]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/kevin/tags/for-upstream' into staging
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
61c490e2
BM
68#include "qemu/pmem.h"
69
9dfeca7c
BR
70#include "migration/vmstate.h"
71
b35ba30f 72#include "qemu/range.h"
794e8f30
MT
73#ifndef _WIN32
74#include "qemu/mmap-alloc.h"
75#endif
b35ba30f 76
be9b23c4
PX
77#include "monitor/monitor.h"
78
db7b5426 79//#define DEBUG_SUBPAGE
1196be37 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
82/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
84 */
0d53d9fe 85RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
86
87static MemoryRegion *system_memory;
309cb471 88static MemoryRegion *system_io;
62152b8a 89
f6790af6
AK
90AddressSpace address_space_io;
91AddressSpace address_space_memory;
2673a5da 92
acc9d80b 93static MemoryRegion io_mem_unassigned;
e2eef170 94#endif
9fa3e853 95
f481ee2d
PB
96CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
97
6a00d601
FB
98/* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
f240eb6f 100__thread CPUState *current_cpu;
2e70f6ef 101/* 0 = Do not count executed instructions.
bf20dc07 102 1 = Precise instruction counting.
2e70f6ef 103 2 = Adaptive rate instruction counting. */
5708fc66 104int use_icount;
6a00d601 105
a0be0c58
YZ
106uintptr_t qemu_host_page_size;
107intptr_t qemu_host_page_mask;
a0be0c58 108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
4346ae3e 110
1db8abb1
PB
111typedef struct PhysPageEntry PhysPageEntry;
112
113struct PhysPageEntry {
9736e55b 114 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 115 uint32_t skip : 6;
9736e55b 116 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 117 uint32_t ptr : 26;
1db8abb1
PB
118};
119
8b795765
MT
120#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
121
03f49957 122/* Size of the L2 (and L3, etc) page tables. */
57271d63 123#define ADDR_SPACE_BITS 64
03f49957 124
026736ce 125#define P_L2_BITS 9
03f49957
PB
126#define P_L2_SIZE (1 << P_L2_BITS)
127
128#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
129
130typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 131
53cb28cb 132typedef struct PhysPageMap {
79e2b9ae
PB
133 struct rcu_head rcu;
134
53cb28cb
MA
135 unsigned sections_nb;
136 unsigned sections_nb_alloc;
137 unsigned nodes_nb;
138 unsigned nodes_nb_alloc;
139 Node *nodes;
140 MemoryRegionSection *sections;
141} PhysPageMap;
142
1db8abb1 143struct AddressSpaceDispatch {
729633c2 144 MemoryRegionSection *mru_section;
1db8abb1
PB
145 /* This is a multi-level map on the physical address space.
146 * The bottom level has pointers to MemoryRegionSections.
147 */
148 PhysPageEntry phys_map;
53cb28cb 149 PhysPageMap map;
1db8abb1
PB
150};
151
90260c6c
JK
152#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
153typedef struct subpage_t {
154 MemoryRegion iomem;
16620684 155 FlatView *fv;
90260c6c 156 hwaddr base;
2615fabd 157 uint16_t sub_section[];
90260c6c
JK
158} subpage_t;
159
b41aac4f 160#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 161
e2eef170 162static void io_mem_init(void);
62152b8a 163static void memory_map_init(void);
9458a9a1 164static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 165static void tcg_commit(MemoryListener *listener);
e2eef170 166
32857f4d
PM
167/**
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
173 */
174struct CPUAddressSpace {
175 CPUState *cpu;
176 AddressSpace *as;
177 struct AddressSpaceDispatch *memory_dispatch;
178 MemoryListener tcg_as_listener;
179};
180
8deaf12c
GH
181struct DirtyBitmapSnapshot {
182 ram_addr_t start;
183 ram_addr_t end;
184 unsigned long dirty[];
185};
186
6658ffb8 187#endif
fd6ce8f6 188
6d9a1304 189#if !defined(CONFIG_USER_ONLY)
d6f2ea22 190
53cb28cb 191static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 192{
101420b8 193 static unsigned alloc_hint = 16;
53cb28cb 194 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 195 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 196 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 197 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 198 }
f7bf5461
AK
199}
200
db94604b 201static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
202{
203 unsigned i;
8b795765 204 uint32_t ret;
db94604b
PB
205 PhysPageEntry e;
206 PhysPageEntry *p;
f7bf5461 207
53cb28cb 208 ret = map->nodes_nb++;
db94604b 209 p = map->nodes[ret];
f7bf5461 210 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 211 assert(ret != map->nodes_nb_alloc);
db94604b
PB
212
213 e.skip = leaf ? 0 : 1;
214 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 215 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 216 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 217 }
f7bf5461 218 return ret;
d6f2ea22
AK
219}
220
53cb28cb 221static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 222 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 223 int level)
f7bf5461
AK
224{
225 PhysPageEntry *p;
03f49957 226 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 227
9736e55b 228 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 229 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 230 }
db94604b 231 p = map->nodes[lp->ptr];
03f49957 232 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 233
03f49957 234 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 235 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 236 lp->skip = 0;
c19e8800 237 lp->ptr = leaf;
07f07b31
AK
238 *index += step;
239 *nb -= step;
2999097b 240 } else {
53cb28cb 241 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
242 }
243 ++lp;
f7bf5461
AK
244 }
245}
246
ac1970fb 247static void phys_page_set(AddressSpaceDispatch *d,
56b15076 248 hwaddr index, uint64_t nb,
2999097b 249 uint16_t leaf)
f7bf5461 250{
2999097b 251 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 252 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 253
53cb28cb 254 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
255}
256
b35ba30f
MT
257/* Compact a non leaf page entry. Simply detect that the entry has a single child,
258 * and update our entry so we can skip it and go directly to the destination.
259 */
efee678d 260static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
261{
262 unsigned valid_ptr = P_L2_SIZE;
263 int valid = 0;
264 PhysPageEntry *p;
265 int i;
266
267 if (lp->ptr == PHYS_MAP_NODE_NIL) {
268 return;
269 }
270
271 p = nodes[lp->ptr];
272 for (i = 0; i < P_L2_SIZE; i++) {
273 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
274 continue;
275 }
276
277 valid_ptr = i;
278 valid++;
279 if (p[i].skip) {
efee678d 280 phys_page_compact(&p[i], nodes);
b35ba30f
MT
281 }
282 }
283
284 /* We can only compress if there's only one child. */
285 if (valid != 1) {
286 return;
287 }
288
289 assert(valid_ptr < P_L2_SIZE);
290
291 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
292 if (P_L2_LEVELS >= (1 << 6) &&
293 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
294 return;
295 }
296
297 lp->ptr = p[valid_ptr].ptr;
298 if (!p[valid_ptr].skip) {
299 /* If our only child is a leaf, make this a leaf. */
300 /* By design, we should have made this node a leaf to begin with so we
301 * should never reach here.
302 * But since it's so simple to handle this, let's do it just in case we
303 * change this rule.
304 */
305 lp->skip = 0;
306 } else {
307 lp->skip += p[valid_ptr].skip;
308 }
309}
310
8629d3fc 311void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 312{
b35ba30f 313 if (d->phys_map.skip) {
efee678d 314 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
315 }
316}
317
29cb533d
FZ
318static inline bool section_covers_addr(const MemoryRegionSection *section,
319 hwaddr addr)
320{
321 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
322 * the section must cover the entire address space.
323 */
258dfaaa 324 return int128_gethi(section->size) ||
29cb533d 325 range_covers_byte(section->offset_within_address_space,
258dfaaa 326 int128_getlo(section->size), addr);
29cb533d
FZ
327}
328
003a0cf2 329static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 330{
003a0cf2
PX
331 PhysPageEntry lp = d->phys_map, *p;
332 Node *nodes = d->map.nodes;
333 MemoryRegionSection *sections = d->map.sections;
97115a8d 334 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 335 int i;
f1f6e3b8 336
9736e55b 337 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 338 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 339 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 340 }
9affd6fc 341 p = nodes[lp.ptr];
03f49957 342 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 343 }
b35ba30f 344
29cb533d 345 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
346 return &sections[lp.ptr];
347 } else {
348 return &sections[PHYS_SECTION_UNASSIGNED];
349 }
f3705d53
AK
350}
351
79e2b9ae 352/* Called from RCU critical section */
c7086b4a 353static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
354 hwaddr addr,
355 bool resolve_subpage)
9f029603 356{
729633c2 357 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
358 subpage_t *subpage;
359
07c114bb
PB
360 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
361 !section_covers_addr(section, addr)) {
003a0cf2 362 section = phys_page_find(d, addr);
07c114bb 363 atomic_set(&d->mru_section, section);
729633c2 364 }
90260c6c
JK
365 if (resolve_subpage && section->mr->subpage) {
366 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 367 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
368 }
369 return section;
9f029603
JK
370}
371
79e2b9ae 372/* Called from RCU critical section */
90260c6c 373static MemoryRegionSection *
c7086b4a 374address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 375 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
376{
377 MemoryRegionSection *section;
965eb2fc 378 MemoryRegion *mr;
a87f3954 379 Int128 diff;
149f54b5 380
c7086b4a 381 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
382 /* Compute offset within MemoryRegionSection */
383 addr -= section->offset_within_address_space;
384
385 /* Compute offset within MemoryRegion */
386 *xlat = addr + section->offset_within_region;
387
965eb2fc 388 mr = section->mr;
b242e0e0
PB
389
390 /* MMIO registers can be expected to perform full-width accesses based only
391 * on their address, without considering adjacent registers that could
392 * decode to completely different MemoryRegions. When such registers
393 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
394 * regions overlap wildly. For this reason we cannot clamp the accesses
395 * here.
396 *
397 * If the length is small (as is the case for address_space_ldl/stl),
398 * everything works fine. If the incoming length is large, however,
399 * the caller really has to do the clamping through memory_access_size.
400 */
965eb2fc 401 if (memory_region_is_ram(mr)) {
e4a511f8 402 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
403 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
404 }
149f54b5
PB
405 return section;
406}
90260c6c 407
a411c84b
PB
408/**
409 * address_space_translate_iommu - translate an address through an IOMMU
410 * memory region and then through the target address space.
411 *
412 * @iommu_mr: the IOMMU memory region that we start the translation from
413 * @addr: the address to be translated through the MMU
414 * @xlat: the translated address offset within the destination memory region.
415 * It cannot be %NULL.
416 * @plen_out: valid read/write length of the translated address. It
417 * cannot be %NULL.
418 * @page_mask_out: page mask for the translated address. This
419 * should only be meaningful for IOMMU translated
420 * addresses, since there may be huge pages that this bit
421 * would tell. It can be %NULL if we don't care about it.
422 * @is_write: whether the translation operation is for write
423 * @is_mmio: whether this can be MMIO, set true if it can
424 * @target_as: the address space targeted by the IOMMU
2f7b009c 425 * @attrs: transaction attributes
a411c84b
PB
426 *
427 * This function is called from RCU critical section. It is the common
428 * part of flatview_do_translate and address_space_translate_cached.
429 */
430static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
431 hwaddr *xlat,
432 hwaddr *plen_out,
433 hwaddr *page_mask_out,
434 bool is_write,
435 bool is_mmio,
2f7b009c
PM
436 AddressSpace **target_as,
437 MemTxAttrs attrs)
a411c84b
PB
438{
439 MemoryRegionSection *section;
440 hwaddr page_mask = (hwaddr)-1;
441
442 do {
443 hwaddr addr = *xlat;
444 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
445 int iommu_idx = 0;
446 IOMMUTLBEntry iotlb;
447
448 if (imrc->attrs_to_index) {
449 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
450 }
451
452 iotlb = imrc->translate(iommu_mr, addr, is_write ?
453 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
454
455 if (!(iotlb.perm & (1 << is_write))) {
456 goto unassigned;
457 }
458
459 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
460 | (addr & iotlb.addr_mask));
461 page_mask &= iotlb.addr_mask;
462 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
463 *target_as = iotlb.target_as;
464
465 section = address_space_translate_internal(
466 address_space_to_dispatch(iotlb.target_as), addr, xlat,
467 plen_out, is_mmio);
468
469 iommu_mr = memory_region_get_iommu(section->mr);
470 } while (unlikely(iommu_mr));
471
472 if (page_mask_out) {
473 *page_mask_out = page_mask;
474 }
475 return *section;
476
477unassigned:
478 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
479}
480
d5e5fafd
PX
481/**
482 * flatview_do_translate - translate an address in FlatView
483 *
484 * @fv: the flat view that we want to translate on
485 * @addr: the address to be translated in above address space
486 * @xlat: the translated address offset within memory region. It
487 * cannot be @NULL.
488 * @plen_out: valid read/write length of the translated address. It
489 * can be @NULL when we don't care about it.
490 * @page_mask_out: page mask for the translated address. This
491 * should only be meaningful for IOMMU translated
492 * addresses, since there may be huge pages that this bit
493 * would tell. It can be @NULL if we don't care about it.
494 * @is_write: whether the translation operation is for write
495 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 496 * @target_as: the address space targeted by the IOMMU
49e14aa8 497 * @attrs: memory transaction attributes
d5e5fafd
PX
498 *
499 * This function is called from RCU critical section
500 */
16620684
AK
501static MemoryRegionSection flatview_do_translate(FlatView *fv,
502 hwaddr addr,
503 hwaddr *xlat,
d5e5fafd
PX
504 hwaddr *plen_out,
505 hwaddr *page_mask_out,
16620684
AK
506 bool is_write,
507 bool is_mmio,
49e14aa8
PM
508 AddressSpace **target_as,
509 MemTxAttrs attrs)
052c8fa9 510{
052c8fa9 511 MemoryRegionSection *section;
3df9d748 512 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
513 hwaddr plen = (hwaddr)(-1);
514
ad2804d9
PB
515 if (!plen_out) {
516 plen_out = &plen;
d5e5fafd 517 }
052c8fa9 518
a411c84b
PB
519 section = address_space_translate_internal(
520 flatview_to_dispatch(fv), addr, xlat,
521 plen_out, is_mmio);
052c8fa9 522
a411c84b
PB
523 iommu_mr = memory_region_get_iommu(section->mr);
524 if (unlikely(iommu_mr)) {
525 return address_space_translate_iommu(iommu_mr, xlat,
526 plen_out, page_mask_out,
527 is_write, is_mmio,
2f7b009c 528 target_as, attrs);
052c8fa9 529 }
d5e5fafd 530 if (page_mask_out) {
a411c84b
PB
531 /* Not behind an IOMMU, use default page size. */
532 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
533 }
534
a764040c 535 return *section;
052c8fa9
JW
536}
537
538/* Called from RCU critical section */
a764040c 539IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 540 bool is_write, MemTxAttrs attrs)
90260c6c 541{
a764040c 542 MemoryRegionSection section;
076a93d7 543 hwaddr xlat, page_mask;
30951157 544
076a93d7
PX
545 /*
546 * This can never be MMIO, and we don't really care about plen,
547 * but page mask.
548 */
549 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
550 NULL, &page_mask, is_write, false, &as,
551 attrs);
30951157 552
a764040c
PX
553 /* Illegal translation */
554 if (section.mr == &io_mem_unassigned) {
555 goto iotlb_fail;
556 }
30951157 557
a764040c
PX
558 /* Convert memory region offset into address space offset */
559 xlat += section.offset_within_address_space -
560 section.offset_within_region;
561
a764040c 562 return (IOMMUTLBEntry) {
e76bb18f 563 .target_as = as,
076a93d7
PX
564 .iova = addr & ~page_mask,
565 .translated_addr = xlat & ~page_mask,
566 .addr_mask = page_mask,
a764040c
PX
567 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
568 .perm = IOMMU_RW,
569 };
570
571iotlb_fail:
572 return (IOMMUTLBEntry) {0};
573}
574
575/* Called from RCU critical section */
16620684 576MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
577 hwaddr *plen, bool is_write,
578 MemTxAttrs attrs)
a764040c
PX
579{
580 MemoryRegion *mr;
581 MemoryRegionSection section;
16620684 582 AddressSpace *as = NULL;
a764040c
PX
583
584 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 585 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 586 is_write, true, &as, attrs);
a764040c
PX
587 mr = section.mr;
588
fe680d0d 589 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 590 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 591 *plen = MIN(page, *plen);
a87f3954
PB
592 }
593
30951157 594 return mr;
90260c6c
JK
595}
596
1f871c5e
PM
597typedef struct TCGIOMMUNotifier {
598 IOMMUNotifier n;
599 MemoryRegion *mr;
600 CPUState *cpu;
601 int iommu_idx;
602 bool active;
603} TCGIOMMUNotifier;
604
605static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
606{
607 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
608
609 if (!notifier->active) {
610 return;
611 }
612 tlb_flush(notifier->cpu);
613 notifier->active = false;
614 /* We leave the notifier struct on the list to avoid reallocating it later.
615 * Generally the number of IOMMUs a CPU deals with will be small.
616 * In any case we can't unregister the iommu notifier from a notify
617 * callback.
618 */
619}
620
621static void tcg_register_iommu_notifier(CPUState *cpu,
622 IOMMUMemoryRegion *iommu_mr,
623 int iommu_idx)
624{
625 /* Make sure this CPU has an IOMMU notifier registered for this
626 * IOMMU/IOMMU index combination, so that we can flush its TLB
627 * when the IOMMU tells us the mappings we've cached have changed.
628 */
629 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
630 TCGIOMMUNotifier *notifier;
549d4005
EA
631 Error *err = NULL;
632 int i, ret;
1f871c5e
PM
633
634 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 635 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
636 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
637 break;
638 }
639 }
640 if (i == cpu->iommu_notifiers->len) {
641 /* Not found, add a new entry at the end of the array */
642 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
643 notifier = g_new0(TCGIOMMUNotifier, 1);
644 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
645
646 notifier->mr = mr;
647 notifier->iommu_idx = iommu_idx;
648 notifier->cpu = cpu;
649 /* Rather than trying to register interest in the specific part
650 * of the iommu's address space that we've accessed and then
651 * expand it later as subsequent accesses touch more of it, we
652 * just register interest in the whole thing, on the assumption
653 * that iommu reconfiguration will be rare.
654 */
655 iommu_notifier_init(&notifier->n,
656 tcg_iommu_unmap_notify,
657 IOMMU_NOTIFIER_UNMAP,
658 0,
659 HWADDR_MAX,
660 iommu_idx);
549d4005
EA
661 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
662 &err);
663 if (ret) {
664 error_report_err(err);
665 exit(1);
666 }
1f871c5e
PM
667 }
668
669 if (!notifier->active) {
670 notifier->active = true;
671 }
672}
673
674static void tcg_iommu_free_notifier_list(CPUState *cpu)
675{
676 /* Destroy the CPU's notifier list */
677 int i;
678 TCGIOMMUNotifier *notifier;
679
680 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 681 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 682 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 683 g_free(notifier);
1f871c5e
PM
684 }
685 g_array_free(cpu->iommu_notifiers, true);
686}
687
79e2b9ae 688/* Called from RCU critical section */
90260c6c 689MemoryRegionSection *
d7898cda 690address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
691 hwaddr *xlat, hwaddr *plen,
692 MemTxAttrs attrs, int *prot)
90260c6c 693{
30951157 694 MemoryRegionSection *section;
1f871c5e
PM
695 IOMMUMemoryRegion *iommu_mr;
696 IOMMUMemoryRegionClass *imrc;
697 IOMMUTLBEntry iotlb;
698 int iommu_idx;
f35e44e7 699 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 700
1f871c5e
PM
701 for (;;) {
702 section = address_space_translate_internal(d, addr, &addr, plen, false);
703
704 iommu_mr = memory_region_get_iommu(section->mr);
705 if (!iommu_mr) {
706 break;
707 }
708
709 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
710
711 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
712 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
713 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
714 * doesn't short-cut its translation table walk.
715 */
716 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
717 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
718 | (addr & iotlb.addr_mask));
719 /* Update the caller's prot bits to remove permissions the IOMMU
720 * is giving us a failure response for. If we get down to no
721 * permissions left at all we can give up now.
722 */
723 if (!(iotlb.perm & IOMMU_RO)) {
724 *prot &= ~(PAGE_READ | PAGE_EXEC);
725 }
726 if (!(iotlb.perm & IOMMU_WO)) {
727 *prot &= ~PAGE_WRITE;
728 }
729
730 if (!*prot) {
731 goto translate_fail;
732 }
733
734 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
735 }
30951157 736
3df9d748 737 assert(!memory_region_is_iommu(section->mr));
1f871c5e 738 *xlat = addr;
30951157 739 return section;
1f871c5e
PM
740
741translate_fail:
742 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 743}
5b6dd868 744#endif
fd6ce8f6 745
b170fce3 746#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
747
748static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 749{
259186a7 750 CPUState *cpu = opaque;
a513fe19 751
5b6dd868
BS
752 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
753 version_id is increased. */
259186a7 754 cpu->interrupt_request &= ~0x01;
d10eb08f 755 tlb_flush(cpu);
5b6dd868 756
15a356c4
PD
757 /* loadvm has just updated the content of RAM, bypassing the
758 * usual mechanisms that ensure we flush TBs for writes to
759 * memory we've translated code from. So we must flush all TBs,
760 * which will now be stale.
761 */
762 tb_flush(cpu);
763
5b6dd868 764 return 0;
a513fe19 765}
7501267e 766
6c3bff0e
PD
767static int cpu_common_pre_load(void *opaque)
768{
769 CPUState *cpu = opaque;
770
adee6424 771 cpu->exception_index = -1;
6c3bff0e
PD
772
773 return 0;
774}
775
776static bool cpu_common_exception_index_needed(void *opaque)
777{
778 CPUState *cpu = opaque;
779
adee6424 780 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
781}
782
783static const VMStateDescription vmstate_cpu_common_exception_index = {
784 .name = "cpu_common/exception_index",
785 .version_id = 1,
786 .minimum_version_id = 1,
5cd8cada 787 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
788 .fields = (VMStateField[]) {
789 VMSTATE_INT32(exception_index, CPUState),
790 VMSTATE_END_OF_LIST()
791 }
792};
793
bac05aa9
AS
794static bool cpu_common_crash_occurred_needed(void *opaque)
795{
796 CPUState *cpu = opaque;
797
798 return cpu->crash_occurred;
799}
800
801static const VMStateDescription vmstate_cpu_common_crash_occurred = {
802 .name = "cpu_common/crash_occurred",
803 .version_id = 1,
804 .minimum_version_id = 1,
805 .needed = cpu_common_crash_occurred_needed,
806 .fields = (VMStateField[]) {
807 VMSTATE_BOOL(crash_occurred, CPUState),
808 VMSTATE_END_OF_LIST()
809 }
810};
811
1a1562f5 812const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
813 .name = "cpu_common",
814 .version_id = 1,
815 .minimum_version_id = 1,
6c3bff0e 816 .pre_load = cpu_common_pre_load,
5b6dd868 817 .post_load = cpu_common_post_load,
35d08458 818 .fields = (VMStateField[]) {
259186a7
AF
819 VMSTATE_UINT32(halted, CPUState),
820 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 821 VMSTATE_END_OF_LIST()
6c3bff0e 822 },
5cd8cada
JQ
823 .subsections = (const VMStateDescription*[]) {
824 &vmstate_cpu_common_exception_index,
bac05aa9 825 &vmstate_cpu_common_crash_occurred,
5cd8cada 826 NULL
5b6dd868
BS
827 }
828};
1a1562f5 829
5b6dd868 830#endif
ea041c0e 831
38d8f5c8 832CPUState *qemu_get_cpu(int index)
ea041c0e 833{
bdc44640 834 CPUState *cpu;
ea041c0e 835
bdc44640 836 CPU_FOREACH(cpu) {
55e5c285 837 if (cpu->cpu_index == index) {
bdc44640 838 return cpu;
55e5c285 839 }
ea041c0e 840 }
5b6dd868 841
bdc44640 842 return NULL;
ea041c0e
FB
843}
844
09daed84 845#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
846void cpu_address_space_init(CPUState *cpu, int asidx,
847 const char *prefix, MemoryRegion *mr)
09daed84 848{
12ebc9a7 849 CPUAddressSpace *newas;
80ceb07a 850 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 851 char *as_name;
80ceb07a
PX
852
853 assert(mr);
87a621d8
PX
854 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
855 address_space_init(as, mr, as_name);
856 g_free(as_name);
12ebc9a7
PM
857
858 /* Target code should have set num_ases before calling us */
859 assert(asidx < cpu->num_ases);
860
56943e8c
PM
861 if (asidx == 0) {
862 /* address space 0 gets the convenience alias */
863 cpu->as = as;
864 }
865
12ebc9a7
PM
866 /* KVM cannot currently support multiple address spaces. */
867 assert(asidx == 0 || !kvm_enabled());
09daed84 868
12ebc9a7
PM
869 if (!cpu->cpu_ases) {
870 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 871 }
32857f4d 872
12ebc9a7
PM
873 newas = &cpu->cpu_ases[asidx];
874 newas->cpu = cpu;
875 newas->as = as;
56943e8c 876 if (tcg_enabled()) {
9458a9a1 877 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
878 newas->tcg_as_listener.commit = tcg_commit;
879 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 880 }
09daed84 881}
651a5bc0
PM
882
883AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
884{
885 /* Return the AddressSpace corresponding to the specified index */
886 return cpu->cpu_ases[asidx].as;
887}
09daed84
EI
888#endif
889
7bbc124e 890void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 891{
9dfeca7c
BR
892 CPUClass *cc = CPU_GET_CLASS(cpu);
893
267f685b 894 cpu_list_remove(cpu);
9dfeca7c
BR
895
896 if (cc->vmsd != NULL) {
897 vmstate_unregister(NULL, cc->vmsd, cpu);
898 }
899 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
900 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
901 }
1f871c5e
PM
902#ifndef CONFIG_USER_ONLY
903 tcg_iommu_free_notifier_list(cpu);
904#endif
1c59eb39
BR
905}
906
c7e002c5
FZ
907Property cpu_common_props[] = {
908#ifndef CONFIG_USER_ONLY
909 /* Create a memory property for softmmu CPU object,
2e5b09fd 910 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
911 * because that file is compiled only once for both user-mode
912 * and system builds.) The default if no link is set up is to use
913 * the system address space.
914 */
915 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
916 MemoryRegion *),
917#endif
918 DEFINE_PROP_END_OF_LIST(),
919};
920
39e329e3 921void cpu_exec_initfn(CPUState *cpu)
ea041c0e 922{
56943e8c 923 cpu->as = NULL;
12ebc9a7 924 cpu->num_ases = 0;
56943e8c 925
291135b5 926#ifndef CONFIG_USER_ONLY
291135b5 927 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
928 cpu->memory = system_memory;
929 object_ref(OBJECT(cpu->memory));
291135b5 930#endif
39e329e3
LV
931}
932
ce5b1bbf 933void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 934{
55c3ceef 935 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 936 static bool tcg_target_initialized;
291135b5 937
267f685b 938 cpu_list_add(cpu);
1bc7e522 939
2dda6354
EC
940 if (tcg_enabled() && !tcg_target_initialized) {
941 tcg_target_initialized = true;
55c3ceef
RH
942 cc->tcg_initialize();
943 }
5005e253 944 tlb_init(cpu);
55c3ceef 945
30865f31
EC
946 qemu_plugin_vcpu_init_hook(cpu);
947
1bc7e522 948#ifndef CONFIG_USER_ONLY
e0d47944 949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 950 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 951 }
b170fce3 952 if (cc->vmsd != NULL) {
741da0d3 953 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 954 }
1f871c5e 955
5601be3b 956 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 957#endif
ea041c0e
FB
958}
959
c1c8cfe5 960const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
961{
962 ObjectClass *oc;
963 CPUClass *cc;
964 gchar **model_pieces;
965 const char *cpu_type;
966
c1c8cfe5 967 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
968 if (!model_pieces[0]) {
969 error_report("-cpu option cannot be empty");
970 exit(1);
971 }
2278b939
IM
972
973 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
974 if (oc == NULL) {
975 error_report("unable to find CPU model '%s'", model_pieces[0]);
976 g_strfreev(model_pieces);
977 exit(EXIT_FAILURE);
978 }
979
980 cpu_type = object_class_get_name(oc);
981 cc = CPU_CLASS(oc);
982 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
983 g_strfreev(model_pieces);
984 return cpu_type;
985}
986
c40d4792 987#if defined(CONFIG_USER_ONLY)
8bca9a03 988void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 989{
406bc339 990 mmap_lock();
ce9f5e27 991 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
992 mmap_unlock();
993}
8bca9a03
PB
994
995static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
996{
997 tb_invalidate_phys_addr(pc);
998}
406bc339 999#else
8bca9a03
PB
1000void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1001{
1002 ram_addr_t ram_addr;
1003 MemoryRegion *mr;
1004 hwaddr l = 1;
1005
c40d4792
PB
1006 if (!tcg_enabled()) {
1007 return;
1008 }
1009
694ea274 1010 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1011 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1012 if (!(memory_region_is_ram(mr)
1013 || memory_region_is_romd(mr))) {
8bca9a03
PB
1014 return;
1015 }
1016 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1017 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1018}
1019
406bc339
PK
1020static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1021{
1022 MemTxAttrs attrs;
1023 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1024 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1025 if (phys != -1) {
1026 /* Locks grabbed by tb_invalidate_phys_addr */
1027 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1028 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1029 }
1e7855a5 1030}
406bc339 1031#endif
d720b93d 1032
74841f04 1033#ifndef CONFIG_USER_ONLY
6658ffb8 1034/* Add a watchpoint. */
75a34036 1035int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1036 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1037{
c0ce998e 1038 CPUWatchpoint *wp;
6658ffb8 1039
05068c0d 1040 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1041 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1044 return -EINVAL;
1045 }
7267c094 1046 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1047
1048 wp->vaddr = addr;
05068c0d 1049 wp->len = len;
a1d1bb31
AL
1050 wp->flags = flags;
1051
2dc9f411 1052 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1057 }
6658ffb8 1058
31b030d4 1059 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1060
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
6658ffb8
PB
1064}
1065
a1d1bb31 1066/* Remove a specific watchpoint. */
75a34036 1067int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1068 int flags)
6658ffb8 1069{
a1d1bb31 1070 CPUWatchpoint *wp;
6658ffb8 1071
ff4700b0 1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1073 if (addr == wp->vaddr && len == wp->len
6e140f28 1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1075 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1076 return 0;
1077 }
1078 }
a1d1bb31 1079 return -ENOENT;
6658ffb8
PB
1080}
1081
a1d1bb31 1082/* Remove a specific watchpoint by reference. */
75a34036 1083void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1084{
ff4700b0 1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1086
31b030d4 1087 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1088
7267c094 1089 g_free(watchpoint);
a1d1bb31
AL
1090}
1091
1092/* Remove all matching watchpoints. */
75a34036 1093void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1094{
c0ce998e 1095 CPUWatchpoint *wp, *next;
a1d1bb31 1096
ff4700b0 1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1100 }
c0ce998e 1101 }
7d03f82f 1102}
05068c0d
PM
1103
1104/* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1108 */
56ad8b00
RH
1109static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
05068c0d
PM
1111{
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1116 */
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1119
1120 return !(addr > wpend || wp->vaddr > addrend);
1121}
1122
56ad8b00
RH
1123/* Return flags for watchpoints that match addr + prot. */
1124int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125{
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1128
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131 ret |= wp->flags;
1132 }
1133 }
1134 return ret;
1135}
74841f04 1136#endif /* !CONFIG_USER_ONLY */
7d03f82f 1137
a1d1bb31 1138/* Add a breakpoint. */
b3310ab3 1139int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1140 CPUBreakpoint **breakpoint)
4c3a88a2 1141{
c0ce998e 1142 CPUBreakpoint *bp;
3b46e624 1143
7267c094 1144 bp = g_malloc(sizeof(*bp));
4c3a88a2 1145
a1d1bb31
AL
1146 bp->pc = pc;
1147 bp->flags = flags;
1148
2dc9f411 1149 /* keep all GDB-injected breakpoints in front */
00b941e5 1150 if (flags & BP_GDB) {
f0c3c505 1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1152 } else {
f0c3c505 1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1154 }
3b46e624 1155
f0c3c505 1156 breakpoint_invalidate(cpu, pc);
a1d1bb31 1157
00b941e5 1158 if (breakpoint) {
a1d1bb31 1159 *breakpoint = bp;
00b941e5 1160 }
4c3a88a2 1161 return 0;
4c3a88a2
FB
1162}
1163
a1d1bb31 1164/* Remove a specific breakpoint. */
b3310ab3 1165int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1166{
a1d1bb31
AL
1167 CPUBreakpoint *bp;
1168
f0c3c505 1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1170 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1171 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1172 return 0;
1173 }
7d03f82f 1174 }
a1d1bb31 1175 return -ENOENT;
7d03f82f
EI
1176}
1177
a1d1bb31 1178/* Remove a specific breakpoint by reference. */
b3310ab3 1179void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1180{
f0c3c505
AF
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182
1183 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1184
7267c094 1185 g_free(breakpoint);
a1d1bb31
AL
1186}
1187
1188/* Remove all matching breakpoints. */
b3310ab3 1189void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1190{
c0ce998e 1191 CPUBreakpoint *bp, *next;
a1d1bb31 1192
f0c3c505 1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1196 }
c0ce998e 1197 }
4c3a88a2
FB
1198}
1199
c33a346e
FB
1200/* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
3825b28f 1202void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1203{
ed2803da
AF
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
38e478ec 1207 kvm_update_guest_debug(cpu, 0);
ed2803da 1208 } else {
ccbb4d44 1209 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1210 /* XXX: only flush what is necessary */
bbd77c18 1211 tb_flush(cpu);
e22a25c9 1212 }
c33a346e 1213 }
c33a346e
FB
1214}
1215
a47dddd7 1216void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1217{
1218 va_list ap;
493ae1f0 1219 va_list ap2;
7501267e
FB
1220
1221 va_start(ap, fmt);
493ae1f0 1222 va_copy(ap2, ap);
7501267e
FB
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
90c84c56 1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1227 if (qemu_log_separate()) {
fc59d2d8 1228 FILE *logfile = qemu_log_lock();
93fcfe39
AL
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
a0762859 1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1233 qemu_log_flush();
fc59d2d8 1234 qemu_log_unlock(logfile);
93fcfe39 1235 qemu_log_close();
924edcae 1236 }
493ae1f0 1237 va_end(ap2);
f9373291 1238 va_end(ap);
7615936e 1239 replay_finish();
fd052bf6
RV
1240#if defined(CONFIG_USER_ONLY)
1241 {
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
8347c185 1245 act.sa_flags = 0;
fd052bf6
RV
1246 sigaction(SIGABRT, &act, NULL);
1247 }
1248#endif
7501267e
FB
1249 abort();
1250}
1251
0124311e 1252#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1253/* Called from RCU critical section */
041603fe
PB
1254static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255{
1256 RAMBlock *block;
1257
43771539 1258 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1259 if (block && addr - block->offset < block->max_length) {
68851b98 1260 return block;
041603fe 1261 }
99e15582 1262 RAMBLOCK_FOREACH(block) {
9b8424d5 1263 if (addr - block->offset < block->max_length) {
041603fe
PB
1264 goto found;
1265 }
1266 }
1267
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1270
1271found:
43771539
PB
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1274 *
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1283 *
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1287 */
041603fe
PB
1288 ram_list.mru_block = block;
1289 return block;
1290}
1291
a2f4d5be 1292static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1293{
9a13565d 1294 CPUState *cpu;
041603fe 1295 ram_addr_t start1;
a2f4d5be
JQ
1296 RAMBlock *block;
1297 ram_addr_t end;
1298
f28d0dfd 1299 assert(tcg_enabled());
a2f4d5be
JQ
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
d24981d3 1302
694ea274 1303 RCU_READ_LOCK_GUARD();
041603fe
PB
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1240be24 1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1309 }
d24981d3
JQ
1310}
1311
5579c7f3 1312/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1313bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1ccde1cb 1316{
5b82b703 1317 DirtyMemoryBlocks *blocks;
03eebc9e 1318 unsigned long end, page;
5b82b703 1319 bool dirty = false;
077874e0
PX
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
03eebc9e
SH
1322
1323 if (length == 0) {
1324 return false;
1325 }
f23db169 1326
03eebc9e
SH
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 page = start >> TARGET_PAGE_BITS;
5b82b703 1329
694ea274
DDAG
1330 WITH_RCU_READ_LOCK_GUARD() {
1331 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1332 ramblock = qemu_get_ram_block(start);
1333 /* Range sanity check on the ramblock */
1334 assert(start >= ramblock->offset &&
1335 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1336
694ea274
DDAG
1337 while (page < end) {
1338 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long num = MIN(end - page,
1341 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1342
694ea274
DDAG
1343 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1344 offset, num);
1345 page += num;
1346 }
5b82b703 1347
694ea274
DDAG
1348 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1349 mr_size = (end - page) << TARGET_PAGE_BITS;
1350 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1351 }
1352
03eebc9e 1353 if (dirty && tcg_enabled()) {
a2f4d5be 1354 tlb_reset_dirty_range_all(start, length);
5579c7f3 1355 }
03eebc9e
SH
1356
1357 return dirty;
1ccde1cb
FB
1358}
1359
8deaf12c 1360DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1361 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1362{
1363 DirtyMemoryBlocks *blocks;
5dea4079 1364 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1365 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1366 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1367 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1368 DirtyBitmapSnapshot *snap;
1369 unsigned long page, end, dest;
1370
1371 snap = g_malloc0(sizeof(*snap) +
1372 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1373 snap->start = first;
1374 snap->end = last;
1375
1376 page = first >> TARGET_PAGE_BITS;
1377 end = last >> TARGET_PAGE_BITS;
1378 dest = 0;
1379
694ea274
DDAG
1380 WITH_RCU_READ_LOCK_GUARD() {
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1382
694ea274
DDAG
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page,
1387 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1388
694ea274
DDAG
1389 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1390 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1391 offset >>= BITS_PER_LEVEL;
8deaf12c 1392
694ea274
DDAG
1393 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1394 blocks->blocks[idx] + offset,
1395 num);
1396 page += num;
1397 dest += num >> BITS_PER_LEVEL;
1398 }
8deaf12c
GH
1399 }
1400
8deaf12c
GH
1401 if (tcg_enabled()) {
1402 tlb_reset_dirty_range_all(start, length);
1403 }
1404
077874e0
PX
1405 memory_region_clear_dirty_bitmap(mr, offset, length);
1406
8deaf12c
GH
1407 return snap;
1408}
1409
1410bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1411 ram_addr_t start,
1412 ram_addr_t length)
1413{
1414 unsigned long page, end;
1415
1416 assert(start >= snap->start);
1417 assert(start + length <= snap->end);
1418
1419 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1420 page = (start - snap->start) >> TARGET_PAGE_BITS;
1421
1422 while (page < end) {
1423 if (test_bit(page, snap->dirty)) {
1424 return true;
1425 }
1426 page++;
1427 }
1428 return false;
1429}
1430
79e2b9ae 1431/* Called from RCU critical section */
bb0e627a 1432hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1433 MemoryRegionSection *section)
e5548617 1434{
8f5db641
RH
1435 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1436 return section - d->map.sections;
e5548617 1437}
9fa3e853
FB
1438#endif /* defined(CONFIG_USER_ONLY) */
1439
e2eef170 1440#if !defined(CONFIG_USER_ONLY)
8da3ff18 1441
b797ab1a
WY
1442static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1443 uint16_t section);
16620684 1444static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1445
06329cce 1446static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1447 qemu_anon_ram_alloc;
91138037
MA
1448
1449/*
1450 * Set a custom physical guest memory alloator.
1451 * Accelerators with unusual needs may need this. Hopefully, we can
1452 * get rid of it eventually.
1453 */
06329cce 1454void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1455{
1456 phys_mem_alloc = alloc;
1457}
1458
53cb28cb
MA
1459static uint16_t phys_section_add(PhysPageMap *map,
1460 MemoryRegionSection *section)
5312bd8b 1461{
68f3f65b
PB
1462 /* The physical section number is ORed with a page-aligned
1463 * pointer to produce the iotlb entries. Thus it should
1464 * never overflow into the page-aligned value.
1465 */
53cb28cb 1466 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1467
53cb28cb
MA
1468 if (map->sections_nb == map->sections_nb_alloc) {
1469 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1470 map->sections = g_renew(MemoryRegionSection, map->sections,
1471 map->sections_nb_alloc);
5312bd8b 1472 }
53cb28cb 1473 map->sections[map->sections_nb] = *section;
dfde4e6e 1474 memory_region_ref(section->mr);
53cb28cb 1475 return map->sections_nb++;
5312bd8b
AK
1476}
1477
058bc4b5
PB
1478static void phys_section_destroy(MemoryRegion *mr)
1479{
55b4e80b
DS
1480 bool have_sub_page = mr->subpage;
1481
dfde4e6e
PB
1482 memory_region_unref(mr);
1483
55b4e80b 1484 if (have_sub_page) {
058bc4b5 1485 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1486 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1487 g_free(subpage);
1488 }
1489}
1490
6092666e 1491static void phys_sections_free(PhysPageMap *map)
5312bd8b 1492{
9affd6fc
PB
1493 while (map->sections_nb > 0) {
1494 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1495 phys_section_destroy(section->mr);
1496 }
9affd6fc
PB
1497 g_free(map->sections);
1498 g_free(map->nodes);
5312bd8b
AK
1499}
1500
9950322a 1501static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1502{
9950322a 1503 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1504 subpage_t *subpage;
a8170e5e 1505 hwaddr base = section->offset_within_address_space
0f0cb164 1506 & TARGET_PAGE_MASK;
003a0cf2 1507 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1508 MemoryRegionSection subsection = {
1509 .offset_within_address_space = base,
052e87b0 1510 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1511 };
a8170e5e 1512 hwaddr start, end;
0f0cb164 1513
f3705d53 1514 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1515
f3705d53 1516 if (!(existing->mr->subpage)) {
16620684
AK
1517 subpage = subpage_init(fv, base);
1518 subsection.fv = fv;
0f0cb164 1519 subsection.mr = &subpage->iomem;
ac1970fb 1520 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1521 phys_section_add(&d->map, &subsection));
0f0cb164 1522 } else {
f3705d53 1523 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1524 }
1525 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1526 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1527 subpage_register(subpage, start, end,
1528 phys_section_add(&d->map, section));
0f0cb164
AK
1529}
1530
1531
9950322a 1532static void register_multipage(FlatView *fv,
052e87b0 1533 MemoryRegionSection *section)
33417e70 1534{
9950322a 1535 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1536 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1537 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1538 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1539 TARGET_PAGE_BITS));
dd81124b 1540
733d5ef5
PB
1541 assert(num_pages);
1542 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1543}
1544
494d1997
WY
1545/*
1546 * The range in *section* may look like this:
1547 *
1548 * |s|PPPPPPP|s|
1549 *
1550 * where s stands for subpage and P for page.
1551 */
8629d3fc 1552void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1553{
494d1997 1554 MemoryRegionSection remain = *section;
052e87b0 1555 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1556
494d1997
WY
1557 /* register first subpage */
1558 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1559 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1560 - remain.offset_within_address_space;
733d5ef5 1561
494d1997 1562 MemoryRegionSection now = remain;
052e87b0 1563 now.size = int128_min(int128_make64(left), now.size);
9950322a 1564 register_subpage(fv, &now);
494d1997
WY
1565 if (int128_eq(remain.size, now.size)) {
1566 return;
1567 }
052e87b0
PB
1568 remain.size = int128_sub(remain.size, now.size);
1569 remain.offset_within_address_space += int128_get64(now.size);
1570 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1571 }
1572
1573 /* register whole pages */
1574 if (int128_ge(remain.size, page_size)) {
1575 MemoryRegionSection now = remain;
1576 now.size = int128_and(now.size, int128_neg(page_size));
1577 register_multipage(fv, &now);
1578 if (int128_eq(remain.size, now.size)) {
1579 return;
69b67646 1580 }
494d1997
WY
1581 remain.size = int128_sub(remain.size, now.size);
1582 remain.offset_within_address_space += int128_get64(now.size);
1583 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1584 }
494d1997
WY
1585
1586 /* register last subpage */
1587 register_subpage(fv, &remain);
0f0cb164
AK
1588}
1589
62a2744c
SY
1590void qemu_flush_coalesced_mmio_buffer(void)
1591{
1592 if (kvm_enabled())
1593 kvm_flush_coalesced_mmio_buffer();
1594}
1595
b2a8658e
UD
1596void qemu_mutex_lock_ramlist(void)
1597{
1598 qemu_mutex_lock(&ram_list.mutex);
1599}
1600
1601void qemu_mutex_unlock_ramlist(void)
1602{
1603 qemu_mutex_unlock(&ram_list.mutex);
1604}
1605
be9b23c4
PX
1606void ram_block_dump(Monitor *mon)
1607{
1608 RAMBlock *block;
1609 char *psize;
1610
694ea274 1611 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1612 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1613 "Block Name", "PSize", "Offset", "Used", "Total");
1614 RAMBLOCK_FOREACH(block) {
1615 psize = size_to_str(block->page_size);
1616 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1617 " 0x%016" PRIx64 "\n", block->idstr, psize,
1618 (uint64_t)block->offset,
1619 (uint64_t)block->used_length,
1620 (uint64_t)block->max_length);
1621 g_free(psize);
1622 }
be9b23c4
PX
1623}
1624
9c607668
AK
1625#ifdef __linux__
1626/*
1627 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1628 * may or may not name the same files / on the same filesystem now as
1629 * when we actually open and map them. Iterate over the file
1630 * descriptors instead, and use qemu_fd_getpagesize().
1631 */
905b7ee4 1632static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1633{
9c607668
AK
1634 long *hpsize_min = opaque;
1635
1636 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1637 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1638 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1639
7d5489e6 1640 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1641 *hpsize_min = hpsize;
9c607668
AK
1642 }
1643 }
1644
1645 return 0;
1646}
1647
905b7ee4
DH
1648static int find_max_backend_pagesize(Object *obj, void *opaque)
1649{
1650 long *hpsize_max = opaque;
1651
1652 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1653 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1654 long hpsize = host_memory_backend_pagesize(backend);
1655
1656 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1657 *hpsize_max = hpsize;
1658 }
1659 }
1660
1661 return 0;
1662}
1663
1664/*
1665 * TODO: We assume right now that all mapped host memory backends are
1666 * used as RAM, however some might be used for different purposes.
1667 */
1668long qemu_minrampagesize(void)
9c607668
AK
1669{
1670 long hpsize = LONG_MAX;
1671 long mainrampagesize;
1672 Object *memdev_root;
aa570207 1673 MachineState *ms = MACHINE(qdev_get_machine());
9c607668 1674
0de6e2a3 1675 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1676
1677 /* it's possible we have memory-backend objects with
1678 * hugepage-backed RAM. these may get mapped into system
1679 * address space via -numa parameters or memory hotplug
1680 * hooks. we want to take these into account, but we
1681 * also want to make sure these supported hugepage
1682 * sizes are applicable across the entire range of memory
1683 * we may boot from, so we take the min across all
1684 * backends, and assume normal pages in cases where a
1685 * backend isn't backed by hugepages.
1686 */
1687 memdev_root = object_resolve_path("/objects", NULL);
1688 if (memdev_root) {
905b7ee4 1689 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1690 }
1691 if (hpsize == LONG_MAX) {
1692 /* No additional memory regions found ==> Report main RAM page size */
1693 return mainrampagesize;
1694 }
1695
1696 /* If NUMA is disabled or the NUMA nodes are not backed with a
1697 * memory-backend, then there is at least one node using "normal" RAM,
1698 * so if its page size is smaller we have got to report that size instead.
1699 */
1700 if (hpsize > mainrampagesize &&
aa570207
TX
1701 (ms->numa_state == NULL ||
1702 ms->numa_state->num_nodes == 0 ||
7e721e7b 1703 ms->numa_state->nodes[0].node_memdev == NULL)) {
9c607668
AK
1704 static bool warned;
1705 if (!warned) {
1706 error_report("Huge page support disabled (n/a for main memory).");
1707 warned = true;
1708 }
1709 return mainrampagesize;
1710 }
1711
1712 return hpsize;
1713}
905b7ee4
DH
1714
1715long qemu_maxrampagesize(void)
1716{
1717 long pagesize = qemu_mempath_getpagesize(mem_path);
1718 Object *memdev_root = object_resolve_path("/objects", NULL);
1719
1720 if (memdev_root) {
1721 object_child_foreach(memdev_root, find_max_backend_pagesize,
1722 &pagesize);
1723 }
1724 return pagesize;
1725}
9c607668 1726#else
905b7ee4
DH
1727long qemu_minrampagesize(void)
1728{
038adc2f 1729 return qemu_real_host_page_size;
905b7ee4
DH
1730}
1731long qemu_maxrampagesize(void)
9c607668 1732{
038adc2f 1733 return qemu_real_host_page_size;
9c607668
AK
1734}
1735#endif
1736
d5dbde46 1737#ifdef CONFIG_POSIX
d6af99c9
HZ
1738static int64_t get_file_size(int fd)
1739{
72d41eb4
SH
1740 int64_t size;
1741#if defined(__linux__)
1742 struct stat st;
1743
1744 if (fstat(fd, &st) < 0) {
1745 return -errno;
1746 }
1747
1748 /* Special handling for devdax character devices */
1749 if (S_ISCHR(st.st_mode)) {
1750 g_autofree char *subsystem_path = NULL;
1751 g_autofree char *subsystem = NULL;
1752
1753 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1754 major(st.st_rdev), minor(st.st_rdev));
1755 subsystem = g_file_read_link(subsystem_path, NULL);
1756
1757 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1758 g_autofree char *size_path = NULL;
1759 g_autofree char *size_str = NULL;
1760
1761 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1762 major(st.st_rdev), minor(st.st_rdev));
1763
1764 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1765 return g_ascii_strtoll(size_str, NULL, 0);
1766 }
1767 }
1768 }
1769#endif /* defined(__linux__) */
1770
1771 /* st.st_size may be zero for special files yet lseek(2) works */
1772 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1773 if (size < 0) {
1774 return -errno;
1775 }
1776 return size;
1777}
1778
8d37b030
MAL
1779static int file_ram_open(const char *path,
1780 const char *region_name,
1781 bool *created,
1782 Error **errp)
c902760f
MT
1783{
1784 char *filename;
8ca761f6
PF
1785 char *sanitized_name;
1786 char *c;
5c3ece79 1787 int fd = -1;
c902760f 1788
8d37b030 1789 *created = false;
fd97fd44
MA
1790 for (;;) {
1791 fd = open(path, O_RDWR);
1792 if (fd >= 0) {
1793 /* @path names an existing file, use it */
1794 break;
8d31d6b6 1795 }
fd97fd44
MA
1796 if (errno == ENOENT) {
1797 /* @path names a file that doesn't exist, create it */
1798 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1799 if (fd >= 0) {
8d37b030 1800 *created = true;
fd97fd44
MA
1801 break;
1802 }
1803 } else if (errno == EISDIR) {
1804 /* @path names a directory, create a file there */
1805 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1806 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1807 for (c = sanitized_name; *c != '\0'; c++) {
1808 if (*c == '/') {
1809 *c = '_';
1810 }
1811 }
8ca761f6 1812
fd97fd44
MA
1813 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1814 sanitized_name);
1815 g_free(sanitized_name);
8d31d6b6 1816
fd97fd44
MA
1817 fd = mkstemp(filename);
1818 if (fd >= 0) {
1819 unlink(filename);
1820 g_free(filename);
1821 break;
1822 }
1823 g_free(filename);
8d31d6b6 1824 }
fd97fd44
MA
1825 if (errno != EEXIST && errno != EINTR) {
1826 error_setg_errno(errp, errno,
1827 "can't open backing store %s for guest RAM",
1828 path);
8d37b030 1829 return -1;
fd97fd44
MA
1830 }
1831 /*
1832 * Try again on EINTR and EEXIST. The latter happens when
1833 * something else creates the file between our two open().
1834 */
8d31d6b6 1835 }
c902760f 1836
8d37b030
MAL
1837 return fd;
1838}
1839
1840static void *file_ram_alloc(RAMBlock *block,
1841 ram_addr_t memory,
1842 int fd,
1843 bool truncate,
1844 Error **errp)
1845{
56e477a5 1846 Error *err = NULL;
5cc8767d 1847 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1848 void *area;
1849
863e9621 1850 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1851 if (block->mr->align % block->page_size) {
1852 error_setg(errp, "alignment 0x%" PRIx64
1853 " must be multiples of page size 0x%zx",
1854 block->mr->align, block->page_size);
1855 return NULL;
61362b71
DH
1856 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1857 error_setg(errp, "alignment 0x%" PRIx64
1858 " must be a power of two", block->mr->align);
1859 return NULL;
98376843
HZ
1860 }
1861 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1862#if defined(__s390x__)
1863 if (kvm_enabled()) {
1864 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1865 }
1866#endif
fd97fd44 1867
863e9621 1868 if (memory < block->page_size) {
fd97fd44 1869 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1870 "or larger than page size 0x%zx",
1871 memory, block->page_size);
8d37b030 1872 return NULL;
1775f111
HZ
1873 }
1874
863e9621 1875 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1876
1877 /*
1878 * ftruncate is not supported by hugetlbfs in older
1879 * hosts, so don't bother bailing out on errors.
1880 * If anything goes wrong with it under other filesystems,
1881 * mmap will fail.
d6af99c9
HZ
1882 *
1883 * Do not truncate the non-empty backend file to avoid corrupting
1884 * the existing data in the file. Disabling shrinking is not
1885 * enough. For example, the current vNVDIMM implementation stores
1886 * the guest NVDIMM labels at the end of the backend file. If the
1887 * backend file is later extended, QEMU will not be able to find
1888 * those labels. Therefore, extending the non-empty backend file
1889 * is disabled as well.
c902760f 1890 */
8d37b030 1891 if (truncate && ftruncate(fd, memory)) {
9742bf26 1892 perror("ftruncate");
7f56e740 1893 }
c902760f 1894
d2f39add 1895 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1896 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1897 if (area == MAP_FAILED) {
7f56e740 1898 error_setg_errno(errp, errno,
fd97fd44 1899 "unable to map backing store for guest RAM");
8d37b030 1900 return NULL;
c902760f 1901 }
ef36fa14
MT
1902
1903 if (mem_prealloc) {
56e477a5
MA
1904 os_mem_prealloc(fd, area, memory, ms->smp.cpus, &err);
1905 if (err) {
1906 error_propagate(errp, err);
53adb9d4 1907 qemu_ram_munmap(fd, area, memory);
8d37b030 1908 return NULL;
056b68af 1909 }
ef36fa14
MT
1910 }
1911
04b16653 1912 block->fd = fd;
c902760f
MT
1913 return area;
1914}
1915#endif
1916
154cc9ea
DDAG
1917/* Allocate space within the ram_addr_t space that governs the
1918 * dirty bitmaps.
1919 * Called with the ramlist lock held.
1920 */
d17b5288 1921static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1922{
1923 RAMBlock *block, *next_block;
3e837b2c 1924 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1925
49cd9ac6
SH
1926 assert(size != 0); /* it would hand out same offset multiple times */
1927
0dc3f44a 1928 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1929 return 0;
0d53d9fe 1930 }
04b16653 1931
99e15582 1932 RAMBLOCK_FOREACH(block) {
154cc9ea 1933 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1934
801110ab
DDAG
1935 /* Align blocks to start on a 'long' in the bitmap
1936 * which makes the bitmap sync'ing take the fast path.
1937 */
154cc9ea 1938 candidate = block->offset + block->max_length;
801110ab 1939 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1940
154cc9ea
DDAG
1941 /* Search for the closest following block
1942 * and find the gap.
1943 */
99e15582 1944 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1945 if (next_block->offset >= candidate) {
04b16653
AW
1946 next = MIN(next, next_block->offset);
1947 }
1948 }
154cc9ea
DDAG
1949
1950 /* If it fits remember our place and remember the size
1951 * of gap, but keep going so that we might find a smaller
1952 * gap to fill so avoiding fragmentation.
1953 */
1954 if (next - candidate >= size && next - candidate < mingap) {
1955 offset = candidate;
1956 mingap = next - candidate;
04b16653 1957 }
154cc9ea
DDAG
1958
1959 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1960 }
3e837b2c
AW
1961
1962 if (offset == RAM_ADDR_MAX) {
1963 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1964 (uint64_t)size);
1965 abort();
1966 }
1967
154cc9ea
DDAG
1968 trace_find_ram_offset(size, offset);
1969
04b16653
AW
1970 return offset;
1971}
1972
c136180c 1973static unsigned long last_ram_page(void)
d17b5288
AW
1974{
1975 RAMBlock *block;
1976 ram_addr_t last = 0;
1977
694ea274 1978 RCU_READ_LOCK_GUARD();
99e15582 1979 RAMBLOCK_FOREACH(block) {
62be4e3a 1980 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1981 }
b8c48993 1982 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1983}
1984
ddb97f1d
JB
1985static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1986{
1987 int ret;
ddb97f1d
JB
1988
1989 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1990 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1991 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1992 if (ret) {
1993 perror("qemu_madvise");
1994 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1995 "but dump_guest_core=off specified\n");
1996 }
1997 }
1998}
1999
422148d3
DDAG
2000const char *qemu_ram_get_idstr(RAMBlock *rb)
2001{
2002 return rb->idstr;
2003}
2004
754cb9c0
YK
2005void *qemu_ram_get_host_addr(RAMBlock *rb)
2006{
2007 return rb->host;
2008}
2009
2010ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2011{
2012 return rb->offset;
2013}
2014
2015ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2016{
2017 return rb->used_length;
2018}
2019
463a4ac2
DDAG
2020bool qemu_ram_is_shared(RAMBlock *rb)
2021{
2022 return rb->flags & RAM_SHARED;
2023}
2024
2ce16640
DDAG
2025/* Note: Only set at the start of postcopy */
2026bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2027{
2028 return rb->flags & RAM_UF_ZEROPAGE;
2029}
2030
2031void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2032{
2033 rb->flags |= RAM_UF_ZEROPAGE;
2034}
2035
b895de50
CLG
2036bool qemu_ram_is_migratable(RAMBlock *rb)
2037{
2038 return rb->flags & RAM_MIGRATABLE;
2039}
2040
2041void qemu_ram_set_migratable(RAMBlock *rb)
2042{
2043 rb->flags |= RAM_MIGRATABLE;
2044}
2045
2046void qemu_ram_unset_migratable(RAMBlock *rb)
2047{
2048 rb->flags &= ~RAM_MIGRATABLE;
2049}
2050
ae3a7047 2051/* Called with iothread lock held. */
fa53a0e5 2052void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2053{
fa53a0e5 2054 RAMBlock *block;
20cfe881 2055
c5705a77
AK
2056 assert(new_block);
2057 assert(!new_block->idstr[0]);
84b89d78 2058
09e5ab63
AL
2059 if (dev) {
2060 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2061 if (id) {
2062 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2063 g_free(id);
84b89d78
CM
2064 }
2065 }
2066 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2067
694ea274 2068 RCU_READ_LOCK_GUARD();
99e15582 2069 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2070 if (block != new_block &&
2071 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2072 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2073 new_block->idstr);
2074 abort();
2075 }
2076 }
c5705a77
AK
2077}
2078
ae3a7047 2079/* Called with iothread lock held. */
fa53a0e5 2080void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2081{
ae3a7047
MD
2082 /* FIXME: arch_init.c assumes that this is not called throughout
2083 * migration. Ignore the problem since hot-unplug during migration
2084 * does not work anyway.
2085 */
20cfe881
HT
2086 if (block) {
2087 memset(block->idstr, 0, sizeof(block->idstr));
2088 }
2089}
2090
863e9621
DDAG
2091size_t qemu_ram_pagesize(RAMBlock *rb)
2092{
2093 return rb->page_size;
2094}
2095
67f11b5c
DDAG
2096/* Returns the largest size of page in use */
2097size_t qemu_ram_pagesize_largest(void)
2098{
2099 RAMBlock *block;
2100 size_t largest = 0;
2101
99e15582 2102 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2103 largest = MAX(largest, qemu_ram_pagesize(block));
2104 }
2105
2106 return largest;
2107}
2108
8490fc78
LC
2109static int memory_try_enable_merging(void *addr, size_t len)
2110{
75cc7f01 2111 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2112 /* disabled by the user */
2113 return 0;
2114 }
2115
2116 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2117}
2118
62be4e3a
MT
2119/* Only legal before guest might have detected the memory size: e.g. on
2120 * incoming migration, or right after reset.
2121 *
2122 * As memory core doesn't know how is memory accessed, it is up to
2123 * resize callback to update device state and/or add assertions to detect
2124 * misuse, if necessary.
2125 */
fa53a0e5 2126int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2127{
62be4e3a
MT
2128 assert(block);
2129
4ed023ce 2130 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2131
62be4e3a
MT
2132 if (block->used_length == newsize) {
2133 return 0;
2134 }
2135
2136 if (!(block->flags & RAM_RESIZEABLE)) {
2137 error_setg_errno(errp, EINVAL,
2138 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2139 " in != 0x" RAM_ADDR_FMT, block->idstr,
2140 newsize, block->used_length);
2141 return -EINVAL;
2142 }
2143
2144 if (block->max_length < newsize) {
2145 error_setg_errno(errp, EINVAL,
2146 "Length too large: %s: 0x" RAM_ADDR_FMT
2147 " > 0x" RAM_ADDR_FMT, block->idstr,
2148 newsize, block->max_length);
2149 return -EINVAL;
2150 }
2151
2152 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2153 block->used_length = newsize;
58d2707e
PB
2154 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2155 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2156 memory_region_set_size(block->mr, newsize);
2157 if (block->resized) {
2158 block->resized(block->idstr, newsize, block->host);
2159 }
2160 return 0;
2161}
2162
61c490e2
BM
2163/*
2164 * Trigger sync on the given ram block for range [start, start + length]
2165 * with the backing store if one is available.
2166 * Otherwise no-op.
2167 * @Note: this is supposed to be a synchronous op.
2168 */
2169void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2170{
2171 void *addr = ramblock_ptr(block, start);
2172
2173 /* The requested range should fit in within the block range */
2174 g_assert((start + length) <= block->used_length);
2175
2176#ifdef CONFIG_LIBPMEM
2177 /* The lack of support for pmem should not block the sync */
2178 if (ramblock_is_pmem(block)) {
2179 pmem_persist(addr, length);
2180 return;
2181 }
2182#endif
2183 if (block->fd >= 0) {
2184 /**
2185 * Case there is no support for PMEM or the memory has not been
2186 * specified as persistent (or is not one) - use the msync.
2187 * Less optimal but still achieves the same goal
2188 */
2189 if (qemu_msync(addr, length, block->fd)) {
2190 warn_report("%s: failed to sync memory range: start: "
2191 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2192 __func__, start, length);
2193 }
2194 }
2195}
2196
5b82b703
SH
2197/* Called with ram_list.mutex held */
2198static void dirty_memory_extend(ram_addr_t old_ram_size,
2199 ram_addr_t new_ram_size)
2200{
2201 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2202 DIRTY_MEMORY_BLOCK_SIZE);
2203 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2204 DIRTY_MEMORY_BLOCK_SIZE);
2205 int i;
2206
2207 /* Only need to extend if block count increased */
2208 if (new_num_blocks <= old_num_blocks) {
2209 return;
2210 }
2211
2212 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2213 DirtyMemoryBlocks *old_blocks;
2214 DirtyMemoryBlocks *new_blocks;
2215 int j;
2216
2217 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2218 new_blocks = g_malloc(sizeof(*new_blocks) +
2219 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2220
2221 if (old_num_blocks) {
2222 memcpy(new_blocks->blocks, old_blocks->blocks,
2223 old_num_blocks * sizeof(old_blocks->blocks[0]));
2224 }
2225
2226 for (j = old_num_blocks; j < new_num_blocks; j++) {
2227 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2228 }
2229
2230 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2231
2232 if (old_blocks) {
2233 g_free_rcu(old_blocks, rcu);
2234 }
2235 }
2236}
2237
06329cce 2238static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2239{
e1c57ab8 2240 RAMBlock *block;
0d53d9fe 2241 RAMBlock *last_block = NULL;
2152f5ca 2242 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2243 Error *err = NULL;
2152f5ca 2244
b8c48993 2245 old_ram_size = last_ram_page();
c5705a77 2246
b2a8658e 2247 qemu_mutex_lock_ramlist();
9b8424d5 2248 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2249
2250 if (!new_block->host) {
2251 if (xen_enabled()) {
9b8424d5 2252 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2253 new_block->mr, &err);
2254 if (err) {
2255 error_propagate(errp, err);
2256 qemu_mutex_unlock_ramlist();
39c350ee 2257 return;
37aa7a0e 2258 }
e1c57ab8 2259 } else {
9b8424d5 2260 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2261 &new_block->mr->align, shared);
39228250 2262 if (!new_block->host) {
ef701d7b
HT
2263 error_setg_errno(errp, errno,
2264 "cannot set up guest memory '%s'",
2265 memory_region_name(new_block->mr));
2266 qemu_mutex_unlock_ramlist();
39c350ee 2267 return;
39228250 2268 }
9b8424d5 2269 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2270 }
c902760f 2271 }
94a6b54f 2272
dd631697
LZ
2273 new_ram_size = MAX(old_ram_size,
2274 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2275 if (new_ram_size > old_ram_size) {
5b82b703 2276 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2277 }
0d53d9fe
MD
2278 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2279 * QLIST (which has an RCU-friendly variant) does not have insertion at
2280 * tail, so save the last element in last_block.
2281 */
99e15582 2282 RAMBLOCK_FOREACH(block) {
0d53d9fe 2283 last_block = block;
9b8424d5 2284 if (block->max_length < new_block->max_length) {
abb26d63
PB
2285 break;
2286 }
2287 }
2288 if (block) {
0dc3f44a 2289 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2290 } else if (last_block) {
0dc3f44a 2291 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2292 } else { /* list is empty */
0dc3f44a 2293 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2294 }
0d6d3c87 2295 ram_list.mru_block = NULL;
94a6b54f 2296
0dc3f44a
MD
2297 /* Write list before version */
2298 smp_wmb();
f798b07f 2299 ram_list.version++;
b2a8658e 2300 qemu_mutex_unlock_ramlist();
f798b07f 2301
9b8424d5 2302 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2303 new_block->used_length,
2304 DIRTY_CLIENTS_ALL);
94a6b54f 2305
a904c911
PB
2306 if (new_block->host) {
2307 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2308 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2309 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2310 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2311 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2312 }
94a6b54f 2313}
e9a1ab19 2314
d5dbde46 2315#ifdef CONFIG_POSIX
38b3362d 2316RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2317 uint32_t ram_flags, int fd,
38b3362d 2318 Error **errp)
e1c57ab8
PB
2319{
2320 RAMBlock *new_block;
ef701d7b 2321 Error *local_err = NULL;
8d37b030 2322 int64_t file_size;
e1c57ab8 2323
a4de8552
JH
2324 /* Just support these ram flags by now. */
2325 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2326
e1c57ab8 2327 if (xen_enabled()) {
7f56e740 2328 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2329 return NULL;
e1c57ab8
PB
2330 }
2331
e45e7ae2
MAL
2332 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2333 error_setg(errp,
2334 "host lacks kvm mmu notifiers, -mem-path unsupported");
2335 return NULL;
2336 }
2337
e1c57ab8
PB
2338 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2339 /*
2340 * file_ram_alloc() needs to allocate just like
2341 * phys_mem_alloc, but we haven't bothered to provide
2342 * a hook there.
2343 */
7f56e740
PB
2344 error_setg(errp,
2345 "-mem-path not supported with this accelerator");
528f46af 2346 return NULL;
e1c57ab8
PB
2347 }
2348
4ed023ce 2349 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2350 file_size = get_file_size(fd);
2351 if (file_size > 0 && file_size < size) {
2352 error_setg(errp, "backing store %s size 0x%" PRIx64
2353 " does not match 'size' option 0x" RAM_ADDR_FMT,
2354 mem_path, file_size, size);
8d37b030
MAL
2355 return NULL;
2356 }
2357
e1c57ab8
PB
2358 new_block = g_malloc0(sizeof(*new_block));
2359 new_block->mr = mr;
9b8424d5
MT
2360 new_block->used_length = size;
2361 new_block->max_length = size;
cbfc0171 2362 new_block->flags = ram_flags;
8d37b030 2363 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2364 if (!new_block->host) {
2365 g_free(new_block);
528f46af 2366 return NULL;
7f56e740
PB
2367 }
2368
cbfc0171 2369 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2370 if (local_err) {
2371 g_free(new_block);
2372 error_propagate(errp, local_err);
528f46af 2373 return NULL;
ef701d7b 2374 }
528f46af 2375 return new_block;
38b3362d
MAL
2376
2377}
2378
2379
2380RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2381 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2382 Error **errp)
2383{
2384 int fd;
2385 bool created;
2386 RAMBlock *block;
2387
2388 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2389 if (fd < 0) {
2390 return NULL;
2391 }
2392
cbfc0171 2393 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2394 if (!block) {
2395 if (created) {
2396 unlink(mem_path);
2397 }
2398 close(fd);
2399 return NULL;
2400 }
2401
2402 return block;
e1c57ab8 2403}
0b183fc8 2404#endif
e1c57ab8 2405
62be4e3a 2406static
528f46af
FZ
2407RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2408 void (*resized)(const char*,
2409 uint64_t length,
2410 void *host),
06329cce 2411 void *host, bool resizeable, bool share,
528f46af 2412 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2413{
2414 RAMBlock *new_block;
ef701d7b 2415 Error *local_err = NULL;
e1c57ab8 2416
4ed023ce
DDAG
2417 size = HOST_PAGE_ALIGN(size);
2418 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2419 new_block = g_malloc0(sizeof(*new_block));
2420 new_block->mr = mr;
62be4e3a 2421 new_block->resized = resized;
9b8424d5
MT
2422 new_block->used_length = size;
2423 new_block->max_length = max_size;
62be4e3a 2424 assert(max_size >= size);
e1c57ab8 2425 new_block->fd = -1;
038adc2f 2426 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2427 new_block->host = host;
2428 if (host) {
7bd4f430 2429 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2430 }
62be4e3a
MT
2431 if (resizeable) {
2432 new_block->flags |= RAM_RESIZEABLE;
2433 }
06329cce 2434 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2435 if (local_err) {
2436 g_free(new_block);
2437 error_propagate(errp, local_err);
528f46af 2438 return NULL;
ef701d7b 2439 }
528f46af 2440 return new_block;
e1c57ab8
PB
2441}
2442
528f46af 2443RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2444 MemoryRegion *mr, Error **errp)
2445{
06329cce
MA
2446 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2447 false, mr, errp);
62be4e3a
MT
2448}
2449
06329cce
MA
2450RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2451 MemoryRegion *mr, Error **errp)
6977dfe6 2452{
06329cce
MA
2453 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2454 share, mr, errp);
62be4e3a
MT
2455}
2456
528f46af 2457RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2458 void (*resized)(const char*,
2459 uint64_t length,
2460 void *host),
2461 MemoryRegion *mr, Error **errp)
2462{
06329cce
MA
2463 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2464 false, mr, errp);
6977dfe6
YT
2465}
2466
43771539
PB
2467static void reclaim_ramblock(RAMBlock *block)
2468{
2469 if (block->flags & RAM_PREALLOC) {
2470 ;
2471 } else if (xen_enabled()) {
2472 xen_invalidate_map_cache_entry(block->host);
2473#ifndef _WIN32
2474 } else if (block->fd >= 0) {
53adb9d4 2475 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2476 close(block->fd);
2477#endif
2478 } else {
2479 qemu_anon_ram_free(block->host, block->max_length);
2480 }
2481 g_free(block);
2482}
2483
f1060c55 2484void qemu_ram_free(RAMBlock *block)
e9a1ab19 2485{
85bc2a15
MAL
2486 if (!block) {
2487 return;
2488 }
2489
0987d735
PB
2490 if (block->host) {
2491 ram_block_notify_remove(block->host, block->max_length);
2492 }
2493
b2a8658e 2494 qemu_mutex_lock_ramlist();
f1060c55
FZ
2495 QLIST_REMOVE_RCU(block, next);
2496 ram_list.mru_block = NULL;
2497 /* Write list before version */
2498 smp_wmb();
2499 ram_list.version++;
2500 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2501 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2502}
2503
cd19cfa2
HY
2504#ifndef _WIN32
2505void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2506{
2507 RAMBlock *block;
2508 ram_addr_t offset;
2509 int flags;
2510 void *area, *vaddr;
2511
99e15582 2512 RAMBLOCK_FOREACH(block) {
cd19cfa2 2513 offset = addr - block->offset;
9b8424d5 2514 if (offset < block->max_length) {
1240be24 2515 vaddr = ramblock_ptr(block, offset);
7bd4f430 2516 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2517 ;
dfeaf2ab
MA
2518 } else if (xen_enabled()) {
2519 abort();
cd19cfa2
HY
2520 } else {
2521 flags = MAP_FIXED;
3435f395 2522 if (block->fd >= 0) {
dbcb8981
PB
2523 flags |= (block->flags & RAM_SHARED ?
2524 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2525 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2526 flags, block->fd, offset);
cd19cfa2 2527 } else {
2eb9fbaa
MA
2528 /*
2529 * Remap needs to match alloc. Accelerators that
2530 * set phys_mem_alloc never remap. If they did,
2531 * we'd need a remap hook here.
2532 */
2533 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2534
cd19cfa2
HY
2535 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2536 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2537 flags, -1, 0);
cd19cfa2
HY
2538 }
2539 if (area != vaddr) {
493d89bf
AF
2540 error_report("Could not remap addr: "
2541 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2542 length, addr);
cd19cfa2
HY
2543 exit(1);
2544 }
8490fc78 2545 memory_try_enable_merging(vaddr, length);
ddb97f1d 2546 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2547 }
cd19cfa2
HY
2548 }
2549 }
2550}
2551#endif /* !_WIN32 */
2552
1b5ec234 2553/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2554 * This should not be used for general purpose DMA. Use address_space_map
2555 * or address_space_rw instead. For local memory (e.g. video ram) that the
2556 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2557 *
49b24afc 2558 * Called within RCU critical section.
1b5ec234 2559 */
0878d0e1 2560void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2561{
3655cb9c
GA
2562 RAMBlock *block = ram_block;
2563
2564 if (block == NULL) {
2565 block = qemu_get_ram_block(addr);
0878d0e1 2566 addr -= block->offset;
3655cb9c 2567 }
ae3a7047
MD
2568
2569 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2570 /* We need to check if the requested address is in the RAM
2571 * because we don't want to map the entire memory in QEMU.
2572 * In that case just map until the end of the page.
2573 */
2574 if (block->offset == 0) {
1ff7c598 2575 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2576 }
ae3a7047 2577
1ff7c598 2578 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2579 }
0878d0e1 2580 return ramblock_ptr(block, addr);
dc828ca1
PB
2581}
2582
0878d0e1 2583/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2584 * but takes a size argument.
0dc3f44a 2585 *
e81bcda5 2586 * Called within RCU critical section.
ae3a7047 2587 */
3655cb9c 2588static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2589 hwaddr *size, bool lock)
38bee5dc 2590{
3655cb9c 2591 RAMBlock *block = ram_block;
8ab934f9
SS
2592 if (*size == 0) {
2593 return NULL;
2594 }
e81bcda5 2595
3655cb9c
GA
2596 if (block == NULL) {
2597 block = qemu_get_ram_block(addr);
0878d0e1 2598 addr -= block->offset;
3655cb9c 2599 }
0878d0e1 2600 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2601
2602 if (xen_enabled() && block->host == NULL) {
2603 /* We need to check if the requested address is in the RAM
2604 * because we don't want to map the entire memory in QEMU.
2605 * In that case just map the requested area.
2606 */
2607 if (block->offset == 0) {
f5aa69bd 2608 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2609 }
2610
f5aa69bd 2611 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2612 }
e81bcda5 2613
0878d0e1 2614 return ramblock_ptr(block, addr);
38bee5dc
SS
2615}
2616
f90bb71b
DDAG
2617/* Return the offset of a hostpointer within a ramblock */
2618ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2619{
2620 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2621 assert((uintptr_t)host >= (uintptr_t)rb->host);
2622 assert(res < rb->max_length);
2623
2624 return res;
2625}
2626
422148d3
DDAG
2627/*
2628 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2629 * in that RAMBlock.
2630 *
2631 * ptr: Host pointer to look up
2632 * round_offset: If true round the result offset down to a page boundary
2633 * *ram_addr: set to result ram_addr
2634 * *offset: set to result offset within the RAMBlock
2635 *
2636 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2637 *
2638 * By the time this function returns, the returned pointer is not protected
2639 * by RCU anymore. If the caller is not within an RCU critical section and
2640 * does not hold the iothread lock, it must have other means of protecting the
2641 * pointer, such as a reference to the region that includes the incoming
2642 * ram_addr_t.
2643 */
422148d3 2644RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2645 ram_addr_t *offset)
5579c7f3 2646{
94a6b54f
PB
2647 RAMBlock *block;
2648 uint8_t *host = ptr;
2649
868bb33f 2650 if (xen_enabled()) {
f615f396 2651 ram_addr_t ram_addr;
694ea274 2652 RCU_READ_LOCK_GUARD();
f615f396
PB
2653 ram_addr = xen_ram_addr_from_mapcache(ptr);
2654 block = qemu_get_ram_block(ram_addr);
422148d3 2655 if (block) {
d6b6aec4 2656 *offset = ram_addr - block->offset;
422148d3 2657 }
422148d3 2658 return block;
712c2b41
SS
2659 }
2660
694ea274 2661 RCU_READ_LOCK_GUARD();
0dc3f44a 2662 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2663 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2664 goto found;
2665 }
2666
99e15582 2667 RAMBLOCK_FOREACH(block) {
432d268c
JN
2668 /* This case append when the block is not mapped. */
2669 if (block->host == NULL) {
2670 continue;
2671 }
9b8424d5 2672 if (host - block->host < block->max_length) {
23887b79 2673 goto found;
f471a17e 2674 }
94a6b54f 2675 }
432d268c 2676
1b5ec234 2677 return NULL;
23887b79
PB
2678
2679found:
422148d3
DDAG
2680 *offset = (host - block->host);
2681 if (round_offset) {
2682 *offset &= TARGET_PAGE_MASK;
2683 }
422148d3
DDAG
2684 return block;
2685}
2686
e3dd7493
DDAG
2687/*
2688 * Finds the named RAMBlock
2689 *
2690 * name: The name of RAMBlock to find
2691 *
2692 * Returns: RAMBlock (or NULL if not found)
2693 */
2694RAMBlock *qemu_ram_block_by_name(const char *name)
2695{
2696 RAMBlock *block;
2697
99e15582 2698 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2699 if (!strcmp(name, block->idstr)) {
2700 return block;
2701 }
2702 }
2703
2704 return NULL;
2705}
2706
422148d3
DDAG
2707/* Some of the softmmu routines need to translate from a host pointer
2708 (typically a TLB entry) back to a ram offset. */
07bdaa41 2709ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2710{
2711 RAMBlock *block;
f615f396 2712 ram_addr_t offset;
422148d3 2713
f615f396 2714 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2715 if (!block) {
07bdaa41 2716 return RAM_ADDR_INVALID;
422148d3
DDAG
2717 }
2718
07bdaa41 2719 return block->offset + offset;
e890261f 2720}
f471a17e 2721
0f459d16 2722/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2723void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2724 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2725{
568496c0 2726 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2727 CPUWatchpoint *wp;
0f459d16 2728
5aa1ef71 2729 assert(tcg_enabled());
ff4700b0 2730 if (cpu->watchpoint_hit) {
50b107c5
RH
2731 /*
2732 * We re-entered the check after replacing the TB.
2733 * Now raise the debug interrupt so that it will
2734 * trigger after the current instruction.
2735 */
2736 qemu_mutex_lock_iothread();
93afeade 2737 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2738 qemu_mutex_unlock_iothread();
06d55cc1
AL
2739 return;
2740 }
0026348b
DH
2741
2742 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2743 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2744 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2745 && (wp->flags & flags)) {
08225676
PM
2746 if (flags == BP_MEM_READ) {
2747 wp->flags |= BP_WATCHPOINT_HIT_READ;
2748 } else {
2749 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2750 }
0026348b 2751 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2752 wp->hitattrs = attrs;
ff4700b0 2753 if (!cpu->watchpoint_hit) {
568496c0
SF
2754 if (wp->flags & BP_CPU &&
2755 !cc->debug_check_watchpoint(cpu, wp)) {
2756 wp->flags &= ~BP_WATCHPOINT_HIT;
2757 continue;
2758 }
ff4700b0 2759 cpu->watchpoint_hit = wp;
a5e99826 2760
0ac20318 2761 mmap_lock();
ae57db63 2762 tb_check_watchpoint(cpu, ra);
6e140f28 2763 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2764 cpu->exception_index = EXCP_DEBUG;
0ac20318 2765 mmap_unlock();
0026348b 2766 cpu_loop_exit_restore(cpu, ra);
6e140f28 2767 } else {
9b990ee5
RH
2768 /* Force execution of one insn next time. */
2769 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2770 mmap_unlock();
0026348b
DH
2771 if (ra) {
2772 cpu_restore_state(cpu, ra, true);
2773 }
6886b980 2774 cpu_loop_exit_noexc(cpu);
6e140f28 2775 }
06d55cc1 2776 }
6e140f28
AL
2777 } else {
2778 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2779 }
2780 }
2781}
2782
b2a44fca 2783static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2784 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2785static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2786 const uint8_t *buf, hwaddr len);
2787static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2788 bool is_write, MemTxAttrs attrs);
16620684 2789
f25a49e0
PM
2790static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2791 unsigned len, MemTxAttrs attrs)
db7b5426 2792{
acc9d80b 2793 subpage_t *subpage = opaque;
ff6cff75 2794 uint8_t buf[8];
5c9eb028 2795 MemTxResult res;
791af8c8 2796
db7b5426 2797#if defined(DEBUG_SUBPAGE)
016e9d62 2798 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2799 subpage, len, addr);
db7b5426 2800#endif
16620684 2801 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2802 if (res) {
2803 return res;
f25a49e0 2804 }
6d3ede54
PM
2805 *data = ldn_p(buf, len);
2806 return MEMTX_OK;
db7b5426
BS
2807}
2808
f25a49e0
PM
2809static MemTxResult subpage_write(void *opaque, hwaddr addr,
2810 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2811{
acc9d80b 2812 subpage_t *subpage = opaque;
ff6cff75 2813 uint8_t buf[8];
acc9d80b 2814
db7b5426 2815#if defined(DEBUG_SUBPAGE)
016e9d62 2816 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2817 " value %"PRIx64"\n",
2818 __func__, subpage, len, addr, value);
db7b5426 2819#endif
6d3ede54 2820 stn_p(buf, len, value);
16620684 2821 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2822}
2823
c353e4cc 2824static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2825 unsigned len, bool is_write,
2826 MemTxAttrs attrs)
c353e4cc 2827{
acc9d80b 2828 subpage_t *subpage = opaque;
c353e4cc 2829#if defined(DEBUG_SUBPAGE)
016e9d62 2830 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2831 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2832#endif
2833
16620684 2834 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2835 len, is_write, attrs);
c353e4cc
PB
2836}
2837
70c68e44 2838static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2839 .read_with_attrs = subpage_read,
2840 .write_with_attrs = subpage_write,
ff6cff75
PB
2841 .impl.min_access_size = 1,
2842 .impl.max_access_size = 8,
2843 .valid.min_access_size = 1,
2844 .valid.max_access_size = 8,
c353e4cc 2845 .valid.accepts = subpage_accepts,
70c68e44 2846 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2847};
2848
b797ab1a
WY
2849static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2850 uint16_t section)
db7b5426
BS
2851{
2852 int idx, eidx;
2853
2854 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2855 return -1;
2856 idx = SUBPAGE_IDX(start);
2857 eidx = SUBPAGE_IDX(end);
2858#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2859 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2860 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2861#endif
db7b5426 2862 for (; idx <= eidx; idx++) {
5312bd8b 2863 mmio->sub_section[idx] = section;
db7b5426
BS
2864 }
2865
2866 return 0;
2867}
2868
16620684 2869static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2870{
c227f099 2871 subpage_t *mmio;
db7b5426 2872
b797ab1a 2873 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2874 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2875 mmio->fv = fv;
1eec614b 2876 mmio->base = base;
2c9b15ca 2877 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2878 NULL, TARGET_PAGE_SIZE);
b3b00c78 2879 mmio->iomem.subpage = true;
db7b5426 2880#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2881 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2882 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2883#endif
db7b5426
BS
2884
2885 return mmio;
2886}
2887
16620684 2888static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2889{
16620684 2890 assert(fv);
5312bd8b 2891 MemoryRegionSection section = {
16620684 2892 .fv = fv,
5312bd8b
AK
2893 .mr = mr,
2894 .offset_within_address_space = 0,
2895 .offset_within_region = 0,
052e87b0 2896 .size = int128_2_64(),
5312bd8b
AK
2897 };
2898
53cb28cb 2899 return phys_section_add(map, &section);
5312bd8b
AK
2900}
2901
2d54f194
PM
2902MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2903 hwaddr index, MemTxAttrs attrs)
aa102231 2904{
a54c87b6
PM
2905 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2906 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2907 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2908 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2909
2d54f194 2910 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2911}
2912
e9179ce1
AK
2913static void io_mem_init(void)
2914{
2c9b15ca 2915 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2916 NULL, UINT64_MAX);
e9179ce1
AK
2917}
2918
8629d3fc 2919AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2920{
53cb28cb
MA
2921 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2922 uint16_t n;
2923
16620684 2924 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2925 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2926
9736e55b 2927 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2928
2929 return d;
00752703
PB
2930}
2931
66a6df1d 2932void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2933{
2934 phys_sections_free(&d->map);
2935 g_free(d);
2936}
2937
9458a9a1
PB
2938static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2939{
2940}
2941
2942static void tcg_log_global_after_sync(MemoryListener *listener)
2943{
2944 CPUAddressSpace *cpuas;
2945
2946 /* Wait for the CPU to end the current TB. This avoids the following
2947 * incorrect race:
2948 *
2949 * vCPU migration
2950 * ---------------------- -------------------------
2951 * TLB check -> slow path
2952 * notdirty_mem_write
2953 * write to RAM
2954 * mark dirty
2955 * clear dirty flag
2956 * TLB check -> fast path
2957 * read memory
2958 * write to RAM
2959 *
2960 * by pushing the migration thread's memory read after the vCPU thread has
2961 * written the memory.
2962 */
86cf9e15
PD
2963 if (replay_mode == REPLAY_MODE_NONE) {
2964 /*
2965 * VGA can make calls to this function while updating the screen.
2966 * In record/replay mode this causes a deadlock, because
2967 * run_on_cpu waits for rr mutex. Therefore no races are possible
2968 * in this case and no need for making run_on_cpu when
2969 * record/replay is not enabled.
2970 */
2971 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2972 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2973 }
9458a9a1
PB
2974}
2975
1d71148e 2976static void tcg_commit(MemoryListener *listener)
50c1e149 2977{
32857f4d
PM
2978 CPUAddressSpace *cpuas;
2979 AddressSpaceDispatch *d;
117712c3 2980
f28d0dfd 2981 assert(tcg_enabled());
117712c3
AK
2982 /* since each CPU stores ram addresses in its TLB cache, we must
2983 reset the modified entries */
32857f4d
PM
2984 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2985 cpu_reloading_memory_map();
2986 /* The CPU and TLB are protected by the iothread lock.
2987 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2988 * may have split the RCU critical section.
2989 */
66a6df1d 2990 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2991 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2992 tlb_flush(cpuas->cpu);
50c1e149
AK
2993}
2994
62152b8a
AK
2995static void memory_map_init(void)
2996{
7267c094 2997 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2998
57271d63 2999 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3000 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3001
7267c094 3002 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3003 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3004 65536);
7dca8043 3005 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3006}
3007
3008MemoryRegion *get_system_memory(void)
3009{
3010 return system_memory;
3011}
3012
309cb471
AK
3013MemoryRegion *get_system_io(void)
3014{
3015 return system_io;
3016}
3017
e2eef170
PB
3018#endif /* !defined(CONFIG_USER_ONLY) */
3019
13eb76e0
FB
3020/* physical memory access (slow version, mainly for debug) */
3021#if defined(CONFIG_USER_ONLY)
f17ec444 3022int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3023 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3024{
0c249ff7
LZ
3025 int flags;
3026 target_ulong l, page;
53a5960a 3027 void * p;
13eb76e0
FB
3028
3029 while (len > 0) {
3030 page = addr & TARGET_PAGE_MASK;
3031 l = (page + TARGET_PAGE_SIZE) - addr;
3032 if (l > len)
3033 l = len;
3034 flags = page_get_flags(page);
3035 if (!(flags & PAGE_VALID))
a68fe89c 3036 return -1;
13eb76e0
FB
3037 if (is_write) {
3038 if (!(flags & PAGE_WRITE))
a68fe89c 3039 return -1;
579a97f7 3040 /* XXX: this code should not depend on lock_user */
72fb7daa 3041 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3042 return -1;
72fb7daa
AJ
3043 memcpy(p, buf, l);
3044 unlock_user(p, addr, l);
13eb76e0
FB
3045 } else {
3046 if (!(flags & PAGE_READ))
a68fe89c 3047 return -1;
579a97f7 3048 /* XXX: this code should not depend on lock_user */
72fb7daa 3049 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3050 return -1;
72fb7daa 3051 memcpy(buf, p, l);
5b257578 3052 unlock_user(p, addr, 0);
13eb76e0
FB
3053 }
3054 len -= l;
3055 buf += l;
3056 addr += l;
3057 }
a68fe89c 3058 return 0;
13eb76e0 3059}
8df1cd07 3060
13eb76e0 3061#else
51d7a9eb 3062
845b6214 3063static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3064 hwaddr length)
51d7a9eb 3065{
e87f7778 3066 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3067 addr += memory_region_get_ram_addr(mr);
3068
e87f7778
PB
3069 /* No early return if dirty_log_mask is or becomes 0, because
3070 * cpu_physical_memory_set_dirty_range will still call
3071 * xen_modified_memory.
3072 */
3073 if (dirty_log_mask) {
3074 dirty_log_mask =
3075 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3076 }
3077 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3078 assert(tcg_enabled());
e87f7778
PB
3079 tb_invalidate_phys_range(addr, addr + length);
3080 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3081 }
e87f7778 3082 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3083}
3084
047be4ed
SH
3085void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3086{
3087 /*
3088 * In principle this function would work on other memory region types too,
3089 * but the ROM device use case is the only one where this operation is
3090 * necessary. Other memory regions should use the
3091 * address_space_read/write() APIs.
3092 */
3093 assert(memory_region_is_romd(mr));
3094
3095 invalidate_and_set_dirty(mr, addr, size);
3096}
3097
23326164 3098static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3099{
e1622f4b 3100 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3101
3102 /* Regions are assumed to support 1-4 byte accesses unless
3103 otherwise specified. */
23326164
RH
3104 if (access_size_max == 0) {
3105 access_size_max = 4;
3106 }
3107
3108 /* Bound the maximum access by the alignment of the address. */
3109 if (!mr->ops->impl.unaligned) {
3110 unsigned align_size_max = addr & -addr;
3111 if (align_size_max != 0 && align_size_max < access_size_max) {
3112 access_size_max = align_size_max;
3113 }
82f2563f 3114 }
23326164
RH
3115
3116 /* Don't attempt accesses larger than the maximum. */
3117 if (l > access_size_max) {
3118 l = access_size_max;
82f2563f 3119 }
6554f5c0 3120 l = pow2floor(l);
23326164
RH
3121
3122 return l;
82f2563f
PB
3123}
3124
4840f10e 3125static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3126{
4840f10e
JK
3127 bool unlocked = !qemu_mutex_iothread_locked();
3128 bool release_lock = false;
3129
3130 if (unlocked && mr->global_locking) {
3131 qemu_mutex_lock_iothread();
3132 unlocked = false;
3133 release_lock = true;
3134 }
125b3806 3135 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3136 if (unlocked) {
3137 qemu_mutex_lock_iothread();
3138 }
125b3806 3139 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3140 if (unlocked) {
3141 qemu_mutex_unlock_iothread();
3142 }
125b3806 3143 }
4840f10e
JK
3144
3145 return release_lock;
125b3806
PB
3146}
3147
a203ac70 3148/* Called within RCU critical section. */
16620684
AK
3149static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3150 MemTxAttrs attrs,
3151 const uint8_t *buf,
0c249ff7 3152 hwaddr len, hwaddr addr1,
16620684 3153 hwaddr l, MemoryRegion *mr)
13eb76e0 3154{
13eb76e0 3155 uint8_t *ptr;
791af8c8 3156 uint64_t val;
3b643495 3157 MemTxResult result = MEMTX_OK;
4840f10e 3158 bool release_lock = false;
3b46e624 3159
a203ac70 3160 for (;;) {
eb7eeb88
PB
3161 if (!memory_access_is_direct(mr, true)) {
3162 release_lock |= prepare_mmio_access(mr);
3163 l = memory_access_size(mr, l, addr1);
3164 /* XXX: could force current_cpu to NULL to avoid
3165 potential bugs */
9bf825bf 3166 val = ldn_he_p(buf, l);
3d9e7c3e 3167 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3168 size_memop(l), attrs);
13eb76e0 3169 } else {
eb7eeb88 3170 /* RAM case */
f5aa69bd 3171 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3172 memcpy(ptr, buf, l);
3173 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3174 }
4840f10e
JK
3175
3176 if (release_lock) {
3177 qemu_mutex_unlock_iothread();
3178 release_lock = false;
3179 }
3180
13eb76e0
FB
3181 len -= l;
3182 buf += l;
3183 addr += l;
a203ac70
PB
3184
3185 if (!len) {
3186 break;
3187 }
3188
3189 l = len;
efa99a2f 3190 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3191 }
fd8aaa76 3192
3b643495 3193 return result;
13eb76e0 3194}
8df1cd07 3195
4c6ebbb3 3196/* Called from RCU critical section. */
16620684 3197static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3198 const uint8_t *buf, hwaddr len)
ac1970fb 3199{
eb7eeb88 3200 hwaddr l;
eb7eeb88
PB
3201 hwaddr addr1;
3202 MemoryRegion *mr;
3203 MemTxResult result = MEMTX_OK;
eb7eeb88 3204
4c6ebbb3 3205 l = len;
efa99a2f 3206 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3207 result = flatview_write_continue(fv, addr, attrs, buf, len,
3208 addr1, l, mr);
a203ac70
PB
3209
3210 return result;
3211}
3212
3213/* Called within RCU critical section. */
16620684
AK
3214MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3215 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3216 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3217 MemoryRegion *mr)
a203ac70
PB
3218{
3219 uint8_t *ptr;
3220 uint64_t val;
3221 MemTxResult result = MEMTX_OK;
3222 bool release_lock = false;
eb7eeb88 3223
a203ac70 3224 for (;;) {
eb7eeb88
PB
3225 if (!memory_access_is_direct(mr, false)) {
3226 /* I/O case */
3227 release_lock |= prepare_mmio_access(mr);
3228 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3229 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3230 size_memop(l), attrs);
3231 stn_he_p(buf, l, val);
eb7eeb88
PB
3232 } else {
3233 /* RAM case */
f5aa69bd 3234 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3235 memcpy(buf, ptr, l);
3236 }
3237
3238 if (release_lock) {
3239 qemu_mutex_unlock_iothread();
3240 release_lock = false;
3241 }
3242
3243 len -= l;
3244 buf += l;
3245 addr += l;
a203ac70
PB
3246
3247 if (!len) {
3248 break;
3249 }
3250
3251 l = len;
efa99a2f 3252 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3253 }
3254
3255 return result;
3256}
3257
b2a44fca
PB
3258/* Called from RCU critical section. */
3259static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3260 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3261{
3262 hwaddr l;
3263 hwaddr addr1;
3264 MemoryRegion *mr;
eb7eeb88 3265
b2a44fca 3266 l = len;
efa99a2f 3267 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3268 return flatview_read_continue(fv, addr, attrs, buf, len,
3269 addr1, l, mr);
ac1970fb
AK
3270}
3271
b2a44fca 3272MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3273 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3274{
3275 MemTxResult result = MEMTX_OK;
3276 FlatView *fv;
3277
3278 if (len > 0) {
694ea274 3279 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3280 fv = address_space_to_flatview(as);
3281 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3282 }
3283
3284 return result;
3285}
3286
4c6ebbb3
PB
3287MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3288 MemTxAttrs attrs,
0c249ff7 3289 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3290{
3291 MemTxResult result = MEMTX_OK;
3292 FlatView *fv;
3293
3294 if (len > 0) {
694ea274 3295 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3296 fv = address_space_to_flatview(as);
3297 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3298 }
3299
3300 return result;
3301}
3302
db84fd97 3303MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3304 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3305{
3306 if (is_write) {
3307 return address_space_write(as, addr, attrs, buf, len);
3308 } else {
3309 return address_space_read_full(as, addr, attrs, buf, len);
3310 }
3311}
3312
a8170e5e 3313void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3314 hwaddr len, int is_write)
ac1970fb 3315{
5c9eb028
PM
3316 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3317 buf, len, is_write);
ac1970fb
AK
3318}
3319
582b55a9
AG
3320enum write_rom_type {
3321 WRITE_DATA,
3322 FLUSH_CACHE,
3323};
3324
75693e14
PM
3325static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3326 hwaddr addr,
3327 MemTxAttrs attrs,
3328 const uint8_t *buf,
0c249ff7 3329 hwaddr len,
75693e14 3330 enum write_rom_type type)
d0ecd2aa 3331{
149f54b5 3332 hwaddr l;
d0ecd2aa 3333 uint8_t *ptr;
149f54b5 3334 hwaddr addr1;
5c8a00ce 3335 MemoryRegion *mr;
3b46e624 3336
694ea274 3337 RCU_READ_LOCK_GUARD();
d0ecd2aa 3338 while (len > 0) {
149f54b5 3339 l = len;
75693e14 3340 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3341
5c8a00ce
PB
3342 if (!(memory_region_is_ram(mr) ||
3343 memory_region_is_romd(mr))) {
b242e0e0 3344 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3345 } else {
d0ecd2aa 3346 /* ROM/RAM case */
0878d0e1 3347 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3348 switch (type) {
3349 case WRITE_DATA:
3350 memcpy(ptr, buf, l);
845b6214 3351 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3352 break;
3353 case FLUSH_CACHE:
3354 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3355 break;
3356 }
d0ecd2aa
FB
3357 }
3358 len -= l;
3359 buf += l;
3360 addr += l;
3361 }
75693e14 3362 return MEMTX_OK;
d0ecd2aa
FB
3363}
3364
582b55a9 3365/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3366MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3367 MemTxAttrs attrs,
0c249ff7 3368 const uint8_t *buf, hwaddr len)
582b55a9 3369{
3c8133f9
PM
3370 return address_space_write_rom_internal(as, addr, attrs,
3371 buf, len, WRITE_DATA);
582b55a9
AG
3372}
3373
0c249ff7 3374void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3375{
3376 /*
3377 * This function should do the same thing as an icache flush that was
3378 * triggered from within the guest. For TCG we are always cache coherent,
3379 * so there is no need to flush anything. For KVM / Xen we need to flush
3380 * the host's instruction cache at least.
3381 */
3382 if (tcg_enabled()) {
3383 return;
3384 }
3385
75693e14
PM
3386 address_space_write_rom_internal(&address_space_memory,
3387 start, MEMTXATTRS_UNSPECIFIED,
3388 NULL, len, FLUSH_CACHE);
582b55a9
AG
3389}
3390
6d16c2f8 3391typedef struct {
d3e71559 3392 MemoryRegion *mr;
6d16c2f8 3393 void *buffer;
a8170e5e
AK
3394 hwaddr addr;
3395 hwaddr len;
c2cba0ff 3396 bool in_use;
6d16c2f8
AL
3397} BounceBuffer;
3398
3399static BounceBuffer bounce;
3400
ba223c29 3401typedef struct MapClient {
e95205e1 3402 QEMUBH *bh;
72cf2d4f 3403 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3404} MapClient;
3405
38e047b5 3406QemuMutex map_client_list_lock;
b58deb34 3407static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3408 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3409
e95205e1
FZ
3410static void cpu_unregister_map_client_do(MapClient *client)
3411{
3412 QLIST_REMOVE(client, link);
3413 g_free(client);
3414}
3415
33b6c2ed
FZ
3416static void cpu_notify_map_clients_locked(void)
3417{
3418 MapClient *client;
3419
3420 while (!QLIST_EMPTY(&map_client_list)) {
3421 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3422 qemu_bh_schedule(client->bh);
3423 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3424 }
3425}
3426
e95205e1 3427void cpu_register_map_client(QEMUBH *bh)
ba223c29 3428{
7267c094 3429 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3430
38e047b5 3431 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3432 client->bh = bh;
72cf2d4f 3433 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3434 if (!atomic_read(&bounce.in_use)) {
3435 cpu_notify_map_clients_locked();
3436 }
38e047b5 3437 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3438}
3439
38e047b5 3440void cpu_exec_init_all(void)
ba223c29 3441{
38e047b5 3442 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3443 /* The data structures we set up here depend on knowing the page size,
3444 * so no more changes can be made after this point.
3445 * In an ideal world, nothing we did before we had finished the
3446 * machine setup would care about the target page size, and we could
3447 * do this much later, rather than requiring board models to state
3448 * up front what their requirements are.
3449 */
3450 finalize_target_page_bits();
38e047b5 3451 io_mem_init();
680a4783 3452 memory_map_init();
38e047b5 3453 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3454}
3455
e95205e1 3456void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3457{
3458 MapClient *client;
3459
e95205e1
FZ
3460 qemu_mutex_lock(&map_client_list_lock);
3461 QLIST_FOREACH(client, &map_client_list, link) {
3462 if (client->bh == bh) {
3463 cpu_unregister_map_client_do(client);
3464 break;
3465 }
ba223c29 3466 }
e95205e1 3467 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3468}
3469
3470static void cpu_notify_map_clients(void)
3471{
38e047b5 3472 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3473 cpu_notify_map_clients_locked();
38e047b5 3474 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3475}
3476
0c249ff7 3477static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3478 bool is_write, MemTxAttrs attrs)
51644ab7 3479{
5c8a00ce 3480 MemoryRegion *mr;
51644ab7
PB
3481 hwaddr l, xlat;
3482
3483 while (len > 0) {
3484 l = len;
efa99a2f 3485 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3486 if (!memory_access_is_direct(mr, is_write)) {
3487 l = memory_access_size(mr, l, addr);
eace72b7 3488 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3489 return false;
3490 }
3491 }
3492
3493 len -= l;
3494 addr += l;
3495 }
3496 return true;
3497}
3498
16620684 3499bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3500 hwaddr len, bool is_write,
fddffa42 3501 MemTxAttrs attrs)
16620684 3502{
11e732a5
PB
3503 FlatView *fv;
3504 bool result;
3505
694ea274 3506 RCU_READ_LOCK_GUARD();
11e732a5 3507 fv = address_space_to_flatview(as);
eace72b7 3508 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3509 return result;
16620684
AK
3510}
3511
715c31ec 3512static hwaddr
16620684 3513flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3514 hwaddr target_len,
3515 MemoryRegion *mr, hwaddr base, hwaddr len,
3516 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3517{
3518 hwaddr done = 0;
3519 hwaddr xlat;
3520 MemoryRegion *this_mr;
3521
3522 for (;;) {
3523 target_len -= len;
3524 addr += len;
3525 done += len;
3526 if (target_len == 0) {
3527 return done;
3528 }
3529
3530 len = target_len;
16620684 3531 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3532 &len, is_write, attrs);
715c31ec
PB
3533 if (this_mr != mr || xlat != base + done) {
3534 return done;
3535 }
3536 }
3537}
3538
6d16c2f8
AL
3539/* Map a physical memory region into a host virtual address.
3540 * May map a subset of the requested range, given by and returned in *plen.
3541 * May return NULL if resources needed to perform the mapping are exhausted.
3542 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3543 * Use cpu_register_map_client() to know when retrying the map operation is
3544 * likely to succeed.
6d16c2f8 3545 */
ac1970fb 3546void *address_space_map(AddressSpace *as,
a8170e5e
AK
3547 hwaddr addr,
3548 hwaddr *plen,
f26404fb
PM
3549 bool is_write,
3550 MemTxAttrs attrs)
6d16c2f8 3551{
a8170e5e 3552 hwaddr len = *plen;
715c31ec
PB
3553 hwaddr l, xlat;
3554 MemoryRegion *mr;
e81bcda5 3555 void *ptr;
ad0c60fa 3556 FlatView *fv;
6d16c2f8 3557
e3127ae0
PB
3558 if (len == 0) {
3559 return NULL;
3560 }
38bee5dc 3561
e3127ae0 3562 l = len;
694ea274 3563 RCU_READ_LOCK_GUARD();
ad0c60fa 3564 fv = address_space_to_flatview(as);
efa99a2f 3565 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3566
e3127ae0 3567 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3568 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3569 return NULL;
6d16c2f8 3570 }
e85d9db5
KW
3571 /* Avoid unbounded allocations */
3572 l = MIN(l, TARGET_PAGE_SIZE);
3573 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3574 bounce.addr = addr;
3575 bounce.len = l;
d3e71559
PB
3576
3577 memory_region_ref(mr);
3578 bounce.mr = mr;
e3127ae0 3579 if (!is_write) {
16620684 3580 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3581 bounce.buffer, l);
8ab934f9 3582 }
6d16c2f8 3583
e3127ae0
PB
3584 *plen = l;
3585 return bounce.buffer;
3586 }
3587
e3127ae0 3588
d3e71559 3589 memory_region_ref(mr);
16620684 3590 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3591 l, is_write, attrs);
f5aa69bd 3592 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3593
3594 return ptr;
6d16c2f8
AL
3595}
3596
ac1970fb 3597/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3598 * Will also mark the memory as dirty if is_write == 1. access_len gives
3599 * the amount of memory that was actually read or written by the caller.
3600 */
a8170e5e
AK
3601void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3602 int is_write, hwaddr access_len)
6d16c2f8
AL
3603{
3604 if (buffer != bounce.buffer) {
d3e71559
PB
3605 MemoryRegion *mr;
3606 ram_addr_t addr1;
3607
07bdaa41 3608 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3609 assert(mr != NULL);
6d16c2f8 3610 if (is_write) {
845b6214 3611 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3612 }
868bb33f 3613 if (xen_enabled()) {
e41d7c69 3614 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3615 }
d3e71559 3616 memory_region_unref(mr);
6d16c2f8
AL
3617 return;
3618 }
3619 if (is_write) {
5c9eb028
PM
3620 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3621 bounce.buffer, access_len);
6d16c2f8 3622 }
f8a83245 3623 qemu_vfree(bounce.buffer);
6d16c2f8 3624 bounce.buffer = NULL;
d3e71559 3625 memory_region_unref(bounce.mr);
c2cba0ff 3626 atomic_mb_set(&bounce.in_use, false);
ba223c29 3627 cpu_notify_map_clients();
6d16c2f8 3628}
d0ecd2aa 3629
a8170e5e
AK
3630void *cpu_physical_memory_map(hwaddr addr,
3631 hwaddr *plen,
ac1970fb
AK
3632 int is_write)
3633{
f26404fb
PM
3634 return address_space_map(&address_space_memory, addr, plen, is_write,
3635 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3636}
3637
a8170e5e
AK
3638void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3639 int is_write, hwaddr access_len)
ac1970fb
AK
3640{
3641 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3642}
3643
0ce265ff
PB
3644#define ARG1_DECL AddressSpace *as
3645#define ARG1 as
3646#define SUFFIX
3647#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3648#define RCU_READ_LOCK(...) rcu_read_lock()
3649#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3650#include "memory_ldst.inc.c"
1e78bcc1 3651
1f4e496e
PB
3652int64_t address_space_cache_init(MemoryRegionCache *cache,
3653 AddressSpace *as,
3654 hwaddr addr,
3655 hwaddr len,
3656 bool is_write)
3657{
48564041
PB
3658 AddressSpaceDispatch *d;
3659 hwaddr l;
3660 MemoryRegion *mr;
3661
3662 assert(len > 0);
3663
3664 l = len;
3665 cache->fv = address_space_get_flatview(as);
3666 d = flatview_to_dispatch(cache->fv);
3667 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3668
3669 mr = cache->mrs.mr;
3670 memory_region_ref(mr);
3671 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3672 /* We don't care about the memory attributes here as we're only
3673 * doing this if we found actual RAM, which behaves the same
3674 * regardless of attributes; so UNSPECIFIED is fine.
3675 */
48564041 3676 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3677 cache->xlat, l, is_write,
3678 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3679 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3680 } else {
3681 cache->ptr = NULL;
3682 }
3683
3684 cache->len = l;
3685 cache->is_write = is_write;
3686 return l;
1f4e496e
PB
3687}
3688
3689void address_space_cache_invalidate(MemoryRegionCache *cache,
3690 hwaddr addr,
3691 hwaddr access_len)
3692{
48564041
PB
3693 assert(cache->is_write);
3694 if (likely(cache->ptr)) {
3695 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3696 }
1f4e496e
PB
3697}
3698
3699void address_space_cache_destroy(MemoryRegionCache *cache)
3700{
48564041
PB
3701 if (!cache->mrs.mr) {
3702 return;
3703 }
3704
3705 if (xen_enabled()) {
3706 xen_invalidate_map_cache_entry(cache->ptr);
3707 }
3708 memory_region_unref(cache->mrs.mr);
3709 flatview_unref(cache->fv);
3710 cache->mrs.mr = NULL;
3711 cache->fv = NULL;
3712}
3713
3714/* Called from RCU critical section. This function has the same
3715 * semantics as address_space_translate, but it only works on a
3716 * predefined range of a MemoryRegion that was mapped with
3717 * address_space_cache_init.
3718 */
3719static inline MemoryRegion *address_space_translate_cached(
3720 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3721 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3722{
3723 MemoryRegionSection section;
3724 MemoryRegion *mr;
3725 IOMMUMemoryRegion *iommu_mr;
3726 AddressSpace *target_as;
3727
3728 assert(!cache->ptr);
3729 *xlat = addr + cache->xlat;
3730
3731 mr = cache->mrs.mr;
3732 iommu_mr = memory_region_get_iommu(mr);
3733 if (!iommu_mr) {
3734 /* MMIO region. */
3735 return mr;
3736 }
3737
3738 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3739 NULL, is_write, true,
2f7b009c 3740 &target_as, attrs);
48564041
PB
3741 return section.mr;
3742}
3743
3744/* Called from RCU critical section. address_space_read_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3746 */
3747void
3748address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3749 void *buf, hwaddr len)
48564041
PB
3750{
3751 hwaddr addr1, l;
3752 MemoryRegion *mr;
3753
3754 l = len;
bc6b1cec
PM
3755 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3756 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3757 flatview_read_continue(cache->fv,
3758 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3759 addr1, l, mr);
3760}
3761
3762/* Called from RCU critical section. address_space_write_cached uses this
3763 * out of line function when the target is an MMIO or IOMMU region.
3764 */
3765void
3766address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3767 const void *buf, hwaddr len)
48564041
PB
3768{
3769 hwaddr addr1, l;
3770 MemoryRegion *mr;
3771
3772 l = len;
bc6b1cec
PM
3773 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3774 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3775 flatview_write_continue(cache->fv,
3776 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3777 addr1, l, mr);
1f4e496e
PB
3778}
3779
3780#define ARG1_DECL MemoryRegionCache *cache
3781#define ARG1 cache
48564041
PB
3782#define SUFFIX _cached_slow
3783#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3784#define RCU_READ_LOCK() ((void)0)
3785#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3786#include "memory_ldst.inc.c"
3787
5e2972fd 3788/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3789int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3790 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3791{
a8170e5e 3792 hwaddr phys_addr;
0c249ff7 3793 target_ulong l, page;
13eb76e0 3794
79ca7a1b 3795 cpu_synchronize_state(cpu);
13eb76e0 3796 while (len > 0) {
5232e4c7
PM
3797 int asidx;
3798 MemTxAttrs attrs;
3799
13eb76e0 3800 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3801 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3802 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3803 /* if no physical page mapped, return an error */
3804 if (phys_addr == -1)
3805 return -1;
3806 l = (page + TARGET_PAGE_SIZE) - addr;
3807 if (l > len)
3808 l = len;
5e2972fd 3809 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3810 if (is_write) {
3c8133f9 3811 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3812 attrs, buf, l);
2e38847b 3813 } else {
5232e4c7 3814 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3815 attrs, buf, l, 0);
2e38847b 3816 }
13eb76e0
FB
3817 len -= l;
3818 buf += l;
3819 addr += l;
3820 }
3821 return 0;
3822}
038629a6
DDAG
3823
3824/*
3825 * Allows code that needs to deal with migration bitmaps etc to still be built
3826 * target independent.
3827 */
20afaed9 3828size_t qemu_target_page_size(void)
038629a6 3829{
20afaed9 3830 return TARGET_PAGE_SIZE;
038629a6
DDAG
3831}
3832
46d702b1
JQ
3833int qemu_target_page_bits(void)
3834{
3835 return TARGET_PAGE_BITS;
3836}
3837
3838int qemu_target_page_bits_min(void)
3839{
3840 return TARGET_PAGE_BITS_MIN;
3841}
a68fe89c 3842#endif
13eb76e0 3843
98ed8ecf 3844bool target_words_bigendian(void)
8e4a424b
BS
3845{
3846#if defined(TARGET_WORDS_BIGENDIAN)
3847 return true;
3848#else
3849 return false;
3850#endif
3851}
3852
76f35538 3853#ifndef CONFIG_USER_ONLY
a8170e5e 3854bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3855{
5c8a00ce 3856 MemoryRegion*mr;
149f54b5 3857 hwaddr l = 1;
41063e1e 3858 bool res;
76f35538 3859
694ea274 3860 RCU_READ_LOCK_GUARD();
5c8a00ce 3861 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3862 phys_addr, &phys_addr, &l, false,
3863 MEMTXATTRS_UNSPECIFIED);
76f35538 3864
41063e1e 3865 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3866 return res;
76f35538 3867}
bd2fa51f 3868
e3807054 3869int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3870{
3871 RAMBlock *block;
e3807054 3872 int ret = 0;
bd2fa51f 3873
694ea274 3874 RCU_READ_LOCK_GUARD();
99e15582 3875 RAMBLOCK_FOREACH(block) {
754cb9c0 3876 ret = func(block, opaque);
e3807054
DDAG
3877 if (ret) {
3878 break;
3879 }
bd2fa51f 3880 }
e3807054 3881 return ret;
bd2fa51f 3882}
d3a5038c
DDAG
3883
3884/*
3885 * Unmap pages of memory from start to start+length such that
3886 * they a) read as 0, b) Trigger whatever fault mechanism
3887 * the OS provides for postcopy.
3888 * The pages must be unmapped by the end of the function.
3889 * Returns: 0 on success, none-0 on failure
3890 *
3891 */
3892int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3893{
3894 int ret = -1;
3895
3896 uint8_t *host_startaddr = rb->host + start;
3897
3898 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3899 error_report("ram_block_discard_range: Unaligned start address: %p",
3900 host_startaddr);
3901 goto err;
3902 }
3903
3904 if ((start + length) <= rb->used_length) {
db144f70 3905 bool need_madvise, need_fallocate;
72821d93
WY
3906 if (length & (rb->page_size - 1)) {
3907 error_report("ram_block_discard_range: Unaligned length: %zx",
3908 length);
d3a5038c
DDAG
3909 goto err;
3910 }
3911
3912 errno = ENOTSUP; /* If we are missing MADVISE etc */
3913
db144f70
DDAG
3914 /* The logic here is messy;
3915 * madvise DONTNEED fails for hugepages
3916 * fallocate works on hugepages and shmem
3917 */
3918 need_madvise = (rb->page_size == qemu_host_page_size);
3919 need_fallocate = rb->fd != -1;
3920 if (need_fallocate) {
3921 /* For a file, this causes the area of the file to be zero'd
3922 * if read, and for hugetlbfs also causes it to be unmapped
3923 * so a userfault will trigger.
e2fa71f5
DDAG
3924 */
3925#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3926 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3927 start, length);
db144f70
DDAG
3928 if (ret) {
3929 ret = -errno;
3930 error_report("ram_block_discard_range: Failed to fallocate "
3931 "%s:%" PRIx64 " +%zx (%d)",
3932 rb->idstr, start, length, ret);
3933 goto err;
3934 }
3935#else
3936 ret = -ENOSYS;
3937 error_report("ram_block_discard_range: fallocate not available/file"
3938 "%s:%" PRIx64 " +%zx (%d)",
3939 rb->idstr, start, length, ret);
3940 goto err;
e2fa71f5
DDAG
3941#endif
3942 }
db144f70
DDAG
3943 if (need_madvise) {
3944 /* For normal RAM this causes it to be unmapped,
3945 * for shared memory it causes the local mapping to disappear
3946 * and to fall back on the file contents (which we just
3947 * fallocate'd away).
3948 */
3949#if defined(CONFIG_MADVISE)
3950 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3951 if (ret) {
3952 ret = -errno;
3953 error_report("ram_block_discard_range: Failed to discard range "
3954 "%s:%" PRIx64 " +%zx (%d)",
3955 rb->idstr, start, length, ret);
3956 goto err;
3957 }
3958#else
3959 ret = -ENOSYS;
3960 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3961 "%s:%" PRIx64 " +%zx (%d)",
3962 rb->idstr, start, length, ret);
db144f70
DDAG
3963 goto err;
3964#endif
d3a5038c 3965 }
db144f70
DDAG
3966 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3967 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3968 } else {
3969 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3970 "/%zx/" RAM_ADDR_FMT")",
3971 rb->idstr, start, length, rb->used_length);
3972 }
3973
3974err:
3975 return ret;
3976}
3977
a4de8552
JH
3978bool ramblock_is_pmem(RAMBlock *rb)
3979{
3980 return rb->flags & RAM_PMEM;
3981}
3982
ec3f8c99 3983#endif
a0be0c58
YZ
3984
3985void page_size_init(void)
3986{
3987 /* NOTE: we can always suppose that qemu_host_page_size >=
3988 TARGET_PAGE_SIZE */
a0be0c58
YZ
3989 if (qemu_host_page_size == 0) {
3990 qemu_host_page_size = qemu_real_host_page_size;
3991 }
3992 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3993 qemu_host_page_size = TARGET_PAGE_SIZE;
3994 }
3995 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3996}
5e8fd947
AK
3997
3998#if !defined(CONFIG_USER_ONLY)
3999
b6b71cb5 4000static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4001{
4002 if (start == end - 1) {
b6b71cb5 4003 qemu_printf("\t%3d ", start);
5e8fd947 4004 } else {
b6b71cb5 4005 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4006 }
b6b71cb5 4007 qemu_printf(" skip=%d ", skip);
5e8fd947 4008 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4009 qemu_printf(" ptr=NIL");
5e8fd947 4010 } else if (!skip) {
b6b71cb5 4011 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4012 } else {
b6b71cb5 4013 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4014 }
b6b71cb5 4015 qemu_printf("\n");
5e8fd947
AK
4016}
4017
4018#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4019 int128_sub((size), int128_one())) : 0)
4020
b6b71cb5 4021void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4022{
4023 int i;
4024
b6b71cb5
MA
4025 qemu_printf(" Dispatch\n");
4026 qemu_printf(" Physical sections\n");
5e8fd947
AK
4027
4028 for (i = 0; i < d->map.sections_nb; ++i) {
4029 MemoryRegionSection *s = d->map.sections + i;
4030 const char *names[] = { " [unassigned]", " [not dirty]",
4031 " [ROM]", " [watch]" };
4032
b6b71cb5
MA
4033 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4034 " %s%s%s%s%s",
5e8fd947
AK
4035 i,
4036 s->offset_within_address_space,
4037 s->offset_within_address_space + MR_SIZE(s->mr->size),
4038 s->mr->name ? s->mr->name : "(noname)",
4039 i < ARRAY_SIZE(names) ? names[i] : "",
4040 s->mr == root ? " [ROOT]" : "",
4041 s == d->mru_section ? " [MRU]" : "",
4042 s->mr->is_iommu ? " [iommu]" : "");
4043
4044 if (s->mr->alias) {
b6b71cb5 4045 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4046 s->mr->alias->name : "noname");
4047 }
b6b71cb5 4048 qemu_printf("\n");
5e8fd947
AK
4049 }
4050
b6b71cb5 4051 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4052 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4053 for (i = 0; i < d->map.nodes_nb; ++i) {
4054 int j, jprev;
4055 PhysPageEntry prev;
4056 Node *n = d->map.nodes + i;
4057
b6b71cb5 4058 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4059
4060 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4061 PhysPageEntry *pe = *n + j;
4062
4063 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4064 continue;
4065 }
4066
b6b71cb5 4067 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4068
4069 jprev = j;
4070 prev = *pe;
4071 }
4072
4073 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4074 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4075 }
4076 }
4077}
4078
4079#endif