]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
memory, exec: Expose all memory block related flags.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
e2eef170 90#endif
9fa3e853 91
20bccb82
PM
92#ifdef TARGET_PAGE_BITS_VARY
93int target_page_bits;
94bool target_page_bits_decided;
95#endif
96
bdc44640 97struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
98/* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
f240eb6f 100__thread CPUState *current_cpu;
2e70f6ef 101/* 0 = Do not count executed instructions.
bf20dc07 102 1 = Precise instruction counting.
2e70f6ef 103 2 = Adaptive rate instruction counting. */
5708fc66 104int use_icount;
6a00d601 105
a0be0c58
YZ
106uintptr_t qemu_host_page_size;
107intptr_t qemu_host_page_mask;
a0be0c58 108
20bccb82
PM
109bool set_preferred_target_page_bits(int bits)
110{
111 /* The target page size is the lowest common denominator for all
112 * the CPUs in the system, so we can only make it smaller, never
113 * larger. And we can't make it smaller once we've committed to
114 * a particular size.
115 */
116#ifdef TARGET_PAGE_BITS_VARY
117 assert(bits >= TARGET_PAGE_BITS_MIN);
118 if (target_page_bits == 0 || target_page_bits > bits) {
119 if (target_page_bits_decided) {
120 return false;
121 }
122 target_page_bits = bits;
123 }
124#endif
125 return true;
126}
127
e2eef170 128#if !defined(CONFIG_USER_ONLY)
4346ae3e 129
20bccb82
PM
130static void finalize_target_page_bits(void)
131{
132#ifdef TARGET_PAGE_BITS_VARY
133 if (target_page_bits == 0) {
134 target_page_bits = TARGET_PAGE_BITS_MIN;
135 }
136 target_page_bits_decided = true;
137#endif
138}
139
1db8abb1
PB
140typedef struct PhysPageEntry PhysPageEntry;
141
142struct PhysPageEntry {
9736e55b 143 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 144 uint32_t skip : 6;
9736e55b 145 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 146 uint32_t ptr : 26;
1db8abb1
PB
147};
148
8b795765
MT
149#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
150
03f49957 151/* Size of the L2 (and L3, etc) page tables. */
57271d63 152#define ADDR_SPACE_BITS 64
03f49957 153
026736ce 154#define P_L2_BITS 9
03f49957
PB
155#define P_L2_SIZE (1 << P_L2_BITS)
156
157#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
158
159typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 160
53cb28cb 161typedef struct PhysPageMap {
79e2b9ae
PB
162 struct rcu_head rcu;
163
53cb28cb
MA
164 unsigned sections_nb;
165 unsigned sections_nb_alloc;
166 unsigned nodes_nb;
167 unsigned nodes_nb_alloc;
168 Node *nodes;
169 MemoryRegionSection *sections;
170} PhysPageMap;
171
1db8abb1 172struct AddressSpaceDispatch {
729633c2 173 MemoryRegionSection *mru_section;
1db8abb1
PB
174 /* This is a multi-level map on the physical address space.
175 * The bottom level has pointers to MemoryRegionSections.
176 */
177 PhysPageEntry phys_map;
53cb28cb 178 PhysPageMap map;
1db8abb1
PB
179};
180
90260c6c
JK
181#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
182typedef struct subpage_t {
183 MemoryRegion iomem;
16620684 184 FlatView *fv;
90260c6c 185 hwaddr base;
2615fabd 186 uint16_t sub_section[];
90260c6c
JK
187} subpage_t;
188
b41aac4f
LPF
189#define PHYS_SECTION_UNASSIGNED 0
190#define PHYS_SECTION_NOTDIRTY 1
191#define PHYS_SECTION_ROM 2
192#define PHYS_SECTION_WATCH 3
5312bd8b 193
e2eef170 194static void io_mem_init(void);
62152b8a 195static void memory_map_init(void);
09daed84 196static void tcg_commit(MemoryListener *listener);
e2eef170 197
1ec9b909 198static MemoryRegion io_mem_watch;
32857f4d
PM
199
200/**
201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
202 * @cpu: the CPU whose AddressSpace this is
203 * @as: the AddressSpace itself
204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
206 */
207struct CPUAddressSpace {
208 CPUState *cpu;
209 AddressSpace *as;
210 struct AddressSpaceDispatch *memory_dispatch;
211 MemoryListener tcg_as_listener;
212};
213
8deaf12c
GH
214struct DirtyBitmapSnapshot {
215 ram_addr_t start;
216 ram_addr_t end;
217 unsigned long dirty[];
218};
219
6658ffb8 220#endif
fd6ce8f6 221
6d9a1304 222#if !defined(CONFIG_USER_ONLY)
d6f2ea22 223
53cb28cb 224static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 225{
101420b8 226 static unsigned alloc_hint = 16;
53cb28cb 227 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
230 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 231 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 232 }
f7bf5461
AK
233}
234
db94604b 235static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
236{
237 unsigned i;
8b795765 238 uint32_t ret;
db94604b
PB
239 PhysPageEntry e;
240 PhysPageEntry *p;
f7bf5461 241
53cb28cb 242 ret = map->nodes_nb++;
db94604b 243 p = map->nodes[ret];
f7bf5461 244 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 245 assert(ret != map->nodes_nb_alloc);
db94604b
PB
246
247 e.skip = leaf ? 0 : 1;
248 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 249 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 250 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 251 }
f7bf5461 252 return ret;
d6f2ea22
AK
253}
254
53cb28cb
MA
255static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
256 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 257 int level)
f7bf5461
AK
258{
259 PhysPageEntry *p;
03f49957 260 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 261
9736e55b 262 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 263 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 264 }
db94604b 265 p = map->nodes[lp->ptr];
03f49957 266 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 267
03f49957 268 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 269 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 270 lp->skip = 0;
c19e8800 271 lp->ptr = leaf;
07f07b31
AK
272 *index += step;
273 *nb -= step;
2999097b 274 } else {
53cb28cb 275 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
276 }
277 ++lp;
f7bf5461
AK
278 }
279}
280
ac1970fb 281static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 282 hwaddr index, hwaddr nb,
2999097b 283 uint16_t leaf)
f7bf5461 284{
2999097b 285 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 286 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 287
53cb28cb 288 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
289}
290
b35ba30f
MT
291/* Compact a non leaf page entry. Simply detect that the entry has a single child,
292 * and update our entry so we can skip it and go directly to the destination.
293 */
efee678d 294static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
295{
296 unsigned valid_ptr = P_L2_SIZE;
297 int valid = 0;
298 PhysPageEntry *p;
299 int i;
300
301 if (lp->ptr == PHYS_MAP_NODE_NIL) {
302 return;
303 }
304
305 p = nodes[lp->ptr];
306 for (i = 0; i < P_L2_SIZE; i++) {
307 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
308 continue;
309 }
310
311 valid_ptr = i;
312 valid++;
313 if (p[i].skip) {
efee678d 314 phys_page_compact(&p[i], nodes);
b35ba30f
MT
315 }
316 }
317
318 /* We can only compress if there's only one child. */
319 if (valid != 1) {
320 return;
321 }
322
323 assert(valid_ptr < P_L2_SIZE);
324
325 /* Don't compress if it won't fit in the # of bits we have. */
326 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
327 return;
328 }
329
330 lp->ptr = p[valid_ptr].ptr;
331 if (!p[valid_ptr].skip) {
332 /* If our only child is a leaf, make this a leaf. */
333 /* By design, we should have made this node a leaf to begin with so we
334 * should never reach here.
335 * But since it's so simple to handle this, let's do it just in case we
336 * change this rule.
337 */
338 lp->skip = 0;
339 } else {
340 lp->skip += p[valid_ptr].skip;
341 }
342}
343
8629d3fc 344void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 345{
b35ba30f 346 if (d->phys_map.skip) {
efee678d 347 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
348 }
349}
350
29cb533d
FZ
351static inline bool section_covers_addr(const MemoryRegionSection *section,
352 hwaddr addr)
353{
354 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
355 * the section must cover the entire address space.
356 */
258dfaaa 357 return int128_gethi(section->size) ||
29cb533d 358 range_covers_byte(section->offset_within_address_space,
258dfaaa 359 int128_getlo(section->size), addr);
29cb533d
FZ
360}
361
003a0cf2 362static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 363{
003a0cf2
PX
364 PhysPageEntry lp = d->phys_map, *p;
365 Node *nodes = d->map.nodes;
366 MemoryRegionSection *sections = d->map.sections;
97115a8d 367 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 368 int i;
f1f6e3b8 369
9736e55b 370 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 371 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 372 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 373 }
9affd6fc 374 p = nodes[lp.ptr];
03f49957 375 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 376 }
b35ba30f 377
29cb533d 378 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
379 return &sections[lp.ptr];
380 } else {
381 return &sections[PHYS_SECTION_UNASSIGNED];
382 }
f3705d53
AK
383}
384
e5548617
BS
385bool memory_region_is_unassigned(MemoryRegion *mr)
386{
2a8e7499 387 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 388 && mr != &io_mem_watch;
fd6ce8f6 389}
149f54b5 390
79e2b9ae 391/* Called from RCU critical section */
c7086b4a 392static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
393 hwaddr addr,
394 bool resolve_subpage)
9f029603 395{
729633c2 396 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
397 subpage_t *subpage;
398
07c114bb
PB
399 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
400 !section_covers_addr(section, addr)) {
003a0cf2 401 section = phys_page_find(d, addr);
07c114bb 402 atomic_set(&d->mru_section, section);
729633c2 403 }
90260c6c
JK
404 if (resolve_subpage && section->mr->subpage) {
405 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 406 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
407 }
408 return section;
9f029603
JK
409}
410
79e2b9ae 411/* Called from RCU critical section */
90260c6c 412static MemoryRegionSection *
c7086b4a 413address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 414 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
415{
416 MemoryRegionSection *section;
965eb2fc 417 MemoryRegion *mr;
a87f3954 418 Int128 diff;
149f54b5 419
c7086b4a 420 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
421 /* Compute offset within MemoryRegionSection */
422 addr -= section->offset_within_address_space;
423
424 /* Compute offset within MemoryRegion */
425 *xlat = addr + section->offset_within_region;
426
965eb2fc 427 mr = section->mr;
b242e0e0
PB
428
429 /* MMIO registers can be expected to perform full-width accesses based only
430 * on their address, without considering adjacent registers that could
431 * decode to completely different MemoryRegions. When such registers
432 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
433 * regions overlap wildly. For this reason we cannot clamp the accesses
434 * here.
435 *
436 * If the length is small (as is the case for address_space_ldl/stl),
437 * everything works fine. If the incoming length is large, however,
438 * the caller really has to do the clamping through memory_access_size.
439 */
965eb2fc 440 if (memory_region_is_ram(mr)) {
e4a511f8 441 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
442 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
443 }
149f54b5
PB
444 return section;
445}
90260c6c 446
a411c84b
PB
447/**
448 * address_space_translate_iommu - translate an address through an IOMMU
449 * memory region and then through the target address space.
450 *
451 * @iommu_mr: the IOMMU memory region that we start the translation from
452 * @addr: the address to be translated through the MMU
453 * @xlat: the translated address offset within the destination memory region.
454 * It cannot be %NULL.
455 * @plen_out: valid read/write length of the translated address. It
456 * cannot be %NULL.
457 * @page_mask_out: page mask for the translated address. This
458 * should only be meaningful for IOMMU translated
459 * addresses, since there may be huge pages that this bit
460 * would tell. It can be %NULL if we don't care about it.
461 * @is_write: whether the translation operation is for write
462 * @is_mmio: whether this can be MMIO, set true if it can
463 * @target_as: the address space targeted by the IOMMU
2f7b009c 464 * @attrs: transaction attributes
a411c84b
PB
465 *
466 * This function is called from RCU critical section. It is the common
467 * part of flatview_do_translate and address_space_translate_cached.
468 */
469static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
470 hwaddr *xlat,
471 hwaddr *plen_out,
472 hwaddr *page_mask_out,
473 bool is_write,
474 bool is_mmio,
2f7b009c
PM
475 AddressSpace **target_as,
476 MemTxAttrs attrs)
a411c84b
PB
477{
478 MemoryRegionSection *section;
479 hwaddr page_mask = (hwaddr)-1;
480
481 do {
482 hwaddr addr = *xlat;
483 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
484 int iommu_idx = 0;
485 IOMMUTLBEntry iotlb;
486
487 if (imrc->attrs_to_index) {
488 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
489 }
490
491 iotlb = imrc->translate(iommu_mr, addr, is_write ?
492 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
493
494 if (!(iotlb.perm & (1 << is_write))) {
495 goto unassigned;
496 }
497
498 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
499 | (addr & iotlb.addr_mask));
500 page_mask &= iotlb.addr_mask;
501 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
502 *target_as = iotlb.target_as;
503
504 section = address_space_translate_internal(
505 address_space_to_dispatch(iotlb.target_as), addr, xlat,
506 plen_out, is_mmio);
507
508 iommu_mr = memory_region_get_iommu(section->mr);
509 } while (unlikely(iommu_mr));
510
511 if (page_mask_out) {
512 *page_mask_out = page_mask;
513 }
514 return *section;
515
516unassigned:
517 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
518}
519
d5e5fafd
PX
520/**
521 * flatview_do_translate - translate an address in FlatView
522 *
523 * @fv: the flat view that we want to translate on
524 * @addr: the address to be translated in above address space
525 * @xlat: the translated address offset within memory region. It
526 * cannot be @NULL.
527 * @plen_out: valid read/write length of the translated address. It
528 * can be @NULL when we don't care about it.
529 * @page_mask_out: page mask for the translated address. This
530 * should only be meaningful for IOMMU translated
531 * addresses, since there may be huge pages that this bit
532 * would tell. It can be @NULL if we don't care about it.
533 * @is_write: whether the translation operation is for write
534 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 535 * @target_as: the address space targeted by the IOMMU
49e14aa8 536 * @attrs: memory transaction attributes
d5e5fafd
PX
537 *
538 * This function is called from RCU critical section
539 */
16620684
AK
540static MemoryRegionSection flatview_do_translate(FlatView *fv,
541 hwaddr addr,
542 hwaddr *xlat,
d5e5fafd
PX
543 hwaddr *plen_out,
544 hwaddr *page_mask_out,
16620684
AK
545 bool is_write,
546 bool is_mmio,
49e14aa8
PM
547 AddressSpace **target_as,
548 MemTxAttrs attrs)
052c8fa9 549{
052c8fa9 550 MemoryRegionSection *section;
3df9d748 551 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
552 hwaddr plen = (hwaddr)(-1);
553
ad2804d9
PB
554 if (!plen_out) {
555 plen_out = &plen;
d5e5fafd 556 }
052c8fa9 557
a411c84b
PB
558 section = address_space_translate_internal(
559 flatview_to_dispatch(fv), addr, xlat,
560 plen_out, is_mmio);
052c8fa9 561
a411c84b
PB
562 iommu_mr = memory_region_get_iommu(section->mr);
563 if (unlikely(iommu_mr)) {
564 return address_space_translate_iommu(iommu_mr, xlat,
565 plen_out, page_mask_out,
566 is_write, is_mmio,
2f7b009c 567 target_as, attrs);
052c8fa9 568 }
d5e5fafd 569 if (page_mask_out) {
a411c84b
PB
570 /* Not behind an IOMMU, use default page size. */
571 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
572 }
573
a764040c 574 return *section;
052c8fa9
JW
575}
576
577/* Called from RCU critical section */
a764040c 578IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 579 bool is_write, MemTxAttrs attrs)
90260c6c 580{
a764040c 581 MemoryRegionSection section;
076a93d7 582 hwaddr xlat, page_mask;
30951157 583
076a93d7
PX
584 /*
585 * This can never be MMIO, and we don't really care about plen,
586 * but page mask.
587 */
588 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
589 NULL, &page_mask, is_write, false, &as,
590 attrs);
30951157 591
a764040c
PX
592 /* Illegal translation */
593 if (section.mr == &io_mem_unassigned) {
594 goto iotlb_fail;
595 }
30951157 596
a764040c
PX
597 /* Convert memory region offset into address space offset */
598 xlat += section.offset_within_address_space -
599 section.offset_within_region;
600
a764040c 601 return (IOMMUTLBEntry) {
e76bb18f 602 .target_as = as,
076a93d7
PX
603 .iova = addr & ~page_mask,
604 .translated_addr = xlat & ~page_mask,
605 .addr_mask = page_mask,
a764040c
PX
606 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
607 .perm = IOMMU_RW,
608 };
609
610iotlb_fail:
611 return (IOMMUTLBEntry) {0};
612}
613
614/* Called from RCU critical section */
16620684 615MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
616 hwaddr *plen, bool is_write,
617 MemTxAttrs attrs)
a764040c
PX
618{
619 MemoryRegion *mr;
620 MemoryRegionSection section;
16620684 621 AddressSpace *as = NULL;
a764040c
PX
622
623 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 624 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 625 is_write, true, &as, attrs);
a764040c
PX
626 mr = section.mr;
627
fe680d0d 628 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 629 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 630 *plen = MIN(page, *plen);
a87f3954
PB
631 }
632
30951157 633 return mr;
90260c6c
JK
634}
635
1f871c5e
PM
636typedef struct TCGIOMMUNotifier {
637 IOMMUNotifier n;
638 MemoryRegion *mr;
639 CPUState *cpu;
640 int iommu_idx;
641 bool active;
642} TCGIOMMUNotifier;
643
644static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
645{
646 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
647
648 if (!notifier->active) {
649 return;
650 }
651 tlb_flush(notifier->cpu);
652 notifier->active = false;
653 /* We leave the notifier struct on the list to avoid reallocating it later.
654 * Generally the number of IOMMUs a CPU deals with will be small.
655 * In any case we can't unregister the iommu notifier from a notify
656 * callback.
657 */
658}
659
660static void tcg_register_iommu_notifier(CPUState *cpu,
661 IOMMUMemoryRegion *iommu_mr,
662 int iommu_idx)
663{
664 /* Make sure this CPU has an IOMMU notifier registered for this
665 * IOMMU/IOMMU index combination, so that we can flush its TLB
666 * when the IOMMU tells us the mappings we've cached have changed.
667 */
668 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
669 TCGIOMMUNotifier *notifier;
670 int i;
671
672 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
673 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
674 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
675 break;
676 }
677 }
678 if (i == cpu->iommu_notifiers->len) {
679 /* Not found, add a new entry at the end of the array */
680 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
681 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
713 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
715 }
716 g_array_free(cpu->iommu_notifiers, true);
717}
718
79e2b9ae 719/* Called from RCU critical section */
90260c6c 720MemoryRegionSection *
d7898cda 721address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
722 hwaddr *xlat, hwaddr *plen,
723 MemTxAttrs attrs, int *prot)
90260c6c 724{
30951157 725 MemoryRegionSection *section;
1f871c5e
PM
726 IOMMUMemoryRegion *iommu_mr;
727 IOMMUMemoryRegionClass *imrc;
728 IOMMUTLBEntry iotlb;
729 int iommu_idx;
f35e44e7 730 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 731
1f871c5e
PM
732 for (;;) {
733 section = address_space_translate_internal(d, addr, &addr, plen, false);
734
735 iommu_mr = memory_region_get_iommu(section->mr);
736 if (!iommu_mr) {
737 break;
738 }
739
740 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
741
742 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
743 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
744 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
745 * doesn't short-cut its translation table walk.
746 */
747 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
748 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
749 | (addr & iotlb.addr_mask));
750 /* Update the caller's prot bits to remove permissions the IOMMU
751 * is giving us a failure response for. If we get down to no
752 * permissions left at all we can give up now.
753 */
754 if (!(iotlb.perm & IOMMU_RO)) {
755 *prot &= ~(PAGE_READ | PAGE_EXEC);
756 }
757 if (!(iotlb.perm & IOMMU_WO)) {
758 *prot &= ~PAGE_WRITE;
759 }
760
761 if (!*prot) {
762 goto translate_fail;
763 }
764
765 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 }
30951157 767
3df9d748 768 assert(!memory_region_is_iommu(section->mr));
1f871c5e 769 *xlat = addr;
30951157 770 return section;
1f871c5e
PM
771
772translate_fail:
773 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 774}
5b6dd868 775#endif
fd6ce8f6 776
b170fce3 777#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
778
779static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 780{
259186a7 781 CPUState *cpu = opaque;
a513fe19 782
5b6dd868
BS
783 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
784 version_id is increased. */
259186a7 785 cpu->interrupt_request &= ~0x01;
d10eb08f 786 tlb_flush(cpu);
5b6dd868 787
15a356c4
PD
788 /* loadvm has just updated the content of RAM, bypassing the
789 * usual mechanisms that ensure we flush TBs for writes to
790 * memory we've translated code from. So we must flush all TBs,
791 * which will now be stale.
792 */
793 tb_flush(cpu);
794
5b6dd868 795 return 0;
a513fe19 796}
7501267e 797
6c3bff0e
PD
798static int cpu_common_pre_load(void *opaque)
799{
800 CPUState *cpu = opaque;
801
adee6424 802 cpu->exception_index = -1;
6c3bff0e
PD
803
804 return 0;
805}
806
807static bool cpu_common_exception_index_needed(void *opaque)
808{
809 CPUState *cpu = opaque;
810
adee6424 811 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
812}
813
814static const VMStateDescription vmstate_cpu_common_exception_index = {
815 .name = "cpu_common/exception_index",
816 .version_id = 1,
817 .minimum_version_id = 1,
5cd8cada 818 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
819 .fields = (VMStateField[]) {
820 VMSTATE_INT32(exception_index, CPUState),
821 VMSTATE_END_OF_LIST()
822 }
823};
824
bac05aa9
AS
825static bool cpu_common_crash_occurred_needed(void *opaque)
826{
827 CPUState *cpu = opaque;
828
829 return cpu->crash_occurred;
830}
831
832static const VMStateDescription vmstate_cpu_common_crash_occurred = {
833 .name = "cpu_common/crash_occurred",
834 .version_id = 1,
835 .minimum_version_id = 1,
836 .needed = cpu_common_crash_occurred_needed,
837 .fields = (VMStateField[]) {
838 VMSTATE_BOOL(crash_occurred, CPUState),
839 VMSTATE_END_OF_LIST()
840 }
841};
842
1a1562f5 843const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
844 .name = "cpu_common",
845 .version_id = 1,
846 .minimum_version_id = 1,
6c3bff0e 847 .pre_load = cpu_common_pre_load,
5b6dd868 848 .post_load = cpu_common_post_load,
35d08458 849 .fields = (VMStateField[]) {
259186a7
AF
850 VMSTATE_UINT32(halted, CPUState),
851 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 852 VMSTATE_END_OF_LIST()
6c3bff0e 853 },
5cd8cada
JQ
854 .subsections = (const VMStateDescription*[]) {
855 &vmstate_cpu_common_exception_index,
bac05aa9 856 &vmstate_cpu_common_crash_occurred,
5cd8cada 857 NULL
5b6dd868
BS
858 }
859};
1a1562f5 860
5b6dd868 861#endif
ea041c0e 862
38d8f5c8 863CPUState *qemu_get_cpu(int index)
ea041c0e 864{
bdc44640 865 CPUState *cpu;
ea041c0e 866
bdc44640 867 CPU_FOREACH(cpu) {
55e5c285 868 if (cpu->cpu_index == index) {
bdc44640 869 return cpu;
55e5c285 870 }
ea041c0e 871 }
5b6dd868 872
bdc44640 873 return NULL;
ea041c0e
FB
874}
875
09daed84 876#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
877void cpu_address_space_init(CPUState *cpu, int asidx,
878 const char *prefix, MemoryRegion *mr)
09daed84 879{
12ebc9a7 880 CPUAddressSpace *newas;
80ceb07a 881 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 882 char *as_name;
80ceb07a
PX
883
884 assert(mr);
87a621d8
PX
885 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
886 address_space_init(as, mr, as_name);
887 g_free(as_name);
12ebc9a7
PM
888
889 /* Target code should have set num_ases before calling us */
890 assert(asidx < cpu->num_ases);
891
56943e8c
PM
892 if (asidx == 0) {
893 /* address space 0 gets the convenience alias */
894 cpu->as = as;
895 }
896
12ebc9a7
PM
897 /* KVM cannot currently support multiple address spaces. */
898 assert(asidx == 0 || !kvm_enabled());
09daed84 899
12ebc9a7
PM
900 if (!cpu->cpu_ases) {
901 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 902 }
32857f4d 903
12ebc9a7
PM
904 newas = &cpu->cpu_ases[asidx];
905 newas->cpu = cpu;
906 newas->as = as;
56943e8c 907 if (tcg_enabled()) {
12ebc9a7
PM
908 newas->tcg_as_listener.commit = tcg_commit;
909 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 910 }
09daed84 911}
651a5bc0
PM
912
913AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
914{
915 /* Return the AddressSpace corresponding to the specified index */
916 return cpu->cpu_ases[asidx].as;
917}
09daed84
EI
918#endif
919
7bbc124e 920void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 921{
9dfeca7c
BR
922 CPUClass *cc = CPU_GET_CLASS(cpu);
923
267f685b 924 cpu_list_remove(cpu);
9dfeca7c
BR
925
926 if (cc->vmsd != NULL) {
927 vmstate_unregister(NULL, cc->vmsd, cpu);
928 }
929 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
930 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
931 }
1f871c5e
PM
932#ifndef CONFIG_USER_ONLY
933 tcg_iommu_free_notifier_list(cpu);
934#endif
1c59eb39
BR
935}
936
c7e002c5
FZ
937Property cpu_common_props[] = {
938#ifndef CONFIG_USER_ONLY
939 /* Create a memory property for softmmu CPU object,
940 * so users can wire up its memory. (This can't go in qom/cpu.c
941 * because that file is compiled only once for both user-mode
942 * and system builds.) The default if no link is set up is to use
943 * the system address space.
944 */
945 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
946 MemoryRegion *),
947#endif
948 DEFINE_PROP_END_OF_LIST(),
949};
950
39e329e3 951void cpu_exec_initfn(CPUState *cpu)
ea041c0e 952{
56943e8c 953 cpu->as = NULL;
12ebc9a7 954 cpu->num_ases = 0;
56943e8c 955
291135b5 956#ifndef CONFIG_USER_ONLY
291135b5 957 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
958 cpu->memory = system_memory;
959 object_ref(OBJECT(cpu->memory));
291135b5 960#endif
39e329e3
LV
961}
962
ce5b1bbf 963void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 964{
55c3ceef 965 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 966 static bool tcg_target_initialized;
291135b5 967
267f685b 968 cpu_list_add(cpu);
1bc7e522 969
2dda6354
EC
970 if (tcg_enabled() && !tcg_target_initialized) {
971 tcg_target_initialized = true;
55c3ceef
RH
972 cc->tcg_initialize();
973 }
974
1bc7e522 975#ifndef CONFIG_USER_ONLY
e0d47944 976 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 977 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 978 }
b170fce3 979 if (cc->vmsd != NULL) {
741da0d3 980 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 981 }
1f871c5e
PM
982
983 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
741da0d3 984#endif
ea041c0e
FB
985}
986
2278b939
IM
987const char *parse_cpu_model(const char *cpu_model)
988{
989 ObjectClass *oc;
990 CPUClass *cc;
991 gchar **model_pieces;
992 const char *cpu_type;
993
994 model_pieces = g_strsplit(cpu_model, ",", 2);
995
996 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
997 if (oc == NULL) {
998 error_report("unable to find CPU model '%s'", model_pieces[0]);
999 g_strfreev(model_pieces);
1000 exit(EXIT_FAILURE);
1001 }
1002
1003 cpu_type = object_class_get_name(oc);
1004 cc = CPU_CLASS(oc);
1005 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1006 g_strfreev(model_pieces);
1007 return cpu_type;
1008}
1009
c40d4792 1010#if defined(CONFIG_USER_ONLY)
8bca9a03 1011void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1012{
406bc339 1013 mmap_lock();
8bca9a03 1014 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1015 mmap_unlock();
1016}
8bca9a03
PB
1017
1018static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1019{
1020 tb_invalidate_phys_addr(pc);
1021}
406bc339 1022#else
8bca9a03
PB
1023void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1024{
1025 ram_addr_t ram_addr;
1026 MemoryRegion *mr;
1027 hwaddr l = 1;
1028
c40d4792
PB
1029 if (!tcg_enabled()) {
1030 return;
1031 }
1032
8bca9a03
PB
1033 rcu_read_lock();
1034 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1035 if (!(memory_region_is_ram(mr)
1036 || memory_region_is_romd(mr))) {
1037 rcu_read_unlock();
1038 return;
1039 }
1040 ram_addr = memory_region_get_ram_addr(mr) + addr;
1041 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1042 rcu_read_unlock();
1043}
1044
406bc339
PK
1045static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1046{
1047 MemTxAttrs attrs;
1048 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1049 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1050 if (phys != -1) {
1051 /* Locks grabbed by tb_invalidate_phys_addr */
1052 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1053 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1054 }
1e7855a5 1055}
406bc339 1056#endif
d720b93d 1057
c527ee8f 1058#if defined(CONFIG_USER_ONLY)
75a34036 1059void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1060
1061{
1062}
1063
3ee887e8
PM
1064int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1065 int flags)
1066{
1067 return -ENOSYS;
1068}
1069
1070void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1071{
1072}
1073
75a34036 1074int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1075 int flags, CPUWatchpoint **watchpoint)
1076{
1077 return -ENOSYS;
1078}
1079#else
6658ffb8 1080/* Add a watchpoint. */
75a34036 1081int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1082 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1083{
c0ce998e 1084 CPUWatchpoint *wp;
6658ffb8 1085
05068c0d 1086 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1087 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1088 error_report("tried to set invalid watchpoint at %"
1089 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1090 return -EINVAL;
1091 }
7267c094 1092 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1093
1094 wp->vaddr = addr;
05068c0d 1095 wp->len = len;
a1d1bb31
AL
1096 wp->flags = flags;
1097
2dc9f411 1098 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1099 if (flags & BP_GDB) {
1100 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1101 } else {
1102 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1103 }
6658ffb8 1104
31b030d4 1105 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1106
1107 if (watchpoint)
1108 *watchpoint = wp;
1109 return 0;
6658ffb8
PB
1110}
1111
a1d1bb31 1112/* Remove a specific watchpoint. */
75a34036 1113int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1114 int flags)
6658ffb8 1115{
a1d1bb31 1116 CPUWatchpoint *wp;
6658ffb8 1117
ff4700b0 1118 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1119 if (addr == wp->vaddr && len == wp->len
6e140f28 1120 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1121 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1122 return 0;
1123 }
1124 }
a1d1bb31 1125 return -ENOENT;
6658ffb8
PB
1126}
1127
a1d1bb31 1128/* Remove a specific watchpoint by reference. */
75a34036 1129void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1130{
ff4700b0 1131 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1132
31b030d4 1133 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1134
7267c094 1135 g_free(watchpoint);
a1d1bb31
AL
1136}
1137
1138/* Remove all matching watchpoints. */
75a34036 1139void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1140{
c0ce998e 1141 CPUWatchpoint *wp, *next;
a1d1bb31 1142
ff4700b0 1143 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1144 if (wp->flags & mask) {
1145 cpu_watchpoint_remove_by_ref(cpu, wp);
1146 }
c0ce998e 1147 }
7d03f82f 1148}
05068c0d
PM
1149
1150/* Return true if this watchpoint address matches the specified
1151 * access (ie the address range covered by the watchpoint overlaps
1152 * partially or completely with the address range covered by the
1153 * access).
1154 */
1155static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1156 vaddr addr,
1157 vaddr len)
1158{
1159 /* We know the lengths are non-zero, but a little caution is
1160 * required to avoid errors in the case where the range ends
1161 * exactly at the top of the address space and so addr + len
1162 * wraps round to zero.
1163 */
1164 vaddr wpend = wp->vaddr + wp->len - 1;
1165 vaddr addrend = addr + len - 1;
1166
1167 return !(addr > wpend || wp->vaddr > addrend);
1168}
1169
c527ee8f 1170#endif
7d03f82f 1171
a1d1bb31 1172/* Add a breakpoint. */
b3310ab3 1173int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1174 CPUBreakpoint **breakpoint)
4c3a88a2 1175{
c0ce998e 1176 CPUBreakpoint *bp;
3b46e624 1177
7267c094 1178 bp = g_malloc(sizeof(*bp));
4c3a88a2 1179
a1d1bb31
AL
1180 bp->pc = pc;
1181 bp->flags = flags;
1182
2dc9f411 1183 /* keep all GDB-injected breakpoints in front */
00b941e5 1184 if (flags & BP_GDB) {
f0c3c505 1185 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1186 } else {
f0c3c505 1187 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1188 }
3b46e624 1189
f0c3c505 1190 breakpoint_invalidate(cpu, pc);
a1d1bb31 1191
00b941e5 1192 if (breakpoint) {
a1d1bb31 1193 *breakpoint = bp;
00b941e5 1194 }
4c3a88a2 1195 return 0;
4c3a88a2
FB
1196}
1197
a1d1bb31 1198/* Remove a specific breakpoint. */
b3310ab3 1199int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1200{
a1d1bb31
AL
1201 CPUBreakpoint *bp;
1202
f0c3c505 1203 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1204 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1205 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1206 return 0;
1207 }
7d03f82f 1208 }
a1d1bb31 1209 return -ENOENT;
7d03f82f
EI
1210}
1211
a1d1bb31 1212/* Remove a specific breakpoint by reference. */
b3310ab3 1213void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1214{
f0c3c505
AF
1215 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1216
1217 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1218
7267c094 1219 g_free(breakpoint);
a1d1bb31
AL
1220}
1221
1222/* Remove all matching breakpoints. */
b3310ab3 1223void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1224{
c0ce998e 1225 CPUBreakpoint *bp, *next;
a1d1bb31 1226
f0c3c505 1227 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1228 if (bp->flags & mask) {
1229 cpu_breakpoint_remove_by_ref(cpu, bp);
1230 }
c0ce998e 1231 }
4c3a88a2
FB
1232}
1233
c33a346e
FB
1234/* enable or disable single step mode. EXCP_DEBUG is returned by the
1235 CPU loop after each instruction */
3825b28f 1236void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1237{
ed2803da
AF
1238 if (cpu->singlestep_enabled != enabled) {
1239 cpu->singlestep_enabled = enabled;
1240 if (kvm_enabled()) {
38e478ec 1241 kvm_update_guest_debug(cpu, 0);
ed2803da 1242 } else {
ccbb4d44 1243 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1244 /* XXX: only flush what is necessary */
bbd77c18 1245 tb_flush(cpu);
e22a25c9 1246 }
c33a346e 1247 }
c33a346e
FB
1248}
1249
a47dddd7 1250void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1251{
1252 va_list ap;
493ae1f0 1253 va_list ap2;
7501267e
FB
1254
1255 va_start(ap, fmt);
493ae1f0 1256 va_copy(ap2, ap);
7501267e
FB
1257 fprintf(stderr, "qemu: fatal: ");
1258 vfprintf(stderr, fmt, ap);
1259 fprintf(stderr, "\n");
878096ee 1260 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1261 if (qemu_log_separate()) {
1ee73216 1262 qemu_log_lock();
93fcfe39
AL
1263 qemu_log("qemu: fatal: ");
1264 qemu_log_vprintf(fmt, ap2);
1265 qemu_log("\n");
a0762859 1266 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1267 qemu_log_flush();
1ee73216 1268 qemu_log_unlock();
93fcfe39 1269 qemu_log_close();
924edcae 1270 }
493ae1f0 1271 va_end(ap2);
f9373291 1272 va_end(ap);
7615936e 1273 replay_finish();
fd052bf6
RV
1274#if defined(CONFIG_USER_ONLY)
1275 {
1276 struct sigaction act;
1277 sigfillset(&act.sa_mask);
1278 act.sa_handler = SIG_DFL;
8347c185 1279 act.sa_flags = 0;
fd052bf6
RV
1280 sigaction(SIGABRT, &act, NULL);
1281 }
1282#endif
7501267e
FB
1283 abort();
1284}
1285
0124311e 1286#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1287/* Called from RCU critical section */
041603fe
PB
1288static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1289{
1290 RAMBlock *block;
1291
43771539 1292 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1293 if (block && addr - block->offset < block->max_length) {
68851b98 1294 return block;
041603fe 1295 }
99e15582 1296 RAMBLOCK_FOREACH(block) {
9b8424d5 1297 if (addr - block->offset < block->max_length) {
041603fe
PB
1298 goto found;
1299 }
1300 }
1301
1302 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1303 abort();
1304
1305found:
43771539
PB
1306 /* It is safe to write mru_block outside the iothread lock. This
1307 * is what happens:
1308 *
1309 * mru_block = xxx
1310 * rcu_read_unlock()
1311 * xxx removed from list
1312 * rcu_read_lock()
1313 * read mru_block
1314 * mru_block = NULL;
1315 * call_rcu(reclaim_ramblock, xxx);
1316 * rcu_read_unlock()
1317 *
1318 * atomic_rcu_set is not needed here. The block was already published
1319 * when it was placed into the list. Here we're just making an extra
1320 * copy of the pointer.
1321 */
041603fe
PB
1322 ram_list.mru_block = block;
1323 return block;
1324}
1325
a2f4d5be 1326static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1327{
9a13565d 1328 CPUState *cpu;
041603fe 1329 ram_addr_t start1;
a2f4d5be
JQ
1330 RAMBlock *block;
1331 ram_addr_t end;
1332
f28d0dfd 1333 assert(tcg_enabled());
a2f4d5be
JQ
1334 end = TARGET_PAGE_ALIGN(start + length);
1335 start &= TARGET_PAGE_MASK;
d24981d3 1336
0dc3f44a 1337 rcu_read_lock();
041603fe
PB
1338 block = qemu_get_ram_block(start);
1339 assert(block == qemu_get_ram_block(end - 1));
1240be24 1340 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1341 CPU_FOREACH(cpu) {
1342 tlb_reset_dirty(cpu, start1, length);
1343 }
0dc3f44a 1344 rcu_read_unlock();
d24981d3
JQ
1345}
1346
5579c7f3 1347/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1348bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1349 ram_addr_t length,
1350 unsigned client)
1ccde1cb 1351{
5b82b703 1352 DirtyMemoryBlocks *blocks;
03eebc9e 1353 unsigned long end, page;
5b82b703 1354 bool dirty = false;
03eebc9e
SH
1355
1356 if (length == 0) {
1357 return false;
1358 }
f23db169 1359
03eebc9e
SH
1360 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1361 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1362
1363 rcu_read_lock();
1364
1365 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366
1367 while (page < end) {
1368 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1370 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1371
1372 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1373 offset, num);
1374 page += num;
1375 }
1376
1377 rcu_read_unlock();
03eebc9e
SH
1378
1379 if (dirty && tcg_enabled()) {
a2f4d5be 1380 tlb_reset_dirty_range_all(start, length);
5579c7f3 1381 }
03eebc9e
SH
1382
1383 return dirty;
1ccde1cb
FB
1384}
1385
8deaf12c
GH
1386DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1387 (ram_addr_t start, ram_addr_t length, unsigned client)
1388{
1389 DirtyMemoryBlocks *blocks;
1390 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1391 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1392 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1393 DirtyBitmapSnapshot *snap;
1394 unsigned long page, end, dest;
1395
1396 snap = g_malloc0(sizeof(*snap) +
1397 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1398 snap->start = first;
1399 snap->end = last;
1400
1401 page = first >> TARGET_PAGE_BITS;
1402 end = last >> TARGET_PAGE_BITS;
1403 dest = 0;
1404
1405 rcu_read_lock();
1406
1407 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1408
1409 while (page < end) {
1410 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1411 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1412 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1413
1414 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1415 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1416 offset >>= BITS_PER_LEVEL;
1417
1418 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1419 blocks->blocks[idx] + offset,
1420 num);
1421 page += num;
1422 dest += num >> BITS_PER_LEVEL;
1423 }
1424
1425 rcu_read_unlock();
1426
1427 if (tcg_enabled()) {
1428 tlb_reset_dirty_range_all(start, length);
1429 }
1430
1431 return snap;
1432}
1433
1434bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1435 ram_addr_t start,
1436 ram_addr_t length)
1437{
1438 unsigned long page, end;
1439
1440 assert(start >= snap->start);
1441 assert(start + length <= snap->end);
1442
1443 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1444 page = (start - snap->start) >> TARGET_PAGE_BITS;
1445
1446 while (page < end) {
1447 if (test_bit(page, snap->dirty)) {
1448 return true;
1449 }
1450 page++;
1451 }
1452 return false;
1453}
1454
79e2b9ae 1455/* Called from RCU critical section */
bb0e627a 1456hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1457 MemoryRegionSection *section,
1458 target_ulong vaddr,
1459 hwaddr paddr, hwaddr xlat,
1460 int prot,
1461 target_ulong *address)
e5548617 1462{
a8170e5e 1463 hwaddr iotlb;
e5548617
BS
1464 CPUWatchpoint *wp;
1465
cc5bea60 1466 if (memory_region_is_ram(section->mr)) {
e5548617 1467 /* Normal RAM. */
e4e69794 1468 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1469 if (!section->readonly) {
b41aac4f 1470 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1471 } else {
b41aac4f 1472 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1473 }
1474 } else {
0b8e2c10
PM
1475 AddressSpaceDispatch *d;
1476
16620684 1477 d = flatview_to_dispatch(section->fv);
0b8e2c10 1478 iotlb = section - d->map.sections;
149f54b5 1479 iotlb += xlat;
e5548617
BS
1480 }
1481
1482 /* Make accesses to pages with watchpoints go via the
1483 watchpoint trap routines. */
ff4700b0 1484 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1485 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1486 /* Avoid trapping reads of pages with a write breakpoint. */
1487 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1488 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1489 *address |= TLB_MMIO;
1490 break;
1491 }
1492 }
1493 }
1494
1495 return iotlb;
1496}
9fa3e853
FB
1497#endif /* defined(CONFIG_USER_ONLY) */
1498
e2eef170 1499#if !defined(CONFIG_USER_ONLY)
8da3ff18 1500
c227f099 1501static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1502 uint16_t section);
16620684 1503static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1504
06329cce 1505static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1506 qemu_anon_ram_alloc;
91138037
MA
1507
1508/*
1509 * Set a custom physical guest memory alloator.
1510 * Accelerators with unusual needs may need this. Hopefully, we can
1511 * get rid of it eventually.
1512 */
06329cce 1513void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1514{
1515 phys_mem_alloc = alloc;
1516}
1517
53cb28cb
MA
1518static uint16_t phys_section_add(PhysPageMap *map,
1519 MemoryRegionSection *section)
5312bd8b 1520{
68f3f65b
PB
1521 /* The physical section number is ORed with a page-aligned
1522 * pointer to produce the iotlb entries. Thus it should
1523 * never overflow into the page-aligned value.
1524 */
53cb28cb 1525 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1526
53cb28cb
MA
1527 if (map->sections_nb == map->sections_nb_alloc) {
1528 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1529 map->sections = g_renew(MemoryRegionSection, map->sections,
1530 map->sections_nb_alloc);
5312bd8b 1531 }
53cb28cb 1532 map->sections[map->sections_nb] = *section;
dfde4e6e 1533 memory_region_ref(section->mr);
53cb28cb 1534 return map->sections_nb++;
5312bd8b
AK
1535}
1536
058bc4b5
PB
1537static void phys_section_destroy(MemoryRegion *mr)
1538{
55b4e80b
DS
1539 bool have_sub_page = mr->subpage;
1540
dfde4e6e
PB
1541 memory_region_unref(mr);
1542
55b4e80b 1543 if (have_sub_page) {
058bc4b5 1544 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1545 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1546 g_free(subpage);
1547 }
1548}
1549
6092666e 1550static void phys_sections_free(PhysPageMap *map)
5312bd8b 1551{
9affd6fc
PB
1552 while (map->sections_nb > 0) {
1553 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1554 phys_section_destroy(section->mr);
1555 }
9affd6fc
PB
1556 g_free(map->sections);
1557 g_free(map->nodes);
5312bd8b
AK
1558}
1559
9950322a 1560static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1561{
9950322a 1562 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1563 subpage_t *subpage;
a8170e5e 1564 hwaddr base = section->offset_within_address_space
0f0cb164 1565 & TARGET_PAGE_MASK;
003a0cf2 1566 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1567 MemoryRegionSection subsection = {
1568 .offset_within_address_space = base,
052e87b0 1569 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1570 };
a8170e5e 1571 hwaddr start, end;
0f0cb164 1572
f3705d53 1573 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1574
f3705d53 1575 if (!(existing->mr->subpage)) {
16620684
AK
1576 subpage = subpage_init(fv, base);
1577 subsection.fv = fv;
0f0cb164 1578 subsection.mr = &subpage->iomem;
ac1970fb 1579 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1580 phys_section_add(&d->map, &subsection));
0f0cb164 1581 } else {
f3705d53 1582 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1583 }
1584 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1585 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1586 subpage_register(subpage, start, end,
1587 phys_section_add(&d->map, section));
0f0cb164
AK
1588}
1589
1590
9950322a 1591static void register_multipage(FlatView *fv,
052e87b0 1592 MemoryRegionSection *section)
33417e70 1593{
9950322a 1594 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1595 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1596 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1597 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1598 TARGET_PAGE_BITS));
dd81124b 1599
733d5ef5
PB
1600 assert(num_pages);
1601 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1602}
1603
8629d3fc 1604void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1605{
99b9cc06 1606 MemoryRegionSection now = *section, remain = *section;
052e87b0 1607 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1608
733d5ef5
PB
1609 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1610 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1611 - now.offset_within_address_space;
1612
052e87b0 1613 now.size = int128_min(int128_make64(left), now.size);
9950322a 1614 register_subpage(fv, &now);
733d5ef5 1615 } else {
052e87b0 1616 now.size = int128_zero();
733d5ef5 1617 }
052e87b0
PB
1618 while (int128_ne(remain.size, now.size)) {
1619 remain.size = int128_sub(remain.size, now.size);
1620 remain.offset_within_address_space += int128_get64(now.size);
1621 remain.offset_within_region += int128_get64(now.size);
69b67646 1622 now = remain;
052e87b0 1623 if (int128_lt(remain.size, page_size)) {
9950322a 1624 register_subpage(fv, &now);
88266249 1625 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1626 now.size = page_size;
9950322a 1627 register_subpage(fv, &now);
69b67646 1628 } else {
052e87b0 1629 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1630 register_multipage(fv, &now);
69b67646 1631 }
0f0cb164
AK
1632 }
1633}
1634
62a2744c
SY
1635void qemu_flush_coalesced_mmio_buffer(void)
1636{
1637 if (kvm_enabled())
1638 kvm_flush_coalesced_mmio_buffer();
1639}
1640
b2a8658e
UD
1641void qemu_mutex_lock_ramlist(void)
1642{
1643 qemu_mutex_lock(&ram_list.mutex);
1644}
1645
1646void qemu_mutex_unlock_ramlist(void)
1647{
1648 qemu_mutex_unlock(&ram_list.mutex);
1649}
1650
be9b23c4
PX
1651void ram_block_dump(Monitor *mon)
1652{
1653 RAMBlock *block;
1654 char *psize;
1655
1656 rcu_read_lock();
1657 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1658 "Block Name", "PSize", "Offset", "Used", "Total");
1659 RAMBLOCK_FOREACH(block) {
1660 psize = size_to_str(block->page_size);
1661 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1662 " 0x%016" PRIx64 "\n", block->idstr, psize,
1663 (uint64_t)block->offset,
1664 (uint64_t)block->used_length,
1665 (uint64_t)block->max_length);
1666 g_free(psize);
1667 }
1668 rcu_read_unlock();
1669}
1670
9c607668
AK
1671#ifdef __linux__
1672/*
1673 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1674 * may or may not name the same files / on the same filesystem now as
1675 * when we actually open and map them. Iterate over the file
1676 * descriptors instead, and use qemu_fd_getpagesize().
1677 */
1678static int find_max_supported_pagesize(Object *obj, void *opaque)
1679{
9c607668
AK
1680 long *hpsize_min = opaque;
1681
1682 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1683 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1684
0de6e2a3
DG
1685 if (hpsize < *hpsize_min) {
1686 *hpsize_min = hpsize;
9c607668
AK
1687 }
1688 }
1689
1690 return 0;
1691}
1692
1693long qemu_getrampagesize(void)
1694{
1695 long hpsize = LONG_MAX;
1696 long mainrampagesize;
1697 Object *memdev_root;
1698
0de6e2a3 1699 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1700
1701 /* it's possible we have memory-backend objects with
1702 * hugepage-backed RAM. these may get mapped into system
1703 * address space via -numa parameters or memory hotplug
1704 * hooks. we want to take these into account, but we
1705 * also want to make sure these supported hugepage
1706 * sizes are applicable across the entire range of memory
1707 * we may boot from, so we take the min across all
1708 * backends, and assume normal pages in cases where a
1709 * backend isn't backed by hugepages.
1710 */
1711 memdev_root = object_resolve_path("/objects", NULL);
1712 if (memdev_root) {
1713 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1714 }
1715 if (hpsize == LONG_MAX) {
1716 /* No additional memory regions found ==> Report main RAM page size */
1717 return mainrampagesize;
1718 }
1719
1720 /* If NUMA is disabled or the NUMA nodes are not backed with a
1721 * memory-backend, then there is at least one node using "normal" RAM,
1722 * so if its page size is smaller we have got to report that size instead.
1723 */
1724 if (hpsize > mainrampagesize &&
1725 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1726 static bool warned;
1727 if (!warned) {
1728 error_report("Huge page support disabled (n/a for main memory).");
1729 warned = true;
1730 }
1731 return mainrampagesize;
1732 }
1733
1734 return hpsize;
1735}
1736#else
1737long qemu_getrampagesize(void)
1738{
1739 return getpagesize();
1740}
1741#endif
1742
e1e84ba0 1743#ifdef __linux__
d6af99c9
HZ
1744static int64_t get_file_size(int fd)
1745{
1746 int64_t size = lseek(fd, 0, SEEK_END);
1747 if (size < 0) {
1748 return -errno;
1749 }
1750 return size;
1751}
1752
8d37b030
MAL
1753static int file_ram_open(const char *path,
1754 const char *region_name,
1755 bool *created,
1756 Error **errp)
c902760f
MT
1757{
1758 char *filename;
8ca761f6
PF
1759 char *sanitized_name;
1760 char *c;
5c3ece79 1761 int fd = -1;
c902760f 1762
8d37b030 1763 *created = false;
fd97fd44
MA
1764 for (;;) {
1765 fd = open(path, O_RDWR);
1766 if (fd >= 0) {
1767 /* @path names an existing file, use it */
1768 break;
8d31d6b6 1769 }
fd97fd44
MA
1770 if (errno == ENOENT) {
1771 /* @path names a file that doesn't exist, create it */
1772 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1773 if (fd >= 0) {
8d37b030 1774 *created = true;
fd97fd44
MA
1775 break;
1776 }
1777 } else if (errno == EISDIR) {
1778 /* @path names a directory, create a file there */
1779 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1780 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1781 for (c = sanitized_name; *c != '\0'; c++) {
1782 if (*c == '/') {
1783 *c = '_';
1784 }
1785 }
8ca761f6 1786
fd97fd44
MA
1787 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1788 sanitized_name);
1789 g_free(sanitized_name);
8d31d6b6 1790
fd97fd44
MA
1791 fd = mkstemp(filename);
1792 if (fd >= 0) {
1793 unlink(filename);
1794 g_free(filename);
1795 break;
1796 }
1797 g_free(filename);
8d31d6b6 1798 }
fd97fd44
MA
1799 if (errno != EEXIST && errno != EINTR) {
1800 error_setg_errno(errp, errno,
1801 "can't open backing store %s for guest RAM",
1802 path);
8d37b030 1803 return -1;
fd97fd44
MA
1804 }
1805 /*
1806 * Try again on EINTR and EEXIST. The latter happens when
1807 * something else creates the file between our two open().
1808 */
8d31d6b6 1809 }
c902760f 1810
8d37b030
MAL
1811 return fd;
1812}
1813
1814static void *file_ram_alloc(RAMBlock *block,
1815 ram_addr_t memory,
1816 int fd,
1817 bool truncate,
1818 Error **errp)
1819{
1820 void *area;
1821
863e9621 1822 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1823 if (block->mr->align % block->page_size) {
1824 error_setg(errp, "alignment 0x%" PRIx64
1825 " must be multiples of page size 0x%zx",
1826 block->mr->align, block->page_size);
1827 return NULL;
61362b71
DH
1828 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1829 error_setg(errp, "alignment 0x%" PRIx64
1830 " must be a power of two", block->mr->align);
1831 return NULL;
98376843
HZ
1832 }
1833 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1834#if defined(__s390x__)
1835 if (kvm_enabled()) {
1836 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1837 }
1838#endif
fd97fd44 1839
863e9621 1840 if (memory < block->page_size) {
fd97fd44 1841 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1842 "or larger than page size 0x%zx",
1843 memory, block->page_size);
8d37b030 1844 return NULL;
1775f111
HZ
1845 }
1846
863e9621 1847 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1848
1849 /*
1850 * ftruncate is not supported by hugetlbfs in older
1851 * hosts, so don't bother bailing out on errors.
1852 * If anything goes wrong with it under other filesystems,
1853 * mmap will fail.
d6af99c9
HZ
1854 *
1855 * Do not truncate the non-empty backend file to avoid corrupting
1856 * the existing data in the file. Disabling shrinking is not
1857 * enough. For example, the current vNVDIMM implementation stores
1858 * the guest NVDIMM labels at the end of the backend file. If the
1859 * backend file is later extended, QEMU will not be able to find
1860 * those labels. Therefore, extending the non-empty backend file
1861 * is disabled as well.
c902760f 1862 */
8d37b030 1863 if (truncate && ftruncate(fd, memory)) {
9742bf26 1864 perror("ftruncate");
7f56e740 1865 }
c902760f 1866
d2f39add
DD
1867 area = qemu_ram_mmap(fd, memory, block->mr->align,
1868 block->flags & RAM_SHARED);
c902760f 1869 if (area == MAP_FAILED) {
7f56e740 1870 error_setg_errno(errp, errno,
fd97fd44 1871 "unable to map backing store for guest RAM");
8d37b030 1872 return NULL;
c902760f 1873 }
ef36fa14
MT
1874
1875 if (mem_prealloc) {
1e356fc1 1876 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1877 if (errp && *errp) {
8d37b030
MAL
1878 qemu_ram_munmap(area, memory);
1879 return NULL;
056b68af 1880 }
ef36fa14
MT
1881 }
1882
04b16653 1883 block->fd = fd;
c902760f
MT
1884 return area;
1885}
1886#endif
1887
154cc9ea
DDAG
1888/* Allocate space within the ram_addr_t space that governs the
1889 * dirty bitmaps.
1890 * Called with the ramlist lock held.
1891 */
d17b5288 1892static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1893{
1894 RAMBlock *block, *next_block;
3e837b2c 1895 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1896
49cd9ac6
SH
1897 assert(size != 0); /* it would hand out same offset multiple times */
1898
0dc3f44a 1899 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1900 return 0;
0d53d9fe 1901 }
04b16653 1902
99e15582 1903 RAMBLOCK_FOREACH(block) {
154cc9ea 1904 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1905
801110ab
DDAG
1906 /* Align blocks to start on a 'long' in the bitmap
1907 * which makes the bitmap sync'ing take the fast path.
1908 */
154cc9ea 1909 candidate = block->offset + block->max_length;
801110ab 1910 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1911
154cc9ea
DDAG
1912 /* Search for the closest following block
1913 * and find the gap.
1914 */
99e15582 1915 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1916 if (next_block->offset >= candidate) {
04b16653
AW
1917 next = MIN(next, next_block->offset);
1918 }
1919 }
154cc9ea
DDAG
1920
1921 /* If it fits remember our place and remember the size
1922 * of gap, but keep going so that we might find a smaller
1923 * gap to fill so avoiding fragmentation.
1924 */
1925 if (next - candidate >= size && next - candidate < mingap) {
1926 offset = candidate;
1927 mingap = next - candidate;
04b16653 1928 }
154cc9ea
DDAG
1929
1930 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1931 }
3e837b2c
AW
1932
1933 if (offset == RAM_ADDR_MAX) {
1934 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1935 (uint64_t)size);
1936 abort();
1937 }
1938
154cc9ea
DDAG
1939 trace_find_ram_offset(size, offset);
1940
04b16653
AW
1941 return offset;
1942}
1943
c136180c 1944static unsigned long last_ram_page(void)
d17b5288
AW
1945{
1946 RAMBlock *block;
1947 ram_addr_t last = 0;
1948
0dc3f44a 1949 rcu_read_lock();
99e15582 1950 RAMBLOCK_FOREACH(block) {
62be4e3a 1951 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1952 }
0dc3f44a 1953 rcu_read_unlock();
b8c48993 1954 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1955}
1956
ddb97f1d
JB
1957static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1958{
1959 int ret;
ddb97f1d
JB
1960
1961 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1962 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1963 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1964 if (ret) {
1965 perror("qemu_madvise");
1966 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1967 "but dump_guest_core=off specified\n");
1968 }
1969 }
1970}
1971
422148d3
DDAG
1972const char *qemu_ram_get_idstr(RAMBlock *rb)
1973{
1974 return rb->idstr;
1975}
1976
463a4ac2
DDAG
1977bool qemu_ram_is_shared(RAMBlock *rb)
1978{
1979 return rb->flags & RAM_SHARED;
1980}
1981
2ce16640
DDAG
1982/* Note: Only set at the start of postcopy */
1983bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1984{
1985 return rb->flags & RAM_UF_ZEROPAGE;
1986}
1987
1988void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1989{
1990 rb->flags |= RAM_UF_ZEROPAGE;
1991}
1992
b895de50
CLG
1993bool qemu_ram_is_migratable(RAMBlock *rb)
1994{
1995 return rb->flags & RAM_MIGRATABLE;
1996}
1997
1998void qemu_ram_set_migratable(RAMBlock *rb)
1999{
2000 rb->flags |= RAM_MIGRATABLE;
2001}
2002
2003void qemu_ram_unset_migratable(RAMBlock *rb)
2004{
2005 rb->flags &= ~RAM_MIGRATABLE;
2006}
2007
ae3a7047 2008/* Called with iothread lock held. */
fa53a0e5 2009void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2010{
fa53a0e5 2011 RAMBlock *block;
20cfe881 2012
c5705a77
AK
2013 assert(new_block);
2014 assert(!new_block->idstr[0]);
84b89d78 2015
09e5ab63
AL
2016 if (dev) {
2017 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2018 if (id) {
2019 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2020 g_free(id);
84b89d78
CM
2021 }
2022 }
2023 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2024
ab0a9956 2025 rcu_read_lock();
99e15582 2026 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2027 if (block != new_block &&
2028 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2029 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2030 new_block->idstr);
2031 abort();
2032 }
2033 }
0dc3f44a 2034 rcu_read_unlock();
c5705a77
AK
2035}
2036
ae3a7047 2037/* Called with iothread lock held. */
fa53a0e5 2038void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2039{
ae3a7047
MD
2040 /* FIXME: arch_init.c assumes that this is not called throughout
2041 * migration. Ignore the problem since hot-unplug during migration
2042 * does not work anyway.
2043 */
20cfe881
HT
2044 if (block) {
2045 memset(block->idstr, 0, sizeof(block->idstr));
2046 }
2047}
2048
863e9621
DDAG
2049size_t qemu_ram_pagesize(RAMBlock *rb)
2050{
2051 return rb->page_size;
2052}
2053
67f11b5c
DDAG
2054/* Returns the largest size of page in use */
2055size_t qemu_ram_pagesize_largest(void)
2056{
2057 RAMBlock *block;
2058 size_t largest = 0;
2059
99e15582 2060 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2061 largest = MAX(largest, qemu_ram_pagesize(block));
2062 }
2063
2064 return largest;
2065}
2066
8490fc78
LC
2067static int memory_try_enable_merging(void *addr, size_t len)
2068{
75cc7f01 2069 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2070 /* disabled by the user */
2071 return 0;
2072 }
2073
2074 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2075}
2076
62be4e3a
MT
2077/* Only legal before guest might have detected the memory size: e.g. on
2078 * incoming migration, or right after reset.
2079 *
2080 * As memory core doesn't know how is memory accessed, it is up to
2081 * resize callback to update device state and/or add assertions to detect
2082 * misuse, if necessary.
2083 */
fa53a0e5 2084int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2085{
62be4e3a
MT
2086 assert(block);
2087
4ed023ce 2088 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2089
62be4e3a
MT
2090 if (block->used_length == newsize) {
2091 return 0;
2092 }
2093
2094 if (!(block->flags & RAM_RESIZEABLE)) {
2095 error_setg_errno(errp, EINVAL,
2096 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2097 " in != 0x" RAM_ADDR_FMT, block->idstr,
2098 newsize, block->used_length);
2099 return -EINVAL;
2100 }
2101
2102 if (block->max_length < newsize) {
2103 error_setg_errno(errp, EINVAL,
2104 "Length too large: %s: 0x" RAM_ADDR_FMT
2105 " > 0x" RAM_ADDR_FMT, block->idstr,
2106 newsize, block->max_length);
2107 return -EINVAL;
2108 }
2109
2110 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2111 block->used_length = newsize;
58d2707e
PB
2112 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2113 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2114 memory_region_set_size(block->mr, newsize);
2115 if (block->resized) {
2116 block->resized(block->idstr, newsize, block->host);
2117 }
2118 return 0;
2119}
2120
5b82b703
SH
2121/* Called with ram_list.mutex held */
2122static void dirty_memory_extend(ram_addr_t old_ram_size,
2123 ram_addr_t new_ram_size)
2124{
2125 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2126 DIRTY_MEMORY_BLOCK_SIZE);
2127 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2128 DIRTY_MEMORY_BLOCK_SIZE);
2129 int i;
2130
2131 /* Only need to extend if block count increased */
2132 if (new_num_blocks <= old_num_blocks) {
2133 return;
2134 }
2135
2136 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2137 DirtyMemoryBlocks *old_blocks;
2138 DirtyMemoryBlocks *new_blocks;
2139 int j;
2140
2141 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2142 new_blocks = g_malloc(sizeof(*new_blocks) +
2143 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2144
2145 if (old_num_blocks) {
2146 memcpy(new_blocks->blocks, old_blocks->blocks,
2147 old_num_blocks * sizeof(old_blocks->blocks[0]));
2148 }
2149
2150 for (j = old_num_blocks; j < new_num_blocks; j++) {
2151 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2152 }
2153
2154 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2155
2156 if (old_blocks) {
2157 g_free_rcu(old_blocks, rcu);
2158 }
2159 }
2160}
2161
06329cce 2162static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2163{
e1c57ab8 2164 RAMBlock *block;
0d53d9fe 2165 RAMBlock *last_block = NULL;
2152f5ca 2166 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2167 Error *err = NULL;
2152f5ca 2168
b8c48993 2169 old_ram_size = last_ram_page();
c5705a77 2170
b2a8658e 2171 qemu_mutex_lock_ramlist();
9b8424d5 2172 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2173
2174 if (!new_block->host) {
2175 if (xen_enabled()) {
9b8424d5 2176 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2177 new_block->mr, &err);
2178 if (err) {
2179 error_propagate(errp, err);
2180 qemu_mutex_unlock_ramlist();
39c350ee 2181 return;
37aa7a0e 2182 }
e1c57ab8 2183 } else {
9b8424d5 2184 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2185 &new_block->mr->align, shared);
39228250 2186 if (!new_block->host) {
ef701d7b
HT
2187 error_setg_errno(errp, errno,
2188 "cannot set up guest memory '%s'",
2189 memory_region_name(new_block->mr));
2190 qemu_mutex_unlock_ramlist();
39c350ee 2191 return;
39228250 2192 }
9b8424d5 2193 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2194 }
c902760f 2195 }
94a6b54f 2196
dd631697
LZ
2197 new_ram_size = MAX(old_ram_size,
2198 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2199 if (new_ram_size > old_ram_size) {
5b82b703 2200 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2201 }
0d53d9fe
MD
2202 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2203 * QLIST (which has an RCU-friendly variant) does not have insertion at
2204 * tail, so save the last element in last_block.
2205 */
99e15582 2206 RAMBLOCK_FOREACH(block) {
0d53d9fe 2207 last_block = block;
9b8424d5 2208 if (block->max_length < new_block->max_length) {
abb26d63
PB
2209 break;
2210 }
2211 }
2212 if (block) {
0dc3f44a 2213 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2214 } else if (last_block) {
0dc3f44a 2215 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2216 } else { /* list is empty */
0dc3f44a 2217 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2218 }
0d6d3c87 2219 ram_list.mru_block = NULL;
94a6b54f 2220
0dc3f44a
MD
2221 /* Write list before version */
2222 smp_wmb();
f798b07f 2223 ram_list.version++;
b2a8658e 2224 qemu_mutex_unlock_ramlist();
f798b07f 2225
9b8424d5 2226 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2227 new_block->used_length,
2228 DIRTY_CLIENTS_ALL);
94a6b54f 2229
a904c911
PB
2230 if (new_block->host) {
2231 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2232 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2233 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2234 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2235 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2236 }
94a6b54f 2237}
e9a1ab19 2238
0b183fc8 2239#ifdef __linux__
38b3362d
MAL
2240RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2241 bool share, int fd,
2242 Error **errp)
e1c57ab8
PB
2243{
2244 RAMBlock *new_block;
ef701d7b 2245 Error *local_err = NULL;
8d37b030 2246 int64_t file_size;
e1c57ab8
PB
2247
2248 if (xen_enabled()) {
7f56e740 2249 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2250 return NULL;
e1c57ab8
PB
2251 }
2252
e45e7ae2
MAL
2253 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2254 error_setg(errp,
2255 "host lacks kvm mmu notifiers, -mem-path unsupported");
2256 return NULL;
2257 }
2258
e1c57ab8
PB
2259 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2260 /*
2261 * file_ram_alloc() needs to allocate just like
2262 * phys_mem_alloc, but we haven't bothered to provide
2263 * a hook there.
2264 */
7f56e740
PB
2265 error_setg(errp,
2266 "-mem-path not supported with this accelerator");
528f46af 2267 return NULL;
e1c57ab8
PB
2268 }
2269
4ed023ce 2270 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2271 file_size = get_file_size(fd);
2272 if (file_size > 0 && file_size < size) {
2273 error_setg(errp, "backing store %s size 0x%" PRIx64
2274 " does not match 'size' option 0x" RAM_ADDR_FMT,
2275 mem_path, file_size, size);
8d37b030
MAL
2276 return NULL;
2277 }
2278
e1c57ab8
PB
2279 new_block = g_malloc0(sizeof(*new_block));
2280 new_block->mr = mr;
9b8424d5
MT
2281 new_block->used_length = size;
2282 new_block->max_length = size;
dbcb8981 2283 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2284 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2285 if (!new_block->host) {
2286 g_free(new_block);
528f46af 2287 return NULL;
7f56e740
PB
2288 }
2289
06329cce 2290 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2291 if (local_err) {
2292 g_free(new_block);
2293 error_propagate(errp, local_err);
528f46af 2294 return NULL;
ef701d7b 2295 }
528f46af 2296 return new_block;
38b3362d
MAL
2297
2298}
2299
2300
2301RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2302 bool share, const char *mem_path,
2303 Error **errp)
2304{
2305 int fd;
2306 bool created;
2307 RAMBlock *block;
2308
2309 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2310 if (fd < 0) {
2311 return NULL;
2312 }
2313
2314 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2315 if (!block) {
2316 if (created) {
2317 unlink(mem_path);
2318 }
2319 close(fd);
2320 return NULL;
2321 }
2322
2323 return block;
e1c57ab8 2324}
0b183fc8 2325#endif
e1c57ab8 2326
62be4e3a 2327static
528f46af
FZ
2328RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2329 void (*resized)(const char*,
2330 uint64_t length,
2331 void *host),
06329cce 2332 void *host, bool resizeable, bool share,
528f46af 2333 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2334{
2335 RAMBlock *new_block;
ef701d7b 2336 Error *local_err = NULL;
e1c57ab8 2337
4ed023ce
DDAG
2338 size = HOST_PAGE_ALIGN(size);
2339 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2340 new_block = g_malloc0(sizeof(*new_block));
2341 new_block->mr = mr;
62be4e3a 2342 new_block->resized = resized;
9b8424d5
MT
2343 new_block->used_length = size;
2344 new_block->max_length = max_size;
62be4e3a 2345 assert(max_size >= size);
e1c57ab8 2346 new_block->fd = -1;
863e9621 2347 new_block->page_size = getpagesize();
e1c57ab8
PB
2348 new_block->host = host;
2349 if (host) {
7bd4f430 2350 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2351 }
62be4e3a
MT
2352 if (resizeable) {
2353 new_block->flags |= RAM_RESIZEABLE;
2354 }
06329cce 2355 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2356 if (local_err) {
2357 g_free(new_block);
2358 error_propagate(errp, local_err);
528f46af 2359 return NULL;
ef701d7b 2360 }
528f46af 2361 return new_block;
e1c57ab8
PB
2362}
2363
528f46af 2364RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2365 MemoryRegion *mr, Error **errp)
2366{
06329cce
MA
2367 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2368 false, mr, errp);
62be4e3a
MT
2369}
2370
06329cce
MA
2371RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2372 MemoryRegion *mr, Error **errp)
6977dfe6 2373{
06329cce
MA
2374 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2375 share, mr, errp);
62be4e3a
MT
2376}
2377
528f46af 2378RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2379 void (*resized)(const char*,
2380 uint64_t length,
2381 void *host),
2382 MemoryRegion *mr, Error **errp)
2383{
06329cce
MA
2384 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2385 false, mr, errp);
6977dfe6
YT
2386}
2387
43771539
PB
2388static void reclaim_ramblock(RAMBlock *block)
2389{
2390 if (block->flags & RAM_PREALLOC) {
2391 ;
2392 } else if (xen_enabled()) {
2393 xen_invalidate_map_cache_entry(block->host);
2394#ifndef _WIN32
2395 } else if (block->fd >= 0) {
2f3a2bb1 2396 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2397 close(block->fd);
2398#endif
2399 } else {
2400 qemu_anon_ram_free(block->host, block->max_length);
2401 }
2402 g_free(block);
2403}
2404
f1060c55 2405void qemu_ram_free(RAMBlock *block)
e9a1ab19 2406{
85bc2a15
MAL
2407 if (!block) {
2408 return;
2409 }
2410
0987d735
PB
2411 if (block->host) {
2412 ram_block_notify_remove(block->host, block->max_length);
2413 }
2414
b2a8658e 2415 qemu_mutex_lock_ramlist();
f1060c55
FZ
2416 QLIST_REMOVE_RCU(block, next);
2417 ram_list.mru_block = NULL;
2418 /* Write list before version */
2419 smp_wmb();
2420 ram_list.version++;
2421 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2422 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2423}
2424
cd19cfa2
HY
2425#ifndef _WIN32
2426void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2427{
2428 RAMBlock *block;
2429 ram_addr_t offset;
2430 int flags;
2431 void *area, *vaddr;
2432
99e15582 2433 RAMBLOCK_FOREACH(block) {
cd19cfa2 2434 offset = addr - block->offset;
9b8424d5 2435 if (offset < block->max_length) {
1240be24 2436 vaddr = ramblock_ptr(block, offset);
7bd4f430 2437 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2438 ;
dfeaf2ab
MA
2439 } else if (xen_enabled()) {
2440 abort();
cd19cfa2
HY
2441 } else {
2442 flags = MAP_FIXED;
3435f395 2443 if (block->fd >= 0) {
dbcb8981
PB
2444 flags |= (block->flags & RAM_SHARED ?
2445 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2446 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2447 flags, block->fd, offset);
cd19cfa2 2448 } else {
2eb9fbaa
MA
2449 /*
2450 * Remap needs to match alloc. Accelerators that
2451 * set phys_mem_alloc never remap. If they did,
2452 * we'd need a remap hook here.
2453 */
2454 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2455
cd19cfa2
HY
2456 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2457 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2458 flags, -1, 0);
cd19cfa2
HY
2459 }
2460 if (area != vaddr) {
493d89bf
AF
2461 error_report("Could not remap addr: "
2462 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2463 length, addr);
cd19cfa2
HY
2464 exit(1);
2465 }
8490fc78 2466 memory_try_enable_merging(vaddr, length);
ddb97f1d 2467 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2468 }
cd19cfa2
HY
2469 }
2470 }
2471}
2472#endif /* !_WIN32 */
2473
1b5ec234 2474/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2475 * This should not be used for general purpose DMA. Use address_space_map
2476 * or address_space_rw instead. For local memory (e.g. video ram) that the
2477 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2478 *
49b24afc 2479 * Called within RCU critical section.
1b5ec234 2480 */
0878d0e1 2481void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2482{
3655cb9c
GA
2483 RAMBlock *block = ram_block;
2484
2485 if (block == NULL) {
2486 block = qemu_get_ram_block(addr);
0878d0e1 2487 addr -= block->offset;
3655cb9c 2488 }
ae3a7047
MD
2489
2490 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2491 /* We need to check if the requested address is in the RAM
2492 * because we don't want to map the entire memory in QEMU.
2493 * In that case just map until the end of the page.
2494 */
2495 if (block->offset == 0) {
1ff7c598 2496 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2497 }
ae3a7047 2498
1ff7c598 2499 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2500 }
0878d0e1 2501 return ramblock_ptr(block, addr);
dc828ca1
PB
2502}
2503
0878d0e1 2504/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2505 * but takes a size argument.
0dc3f44a 2506 *
e81bcda5 2507 * Called within RCU critical section.
ae3a7047 2508 */
3655cb9c 2509static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2510 hwaddr *size, bool lock)
38bee5dc 2511{
3655cb9c 2512 RAMBlock *block = ram_block;
8ab934f9
SS
2513 if (*size == 0) {
2514 return NULL;
2515 }
e81bcda5 2516
3655cb9c
GA
2517 if (block == NULL) {
2518 block = qemu_get_ram_block(addr);
0878d0e1 2519 addr -= block->offset;
3655cb9c 2520 }
0878d0e1 2521 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2522
2523 if (xen_enabled() && block->host == NULL) {
2524 /* We need to check if the requested address is in the RAM
2525 * because we don't want to map the entire memory in QEMU.
2526 * In that case just map the requested area.
2527 */
2528 if (block->offset == 0) {
f5aa69bd 2529 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2530 }
2531
f5aa69bd 2532 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2533 }
e81bcda5 2534
0878d0e1 2535 return ramblock_ptr(block, addr);
38bee5dc
SS
2536}
2537
f90bb71b
DDAG
2538/* Return the offset of a hostpointer within a ramblock */
2539ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2540{
2541 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2542 assert((uintptr_t)host >= (uintptr_t)rb->host);
2543 assert(res < rb->max_length);
2544
2545 return res;
2546}
2547
422148d3
DDAG
2548/*
2549 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2550 * in that RAMBlock.
2551 *
2552 * ptr: Host pointer to look up
2553 * round_offset: If true round the result offset down to a page boundary
2554 * *ram_addr: set to result ram_addr
2555 * *offset: set to result offset within the RAMBlock
2556 *
2557 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2558 *
2559 * By the time this function returns, the returned pointer is not protected
2560 * by RCU anymore. If the caller is not within an RCU critical section and
2561 * does not hold the iothread lock, it must have other means of protecting the
2562 * pointer, such as a reference to the region that includes the incoming
2563 * ram_addr_t.
2564 */
422148d3 2565RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2566 ram_addr_t *offset)
5579c7f3 2567{
94a6b54f
PB
2568 RAMBlock *block;
2569 uint8_t *host = ptr;
2570
868bb33f 2571 if (xen_enabled()) {
f615f396 2572 ram_addr_t ram_addr;
0dc3f44a 2573 rcu_read_lock();
f615f396
PB
2574 ram_addr = xen_ram_addr_from_mapcache(ptr);
2575 block = qemu_get_ram_block(ram_addr);
422148d3 2576 if (block) {
d6b6aec4 2577 *offset = ram_addr - block->offset;
422148d3 2578 }
0dc3f44a 2579 rcu_read_unlock();
422148d3 2580 return block;
712c2b41
SS
2581 }
2582
0dc3f44a
MD
2583 rcu_read_lock();
2584 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2585 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2586 goto found;
2587 }
2588
99e15582 2589 RAMBLOCK_FOREACH(block) {
432d268c
JN
2590 /* This case append when the block is not mapped. */
2591 if (block->host == NULL) {
2592 continue;
2593 }
9b8424d5 2594 if (host - block->host < block->max_length) {
23887b79 2595 goto found;
f471a17e 2596 }
94a6b54f 2597 }
432d268c 2598
0dc3f44a 2599 rcu_read_unlock();
1b5ec234 2600 return NULL;
23887b79
PB
2601
2602found:
422148d3
DDAG
2603 *offset = (host - block->host);
2604 if (round_offset) {
2605 *offset &= TARGET_PAGE_MASK;
2606 }
0dc3f44a 2607 rcu_read_unlock();
422148d3
DDAG
2608 return block;
2609}
2610
e3dd7493
DDAG
2611/*
2612 * Finds the named RAMBlock
2613 *
2614 * name: The name of RAMBlock to find
2615 *
2616 * Returns: RAMBlock (or NULL if not found)
2617 */
2618RAMBlock *qemu_ram_block_by_name(const char *name)
2619{
2620 RAMBlock *block;
2621
99e15582 2622 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2623 if (!strcmp(name, block->idstr)) {
2624 return block;
2625 }
2626 }
2627
2628 return NULL;
2629}
2630
422148d3
DDAG
2631/* Some of the softmmu routines need to translate from a host pointer
2632 (typically a TLB entry) back to a ram offset. */
07bdaa41 2633ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2634{
2635 RAMBlock *block;
f615f396 2636 ram_addr_t offset;
422148d3 2637
f615f396 2638 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2639 if (!block) {
07bdaa41 2640 return RAM_ADDR_INVALID;
422148d3
DDAG
2641 }
2642
07bdaa41 2643 return block->offset + offset;
e890261f 2644}
f471a17e 2645
27266271
PM
2646/* Called within RCU critical section. */
2647void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2648 CPUState *cpu,
2649 vaddr mem_vaddr,
2650 ram_addr_t ram_addr,
2651 unsigned size)
2652{
2653 ndi->cpu = cpu;
2654 ndi->ram_addr = ram_addr;
2655 ndi->mem_vaddr = mem_vaddr;
2656 ndi->size = size;
0ac20318 2657 ndi->pages = NULL;
ba051fb5 2658
5aa1ef71 2659 assert(tcg_enabled());
52159192 2660 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2661 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2662 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2663 }
27266271
PM
2664}
2665
2666/* Called within RCU critical section. */
2667void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2668{
0ac20318 2669 if (ndi->pages) {
f28d0dfd 2670 assert(tcg_enabled());
0ac20318
EC
2671 page_collection_unlock(ndi->pages);
2672 ndi->pages = NULL;
27266271
PM
2673 }
2674
2675 /* Set both VGA and migration bits for simplicity and to remove
2676 * the notdirty callback faster.
2677 */
2678 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2679 DIRTY_CLIENTS_NOCODE);
2680 /* we remove the notdirty callback only if the code has been
2681 flushed */
2682 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2683 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2684 }
2685}
2686
2687/* Called within RCU critical section. */
2688static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2689 uint64_t val, unsigned size)
2690{
2691 NotDirtyInfo ndi;
2692
2693 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2694 ram_addr, size);
2695
6d3ede54 2696 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2697 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2698}
2699
b018ddf6 2700static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2701 unsigned size, bool is_write,
2702 MemTxAttrs attrs)
b018ddf6
PB
2703{
2704 return is_write;
2705}
2706
0e0df1e2 2707static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2708 .write = notdirty_mem_write,
b018ddf6 2709 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2710 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2711 .valid = {
2712 .min_access_size = 1,
2713 .max_access_size = 8,
2714 .unaligned = false,
2715 },
2716 .impl = {
2717 .min_access_size = 1,
2718 .max_access_size = 8,
2719 .unaligned = false,
2720 },
1ccde1cb
FB
2721};
2722
0f459d16 2723/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2724static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2725{
93afeade 2726 CPUState *cpu = current_cpu;
568496c0 2727 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2728 target_ulong vaddr;
a1d1bb31 2729 CPUWatchpoint *wp;
0f459d16 2730
5aa1ef71 2731 assert(tcg_enabled());
ff4700b0 2732 if (cpu->watchpoint_hit) {
06d55cc1
AL
2733 /* We re-entered the check after replacing the TB. Now raise
2734 * the debug interrupt so that is will trigger after the
2735 * current instruction. */
93afeade 2736 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2737 return;
2738 }
93afeade 2739 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2740 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2741 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2742 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2743 && (wp->flags & flags)) {
08225676
PM
2744 if (flags == BP_MEM_READ) {
2745 wp->flags |= BP_WATCHPOINT_HIT_READ;
2746 } else {
2747 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2748 }
2749 wp->hitaddr = vaddr;
66b9b43c 2750 wp->hitattrs = attrs;
ff4700b0 2751 if (!cpu->watchpoint_hit) {
568496c0
SF
2752 if (wp->flags & BP_CPU &&
2753 !cc->debug_check_watchpoint(cpu, wp)) {
2754 wp->flags &= ~BP_WATCHPOINT_HIT;
2755 continue;
2756 }
ff4700b0 2757 cpu->watchpoint_hit = wp;
a5e99826 2758
0ac20318 2759 mmap_lock();
239c51a5 2760 tb_check_watchpoint(cpu);
6e140f28 2761 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2762 cpu->exception_index = EXCP_DEBUG;
0ac20318 2763 mmap_unlock();
5638d180 2764 cpu_loop_exit(cpu);
6e140f28 2765 } else {
9b990ee5
RH
2766 /* Force execution of one insn next time. */
2767 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2768 mmap_unlock();
6886b980 2769 cpu_loop_exit_noexc(cpu);
6e140f28 2770 }
06d55cc1 2771 }
6e140f28
AL
2772 } else {
2773 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2774 }
2775 }
2776}
2777
6658ffb8
PB
2778/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2779 so these check for a hit then pass through to the normal out-of-line
2780 phys routines. */
66b9b43c
PM
2781static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2782 unsigned size, MemTxAttrs attrs)
6658ffb8 2783{
66b9b43c
PM
2784 MemTxResult res;
2785 uint64_t data;
79ed0416
PM
2786 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2787 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2788
2789 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2790 switch (size) {
66b9b43c 2791 case 1:
79ed0416 2792 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2793 break;
2794 case 2:
79ed0416 2795 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2796 break;
2797 case 4:
79ed0416 2798 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2799 break;
306526b5
PB
2800 case 8:
2801 data = address_space_ldq(as, addr, attrs, &res);
2802 break;
1ec9b909
AK
2803 default: abort();
2804 }
66b9b43c
PM
2805 *pdata = data;
2806 return res;
6658ffb8
PB
2807}
2808
66b9b43c
PM
2809static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2810 uint64_t val, unsigned size,
2811 MemTxAttrs attrs)
6658ffb8 2812{
66b9b43c 2813 MemTxResult res;
79ed0416
PM
2814 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2815 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2816
2817 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2818 switch (size) {
67364150 2819 case 1:
79ed0416 2820 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2821 break;
2822 case 2:
79ed0416 2823 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2824 break;
2825 case 4:
79ed0416 2826 address_space_stl(as, addr, val, attrs, &res);
67364150 2827 break;
306526b5
PB
2828 case 8:
2829 address_space_stq(as, addr, val, attrs, &res);
2830 break;
1ec9b909
AK
2831 default: abort();
2832 }
66b9b43c 2833 return res;
6658ffb8
PB
2834}
2835
1ec9b909 2836static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2837 .read_with_attrs = watch_mem_read,
2838 .write_with_attrs = watch_mem_write,
1ec9b909 2839 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2840 .valid = {
2841 .min_access_size = 1,
2842 .max_access_size = 8,
2843 .unaligned = false,
2844 },
2845 .impl = {
2846 .min_access_size = 1,
2847 .max_access_size = 8,
2848 .unaligned = false,
2849 },
6658ffb8 2850};
6658ffb8 2851
b2a44fca
PB
2852static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2853 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2854static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2855 const uint8_t *buf, int len);
2856static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
eace72b7 2857 bool is_write, MemTxAttrs attrs);
16620684 2858
f25a49e0
PM
2859static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2860 unsigned len, MemTxAttrs attrs)
db7b5426 2861{
acc9d80b 2862 subpage_t *subpage = opaque;
ff6cff75 2863 uint8_t buf[8];
5c9eb028 2864 MemTxResult res;
791af8c8 2865
db7b5426 2866#if defined(DEBUG_SUBPAGE)
016e9d62 2867 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2868 subpage, len, addr);
db7b5426 2869#endif
16620684 2870 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2871 if (res) {
2872 return res;
f25a49e0 2873 }
6d3ede54
PM
2874 *data = ldn_p(buf, len);
2875 return MEMTX_OK;
db7b5426
BS
2876}
2877
f25a49e0
PM
2878static MemTxResult subpage_write(void *opaque, hwaddr addr,
2879 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2880{
acc9d80b 2881 subpage_t *subpage = opaque;
ff6cff75 2882 uint8_t buf[8];
acc9d80b 2883
db7b5426 2884#if defined(DEBUG_SUBPAGE)
016e9d62 2885 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2886 " value %"PRIx64"\n",
2887 __func__, subpage, len, addr, value);
db7b5426 2888#endif
6d3ede54 2889 stn_p(buf, len, value);
16620684 2890 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2891}
2892
c353e4cc 2893static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2894 unsigned len, bool is_write,
2895 MemTxAttrs attrs)
c353e4cc 2896{
acc9d80b 2897 subpage_t *subpage = opaque;
c353e4cc 2898#if defined(DEBUG_SUBPAGE)
016e9d62 2899 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2900 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2901#endif
2902
16620684 2903 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2904 len, is_write, attrs);
c353e4cc
PB
2905}
2906
70c68e44 2907static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2908 .read_with_attrs = subpage_read,
2909 .write_with_attrs = subpage_write,
ff6cff75
PB
2910 .impl.min_access_size = 1,
2911 .impl.max_access_size = 8,
2912 .valid.min_access_size = 1,
2913 .valid.max_access_size = 8,
c353e4cc 2914 .valid.accepts = subpage_accepts,
70c68e44 2915 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2916};
2917
c227f099 2918static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2919 uint16_t section)
db7b5426
BS
2920{
2921 int idx, eidx;
2922
2923 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2924 return -1;
2925 idx = SUBPAGE_IDX(start);
2926 eidx = SUBPAGE_IDX(end);
2927#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2928 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2929 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2930#endif
db7b5426 2931 for (; idx <= eidx; idx++) {
5312bd8b 2932 mmio->sub_section[idx] = section;
db7b5426
BS
2933 }
2934
2935 return 0;
2936}
2937
16620684 2938static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2939{
c227f099 2940 subpage_t *mmio;
db7b5426 2941
2615fabd 2942 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2943 mmio->fv = fv;
1eec614b 2944 mmio->base = base;
2c9b15ca 2945 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2946 NULL, TARGET_PAGE_SIZE);
b3b00c78 2947 mmio->iomem.subpage = true;
db7b5426 2948#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2949 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2950 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2951#endif
b41aac4f 2952 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2953
2954 return mmio;
2955}
2956
16620684 2957static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2958{
16620684 2959 assert(fv);
5312bd8b 2960 MemoryRegionSection section = {
16620684 2961 .fv = fv,
5312bd8b
AK
2962 .mr = mr,
2963 .offset_within_address_space = 0,
2964 .offset_within_region = 0,
052e87b0 2965 .size = int128_2_64(),
5312bd8b
AK
2966 };
2967
53cb28cb 2968 return phys_section_add(map, &section);
5312bd8b
AK
2969}
2970
8af36743
PM
2971static void readonly_mem_write(void *opaque, hwaddr addr,
2972 uint64_t val, unsigned size)
2973{
2974 /* Ignore any write to ROM. */
2975}
2976
2977static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2978 unsigned size, bool is_write,
2979 MemTxAttrs attrs)
8af36743
PM
2980{
2981 return is_write;
2982}
2983
2984/* This will only be used for writes, because reads are special cased
2985 * to directly access the underlying host ram.
2986 */
2987static const MemoryRegionOps readonly_mem_ops = {
2988 .write = readonly_mem_write,
2989 .valid.accepts = readonly_mem_accepts,
2990 .endianness = DEVICE_NATIVE_ENDIAN,
2991 .valid = {
2992 .min_access_size = 1,
2993 .max_access_size = 8,
2994 .unaligned = false,
2995 },
2996 .impl = {
2997 .min_access_size = 1,
2998 .max_access_size = 8,
2999 .unaligned = false,
3000 },
3001};
3002
2d54f194
PM
3003MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3004 hwaddr index, MemTxAttrs attrs)
aa102231 3005{
a54c87b6
PM
3006 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3007 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3008 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3009 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3010
2d54f194 3011 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3012}
3013
e9179ce1
AK
3014static void io_mem_init(void)
3015{
8af36743
PM
3016 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3017 NULL, NULL, UINT64_MAX);
2c9b15ca 3018 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3019 NULL, UINT64_MAX);
8d04fb55
JK
3020
3021 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3022 * which can be called without the iothread mutex.
3023 */
2c9b15ca 3024 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3025 NULL, UINT64_MAX);
8d04fb55
JK
3026 memory_region_clear_global_locking(&io_mem_notdirty);
3027
2c9b15ca 3028 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3029 NULL, UINT64_MAX);
e9179ce1
AK
3030}
3031
8629d3fc 3032AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3033{
53cb28cb
MA
3034 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3035 uint16_t n;
3036
16620684 3037 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3038 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3039 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3040 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3041 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3042 assert(n == PHYS_SECTION_ROM);
16620684 3043 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3044 assert(n == PHYS_SECTION_WATCH);
00752703 3045
9736e55b 3046 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3047
3048 return d;
00752703
PB
3049}
3050
66a6df1d 3051void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3052{
3053 phys_sections_free(&d->map);
3054 g_free(d);
3055}
3056
1d71148e 3057static void tcg_commit(MemoryListener *listener)
50c1e149 3058{
32857f4d
PM
3059 CPUAddressSpace *cpuas;
3060 AddressSpaceDispatch *d;
117712c3 3061
f28d0dfd 3062 assert(tcg_enabled());
117712c3
AK
3063 /* since each CPU stores ram addresses in its TLB cache, we must
3064 reset the modified entries */
32857f4d
PM
3065 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3066 cpu_reloading_memory_map();
3067 /* The CPU and TLB are protected by the iothread lock.
3068 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3069 * may have split the RCU critical section.
3070 */
66a6df1d 3071 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3072 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3073 tlb_flush(cpuas->cpu);
50c1e149
AK
3074}
3075
62152b8a
AK
3076static void memory_map_init(void)
3077{
7267c094 3078 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3079
57271d63 3080 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3081 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3082
7267c094 3083 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3084 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3085 65536);
7dca8043 3086 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3087}
3088
3089MemoryRegion *get_system_memory(void)
3090{
3091 return system_memory;
3092}
3093
309cb471
AK
3094MemoryRegion *get_system_io(void)
3095{
3096 return system_io;
3097}
3098
e2eef170
PB
3099#endif /* !defined(CONFIG_USER_ONLY) */
3100
13eb76e0
FB
3101/* physical memory access (slow version, mainly for debug) */
3102#if defined(CONFIG_USER_ONLY)
f17ec444 3103int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 3104 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3105{
3106 int l, flags;
3107 target_ulong page;
53a5960a 3108 void * p;
13eb76e0
FB
3109
3110 while (len > 0) {
3111 page = addr & TARGET_PAGE_MASK;
3112 l = (page + TARGET_PAGE_SIZE) - addr;
3113 if (l > len)
3114 l = len;
3115 flags = page_get_flags(page);
3116 if (!(flags & PAGE_VALID))
a68fe89c 3117 return -1;
13eb76e0
FB
3118 if (is_write) {
3119 if (!(flags & PAGE_WRITE))
a68fe89c 3120 return -1;
579a97f7 3121 /* XXX: this code should not depend on lock_user */
72fb7daa 3122 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3123 return -1;
72fb7daa
AJ
3124 memcpy(p, buf, l);
3125 unlock_user(p, addr, l);
13eb76e0
FB
3126 } else {
3127 if (!(flags & PAGE_READ))
a68fe89c 3128 return -1;
579a97f7 3129 /* XXX: this code should not depend on lock_user */
72fb7daa 3130 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3131 return -1;
72fb7daa 3132 memcpy(buf, p, l);
5b257578 3133 unlock_user(p, addr, 0);
13eb76e0
FB
3134 }
3135 len -= l;
3136 buf += l;
3137 addr += l;
3138 }
a68fe89c 3139 return 0;
13eb76e0 3140}
8df1cd07 3141
13eb76e0 3142#else
51d7a9eb 3143
845b6214 3144static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3145 hwaddr length)
51d7a9eb 3146{
e87f7778 3147 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3148 addr += memory_region_get_ram_addr(mr);
3149
e87f7778
PB
3150 /* No early return if dirty_log_mask is or becomes 0, because
3151 * cpu_physical_memory_set_dirty_range will still call
3152 * xen_modified_memory.
3153 */
3154 if (dirty_log_mask) {
3155 dirty_log_mask =
3156 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3157 }
3158 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3159 assert(tcg_enabled());
e87f7778
PB
3160 tb_invalidate_phys_range(addr, addr + length);
3161 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3162 }
e87f7778 3163 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3164}
3165
23326164 3166static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3167{
e1622f4b 3168 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3169
3170 /* Regions are assumed to support 1-4 byte accesses unless
3171 otherwise specified. */
23326164
RH
3172 if (access_size_max == 0) {
3173 access_size_max = 4;
3174 }
3175
3176 /* Bound the maximum access by the alignment of the address. */
3177 if (!mr->ops->impl.unaligned) {
3178 unsigned align_size_max = addr & -addr;
3179 if (align_size_max != 0 && align_size_max < access_size_max) {
3180 access_size_max = align_size_max;
3181 }
82f2563f 3182 }
23326164
RH
3183
3184 /* Don't attempt accesses larger than the maximum. */
3185 if (l > access_size_max) {
3186 l = access_size_max;
82f2563f 3187 }
6554f5c0 3188 l = pow2floor(l);
23326164
RH
3189
3190 return l;
82f2563f
PB
3191}
3192
4840f10e 3193static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3194{
4840f10e
JK
3195 bool unlocked = !qemu_mutex_iothread_locked();
3196 bool release_lock = false;
3197
3198 if (unlocked && mr->global_locking) {
3199 qemu_mutex_lock_iothread();
3200 unlocked = false;
3201 release_lock = true;
3202 }
125b3806 3203 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3204 if (unlocked) {
3205 qemu_mutex_lock_iothread();
3206 }
125b3806 3207 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3208 if (unlocked) {
3209 qemu_mutex_unlock_iothread();
3210 }
125b3806 3211 }
4840f10e
JK
3212
3213 return release_lock;
125b3806
PB
3214}
3215
a203ac70 3216/* Called within RCU critical section. */
16620684
AK
3217static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3218 MemTxAttrs attrs,
3219 const uint8_t *buf,
3220 int len, hwaddr addr1,
3221 hwaddr l, MemoryRegion *mr)
13eb76e0 3222{
13eb76e0 3223 uint8_t *ptr;
791af8c8 3224 uint64_t val;
3b643495 3225 MemTxResult result = MEMTX_OK;
4840f10e 3226 bool release_lock = false;
3b46e624 3227
a203ac70 3228 for (;;) {
eb7eeb88
PB
3229 if (!memory_access_is_direct(mr, true)) {
3230 release_lock |= prepare_mmio_access(mr);
3231 l = memory_access_size(mr, l, addr1);
3232 /* XXX: could force current_cpu to NULL to avoid
3233 potential bugs */
6d3ede54
PM
3234 val = ldn_p(buf, l);
3235 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3236 } else {
eb7eeb88 3237 /* RAM case */
f5aa69bd 3238 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3239 memcpy(ptr, buf, l);
3240 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3241 }
4840f10e
JK
3242
3243 if (release_lock) {
3244 qemu_mutex_unlock_iothread();
3245 release_lock = false;
3246 }
3247
13eb76e0
FB
3248 len -= l;
3249 buf += l;
3250 addr += l;
a203ac70
PB
3251
3252 if (!len) {
3253 break;
3254 }
3255
3256 l = len;
efa99a2f 3257 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3258 }
fd8aaa76 3259
3b643495 3260 return result;
13eb76e0 3261}
8df1cd07 3262
4c6ebbb3 3263/* Called from RCU critical section. */
16620684
AK
3264static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3265 const uint8_t *buf, int len)
ac1970fb 3266{
eb7eeb88 3267 hwaddr l;
eb7eeb88
PB
3268 hwaddr addr1;
3269 MemoryRegion *mr;
3270 MemTxResult result = MEMTX_OK;
eb7eeb88 3271
4c6ebbb3 3272 l = len;
efa99a2f 3273 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3274 result = flatview_write_continue(fv, addr, attrs, buf, len,
3275 addr1, l, mr);
a203ac70
PB
3276
3277 return result;
3278}
3279
3280/* Called within RCU critical section. */
16620684
AK
3281MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3282 MemTxAttrs attrs, uint8_t *buf,
3283 int len, hwaddr addr1, hwaddr l,
3284 MemoryRegion *mr)
a203ac70
PB
3285{
3286 uint8_t *ptr;
3287 uint64_t val;
3288 MemTxResult result = MEMTX_OK;
3289 bool release_lock = false;
eb7eeb88 3290
a203ac70 3291 for (;;) {
eb7eeb88
PB
3292 if (!memory_access_is_direct(mr, false)) {
3293 /* I/O case */
3294 release_lock |= prepare_mmio_access(mr);
3295 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3296 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3297 stn_p(buf, l, val);
eb7eeb88
PB
3298 } else {
3299 /* RAM case */
f5aa69bd 3300 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3301 memcpy(buf, ptr, l);
3302 }
3303
3304 if (release_lock) {
3305 qemu_mutex_unlock_iothread();
3306 release_lock = false;
3307 }
3308
3309 len -= l;
3310 buf += l;
3311 addr += l;
a203ac70
PB
3312
3313 if (!len) {
3314 break;
3315 }
3316
3317 l = len;
efa99a2f 3318 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3319 }
3320
3321 return result;
3322}
3323
b2a44fca
PB
3324/* Called from RCU critical section. */
3325static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3326 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3327{
3328 hwaddr l;
3329 hwaddr addr1;
3330 MemoryRegion *mr;
eb7eeb88 3331
b2a44fca 3332 l = len;
efa99a2f 3333 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3334 return flatview_read_continue(fv, addr, attrs, buf, len,
3335 addr1, l, mr);
ac1970fb
AK
3336}
3337
b2a44fca
PB
3338MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3339 MemTxAttrs attrs, uint8_t *buf, int len)
3340{
3341 MemTxResult result = MEMTX_OK;
3342 FlatView *fv;
3343
3344 if (len > 0) {
3345 rcu_read_lock();
3346 fv = address_space_to_flatview(as);
3347 result = flatview_read(fv, addr, attrs, buf, len);
3348 rcu_read_unlock();
3349 }
3350
3351 return result;
3352}
3353
4c6ebbb3
PB
3354MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3355 MemTxAttrs attrs,
3356 const uint8_t *buf, int len)
3357{
3358 MemTxResult result = MEMTX_OK;
3359 FlatView *fv;
3360
3361 if (len > 0) {
3362 rcu_read_lock();
3363 fv = address_space_to_flatview(as);
3364 result = flatview_write(fv, addr, attrs, buf, len);
3365 rcu_read_unlock();
3366 }
3367
3368 return result;
3369}
3370
db84fd97
PB
3371MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3372 uint8_t *buf, int len, bool is_write)
3373{
3374 if (is_write) {
3375 return address_space_write(as, addr, attrs, buf, len);
3376 } else {
3377 return address_space_read_full(as, addr, attrs, buf, len);
3378 }
3379}
3380
a8170e5e 3381void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3382 int len, int is_write)
3383{
5c9eb028
PM
3384 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3385 buf, len, is_write);
ac1970fb
AK
3386}
3387
582b55a9
AG
3388enum write_rom_type {
3389 WRITE_DATA,
3390 FLUSH_CACHE,
3391};
3392
2a221651 3393static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3394 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3395{
149f54b5 3396 hwaddr l;
d0ecd2aa 3397 uint8_t *ptr;
149f54b5 3398 hwaddr addr1;
5c8a00ce 3399 MemoryRegion *mr;
3b46e624 3400
41063e1e 3401 rcu_read_lock();
d0ecd2aa 3402 while (len > 0) {
149f54b5 3403 l = len;
bc6b1cec
PM
3404 mr = address_space_translate(as, addr, &addr1, &l, true,
3405 MEMTXATTRS_UNSPECIFIED);
3b46e624 3406
5c8a00ce
PB
3407 if (!(memory_region_is_ram(mr) ||
3408 memory_region_is_romd(mr))) {
b242e0e0 3409 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3410 } else {
d0ecd2aa 3411 /* ROM/RAM case */
0878d0e1 3412 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3413 switch (type) {
3414 case WRITE_DATA:
3415 memcpy(ptr, buf, l);
845b6214 3416 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3417 break;
3418 case FLUSH_CACHE:
3419 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3420 break;
3421 }
d0ecd2aa
FB
3422 }
3423 len -= l;
3424 buf += l;
3425 addr += l;
3426 }
41063e1e 3427 rcu_read_unlock();
d0ecd2aa
FB
3428}
3429
582b55a9 3430/* used for ROM loading : can write in RAM and ROM */
2a221651 3431void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3432 const uint8_t *buf, int len)
3433{
2a221651 3434 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3435}
3436
3437void cpu_flush_icache_range(hwaddr start, int len)
3438{
3439 /*
3440 * This function should do the same thing as an icache flush that was
3441 * triggered from within the guest. For TCG we are always cache coherent,
3442 * so there is no need to flush anything. For KVM / Xen we need to flush
3443 * the host's instruction cache at least.
3444 */
3445 if (tcg_enabled()) {
3446 return;
3447 }
3448
2a221651
EI
3449 cpu_physical_memory_write_rom_internal(&address_space_memory,
3450 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3451}
3452
6d16c2f8 3453typedef struct {
d3e71559 3454 MemoryRegion *mr;
6d16c2f8 3455 void *buffer;
a8170e5e
AK
3456 hwaddr addr;
3457 hwaddr len;
c2cba0ff 3458 bool in_use;
6d16c2f8
AL
3459} BounceBuffer;
3460
3461static BounceBuffer bounce;
3462
ba223c29 3463typedef struct MapClient {
e95205e1 3464 QEMUBH *bh;
72cf2d4f 3465 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3466} MapClient;
3467
38e047b5 3468QemuMutex map_client_list_lock;
72cf2d4f
BS
3469static QLIST_HEAD(map_client_list, MapClient) map_client_list
3470 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3471
e95205e1
FZ
3472static void cpu_unregister_map_client_do(MapClient *client)
3473{
3474 QLIST_REMOVE(client, link);
3475 g_free(client);
3476}
3477
33b6c2ed
FZ
3478static void cpu_notify_map_clients_locked(void)
3479{
3480 MapClient *client;
3481
3482 while (!QLIST_EMPTY(&map_client_list)) {
3483 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3484 qemu_bh_schedule(client->bh);
3485 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3486 }
3487}
3488
e95205e1 3489void cpu_register_map_client(QEMUBH *bh)
ba223c29 3490{
7267c094 3491 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3492
38e047b5 3493 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3494 client->bh = bh;
72cf2d4f 3495 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3496 if (!atomic_read(&bounce.in_use)) {
3497 cpu_notify_map_clients_locked();
3498 }
38e047b5 3499 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3500}
3501
38e047b5 3502void cpu_exec_init_all(void)
ba223c29 3503{
38e047b5 3504 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3505 /* The data structures we set up here depend on knowing the page size,
3506 * so no more changes can be made after this point.
3507 * In an ideal world, nothing we did before we had finished the
3508 * machine setup would care about the target page size, and we could
3509 * do this much later, rather than requiring board models to state
3510 * up front what their requirements are.
3511 */
3512 finalize_target_page_bits();
38e047b5 3513 io_mem_init();
680a4783 3514 memory_map_init();
38e047b5 3515 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3516}
3517
e95205e1 3518void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3519{
3520 MapClient *client;
3521
e95205e1
FZ
3522 qemu_mutex_lock(&map_client_list_lock);
3523 QLIST_FOREACH(client, &map_client_list, link) {
3524 if (client->bh == bh) {
3525 cpu_unregister_map_client_do(client);
3526 break;
3527 }
ba223c29 3528 }
e95205e1 3529 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3530}
3531
3532static void cpu_notify_map_clients(void)
3533{
38e047b5 3534 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3535 cpu_notify_map_clients_locked();
38e047b5 3536 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3537}
3538
16620684 3539static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
eace72b7 3540 bool is_write, MemTxAttrs attrs)
51644ab7 3541{
5c8a00ce 3542 MemoryRegion *mr;
51644ab7
PB
3543 hwaddr l, xlat;
3544
3545 while (len > 0) {
3546 l = len;
efa99a2f 3547 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3548 if (!memory_access_is_direct(mr, is_write)) {
3549 l = memory_access_size(mr, l, addr);
eace72b7 3550 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3551 return false;
3552 }
3553 }
3554
3555 len -= l;
3556 addr += l;
3557 }
3558 return true;
3559}
3560
16620684 3561bool address_space_access_valid(AddressSpace *as, hwaddr addr,
fddffa42
PM
3562 int len, bool is_write,
3563 MemTxAttrs attrs)
16620684 3564{
11e732a5
PB
3565 FlatView *fv;
3566 bool result;
3567
3568 rcu_read_lock();
3569 fv = address_space_to_flatview(as);
eace72b7 3570 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3571 rcu_read_unlock();
3572 return result;
16620684
AK
3573}
3574
715c31ec 3575static hwaddr
16620684 3576flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3577 hwaddr target_len,
3578 MemoryRegion *mr, hwaddr base, hwaddr len,
3579 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3580{
3581 hwaddr done = 0;
3582 hwaddr xlat;
3583 MemoryRegion *this_mr;
3584
3585 for (;;) {
3586 target_len -= len;
3587 addr += len;
3588 done += len;
3589 if (target_len == 0) {
3590 return done;
3591 }
3592
3593 len = target_len;
16620684 3594 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3595 &len, is_write, attrs);
715c31ec
PB
3596 if (this_mr != mr || xlat != base + done) {
3597 return done;
3598 }
3599 }
3600}
3601
6d16c2f8
AL
3602/* Map a physical memory region into a host virtual address.
3603 * May map a subset of the requested range, given by and returned in *plen.
3604 * May return NULL if resources needed to perform the mapping are exhausted.
3605 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3606 * Use cpu_register_map_client() to know when retrying the map operation is
3607 * likely to succeed.
6d16c2f8 3608 */
ac1970fb 3609void *address_space_map(AddressSpace *as,
a8170e5e
AK
3610 hwaddr addr,
3611 hwaddr *plen,
f26404fb
PM
3612 bool is_write,
3613 MemTxAttrs attrs)
6d16c2f8 3614{
a8170e5e 3615 hwaddr len = *plen;
715c31ec
PB
3616 hwaddr l, xlat;
3617 MemoryRegion *mr;
e81bcda5 3618 void *ptr;
ad0c60fa 3619 FlatView *fv;
6d16c2f8 3620
e3127ae0
PB
3621 if (len == 0) {
3622 return NULL;
3623 }
38bee5dc 3624
e3127ae0 3625 l = len;
41063e1e 3626 rcu_read_lock();
ad0c60fa 3627 fv = address_space_to_flatview(as);
efa99a2f 3628 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3629
e3127ae0 3630 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3631 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3632 rcu_read_unlock();
e3127ae0 3633 return NULL;
6d16c2f8 3634 }
e85d9db5
KW
3635 /* Avoid unbounded allocations */
3636 l = MIN(l, TARGET_PAGE_SIZE);
3637 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3638 bounce.addr = addr;
3639 bounce.len = l;
d3e71559
PB
3640
3641 memory_region_ref(mr);
3642 bounce.mr = mr;
e3127ae0 3643 if (!is_write) {
16620684 3644 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3645 bounce.buffer, l);
8ab934f9 3646 }
6d16c2f8 3647
41063e1e 3648 rcu_read_unlock();
e3127ae0
PB
3649 *plen = l;
3650 return bounce.buffer;
3651 }
3652
e3127ae0 3653
d3e71559 3654 memory_region_ref(mr);
16620684 3655 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3656 l, is_write, attrs);
f5aa69bd 3657 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3658 rcu_read_unlock();
3659
3660 return ptr;
6d16c2f8
AL
3661}
3662
ac1970fb 3663/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3664 * Will also mark the memory as dirty if is_write == 1. access_len gives
3665 * the amount of memory that was actually read or written by the caller.
3666 */
a8170e5e
AK
3667void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3668 int is_write, hwaddr access_len)
6d16c2f8
AL
3669{
3670 if (buffer != bounce.buffer) {
d3e71559
PB
3671 MemoryRegion *mr;
3672 ram_addr_t addr1;
3673
07bdaa41 3674 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3675 assert(mr != NULL);
6d16c2f8 3676 if (is_write) {
845b6214 3677 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3678 }
868bb33f 3679 if (xen_enabled()) {
e41d7c69 3680 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3681 }
d3e71559 3682 memory_region_unref(mr);
6d16c2f8
AL
3683 return;
3684 }
3685 if (is_write) {
5c9eb028
PM
3686 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3687 bounce.buffer, access_len);
6d16c2f8 3688 }
f8a83245 3689 qemu_vfree(bounce.buffer);
6d16c2f8 3690 bounce.buffer = NULL;
d3e71559 3691 memory_region_unref(bounce.mr);
c2cba0ff 3692 atomic_mb_set(&bounce.in_use, false);
ba223c29 3693 cpu_notify_map_clients();
6d16c2f8 3694}
d0ecd2aa 3695
a8170e5e
AK
3696void *cpu_physical_memory_map(hwaddr addr,
3697 hwaddr *plen,
ac1970fb
AK
3698 int is_write)
3699{
f26404fb
PM
3700 return address_space_map(&address_space_memory, addr, plen, is_write,
3701 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3702}
3703
a8170e5e
AK
3704void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3705 int is_write, hwaddr access_len)
ac1970fb
AK
3706{
3707 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3708}
3709
0ce265ff
PB
3710#define ARG1_DECL AddressSpace *as
3711#define ARG1 as
3712#define SUFFIX
3713#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3714#define RCU_READ_LOCK(...) rcu_read_lock()
3715#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3716#include "memory_ldst.inc.c"
1e78bcc1 3717
1f4e496e
PB
3718int64_t address_space_cache_init(MemoryRegionCache *cache,
3719 AddressSpace *as,
3720 hwaddr addr,
3721 hwaddr len,
3722 bool is_write)
3723{
48564041
PB
3724 AddressSpaceDispatch *d;
3725 hwaddr l;
3726 MemoryRegion *mr;
3727
3728 assert(len > 0);
3729
3730 l = len;
3731 cache->fv = address_space_get_flatview(as);
3732 d = flatview_to_dispatch(cache->fv);
3733 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3734
3735 mr = cache->mrs.mr;
3736 memory_region_ref(mr);
3737 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3738 /* We don't care about the memory attributes here as we're only
3739 * doing this if we found actual RAM, which behaves the same
3740 * regardless of attributes; so UNSPECIFIED is fine.
3741 */
48564041 3742 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3743 cache->xlat, l, is_write,
3744 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3745 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3746 } else {
3747 cache->ptr = NULL;
3748 }
3749
3750 cache->len = l;
3751 cache->is_write = is_write;
3752 return l;
1f4e496e
PB
3753}
3754
3755void address_space_cache_invalidate(MemoryRegionCache *cache,
3756 hwaddr addr,
3757 hwaddr access_len)
3758{
48564041
PB
3759 assert(cache->is_write);
3760 if (likely(cache->ptr)) {
3761 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3762 }
1f4e496e
PB
3763}
3764
3765void address_space_cache_destroy(MemoryRegionCache *cache)
3766{
48564041
PB
3767 if (!cache->mrs.mr) {
3768 return;
3769 }
3770
3771 if (xen_enabled()) {
3772 xen_invalidate_map_cache_entry(cache->ptr);
3773 }
3774 memory_region_unref(cache->mrs.mr);
3775 flatview_unref(cache->fv);
3776 cache->mrs.mr = NULL;
3777 cache->fv = NULL;
3778}
3779
3780/* Called from RCU critical section. This function has the same
3781 * semantics as address_space_translate, but it only works on a
3782 * predefined range of a MemoryRegion that was mapped with
3783 * address_space_cache_init.
3784 */
3785static inline MemoryRegion *address_space_translate_cached(
3786 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3787 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3788{
3789 MemoryRegionSection section;
3790 MemoryRegion *mr;
3791 IOMMUMemoryRegion *iommu_mr;
3792 AddressSpace *target_as;
3793
3794 assert(!cache->ptr);
3795 *xlat = addr + cache->xlat;
3796
3797 mr = cache->mrs.mr;
3798 iommu_mr = memory_region_get_iommu(mr);
3799 if (!iommu_mr) {
3800 /* MMIO region. */
3801 return mr;
3802 }
3803
3804 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3805 NULL, is_write, true,
2f7b009c 3806 &target_as, attrs);
48564041
PB
3807 return section.mr;
3808}
3809
3810/* Called from RCU critical section. address_space_read_cached uses this
3811 * out of line function when the target is an MMIO or IOMMU region.
3812 */
3813void
3814address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3815 void *buf, int len)
3816{
3817 hwaddr addr1, l;
3818 MemoryRegion *mr;
3819
3820 l = len;
bc6b1cec
PM
3821 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3822 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3823 flatview_read_continue(cache->fv,
3824 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3825 addr1, l, mr);
3826}
3827
3828/* Called from RCU critical section. address_space_write_cached uses this
3829 * out of line function when the target is an MMIO or IOMMU region.
3830 */
3831void
3832address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3833 const void *buf, int len)
3834{
3835 hwaddr addr1, l;
3836 MemoryRegion *mr;
3837
3838 l = len;
bc6b1cec
PM
3839 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3840 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3841 flatview_write_continue(cache->fv,
3842 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3843 addr1, l, mr);
1f4e496e
PB
3844}
3845
3846#define ARG1_DECL MemoryRegionCache *cache
3847#define ARG1 cache
48564041
PB
3848#define SUFFIX _cached_slow
3849#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3850#define RCU_READ_LOCK() ((void)0)
3851#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3852#include "memory_ldst.inc.c"
3853
5e2972fd 3854/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3855int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3856 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3857{
3858 int l;
a8170e5e 3859 hwaddr phys_addr;
9b3c35e0 3860 target_ulong page;
13eb76e0 3861
79ca7a1b 3862 cpu_synchronize_state(cpu);
13eb76e0 3863 while (len > 0) {
5232e4c7
PM
3864 int asidx;
3865 MemTxAttrs attrs;
3866
13eb76e0 3867 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3868 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3869 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3870 /* if no physical page mapped, return an error */
3871 if (phys_addr == -1)
3872 return -1;
3873 l = (page + TARGET_PAGE_SIZE) - addr;
3874 if (l > len)
3875 l = len;
5e2972fd 3876 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3877 if (is_write) {
5232e4c7
PM
3878 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3879 phys_addr, buf, l);
2e38847b 3880 } else {
5232e4c7
PM
3881 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3882 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3883 buf, l, 0);
2e38847b 3884 }
13eb76e0
FB
3885 len -= l;
3886 buf += l;
3887 addr += l;
3888 }
3889 return 0;
3890}
038629a6
DDAG
3891
3892/*
3893 * Allows code that needs to deal with migration bitmaps etc to still be built
3894 * target independent.
3895 */
20afaed9 3896size_t qemu_target_page_size(void)
038629a6 3897{
20afaed9 3898 return TARGET_PAGE_SIZE;
038629a6
DDAG
3899}
3900
46d702b1
JQ
3901int qemu_target_page_bits(void)
3902{
3903 return TARGET_PAGE_BITS;
3904}
3905
3906int qemu_target_page_bits_min(void)
3907{
3908 return TARGET_PAGE_BITS_MIN;
3909}
a68fe89c 3910#endif
13eb76e0 3911
8e4a424b
BS
3912/*
3913 * A helper function for the _utterly broken_ virtio device model to find out if
3914 * it's running on a big endian machine. Don't do this at home kids!
3915 */
98ed8ecf
GK
3916bool target_words_bigendian(void);
3917bool target_words_bigendian(void)
8e4a424b
BS
3918{
3919#if defined(TARGET_WORDS_BIGENDIAN)
3920 return true;
3921#else
3922 return false;
3923#endif
3924}
3925
76f35538 3926#ifndef CONFIG_USER_ONLY
a8170e5e 3927bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3928{
5c8a00ce 3929 MemoryRegion*mr;
149f54b5 3930 hwaddr l = 1;
41063e1e 3931 bool res;
76f35538 3932
41063e1e 3933 rcu_read_lock();
5c8a00ce 3934 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3935 phys_addr, &phys_addr, &l, false,
3936 MEMTXATTRS_UNSPECIFIED);
76f35538 3937
41063e1e
PB
3938 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3939 rcu_read_unlock();
3940 return res;
76f35538 3941}
bd2fa51f 3942
e3807054 3943int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3944{
3945 RAMBlock *block;
e3807054 3946 int ret = 0;
bd2fa51f 3947
0dc3f44a 3948 rcu_read_lock();
99e15582 3949 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3950 ret = func(block->idstr, block->host, block->offset,
3951 block->used_length, opaque);
3952 if (ret) {
3953 break;
3954 }
bd2fa51f 3955 }
0dc3f44a 3956 rcu_read_unlock();
e3807054 3957 return ret;
bd2fa51f 3958}
d3a5038c 3959
b895de50
CLG
3960int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3961{
3962 RAMBlock *block;
3963 int ret = 0;
3964
3965 rcu_read_lock();
3966 RAMBLOCK_FOREACH(block) {
3967 if (!qemu_ram_is_migratable(block)) {
3968 continue;
3969 }
3970 ret = func(block->idstr, block->host, block->offset,
3971 block->used_length, opaque);
3972 if (ret) {
3973 break;
3974 }
3975 }
3976 rcu_read_unlock();
3977 return ret;
3978}
3979
d3a5038c
DDAG
3980/*
3981 * Unmap pages of memory from start to start+length such that
3982 * they a) read as 0, b) Trigger whatever fault mechanism
3983 * the OS provides for postcopy.
3984 * The pages must be unmapped by the end of the function.
3985 * Returns: 0 on success, none-0 on failure
3986 *
3987 */
3988int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3989{
3990 int ret = -1;
3991
3992 uint8_t *host_startaddr = rb->host + start;
3993
3994 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3995 error_report("ram_block_discard_range: Unaligned start address: %p",
3996 host_startaddr);
3997 goto err;
3998 }
3999
4000 if ((start + length) <= rb->used_length) {
db144f70 4001 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4002 uint8_t *host_endaddr = host_startaddr + length;
4003 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4004 error_report("ram_block_discard_range: Unaligned end address: %p",
4005 host_endaddr);
4006 goto err;
4007 }
4008
4009 errno = ENOTSUP; /* If we are missing MADVISE etc */
4010
db144f70
DDAG
4011 /* The logic here is messy;
4012 * madvise DONTNEED fails for hugepages
4013 * fallocate works on hugepages and shmem
4014 */
4015 need_madvise = (rb->page_size == qemu_host_page_size);
4016 need_fallocate = rb->fd != -1;
4017 if (need_fallocate) {
4018 /* For a file, this causes the area of the file to be zero'd
4019 * if read, and for hugetlbfs also causes it to be unmapped
4020 * so a userfault will trigger.
e2fa71f5
DDAG
4021 */
4022#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4023 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4024 start, length);
db144f70
DDAG
4025 if (ret) {
4026 ret = -errno;
4027 error_report("ram_block_discard_range: Failed to fallocate "
4028 "%s:%" PRIx64 " +%zx (%d)",
4029 rb->idstr, start, length, ret);
4030 goto err;
4031 }
4032#else
4033 ret = -ENOSYS;
4034 error_report("ram_block_discard_range: fallocate not available/file"
4035 "%s:%" PRIx64 " +%zx (%d)",
4036 rb->idstr, start, length, ret);
4037 goto err;
e2fa71f5
DDAG
4038#endif
4039 }
db144f70
DDAG
4040 if (need_madvise) {
4041 /* For normal RAM this causes it to be unmapped,
4042 * for shared memory it causes the local mapping to disappear
4043 * and to fall back on the file contents (which we just
4044 * fallocate'd away).
4045 */
4046#if defined(CONFIG_MADVISE)
4047 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4048 if (ret) {
4049 ret = -errno;
4050 error_report("ram_block_discard_range: Failed to discard range "
4051 "%s:%" PRIx64 " +%zx (%d)",
4052 rb->idstr, start, length, ret);
4053 goto err;
4054 }
4055#else
4056 ret = -ENOSYS;
4057 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4058 "%s:%" PRIx64 " +%zx (%d)",
4059 rb->idstr, start, length, ret);
db144f70
DDAG
4060 goto err;
4061#endif
d3a5038c 4062 }
db144f70
DDAG
4063 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4064 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4065 } else {
4066 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4067 "/%zx/" RAM_ADDR_FMT")",
4068 rb->idstr, start, length, rb->used_length);
4069 }
4070
4071err:
4072 return ret;
4073}
4074
ec3f8c99 4075#endif
a0be0c58
YZ
4076
4077void page_size_init(void)
4078{
4079 /* NOTE: we can always suppose that qemu_host_page_size >=
4080 TARGET_PAGE_SIZE */
a0be0c58
YZ
4081 if (qemu_host_page_size == 0) {
4082 qemu_host_page_size = qemu_real_host_page_size;
4083 }
4084 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4085 qemu_host_page_size = TARGET_PAGE_SIZE;
4086 }
4087 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4088}
5e8fd947
AK
4089
4090#if !defined(CONFIG_USER_ONLY)
4091
4092static void mtree_print_phys_entries(fprintf_function mon, void *f,
4093 int start, int end, int skip, int ptr)
4094{
4095 if (start == end - 1) {
4096 mon(f, "\t%3d ", start);
4097 } else {
4098 mon(f, "\t%3d..%-3d ", start, end - 1);
4099 }
4100 mon(f, " skip=%d ", skip);
4101 if (ptr == PHYS_MAP_NODE_NIL) {
4102 mon(f, " ptr=NIL");
4103 } else if (!skip) {
4104 mon(f, " ptr=#%d", ptr);
4105 } else {
4106 mon(f, " ptr=[%d]", ptr);
4107 }
4108 mon(f, "\n");
4109}
4110
4111#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4112 int128_sub((size), int128_one())) : 0)
4113
4114void mtree_print_dispatch(fprintf_function mon, void *f,
4115 AddressSpaceDispatch *d, MemoryRegion *root)
4116{
4117 int i;
4118
4119 mon(f, " Dispatch\n");
4120 mon(f, " Physical sections\n");
4121
4122 for (i = 0; i < d->map.sections_nb; ++i) {
4123 MemoryRegionSection *s = d->map.sections + i;
4124 const char *names[] = { " [unassigned]", " [not dirty]",
4125 " [ROM]", " [watch]" };
4126
4127 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4128 i,
4129 s->offset_within_address_space,
4130 s->offset_within_address_space + MR_SIZE(s->mr->size),
4131 s->mr->name ? s->mr->name : "(noname)",
4132 i < ARRAY_SIZE(names) ? names[i] : "",
4133 s->mr == root ? " [ROOT]" : "",
4134 s == d->mru_section ? " [MRU]" : "",
4135 s->mr->is_iommu ? " [iommu]" : "");
4136
4137 if (s->mr->alias) {
4138 mon(f, " alias=%s", s->mr->alias->name ?
4139 s->mr->alias->name : "noname");
4140 }
4141 mon(f, "\n");
4142 }
4143
4144 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4145 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4146 for (i = 0; i < d->map.nodes_nb; ++i) {
4147 int j, jprev;
4148 PhysPageEntry prev;
4149 Node *n = d->map.nodes + i;
4150
4151 mon(f, " [%d]\n", i);
4152
4153 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4154 PhysPageEntry *pe = *n + j;
4155
4156 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4157 continue;
4158 }
4159
4160 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4161
4162 jprev = j;
4163 prev = *pe;
4164 }
4165
4166 if (jprev != ARRAY_SIZE(*n)) {
4167 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4168 }
4169 }
4170}
4171
4172#endif