
358 while (true) {
359 int nr_rqs;
360
361 spin_lock_irq(q->queue_lock);
362
363 elv_drain_elevator(q);
364
365 __blk_run_queue(q);
366 nr_rqs = q->rq.elvpriv;
367
368 spin_unlock_irq(q->queue_lock);
369
370 if (!nr_rqs)
371 break;
372 msleep(10);
373 }
374}
375
c94a96ac 376/*
777eb1bf
HR
377 * Note: If a driver supplied the queue lock, it is disconnected
378 * by this function. The actual state of the lock doesn't matter
379 * here as the request_queue isn't accessible after this point
380 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
c94a96ac 381 */
6728cb0e 382void blk_cleanup_queue(struct request_queue *q)
483f4afc 383{
e3335de9
JA
384 /*
385 * We know we have process context here, so we can be a little
386 * cautious and ensure that pending block actions on this device
387 * are done before moving on. Going into this function, we should
388 * not have processes doing IO to this device.
389 */
390 blk_sync_queue(q);
391
31373d09 392 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 393 mutex_lock(&q->sysfs_lock);
75ad23bc 394 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
395 mutex_unlock(&q->sysfs_lock);
396
777eb1bf
HR
397 if (q->queue_lock != &q->__queue_lock)
398 q->queue_lock = &q->__queue_lock;
da527770 399
483f4afc
AV
400 blk_put_queue(q);
401}
1da177e4
LT
402EXPORT_SYMBOL(blk_cleanup_queue);
403
165125e1 404static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
405{
406 struct request_list *rl = &q->rq;
407
1abec4fd
MS
408 if (unlikely(rl->rq_pool))
409 return 0;
410
1faa16d2
JA
411 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
412 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 413 rl->elvpriv = 0;
1faa16d2
JA
414 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
415 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 416
1946089a
CL
417 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
418 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
419
420 if (!rl->rq_pool)
421 return -ENOMEM;
422
423 return 0;
424}
425
165125e1 426struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 427{
1946089a
CL
428 return blk_alloc_queue_node(gfp_mask, -1);
429}
430EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 431
165125e1 432struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 433{
165125e1 434 struct request_queue *q;
e0bf68dd 435 int err;
1946089a 436
8324aa91 437 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 438 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
439 if (!q)
440 return NULL;
441
0989a025
JA
442 q->backing_dev_info.ra_pages =
443 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
444 q->backing_dev_info.state = 0;
445 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 446 q->backing_dev_info.name = "block";
0989a025 447
e0bf68dd
PZ
448 err = bdi_init(&q->backing_dev_info);
449 if (err) {
8324aa91 450 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
451 return NULL;
452 }
453
e43473b7
VG
454 if (blk_throtl_init(q)) {
455 kmem_cache_free(blk_requestq_cachep, q);
456 return NULL;
457 }
458
31373d09
MG
459 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
460 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
461 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
462 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
463 INIT_LIST_HEAD(&q->flush_queue[0]);
464 INIT_LIST_HEAD(&q->flush_queue[1]);
465 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 466 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 467
8324aa91 468 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 469
483f4afc 470 mutex_init(&q->sysfs_lock);
e7e72bf6 471 spin_lock_init(&q->__queue_lock);
483f4afc 472
c94a96ac
VG
473 /*
474 * By default initialize queue_lock to internal lock and driver can
475 * override it later if need be.
476 */
477 q->queue_lock = &q->__queue_lock;
478
1da177e4
LT
479 return q;
480}
1946089a 481EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
482
483/**
484 * blk_init_queue - prepare a request queue for use with a block device
485 * @rfn: The function to be called to process requests that have been
486 * placed on the queue.
487 * @lock: Request queue spin lock
488 *
489 * Description:
490 * If a block device wishes to use the standard request handling procedures,
491 * which sorts requests and coalesces adjacent requests, then it must
492 * call blk_init_queue(). The function @rfn will be called when there
493 * are requests on the queue that need to be processed. If the device
494 * supports plugging, then @rfn may not be called immediately when requests
495 * are available on the queue, but may be called at some time later instead.
496 * Plugged queues are generally unplugged when a buffer belonging to one
497 * of the requests on the queue is needed, or due to memory pressure.
498 *
499 * @rfn is not required, or even expected, to remove all requests off the
500 * queue, but only as many as it can handle at a time. If it does leave
501 * requests on the queue, it is responsible for arranging that the requests
502 * get dealt with eventually.
503 *
504 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
505 * request queue; this lock will be taken also from interrupt context, so irq
506 * disabling is needed for it.
1da177e4 507 *
710027a4 508 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
509 * it didn't succeed.
510 *
511 * Note:
512 * blk_init_queue() must be paired with a blk_cleanup_queue() call
513 * when the block device is deactivated (such as at module unload).
514 **/
1946089a 515
165125e1 516struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 517{
1946089a
CL
518 return blk_init_queue_node(rfn, lock, -1);
519}
520EXPORT_SYMBOL(blk_init_queue);
521
165125e1 522struct request_queue *
1946089a
CL
523blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
524{
c86d1b8a 525 struct request_queue *uninit_q, *q;
1da177e4 526
c86d1b8a
MS
527 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
528 if (!uninit_q)
529 return NULL;
530
531 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
532 if (!q)
533 blk_cleanup_queue(uninit_q);
534
535 return q;
01effb0d
MS
536}
537EXPORT_SYMBOL(blk_init_queue_node);
538
539struct request_queue *
540blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
541 spinlock_t *lock)
542{
543 return blk_init_allocated_queue_node(q, rfn, lock, -1);
544}
545EXPORT_SYMBOL(blk_init_allocated_queue);
546
547struct request_queue *
548blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
549 spinlock_t *lock, int node_id)
550{
1da177e4
LT
551 if (!q)
552 return NULL;
553
1946089a 554 q->node = node_id;
c86d1b8a 555 if (blk_init_free_list(q))
8669aafd 556 return NULL;
1da177e4
LT
557
558 q->request_fn = rfn;
1da177e4 559 q->prep_rq_fn = NULL;
28018c24 560 q->unprep_rq_fn = NULL;
bc58ba94 561 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
562
563 /* Override internal queue lock with supplied lock pointer */
564 if (lock)
565 q->queue_lock = lock;
1da177e4 566
f3b144aa
JA
567 /*
568 * This also sets hw/phys segments, boundary and size
569 */
c20e8de2 570 blk_queue_make_request(q, blk_queue_bio);
1da177e4 571
44ec9542
AS
572 q->sg_reserved_size = INT_MAX;
573
1da177e4
LT
574 /*
575 * all done
576 */
577 if (!elevator_init(q, NULL)) {
578 blk_queue_congestion_threshold(q);
579 return q;
580 }
581
1da177e4
LT
582 return NULL;
583}
01effb0d 584EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 585
165125e1 586int blk_get_queue(struct request_queue *q)
1da177e4 587{
fde6ad22 588 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 589 kobject_get(&q->kobj);
1da177e4
LT
590 return 0;
591 }
592
593 return 1;
594}
d86e0e83 595EXPORT_SYMBOL(blk_get_queue);
1da177e4 596
165125e1 597static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 598{
4aff5e23 599 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 600 elv_put_request(q, rq);
1da177e4
LT
601 mempool_free(rq, q->rq.rq_pool);
602}
603
1ea25ecb 604static struct request *
75eb6c37 605blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
606{
607 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
608
609 if (!rq)
610 return NULL;
611
2a4aa30c 612 blk_rq_init(q, rq);
1afb20f3 613
42dad764 614 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 615
75eb6c37
TH
616 if ((flags & REQ_ELVPRIV) &&
617 unlikely(elv_set_request(q, rq, gfp_mask))) {
618 mempool_free(rq, q->rq.rq_pool);
619 return NULL;
cb98fc8b 620 }
1da177e4 621
cb98fc8b 622 return rq;
1da177e4
LT
623}
624
625/*
626 * ioc_batching returns true if the ioc is a valid batching request and
627 * should be given priority access to a request.
628 */
165125e1 629static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
630{
631 if (!ioc)
632 return 0;
633
634 /*
635 * Make sure the process is able to allocate at least 1 request
636 * even if the batch times out, otherwise we could theoretically
637 * lose wakeups.
638 */
639 return ioc->nr_batch_requests == q->nr_batching ||
640 (ioc->nr_batch_requests > 0
641 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
642}
643
644/*
645 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
646 * will cause the process to be a "batcher" on all queues in the system. This
647 * is the behaviour we want though - once it gets a wakeup it should be given
648 * a nice run.
649 */
165125e1 650static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
651{
652 if (!ioc || ioc_batching(q, ioc))
653 return;
654
655 ioc->nr_batch_requests = q->nr_batching;
656 ioc->last_waited = jiffies;
657}
658
1faa16d2 659static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
660{
661 struct request_list *rl = &q->rq;
662
1faa16d2
JA
663 if (rl->count[sync] < queue_congestion_off_threshold(q))
664 blk_clear_queue_congested(q, sync);
1da177e4 665
1faa16d2
JA
666 if (rl->count[sync] + 1 <= q->nr_requests) {
667 if (waitqueue_active(&rl->wait[sync]))
668 wake_up(&rl->wait[sync]);
1da177e4 669
1faa16d2 670 blk_clear_queue_full(q, sync);
1da177e4
LT
671 }
672}
673
674/*
675 * A request has just been released. Account for it, update the full and
676 * congestion status, wake up any waiters. Called under q->queue_lock.
677 */
75eb6c37 678static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
679{
680 struct request_list *rl = &q->rq;
75eb6c37 681 int sync = rw_is_sync(flags);
1da177e4 682
1faa16d2 683 rl->count[sync]--;
75eb6c37 684 if (flags & REQ_ELVPRIV)
cb98fc8b 685 rl->elvpriv--;
1da177e4 686
1faa16d2 687 __freed_request(q, sync);
1da177e4 688
1faa16d2
JA
689 if (unlikely(rl->starved[sync ^ 1]))
690 __freed_request(q, sync ^ 1);
1da177e4
LT
691}
692
9d5a4e94
MS
693/*
694 * Determine if elevator data should be initialized when allocating the
695 * request associated with @bio.
696 */
697static bool blk_rq_should_init_elevator(struct bio *bio)
698{
699 if (!bio)
700 return true;
701
702 /*
703 * Flush requests do not use the elevator so skip initialization.
704 * This allows a request to share the flush and elevator data.
705 */
706 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
707 return false;
708
709 return true;
710}
711
da8303c6
TH
712/**
713 * get_request - get a free request
714 * @q: request_queue to allocate request from
715 * @rw_flags: RW and SYNC flags
716 * @bio: bio to allocate request for (can be %NULL)
717 * @gfp_mask: allocation mask
718 *
719 * Get a free request from @q. This function may fail under memory
720 * pressure or if @q is dead.
721 *
722 * Must be callled with @q->queue_lock held and,
723 * Returns %NULL on failure, with @q->queue_lock held.
724 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 725 */
165125e1 726static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 727 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
728{
729 struct request *rq = NULL;
730 struct request_list *rl = &q->rq;
88ee5ef1 731 struct io_context *ioc = NULL;
1faa16d2 732 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 733 int may_queue;
88ee5ef1 734
da8303c6
TH
735 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
736 return NULL;
737
7749a8d4 738 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
739 if (may_queue == ELV_MQUEUE_NO)
740 goto rq_starved;
741
1faa16d2
JA
742 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
743 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 744 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
745 /*
746 * The queue will fill after this allocation, so set
747 * it as full, and mark this process as "batching".
748 * This process will be allowed to complete a batch of
749 * requests, others will be blocked.
750 */
1faa16d2 751 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 752 ioc_set_batching(q, ioc);
1faa16d2 753 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
754 } else {
755 if (may_queue != ELV_MQUEUE_MUST
756 && !ioc_batching(q, ioc)) {
757 /*
758 * The queue is full and the allocating
759 * process is not a "batcher", and not
760 * exempted by the IO scheduler
761 */
762 goto out;
763 }
764 }
1da177e4 765 }
1faa16d2 766 blk_set_queue_congested(q, is_sync);
1da177e4
LT
767 }
768
082cf69e
JA
769 /*
770 * Only allow batching queuers to allocate up to 50% over the defined
771 * limit of requests, otherwise we could have thousands of requests
772 * allocated with any setting of ->nr_requests
773 */
1faa16d2 774 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 775 goto out;
fd782a4a 776
1faa16d2
JA
777 rl->count[is_sync]++;
778 rl->starved[is_sync] = 0;
cb98fc8b 779
75eb6c37
TH
780 if (blk_rq_should_init_elevator(bio) &&
781 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
782 rw_flags |= REQ_ELVPRIV;
783 rl->elvpriv++;
9d5a4e94 784 }
cb98fc8b 785
f253b86b
JA
786 if (blk_queue_io_stat(q))
787 rw_flags |= REQ_IO_STAT;
1da177e4
LT
788 spin_unlock_irq(q->queue_lock);
789
75eb6c37 790 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 791 if (unlikely(!rq)) {
1da177e4
LT
792 /*
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
795 *
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
798 */
799 spin_lock_irq(q->queue_lock);
75eb6c37 800 freed_request(q, rw_flags);
1da177e4
LT
801
802 /*
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
808 */
809rq_starved:
1faa16d2
JA
810 if (unlikely(rl->count[is_sync] == 0))
811 rl->starved[is_sync] = 1;
1da177e4 812
1da177e4
LT
813 goto out;
814 }
815
88ee5ef1
JA
816 /*
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
821 */
1da177e4
LT
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
6728cb0e 824
1faa16d2 825 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 826out:
1da177e4
LT
827 return rq;
828}
829
da8303c6
TH
830/**
831 * get_request_wait - get a free request with retry
832 * @q: request_queue to allocate request from
833 * @rw_flags: RW and SYNC flags
834 * @bio: bio to allocate request for (can be %NULL)
835 *
836 * Get a free request from @q. This function keeps retrying under memory
837 * pressure and fails iff @q is dead.
d6344532 838 *
da8303c6
TH
839 * Must be callled with @q->queue_lock held and,
840 * Returns %NULL on failure, with @q->queue_lock held.
841 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 842 */
165125e1 843static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 844 struct bio *bio)
1da177e4 845{
1faa16d2 846 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
847 struct request *rq;
848
7749a8d4 849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
850 while (!rq) {
851 DEFINE_WAIT(wait);
05caf8db 852 struct io_context *ioc;
1da177e4
LT
853 struct request_list *rl = &q->rq;
854
da8303c6
TH
855 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
856 return NULL;
857
1faa16d2 858 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
859 TASK_UNINTERRUPTIBLE);
860
1faa16d2 861 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 862
05caf8db
ZY
863 spin_unlock_irq(q->queue_lock);
864 io_schedule();
1da177e4 865
05caf8db
ZY
866 /*
867 * After sleeping, we become a "batching" process and
868 * will be able to allocate at least one request, and
869 * up to a big batch of them for a small period time.
870 * See ioc_batching, ioc_set_batching
871 */
872 ioc = current_io_context(GFP_NOIO, q->node);
873 ioc_set_batching(q, ioc);
d6344532 874
05caf8db 875 spin_lock_irq(q->queue_lock);
1faa16d2 876 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
877
878 rq = get_request(q, rw_flags, bio, GFP_NOIO);
879 };
1da177e4
LT
880
881 return rq;
882}
883
165125e1 884struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
885{
886 struct request *rq;
887
888 BUG_ON(rw != READ && rw != WRITE);
889
d6344532 890 spin_lock_irq(q->queue_lock);
da8303c6 891 if (gfp_mask & __GFP_WAIT)
22e2c507 892 rq = get_request_wait(q, rw, NULL);
da8303c6 893 else
22e2c507 894 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
895 if (!rq)
896 spin_unlock_irq(q->queue_lock);
d6344532 897 /* q->queue_lock is unlocked at this point */
1da177e4
LT
898
899 return rq;
900}
1da177e4
LT
901EXPORT_SYMBOL(blk_get_request);
902
dc72ef4a 903/**
79eb63e9 904 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 905 * @q: target request queue
79eb63e9
BH
906 * @bio: The bio describing the memory mappings that will be submitted for IO.
907 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 908 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 909 *
79eb63e9
BH
910 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
911 * type commands. Where the struct request needs to be farther initialized by
912 * the caller. It is passed a &struct bio, which describes the memory info of
913 * the I/O transfer.
dc72ef4a 914 *
79eb63e9
BH
915 * The caller of blk_make_request must make sure that bi_io_vec
916 * are set to describe the memory buffers. That bio_data_dir() will return
917 * the needed direction of the request. (And all bio's in the passed bio-chain
918 * are properly set accordingly)
919 *
920 * If called under none-sleepable conditions, mapped bio buffers must not
921 * need bouncing, by calling the appropriate masked or flagged allocator,
922 * suitable for the target device. Otherwise the call to blk_queue_bounce will
923 * BUG.
53674ac5
JA
924 *
925 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
926 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
927 * anything but the first bio in the chain. Otherwise you risk waiting for IO
928 * completion of a bio that hasn't been submitted yet, thus resulting in a
929 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
930 * of bio_alloc(), as that avoids the mempool deadlock.
931 * If possible a big IO should be split into smaller parts when allocation
932 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 933 */
79eb63e9
BH
934struct request *blk_make_request(struct request_queue *q, struct bio *bio,
935 gfp_t gfp_mask)
dc72ef4a 936{
79eb63e9
BH
937 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
938
939 if (unlikely(!rq))
940 return ERR_PTR(-ENOMEM);
941
942 for_each_bio(bio) {
943 struct bio *bounce_bio = bio;
944 int ret;
945
946 blk_queue_bounce(q, &bounce_bio);
947 ret = blk_rq_append_bio(q, rq, bounce_bio);
948 if (unlikely(ret)) {
949 blk_put_request(rq);
950 return ERR_PTR(ret);
951 }
952 }
953
954 return rq;
dc72ef4a 955}
79eb63e9 956EXPORT_SYMBOL(blk_make_request);
dc72ef4a 957
1da177e4
LT
958/**
959 * blk_requeue_request - put a request back on queue
960 * @q: request queue where request should be inserted
961 * @rq: request to be inserted
962 *
963 * Description:
964 * Drivers often keep queueing requests until the hardware cannot accept
965 * more, when that condition happens we need to put the request back
966 * on the queue. Must be called with queue lock held.
967 */
165125e1 968void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 969{
242f9dcb
JA
970 blk_delete_timer(rq);
971 blk_clear_rq_complete(rq);
5f3ea37c 972 trace_block_rq_requeue(q, rq);
2056a782 973
1da177e4
LT
974 if (blk_rq_tagged(rq))
975 blk_queue_end_tag(q, rq);
976
ba396a6c
JB
977 BUG_ON(blk_queued_rq(rq));
978
1da177e4
LT
979 elv_requeue_request(q, rq);
980}
1da177e4
LT
981EXPORT_SYMBOL(blk_requeue_request);
982
73c10101
JA
983static void add_acct_request(struct request_queue *q, struct request *rq,
984 int where)
985{
986 drive_stat_acct(rq, 1);
7eaceacc 987 __elv_add_request(q, rq, where);
73c10101
JA
988}
989
1da177e4 990/**
710027a4 991 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
992 * @q: request queue where request should be inserted
993 * @rq: request to be inserted
994 * @at_head: insert request at head or tail of queue
995 * @data: private data
1da177e4
LT
996 *
997 * Description:
998 * Many block devices need to execute commands asynchronously, so they don't
999 * block the whole kernel from preemption during request execution. This is
1000 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1001 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1002 * be scheduled for actual execution by the request queue.
1da177e4
LT
1003 *
1004 * We have the option of inserting the head or the tail of the queue.
1005 * Typically we use the tail for new ioctls and so forth. We use the head
1006 * of the queue for things like a QUEUE_FULL message from a device, or a
1007 * host that is unable to accept a particular command.
1008 */
165125e1 1009void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1010 int at_head, void *data)
1da177e4 1011{
867d1191 1012 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1013 unsigned long flags;
1014
1015 /*
1016 * tell I/O scheduler that this isn't a regular read/write (ie it
1017 * must not attempt merges on this) and that it acts as a soft
1018 * barrier
1019 */
4aff5e23 1020 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1021
1022 rq->special = data;
1023
1024 spin_lock_irqsave(q->queue_lock, flags);
1025
1026 /*
1027 * If command is tagged, release the tag
1028 */
867d1191
TH
1029 if (blk_rq_tagged(rq))
1030 blk_queue_end_tag(q, rq);
1da177e4 1031
73c10101 1032 add_acct_request(q, rq, where);
24ecfbe2 1033 __blk_run_queue(q);
1da177e4
LT
1034 spin_unlock_irqrestore(q->queue_lock, flags);
1035}
1da177e4
LT
1036EXPORT_SYMBOL(blk_insert_request);
1037
074a7aca
TH
1038static void part_round_stats_single(int cpu, struct hd_struct *part,
1039 unsigned long now)
1040{
1041 if (now == part->stamp)
1042 return;
1043
316d315b 1044 if (part_in_flight(part)) {
074a7aca 1045 __part_stat_add(cpu, part, time_in_queue,
316d315b 1046 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1047 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1048 }
1049 part->stamp = now;
1050}
1051
1052/**
496aa8a9
RD
1053 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1054 * @cpu: cpu number for stats access
1055 * @part: target partition
1da177e4
LT
1056 *
1057 * The average IO queue length and utilisation statistics are maintained
1058 * by observing the current state of the queue length and the amount of
1059 * time it has been in this state for.
1060 *
1061 * Normally, that accounting is done on IO completion, but that can result
1062 * in more than a second's worth of IO being accounted for within any one
1063 * second, leading to >100% utilisation. To deal with that, we call this
1064 * function to do a round-off before returning the results when reading
1065 * /proc/diskstats. This accounts immediately for all queue usage up to
1066 * the current jiffies and restarts the counters again.
1067 */
c9959059 1068void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1069{
1070 unsigned long now = jiffies;
1071
074a7aca
TH
1072 if (part->partno)
1073 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1074 part_round_stats_single(cpu, part, now);
6f2576af 1075}
074a7aca 1076EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1077
1da177e4
LT
1078/*
1079 * queue lock must be held
1080 */
165125e1 1081void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1082{
1da177e4
LT
1083 if (unlikely(!q))
1084 return;
1085 if (unlikely(--req->ref_count))
1086 return;
1087
8922e16c
TH
1088 elv_completed_request(q, req);
1089
1cd96c24
BH
1090 /* this is a bio leak */
1091 WARN_ON(req->bio != NULL);
1092
1da177e4
LT
1093 /*
1094 * Request may not have originated from ll_rw_blk. if not,
1095 * it didn't come out of our reserved rq pools
1096 */
49171e5c 1097 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1098 unsigned int flags = req->cmd_flags;
1da177e4 1099
1da177e4 1100 BUG_ON(!list_empty(&req->queuelist));
9817064b 1101 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1102
1103 blk_free_request(q, req);
75eb6c37 1104 freed_request(q, flags);
1da177e4
LT
1105 }
1106}
6e39b69e
MC
1107EXPORT_SYMBOL_GPL(__blk_put_request);
1108
1da177e4
LT
1109void blk_put_request(struct request *req)
1110{
8922e16c 1111 unsigned long flags;
165125e1 1112 struct request_queue *q = req->q;
8922e16c 1113
52a93ba8
FT
1114 spin_lock_irqsave(q->queue_lock, flags);
1115 __blk_put_request(q, req);
1116 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1117}
1da177e4
LT
1118EXPORT_SYMBOL(blk_put_request);
1119
66ac0280
CH
1120/**
1121 * blk_add_request_payload - add a payload to a request
1122 * @rq: request to update
1123 * @page: page backing the payload
1124 * @len: length of the payload.
1125 *
1126 * This allows to later add a payload to an already submitted request by
1127 * a block driver. The driver needs to take care of freeing the payload
1128 * itself.
1129 *
1130 * Note that this is a quite horrible hack and nothing but handling of
1131 * discard requests should ever use it.
1132 */
1133void blk_add_request_payload(struct request *rq, struct page *page,
1134 unsigned int len)
1135{
1136 struct bio *bio = rq->bio;
1137
1138 bio->bi_io_vec->bv_page = page;
1139 bio->bi_io_vec->bv_offset = 0;
1140 bio->bi_io_vec->bv_len = len;
1141
1142 bio->bi_size = len;
1143 bio->bi_vcnt = 1;
1144 bio->bi_phys_segments = 1;
1145
1146 rq->__data_len = rq->resid_len = len;
1147 rq->nr_phys_segments = 1;
1148 rq->buffer = bio_data(bio);
1149}
1150EXPORT_SYMBOL_GPL(blk_add_request_payload);
1151
73c10101
JA
1152static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1153 struct bio *bio)
1154{
1155 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1156
73c10101
JA
1157 if (!ll_back_merge_fn(q, req, bio))
1158 return false;
1159
1160 trace_block_bio_backmerge(q, bio);
1161
1162 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1163 blk_rq_set_mixed_merge(req);
1164
1165 req->biotail->bi_next = bio;
1166 req->biotail = bio;
1167 req->__data_len += bio->bi_size;
1168 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1169
1170 drive_stat_acct(req, 0);
95cf3dd9 1171 elv_bio_merged(q, req, bio);
73c10101
JA
1172 return true;
1173}
1174
1175static bool bio_attempt_front_merge(struct request_queue *q,
1176 struct request *req, struct bio *bio)
1177{
1178 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1179
73c10101
JA
1180 if (!ll_front_merge_fn(q, req, bio))
1181 return false;
1182
1183 trace_block_bio_frontmerge(q, bio);
1184
1185 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1186 blk_rq_set_mixed_merge(req);
1187
73c10101
JA
1188 bio->bi_next = req->bio;
1189 req->bio = bio;
1190
1191 /*
1192 * may not be valid. if the low level driver said
1193 * it didn't need a bounce buffer then it better
1194 * not touch req->buffer either...
1195 */
1196 req->buffer = bio_data(bio);
1197 req->__sector = bio->bi_sector;
1198 req->__data_len += bio->bi_size;
1199 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1200
1201 drive_stat_acct(req, 0);
95cf3dd9 1202 elv_bio_merged(q, req, bio);
73c10101
JA
1203 return true;
1204}
1205
bd87b589
TH
1206/**
1207 * attempt_plug_merge - try to merge with %current's plugged list
1208 * @q: request_queue new bio is being queued at
1209 * @bio: new bio being queued
1210 * @request_count: out parameter for number of traversed plugged requests
1211 *
1212 * Determine whether @bio being queued on @q can be merged with a request
1213 * on %current's plugged list. Returns %true if merge was successful,
1214 * otherwise %false.
1215 *
1216 * This function is called without @q->queue_lock; however, elevator is
1217 * accessed iff there already are requests on the plugged list which in
1218 * turn guarantees validity of the elevator.
1219 *
1220 * Note that, on successful merge, elevator operation
1221 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1222 * must be ready for this.
73c10101 1223 */
bd87b589
TH
1224static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1225 unsigned int *request_count)
73c10101
JA
1226{
1227 struct blk_plug *plug;
1228 struct request *rq;
1229 bool ret = false;
1230
bd87b589 1231 plug = current->plug;
73c10101
JA
1232 if (!plug)
1233 goto out;
56ebdaf2 1234 *request_count = 0;
73c10101
JA
1235
1236 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1237 int el_ret;
1238
56ebdaf2
SL
1239 (*request_count)++;
1240
73c10101
JA
1241 if (rq->q != q)
1242 continue;
1243
1244 el_ret = elv_try_merge(rq, bio);
1245 if (el_ret == ELEVATOR_BACK_MERGE) {
1246 ret = bio_attempt_back_merge(q, rq, bio);
1247 if (ret)
1248 break;
1249 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1250 ret = bio_attempt_front_merge(q, rq, bio);
1251 if (ret)
1252 break;
1253 }
1254 }
1255out:
1256 return ret;
1257}
1258
86db1e29 1259void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1260{
c7c22e4d 1261 req->cpu = bio->bi_comp_cpu;
4aff5e23 1262 req->cmd_type = REQ_TYPE_FS;
52d9e675 1263
7b6d91da
CH
1264 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1265 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1266 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1267
52d9e675 1268 req->errors = 0;
a2dec7b3 1269 req->__sector = bio->bi_sector;
52d9e675 1270 req->ioprio = bio_prio(bio);
bc1c56fd 1271 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1272}
1273
5a7bbad2 1274void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1275{
5e00d1b5 1276 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1277 struct blk_plug *plug;
1278 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1279 struct request *req;
56ebdaf2 1280 unsigned int request_count = 0;
1da177e4 1281
1da177e4
LT
1282 /*
1283 * low level driver can indicate that it wants pages above a
1284 * certain limit bounced to low memory (ie for highmem, or even
1285 * ISA dma in theory)
1286 */
1287 blk_queue_bounce(q, &bio);
1288
4fed947c 1289 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1290 spin_lock_irq(q->queue_lock);
ae1b1539 1291 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1292 goto get_rq;
1293 }
1294
73c10101
JA
1295 /*
1296 * Check if we can merge with the plugged list before grabbing
1297 * any locks.
1298 */
bd87b589 1299 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1300 return;
1da177e4 1301
73c10101 1302 spin_lock_irq(q->queue_lock);
2056a782 1303
73c10101
JA
1304 el_ret = elv_merge(q, &req, bio);
1305 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1306 if (bio_attempt_back_merge(q, req, bio)) {
1307 if (!attempt_back_merge(q, req))
1308 elv_merged_request(q, req, el_ret);
1309 goto out_unlock;
1310 }
1311 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1312 if (bio_attempt_front_merge(q, req, bio)) {
1313 if (!attempt_front_merge(q, req))
1314 elv_merged_request(q, req, el_ret);
1315 goto out_unlock;
80a761fd 1316 }
1da177e4
LT
1317 }
1318
450991bc 1319get_rq:
7749a8d4
JA
1320 /*
1321 * This sync check and mask will be re-done in init_request_from_bio(),
1322 * but we need to set it earlier to expose the sync flag to the
1323 * rq allocator and io schedulers.
1324 */
1325 rw_flags = bio_data_dir(bio);
1326 if (sync)
7b6d91da 1327 rw_flags |= REQ_SYNC;
7749a8d4 1328
1da177e4 1329 /*
450991bc 1330 * Grab a free request. This is might sleep but can not fail.
d6344532 1331 * Returns with the queue unlocked.
450991bc 1332 */
7749a8d4 1333 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1334 if (unlikely(!req)) {
1335 bio_endio(bio, -ENODEV); /* @q is dead */
1336 goto out_unlock;
1337 }
d6344532 1338
450991bc
NP
1339 /*
1340 * After dropping the lock and possibly sleeping here, our request
1341 * may now be mergeable after it had proven unmergeable (above).
1342 * We don't worry about that case for efficiency. It won't happen
1343 * often, and the elevators are able to handle it.
1da177e4 1344 */
52d9e675 1345 init_request_from_bio(req, bio);
1da177e4 1346
c7c22e4d 1347 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
5757a6d7 1348 bio_flagged(bio, BIO_CPU_AFFINE))
11ccf116 1349 req->cpu = raw_smp_processor_id();
73c10101
JA
1350
1351 plug = current->plug;
721a9602 1352 if (plug) {
dc6d36c9
JA
1353 /*
1354 * If this is the first request added after a plug, fire
1355 * of a plug trace. If others have been added before, check
1356 * if we have multiple devices in this plug. If so, make a
1357 * note to sort the list before dispatch.
1358 */
1359 if (list_empty(&plug->list))
1360 trace_block_plug(q);
1361 else if (!plug->should_sort) {
73c10101
JA
1362 struct request *__rq;
1363
1364 __rq = list_entry_rq(plug->list.prev);
1365 if (__rq->q != q)
1366 plug->should_sort = 1;
1367 }
56ebdaf2 1368 if (request_count >= BLK_MAX_REQUEST_COUNT)
55c022bb 1369 blk_flush_plug_list(plug, false);
73c10101
JA
1370 list_add_tail(&req->queuelist, &plug->list);
1371 drive_stat_acct(req, 1);
1372 } else {
1373 spin_lock_irq(q->queue_lock);
1374 add_acct_request(q, req, where);
24ecfbe2 1375 __blk_run_queue(q);
73c10101
JA
1376out_unlock:
1377 spin_unlock_irq(q->queue_lock);
1378 }
1da177e4 1379}
c20e8de2 1380EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1381
1382/*
1383 * If bio->bi_dev is a partition, remap the location
1384 */
1385static inline void blk_partition_remap(struct bio *bio)
1386{
1387 struct block_device *bdev = bio->bi_bdev;
1388
bf2de6f5 1389 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1390 struct hd_struct *p = bdev->bd_part;
1391
1da177e4
LT
1392 bio->bi_sector += p->start_sect;
1393 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1394
d07335e5
MS
1395 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1396 bdev->bd_dev,
1397 bio->bi_sector - p->start_sect);
1da177e4
LT
1398 }
1399}
1400
1da177e4
LT
1401static void handle_bad_sector(struct bio *bio)
1402{
1403 char b[BDEVNAME_SIZE];
1404
1405 printk(KERN_INFO "attempt to access beyond end of device\n");
1406 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1407 bdevname(bio->bi_bdev, b),
1408 bio->bi_rw,
1409 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1410 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1411
1412 set_bit(BIO_EOF, &bio->bi_flags);
1413}
1414
c17bb495
AM
1415#ifdef CONFIG_FAIL_MAKE_REQUEST
1416
1417static DECLARE_FAULT_ATTR(fail_make_request);
1418
1419static int __init setup_fail_make_request(char *str)
1420{
1421 return setup_fault_attr(&fail_make_request, str);
1422}
1423__setup("fail_make_request=", setup_fail_make_request);
1424
b2c9cd37 1425static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1426{
b2c9cd37 1427 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1428}
1429
1430static int __init fail_make_request_debugfs(void)
1431{
dd48c085
AM
1432 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1433 NULL, &fail_make_request);
1434
1435 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1436}
1437
1438late_initcall(fail_make_request_debugfs);
1439
1440#else /* CONFIG_FAIL_MAKE_REQUEST */
1441
b2c9cd37
AM
1442static inline bool should_fail_request(struct hd_struct *part,
1443 unsigned int bytes)
c17bb495 1444{
b2c9cd37 1445 return false;
c17bb495
AM
1446}
1447
1448#endif /* CONFIG_FAIL_MAKE_REQUEST */
1449
c07e2b41
JA
1450/*
1451 * Check whether this bio extends beyond the end of the device.
1452 */
1453static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1454{
1455 sector_t maxsector;
1456
1457 if (!nr_sectors)
1458 return 0;
1459
1460 /* Test device or partition size, when known. */
77304d2a 1461 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1462 if (maxsector) {
1463 sector_t sector = bio->bi_sector;
1464
1465 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1466 /*
1467 * This may well happen - the kernel calls bread()
1468 * without checking the size of the device, e.g., when
1469 * mounting a device.
1470 */
1471 handle_bad_sector(bio);
1472 return 1;
1473 }
1474 }
1475
1476 return 0;
1477}
1478
27a84d54
CH
1479static noinline_for_stack bool
1480generic_make_request_checks(struct bio *bio)
1da177e4 1481{
165125e1 1482 struct request_queue *q;
5a7bbad2 1483 int nr_sectors = bio_sectors(bio);
51fd77bd 1484 int err = -EIO;
5a7bbad2
CH
1485 char b[BDEVNAME_SIZE];
1486 struct hd_struct *part;
1da177e4
LT
1487
1488 might_sleep();
1da177e4 1489
c07e2b41
JA
1490 if (bio_check_eod(bio, nr_sectors))
1491 goto end_io;
1da177e4 1492
5a7bbad2
CH
1493 q = bdev_get_queue(bio->bi_bdev);
1494 if (unlikely(!q)) {
1495 printk(KERN_ERR
1496 "generic_make_request: Trying to access "
1497 "nonexistent block-device %s (%Lu)\n",
1498 bdevname(bio->bi_bdev, b),
1499 (long long) bio->bi_sector);
1500 goto end_io;
1501 }
c17bb495 1502
5a7bbad2
CH
1503 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1504 nr_sectors > queue_max_hw_sectors(q))) {
1505 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1506 bdevname(bio->bi_bdev, b),
1507 bio_sectors(bio),
1508 queue_max_hw_sectors(q));
1509 goto end_io;
1510 }
1da177e4 1511
5a7bbad2
CH
1512 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1513 goto end_io;
7ba1ba12 1514
5a7bbad2
CH
1515 part = bio->bi_bdev->bd_part;
1516 if (should_fail_request(part, bio->bi_size) ||
1517 should_fail_request(&part_to_disk(part)->part0,
1518 bio->bi_size))
1519 goto end_io;
2056a782 1520
5a7bbad2
CH
1521 /*
1522 * If this device has partitions, remap block n
1523 * of partition p to block n+start(p) of the disk.
1524 */
1525 blk_partition_remap(bio);
2056a782 1526
5a7bbad2
CH
1527 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1528 goto end_io;
a7384677 1529
5a7bbad2
CH
1530 if (bio_check_eod(bio, nr_sectors))
1531 goto end_io;
1e87901e 1532
5a7bbad2
CH
1533 /*
1534 * Filter flush bio's early so that make_request based
1535 * drivers without flush support don't have to worry
1536 * about them.
1537 */
1538 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1539 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1540 if (!nr_sectors) {
1541 err = 0;
51fd77bd
JA
1542 goto end_io;
1543 }
5a7bbad2 1544 }
5ddfe969 1545
5a7bbad2
CH
1546 if ((bio->bi_rw & REQ_DISCARD) &&
1547 (!blk_queue_discard(q) ||
1548 ((bio->bi_rw & REQ_SECURE) &&
1549 !blk_queue_secdiscard(q)))) {
1550 err = -EOPNOTSUPP;
1551 goto end_io;
1552 }
01edede4 1553
bc16a4f9
TH
1554 if (blk_throtl_bio(q, bio))
1555 return false; /* throttled, will be resubmitted later */
27a84d54 1556
5a7bbad2 1557 trace_block_bio_queue(q, bio);
27a84d54 1558 return true;
a7384677
TH
1559
1560end_io:
1561 bio_endio(bio, err);
27a84d54 1562 return false;
1da177e4
LT
1563}
1564
27a84d54
CH
1565/**
1566 * generic_make_request - hand a buffer to its device driver for I/O
1567 * @bio: The bio describing the location in memory and on the device.
1568 *
1569 * generic_make_request() is used to make I/O requests of block
1570 * devices. It is passed a &struct bio, which describes the I/O that needs
1571 * to be done.
1572 *
1573 * generic_make_request() does not return any status. The
1574 * success/failure status of the request, along with notification of
1575 * completion, is delivered asynchronously through the bio->bi_end_io
1576 * function described (one day) else where.
1577 *
1578 * The caller of generic_make_request must make sure that bi_io_vec
1579 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1580 * set to describe the device address, and the
1581 * bi_end_io and optionally bi_private are set to describe how
1582 * completion notification should be signaled.
1583 *
1584 * generic_make_request and the drivers it calls may use bi_next if this
1585 * bio happens to be merged with someone else, and may resubmit the bio to
1586 * a lower device by calling into generic_make_request recursively, which
1587 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1588 */
1589void generic_make_request(struct bio *bio)
1590{
bddd87c7
AM
1591 struct bio_list bio_list_on_stack;
1592
27a84d54
CH
1593 if (!generic_make_request_checks(bio))
1594 return;
1595
1596 /*
1597 * We only want one ->make_request_fn to be active at a time, else
1598 * stack usage with stacked devices could be a problem. So use
1599 * current->bio_list to keep a list of requests submited by a
1600 * make_request_fn function. current->bio_list is also used as a
1601 * flag to say if generic_make_request is currently active in this
1602 * task or not. If it is NULL, then no make_request is active. If
1603 * it is non-NULL, then a make_request is active, and new requests
1604 * should be added at the tail
1605 */
bddd87c7 1606 if (current->bio_list) {
bddd87c7 1607 bio_list_add(current->bio_list, bio);
d89d8796
NB
1608 return;
1609 }
27a84d54 1610
d89d8796
NB
1611 /* following loop may be a bit non-obvious, and so deserves some
1612 * explanation.
1613 * Before entering the loop, bio->bi_next is NULL (as all callers
1614 * ensure that) so we have a list with a single bio.
1615 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1616 * we assign bio_list to a pointer to the bio_list_on_stack,
1617 * thus initialising the bio_list of new bios to be
27a84d54 1618 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1619 * through a recursive call to generic_make_request. If it
1620 * did, we find a non-NULL value in bio_list and re-enter the loop
1621 * from the top. In this case we really did just take the bio
bddd87c7 1622 * of the top of the list (no pretending) and so remove it from
27a84d54 1623 * bio_list, and call into ->make_request() again.
d89d8796
NB
1624 */
1625 BUG_ON(bio->bi_next);
bddd87c7
AM
1626 bio_list_init(&bio_list_on_stack);
1627 current->bio_list = &bio_list_on_stack;
d89d8796 1628 do {
27a84d54
CH
1629 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1630
1631 q->make_request_fn(q, bio);
1632
bddd87c7 1633 bio = bio_list_pop(current->bio_list);
d89d8796 1634 } while (bio);
bddd87c7 1635 current->bio_list = NULL; /* deactivate */
d89d8796 1636}
1da177e4
LT
1637EXPORT_SYMBOL(generic_make_request);
1638
1639/**
710027a4 1640 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1641 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1642 * @bio: The &struct bio which describes the I/O
1643 *
1644 * submit_bio() is very similar in purpose to generic_make_request(), and
1645 * uses that function to do most of the work. Both are fairly rough
710027a4 1646 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1647 *
1648 */
1649void submit_bio(int rw, struct bio *bio)
1650{
1651 int count = bio_sectors(bio);
1652
22e2c507 1653 bio->bi_rw |= rw;
1da177e4 1654
bf2de6f5
JA
1655 /*
1656 * If it's a regular read/write or a barrier with data attached,
1657 * go through the normal accounting stuff before submission.
1658 */
3ffb52e7 1659 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1660 if (rw & WRITE) {
1661 count_vm_events(PGPGOUT, count);
1662 } else {
1663 task_io_account_read(bio->bi_size);
1664 count_vm_events(PGPGIN, count);
1665 }
1666
1667 if (unlikely(block_dump)) {
1668 char b[BDEVNAME_SIZE];
8dcbdc74 1669 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1670 current->comm, task_pid_nr(current),
bf2de6f5
JA
1671 (rw & WRITE) ? "WRITE" : "READ",
1672 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1673 bdevname(bio->bi_bdev, b),
1674 count);
bf2de6f5 1675 }
1da177e4
LT
1676 }
1677
1678 generic_make_request(bio);
1679}
1da177e4
LT
1680EXPORT_SYMBOL(submit_bio);
1681
82124d60
KU
1682/**
1683 * blk_rq_check_limits - Helper function to check a request for the queue limit
1684 * @q: the queue
1685 * @rq: the request being checked
1686 *
1687 * Description:
1688 * @rq may have been made based on weaker limitations of upper-level queues
1689 * in request stacking drivers, and it may violate the limitation of @q.
1690 * Since the block layer and the underlying device driver trust @rq
1691 * after it is inserted to @q, it should be checked against @q before
1692 * the insertion using this generic function.
1693 *
1694 * This function should also be useful for request stacking drivers
eef35c2d 1695 * in some cases below, so export this function.
82124d60
KU
1696 * Request stacking drivers like request-based dm may change the queue
1697 * limits while requests are in the queue (e.g. dm's table swapping).
1698 * Such request stacking drivers should check those requests agaist
1699 * the new queue limits again when they dispatch those requests,
1700 * although such checkings are also done against the old queue limits
1701 * when submitting requests.
1702 */
1703int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1704{
3383977f
S
1705 if (rq->cmd_flags & REQ_DISCARD)
1706 return 0;
1707
ae03bf63
MP
1708 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1709 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1710 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1711 return -EIO;
1712 }
1713
1714 /*
1715 * queue's settings related to segment counting like q->bounce_pfn
1716 * may differ from that of other stacking queues.
1717 * Recalculate it to check the request correctly on this queue's
1718 * limitation.
1719 */
1720 blk_recalc_rq_segments(rq);
8a78362c 1721 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1722 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1723 return -EIO;
1724 }
1725
1726 return 0;
1727}
1728EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1729
1730/**
1731 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1732 * @q: the queue to submit the request
1733 * @rq: the request being queued
1734 */
1735int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1736{
1737 unsigned long flags;
4853abaa 1738 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1739
1740 if (blk_rq_check_limits(q, rq))
1741 return -EIO;
1742
b2c9cd37
AM
1743 if (rq->rq_disk &&
1744 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1745 return -EIO;
82124d60
KU
1746
1747 spin_lock_irqsave(q->queue_lock, flags);
1748
1749 /*
1750 * Submitting request must be dequeued before calling this function
1751 * because it will be linked to another request_queue
1752 */
1753 BUG_ON(blk_queued_rq(rq));
1754
4853abaa
JM
1755 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1756 where = ELEVATOR_INSERT_FLUSH;
1757
1758 add_acct_request(q, rq, where);
82124d60
KU
1759 spin_unlock_irqrestore(q->queue_lock, flags);
1760
1761 return 0;
1762}
1763EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1764
80a761fd
TH
1765/**
1766 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1767 * @rq: request to examine
1768 *
1769 * Description:
1770 * A request could be merge of IOs which require different failure
1771 * handling. This function determines the number of bytes which
1772 * can be failed from the beginning of the request without
1773 * crossing into area which need to be retried further.
1774 *
1775 * Return:
1776 * The number of bytes to fail.
1777 *
1778 * Context:
1779 * queue_lock must be held.
1780 */
1781unsigned int blk_rq_err_bytes(const struct request *rq)
1782{
1783 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1784 unsigned int bytes = 0;
1785 struct bio *bio;
1786
1787 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1788 return blk_rq_bytes(rq);
1789
1790 /*
1791 * Currently the only 'mixing' which can happen is between
1792 * different fastfail types. We can safely fail portions
1793 * which have all the failfast bits that the first one has -
1794 * the ones which are at least as eager to fail as the first
1795 * one.
1796 */
1797 for (bio = rq->bio; bio; bio = bio->bi_next) {
1798 if ((bio->bi_rw & ff) != ff)
1799 break;
1800 bytes += bio->bi_size;
1801 }
1802
1803 /* this could lead to infinite loop */
1804 BUG_ON(blk_rq_bytes(rq) && !bytes);
1805 return bytes;
1806}
1807EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1808
bc58ba94
JA
1809static void blk_account_io_completion(struct request *req, unsigned int bytes)
1810{
c2553b58 1811 if (blk_do_io_stat(req)) {
bc58ba94
JA
1812 const int rw = rq_data_dir(req);
1813 struct hd_struct *part;
1814 int cpu;
1815
1816 cpu = part_stat_lock();
09e099d4 1817 part = req->part;
bc58ba94
JA
1818 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1819 part_stat_unlock();
1820 }
1821}
1822
1823static void blk_account_io_done(struct request *req)
1824{
bc58ba94 1825 /*
dd4c133f
TH
1826 * Account IO completion. flush_rq isn't accounted as a
1827 * normal IO on queueing nor completion. Accounting the
1828 * containing request is enough.
bc58ba94 1829 */
414b4ff5 1830 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1831 unsigned long duration = jiffies - req->start_time;
1832 const int rw = rq_data_dir(req);
1833 struct hd_struct *part;
1834 int cpu;
1835
1836 cpu = part_stat_lock();
09e099d4 1837 part = req->part;
bc58ba94
JA
1838
1839 part_stat_inc(cpu, part, ios[rw]);
1840 part_stat_add(cpu, part, ticks[rw], duration);
1841 part_round_stats(cpu, part);
316d315b 1842 part_dec_in_flight(part, rw);
bc58ba94 1843
6c23a968 1844 hd_struct_put(part);
bc58ba94
JA
1845 part_stat_unlock();
1846 }
1847}
1848
3bcddeac 1849/**
9934c8c0
TH
1850 * blk_peek_request - peek at the top of a request queue
1851 * @q: request queue to peek at
1852 *
1853 * Description:
1854 * Return the request at the top of @q. The returned request
1855 * should be started using blk_start_request() before LLD starts
1856 * processing it.
1857 *
1858 * Return:
1859 * Pointer to the request at the top of @q if available. Null
1860 * otherwise.
1861 *
1862 * Context:
1863 * queue_lock must be held.
1864 */
1865struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1866{
1867 struct request *rq;
1868 int ret;
1869
1870 while ((rq = __elv_next_request(q)) != NULL) {
1871 if (!(rq->cmd_flags & REQ_STARTED)) {
1872 /*
1873 * This is the first time the device driver
1874 * sees this request (possibly after
1875 * requeueing). Notify IO scheduler.
1876 */
33659ebb 1877 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1878 elv_activate_rq(q, rq);
1879
1880 /*
1881 * just mark as started even if we don't start
1882 * it, a request that has been delayed should
1883 * not be passed by new incoming requests
1884 */
1885 rq->cmd_flags |= REQ_STARTED;
1886 trace_block_rq_issue(q, rq);
1887 }
1888
1889 if (!q->boundary_rq || q->boundary_rq == rq) {
1890 q->end_sector = rq_end_sector(rq);
1891 q->boundary_rq = NULL;
1892 }
1893
1894 if (rq->cmd_flags & REQ_DONTPREP)
1895 break;
1896
2e46e8b2 1897 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1898 /*
1899 * make sure space for the drain appears we
1900 * know we can do this because max_hw_segments
1901 * has been adjusted to be one fewer than the
1902 * device can handle
1903 */
1904 rq->nr_phys_segments++;
1905 }
1906
1907 if (!q->prep_rq_fn)
1908 break;
1909
1910 ret = q->prep_rq_fn(q, rq);
1911 if (ret == BLKPREP_OK) {
1912 break;
1913 } else if (ret == BLKPREP_DEFER) {
1914 /*
1915 * the request may have been (partially) prepped.
1916 * we need to keep this request in the front to
1917 * avoid resource deadlock. REQ_STARTED will
1918 * prevent other fs requests from passing this one.
1919 */
2e46e8b2 1920 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1921 !(rq->cmd_flags & REQ_DONTPREP)) {
1922 /*
1923 * remove the space for the drain we added
1924 * so that we don't add it again
1925 */
1926 --rq->nr_phys_segments;
1927 }
1928
1929 rq = NULL;
1930 break;
1931 } else if (ret == BLKPREP_KILL) {
1932 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1933 /*
1934 * Mark this request as started so we don't trigger
1935 * any debug logic in the end I/O path.
1936 */
1937 blk_start_request(rq);
40cbbb78 1938 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1939 } else {
1940 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1941 break;
1942 }
1943 }
1944
1945 return rq;
1946}
9934c8c0 1947EXPORT_SYMBOL(blk_peek_request);
158dbda0 1948
9934c8c0 1949void blk_dequeue_request(struct request *rq)
158dbda0 1950{
9934c8c0
TH
1951 struct request_queue *q = rq->q;
1952
158dbda0
TH
1953 BUG_ON(list_empty(&rq->queuelist));
1954 BUG_ON(ELV_ON_HASH(rq));
1955
1956 list_del_init(&rq->queuelist);
1957
1958 /*
1959 * the time frame between a request being removed from the lists
1960 * and to it is freed is accounted as io that is in progress at
1961 * the driver side.
1962 */
9195291e 1963 if (blk_account_rq(rq)) {
0a7ae2ff 1964 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1965 set_io_start_time_ns(rq);
1966 }
158dbda0
TH
1967}
1968
9934c8c0
TH
1969/**
1970 * blk_start_request - start request processing on the driver
1971 * @req: request to dequeue
1972 *
1973 * Description:
1974 * Dequeue @req and start timeout timer on it. This hands off the
1975 * request to the driver.
1976 *
1977 * Block internal functions which don't want to start timer should
1978 * call blk_dequeue_request().
1979 *
1980 * Context:
1981 * queue_lock must be held.
1982 */
1983void blk_start_request(struct request *req)
1984{
1985 blk_dequeue_request(req);
1986
1987 /*
5f49f631
TH
1988 * We are now handing the request to the hardware, initialize
1989 * resid_len to full count and add the timeout handler.
9934c8c0 1990 */
5f49f631 1991 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1992 if (unlikely(blk_bidi_rq(req)))
1993 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1994
9934c8c0
TH
1995 blk_add_timer(req);
1996}
1997EXPORT_SYMBOL(blk_start_request);
1998
1999/**
2000 * blk_fetch_request - fetch a request from a request queue
2001 * @q: request queue to fetch a request from
2002 *
2003 * Description:
2004 * Return the request at the top of @q. The request is started on
2005 * return and LLD can start processing it immediately.
2006 *
2007 * Return:
2008 * Pointer to the request at the top of @q if available. Null
2009 * otherwise.
2010 *
2011 * Context:
2012 * queue_lock must be held.
2013 */
2014struct request *blk_fetch_request(struct request_queue *q)
2015{
2016 struct request *rq;
2017
2018 rq = blk_peek_request(q);
2019 if (rq)
2020 blk_start_request(rq);
2021 return rq;
2022}
2023EXPORT_SYMBOL(blk_fetch_request);
2024
3bcddeac 2025/**
2e60e022 2026 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2027 * @req: the request being processed
710027a4 2028 * @error: %0 for success, < %0 for error
8ebf9756 2029 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2030 *
2031 * Description:
8ebf9756
RD
2032 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2033 * the request structure even if @req doesn't have leftover.
2034 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2035 *
2036 * This special helper function is only for request stacking drivers
2037 * (e.g. request-based dm) so that they can handle partial completion.
2038 * Actual device drivers should use blk_end_request instead.
2039 *
2040 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2041 * %false return from this function.
3bcddeac
KU
2042 *
2043 * Return:
2e60e022
TH
2044 * %false - this request doesn't have any more data
2045 * %true - this request has more data
3bcddeac 2046 **/
2e60e022 2047bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2048{
5450d3e1 2049 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2050 struct bio *bio;
2051
2e60e022
TH
2052 if (!req->bio)
2053 return false;
2054
5f3ea37c 2055 trace_block_rq_complete(req->q, req);
2056a782 2056
1da177e4 2057 /*
6f41469c
TH
2058 * For fs requests, rq is just carrier of independent bio's
2059 * and each partial completion should be handled separately.
2060 * Reset per-request error on each partial completion.
2061 *
2062 * TODO: tj: This is too subtle. It would be better to let
2063 * low level drivers do what they see fit.
1da177e4 2064 */
33659ebb 2065 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2066 req->errors = 0;
2067
33659ebb
CH
2068 if (error && req->cmd_type == REQ_TYPE_FS &&
2069 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2070 char *error_type;
2071
2072 switch (error) {
2073 case -ENOLINK:
2074 error_type = "recoverable transport";
2075 break;
2076 case -EREMOTEIO:
2077 error_type = "critical target";
2078 break;
2079 case -EBADE:
2080 error_type = "critical nexus";
2081 break;
2082 case -EIO:
2083 default:
2084 error_type = "I/O";
2085 break;
2086 }
2087 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2088 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2089 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2090 }
2091
bc58ba94 2092 blk_account_io_completion(req, nr_bytes);
d72d904a 2093
1da177e4
LT
2094 total_bytes = bio_nbytes = 0;
2095 while ((bio = req->bio) != NULL) {
2096 int nbytes;
2097
2098 if (nr_bytes >= bio->bi_size) {
2099 req->bio = bio->bi_next;
2100 nbytes = bio->bi_size;
5bb23a68 2101 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2102 next_idx = 0;
2103 bio_nbytes = 0;
2104 } else {
2105 int idx = bio->bi_idx + next_idx;
2106
af498d7f 2107 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2108 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2109 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2110 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2111 break;
2112 }
2113
2114 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2115 BIO_BUG_ON(nbytes > bio->bi_size);
2116
2117 /*
2118 * not a complete bvec done
2119 */
2120 if (unlikely(nbytes > nr_bytes)) {
2121 bio_nbytes += nr_bytes;
2122 total_bytes += nr_bytes;
2123 break;
2124 }
2125
2126 /*
2127 * advance to the next vector
2128 */
2129 next_idx++;
2130 bio_nbytes += nbytes;
2131 }
2132
2133 total_bytes += nbytes;
2134 nr_bytes -= nbytes;
2135
6728cb0e
JA
2136 bio = req->bio;
2137 if (bio) {
1da177e4
LT
2138 /*
2139 * end more in this run, or just return 'not-done'
2140 */
2141 if (unlikely(nr_bytes <= 0))
2142 break;
2143 }
2144 }
2145
2146 /*
2147 * completely done
2148 */
2e60e022
TH
2149 if (!req->bio) {
2150 /*
2151 * Reset counters so that the request stacking driver
2152 * can find how many bytes remain in the request
2153 * later.
2154 */
a2dec7b3 2155 req->__data_len = 0;
2e60e022
TH
2156 return false;
2157 }
1da177e4
LT
2158
2159 /*
2160 * if the request wasn't completed, update state
2161 */
2162 if (bio_nbytes) {
5bb23a68 2163 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2164 bio->bi_idx += next_idx;
2165 bio_iovec(bio)->bv_offset += nr_bytes;
2166 bio_iovec(bio)->bv_len -= nr_bytes;
2167 }
2168
a2dec7b3 2169 req->__data_len -= total_bytes;
2e46e8b2
TH
2170 req->buffer = bio_data(req->bio);
2171
2172 /* update sector only for requests with clear definition of sector */
33659ebb 2173 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2174 req->__sector += total_bytes >> 9;
2e46e8b2 2175
80a761fd
TH
2176 /* mixed attributes always follow the first bio */
2177 if (req->cmd_flags & REQ_MIXED_MERGE) {
2178 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2179 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2180 }
2181
2e46e8b2
TH
2182 /*
2183 * If total number of sectors is less than the first segment
2184 * size, something has gone terribly wrong.
2185 */
2186 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2187 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2188 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2189 }
2190
2191 /* recalculate the number of segments */
1da177e4 2192 blk_recalc_rq_segments(req);
2e46e8b2 2193
2e60e022 2194 return true;
1da177e4 2195}
2e60e022 2196EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2197
2e60e022
TH
2198static bool blk_update_bidi_request(struct request *rq, int error,
2199 unsigned int nr_bytes,
2200 unsigned int bidi_bytes)
5efccd17 2201{
2e60e022
TH
2202 if (blk_update_request(rq, error, nr_bytes))
2203 return true;
5efccd17 2204
2e60e022
TH
2205 /* Bidi request must be completed as a whole */
2206 if (unlikely(blk_bidi_rq(rq)) &&
2207 blk_update_request(rq->next_rq, error, bidi_bytes))
2208 return true;
5efccd17 2209
e2e1a148
JA
2210 if (blk_queue_add_random(rq->q))
2211 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2212
2213 return false;
1da177e4
LT
2214}
2215
28018c24
JB
2216/**
2217 * blk_unprep_request - unprepare a request
2218 * @req: the request
2219 *
2220 * This function makes a request ready for complete resubmission (or
2221 * completion). It happens only after all error handling is complete,
2222 * so represents the appropriate moment to deallocate any resources
2223 * that were allocated to the request in the prep_rq_fn. The queue
2224 * lock is held when calling this.
2225 */
2226void blk_unprep_request(struct request *req)
2227{
2228 struct request_queue *q = req->q;
2229
2230 req->cmd_flags &= ~REQ_DONTPREP;
2231 if (q->unprep_rq_fn)
2232 q->unprep_rq_fn(q, req);
2233}
2234EXPORT_SYMBOL_GPL(blk_unprep_request);
2235
1da177e4
LT
2236/*
2237 * queue lock must be held
2238 */
2e60e022 2239static void blk_finish_request(struct request *req, int error)
1da177e4 2240{
b8286239
KU
2241 if (blk_rq_tagged(req))
2242 blk_queue_end_tag(req->q, req);
2243
ba396a6c 2244 BUG_ON(blk_queued_rq(req));
1da177e4 2245
33659ebb 2246 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2247 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2248
e78042e5
MA
2249 blk_delete_timer(req);
2250
28018c24
JB
2251 if (req->cmd_flags & REQ_DONTPREP)
2252 blk_unprep_request(req);
2253
2254
bc58ba94 2255 blk_account_io_done(req);
b8286239 2256
1da177e4 2257 if (req->end_io)
8ffdc655 2258 req->end_io(req, error);
b8286239
KU
2259 else {
2260 if (blk_bidi_rq(req))
2261 __blk_put_request(req->next_rq->q, req->next_rq);
2262
1da177e4 2263 __blk_put_request(req->q, req);
b8286239 2264 }
1da177e4
LT
2265}
2266
3b11313a 2267/**
2e60e022
TH
2268 * blk_end_bidi_request - Complete a bidi request
2269 * @rq: the request to complete
2270 * @error: %0 for success, < %0 for error
2271 * @nr_bytes: number of bytes to complete @rq
2272 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2273 *
2274 * Description:
e3a04fe3 2275 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2276 * Drivers that supports bidi can safely call this member for any
2277 * type of request, bidi or uni. In the later case @bidi_bytes is
2278 * just ignored.
336cdb40
KU
2279 *
2280 * Return:
2e60e022
TH
2281 * %false - we are done with this request
2282 * %true - still buffers pending for this request
a0cd1285 2283 **/
b1f74493 2284static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2285 unsigned int nr_bytes, unsigned int bidi_bytes)
2286{
336cdb40 2287 struct request_queue *q = rq->q;
2e60e022 2288 unsigned long flags;
32fab448 2289
2e60e022
TH
2290 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2291 return true;
32fab448 2292
336cdb40 2293 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2294 blk_finish_request(rq, error);
336cdb40
KU
2295 spin_unlock_irqrestore(q->queue_lock, flags);
2296
2e60e022 2297 return false;
32fab448
KU
2298}
2299
336cdb40 2300/**
2e60e022
TH
2301 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2302 * @rq: the request to complete
710027a4 2303 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2304 * @nr_bytes: number of bytes to complete @rq
2305 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2306 *
2307 * Description:
2e60e022
TH
2308 * Identical to blk_end_bidi_request() except that queue lock is
2309 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2310 *
2311 * Return:
2e60e022
TH
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
336cdb40 2314 **/
4853abaa 2315bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2316 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2317{
2e60e022
TH
2318 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2319 return true;
336cdb40 2320
2e60e022 2321 blk_finish_request(rq, error);
336cdb40 2322
2e60e022 2323 return false;
336cdb40 2324}
e19a3ab0
KU
2325
2326/**
2327 * blk_end_request - Helper function for drivers to complete the request.
2328 * @rq: the request being processed
710027a4 2329 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2330 * @nr_bytes: number of bytes to complete
2331 *
2332 * Description:
2333 * Ends I/O on a number of bytes attached to @rq.
2334 * If @rq has leftover, sets it up for the next range of segments.
2335 *
2336 * Return:
b1f74493
FT
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
e19a3ab0 2339 **/
b1f74493 2340bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2341{
b1f74493 2342 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2343}
56ad1740 2344EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2345
2346/**
b1f74493
FT
2347 * blk_end_request_all - Helper function for drives to finish the request.
2348 * @rq: the request to finish
8ebf9756 2349 * @error: %0 for success, < %0 for error
336cdb40
KU
2350 *
2351 * Description:
b1f74493
FT
2352 * Completely finish @rq.
2353 */
2354void blk_end_request_all(struct request *rq, int error)
336cdb40 2355{
b1f74493
FT
2356 bool pending;
2357 unsigned int bidi_bytes = 0;
336cdb40 2358
b1f74493
FT
2359 if (unlikely(blk_bidi_rq(rq)))
2360 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2361
b1f74493
FT
2362 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2363 BUG_ON(pending);
2364}
56ad1740 2365EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2366
b1f74493
FT
2367/**
2368 * blk_end_request_cur - Helper function to finish the current request chunk.
2369 * @rq: the request to finish the current chunk for
8ebf9756 2370 * @error: %0 for success, < %0 for error
b1f74493
FT
2371 *
2372 * Description:
2373 * Complete the current consecutively mapped chunk from @rq.
2374 *
2375 * Return:
2376 * %false - we are done with this request
2377 * %true - still buffers pending for this request
2378 */
2379bool blk_end_request_cur(struct request *rq, int error)
2380{
2381 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2382}
56ad1740 2383EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2384
80a761fd
TH
2385/**
2386 * blk_end_request_err - Finish a request till the next failure boundary.
2387 * @rq: the request to finish till the next failure boundary for
2388 * @error: must be negative errno
2389 *
2390 * Description:
2391 * Complete @rq till the next failure boundary.
2392 *
2393 * Return:
2394 * %false - we are done with this request
2395 * %true - still buffers pending for this request
2396 */
2397bool blk_end_request_err(struct request *rq, int error)
2398{
2399 WARN_ON(error >= 0);
2400 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2401}
2402EXPORT_SYMBOL_GPL(blk_end_request_err);
2403
e3a04fe3 2404/**
b1f74493
FT
2405 * __blk_end_request - Helper function for drivers to complete the request.
2406 * @rq: the request being processed
2407 * @error: %0 for success, < %0 for error
2408 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2409 *
2410 * Description:
b1f74493 2411 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2412 *
2413 * Return:
b1f74493
FT
2414 * %false - we are done with this request
2415 * %true - still buffers pending for this request
e3a04fe3 2416 **/
b1f74493 2417bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2418{
b1f74493 2419 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2420}
56ad1740 2421EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2422
32fab448 2423/**
b1f74493
FT
2424 * __blk_end_request_all - Helper function for drives to finish the request.
2425 * @rq: the request to finish
8ebf9756 2426 * @error: %0 for success, < %0 for error
32fab448
KU
2427 *
2428 * Description:
b1f74493 2429 * Completely finish @rq. Must be called with queue lock held.
32fab448 2430 */
b1f74493 2431void __blk_end_request_all(struct request *rq, int error)
32fab448 2432{
b1f74493
FT
2433 bool pending;
2434 unsigned int bidi_bytes = 0;
2435
2436 if (unlikely(blk_bidi_rq(rq)))
2437 bidi_bytes = blk_rq_bytes(rq->next_rq);
2438
2439 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2440 BUG_ON(pending);
32fab448 2441}
56ad1740 2442EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2443
e19a3ab0 2444/**
b1f74493
FT
2445 * __blk_end_request_cur - Helper function to finish the current request chunk.
2446 * @rq: the request to finish the current chunk for
8ebf9756 2447 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2448 *
2449 * Description:
b1f74493
FT
2450 * Complete the current consecutively mapped chunk from @rq. Must
2451 * be called with queue lock held.
e19a3ab0
KU
2452 *
2453 * Return:
b1f74493
FT
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2456 */
2457bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2458{
b1f74493 2459 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2460}
56ad1740 2461EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2462
80a761fd
TH
2463/**
2464 * __blk_end_request_err - Finish a request till the next failure boundary.
2465 * @rq: the request to finish till the next failure boundary for
2466 * @error: must be negative errno
2467 *
2468 * Description:
2469 * Complete @rq till the next failure boundary. Must be called
2470 * with queue lock held.
2471 *
2472 * Return:
2473 * %false - we are done with this request
2474 * %true - still buffers pending for this request
2475 */
2476bool __blk_end_request_err(struct request *rq, int error)
2477{
2478 WARN_ON(error >= 0);
2479 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2480}
2481EXPORT_SYMBOL_GPL(__blk_end_request_err);
2482
86db1e29
JA
2483void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2484 struct bio *bio)
1da177e4 2485{
a82afdfc 2486 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2487 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2488
fb2dce86
DW
2489 if (bio_has_data(bio)) {
2490 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2491 rq->buffer = bio_data(bio);
2492 }
a2dec7b3 2493 rq->__data_len = bio->bi_size;
1da177e4 2494 rq->bio = rq->biotail = bio;
1da177e4 2495
66846572
N
2496 if (bio->bi_bdev)
2497 rq->rq_disk = bio->bi_bdev->bd_disk;
2498}
1da177e4 2499
2d4dc890
IL
2500#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2501/**
2502 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2503 * @rq: the request to be flushed
2504 *
2505 * Description:
2506 * Flush all pages in @rq.
2507 */
2508void rq_flush_dcache_pages(struct request *rq)
2509{
2510 struct req_iterator iter;
2511 struct bio_vec *bvec;
2512
2513 rq_for_each_segment(bvec, rq, iter)
2514 flush_dcache_page(bvec->bv_page);
2515}
2516EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2517#endif
2518
ef9e3fac
KU
2519/**
2520 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2521 * @q : the queue of the device being checked
2522 *
2523 * Description:
2524 * Check if underlying low-level drivers of a device are busy.
2525 * If the drivers want to export their busy state, they must set own
2526 * exporting function using blk_queue_lld_busy() first.
2527 *
2528 * Basically, this function is used only by request stacking drivers
2529 * to stop dispatching requests to underlying devices when underlying
2530 * devices are busy. This behavior helps more I/O merging on the queue
2531 * of the request stacking driver and prevents I/O throughput regression
2532 * on burst I/O load.
2533 *
2534 * Return:
2535 * 0 - Not busy (The request stacking driver should dispatch request)
2536 * 1 - Busy (The request stacking driver should stop dispatching request)
2537 */
2538int blk_lld_busy(struct request_queue *q)
2539{
2540 if (q->lld_busy_fn)
2541 return q->lld_busy_fn(q);
2542
2543 return 0;
2544}
2545EXPORT_SYMBOL_GPL(blk_lld_busy);
2546
b0fd271d
KU
2547/**
2548 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2549 * @rq: the clone request to be cleaned up
2550 *
2551 * Description:
2552 * Free all bios in @rq for a cloned request.
2553 */
2554void blk_rq_unprep_clone(struct request *rq)
2555{
2556 struct bio *bio;
2557
2558 while ((bio = rq->bio) != NULL) {
2559 rq->bio = bio->bi_next;
2560
2561 bio_put(bio);
2562 }
2563}
2564EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2565
2566/*
2567 * Copy attributes of the original request to the clone request.
2568 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2569 */
2570static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2571{
2572 dst->cpu = src->cpu;
3a2edd0d 2573 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2574 dst->cmd_type = src->cmd_type;
2575 dst->__sector = blk_rq_pos(src);
2576 dst->__data_len = blk_rq_bytes(src);
2577 dst->nr_phys_segments = src->nr_phys_segments;
2578 dst->ioprio = src->ioprio;
2579 dst->extra_len = src->extra_len;
2580}
2581
2582/**
2583 * blk_rq_prep_clone - Helper function to setup clone request
2584 * @rq: the request to be setup
2585 * @rq_src: original request to be cloned
2586 * @bs: bio_set that bios for clone are allocated from
2587 * @gfp_mask: memory allocation mask for bio
2588 * @bio_ctr: setup function to be called for each clone bio.
2589 * Returns %0 for success, non %0 for failure.
2590 * @data: private data to be passed to @bio_ctr
2591 *
2592 * Description:
2593 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2594 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2595 * are not copied, and copying such parts is the caller's responsibility.
2596 * Also, pages which the original bios are pointing to are not copied
2597 * and the cloned bios just point same pages.
2598 * So cloned bios must be completed before original bios, which means
2599 * the caller must complete @rq before @rq_src.
2600 */
2601int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2602 struct bio_set *bs, gfp_t gfp_mask,
2603 int (*bio_ctr)(struct bio *, struct bio *, void *),
2604 void *data)
2605{
2606 struct bio *bio, *bio_src;
2607
2608 if (!bs)
2609 bs = fs_bio_set;
2610
2611 blk_rq_init(NULL, rq);
2612
2613 __rq_for_each_bio(bio_src, rq_src) {
2614 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2615 if (!bio)
2616 goto free_and_out;
2617
2618 __bio_clone(bio, bio_src);
2619
2620 if (bio_integrity(bio_src) &&
7878cba9 2621 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2622 goto free_and_out;
2623
2624 if (bio_ctr && bio_ctr(bio, bio_src, data))
2625 goto free_and_out;
2626
2627 if (rq->bio) {
2628 rq->biotail->bi_next = bio;
2629 rq->biotail = bio;
2630 } else
2631 rq->bio = rq->biotail = bio;
2632 }
2633
2634 __blk_rq_prep_clone(rq, rq_src);
2635
2636 return 0;
2637
2638free_and_out:
2639 if (bio)
2640 bio_free(bio, bs);
2641 blk_rq_unprep_clone(rq);
2642
2643 return -ENOMEM;
2644}
2645EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2646
18887ad9 2647int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2648{
2649 return queue_work(kblockd_workqueue, work);
2650}
1da177e4
LT
2651EXPORT_SYMBOL(kblockd_schedule_work);
2652
e43473b7
VG
2653int kblockd_schedule_delayed_work(struct request_queue *q,
2654 struct delayed_work *dwork, unsigned long delay)
2655{
2656 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2657}
2658EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2659
73c10101
JA
2660#define PLUG_MAGIC 0x91827364
2661
75df7136
SJ
2662/**
2663 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2664 * @plug: The &struct blk_plug that needs to be initialized
2665 *
2666 * Description:
2667 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2668 * pending I/O should the task end up blocking between blk_start_plug() and
2669 * blk_finish_plug(). This is important from a performance perspective, but
2670 * also ensures that we don't deadlock. For instance, if the task is blocking
2671 * for a memory allocation, memory reclaim could end up wanting to free a
2672 * page belonging to that request that is currently residing in our private
2673 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2674 * this kind of deadlock.
2675 */
73c10101
JA
2676void blk_start_plug(struct blk_plug *plug)
2677{
2678 struct task_struct *tsk = current;
2679
2680 plug->magic = PLUG_MAGIC;
2681 INIT_LIST_HEAD(&plug->list);
048c9374 2682 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2683 plug->should_sort = 0;
2684
2685 /*
2686 * If this is a nested plug, don't actually assign it. It will be
2687 * flushed on its own.
2688 */
2689 if (!tsk->plug) {
2690 /*
2691 * Store ordering should not be needed here, since a potential
2692 * preempt will imply a full memory barrier
2693 */
2694 tsk->plug = plug;
2695 }
2696}
2697EXPORT_SYMBOL(blk_start_plug);
2698
2699static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2700{
2701 struct request *rqa = container_of(a, struct request, queuelist);
2702 struct request *rqb = container_of(b, struct request, queuelist);
2703
f83e8261 2704 return !(rqa->q <= rqb->q);
73c10101
JA
2705}
2706
49cac01e
JA
2707/*
2708 * If 'from_schedule' is true, then postpone the dispatch of requests
2709 * until a safe kblockd context. We due this to avoid accidental big
2710 * additional stack usage in driver dispatch, in places where the originally
2711 * plugger did not intend it.
2712 */
f6603783 2713static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2714 bool from_schedule)
99e22598 2715 __releases(q->queue_lock)
94b5eb28 2716{
49cac01e 2717 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2718
2719 /*
2720 * If we are punting this to kblockd, then we can safely drop
2721 * the queue_lock before waking kblockd (which needs to take
2722 * this lock).
2723 */
2724 if (from_schedule) {
2725 spin_unlock(q->queue_lock);
24ecfbe2 2726 blk_run_queue_async(q);
99e22598 2727 } else {
24ecfbe2 2728 __blk_run_queue(q);
99e22598
JA
2729 spin_unlock(q->queue_lock);
2730 }
2731
94b5eb28
JA
2732}
2733
048c9374
N
2734static void flush_plug_callbacks(struct blk_plug *plug)
2735{
2736 LIST_HEAD(callbacks);
2737
2738 if (list_empty(&plug->cb_list))
2739 return;
2740
2741 list_splice_init(&plug->cb_list, &callbacks);
2742
2743 while (!list_empty(&callbacks)) {
2744 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2745 struct blk_plug_cb,
2746 list);
2747 list_del(&cb->list);
2748 cb->callback(cb);
2749 }
2750}
2751
49cac01e 2752void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2753{
2754 struct request_queue *q;
2755 unsigned long flags;
2756 struct request *rq;
109b8129 2757 LIST_HEAD(list);
94b5eb28 2758 unsigned int depth;
73c10101
JA
2759
2760 BUG_ON(plug->magic != PLUG_MAGIC);
2761
048c9374 2762 flush_plug_callbacks(plug);
73c10101
JA
2763 if (list_empty(&plug->list))
2764 return;
2765
109b8129
N
2766 list_splice_init(&plug->list, &list);
2767
2768 if (plug->should_sort) {
2769 list_sort(NULL, &list, plug_rq_cmp);
2770 plug->should_sort = 0;
2771 }
73c10101
JA
2772
2773 q = NULL;
94b5eb28 2774 depth = 0;
18811272
JA
2775
2776 /*
2777 * Save and disable interrupts here, to avoid doing it for every
2778 * queue lock we have to take.
2779 */
73c10101 2780 local_irq_save(flags);
109b8129
N
2781 while (!list_empty(&list)) {
2782 rq = list_entry_rq(list.next);
73c10101 2783 list_del_init(&rq->queuelist);
73c10101
JA
2784 BUG_ON(!rq->q);
2785 if (rq->q != q) {
99e22598
JA
2786 /*
2787 * This drops the queue lock
2788 */
2789 if (q)
49cac01e 2790 queue_unplugged(q, depth, from_schedule);
73c10101 2791 q = rq->q;
94b5eb28 2792 depth = 0;
73c10101
JA
2793 spin_lock(q->queue_lock);
2794 }
73c10101
JA
2795 /*
2796 * rq is already accounted, so use raw insert
2797 */
401a18e9
JA
2798 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2799 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2800 else
2801 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2802
2803 depth++;
73c10101
JA
2804 }
2805
99e22598
JA
2806 /*
2807 * This drops the queue lock
2808 */
2809 if (q)
49cac01e 2810 queue_unplugged(q, depth, from_schedule);
73c10101 2811
73c10101
JA
2812 local_irq_restore(flags);
2813}
73c10101
JA
2814
2815void blk_finish_plug(struct blk_plug *plug)
2816{
f6603783 2817 blk_flush_plug_list(plug, false);
73c10101 2818
88b996cd
CH
2819 if (plug == current->plug)
2820 current->plug = NULL;
73c10101 2821}
88b996cd 2822EXPORT_SYMBOL(blk_finish_plug);
73c10101 2823
1da177e4
LT
2824int __init blk_dev_init(void)
2825{
9eb55b03
NK
2826 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2827 sizeof(((struct request *)0)->cmd_flags));
2828
89b90be2
TH
2829 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2830 kblockd_workqueue = alloc_workqueue("kblockd",
2831 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2832 if (!kblockd_workqueue)
2833 panic("Failed to create kblockd\n");
2834
2835 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2836 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2837
8324aa91 2838 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2839 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2840
d38ecf93 2841 return 0;
1da177e4 2842}