]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
s390x/skeys: Fix instance and class size
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
67d95c15 57
b35ba30f 58#include "qemu/range.h"
794e8f30
MT
59#ifndef _WIN32
60#include "qemu/mmap-alloc.h"
61#endif
b35ba30f 62
db7b5426 63//#define DEBUG_SUBPAGE
1196be37 64
e2eef170 65#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
66/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
0d53d9fe 69RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
70
71static MemoryRegion *system_memory;
309cb471 72static MemoryRegion *system_io;
62152b8a 73
f6790af6
AK
74AddressSpace address_space_io;
75AddressSpace address_space_memory;
2673a5da 76
0844e007 77MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 78static MemoryRegion io_mem_unassigned;
0e0df1e2 79
7bd4f430
PB
80/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81#define RAM_PREALLOC (1 << 0)
82
dbcb8981
PB
83/* RAM is mmap-ed with MAP_SHARED */
84#define RAM_SHARED (1 << 1)
85
62be4e3a
MT
86/* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89#define RAM_RESIZEABLE (1 << 2)
90
e2eef170 91#endif
9fa3e853 92
bdc44640 93struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
94/* current CPU in the current thread. It is only valid inside
95 cpu_exec() */
f240eb6f 96__thread CPUState *current_cpu;
2e70f6ef 97/* 0 = Do not count executed instructions.
bf20dc07 98 1 = Precise instruction counting.
2e70f6ef 99 2 = Adaptive rate instruction counting. */
5708fc66 100int use_icount;
6a00d601 101
e2eef170 102#if !defined(CONFIG_USER_ONLY)
4346ae3e 103
1db8abb1
PB
104typedef struct PhysPageEntry PhysPageEntry;
105
106struct PhysPageEntry {
9736e55b 107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 108 uint32_t skip : 6;
9736e55b 109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 110 uint32_t ptr : 26;
1db8abb1
PB
111};
112
8b795765
MT
113#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114
03f49957 115/* Size of the L2 (and L3, etc) page tables. */
57271d63 116#define ADDR_SPACE_BITS 64
03f49957 117
026736ce 118#define P_L2_BITS 9
03f49957
PB
119#define P_L2_SIZE (1 << P_L2_BITS)
120
121#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122
123typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 124
53cb28cb 125typedef struct PhysPageMap {
79e2b9ae
PB
126 struct rcu_head rcu;
127
53cb28cb
MA
128 unsigned sections_nb;
129 unsigned sections_nb_alloc;
130 unsigned nodes_nb;
131 unsigned nodes_nb_alloc;
132 Node *nodes;
133 MemoryRegionSection *sections;
134} PhysPageMap;
135
1db8abb1 136struct AddressSpaceDispatch {
79e2b9ae
PB
137 struct rcu_head rcu;
138
1db8abb1
PB
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
53cb28cb 143 PhysPageMap map;
acc9d80b 144 AddressSpace *as;
1db8abb1
PB
145};
146
90260c6c
JK
147#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148typedef struct subpage_t {
149 MemoryRegion iomem;
acc9d80b 150 AddressSpace *as;
90260c6c
JK
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153} subpage_t;
154
b41aac4f
LPF
155#define PHYS_SECTION_UNASSIGNED 0
156#define PHYS_SECTION_NOTDIRTY 1
157#define PHYS_SECTION_ROM 2
158#define PHYS_SECTION_WATCH 3
5312bd8b 159
e2eef170 160static void io_mem_init(void);
62152b8a 161static void memory_map_init(void);
09daed84 162static void tcg_commit(MemoryListener *listener);
e2eef170 163
1ec9b909 164static MemoryRegion io_mem_watch;
32857f4d
PM
165
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
6658ffb8 180#endif
fd6ce8f6 181
6d9a1304 182#if !defined(CONFIG_USER_ONLY)
d6f2ea22 183
53cb28cb 184static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 185{
53cb28cb
MA
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 190 }
f7bf5461
AK
191}
192
db94604b 193static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
194{
195 unsigned i;
8b795765 196 uint32_t ret;
db94604b
PB
197 PhysPageEntry e;
198 PhysPageEntry *p;
f7bf5461 199
53cb28cb 200 ret = map->nodes_nb++;
db94604b 201 p = map->nodes[ret];
f7bf5461 202 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 203 assert(ret != map->nodes_nb_alloc);
db94604b
PB
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 207 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 208 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 209 }
f7bf5461 210 return ret;
d6f2ea22
AK
211}
212
53cb28cb
MA
213static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 215 int level)
f7bf5461
AK
216{
217 PhysPageEntry *p;
03f49957 218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 219
9736e55b 220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 221 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 222 }
db94604b 223 p = map->nodes[lp->ptr];
03f49957 224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 225
03f49957 226 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 227 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 228 lp->skip = 0;
c19e8800 229 lp->ptr = leaf;
07f07b31
AK
230 *index += step;
231 *nb -= step;
2999097b 232 } else {
53cb28cb 233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
234 }
235 ++lp;
f7bf5461
AK
236 }
237}
238
ac1970fb 239static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 240 hwaddr index, hwaddr nb,
2999097b 241 uint16_t leaf)
f7bf5461 242{
2999097b 243 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 245
53cb28cb 246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
247}
248
b35ba30f
MT
249/* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253{
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300}
301
302static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303{
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
53cb28cb 307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
308 }
309}
310
97115a8d 311static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 312 Node *nodes, MemoryRegionSection *sections)
92e873b9 313{
31ab2b4a 314 PhysPageEntry *p;
97115a8d 315 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 316 int i;
f1f6e3b8 317
9736e55b 318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 319 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 320 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 321 }
9affd6fc 322 p = nodes[lp.ptr];
03f49957 323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 324 }
b35ba30f
MT
325
326 if (sections[lp.ptr].size.hi ||
327 range_covers_byte(sections[lp.ptr].offset_within_address_space,
328 sections[lp.ptr].size.lo, addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
f3705d53
AK
333}
334
e5548617
BS
335bool memory_region_is_unassigned(MemoryRegion *mr)
336{
2a8e7499 337 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 338 && mr != &io_mem_watch;
fd6ce8f6 339}
149f54b5 340
79e2b9ae 341/* Called from RCU critical section */
c7086b4a 342static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
343 hwaddr addr,
344 bool resolve_subpage)
9f029603 345{
90260c6c
JK
346 MemoryRegionSection *section;
347 subpage_t *subpage;
348
53cb28cb 349 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
353 }
354 return section;
9f029603
JK
355}
356
79e2b9ae 357/* Called from RCU critical section */
90260c6c 358static MemoryRegionSection *
c7086b4a 359address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 360 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
361{
362 MemoryRegionSection *section;
965eb2fc 363 MemoryRegion *mr;
a87f3954 364 Int128 diff;
149f54b5 365
c7086b4a 366 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
965eb2fc 373 mr = section->mr;
b242e0e0
PB
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
965eb2fc 386 if (memory_region_is_ram(mr)) {
e4a511f8 387 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
149f54b5
PB
390 return section;
391}
90260c6c 392
41063e1e 393/* Called from RCU critical section */
5c8a00ce
PB
394MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
395 hwaddr *xlat, hwaddr *plen,
396 bool is_write)
90260c6c 397{
30951157
AK
398 IOMMUTLBEntry iotlb;
399 MemoryRegionSection *section;
400 MemoryRegion *mr;
30951157
AK
401
402 for (;;) {
79e2b9ae
PB
403 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
404 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
405 mr = section->mr;
406
407 if (!mr->iommu_ops) {
408 break;
409 }
410
8d7b8cb9 411 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
412 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
413 | (addr & iotlb.addr_mask));
23820dbf 414 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
415 if (!(iotlb.perm & (1 << is_write))) {
416 mr = &io_mem_unassigned;
417 break;
418 }
419
420 as = iotlb.target_as;
421 }
422
fe680d0d 423 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 424 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 425 *plen = MIN(page, *plen);
a87f3954
PB
426 }
427
30951157
AK
428 *xlat = addr;
429 return mr;
90260c6c
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433MemoryRegionSection *
d7898cda 434address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 435 hwaddr *xlat, hwaddr *plen)
90260c6c 436{
30951157 437 MemoryRegionSection *section;
d7898cda
PM
438 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
439
440 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
441
442 assert(!section->mr->iommu_ops);
443 return section;
90260c6c 444}
5b6dd868 445#endif
fd6ce8f6 446
b170fce3 447#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
448
449static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 450{
259186a7 451 CPUState *cpu = opaque;
a513fe19 452
5b6dd868
BS
453 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
454 version_id is increased. */
259186a7 455 cpu->interrupt_request &= ~0x01;
c01a71c1 456 tlb_flush(cpu, 1);
5b6dd868
BS
457
458 return 0;
a513fe19 459}
7501267e 460
6c3bff0e
PD
461static int cpu_common_pre_load(void *opaque)
462{
463 CPUState *cpu = opaque;
464
adee6424 465 cpu->exception_index = -1;
6c3bff0e
PD
466
467 return 0;
468}
469
470static bool cpu_common_exception_index_needed(void *opaque)
471{
472 CPUState *cpu = opaque;
473
adee6424 474 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
475}
476
477static const VMStateDescription vmstate_cpu_common_exception_index = {
478 .name = "cpu_common/exception_index",
479 .version_id = 1,
480 .minimum_version_id = 1,
5cd8cada 481 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
482 .fields = (VMStateField[]) {
483 VMSTATE_INT32(exception_index, CPUState),
484 VMSTATE_END_OF_LIST()
485 }
486};
487
bac05aa9
AS
488static bool cpu_common_crash_occurred_needed(void *opaque)
489{
490 CPUState *cpu = opaque;
491
492 return cpu->crash_occurred;
493}
494
495static const VMStateDescription vmstate_cpu_common_crash_occurred = {
496 .name = "cpu_common/crash_occurred",
497 .version_id = 1,
498 .minimum_version_id = 1,
499 .needed = cpu_common_crash_occurred_needed,
500 .fields = (VMStateField[]) {
501 VMSTATE_BOOL(crash_occurred, CPUState),
502 VMSTATE_END_OF_LIST()
503 }
504};
505
1a1562f5 506const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
507 .name = "cpu_common",
508 .version_id = 1,
509 .minimum_version_id = 1,
6c3bff0e 510 .pre_load = cpu_common_pre_load,
5b6dd868 511 .post_load = cpu_common_post_load,
35d08458 512 .fields = (VMStateField[]) {
259186a7
AF
513 VMSTATE_UINT32(halted, CPUState),
514 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 515 VMSTATE_END_OF_LIST()
6c3bff0e 516 },
5cd8cada
JQ
517 .subsections = (const VMStateDescription*[]) {
518 &vmstate_cpu_common_exception_index,
bac05aa9 519 &vmstate_cpu_common_crash_occurred,
5cd8cada 520 NULL
5b6dd868
BS
521 }
522};
1a1562f5 523
5b6dd868 524#endif
ea041c0e 525
38d8f5c8 526CPUState *qemu_get_cpu(int index)
ea041c0e 527{
bdc44640 528 CPUState *cpu;
ea041c0e 529
bdc44640 530 CPU_FOREACH(cpu) {
55e5c285 531 if (cpu->cpu_index == index) {
bdc44640 532 return cpu;
55e5c285 533 }
ea041c0e 534 }
5b6dd868 535
bdc44640 536 return NULL;
ea041c0e
FB
537}
538
09daed84 539#if !defined(CONFIG_USER_ONLY)
56943e8c 540void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 541{
12ebc9a7
PM
542 CPUAddressSpace *newas;
543
544 /* Target code should have set num_ases before calling us */
545 assert(asidx < cpu->num_ases);
546
56943e8c
PM
547 if (asidx == 0) {
548 /* address space 0 gets the convenience alias */
549 cpu->as = as;
550 }
551
12ebc9a7
PM
552 /* KVM cannot currently support multiple address spaces. */
553 assert(asidx == 0 || !kvm_enabled());
09daed84 554
12ebc9a7
PM
555 if (!cpu->cpu_ases) {
556 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 557 }
32857f4d 558
12ebc9a7
PM
559 newas = &cpu->cpu_ases[asidx];
560 newas->cpu = cpu;
561 newas->as = as;
56943e8c 562 if (tcg_enabled()) {
12ebc9a7
PM
563 newas->tcg_as_listener.commit = tcg_commit;
564 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 565 }
09daed84 566}
651a5bc0
PM
567
568AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
569{
570 /* Return the AddressSpace corresponding to the specified index */
571 return cpu->cpu_ases[asidx].as;
572}
09daed84
EI
573#endif
574
b7bca733
BR
575#ifndef CONFIG_USER_ONLY
576static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
577
578static int cpu_get_free_index(Error **errp)
579{
580 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
581
582 if (cpu >= MAX_CPUMASK_BITS) {
583 error_setg(errp, "Trying to use more CPUs than max of %d",
584 MAX_CPUMASK_BITS);
585 return -1;
586 }
587
588 bitmap_set(cpu_index_map, cpu, 1);
589 return cpu;
590}
591
592void cpu_exec_exit(CPUState *cpu)
593{
594 if (cpu->cpu_index == -1) {
595 /* cpu_index was never allocated by this @cpu or was already freed. */
596 return;
597 }
598
599 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
600 cpu->cpu_index = -1;
601}
602#else
603
604static int cpu_get_free_index(Error **errp)
605{
606 CPUState *some_cpu;
607 int cpu_index = 0;
608
609 CPU_FOREACH(some_cpu) {
610 cpu_index++;
611 }
612 return cpu_index;
613}
614
615void cpu_exec_exit(CPUState *cpu)
616{
617}
618#endif
619
4bad9e39 620void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 621{
b170fce3 622 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 623 int cpu_index;
b7bca733 624 Error *local_err = NULL;
5b6dd868 625
56943e8c 626 cpu->as = NULL;
12ebc9a7 627 cpu->num_ases = 0;
56943e8c 628
291135b5 629#ifndef CONFIG_USER_ONLY
291135b5 630 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
631
632 /* This is a softmmu CPU object, so create a property for it
633 * so users can wire up its memory. (This can't go in qom/cpu.c
634 * because that file is compiled only once for both user-mode
635 * and system builds.) The default if no link is set up is to use
636 * the system address space.
637 */
638 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
639 (Object **)&cpu->memory,
640 qdev_prop_allow_set_link_before_realize,
641 OBJ_PROP_LINK_UNREF_ON_RELEASE,
642 &error_abort);
643 cpu->memory = system_memory;
644 object_ref(OBJECT(cpu->memory));
291135b5
EH
645#endif
646
5b6dd868
BS
647#if defined(CONFIG_USER_ONLY)
648 cpu_list_lock();
649#endif
b7bca733
BR
650 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
651 if (local_err) {
652 error_propagate(errp, local_err);
653#if defined(CONFIG_USER_ONLY)
654 cpu_list_unlock();
655#endif
656 return;
5b6dd868 657 }
bdc44640 658 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
659#if defined(CONFIG_USER_ONLY)
660 cpu_list_unlock();
661#endif
e0d47944
AF
662 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
663 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
664 }
5b6dd868 665#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868 666 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
4bad9e39 667 cpu_save, cpu_load, cpu->env_ptr);
b170fce3 668 assert(cc->vmsd == NULL);
e0d47944 669 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 670#endif
b170fce3
AF
671 if (cc->vmsd != NULL) {
672 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
673 }
ea041c0e
FB
674}
675
94df27fd 676#if defined(CONFIG_USER_ONLY)
00b941e5 677static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
678{
679 tb_invalidate_phys_page_range(pc, pc + 1, 0);
680}
681#else
00b941e5 682static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 683{
5232e4c7
PM
684 MemTxAttrs attrs;
685 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
686 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 687 if (phys != -1) {
5232e4c7 688 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 689 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 690 }
1e7855a5 691}
c27004ec 692#endif
d720b93d 693
c527ee8f 694#if defined(CONFIG_USER_ONLY)
75a34036 695void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
696
697{
698}
699
3ee887e8
PM
700int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
701 int flags)
702{
703 return -ENOSYS;
704}
705
706void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
707{
708}
709
75a34036 710int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
711 int flags, CPUWatchpoint **watchpoint)
712{
713 return -ENOSYS;
714}
715#else
6658ffb8 716/* Add a watchpoint. */
75a34036 717int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 718 int flags, CPUWatchpoint **watchpoint)
6658ffb8 719{
c0ce998e 720 CPUWatchpoint *wp;
6658ffb8 721
05068c0d 722 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 723 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
724 error_report("tried to set invalid watchpoint at %"
725 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
726 return -EINVAL;
727 }
7267c094 728 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
729
730 wp->vaddr = addr;
05068c0d 731 wp->len = len;
a1d1bb31
AL
732 wp->flags = flags;
733
2dc9f411 734 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
735 if (flags & BP_GDB) {
736 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
737 } else {
738 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
739 }
6658ffb8 740
31b030d4 741 tlb_flush_page(cpu, addr);
a1d1bb31
AL
742
743 if (watchpoint)
744 *watchpoint = wp;
745 return 0;
6658ffb8
PB
746}
747
a1d1bb31 748/* Remove a specific watchpoint. */
75a34036 749int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 750 int flags)
6658ffb8 751{
a1d1bb31 752 CPUWatchpoint *wp;
6658ffb8 753
ff4700b0 754 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 755 if (addr == wp->vaddr && len == wp->len
6e140f28 756 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 757 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
758 return 0;
759 }
760 }
a1d1bb31 761 return -ENOENT;
6658ffb8
PB
762}
763
a1d1bb31 764/* Remove a specific watchpoint by reference. */
75a34036 765void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 766{
ff4700b0 767 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 768
31b030d4 769 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 770
7267c094 771 g_free(watchpoint);
a1d1bb31
AL
772}
773
774/* Remove all matching watchpoints. */
75a34036 775void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 776{
c0ce998e 777 CPUWatchpoint *wp, *next;
a1d1bb31 778
ff4700b0 779 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
780 if (wp->flags & mask) {
781 cpu_watchpoint_remove_by_ref(cpu, wp);
782 }
c0ce998e 783 }
7d03f82f 784}
05068c0d
PM
785
786/* Return true if this watchpoint address matches the specified
787 * access (ie the address range covered by the watchpoint overlaps
788 * partially or completely with the address range covered by the
789 * access).
790 */
791static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
792 vaddr addr,
793 vaddr len)
794{
795 /* We know the lengths are non-zero, but a little caution is
796 * required to avoid errors in the case where the range ends
797 * exactly at the top of the address space and so addr + len
798 * wraps round to zero.
799 */
800 vaddr wpend = wp->vaddr + wp->len - 1;
801 vaddr addrend = addr + len - 1;
802
803 return !(addr > wpend || wp->vaddr > addrend);
804}
805
c527ee8f 806#endif
7d03f82f 807
a1d1bb31 808/* Add a breakpoint. */
b3310ab3 809int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 810 CPUBreakpoint **breakpoint)
4c3a88a2 811{
c0ce998e 812 CPUBreakpoint *bp;
3b46e624 813
7267c094 814 bp = g_malloc(sizeof(*bp));
4c3a88a2 815
a1d1bb31
AL
816 bp->pc = pc;
817 bp->flags = flags;
818
2dc9f411 819 /* keep all GDB-injected breakpoints in front */
00b941e5 820 if (flags & BP_GDB) {
f0c3c505 821 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 822 } else {
f0c3c505 823 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 824 }
3b46e624 825
f0c3c505 826 breakpoint_invalidate(cpu, pc);
a1d1bb31 827
00b941e5 828 if (breakpoint) {
a1d1bb31 829 *breakpoint = bp;
00b941e5 830 }
4c3a88a2 831 return 0;
4c3a88a2
FB
832}
833
a1d1bb31 834/* Remove a specific breakpoint. */
b3310ab3 835int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 836{
a1d1bb31
AL
837 CPUBreakpoint *bp;
838
f0c3c505 839 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 840 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 841 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
842 return 0;
843 }
7d03f82f 844 }
a1d1bb31 845 return -ENOENT;
7d03f82f
EI
846}
847
a1d1bb31 848/* Remove a specific breakpoint by reference. */
b3310ab3 849void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 850{
f0c3c505
AF
851 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
852
853 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 854
7267c094 855 g_free(breakpoint);
a1d1bb31
AL
856}
857
858/* Remove all matching breakpoints. */
b3310ab3 859void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 860{
c0ce998e 861 CPUBreakpoint *bp, *next;
a1d1bb31 862
f0c3c505 863 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
864 if (bp->flags & mask) {
865 cpu_breakpoint_remove_by_ref(cpu, bp);
866 }
c0ce998e 867 }
4c3a88a2
FB
868}
869
c33a346e
FB
870/* enable or disable single step mode. EXCP_DEBUG is returned by the
871 CPU loop after each instruction */
3825b28f 872void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 873{
ed2803da
AF
874 if (cpu->singlestep_enabled != enabled) {
875 cpu->singlestep_enabled = enabled;
876 if (kvm_enabled()) {
38e478ec 877 kvm_update_guest_debug(cpu, 0);
ed2803da 878 } else {
ccbb4d44 879 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 880 /* XXX: only flush what is necessary */
bbd77c18 881 tb_flush(cpu);
e22a25c9 882 }
c33a346e 883 }
c33a346e
FB
884}
885
a47dddd7 886void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
887{
888 va_list ap;
493ae1f0 889 va_list ap2;
7501267e
FB
890
891 va_start(ap, fmt);
493ae1f0 892 va_copy(ap2, ap);
7501267e
FB
893 fprintf(stderr, "qemu: fatal: ");
894 vfprintf(stderr, fmt, ap);
895 fprintf(stderr, "\n");
878096ee 896 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 897 if (qemu_log_separate()) {
93fcfe39
AL
898 qemu_log("qemu: fatal: ");
899 qemu_log_vprintf(fmt, ap2);
900 qemu_log("\n");
a0762859 901 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 902 qemu_log_flush();
93fcfe39 903 qemu_log_close();
924edcae 904 }
493ae1f0 905 va_end(ap2);
f9373291 906 va_end(ap);
7615936e 907 replay_finish();
fd052bf6
RV
908#if defined(CONFIG_USER_ONLY)
909 {
910 struct sigaction act;
911 sigfillset(&act.sa_mask);
912 act.sa_handler = SIG_DFL;
913 sigaction(SIGABRT, &act, NULL);
914 }
915#endif
7501267e
FB
916 abort();
917}
918
0124311e 919#if !defined(CONFIG_USER_ONLY)
0dc3f44a 920/* Called from RCU critical section */
041603fe
PB
921static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
922{
923 RAMBlock *block;
924
43771539 925 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 926 if (block && addr - block->offset < block->max_length) {
68851b98 927 return block;
041603fe 928 }
0dc3f44a 929 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 930 if (addr - block->offset < block->max_length) {
041603fe
PB
931 goto found;
932 }
933 }
934
935 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
936 abort();
937
938found:
43771539
PB
939 /* It is safe to write mru_block outside the iothread lock. This
940 * is what happens:
941 *
942 * mru_block = xxx
943 * rcu_read_unlock()
944 * xxx removed from list
945 * rcu_read_lock()
946 * read mru_block
947 * mru_block = NULL;
948 * call_rcu(reclaim_ramblock, xxx);
949 * rcu_read_unlock()
950 *
951 * atomic_rcu_set is not needed here. The block was already published
952 * when it was placed into the list. Here we're just making an extra
953 * copy of the pointer.
954 */
041603fe
PB
955 ram_list.mru_block = block;
956 return block;
957}
958
a2f4d5be 959static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 960{
9a13565d 961 CPUState *cpu;
041603fe 962 ram_addr_t start1;
a2f4d5be
JQ
963 RAMBlock *block;
964 ram_addr_t end;
965
966 end = TARGET_PAGE_ALIGN(start + length);
967 start &= TARGET_PAGE_MASK;
d24981d3 968
0dc3f44a 969 rcu_read_lock();
041603fe
PB
970 block = qemu_get_ram_block(start);
971 assert(block == qemu_get_ram_block(end - 1));
1240be24 972 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
973 CPU_FOREACH(cpu) {
974 tlb_reset_dirty(cpu, start1, length);
975 }
0dc3f44a 976 rcu_read_unlock();
d24981d3
JQ
977}
978
5579c7f3 979/* Note: start and end must be within the same ram block. */
03eebc9e
SH
980bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
981 ram_addr_t length,
982 unsigned client)
1ccde1cb 983{
03eebc9e
SH
984 unsigned long end, page;
985 bool dirty;
986
987 if (length == 0) {
988 return false;
989 }
f23db169 990
03eebc9e
SH
991 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
992 page = start >> TARGET_PAGE_BITS;
993 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
994 page, end - page);
995
996 if (dirty && tcg_enabled()) {
a2f4d5be 997 tlb_reset_dirty_range_all(start, length);
5579c7f3 998 }
03eebc9e
SH
999
1000 return dirty;
1ccde1cb
FB
1001}
1002
79e2b9ae 1003/* Called from RCU critical section */
bb0e627a 1004hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1005 MemoryRegionSection *section,
1006 target_ulong vaddr,
1007 hwaddr paddr, hwaddr xlat,
1008 int prot,
1009 target_ulong *address)
e5548617 1010{
a8170e5e 1011 hwaddr iotlb;
e5548617
BS
1012 CPUWatchpoint *wp;
1013
cc5bea60 1014 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1015 /* Normal RAM. */
1016 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1017 + xlat;
e5548617 1018 if (!section->readonly) {
b41aac4f 1019 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1020 } else {
b41aac4f 1021 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1022 }
1023 } else {
0b8e2c10
PM
1024 AddressSpaceDispatch *d;
1025
1026 d = atomic_rcu_read(&section->address_space->dispatch);
1027 iotlb = section - d->map.sections;
149f54b5 1028 iotlb += xlat;
e5548617
BS
1029 }
1030
1031 /* Make accesses to pages with watchpoints go via the
1032 watchpoint trap routines. */
ff4700b0 1033 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1034 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1035 /* Avoid trapping reads of pages with a write breakpoint. */
1036 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1037 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1038 *address |= TLB_MMIO;
1039 break;
1040 }
1041 }
1042 }
1043
1044 return iotlb;
1045}
9fa3e853
FB
1046#endif /* defined(CONFIG_USER_ONLY) */
1047
e2eef170 1048#if !defined(CONFIG_USER_ONLY)
8da3ff18 1049
c227f099 1050static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1051 uint16_t section);
acc9d80b 1052static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1053
a2b257d6
IM
1054static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1055 qemu_anon_ram_alloc;
91138037
MA
1056
1057/*
1058 * Set a custom physical guest memory alloator.
1059 * Accelerators with unusual needs may need this. Hopefully, we can
1060 * get rid of it eventually.
1061 */
a2b257d6 1062void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1063{
1064 phys_mem_alloc = alloc;
1065}
1066
53cb28cb
MA
1067static uint16_t phys_section_add(PhysPageMap *map,
1068 MemoryRegionSection *section)
5312bd8b 1069{
68f3f65b
PB
1070 /* The physical section number is ORed with a page-aligned
1071 * pointer to produce the iotlb entries. Thus it should
1072 * never overflow into the page-aligned value.
1073 */
53cb28cb 1074 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1075
53cb28cb
MA
1076 if (map->sections_nb == map->sections_nb_alloc) {
1077 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1078 map->sections = g_renew(MemoryRegionSection, map->sections,
1079 map->sections_nb_alloc);
5312bd8b 1080 }
53cb28cb 1081 map->sections[map->sections_nb] = *section;
dfde4e6e 1082 memory_region_ref(section->mr);
53cb28cb 1083 return map->sections_nb++;
5312bd8b
AK
1084}
1085
058bc4b5
PB
1086static void phys_section_destroy(MemoryRegion *mr)
1087{
55b4e80b
DS
1088 bool have_sub_page = mr->subpage;
1089
dfde4e6e
PB
1090 memory_region_unref(mr);
1091
55b4e80b 1092 if (have_sub_page) {
058bc4b5 1093 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1094 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1095 g_free(subpage);
1096 }
1097}
1098
6092666e 1099static void phys_sections_free(PhysPageMap *map)
5312bd8b 1100{
9affd6fc
PB
1101 while (map->sections_nb > 0) {
1102 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1103 phys_section_destroy(section->mr);
1104 }
9affd6fc
PB
1105 g_free(map->sections);
1106 g_free(map->nodes);
5312bd8b
AK
1107}
1108
ac1970fb 1109static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1110{
1111 subpage_t *subpage;
a8170e5e 1112 hwaddr base = section->offset_within_address_space
0f0cb164 1113 & TARGET_PAGE_MASK;
97115a8d 1114 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1115 d->map.nodes, d->map.sections);
0f0cb164
AK
1116 MemoryRegionSection subsection = {
1117 .offset_within_address_space = base,
052e87b0 1118 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1119 };
a8170e5e 1120 hwaddr start, end;
0f0cb164 1121
f3705d53 1122 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1123
f3705d53 1124 if (!(existing->mr->subpage)) {
acc9d80b 1125 subpage = subpage_init(d->as, base);
3be91e86 1126 subsection.address_space = d->as;
0f0cb164 1127 subsection.mr = &subpage->iomem;
ac1970fb 1128 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1129 phys_section_add(&d->map, &subsection));
0f0cb164 1130 } else {
f3705d53 1131 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1132 }
1133 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1134 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1135 subpage_register(subpage, start, end,
1136 phys_section_add(&d->map, section));
0f0cb164
AK
1137}
1138
1139
052e87b0
PB
1140static void register_multipage(AddressSpaceDispatch *d,
1141 MemoryRegionSection *section)
33417e70 1142{
a8170e5e 1143 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1144 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1145 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1146 TARGET_PAGE_BITS));
dd81124b 1147
733d5ef5
PB
1148 assert(num_pages);
1149 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1150}
1151
ac1970fb 1152static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1153{
89ae337a 1154 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1155 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1156 MemoryRegionSection now = *section, remain = *section;
052e87b0 1157 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1158
733d5ef5
PB
1159 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1160 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1161 - now.offset_within_address_space;
1162
052e87b0 1163 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1164 register_subpage(d, &now);
733d5ef5 1165 } else {
052e87b0 1166 now.size = int128_zero();
733d5ef5 1167 }
052e87b0
PB
1168 while (int128_ne(remain.size, now.size)) {
1169 remain.size = int128_sub(remain.size, now.size);
1170 remain.offset_within_address_space += int128_get64(now.size);
1171 remain.offset_within_region += int128_get64(now.size);
69b67646 1172 now = remain;
052e87b0 1173 if (int128_lt(remain.size, page_size)) {
733d5ef5 1174 register_subpage(d, &now);
88266249 1175 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1176 now.size = page_size;
ac1970fb 1177 register_subpage(d, &now);
69b67646 1178 } else {
052e87b0 1179 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1180 register_multipage(d, &now);
69b67646 1181 }
0f0cb164
AK
1182 }
1183}
1184
62a2744c
SY
1185void qemu_flush_coalesced_mmio_buffer(void)
1186{
1187 if (kvm_enabled())
1188 kvm_flush_coalesced_mmio_buffer();
1189}
1190
b2a8658e
UD
1191void qemu_mutex_lock_ramlist(void)
1192{
1193 qemu_mutex_lock(&ram_list.mutex);
1194}
1195
1196void qemu_mutex_unlock_ramlist(void)
1197{
1198 qemu_mutex_unlock(&ram_list.mutex);
1199}
1200
e1e84ba0 1201#ifdef __linux__
c902760f
MT
1202
1203#include <sys/vfs.h>
1204
1205#define HUGETLBFS_MAGIC 0x958458f6
1206
fc7a5800 1207static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1208{
1209 struct statfs fs;
1210 int ret;
1211
1212 do {
9742bf26 1213 ret = statfs(path, &fs);
c902760f
MT
1214 } while (ret != 0 && errno == EINTR);
1215
1216 if (ret != 0) {
fc7a5800
HT
1217 error_setg_errno(errp, errno, "failed to get page size of file %s",
1218 path);
9742bf26 1219 return 0;
c902760f
MT
1220 }
1221
c902760f
MT
1222 return fs.f_bsize;
1223}
1224
04b16653
AW
1225static void *file_ram_alloc(RAMBlock *block,
1226 ram_addr_t memory,
7f56e740
PB
1227 const char *path,
1228 Error **errp)
c902760f 1229{
8d31d6b6 1230 struct stat st;
c902760f 1231 char *filename;
8ca761f6
PF
1232 char *sanitized_name;
1233 char *c;
794e8f30 1234 void *area;
c902760f 1235 int fd;
557529dd 1236 uint64_t hpagesize;
fc7a5800 1237 Error *local_err = NULL;
c902760f 1238
fc7a5800
HT
1239 hpagesize = gethugepagesize(path, &local_err);
1240 if (local_err) {
1241 error_propagate(errp, local_err);
f9a49dfa 1242 goto error;
c902760f 1243 }
a2b257d6 1244 block->mr->align = hpagesize;
c902760f
MT
1245
1246 if (memory < hpagesize) {
557529dd
HT
1247 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1248 "or larger than huge page size 0x%" PRIx64,
1249 memory, hpagesize);
1250 goto error;
c902760f
MT
1251 }
1252
1253 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1254 error_setg(errp,
1255 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1256 goto error;
c902760f
MT
1257 }
1258
8d31d6b6
PF
1259 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1260 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1261 sanitized_name = g_strdup(memory_region_name(block->mr));
1262 for (c = sanitized_name; *c != '\0'; c++) {
1263 if (*c == '/') {
1264 *c = '_';
1265 }
1266 }
8ca761f6 1267
8d31d6b6
PF
1268 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1269 sanitized_name);
1270 g_free(sanitized_name);
1271
1272 fd = mkstemp(filename);
1273 if (fd >= 0) {
1274 unlink(filename);
1275 }
1276 g_free(filename);
1277 } else {
1278 fd = open(path, O_RDWR | O_CREAT, 0644);
1279 }
c902760f 1280
c902760f 1281 if (fd < 0) {
7f56e740
PB
1282 error_setg_errno(errp, errno,
1283 "unable to create backing store for hugepages");
f9a49dfa 1284 goto error;
c902760f 1285 }
c902760f 1286
9284f319 1287 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1288
1289 /*
1290 * ftruncate is not supported by hugetlbfs in older
1291 * hosts, so don't bother bailing out on errors.
1292 * If anything goes wrong with it under other filesystems,
1293 * mmap will fail.
1294 */
7f56e740 1295 if (ftruncate(fd, memory)) {
9742bf26 1296 perror("ftruncate");
7f56e740 1297 }
c902760f 1298
794e8f30 1299 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1300 if (area == MAP_FAILED) {
7f56e740
PB
1301 error_setg_errno(errp, errno,
1302 "unable to map backing store for hugepages");
9742bf26 1303 close(fd);
f9a49dfa 1304 goto error;
c902760f 1305 }
ef36fa14
MT
1306
1307 if (mem_prealloc) {
38183310 1308 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1309 }
1310
04b16653 1311 block->fd = fd;
c902760f 1312 return area;
f9a49dfa
MT
1313
1314error:
f9a49dfa 1315 return NULL;
c902760f
MT
1316}
1317#endif
1318
0dc3f44a 1319/* Called with the ramlist lock held. */
d17b5288 1320static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1321{
1322 RAMBlock *block, *next_block;
3e837b2c 1323 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1324
49cd9ac6
SH
1325 assert(size != 0); /* it would hand out same offset multiple times */
1326
0dc3f44a 1327 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1328 return 0;
0d53d9fe 1329 }
04b16653 1330
0dc3f44a 1331 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1332 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1333
62be4e3a 1334 end = block->offset + block->max_length;
04b16653 1335
0dc3f44a 1336 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1337 if (next_block->offset >= end) {
1338 next = MIN(next, next_block->offset);
1339 }
1340 }
1341 if (next - end >= size && next - end < mingap) {
3e837b2c 1342 offset = end;
04b16653
AW
1343 mingap = next - end;
1344 }
1345 }
3e837b2c
AW
1346
1347 if (offset == RAM_ADDR_MAX) {
1348 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1349 (uint64_t)size);
1350 abort();
1351 }
1352
04b16653
AW
1353 return offset;
1354}
1355
652d7ec2 1356ram_addr_t last_ram_offset(void)
d17b5288
AW
1357{
1358 RAMBlock *block;
1359 ram_addr_t last = 0;
1360
0dc3f44a
MD
1361 rcu_read_lock();
1362 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1363 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1364 }
0dc3f44a 1365 rcu_read_unlock();
d17b5288
AW
1366 return last;
1367}
1368
ddb97f1d
JB
1369static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1370{
1371 int ret;
ddb97f1d
JB
1372
1373 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1374 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1375 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1376 if (ret) {
1377 perror("qemu_madvise");
1378 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1379 "but dump_guest_core=off specified\n");
1380 }
1381 }
1382}
1383
0dc3f44a
MD
1384/* Called within an RCU critical section, or while the ramlist lock
1385 * is held.
1386 */
20cfe881 1387static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1388{
20cfe881 1389 RAMBlock *block;
84b89d78 1390
0dc3f44a 1391 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1392 if (block->offset == addr) {
20cfe881 1393 return block;
c5705a77
AK
1394 }
1395 }
20cfe881
HT
1396
1397 return NULL;
1398}
1399
422148d3
DDAG
1400const char *qemu_ram_get_idstr(RAMBlock *rb)
1401{
1402 return rb->idstr;
1403}
1404
ae3a7047 1405/* Called with iothread lock held. */
20cfe881
HT
1406void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1407{
ae3a7047 1408 RAMBlock *new_block, *block;
20cfe881 1409
0dc3f44a 1410 rcu_read_lock();
ae3a7047 1411 new_block = find_ram_block(addr);
c5705a77
AK
1412 assert(new_block);
1413 assert(!new_block->idstr[0]);
84b89d78 1414
09e5ab63
AL
1415 if (dev) {
1416 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1417 if (id) {
1418 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1419 g_free(id);
84b89d78
CM
1420 }
1421 }
1422 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1423
0dc3f44a 1424 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1425 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1426 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1427 new_block->idstr);
1428 abort();
1429 }
1430 }
0dc3f44a 1431 rcu_read_unlock();
c5705a77
AK
1432}
1433
ae3a7047 1434/* Called with iothread lock held. */
20cfe881
HT
1435void qemu_ram_unset_idstr(ram_addr_t addr)
1436{
ae3a7047 1437 RAMBlock *block;
20cfe881 1438
ae3a7047
MD
1439 /* FIXME: arch_init.c assumes that this is not called throughout
1440 * migration. Ignore the problem since hot-unplug during migration
1441 * does not work anyway.
1442 */
1443
0dc3f44a 1444 rcu_read_lock();
ae3a7047 1445 block = find_ram_block(addr);
20cfe881
HT
1446 if (block) {
1447 memset(block->idstr, 0, sizeof(block->idstr));
1448 }
0dc3f44a 1449 rcu_read_unlock();
20cfe881
HT
1450}
1451
8490fc78
LC
1452static int memory_try_enable_merging(void *addr, size_t len)
1453{
75cc7f01 1454 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1455 /* disabled by the user */
1456 return 0;
1457 }
1458
1459 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1460}
1461
62be4e3a
MT
1462/* Only legal before guest might have detected the memory size: e.g. on
1463 * incoming migration, or right after reset.
1464 *
1465 * As memory core doesn't know how is memory accessed, it is up to
1466 * resize callback to update device state and/or add assertions to detect
1467 * misuse, if necessary.
1468 */
1469int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1470{
1471 RAMBlock *block = find_ram_block(base);
1472
1473 assert(block);
1474
4ed023ce 1475 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1476
62be4e3a
MT
1477 if (block->used_length == newsize) {
1478 return 0;
1479 }
1480
1481 if (!(block->flags & RAM_RESIZEABLE)) {
1482 error_setg_errno(errp, EINVAL,
1483 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1484 " in != 0x" RAM_ADDR_FMT, block->idstr,
1485 newsize, block->used_length);
1486 return -EINVAL;
1487 }
1488
1489 if (block->max_length < newsize) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length too large: %s: 0x" RAM_ADDR_FMT
1492 " > 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->max_length);
1494 return -EINVAL;
1495 }
1496
1497 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1498 block->used_length = newsize;
58d2707e
PB
1499 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1500 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1501 memory_region_set_size(block->mr, newsize);
1502 if (block->resized) {
1503 block->resized(block->idstr, newsize, block->host);
1504 }
1505 return 0;
1506}
1507
ef701d7b 1508static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1509{
e1c57ab8 1510 RAMBlock *block;
0d53d9fe 1511 RAMBlock *last_block = NULL;
2152f5ca 1512 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1513 Error *err = NULL;
2152f5ca
JQ
1514
1515 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1516
b2a8658e 1517 qemu_mutex_lock_ramlist();
9b8424d5 1518 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1519
1520 if (!new_block->host) {
1521 if (xen_enabled()) {
9b8424d5 1522 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1523 new_block->mr, &err);
1524 if (err) {
1525 error_propagate(errp, err);
1526 qemu_mutex_unlock_ramlist();
1527 return -1;
1528 }
e1c57ab8 1529 } else {
9b8424d5 1530 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1531 &new_block->mr->align);
39228250 1532 if (!new_block->host) {
ef701d7b
HT
1533 error_setg_errno(errp, errno,
1534 "cannot set up guest memory '%s'",
1535 memory_region_name(new_block->mr));
1536 qemu_mutex_unlock_ramlist();
1537 return -1;
39228250 1538 }
9b8424d5 1539 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1540 }
c902760f 1541 }
94a6b54f 1542
dd631697
LZ
1543 new_ram_size = MAX(old_ram_size,
1544 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1545 if (new_ram_size > old_ram_size) {
1546 migration_bitmap_extend(old_ram_size, new_ram_size);
1547 }
0d53d9fe
MD
1548 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1549 * QLIST (which has an RCU-friendly variant) does not have insertion at
1550 * tail, so save the last element in last_block.
1551 */
0dc3f44a 1552 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1553 last_block = block;
9b8424d5 1554 if (block->max_length < new_block->max_length) {
abb26d63
PB
1555 break;
1556 }
1557 }
1558 if (block) {
0dc3f44a 1559 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1560 } else if (last_block) {
0dc3f44a 1561 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1562 } else { /* list is empty */
0dc3f44a 1563 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1564 }
0d6d3c87 1565 ram_list.mru_block = NULL;
94a6b54f 1566
0dc3f44a
MD
1567 /* Write list before version */
1568 smp_wmb();
f798b07f 1569 ram_list.version++;
b2a8658e 1570 qemu_mutex_unlock_ramlist();
f798b07f 1571
2152f5ca
JQ
1572 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1573
1574 if (new_ram_size > old_ram_size) {
1ab4c8ce 1575 int i;
ae3a7047
MD
1576
1577 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1578 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1579 ram_list.dirty_memory[i] =
1580 bitmap_zero_extend(ram_list.dirty_memory[i],
1581 old_ram_size, new_ram_size);
1582 }
2152f5ca 1583 }
9b8424d5 1584 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1585 new_block->used_length,
1586 DIRTY_CLIENTS_ALL);
94a6b54f 1587
a904c911
PB
1588 if (new_block->host) {
1589 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1590 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1591 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1592 if (kvm_enabled()) {
1593 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1594 }
e1c57ab8 1595 }
6f0437e8 1596
94a6b54f
PB
1597 return new_block->offset;
1598}
e9a1ab19 1599
0b183fc8 1600#ifdef __linux__
e1c57ab8 1601ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1602 bool share, const char *mem_path,
7f56e740 1603 Error **errp)
e1c57ab8
PB
1604{
1605 RAMBlock *new_block;
ef701d7b
HT
1606 ram_addr_t addr;
1607 Error *local_err = NULL;
e1c57ab8
PB
1608
1609 if (xen_enabled()) {
7f56e740
PB
1610 error_setg(errp, "-mem-path not supported with Xen");
1611 return -1;
e1c57ab8
PB
1612 }
1613
1614 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1615 /*
1616 * file_ram_alloc() needs to allocate just like
1617 * phys_mem_alloc, but we haven't bothered to provide
1618 * a hook there.
1619 */
7f56e740
PB
1620 error_setg(errp,
1621 "-mem-path not supported with this accelerator");
1622 return -1;
e1c57ab8
PB
1623 }
1624
4ed023ce 1625 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1626 new_block = g_malloc0(sizeof(*new_block));
1627 new_block->mr = mr;
9b8424d5
MT
1628 new_block->used_length = size;
1629 new_block->max_length = size;
dbcb8981 1630 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1631 new_block->host = file_ram_alloc(new_block, size,
1632 mem_path, errp);
1633 if (!new_block->host) {
1634 g_free(new_block);
1635 return -1;
1636 }
1637
ef701d7b
HT
1638 addr = ram_block_add(new_block, &local_err);
1639 if (local_err) {
1640 g_free(new_block);
1641 error_propagate(errp, local_err);
1642 return -1;
1643 }
1644 return addr;
e1c57ab8 1645}
0b183fc8 1646#endif
e1c57ab8 1647
62be4e3a
MT
1648static
1649ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1650 void (*resized)(const char*,
1651 uint64_t length,
1652 void *host),
1653 void *host, bool resizeable,
ef701d7b 1654 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1655{
1656 RAMBlock *new_block;
ef701d7b
HT
1657 ram_addr_t addr;
1658 Error *local_err = NULL;
e1c57ab8 1659
4ed023ce
DDAG
1660 size = HOST_PAGE_ALIGN(size);
1661 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1662 new_block = g_malloc0(sizeof(*new_block));
1663 new_block->mr = mr;
62be4e3a 1664 new_block->resized = resized;
9b8424d5
MT
1665 new_block->used_length = size;
1666 new_block->max_length = max_size;
62be4e3a 1667 assert(max_size >= size);
e1c57ab8
PB
1668 new_block->fd = -1;
1669 new_block->host = host;
1670 if (host) {
7bd4f430 1671 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1672 }
62be4e3a
MT
1673 if (resizeable) {
1674 new_block->flags |= RAM_RESIZEABLE;
1675 }
ef701d7b
HT
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1681 }
1682 return addr;
e1c57ab8
PB
1683}
1684
62be4e3a
MT
1685ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1686 MemoryRegion *mr, Error **errp)
1687{
1688 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1689}
1690
ef701d7b 1691ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1692{
62be4e3a
MT
1693 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1694}
1695
1696ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1697 void (*resized)(const char*,
1698 uint64_t length,
1699 void *host),
1700 MemoryRegion *mr, Error **errp)
1701{
1702 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1703}
1704
43771539
PB
1705static void reclaim_ramblock(RAMBlock *block)
1706{
1707 if (block->flags & RAM_PREALLOC) {
1708 ;
1709 } else if (xen_enabled()) {
1710 xen_invalidate_map_cache_entry(block->host);
1711#ifndef _WIN32
1712 } else if (block->fd >= 0) {
2f3a2bb1 1713 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1714 close(block->fd);
1715#endif
1716 } else {
1717 qemu_anon_ram_free(block->host, block->max_length);
1718 }
1719 g_free(block);
1720}
1721
c227f099 1722void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1723{
04b16653
AW
1724 RAMBlock *block;
1725
b2a8658e 1726 qemu_mutex_lock_ramlist();
0dc3f44a 1727 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1728 if (addr == block->offset) {
0dc3f44a 1729 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1730 ram_list.mru_block = NULL;
0dc3f44a
MD
1731 /* Write list before version */
1732 smp_wmb();
f798b07f 1733 ram_list.version++;
43771539 1734 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1735 break;
04b16653
AW
1736 }
1737 }
b2a8658e 1738 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1739}
1740
cd19cfa2
HY
1741#ifndef _WIN32
1742void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1743{
1744 RAMBlock *block;
1745 ram_addr_t offset;
1746 int flags;
1747 void *area, *vaddr;
1748
0dc3f44a 1749 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1750 offset = addr - block->offset;
9b8424d5 1751 if (offset < block->max_length) {
1240be24 1752 vaddr = ramblock_ptr(block, offset);
7bd4f430 1753 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1754 ;
dfeaf2ab
MA
1755 } else if (xen_enabled()) {
1756 abort();
cd19cfa2
HY
1757 } else {
1758 flags = MAP_FIXED;
3435f395 1759 if (block->fd >= 0) {
dbcb8981
PB
1760 flags |= (block->flags & RAM_SHARED ?
1761 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1762 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1763 flags, block->fd, offset);
cd19cfa2 1764 } else {
2eb9fbaa
MA
1765 /*
1766 * Remap needs to match alloc. Accelerators that
1767 * set phys_mem_alloc never remap. If they did,
1768 * we'd need a remap hook here.
1769 */
1770 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1771
cd19cfa2
HY
1772 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1773 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1774 flags, -1, 0);
cd19cfa2
HY
1775 }
1776 if (area != vaddr) {
f15fbc4b
AP
1777 fprintf(stderr, "Could not remap addr: "
1778 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1779 length, addr);
1780 exit(1);
1781 }
8490fc78 1782 memory_try_enable_merging(vaddr, length);
ddb97f1d 1783 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1784 }
cd19cfa2
HY
1785 }
1786 }
1787}
1788#endif /* !_WIN32 */
1789
a35ba7be
PB
1790int qemu_get_ram_fd(ram_addr_t addr)
1791{
ae3a7047
MD
1792 RAMBlock *block;
1793 int fd;
a35ba7be 1794
0dc3f44a 1795 rcu_read_lock();
ae3a7047
MD
1796 block = qemu_get_ram_block(addr);
1797 fd = block->fd;
0dc3f44a 1798 rcu_read_unlock();
ae3a7047 1799 return fd;
a35ba7be
PB
1800}
1801
56a571d9
TM
1802void qemu_set_ram_fd(ram_addr_t addr, int fd)
1803{
1804 RAMBlock *block;
1805
1806 rcu_read_lock();
1807 block = qemu_get_ram_block(addr);
1808 block->fd = fd;
1809 rcu_read_unlock();
1810}
1811
3fd74b84
DM
1812void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1813{
ae3a7047
MD
1814 RAMBlock *block;
1815 void *ptr;
3fd74b84 1816
0dc3f44a 1817 rcu_read_lock();
ae3a7047
MD
1818 block = qemu_get_ram_block(addr);
1819 ptr = ramblock_ptr(block, 0);
0dc3f44a 1820 rcu_read_unlock();
ae3a7047 1821 return ptr;
3fd74b84
DM
1822}
1823
1b5ec234 1824/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1825 * This should not be used for general purpose DMA. Use address_space_map
1826 * or address_space_rw instead. For local memory (e.g. video ram) that the
1827 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1828 *
49b24afc 1829 * Called within RCU critical section.
1b5ec234
PB
1830 */
1831void *qemu_get_ram_ptr(ram_addr_t addr)
1832{
49b24afc 1833 RAMBlock *block = qemu_get_ram_block(addr);
ae3a7047
MD
1834
1835 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1836 /* We need to check if the requested address is in the RAM
1837 * because we don't want to map the entire memory in QEMU.
1838 * In that case just map until the end of the page.
1839 */
1840 if (block->offset == 0) {
49b24afc 1841 return xen_map_cache(addr, 0, 0);
0d6d3c87 1842 }
ae3a7047
MD
1843
1844 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1845 }
49b24afc 1846 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1847}
1848
38bee5dc 1849/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1850 * but takes a size argument.
0dc3f44a 1851 *
e81bcda5 1852 * Called within RCU critical section.
ae3a7047 1853 */
cb85f7ab 1854static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1855{
e81bcda5
PB
1856 RAMBlock *block;
1857 ram_addr_t offset_inside_block;
8ab934f9
SS
1858 if (*size == 0) {
1859 return NULL;
1860 }
e81bcda5
PB
1861
1862 block = qemu_get_ram_block(addr);
1863 offset_inside_block = addr - block->offset;
1864 *size = MIN(*size, block->max_length - offset_inside_block);
1865
1866 if (xen_enabled() && block->host == NULL) {
1867 /* We need to check if the requested address is in the RAM
1868 * because we don't want to map the entire memory in QEMU.
1869 * In that case just map the requested area.
1870 */
1871 if (block->offset == 0) {
1872 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1873 }
1874
e81bcda5 1875 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1876 }
e81bcda5
PB
1877
1878 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1879}
1880
422148d3
DDAG
1881/*
1882 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1883 * in that RAMBlock.
1884 *
1885 * ptr: Host pointer to look up
1886 * round_offset: If true round the result offset down to a page boundary
1887 * *ram_addr: set to result ram_addr
1888 * *offset: set to result offset within the RAMBlock
1889 *
1890 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1891 *
1892 * By the time this function returns, the returned pointer is not protected
1893 * by RCU anymore. If the caller is not within an RCU critical section and
1894 * does not hold the iothread lock, it must have other means of protecting the
1895 * pointer, such as a reference to the region that includes the incoming
1896 * ram_addr_t.
1897 */
422148d3
DDAG
1898RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1899 ram_addr_t *ram_addr,
1900 ram_addr_t *offset)
5579c7f3 1901{
94a6b54f
PB
1902 RAMBlock *block;
1903 uint8_t *host = ptr;
1904
868bb33f 1905 if (xen_enabled()) {
0dc3f44a 1906 rcu_read_lock();
e41d7c69 1907 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1908 block = qemu_get_ram_block(*ram_addr);
1909 if (block) {
1910 *offset = (host - block->host);
1911 }
0dc3f44a 1912 rcu_read_unlock();
422148d3 1913 return block;
712c2b41
SS
1914 }
1915
0dc3f44a
MD
1916 rcu_read_lock();
1917 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1918 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1919 goto found;
1920 }
1921
0dc3f44a 1922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1923 /* This case append when the block is not mapped. */
1924 if (block->host == NULL) {
1925 continue;
1926 }
9b8424d5 1927 if (host - block->host < block->max_length) {
23887b79 1928 goto found;
f471a17e 1929 }
94a6b54f 1930 }
432d268c 1931
0dc3f44a 1932 rcu_read_unlock();
1b5ec234 1933 return NULL;
23887b79
PB
1934
1935found:
422148d3
DDAG
1936 *offset = (host - block->host);
1937 if (round_offset) {
1938 *offset &= TARGET_PAGE_MASK;
1939 }
1940 *ram_addr = block->offset + *offset;
0dc3f44a 1941 rcu_read_unlock();
422148d3
DDAG
1942 return block;
1943}
1944
e3dd7493
DDAG
1945/*
1946 * Finds the named RAMBlock
1947 *
1948 * name: The name of RAMBlock to find
1949 *
1950 * Returns: RAMBlock (or NULL if not found)
1951 */
1952RAMBlock *qemu_ram_block_by_name(const char *name)
1953{
1954 RAMBlock *block;
1955
1956 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1957 if (!strcmp(name, block->idstr)) {
1958 return block;
1959 }
1960 }
1961
1962 return NULL;
1963}
1964
422148d3
DDAG
1965/* Some of the softmmu routines need to translate from a host pointer
1966 (typically a TLB entry) back to a ram offset. */
1967MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1968{
1969 RAMBlock *block;
1970 ram_addr_t offset; /* Not used */
1971
1972 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
1973
1974 if (!block) {
1975 return NULL;
1976 }
1977
1978 return block->mr;
e890261f 1979}
f471a17e 1980
49b24afc 1981/* Called within RCU critical section. */
a8170e5e 1982static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1983 uint64_t val, unsigned size)
9fa3e853 1984{
52159192 1985 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1986 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1987 }
0e0df1e2
AK
1988 switch (size) {
1989 case 1:
1990 stb_p(qemu_get_ram_ptr(ram_addr), val);
1991 break;
1992 case 2:
1993 stw_p(qemu_get_ram_ptr(ram_addr), val);
1994 break;
1995 case 4:
1996 stl_p(qemu_get_ram_ptr(ram_addr), val);
1997 break;
1998 default:
1999 abort();
3a7d929e 2000 }
58d2707e
PB
2001 /* Set both VGA and migration bits for simplicity and to remove
2002 * the notdirty callback faster.
2003 */
2004 cpu_physical_memory_set_dirty_range(ram_addr, size,
2005 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2006 /* we remove the notdirty callback only if the code has been
2007 flushed */
a2cd8c85 2008 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2009 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2010 }
9fa3e853
FB
2011}
2012
b018ddf6
PB
2013static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2014 unsigned size, bool is_write)
2015{
2016 return is_write;
2017}
2018
0e0df1e2 2019static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2020 .write = notdirty_mem_write,
b018ddf6 2021 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2022 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2023};
2024
0f459d16 2025/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2026static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2027{
93afeade
AF
2028 CPUState *cpu = current_cpu;
2029 CPUArchState *env = cpu->env_ptr;
06d55cc1 2030 target_ulong pc, cs_base;
0f459d16 2031 target_ulong vaddr;
a1d1bb31 2032 CPUWatchpoint *wp;
06d55cc1 2033 int cpu_flags;
0f459d16 2034
ff4700b0 2035 if (cpu->watchpoint_hit) {
06d55cc1
AL
2036 /* We re-entered the check after replacing the TB. Now raise
2037 * the debug interrupt so that is will trigger after the
2038 * current instruction. */
93afeade 2039 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2040 return;
2041 }
93afeade 2042 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2043 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2044 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2045 && (wp->flags & flags)) {
08225676
PM
2046 if (flags == BP_MEM_READ) {
2047 wp->flags |= BP_WATCHPOINT_HIT_READ;
2048 } else {
2049 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2050 }
2051 wp->hitaddr = vaddr;
66b9b43c 2052 wp->hitattrs = attrs;
ff4700b0
AF
2053 if (!cpu->watchpoint_hit) {
2054 cpu->watchpoint_hit = wp;
239c51a5 2055 tb_check_watchpoint(cpu);
6e140f28 2056 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2057 cpu->exception_index = EXCP_DEBUG;
5638d180 2058 cpu_loop_exit(cpu);
6e140f28
AL
2059 } else {
2060 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2061 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2062 cpu_resume_from_signal(cpu, NULL);
6e140f28 2063 }
06d55cc1 2064 }
6e140f28
AL
2065 } else {
2066 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2067 }
2068 }
2069}
2070
6658ffb8
PB
2071/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2072 so these check for a hit then pass through to the normal out-of-line
2073 phys routines. */
66b9b43c
PM
2074static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2075 unsigned size, MemTxAttrs attrs)
6658ffb8 2076{
66b9b43c
PM
2077 MemTxResult res;
2078 uint64_t data;
79ed0416
PM
2079 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2080 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2081
2082 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2083 switch (size) {
66b9b43c 2084 case 1:
79ed0416 2085 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2086 break;
2087 case 2:
79ed0416 2088 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2089 break;
2090 case 4:
79ed0416 2091 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2092 break;
1ec9b909
AK
2093 default: abort();
2094 }
66b9b43c
PM
2095 *pdata = data;
2096 return res;
6658ffb8
PB
2097}
2098
66b9b43c
PM
2099static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2100 uint64_t val, unsigned size,
2101 MemTxAttrs attrs)
6658ffb8 2102{
66b9b43c 2103 MemTxResult res;
79ed0416
PM
2104 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2105 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2106
2107 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2108 switch (size) {
67364150 2109 case 1:
79ed0416 2110 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2111 break;
2112 case 2:
79ed0416 2113 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2114 break;
2115 case 4:
79ed0416 2116 address_space_stl(as, addr, val, attrs, &res);
67364150 2117 break;
1ec9b909
AK
2118 default: abort();
2119 }
66b9b43c 2120 return res;
6658ffb8
PB
2121}
2122
1ec9b909 2123static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2124 .read_with_attrs = watch_mem_read,
2125 .write_with_attrs = watch_mem_write,
1ec9b909 2126 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2127};
6658ffb8 2128
f25a49e0
PM
2129static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2130 unsigned len, MemTxAttrs attrs)
db7b5426 2131{
acc9d80b 2132 subpage_t *subpage = opaque;
ff6cff75 2133 uint8_t buf[8];
5c9eb028 2134 MemTxResult res;
791af8c8 2135
db7b5426 2136#if defined(DEBUG_SUBPAGE)
016e9d62 2137 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2138 subpage, len, addr);
db7b5426 2139#endif
5c9eb028
PM
2140 res = address_space_read(subpage->as, addr + subpage->base,
2141 attrs, buf, len);
2142 if (res) {
2143 return res;
f25a49e0 2144 }
acc9d80b
JK
2145 switch (len) {
2146 case 1:
f25a49e0
PM
2147 *data = ldub_p(buf);
2148 return MEMTX_OK;
acc9d80b 2149 case 2:
f25a49e0
PM
2150 *data = lduw_p(buf);
2151 return MEMTX_OK;
acc9d80b 2152 case 4:
f25a49e0
PM
2153 *data = ldl_p(buf);
2154 return MEMTX_OK;
ff6cff75 2155 case 8:
f25a49e0
PM
2156 *data = ldq_p(buf);
2157 return MEMTX_OK;
acc9d80b
JK
2158 default:
2159 abort();
2160 }
db7b5426
BS
2161}
2162
f25a49e0
PM
2163static MemTxResult subpage_write(void *opaque, hwaddr addr,
2164 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2165{
acc9d80b 2166 subpage_t *subpage = opaque;
ff6cff75 2167 uint8_t buf[8];
acc9d80b 2168
db7b5426 2169#if defined(DEBUG_SUBPAGE)
016e9d62 2170 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2171 " value %"PRIx64"\n",
2172 __func__, subpage, len, addr, value);
db7b5426 2173#endif
acc9d80b
JK
2174 switch (len) {
2175 case 1:
2176 stb_p(buf, value);
2177 break;
2178 case 2:
2179 stw_p(buf, value);
2180 break;
2181 case 4:
2182 stl_p(buf, value);
2183 break;
ff6cff75
PB
2184 case 8:
2185 stq_p(buf, value);
2186 break;
acc9d80b
JK
2187 default:
2188 abort();
2189 }
5c9eb028
PM
2190 return address_space_write(subpage->as, addr + subpage->base,
2191 attrs, buf, len);
db7b5426
BS
2192}
2193
c353e4cc 2194static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2195 unsigned len, bool is_write)
c353e4cc 2196{
acc9d80b 2197 subpage_t *subpage = opaque;
c353e4cc 2198#if defined(DEBUG_SUBPAGE)
016e9d62 2199 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2200 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2201#endif
2202
acc9d80b 2203 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2204 len, is_write);
c353e4cc
PB
2205}
2206
70c68e44 2207static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2208 .read_with_attrs = subpage_read,
2209 .write_with_attrs = subpage_write,
ff6cff75
PB
2210 .impl.min_access_size = 1,
2211 .impl.max_access_size = 8,
2212 .valid.min_access_size = 1,
2213 .valid.max_access_size = 8,
c353e4cc 2214 .valid.accepts = subpage_accepts,
70c68e44 2215 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2216};
2217
c227f099 2218static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2219 uint16_t section)
db7b5426
BS
2220{
2221 int idx, eidx;
2222
2223 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2224 return -1;
2225 idx = SUBPAGE_IDX(start);
2226 eidx = SUBPAGE_IDX(end);
2227#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2228 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2229 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2230#endif
db7b5426 2231 for (; idx <= eidx; idx++) {
5312bd8b 2232 mmio->sub_section[idx] = section;
db7b5426
BS
2233 }
2234
2235 return 0;
2236}
2237
acc9d80b 2238static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2239{
c227f099 2240 subpage_t *mmio;
db7b5426 2241
7267c094 2242 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2243
acc9d80b 2244 mmio->as = as;
1eec614b 2245 mmio->base = base;
2c9b15ca 2246 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2247 NULL, TARGET_PAGE_SIZE);
b3b00c78 2248 mmio->iomem.subpage = true;
db7b5426 2249#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2250 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2251 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2252#endif
b41aac4f 2253 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2254
2255 return mmio;
2256}
2257
a656e22f
PC
2258static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2259 MemoryRegion *mr)
5312bd8b 2260{
a656e22f 2261 assert(as);
5312bd8b 2262 MemoryRegionSection section = {
a656e22f 2263 .address_space = as,
5312bd8b
AK
2264 .mr = mr,
2265 .offset_within_address_space = 0,
2266 .offset_within_region = 0,
052e87b0 2267 .size = int128_2_64(),
5312bd8b
AK
2268 };
2269
53cb28cb 2270 return phys_section_add(map, &section);
5312bd8b
AK
2271}
2272
a54c87b6 2273MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2274{
a54c87b6
PM
2275 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2276 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2277 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2278 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2279
2280 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2281}
2282
e9179ce1
AK
2283static void io_mem_init(void)
2284{
1f6245e5 2285 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2286 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2287 NULL, UINT64_MAX);
2c9b15ca 2288 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2289 NULL, UINT64_MAX);
2c9b15ca 2290 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2291 NULL, UINT64_MAX);
e9179ce1
AK
2292}
2293
ac1970fb 2294static void mem_begin(MemoryListener *listener)
00752703
PB
2295{
2296 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2297 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2298 uint16_t n;
2299
a656e22f 2300 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2301 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2302 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2303 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2304 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2305 assert(n == PHYS_SECTION_ROM);
a656e22f 2306 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2307 assert(n == PHYS_SECTION_WATCH);
00752703 2308
9736e55b 2309 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2310 d->as = as;
2311 as->next_dispatch = d;
2312}
2313
79e2b9ae
PB
2314static void address_space_dispatch_free(AddressSpaceDispatch *d)
2315{
2316 phys_sections_free(&d->map);
2317 g_free(d);
2318}
2319
00752703 2320static void mem_commit(MemoryListener *listener)
ac1970fb 2321{
89ae337a 2322 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2323 AddressSpaceDispatch *cur = as->dispatch;
2324 AddressSpaceDispatch *next = as->next_dispatch;
2325
53cb28cb 2326 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2327
79e2b9ae 2328 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2329 if (cur) {
79e2b9ae 2330 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2331 }
9affd6fc
PB
2332}
2333
1d71148e 2334static void tcg_commit(MemoryListener *listener)
50c1e149 2335{
32857f4d
PM
2336 CPUAddressSpace *cpuas;
2337 AddressSpaceDispatch *d;
117712c3
AK
2338
2339 /* since each CPU stores ram addresses in its TLB cache, we must
2340 reset the modified entries */
32857f4d
PM
2341 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2342 cpu_reloading_memory_map();
2343 /* The CPU and TLB are protected by the iothread lock.
2344 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2345 * may have split the RCU critical section.
2346 */
2347 d = atomic_rcu_read(&cpuas->as->dispatch);
2348 cpuas->memory_dispatch = d;
2349 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2350}
2351
ac1970fb
AK
2352void address_space_init_dispatch(AddressSpace *as)
2353{
00752703 2354 as->dispatch = NULL;
89ae337a 2355 as->dispatch_listener = (MemoryListener) {
ac1970fb 2356 .begin = mem_begin,
00752703 2357 .commit = mem_commit,
ac1970fb
AK
2358 .region_add = mem_add,
2359 .region_nop = mem_add,
2360 .priority = 0,
2361 };
89ae337a 2362 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2363}
2364
6e48e8f9
PB
2365void address_space_unregister(AddressSpace *as)
2366{
2367 memory_listener_unregister(&as->dispatch_listener);
2368}
2369
83f3c251
AK
2370void address_space_destroy_dispatch(AddressSpace *as)
2371{
2372 AddressSpaceDispatch *d = as->dispatch;
2373
79e2b9ae
PB
2374 atomic_rcu_set(&as->dispatch, NULL);
2375 if (d) {
2376 call_rcu(d, address_space_dispatch_free, rcu);
2377 }
83f3c251
AK
2378}
2379
62152b8a
AK
2380static void memory_map_init(void)
2381{
7267c094 2382 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2383
57271d63 2384 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2385 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2386
7267c094 2387 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2388 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2389 65536);
7dca8043 2390 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2391}
2392
2393MemoryRegion *get_system_memory(void)
2394{
2395 return system_memory;
2396}
2397
309cb471
AK
2398MemoryRegion *get_system_io(void)
2399{
2400 return system_io;
2401}
2402
e2eef170
PB
2403#endif /* !defined(CONFIG_USER_ONLY) */
2404
13eb76e0
FB
2405/* physical memory access (slow version, mainly for debug) */
2406#if defined(CONFIG_USER_ONLY)
f17ec444 2407int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2408 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2409{
2410 int l, flags;
2411 target_ulong page;
53a5960a 2412 void * p;
13eb76e0
FB
2413
2414 while (len > 0) {
2415 page = addr & TARGET_PAGE_MASK;
2416 l = (page + TARGET_PAGE_SIZE) - addr;
2417 if (l > len)
2418 l = len;
2419 flags = page_get_flags(page);
2420 if (!(flags & PAGE_VALID))
a68fe89c 2421 return -1;
13eb76e0
FB
2422 if (is_write) {
2423 if (!(flags & PAGE_WRITE))
a68fe89c 2424 return -1;
579a97f7 2425 /* XXX: this code should not depend on lock_user */
72fb7daa 2426 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2427 return -1;
72fb7daa
AJ
2428 memcpy(p, buf, l);
2429 unlock_user(p, addr, l);
13eb76e0
FB
2430 } else {
2431 if (!(flags & PAGE_READ))
a68fe89c 2432 return -1;
579a97f7 2433 /* XXX: this code should not depend on lock_user */
72fb7daa 2434 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2435 return -1;
72fb7daa 2436 memcpy(buf, p, l);
5b257578 2437 unlock_user(p, addr, 0);
13eb76e0
FB
2438 }
2439 len -= l;
2440 buf += l;
2441 addr += l;
2442 }
a68fe89c 2443 return 0;
13eb76e0 2444}
8df1cd07 2445
13eb76e0 2446#else
51d7a9eb 2447
845b6214 2448static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2449 hwaddr length)
51d7a9eb 2450{
e87f7778
PB
2451 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2452 /* No early return if dirty_log_mask is or becomes 0, because
2453 * cpu_physical_memory_set_dirty_range will still call
2454 * xen_modified_memory.
2455 */
2456 if (dirty_log_mask) {
2457 dirty_log_mask =
2458 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2459 }
2460 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2461 tb_invalidate_phys_range(addr, addr + length);
2462 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2463 }
e87f7778 2464 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2465}
2466
23326164 2467static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2468{
e1622f4b 2469 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2470
2471 /* Regions are assumed to support 1-4 byte accesses unless
2472 otherwise specified. */
23326164
RH
2473 if (access_size_max == 0) {
2474 access_size_max = 4;
2475 }
2476
2477 /* Bound the maximum access by the alignment of the address. */
2478 if (!mr->ops->impl.unaligned) {
2479 unsigned align_size_max = addr & -addr;
2480 if (align_size_max != 0 && align_size_max < access_size_max) {
2481 access_size_max = align_size_max;
2482 }
82f2563f 2483 }
23326164
RH
2484
2485 /* Don't attempt accesses larger than the maximum. */
2486 if (l > access_size_max) {
2487 l = access_size_max;
82f2563f 2488 }
6554f5c0 2489 l = pow2floor(l);
23326164
RH
2490
2491 return l;
82f2563f
PB
2492}
2493
4840f10e 2494static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2495{
4840f10e
JK
2496 bool unlocked = !qemu_mutex_iothread_locked();
2497 bool release_lock = false;
2498
2499 if (unlocked && mr->global_locking) {
2500 qemu_mutex_lock_iothread();
2501 unlocked = false;
2502 release_lock = true;
2503 }
125b3806 2504 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2505 if (unlocked) {
2506 qemu_mutex_lock_iothread();
2507 }
125b3806 2508 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2509 if (unlocked) {
2510 qemu_mutex_unlock_iothread();
2511 }
125b3806 2512 }
4840f10e
JK
2513
2514 return release_lock;
125b3806
PB
2515}
2516
a203ac70
PB
2517/* Called within RCU critical section. */
2518static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2519 MemTxAttrs attrs,
2520 const uint8_t *buf,
2521 int len, hwaddr addr1,
2522 hwaddr l, MemoryRegion *mr)
13eb76e0 2523{
13eb76e0 2524 uint8_t *ptr;
791af8c8 2525 uint64_t val;
3b643495 2526 MemTxResult result = MEMTX_OK;
4840f10e 2527 bool release_lock = false;
3b46e624 2528
a203ac70 2529 for (;;) {
eb7eeb88
PB
2530 if (!memory_access_is_direct(mr, true)) {
2531 release_lock |= prepare_mmio_access(mr);
2532 l = memory_access_size(mr, l, addr1);
2533 /* XXX: could force current_cpu to NULL to avoid
2534 potential bugs */
2535 switch (l) {
2536 case 8:
2537 /* 64 bit write access */
2538 val = ldq_p(buf);
2539 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2540 attrs);
2541 break;
2542 case 4:
2543 /* 32 bit write access */
2544 val = ldl_p(buf);
2545 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2546 attrs);
2547 break;
2548 case 2:
2549 /* 16 bit write access */
2550 val = lduw_p(buf);
2551 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2552 attrs);
2553 break;
2554 case 1:
2555 /* 8 bit write access */
2556 val = ldub_p(buf);
2557 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2558 attrs);
2559 break;
2560 default:
2561 abort();
13eb76e0
FB
2562 }
2563 } else {
eb7eeb88
PB
2564 addr1 += memory_region_get_ram_addr(mr);
2565 /* RAM case */
2566 ptr = qemu_get_ram_ptr(addr1);
2567 memcpy(ptr, buf, l);
2568 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2569 }
4840f10e
JK
2570
2571 if (release_lock) {
2572 qemu_mutex_unlock_iothread();
2573 release_lock = false;
2574 }
2575
13eb76e0
FB
2576 len -= l;
2577 buf += l;
2578 addr += l;
a203ac70
PB
2579
2580 if (!len) {
2581 break;
2582 }
2583
2584 l = len;
2585 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2586 }
fd8aaa76 2587
3b643495 2588 return result;
13eb76e0 2589}
8df1cd07 2590
a203ac70
PB
2591MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2592 const uint8_t *buf, int len)
ac1970fb 2593{
eb7eeb88 2594 hwaddr l;
eb7eeb88
PB
2595 hwaddr addr1;
2596 MemoryRegion *mr;
2597 MemTxResult result = MEMTX_OK;
eb7eeb88 2598
a203ac70
PB
2599 if (len > 0) {
2600 rcu_read_lock();
eb7eeb88 2601 l = len;
a203ac70
PB
2602 mr = address_space_translate(as, addr, &addr1, &l, true);
2603 result = address_space_write_continue(as, addr, attrs, buf, len,
2604 addr1, l, mr);
2605 rcu_read_unlock();
2606 }
2607
2608 return result;
2609}
2610
2611/* Called within RCU critical section. */
2612MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2613 MemTxAttrs attrs, uint8_t *buf,
2614 int len, hwaddr addr1, hwaddr l,
2615 MemoryRegion *mr)
2616{
2617 uint8_t *ptr;
2618 uint64_t val;
2619 MemTxResult result = MEMTX_OK;
2620 bool release_lock = false;
eb7eeb88 2621
a203ac70 2622 for (;;) {
eb7eeb88
PB
2623 if (!memory_access_is_direct(mr, false)) {
2624 /* I/O case */
2625 release_lock |= prepare_mmio_access(mr);
2626 l = memory_access_size(mr, l, addr1);
2627 switch (l) {
2628 case 8:
2629 /* 64 bit read access */
2630 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2631 attrs);
2632 stq_p(buf, val);
2633 break;
2634 case 4:
2635 /* 32 bit read access */
2636 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2637 attrs);
2638 stl_p(buf, val);
2639 break;
2640 case 2:
2641 /* 16 bit read access */
2642 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2643 attrs);
2644 stw_p(buf, val);
2645 break;
2646 case 1:
2647 /* 8 bit read access */
2648 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2649 attrs);
2650 stb_p(buf, val);
2651 break;
2652 default:
2653 abort();
2654 }
2655 } else {
2656 /* RAM case */
2657 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2658 memcpy(buf, ptr, l);
2659 }
2660
2661 if (release_lock) {
2662 qemu_mutex_unlock_iothread();
2663 release_lock = false;
2664 }
2665
2666 len -= l;
2667 buf += l;
2668 addr += l;
a203ac70
PB
2669
2670 if (!len) {
2671 break;
2672 }
2673
2674 l = len;
2675 mr = address_space_translate(as, addr, &addr1, &l, false);
2676 }
2677
2678 return result;
2679}
2680
3cc8f884
PB
2681MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2682 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2683{
2684 hwaddr l;
2685 hwaddr addr1;
2686 MemoryRegion *mr;
2687 MemTxResult result = MEMTX_OK;
2688
2689 if (len > 0) {
2690 rcu_read_lock();
2691 l = len;
2692 mr = address_space_translate(as, addr, &addr1, &l, false);
2693 result = address_space_read_continue(as, addr, attrs, buf, len,
2694 addr1, l, mr);
2695 rcu_read_unlock();
eb7eeb88 2696 }
eb7eeb88
PB
2697
2698 return result;
ac1970fb
AK
2699}
2700
eb7eeb88
PB
2701MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2702 uint8_t *buf, int len, bool is_write)
2703{
2704 if (is_write) {
2705 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2706 } else {
2707 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2708 }
2709}
ac1970fb 2710
a8170e5e 2711void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2712 int len, int is_write)
2713{
5c9eb028
PM
2714 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2715 buf, len, is_write);
ac1970fb
AK
2716}
2717
582b55a9
AG
2718enum write_rom_type {
2719 WRITE_DATA,
2720 FLUSH_CACHE,
2721};
2722
2a221651 2723static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2724 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2725{
149f54b5 2726 hwaddr l;
d0ecd2aa 2727 uint8_t *ptr;
149f54b5 2728 hwaddr addr1;
5c8a00ce 2729 MemoryRegion *mr;
3b46e624 2730
41063e1e 2731 rcu_read_lock();
d0ecd2aa 2732 while (len > 0) {
149f54b5 2733 l = len;
2a221651 2734 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2735
5c8a00ce
PB
2736 if (!(memory_region_is_ram(mr) ||
2737 memory_region_is_romd(mr))) {
b242e0e0 2738 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2739 } else {
5c8a00ce 2740 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2741 /* ROM/RAM case */
5579c7f3 2742 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2743 switch (type) {
2744 case WRITE_DATA:
2745 memcpy(ptr, buf, l);
845b6214 2746 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2747 break;
2748 case FLUSH_CACHE:
2749 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2750 break;
2751 }
d0ecd2aa
FB
2752 }
2753 len -= l;
2754 buf += l;
2755 addr += l;
2756 }
41063e1e 2757 rcu_read_unlock();
d0ecd2aa
FB
2758}
2759
582b55a9 2760/* used for ROM loading : can write in RAM and ROM */
2a221651 2761void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2762 const uint8_t *buf, int len)
2763{
2a221651 2764 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2765}
2766
2767void cpu_flush_icache_range(hwaddr start, int len)
2768{
2769 /*
2770 * This function should do the same thing as an icache flush that was
2771 * triggered from within the guest. For TCG we are always cache coherent,
2772 * so there is no need to flush anything. For KVM / Xen we need to flush
2773 * the host's instruction cache at least.
2774 */
2775 if (tcg_enabled()) {
2776 return;
2777 }
2778
2a221651
EI
2779 cpu_physical_memory_write_rom_internal(&address_space_memory,
2780 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2781}
2782
6d16c2f8 2783typedef struct {
d3e71559 2784 MemoryRegion *mr;
6d16c2f8 2785 void *buffer;
a8170e5e
AK
2786 hwaddr addr;
2787 hwaddr len;
c2cba0ff 2788 bool in_use;
6d16c2f8
AL
2789} BounceBuffer;
2790
2791static BounceBuffer bounce;
2792
ba223c29 2793typedef struct MapClient {
e95205e1 2794 QEMUBH *bh;
72cf2d4f 2795 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2796} MapClient;
2797
38e047b5 2798QemuMutex map_client_list_lock;
72cf2d4f
BS
2799static QLIST_HEAD(map_client_list, MapClient) map_client_list
2800 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2801
e95205e1
FZ
2802static void cpu_unregister_map_client_do(MapClient *client)
2803{
2804 QLIST_REMOVE(client, link);
2805 g_free(client);
2806}
2807
33b6c2ed
FZ
2808static void cpu_notify_map_clients_locked(void)
2809{
2810 MapClient *client;
2811
2812 while (!QLIST_EMPTY(&map_client_list)) {
2813 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2814 qemu_bh_schedule(client->bh);
2815 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2816 }
2817}
2818
e95205e1 2819void cpu_register_map_client(QEMUBH *bh)
ba223c29 2820{
7267c094 2821 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2822
38e047b5 2823 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2824 client->bh = bh;
72cf2d4f 2825 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2826 if (!atomic_read(&bounce.in_use)) {
2827 cpu_notify_map_clients_locked();
2828 }
38e047b5 2829 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2830}
2831
38e047b5 2832void cpu_exec_init_all(void)
ba223c29 2833{
38e047b5 2834 qemu_mutex_init(&ram_list.mutex);
38e047b5 2835 io_mem_init();
680a4783 2836 memory_map_init();
38e047b5 2837 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2838}
2839
e95205e1 2840void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2841{
2842 MapClient *client;
2843
e95205e1
FZ
2844 qemu_mutex_lock(&map_client_list_lock);
2845 QLIST_FOREACH(client, &map_client_list, link) {
2846 if (client->bh == bh) {
2847 cpu_unregister_map_client_do(client);
2848 break;
2849 }
ba223c29 2850 }
e95205e1 2851 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2852}
2853
2854static void cpu_notify_map_clients(void)
2855{
38e047b5 2856 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2857 cpu_notify_map_clients_locked();
38e047b5 2858 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2859}
2860
51644ab7
PB
2861bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2862{
5c8a00ce 2863 MemoryRegion *mr;
51644ab7
PB
2864 hwaddr l, xlat;
2865
41063e1e 2866 rcu_read_lock();
51644ab7
PB
2867 while (len > 0) {
2868 l = len;
5c8a00ce
PB
2869 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2870 if (!memory_access_is_direct(mr, is_write)) {
2871 l = memory_access_size(mr, l, addr);
2872 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2873 return false;
2874 }
2875 }
2876
2877 len -= l;
2878 addr += l;
2879 }
41063e1e 2880 rcu_read_unlock();
51644ab7
PB
2881 return true;
2882}
2883
6d16c2f8
AL
2884/* Map a physical memory region into a host virtual address.
2885 * May map a subset of the requested range, given by and returned in *plen.
2886 * May return NULL if resources needed to perform the mapping are exhausted.
2887 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2888 * Use cpu_register_map_client() to know when retrying the map operation is
2889 * likely to succeed.
6d16c2f8 2890 */
ac1970fb 2891void *address_space_map(AddressSpace *as,
a8170e5e
AK
2892 hwaddr addr,
2893 hwaddr *plen,
ac1970fb 2894 bool is_write)
6d16c2f8 2895{
a8170e5e 2896 hwaddr len = *plen;
e3127ae0
PB
2897 hwaddr done = 0;
2898 hwaddr l, xlat, base;
2899 MemoryRegion *mr, *this_mr;
2900 ram_addr_t raddr;
e81bcda5 2901 void *ptr;
6d16c2f8 2902
e3127ae0
PB
2903 if (len == 0) {
2904 return NULL;
2905 }
38bee5dc 2906
e3127ae0 2907 l = len;
41063e1e 2908 rcu_read_lock();
e3127ae0 2909 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2910
e3127ae0 2911 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2912 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2913 rcu_read_unlock();
e3127ae0 2914 return NULL;
6d16c2f8 2915 }
e85d9db5
KW
2916 /* Avoid unbounded allocations */
2917 l = MIN(l, TARGET_PAGE_SIZE);
2918 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2919 bounce.addr = addr;
2920 bounce.len = l;
d3e71559
PB
2921
2922 memory_region_ref(mr);
2923 bounce.mr = mr;
e3127ae0 2924 if (!is_write) {
5c9eb028
PM
2925 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2926 bounce.buffer, l);
8ab934f9 2927 }
6d16c2f8 2928
41063e1e 2929 rcu_read_unlock();
e3127ae0
PB
2930 *plen = l;
2931 return bounce.buffer;
2932 }
2933
2934 base = xlat;
2935 raddr = memory_region_get_ram_addr(mr);
2936
2937 for (;;) {
6d16c2f8
AL
2938 len -= l;
2939 addr += l;
e3127ae0
PB
2940 done += l;
2941 if (len == 0) {
2942 break;
2943 }
2944
2945 l = len;
2946 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2947 if (this_mr != mr || xlat != base + done) {
2948 break;
2949 }
6d16c2f8 2950 }
e3127ae0 2951
d3e71559 2952 memory_region_ref(mr);
e3127ae0 2953 *plen = done;
e81bcda5
PB
2954 ptr = qemu_ram_ptr_length(raddr + base, plen);
2955 rcu_read_unlock();
2956
2957 return ptr;
6d16c2f8
AL
2958}
2959
ac1970fb 2960/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2961 * Will also mark the memory as dirty if is_write == 1. access_len gives
2962 * the amount of memory that was actually read or written by the caller.
2963 */
a8170e5e
AK
2964void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2965 int is_write, hwaddr access_len)
6d16c2f8
AL
2966{
2967 if (buffer != bounce.buffer) {
d3e71559
PB
2968 MemoryRegion *mr;
2969 ram_addr_t addr1;
2970
2971 mr = qemu_ram_addr_from_host(buffer, &addr1);
2972 assert(mr != NULL);
6d16c2f8 2973 if (is_write) {
845b6214 2974 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2975 }
868bb33f 2976 if (xen_enabled()) {
e41d7c69 2977 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2978 }
d3e71559 2979 memory_region_unref(mr);
6d16c2f8
AL
2980 return;
2981 }
2982 if (is_write) {
5c9eb028
PM
2983 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2984 bounce.buffer, access_len);
6d16c2f8 2985 }
f8a83245 2986 qemu_vfree(bounce.buffer);
6d16c2f8 2987 bounce.buffer = NULL;
d3e71559 2988 memory_region_unref(bounce.mr);
c2cba0ff 2989 atomic_mb_set(&bounce.in_use, false);
ba223c29 2990 cpu_notify_map_clients();
6d16c2f8 2991}
d0ecd2aa 2992
a8170e5e
AK
2993void *cpu_physical_memory_map(hwaddr addr,
2994 hwaddr *plen,
ac1970fb
AK
2995 int is_write)
2996{
2997 return address_space_map(&address_space_memory, addr, plen, is_write);
2998}
2999
a8170e5e
AK
3000void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3001 int is_write, hwaddr access_len)
ac1970fb
AK
3002{
3003 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3004}
3005
8df1cd07 3006/* warning: addr must be aligned */
50013115
PM
3007static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3008 MemTxAttrs attrs,
3009 MemTxResult *result,
3010 enum device_endian endian)
8df1cd07 3011{
8df1cd07 3012 uint8_t *ptr;
791af8c8 3013 uint64_t val;
5c8a00ce 3014 MemoryRegion *mr;
149f54b5
PB
3015 hwaddr l = 4;
3016 hwaddr addr1;
50013115 3017 MemTxResult r;
4840f10e 3018 bool release_lock = false;
8df1cd07 3019
41063e1e 3020 rcu_read_lock();
fdfba1a2 3021 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3022 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3023 release_lock |= prepare_mmio_access(mr);
125b3806 3024
8df1cd07 3025 /* I/O case */
50013115 3026 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3027#if defined(TARGET_WORDS_BIGENDIAN)
3028 if (endian == DEVICE_LITTLE_ENDIAN) {
3029 val = bswap32(val);
3030 }
3031#else
3032 if (endian == DEVICE_BIG_ENDIAN) {
3033 val = bswap32(val);
3034 }
3035#endif
8df1cd07
FB
3036 } else {
3037 /* RAM case */
5c8a00ce 3038 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3039 & TARGET_PAGE_MASK)
149f54b5 3040 + addr1);
1e78bcc1
AG
3041 switch (endian) {
3042 case DEVICE_LITTLE_ENDIAN:
3043 val = ldl_le_p(ptr);
3044 break;
3045 case DEVICE_BIG_ENDIAN:
3046 val = ldl_be_p(ptr);
3047 break;
3048 default:
3049 val = ldl_p(ptr);
3050 break;
3051 }
50013115
PM
3052 r = MEMTX_OK;
3053 }
3054 if (result) {
3055 *result = r;
8df1cd07 3056 }
4840f10e
JK
3057 if (release_lock) {
3058 qemu_mutex_unlock_iothread();
3059 }
41063e1e 3060 rcu_read_unlock();
8df1cd07
FB
3061 return val;
3062}
3063
50013115
PM
3064uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3065 MemTxAttrs attrs, MemTxResult *result)
3066{
3067 return address_space_ldl_internal(as, addr, attrs, result,
3068 DEVICE_NATIVE_ENDIAN);
3069}
3070
3071uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3072 MemTxAttrs attrs, MemTxResult *result)
3073{
3074 return address_space_ldl_internal(as, addr, attrs, result,
3075 DEVICE_LITTLE_ENDIAN);
3076}
3077
3078uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3079 MemTxAttrs attrs, MemTxResult *result)
3080{
3081 return address_space_ldl_internal(as, addr, attrs, result,
3082 DEVICE_BIG_ENDIAN);
3083}
3084
fdfba1a2 3085uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3086{
50013115 3087 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3088}
3089
fdfba1a2 3090uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3091{
50013115 3092 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3093}
3094
fdfba1a2 3095uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3096{
50013115 3097 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3098}
3099
84b7b8e7 3100/* warning: addr must be aligned */
50013115
PM
3101static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3102 MemTxAttrs attrs,
3103 MemTxResult *result,
3104 enum device_endian endian)
84b7b8e7 3105{
84b7b8e7
FB
3106 uint8_t *ptr;
3107 uint64_t val;
5c8a00ce 3108 MemoryRegion *mr;
149f54b5
PB
3109 hwaddr l = 8;
3110 hwaddr addr1;
50013115 3111 MemTxResult r;
4840f10e 3112 bool release_lock = false;
84b7b8e7 3113
41063e1e 3114 rcu_read_lock();
2c17449b 3115 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3116 false);
3117 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3118 release_lock |= prepare_mmio_access(mr);
125b3806 3119
84b7b8e7 3120 /* I/O case */
50013115 3121 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3122#if defined(TARGET_WORDS_BIGENDIAN)
3123 if (endian == DEVICE_LITTLE_ENDIAN) {
3124 val = bswap64(val);
3125 }
3126#else
3127 if (endian == DEVICE_BIG_ENDIAN) {
3128 val = bswap64(val);
3129 }
84b7b8e7
FB
3130#endif
3131 } else {
3132 /* RAM case */
5c8a00ce 3133 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3134 & TARGET_PAGE_MASK)
149f54b5 3135 + addr1);
1e78bcc1
AG
3136 switch (endian) {
3137 case DEVICE_LITTLE_ENDIAN:
3138 val = ldq_le_p(ptr);
3139 break;
3140 case DEVICE_BIG_ENDIAN:
3141 val = ldq_be_p(ptr);
3142 break;
3143 default:
3144 val = ldq_p(ptr);
3145 break;
3146 }
50013115
PM
3147 r = MEMTX_OK;
3148 }
3149 if (result) {
3150 *result = r;
84b7b8e7 3151 }
4840f10e
JK
3152 if (release_lock) {
3153 qemu_mutex_unlock_iothread();
3154 }
41063e1e 3155 rcu_read_unlock();
84b7b8e7
FB
3156 return val;
3157}
3158
50013115
PM
3159uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3160 MemTxAttrs attrs, MemTxResult *result)
3161{
3162 return address_space_ldq_internal(as, addr, attrs, result,
3163 DEVICE_NATIVE_ENDIAN);
3164}
3165
3166uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3167 MemTxAttrs attrs, MemTxResult *result)
3168{
3169 return address_space_ldq_internal(as, addr, attrs, result,
3170 DEVICE_LITTLE_ENDIAN);
3171}
3172
3173uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3174 MemTxAttrs attrs, MemTxResult *result)
3175{
3176 return address_space_ldq_internal(as, addr, attrs, result,
3177 DEVICE_BIG_ENDIAN);
3178}
3179
2c17449b 3180uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3181{
50013115 3182 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3183}
3184
2c17449b 3185uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3186{
50013115 3187 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3188}
3189
2c17449b 3190uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3191{
50013115 3192 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3193}
3194
aab33094 3195/* XXX: optimize */
50013115
PM
3196uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3197 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3198{
3199 uint8_t val;
50013115
PM
3200 MemTxResult r;
3201
3202 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3203 if (result) {
3204 *result = r;
3205 }
aab33094
FB
3206 return val;
3207}
3208
50013115
PM
3209uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3210{
3211 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3212}
3213
733f0b02 3214/* warning: addr must be aligned */
50013115
PM
3215static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3216 hwaddr addr,
3217 MemTxAttrs attrs,
3218 MemTxResult *result,
3219 enum device_endian endian)
aab33094 3220{
733f0b02
MT
3221 uint8_t *ptr;
3222 uint64_t val;
5c8a00ce 3223 MemoryRegion *mr;
149f54b5
PB
3224 hwaddr l = 2;
3225 hwaddr addr1;
50013115 3226 MemTxResult r;
4840f10e 3227 bool release_lock = false;
733f0b02 3228
41063e1e 3229 rcu_read_lock();
41701aa4 3230 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3231 false);
3232 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3233 release_lock |= prepare_mmio_access(mr);
125b3806 3234
733f0b02 3235 /* I/O case */
50013115 3236 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3237#if defined(TARGET_WORDS_BIGENDIAN)
3238 if (endian == DEVICE_LITTLE_ENDIAN) {
3239 val = bswap16(val);
3240 }
3241#else
3242 if (endian == DEVICE_BIG_ENDIAN) {
3243 val = bswap16(val);
3244 }
3245#endif
733f0b02
MT
3246 } else {
3247 /* RAM case */
5c8a00ce 3248 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3249 & TARGET_PAGE_MASK)
149f54b5 3250 + addr1);
1e78bcc1
AG
3251 switch (endian) {
3252 case DEVICE_LITTLE_ENDIAN:
3253 val = lduw_le_p(ptr);
3254 break;
3255 case DEVICE_BIG_ENDIAN:
3256 val = lduw_be_p(ptr);
3257 break;
3258 default:
3259 val = lduw_p(ptr);
3260 break;
3261 }
50013115
PM
3262 r = MEMTX_OK;
3263 }
3264 if (result) {
3265 *result = r;
733f0b02 3266 }
4840f10e
JK
3267 if (release_lock) {
3268 qemu_mutex_unlock_iothread();
3269 }
41063e1e 3270 rcu_read_unlock();
733f0b02 3271 return val;
aab33094
FB
3272}
3273
50013115
PM
3274uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3275 MemTxAttrs attrs, MemTxResult *result)
3276{
3277 return address_space_lduw_internal(as, addr, attrs, result,
3278 DEVICE_NATIVE_ENDIAN);
3279}
3280
3281uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3282 MemTxAttrs attrs, MemTxResult *result)
3283{
3284 return address_space_lduw_internal(as, addr, attrs, result,
3285 DEVICE_LITTLE_ENDIAN);
3286}
3287
3288uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3289 MemTxAttrs attrs, MemTxResult *result)
3290{
3291 return address_space_lduw_internal(as, addr, attrs, result,
3292 DEVICE_BIG_ENDIAN);
3293}
3294
41701aa4 3295uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3296{
50013115 3297 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3298}
3299
41701aa4 3300uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3301{
50013115 3302 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3303}
3304
41701aa4 3305uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3306{
50013115 3307 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3308}
3309
8df1cd07
FB
3310/* warning: addr must be aligned. The ram page is not masked as dirty
3311 and the code inside is not invalidated. It is useful if the dirty
3312 bits are used to track modified PTEs */
50013115
PM
3313void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3314 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3315{
8df1cd07 3316 uint8_t *ptr;
5c8a00ce 3317 MemoryRegion *mr;
149f54b5
PB
3318 hwaddr l = 4;
3319 hwaddr addr1;
50013115 3320 MemTxResult r;
845b6214 3321 uint8_t dirty_log_mask;
4840f10e 3322 bool release_lock = false;
8df1cd07 3323
41063e1e 3324 rcu_read_lock();
2198a121 3325 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3326 true);
3327 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3328 release_lock |= prepare_mmio_access(mr);
125b3806 3329
50013115 3330 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3331 } else {
5c8a00ce 3332 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3333 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3334 stl_p(ptr, val);
74576198 3335
845b6214
PB
3336 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3337 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3338 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3339 r = MEMTX_OK;
3340 }
3341 if (result) {
3342 *result = r;
8df1cd07 3343 }
4840f10e
JK
3344 if (release_lock) {
3345 qemu_mutex_unlock_iothread();
3346 }
41063e1e 3347 rcu_read_unlock();
8df1cd07
FB
3348}
3349
50013115
PM
3350void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3351{
3352 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3353}
3354
8df1cd07 3355/* warning: addr must be aligned */
50013115
PM
3356static inline void address_space_stl_internal(AddressSpace *as,
3357 hwaddr addr, uint32_t val,
3358 MemTxAttrs attrs,
3359 MemTxResult *result,
3360 enum device_endian endian)
8df1cd07 3361{
8df1cd07 3362 uint8_t *ptr;
5c8a00ce 3363 MemoryRegion *mr;
149f54b5
PB
3364 hwaddr l = 4;
3365 hwaddr addr1;
50013115 3366 MemTxResult r;
4840f10e 3367 bool release_lock = false;
8df1cd07 3368
41063e1e 3369 rcu_read_lock();
ab1da857 3370 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3371 true);
3372 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3373 release_lock |= prepare_mmio_access(mr);
125b3806 3374
1e78bcc1
AG
3375#if defined(TARGET_WORDS_BIGENDIAN)
3376 if (endian == DEVICE_LITTLE_ENDIAN) {
3377 val = bswap32(val);
3378 }
3379#else
3380 if (endian == DEVICE_BIG_ENDIAN) {
3381 val = bswap32(val);
3382 }
3383#endif
50013115 3384 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3385 } else {
8df1cd07 3386 /* RAM case */
5c8a00ce 3387 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3388 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3389 switch (endian) {
3390 case DEVICE_LITTLE_ENDIAN:
3391 stl_le_p(ptr, val);
3392 break;
3393 case DEVICE_BIG_ENDIAN:
3394 stl_be_p(ptr, val);
3395 break;
3396 default:
3397 stl_p(ptr, val);
3398 break;
3399 }
845b6214 3400 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3401 r = MEMTX_OK;
3402 }
3403 if (result) {
3404 *result = r;
8df1cd07 3405 }
4840f10e
JK
3406 if (release_lock) {
3407 qemu_mutex_unlock_iothread();
3408 }
41063e1e 3409 rcu_read_unlock();
8df1cd07
FB
3410}
3411
50013115
PM
3412void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3413 MemTxAttrs attrs, MemTxResult *result)
3414{
3415 address_space_stl_internal(as, addr, val, attrs, result,
3416 DEVICE_NATIVE_ENDIAN);
3417}
3418
3419void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3420 MemTxAttrs attrs, MemTxResult *result)
3421{
3422 address_space_stl_internal(as, addr, val, attrs, result,
3423 DEVICE_LITTLE_ENDIAN);
3424}
3425
3426void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3427 MemTxAttrs attrs, MemTxResult *result)
3428{
3429 address_space_stl_internal(as, addr, val, attrs, result,
3430 DEVICE_BIG_ENDIAN);
3431}
3432
ab1da857 3433void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3434{
50013115 3435 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3436}
3437
ab1da857 3438void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3439{
50013115 3440 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3441}
3442
ab1da857 3443void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3444{
50013115 3445 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3446}
3447
aab33094 3448/* XXX: optimize */
50013115
PM
3449void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3450 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3451{
3452 uint8_t v = val;
50013115
PM
3453 MemTxResult r;
3454
3455 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3456 if (result) {
3457 *result = r;
3458 }
3459}
3460
3461void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3462{
3463 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3464}
3465
733f0b02 3466/* warning: addr must be aligned */
50013115
PM
3467static inline void address_space_stw_internal(AddressSpace *as,
3468 hwaddr addr, uint32_t val,
3469 MemTxAttrs attrs,
3470 MemTxResult *result,
3471 enum device_endian endian)
aab33094 3472{
733f0b02 3473 uint8_t *ptr;
5c8a00ce 3474 MemoryRegion *mr;
149f54b5
PB
3475 hwaddr l = 2;
3476 hwaddr addr1;
50013115 3477 MemTxResult r;
4840f10e 3478 bool release_lock = false;
733f0b02 3479
41063e1e 3480 rcu_read_lock();
5ce5944d 3481 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3482 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3483 release_lock |= prepare_mmio_access(mr);
125b3806 3484
1e78bcc1
AG
3485#if defined(TARGET_WORDS_BIGENDIAN)
3486 if (endian == DEVICE_LITTLE_ENDIAN) {
3487 val = bswap16(val);
3488 }
3489#else
3490 if (endian == DEVICE_BIG_ENDIAN) {
3491 val = bswap16(val);
3492 }
3493#endif
50013115 3494 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3495 } else {
733f0b02 3496 /* RAM case */
5c8a00ce 3497 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3498 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3499 switch (endian) {
3500 case DEVICE_LITTLE_ENDIAN:
3501 stw_le_p(ptr, val);
3502 break;
3503 case DEVICE_BIG_ENDIAN:
3504 stw_be_p(ptr, val);
3505 break;
3506 default:
3507 stw_p(ptr, val);
3508 break;
3509 }
845b6214 3510 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3511 r = MEMTX_OK;
3512 }
3513 if (result) {
3514 *result = r;
733f0b02 3515 }
4840f10e
JK
3516 if (release_lock) {
3517 qemu_mutex_unlock_iothread();
3518 }
41063e1e 3519 rcu_read_unlock();
aab33094
FB
3520}
3521
50013115
PM
3522void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3523 MemTxAttrs attrs, MemTxResult *result)
3524{
3525 address_space_stw_internal(as, addr, val, attrs, result,
3526 DEVICE_NATIVE_ENDIAN);
3527}
3528
3529void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3530 MemTxAttrs attrs, MemTxResult *result)
3531{
3532 address_space_stw_internal(as, addr, val, attrs, result,
3533 DEVICE_LITTLE_ENDIAN);
3534}
3535
3536void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3537 MemTxAttrs attrs, MemTxResult *result)
3538{
3539 address_space_stw_internal(as, addr, val, attrs, result,
3540 DEVICE_BIG_ENDIAN);
3541}
3542
5ce5944d 3543void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3544{
50013115 3545 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3546}
3547
5ce5944d 3548void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3549{
50013115 3550 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3551}
3552
5ce5944d 3553void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3554{
50013115 3555 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3556}
3557
aab33094 3558/* XXX: optimize */
50013115
PM
3559void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3560 MemTxAttrs attrs, MemTxResult *result)
aab33094 3561{
50013115 3562 MemTxResult r;
aab33094 3563 val = tswap64(val);
50013115
PM
3564 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3565 if (result) {
3566 *result = r;
3567 }
aab33094
FB
3568}
3569
50013115
PM
3570void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3571 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3572{
50013115 3573 MemTxResult r;
1e78bcc1 3574 val = cpu_to_le64(val);
50013115
PM
3575 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3576 if (result) {
3577 *result = r;
3578 }
3579}
3580void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3581 MemTxAttrs attrs, MemTxResult *result)
3582{
3583 MemTxResult r;
3584 val = cpu_to_be64(val);
3585 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3586 if (result) {
3587 *result = r;
3588 }
3589}
3590
3591void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3592{
3593 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3594}
3595
3596void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3597{
3598 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3599}
3600
f606604f 3601void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3602{
50013115 3603 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3604}
3605
5e2972fd 3606/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3607int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3608 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3609{
3610 int l;
a8170e5e 3611 hwaddr phys_addr;
9b3c35e0 3612 target_ulong page;
13eb76e0
FB
3613
3614 while (len > 0) {
5232e4c7
PM
3615 int asidx;
3616 MemTxAttrs attrs;
3617
13eb76e0 3618 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3619 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3620 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3621 /* if no physical page mapped, return an error */
3622 if (phys_addr == -1)
3623 return -1;
3624 l = (page + TARGET_PAGE_SIZE) - addr;
3625 if (l > len)
3626 l = len;
5e2972fd 3627 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3628 if (is_write) {
5232e4c7
PM
3629 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3630 phys_addr, buf, l);
2e38847b 3631 } else {
5232e4c7
PM
3632 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3633 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3634 buf, l, 0);
2e38847b 3635 }
13eb76e0
FB
3636 len -= l;
3637 buf += l;
3638 addr += l;
3639 }
3640 return 0;
3641}
038629a6
DDAG
3642
3643/*
3644 * Allows code that needs to deal with migration bitmaps etc to still be built
3645 * target independent.
3646 */
3647size_t qemu_target_page_bits(void)
3648{
3649 return TARGET_PAGE_BITS;
3650}
3651
a68fe89c 3652#endif
13eb76e0 3653
8e4a424b
BS
3654/*
3655 * A helper function for the _utterly broken_ virtio device model to find out if
3656 * it's running on a big endian machine. Don't do this at home kids!
3657 */
98ed8ecf
GK
3658bool target_words_bigendian(void);
3659bool target_words_bigendian(void)
8e4a424b
BS
3660{
3661#if defined(TARGET_WORDS_BIGENDIAN)
3662 return true;
3663#else
3664 return false;
3665#endif
3666}
3667
76f35538 3668#ifndef CONFIG_USER_ONLY
a8170e5e 3669bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3670{
5c8a00ce 3671 MemoryRegion*mr;
149f54b5 3672 hwaddr l = 1;
41063e1e 3673 bool res;
76f35538 3674
41063e1e 3675 rcu_read_lock();
5c8a00ce
PB
3676 mr = address_space_translate(&address_space_memory,
3677 phys_addr, &phys_addr, &l, false);
76f35538 3678
41063e1e
PB
3679 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3680 rcu_read_unlock();
3681 return res;
76f35538 3682}
bd2fa51f 3683
e3807054 3684int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3685{
3686 RAMBlock *block;
e3807054 3687 int ret = 0;
bd2fa51f 3688
0dc3f44a
MD
3689 rcu_read_lock();
3690 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3691 ret = func(block->idstr, block->host, block->offset,
3692 block->used_length, opaque);
3693 if (ret) {
3694 break;
3695 }
bd2fa51f 3696 }
0dc3f44a 3697 rcu_read_unlock();
e3807054 3698 return ret;
bd2fa51f 3699}
ec3f8c99 3700#endif