]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
update-linux-headers: Add userfaultfd.h
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
777872e5 20#ifndef _WIN32
d5a8f07c
FB
21#include <sys/mman.h>
22#endif
54936004 23
055403b2 24#include "qemu-common.h"
6180a181 25#include "cpu.h"
b67d9a52 26#include "tcg.h"
b3c7724c 27#include "hw/hw.h"
4485bd26 28#if !defined(CONFIG_USER_ONLY)
47c8ca53 29#include "hw/boards.h"
4485bd26 30#endif
cc9e98cb 31#include "hw/qdev.h"
9c17d615 32#include "sysemu/kvm.h"
2ff3de68 33#include "sysemu/sysemu.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
0dc3f44a 48#include "qemu/rcu_queue.h"
4840f10e 49#include "qemu/main-loop.h"
5b6dd868 50#include "translate-all.h"
7615936e 51#include "sysemu/replay.h"
0cac1b66 52
022c62cb 53#include "exec/memory-internal.h"
220c3ebd 54#include "exec/ram_addr.h"
508127e2 55#include "exec/log.h"
67d95c15 56
b35ba30f 57#include "qemu/range.h"
794e8f30
MT
58#ifndef _WIN32
59#include "qemu/mmap-alloc.h"
60#endif
b35ba30f 61
db7b5426 62//#define DEBUG_SUBPAGE
1196be37 63
e2eef170 64#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
65/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
0d53d9fe 68RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
69
70static MemoryRegion *system_memory;
309cb471 71static MemoryRegion *system_io;
62152b8a 72
f6790af6
AK
73AddressSpace address_space_io;
74AddressSpace address_space_memory;
2673a5da 75
0844e007 76MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 77static MemoryRegion io_mem_unassigned;
0e0df1e2 78
7bd4f430
PB
79/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80#define RAM_PREALLOC (1 << 0)
81
dbcb8981
PB
82/* RAM is mmap-ed with MAP_SHARED */
83#define RAM_SHARED (1 << 1)
84
62be4e3a
MT
85/* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88#define RAM_RESIZEABLE (1 << 2)
89
e2eef170 90#endif
9fa3e853 91
bdc44640 92struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
93/* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
f240eb6f 95__thread CPUState *current_cpu;
2e70f6ef 96/* 0 = Do not count executed instructions.
bf20dc07 97 1 = Precise instruction counting.
2e70f6ef 98 2 = Adaptive rate instruction counting. */
5708fc66 99int use_icount;
6a00d601 100
e2eef170 101#if !defined(CONFIG_USER_ONLY)
4346ae3e 102
1db8abb1
PB
103typedef struct PhysPageEntry PhysPageEntry;
104
105struct PhysPageEntry {
9736e55b 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 107 uint32_t skip : 6;
9736e55b 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 109 uint32_t ptr : 26;
1db8abb1
PB
110};
111
8b795765
MT
112#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
03f49957 114/* Size of the L2 (and L3, etc) page tables. */
57271d63 115#define ADDR_SPACE_BITS 64
03f49957 116
026736ce 117#define P_L2_BITS 9
03f49957
PB
118#define P_L2_SIZE (1 << P_L2_BITS)
119
120#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 123
53cb28cb 124typedef struct PhysPageMap {
79e2b9ae
PB
125 struct rcu_head rcu;
126
53cb28cb
MA
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133} PhysPageMap;
134
1db8abb1 135struct AddressSpaceDispatch {
79e2b9ae
PB
136 struct rcu_head rcu;
137
729633c2 138 MemoryRegionSection *mru_section;
1db8abb1
PB
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
53cb28cb 143 PhysPageMap map;
acc9d80b 144 AddressSpace *as;
1db8abb1
PB
145};
146
90260c6c
JK
147#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148typedef struct subpage_t {
149 MemoryRegion iomem;
acc9d80b 150 AddressSpace *as;
90260c6c
JK
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153} subpage_t;
154
b41aac4f
LPF
155#define PHYS_SECTION_UNASSIGNED 0
156#define PHYS_SECTION_NOTDIRTY 1
157#define PHYS_SECTION_ROM 2
158#define PHYS_SECTION_WATCH 3
5312bd8b 159
e2eef170 160static void io_mem_init(void);
62152b8a 161static void memory_map_init(void);
09daed84 162static void tcg_commit(MemoryListener *listener);
e2eef170 163
1ec9b909 164static MemoryRegion io_mem_watch;
32857f4d
PM
165
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
6658ffb8 180#endif
fd6ce8f6 181
6d9a1304 182#if !defined(CONFIG_USER_ONLY)
d6f2ea22 183
53cb28cb 184static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 185{
53cb28cb
MA
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 190 }
f7bf5461
AK
191}
192
db94604b 193static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
194{
195 unsigned i;
8b795765 196 uint32_t ret;
db94604b
PB
197 PhysPageEntry e;
198 PhysPageEntry *p;
f7bf5461 199
53cb28cb 200 ret = map->nodes_nb++;
db94604b 201 p = map->nodes[ret];
f7bf5461 202 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 203 assert(ret != map->nodes_nb_alloc);
db94604b
PB
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 207 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 208 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 209 }
f7bf5461 210 return ret;
d6f2ea22
AK
211}
212
53cb28cb
MA
213static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 215 int level)
f7bf5461
AK
216{
217 PhysPageEntry *p;
03f49957 218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 219
9736e55b 220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 221 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 222 }
db94604b 223 p = map->nodes[lp->ptr];
03f49957 224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 225
03f49957 226 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 227 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 228 lp->skip = 0;
c19e8800 229 lp->ptr = leaf;
07f07b31
AK
230 *index += step;
231 *nb -= step;
2999097b 232 } else {
53cb28cb 233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
234 }
235 ++lp;
f7bf5461
AK
236 }
237}
238
ac1970fb 239static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 240 hwaddr index, hwaddr nb,
2999097b 241 uint16_t leaf)
f7bf5461 242{
2999097b 243 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 245
53cb28cb 246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
247}
248
b35ba30f
MT
249/* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253{
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300}
301
302static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303{
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
53cb28cb 307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
308 }
309}
310
29cb533d
FZ
311static inline bool section_covers_addr(const MemoryRegionSection *section,
312 hwaddr addr)
313{
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
316 */
317 return section->size.hi ||
318 range_covers_byte(section->offset_within_address_space,
319 section->size.lo, addr);
320}
321
97115a8d 322static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 323 Node *nodes, MemoryRegionSection *sections)
92e873b9 324{
31ab2b4a 325 PhysPageEntry *p;
97115a8d 326 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 327 int i;
f1f6e3b8 328
9736e55b 329 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 330 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 331 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 332 }
9affd6fc 333 p = nodes[lp.ptr];
03f49957 334 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 335 }
b35ba30f 336
29cb533d 337 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
338 return &sections[lp.ptr];
339 } else {
340 return &sections[PHYS_SECTION_UNASSIGNED];
341 }
f3705d53
AK
342}
343
e5548617
BS
344bool memory_region_is_unassigned(MemoryRegion *mr)
345{
2a8e7499 346 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 347 && mr != &io_mem_watch;
fd6ce8f6 348}
149f54b5 349
79e2b9ae 350/* Called from RCU critical section */
c7086b4a 351static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
352 hwaddr addr,
353 bool resolve_subpage)
9f029603 354{
729633c2 355 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 356 subpage_t *subpage;
729633c2 357 bool update;
90260c6c 358
729633c2
FZ
359 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
360 section_covers_addr(section, addr)) {
361 update = false;
362 } else {
363 section = phys_page_find(d->phys_map, addr, d->map.nodes,
364 d->map.sections);
365 update = true;
366 }
90260c6c
JK
367 if (resolve_subpage && section->mr->subpage) {
368 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 369 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 370 }
729633c2
FZ
371 if (update) {
372 atomic_set(&d->mru_section, section);
373 }
90260c6c 374 return section;
9f029603
JK
375}
376
79e2b9ae 377/* Called from RCU critical section */
90260c6c 378static MemoryRegionSection *
c7086b4a 379address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 380 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
381{
382 MemoryRegionSection *section;
965eb2fc 383 MemoryRegion *mr;
a87f3954 384 Int128 diff;
149f54b5 385
c7086b4a 386 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
387 /* Compute offset within MemoryRegionSection */
388 addr -= section->offset_within_address_space;
389
390 /* Compute offset within MemoryRegion */
391 *xlat = addr + section->offset_within_region;
392
965eb2fc 393 mr = section->mr;
b242e0e0
PB
394
395 /* MMIO registers can be expected to perform full-width accesses based only
396 * on their address, without considering adjacent registers that could
397 * decode to completely different MemoryRegions. When such registers
398 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
399 * regions overlap wildly. For this reason we cannot clamp the accesses
400 * here.
401 *
402 * If the length is small (as is the case for address_space_ldl/stl),
403 * everything works fine. If the incoming length is large, however,
404 * the caller really has to do the clamping through memory_access_size.
405 */
965eb2fc 406 if (memory_region_is_ram(mr)) {
e4a511f8 407 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
408 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
409 }
149f54b5
PB
410 return section;
411}
90260c6c 412
41063e1e 413/* Called from RCU critical section */
5c8a00ce
PB
414MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
415 hwaddr *xlat, hwaddr *plen,
416 bool is_write)
90260c6c 417{
30951157
AK
418 IOMMUTLBEntry iotlb;
419 MemoryRegionSection *section;
420 MemoryRegion *mr;
30951157
AK
421
422 for (;;) {
79e2b9ae
PB
423 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
424 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
425 mr = section->mr;
426
427 if (!mr->iommu_ops) {
428 break;
429 }
430
8d7b8cb9 431 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
432 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
433 | (addr & iotlb.addr_mask));
23820dbf 434 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
435 if (!(iotlb.perm & (1 << is_write))) {
436 mr = &io_mem_unassigned;
437 break;
438 }
439
440 as = iotlb.target_as;
441 }
442
fe680d0d 443 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 444 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 445 *plen = MIN(page, *plen);
a87f3954
PB
446 }
447
30951157
AK
448 *xlat = addr;
449 return mr;
90260c6c
JK
450}
451
79e2b9ae 452/* Called from RCU critical section */
90260c6c 453MemoryRegionSection *
d7898cda 454address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 455 hwaddr *xlat, hwaddr *plen)
90260c6c 456{
30951157 457 MemoryRegionSection *section;
d7898cda
PM
458 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
459
460 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
461
462 assert(!section->mr->iommu_ops);
463 return section;
90260c6c 464}
5b6dd868 465#endif
fd6ce8f6 466
b170fce3 467#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
468
469static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 470{
259186a7 471 CPUState *cpu = opaque;
a513fe19 472
5b6dd868
BS
473 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
474 version_id is increased. */
259186a7 475 cpu->interrupt_request &= ~0x01;
c01a71c1 476 tlb_flush(cpu, 1);
5b6dd868
BS
477
478 return 0;
a513fe19 479}
7501267e 480
6c3bff0e
PD
481static int cpu_common_pre_load(void *opaque)
482{
483 CPUState *cpu = opaque;
484
adee6424 485 cpu->exception_index = -1;
6c3bff0e
PD
486
487 return 0;
488}
489
490static bool cpu_common_exception_index_needed(void *opaque)
491{
492 CPUState *cpu = opaque;
493
adee6424 494 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
495}
496
497static const VMStateDescription vmstate_cpu_common_exception_index = {
498 .name = "cpu_common/exception_index",
499 .version_id = 1,
500 .minimum_version_id = 1,
5cd8cada 501 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
502 .fields = (VMStateField[]) {
503 VMSTATE_INT32(exception_index, CPUState),
504 VMSTATE_END_OF_LIST()
505 }
506};
507
bac05aa9
AS
508static bool cpu_common_crash_occurred_needed(void *opaque)
509{
510 CPUState *cpu = opaque;
511
512 return cpu->crash_occurred;
513}
514
515static const VMStateDescription vmstate_cpu_common_crash_occurred = {
516 .name = "cpu_common/crash_occurred",
517 .version_id = 1,
518 .minimum_version_id = 1,
519 .needed = cpu_common_crash_occurred_needed,
520 .fields = (VMStateField[]) {
521 VMSTATE_BOOL(crash_occurred, CPUState),
522 VMSTATE_END_OF_LIST()
523 }
524};
525
1a1562f5 526const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
527 .name = "cpu_common",
528 .version_id = 1,
529 .minimum_version_id = 1,
6c3bff0e 530 .pre_load = cpu_common_pre_load,
5b6dd868 531 .post_load = cpu_common_post_load,
35d08458 532 .fields = (VMStateField[]) {
259186a7
AF
533 VMSTATE_UINT32(halted, CPUState),
534 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 535 VMSTATE_END_OF_LIST()
6c3bff0e 536 },
5cd8cada
JQ
537 .subsections = (const VMStateDescription*[]) {
538 &vmstate_cpu_common_exception_index,
bac05aa9 539 &vmstate_cpu_common_crash_occurred,
5cd8cada 540 NULL
5b6dd868
BS
541 }
542};
1a1562f5 543
5b6dd868 544#endif
ea041c0e 545
38d8f5c8 546CPUState *qemu_get_cpu(int index)
ea041c0e 547{
bdc44640 548 CPUState *cpu;
ea041c0e 549
bdc44640 550 CPU_FOREACH(cpu) {
55e5c285 551 if (cpu->cpu_index == index) {
bdc44640 552 return cpu;
55e5c285 553 }
ea041c0e 554 }
5b6dd868 555
bdc44640 556 return NULL;
ea041c0e
FB
557}
558
09daed84 559#if !defined(CONFIG_USER_ONLY)
56943e8c 560void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 561{
12ebc9a7
PM
562 CPUAddressSpace *newas;
563
564 /* Target code should have set num_ases before calling us */
565 assert(asidx < cpu->num_ases);
566
56943e8c
PM
567 if (asidx == 0) {
568 /* address space 0 gets the convenience alias */
569 cpu->as = as;
570 }
571
12ebc9a7
PM
572 /* KVM cannot currently support multiple address spaces. */
573 assert(asidx == 0 || !kvm_enabled());
09daed84 574
12ebc9a7
PM
575 if (!cpu->cpu_ases) {
576 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 577 }
32857f4d 578
12ebc9a7
PM
579 newas = &cpu->cpu_ases[asidx];
580 newas->cpu = cpu;
581 newas->as = as;
56943e8c 582 if (tcg_enabled()) {
12ebc9a7
PM
583 newas->tcg_as_listener.commit = tcg_commit;
584 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 585 }
09daed84 586}
651a5bc0
PM
587
588AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
589{
590 /* Return the AddressSpace corresponding to the specified index */
591 return cpu->cpu_ases[asidx].as;
592}
09daed84
EI
593#endif
594
b7bca733
BR
595#ifndef CONFIG_USER_ONLY
596static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
597
598static int cpu_get_free_index(Error **errp)
599{
600 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
601
602 if (cpu >= MAX_CPUMASK_BITS) {
603 error_setg(errp, "Trying to use more CPUs than max of %d",
604 MAX_CPUMASK_BITS);
605 return -1;
606 }
607
608 bitmap_set(cpu_index_map, cpu, 1);
609 return cpu;
610}
611
612void cpu_exec_exit(CPUState *cpu)
613{
614 if (cpu->cpu_index == -1) {
615 /* cpu_index was never allocated by this @cpu or was already freed. */
616 return;
617 }
618
619 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
620 cpu->cpu_index = -1;
621}
622#else
623
624static int cpu_get_free_index(Error **errp)
625{
626 CPUState *some_cpu;
627 int cpu_index = 0;
628
629 CPU_FOREACH(some_cpu) {
630 cpu_index++;
631 }
632 return cpu_index;
633}
634
635void cpu_exec_exit(CPUState *cpu)
636{
637}
638#endif
639
4bad9e39 640void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 641{
b170fce3 642 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 643 int cpu_index;
b7bca733 644 Error *local_err = NULL;
5b6dd868 645
56943e8c 646 cpu->as = NULL;
12ebc9a7 647 cpu->num_ases = 0;
56943e8c 648
291135b5 649#ifndef CONFIG_USER_ONLY
291135b5 650 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
651
652 /* This is a softmmu CPU object, so create a property for it
653 * so users can wire up its memory. (This can't go in qom/cpu.c
654 * because that file is compiled only once for both user-mode
655 * and system builds.) The default if no link is set up is to use
656 * the system address space.
657 */
658 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
659 (Object **)&cpu->memory,
660 qdev_prop_allow_set_link_before_realize,
661 OBJ_PROP_LINK_UNREF_ON_RELEASE,
662 &error_abort);
663 cpu->memory = system_memory;
664 object_ref(OBJECT(cpu->memory));
291135b5
EH
665#endif
666
5b6dd868
BS
667#if defined(CONFIG_USER_ONLY)
668 cpu_list_lock();
669#endif
b7bca733
BR
670 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
671 if (local_err) {
672 error_propagate(errp, local_err);
673#if defined(CONFIG_USER_ONLY)
674 cpu_list_unlock();
675#endif
676 return;
5b6dd868 677 }
bdc44640 678 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
679#if defined(CONFIG_USER_ONLY)
680 cpu_list_unlock();
681#endif
e0d47944
AF
682 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
683 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
684 }
b170fce3
AF
685 if (cc->vmsd != NULL) {
686 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
687 }
ea041c0e
FB
688}
689
94df27fd 690#if defined(CONFIG_USER_ONLY)
00b941e5 691static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
692{
693 tb_invalidate_phys_page_range(pc, pc + 1, 0);
694}
695#else
00b941e5 696static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 697{
5232e4c7
PM
698 MemTxAttrs attrs;
699 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
700 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 701 if (phys != -1) {
5232e4c7 702 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 703 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 704 }
1e7855a5 705}
c27004ec 706#endif
d720b93d 707
c527ee8f 708#if defined(CONFIG_USER_ONLY)
75a34036 709void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
710
711{
712}
713
3ee887e8
PM
714int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
715 int flags)
716{
717 return -ENOSYS;
718}
719
720void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
721{
722}
723
75a34036 724int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
725 int flags, CPUWatchpoint **watchpoint)
726{
727 return -ENOSYS;
728}
729#else
6658ffb8 730/* Add a watchpoint. */
75a34036 731int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 732 int flags, CPUWatchpoint **watchpoint)
6658ffb8 733{
c0ce998e 734 CPUWatchpoint *wp;
6658ffb8 735
05068c0d 736 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 737 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
738 error_report("tried to set invalid watchpoint at %"
739 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
740 return -EINVAL;
741 }
7267c094 742 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
743
744 wp->vaddr = addr;
05068c0d 745 wp->len = len;
a1d1bb31
AL
746 wp->flags = flags;
747
2dc9f411 748 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
749 if (flags & BP_GDB) {
750 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
751 } else {
752 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
753 }
6658ffb8 754
31b030d4 755 tlb_flush_page(cpu, addr);
a1d1bb31
AL
756
757 if (watchpoint)
758 *watchpoint = wp;
759 return 0;
6658ffb8
PB
760}
761
a1d1bb31 762/* Remove a specific watchpoint. */
75a34036 763int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 764 int flags)
6658ffb8 765{
a1d1bb31 766 CPUWatchpoint *wp;
6658ffb8 767
ff4700b0 768 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 769 if (addr == wp->vaddr && len == wp->len
6e140f28 770 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 771 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
772 return 0;
773 }
774 }
a1d1bb31 775 return -ENOENT;
6658ffb8
PB
776}
777
a1d1bb31 778/* Remove a specific watchpoint by reference. */
75a34036 779void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 780{
ff4700b0 781 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 782
31b030d4 783 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 784
7267c094 785 g_free(watchpoint);
a1d1bb31
AL
786}
787
788/* Remove all matching watchpoints. */
75a34036 789void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 790{
c0ce998e 791 CPUWatchpoint *wp, *next;
a1d1bb31 792
ff4700b0 793 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
794 if (wp->flags & mask) {
795 cpu_watchpoint_remove_by_ref(cpu, wp);
796 }
c0ce998e 797 }
7d03f82f 798}
05068c0d
PM
799
800/* Return true if this watchpoint address matches the specified
801 * access (ie the address range covered by the watchpoint overlaps
802 * partially or completely with the address range covered by the
803 * access).
804 */
805static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
806 vaddr addr,
807 vaddr len)
808{
809 /* We know the lengths are non-zero, but a little caution is
810 * required to avoid errors in the case where the range ends
811 * exactly at the top of the address space and so addr + len
812 * wraps round to zero.
813 */
814 vaddr wpend = wp->vaddr + wp->len - 1;
815 vaddr addrend = addr + len - 1;
816
817 return !(addr > wpend || wp->vaddr > addrend);
818}
819
c527ee8f 820#endif
7d03f82f 821
a1d1bb31 822/* Add a breakpoint. */
b3310ab3 823int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 824 CPUBreakpoint **breakpoint)
4c3a88a2 825{
c0ce998e 826 CPUBreakpoint *bp;
3b46e624 827
7267c094 828 bp = g_malloc(sizeof(*bp));
4c3a88a2 829
a1d1bb31
AL
830 bp->pc = pc;
831 bp->flags = flags;
832
2dc9f411 833 /* keep all GDB-injected breakpoints in front */
00b941e5 834 if (flags & BP_GDB) {
f0c3c505 835 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 836 } else {
f0c3c505 837 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 838 }
3b46e624 839
f0c3c505 840 breakpoint_invalidate(cpu, pc);
a1d1bb31 841
00b941e5 842 if (breakpoint) {
a1d1bb31 843 *breakpoint = bp;
00b941e5 844 }
4c3a88a2 845 return 0;
4c3a88a2
FB
846}
847
a1d1bb31 848/* Remove a specific breakpoint. */
b3310ab3 849int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 850{
a1d1bb31
AL
851 CPUBreakpoint *bp;
852
f0c3c505 853 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 854 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 855 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
856 return 0;
857 }
7d03f82f 858 }
a1d1bb31 859 return -ENOENT;
7d03f82f
EI
860}
861
a1d1bb31 862/* Remove a specific breakpoint by reference. */
b3310ab3 863void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 864{
f0c3c505
AF
865 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
866
867 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 868
7267c094 869 g_free(breakpoint);
a1d1bb31
AL
870}
871
872/* Remove all matching breakpoints. */
b3310ab3 873void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 874{
c0ce998e 875 CPUBreakpoint *bp, *next;
a1d1bb31 876
f0c3c505 877 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
878 if (bp->flags & mask) {
879 cpu_breakpoint_remove_by_ref(cpu, bp);
880 }
c0ce998e 881 }
4c3a88a2
FB
882}
883
c33a346e
FB
884/* enable or disable single step mode. EXCP_DEBUG is returned by the
885 CPU loop after each instruction */
3825b28f 886void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 887{
ed2803da
AF
888 if (cpu->singlestep_enabled != enabled) {
889 cpu->singlestep_enabled = enabled;
890 if (kvm_enabled()) {
38e478ec 891 kvm_update_guest_debug(cpu, 0);
ed2803da 892 } else {
ccbb4d44 893 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 894 /* XXX: only flush what is necessary */
bbd77c18 895 tb_flush(cpu);
e22a25c9 896 }
c33a346e 897 }
c33a346e
FB
898}
899
a47dddd7 900void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
901{
902 va_list ap;
493ae1f0 903 va_list ap2;
7501267e
FB
904
905 va_start(ap, fmt);
493ae1f0 906 va_copy(ap2, ap);
7501267e
FB
907 fprintf(stderr, "qemu: fatal: ");
908 vfprintf(stderr, fmt, ap);
909 fprintf(stderr, "\n");
878096ee 910 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 911 if (qemu_log_separate()) {
93fcfe39
AL
912 qemu_log("qemu: fatal: ");
913 qemu_log_vprintf(fmt, ap2);
914 qemu_log("\n");
a0762859 915 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 916 qemu_log_flush();
93fcfe39 917 qemu_log_close();
924edcae 918 }
493ae1f0 919 va_end(ap2);
f9373291 920 va_end(ap);
7615936e 921 replay_finish();
fd052bf6
RV
922#if defined(CONFIG_USER_ONLY)
923 {
924 struct sigaction act;
925 sigfillset(&act.sa_mask);
926 act.sa_handler = SIG_DFL;
927 sigaction(SIGABRT, &act, NULL);
928 }
929#endif
7501267e
FB
930 abort();
931}
932
0124311e 933#if !defined(CONFIG_USER_ONLY)
0dc3f44a 934/* Called from RCU critical section */
041603fe
PB
935static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
936{
937 RAMBlock *block;
938
43771539 939 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 940 if (block && addr - block->offset < block->max_length) {
68851b98 941 return block;
041603fe 942 }
0dc3f44a 943 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 944 if (addr - block->offset < block->max_length) {
041603fe
PB
945 goto found;
946 }
947 }
948
949 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
950 abort();
951
952found:
43771539
PB
953 /* It is safe to write mru_block outside the iothread lock. This
954 * is what happens:
955 *
956 * mru_block = xxx
957 * rcu_read_unlock()
958 * xxx removed from list
959 * rcu_read_lock()
960 * read mru_block
961 * mru_block = NULL;
962 * call_rcu(reclaim_ramblock, xxx);
963 * rcu_read_unlock()
964 *
965 * atomic_rcu_set is not needed here. The block was already published
966 * when it was placed into the list. Here we're just making an extra
967 * copy of the pointer.
968 */
041603fe
PB
969 ram_list.mru_block = block;
970 return block;
971}
972
a2f4d5be 973static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 974{
9a13565d 975 CPUState *cpu;
041603fe 976 ram_addr_t start1;
a2f4d5be
JQ
977 RAMBlock *block;
978 ram_addr_t end;
979
980 end = TARGET_PAGE_ALIGN(start + length);
981 start &= TARGET_PAGE_MASK;
d24981d3 982
0dc3f44a 983 rcu_read_lock();
041603fe
PB
984 block = qemu_get_ram_block(start);
985 assert(block == qemu_get_ram_block(end - 1));
1240be24 986 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
987 CPU_FOREACH(cpu) {
988 tlb_reset_dirty(cpu, start1, length);
989 }
0dc3f44a 990 rcu_read_unlock();
d24981d3
JQ
991}
992
5579c7f3 993/* Note: start and end must be within the same ram block. */
03eebc9e
SH
994bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
995 ram_addr_t length,
996 unsigned client)
1ccde1cb 997{
5b82b703 998 DirtyMemoryBlocks *blocks;
03eebc9e 999 unsigned long end, page;
5b82b703 1000 bool dirty = false;
03eebc9e
SH
1001
1002 if (length == 0) {
1003 return false;
1004 }
f23db169 1005
03eebc9e
SH
1006 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1007 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1008
1009 rcu_read_lock();
1010
1011 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1012
1013 while (page < end) {
1014 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1015 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1016 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1017
1018 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1019 offset, num);
1020 page += num;
1021 }
1022
1023 rcu_read_unlock();
03eebc9e
SH
1024
1025 if (dirty && tcg_enabled()) {
a2f4d5be 1026 tlb_reset_dirty_range_all(start, length);
5579c7f3 1027 }
03eebc9e
SH
1028
1029 return dirty;
1ccde1cb
FB
1030}
1031
79e2b9ae 1032/* Called from RCU critical section */
bb0e627a 1033hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1034 MemoryRegionSection *section,
1035 target_ulong vaddr,
1036 hwaddr paddr, hwaddr xlat,
1037 int prot,
1038 target_ulong *address)
e5548617 1039{
a8170e5e 1040 hwaddr iotlb;
e5548617
BS
1041 CPUWatchpoint *wp;
1042
cc5bea60 1043 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1044 /* Normal RAM. */
1045 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1046 + xlat;
e5548617 1047 if (!section->readonly) {
b41aac4f 1048 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1049 } else {
b41aac4f 1050 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1051 }
1052 } else {
0b8e2c10
PM
1053 AddressSpaceDispatch *d;
1054
1055 d = atomic_rcu_read(&section->address_space->dispatch);
1056 iotlb = section - d->map.sections;
149f54b5 1057 iotlb += xlat;
e5548617
BS
1058 }
1059
1060 /* Make accesses to pages with watchpoints go via the
1061 watchpoint trap routines. */
ff4700b0 1062 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1063 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1064 /* Avoid trapping reads of pages with a write breakpoint. */
1065 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1066 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1067 *address |= TLB_MMIO;
1068 break;
1069 }
1070 }
1071 }
1072
1073 return iotlb;
1074}
9fa3e853
FB
1075#endif /* defined(CONFIG_USER_ONLY) */
1076
e2eef170 1077#if !defined(CONFIG_USER_ONLY)
8da3ff18 1078
c227f099 1079static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1080 uint16_t section);
acc9d80b 1081static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1082
a2b257d6
IM
1083static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1084 qemu_anon_ram_alloc;
91138037
MA
1085
1086/*
1087 * Set a custom physical guest memory alloator.
1088 * Accelerators with unusual needs may need this. Hopefully, we can
1089 * get rid of it eventually.
1090 */
a2b257d6 1091void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1092{
1093 phys_mem_alloc = alloc;
1094}
1095
53cb28cb
MA
1096static uint16_t phys_section_add(PhysPageMap *map,
1097 MemoryRegionSection *section)
5312bd8b 1098{
68f3f65b
PB
1099 /* The physical section number is ORed with a page-aligned
1100 * pointer to produce the iotlb entries. Thus it should
1101 * never overflow into the page-aligned value.
1102 */
53cb28cb 1103 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1104
53cb28cb
MA
1105 if (map->sections_nb == map->sections_nb_alloc) {
1106 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1107 map->sections = g_renew(MemoryRegionSection, map->sections,
1108 map->sections_nb_alloc);
5312bd8b 1109 }
53cb28cb 1110 map->sections[map->sections_nb] = *section;
dfde4e6e 1111 memory_region_ref(section->mr);
53cb28cb 1112 return map->sections_nb++;
5312bd8b
AK
1113}
1114
058bc4b5
PB
1115static void phys_section_destroy(MemoryRegion *mr)
1116{
55b4e80b
DS
1117 bool have_sub_page = mr->subpage;
1118
dfde4e6e
PB
1119 memory_region_unref(mr);
1120
55b4e80b 1121 if (have_sub_page) {
058bc4b5 1122 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1123 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1124 g_free(subpage);
1125 }
1126}
1127
6092666e 1128static void phys_sections_free(PhysPageMap *map)
5312bd8b 1129{
9affd6fc
PB
1130 while (map->sections_nb > 0) {
1131 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1132 phys_section_destroy(section->mr);
1133 }
9affd6fc
PB
1134 g_free(map->sections);
1135 g_free(map->nodes);
5312bd8b
AK
1136}
1137
ac1970fb 1138static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1139{
1140 subpage_t *subpage;
a8170e5e 1141 hwaddr base = section->offset_within_address_space
0f0cb164 1142 & TARGET_PAGE_MASK;
97115a8d 1143 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1144 d->map.nodes, d->map.sections);
0f0cb164
AK
1145 MemoryRegionSection subsection = {
1146 .offset_within_address_space = base,
052e87b0 1147 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1148 };
a8170e5e 1149 hwaddr start, end;
0f0cb164 1150
f3705d53 1151 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1152
f3705d53 1153 if (!(existing->mr->subpage)) {
acc9d80b 1154 subpage = subpage_init(d->as, base);
3be91e86 1155 subsection.address_space = d->as;
0f0cb164 1156 subsection.mr = &subpage->iomem;
ac1970fb 1157 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1158 phys_section_add(&d->map, &subsection));
0f0cb164 1159 } else {
f3705d53 1160 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1161 }
1162 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1163 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1164 subpage_register(subpage, start, end,
1165 phys_section_add(&d->map, section));
0f0cb164
AK
1166}
1167
1168
052e87b0
PB
1169static void register_multipage(AddressSpaceDispatch *d,
1170 MemoryRegionSection *section)
33417e70 1171{
a8170e5e 1172 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1173 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1174 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1175 TARGET_PAGE_BITS));
dd81124b 1176
733d5ef5
PB
1177 assert(num_pages);
1178 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1179}
1180
ac1970fb 1181static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1182{
89ae337a 1183 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1184 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1185 MemoryRegionSection now = *section, remain = *section;
052e87b0 1186 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1187
733d5ef5
PB
1188 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1189 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1190 - now.offset_within_address_space;
1191
052e87b0 1192 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1193 register_subpage(d, &now);
733d5ef5 1194 } else {
052e87b0 1195 now.size = int128_zero();
733d5ef5 1196 }
052e87b0
PB
1197 while (int128_ne(remain.size, now.size)) {
1198 remain.size = int128_sub(remain.size, now.size);
1199 remain.offset_within_address_space += int128_get64(now.size);
1200 remain.offset_within_region += int128_get64(now.size);
69b67646 1201 now = remain;
052e87b0 1202 if (int128_lt(remain.size, page_size)) {
733d5ef5 1203 register_subpage(d, &now);
88266249 1204 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1205 now.size = page_size;
ac1970fb 1206 register_subpage(d, &now);
69b67646 1207 } else {
052e87b0 1208 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1209 register_multipage(d, &now);
69b67646 1210 }
0f0cb164
AK
1211 }
1212}
1213
62a2744c
SY
1214void qemu_flush_coalesced_mmio_buffer(void)
1215{
1216 if (kvm_enabled())
1217 kvm_flush_coalesced_mmio_buffer();
1218}
1219
b2a8658e
UD
1220void qemu_mutex_lock_ramlist(void)
1221{
1222 qemu_mutex_lock(&ram_list.mutex);
1223}
1224
1225void qemu_mutex_unlock_ramlist(void)
1226{
1227 qemu_mutex_unlock(&ram_list.mutex);
1228}
1229
e1e84ba0 1230#ifdef __linux__
c902760f
MT
1231
1232#include <sys/vfs.h>
1233
1234#define HUGETLBFS_MAGIC 0x958458f6
1235
fc7a5800 1236static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1237{
1238 struct statfs fs;
1239 int ret;
1240
1241 do {
9742bf26 1242 ret = statfs(path, &fs);
c902760f
MT
1243 } while (ret != 0 && errno == EINTR);
1244
1245 if (ret != 0) {
fc7a5800
HT
1246 error_setg_errno(errp, errno, "failed to get page size of file %s",
1247 path);
9742bf26 1248 return 0;
c902760f
MT
1249 }
1250
c902760f
MT
1251 return fs.f_bsize;
1252}
1253
04b16653
AW
1254static void *file_ram_alloc(RAMBlock *block,
1255 ram_addr_t memory,
7f56e740
PB
1256 const char *path,
1257 Error **errp)
c902760f 1258{
8d31d6b6 1259 struct stat st;
c902760f 1260 char *filename;
8ca761f6
PF
1261 char *sanitized_name;
1262 char *c;
794e8f30 1263 void *area;
c902760f 1264 int fd;
557529dd 1265 uint64_t hpagesize;
fc7a5800 1266 Error *local_err = NULL;
c902760f 1267
fc7a5800
HT
1268 hpagesize = gethugepagesize(path, &local_err);
1269 if (local_err) {
1270 error_propagate(errp, local_err);
f9a49dfa 1271 goto error;
c902760f 1272 }
a2b257d6 1273 block->mr->align = hpagesize;
c902760f
MT
1274
1275 if (memory < hpagesize) {
557529dd
HT
1276 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1277 "or larger than huge page size 0x%" PRIx64,
1278 memory, hpagesize);
1279 goto error;
c902760f
MT
1280 }
1281
1282 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1283 error_setg(errp,
1284 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1285 goto error;
c902760f
MT
1286 }
1287
8d31d6b6
PF
1288 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1289 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1290 sanitized_name = g_strdup(memory_region_name(block->mr));
1291 for (c = sanitized_name; *c != '\0'; c++) {
1292 if (*c == '/') {
1293 *c = '_';
1294 }
1295 }
8ca761f6 1296
8d31d6b6
PF
1297 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1298 sanitized_name);
1299 g_free(sanitized_name);
1300
1301 fd = mkstemp(filename);
1302 if (fd >= 0) {
1303 unlink(filename);
1304 }
1305 g_free(filename);
1306 } else {
1307 fd = open(path, O_RDWR | O_CREAT, 0644);
1308 }
c902760f 1309
c902760f 1310 if (fd < 0) {
7f56e740
PB
1311 error_setg_errno(errp, errno,
1312 "unable to create backing store for hugepages");
f9a49dfa 1313 goto error;
c902760f 1314 }
c902760f 1315
9284f319 1316 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1317
1318 /*
1319 * ftruncate is not supported by hugetlbfs in older
1320 * hosts, so don't bother bailing out on errors.
1321 * If anything goes wrong with it under other filesystems,
1322 * mmap will fail.
1323 */
7f56e740 1324 if (ftruncate(fd, memory)) {
9742bf26 1325 perror("ftruncate");
7f56e740 1326 }
c902760f 1327
794e8f30 1328 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1329 if (area == MAP_FAILED) {
7f56e740
PB
1330 error_setg_errno(errp, errno,
1331 "unable to map backing store for hugepages");
9742bf26 1332 close(fd);
f9a49dfa 1333 goto error;
c902760f 1334 }
ef36fa14
MT
1335
1336 if (mem_prealloc) {
38183310 1337 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1338 }
1339
04b16653 1340 block->fd = fd;
c902760f 1341 return area;
f9a49dfa
MT
1342
1343error:
f9a49dfa 1344 return NULL;
c902760f
MT
1345}
1346#endif
1347
0dc3f44a 1348/* Called with the ramlist lock held. */
d17b5288 1349static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1350{
1351 RAMBlock *block, *next_block;
3e837b2c 1352 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1353
49cd9ac6
SH
1354 assert(size != 0); /* it would hand out same offset multiple times */
1355
0dc3f44a 1356 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1357 return 0;
0d53d9fe 1358 }
04b16653 1359
0dc3f44a 1360 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1361 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1362
62be4e3a 1363 end = block->offset + block->max_length;
04b16653 1364
0dc3f44a 1365 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1366 if (next_block->offset >= end) {
1367 next = MIN(next, next_block->offset);
1368 }
1369 }
1370 if (next - end >= size && next - end < mingap) {
3e837b2c 1371 offset = end;
04b16653
AW
1372 mingap = next - end;
1373 }
1374 }
3e837b2c
AW
1375
1376 if (offset == RAM_ADDR_MAX) {
1377 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1378 (uint64_t)size);
1379 abort();
1380 }
1381
04b16653
AW
1382 return offset;
1383}
1384
652d7ec2 1385ram_addr_t last_ram_offset(void)
d17b5288
AW
1386{
1387 RAMBlock *block;
1388 ram_addr_t last = 0;
1389
0dc3f44a
MD
1390 rcu_read_lock();
1391 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1392 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1393 }
0dc3f44a 1394 rcu_read_unlock();
d17b5288
AW
1395 return last;
1396}
1397
ddb97f1d
JB
1398static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1399{
1400 int ret;
ddb97f1d
JB
1401
1402 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1403 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1404 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1405 if (ret) {
1406 perror("qemu_madvise");
1407 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1408 "but dump_guest_core=off specified\n");
1409 }
1410 }
1411}
1412
0dc3f44a
MD
1413/* Called within an RCU critical section, or while the ramlist lock
1414 * is held.
1415 */
20cfe881 1416static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1417{
20cfe881 1418 RAMBlock *block;
84b89d78 1419
0dc3f44a 1420 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1421 if (block->offset == addr) {
20cfe881 1422 return block;
c5705a77
AK
1423 }
1424 }
20cfe881
HT
1425
1426 return NULL;
1427}
1428
422148d3
DDAG
1429const char *qemu_ram_get_idstr(RAMBlock *rb)
1430{
1431 return rb->idstr;
1432}
1433
ae3a7047 1434/* Called with iothread lock held. */
20cfe881
HT
1435void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1436{
ae3a7047 1437 RAMBlock *new_block, *block;
20cfe881 1438
0dc3f44a 1439 rcu_read_lock();
ae3a7047 1440 new_block = find_ram_block(addr);
c5705a77
AK
1441 assert(new_block);
1442 assert(!new_block->idstr[0]);
84b89d78 1443
09e5ab63
AL
1444 if (dev) {
1445 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1446 if (id) {
1447 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1448 g_free(id);
84b89d78
CM
1449 }
1450 }
1451 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1452
0dc3f44a 1453 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1454 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1455 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1456 new_block->idstr);
1457 abort();
1458 }
1459 }
0dc3f44a 1460 rcu_read_unlock();
c5705a77
AK
1461}
1462
ae3a7047 1463/* Called with iothread lock held. */
20cfe881
HT
1464void qemu_ram_unset_idstr(ram_addr_t addr)
1465{
ae3a7047 1466 RAMBlock *block;
20cfe881 1467
ae3a7047
MD
1468 /* FIXME: arch_init.c assumes that this is not called throughout
1469 * migration. Ignore the problem since hot-unplug during migration
1470 * does not work anyway.
1471 */
1472
0dc3f44a 1473 rcu_read_lock();
ae3a7047 1474 block = find_ram_block(addr);
20cfe881
HT
1475 if (block) {
1476 memset(block->idstr, 0, sizeof(block->idstr));
1477 }
0dc3f44a 1478 rcu_read_unlock();
20cfe881
HT
1479}
1480
8490fc78
LC
1481static int memory_try_enable_merging(void *addr, size_t len)
1482{
75cc7f01 1483 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1484 /* disabled by the user */
1485 return 0;
1486 }
1487
1488 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1489}
1490
62be4e3a
MT
1491/* Only legal before guest might have detected the memory size: e.g. on
1492 * incoming migration, or right after reset.
1493 *
1494 * As memory core doesn't know how is memory accessed, it is up to
1495 * resize callback to update device state and/or add assertions to detect
1496 * misuse, if necessary.
1497 */
1498int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1499{
1500 RAMBlock *block = find_ram_block(base);
1501
1502 assert(block);
1503
4ed023ce 1504 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1505
62be4e3a
MT
1506 if (block->used_length == newsize) {
1507 return 0;
1508 }
1509
1510 if (!(block->flags & RAM_RESIZEABLE)) {
1511 error_setg_errno(errp, EINVAL,
1512 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1513 " in != 0x" RAM_ADDR_FMT, block->idstr,
1514 newsize, block->used_length);
1515 return -EINVAL;
1516 }
1517
1518 if (block->max_length < newsize) {
1519 error_setg_errno(errp, EINVAL,
1520 "Length too large: %s: 0x" RAM_ADDR_FMT
1521 " > 0x" RAM_ADDR_FMT, block->idstr,
1522 newsize, block->max_length);
1523 return -EINVAL;
1524 }
1525
1526 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1527 block->used_length = newsize;
58d2707e
PB
1528 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1529 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1530 memory_region_set_size(block->mr, newsize);
1531 if (block->resized) {
1532 block->resized(block->idstr, newsize, block->host);
1533 }
1534 return 0;
1535}
1536
5b82b703
SH
1537/* Called with ram_list.mutex held */
1538static void dirty_memory_extend(ram_addr_t old_ram_size,
1539 ram_addr_t new_ram_size)
1540{
1541 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1542 DIRTY_MEMORY_BLOCK_SIZE);
1543 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1544 DIRTY_MEMORY_BLOCK_SIZE);
1545 int i;
1546
1547 /* Only need to extend if block count increased */
1548 if (new_num_blocks <= old_num_blocks) {
1549 return;
1550 }
1551
1552 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1553 DirtyMemoryBlocks *old_blocks;
1554 DirtyMemoryBlocks *new_blocks;
1555 int j;
1556
1557 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1558 new_blocks = g_malloc(sizeof(*new_blocks) +
1559 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1560
1561 if (old_num_blocks) {
1562 memcpy(new_blocks->blocks, old_blocks->blocks,
1563 old_num_blocks * sizeof(old_blocks->blocks[0]));
1564 }
1565
1566 for (j = old_num_blocks; j < new_num_blocks; j++) {
1567 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1568 }
1569
1570 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1571
1572 if (old_blocks) {
1573 g_free_rcu(old_blocks, rcu);
1574 }
1575 }
1576}
1577
528f46af 1578static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1579{
e1c57ab8 1580 RAMBlock *block;
0d53d9fe 1581 RAMBlock *last_block = NULL;
2152f5ca 1582 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1583 Error *err = NULL;
2152f5ca
JQ
1584
1585 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1586
b2a8658e 1587 qemu_mutex_lock_ramlist();
9b8424d5 1588 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1589
1590 if (!new_block->host) {
1591 if (xen_enabled()) {
9b8424d5 1592 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1593 new_block->mr, &err);
1594 if (err) {
1595 error_propagate(errp, err);
1596 qemu_mutex_unlock_ramlist();
37aa7a0e 1597 }
e1c57ab8 1598 } else {
9b8424d5 1599 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1600 &new_block->mr->align);
39228250 1601 if (!new_block->host) {
ef701d7b
HT
1602 error_setg_errno(errp, errno,
1603 "cannot set up guest memory '%s'",
1604 memory_region_name(new_block->mr));
1605 qemu_mutex_unlock_ramlist();
39228250 1606 }
9b8424d5 1607 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1608 }
c902760f 1609 }
94a6b54f 1610
dd631697
LZ
1611 new_ram_size = MAX(old_ram_size,
1612 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1613 if (new_ram_size > old_ram_size) {
1614 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1615 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1616 }
0d53d9fe
MD
1617 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1618 * QLIST (which has an RCU-friendly variant) does not have insertion at
1619 * tail, so save the last element in last_block.
1620 */
0dc3f44a 1621 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1622 last_block = block;
9b8424d5 1623 if (block->max_length < new_block->max_length) {
abb26d63
PB
1624 break;
1625 }
1626 }
1627 if (block) {
0dc3f44a 1628 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1629 } else if (last_block) {
0dc3f44a 1630 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1631 } else { /* list is empty */
0dc3f44a 1632 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1633 }
0d6d3c87 1634 ram_list.mru_block = NULL;
94a6b54f 1635
0dc3f44a
MD
1636 /* Write list before version */
1637 smp_wmb();
f798b07f 1638 ram_list.version++;
b2a8658e 1639 qemu_mutex_unlock_ramlist();
f798b07f 1640
9b8424d5 1641 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1642 new_block->used_length,
1643 DIRTY_CLIENTS_ALL);
94a6b54f 1644
a904c911
PB
1645 if (new_block->host) {
1646 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1647 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1648 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1649 if (kvm_enabled()) {
1650 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1651 }
e1c57ab8 1652 }
94a6b54f 1653}
e9a1ab19 1654
0b183fc8 1655#ifdef __linux__
528f46af
FZ
1656RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1657 bool share, const char *mem_path,
1658 Error **errp)
e1c57ab8
PB
1659{
1660 RAMBlock *new_block;
ef701d7b 1661 Error *local_err = NULL;
e1c57ab8
PB
1662
1663 if (xen_enabled()) {
7f56e740 1664 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1665 return NULL;
e1c57ab8
PB
1666 }
1667
1668 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1669 /*
1670 * file_ram_alloc() needs to allocate just like
1671 * phys_mem_alloc, but we haven't bothered to provide
1672 * a hook there.
1673 */
7f56e740
PB
1674 error_setg(errp,
1675 "-mem-path not supported with this accelerator");
528f46af 1676 return NULL;
e1c57ab8
PB
1677 }
1678
4ed023ce 1679 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1680 new_block = g_malloc0(sizeof(*new_block));
1681 new_block->mr = mr;
9b8424d5
MT
1682 new_block->used_length = size;
1683 new_block->max_length = size;
dbcb8981 1684 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1685 new_block->host = file_ram_alloc(new_block, size,
1686 mem_path, errp);
1687 if (!new_block->host) {
1688 g_free(new_block);
528f46af 1689 return NULL;
7f56e740
PB
1690 }
1691
528f46af 1692 ram_block_add(new_block, &local_err);
ef701d7b
HT
1693 if (local_err) {
1694 g_free(new_block);
1695 error_propagate(errp, local_err);
528f46af 1696 return NULL;
ef701d7b 1697 }
528f46af 1698 return new_block;
e1c57ab8 1699}
0b183fc8 1700#endif
e1c57ab8 1701
62be4e3a 1702static
528f46af
FZ
1703RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1704 void (*resized)(const char*,
1705 uint64_t length,
1706 void *host),
1707 void *host, bool resizeable,
1708 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1709{
1710 RAMBlock *new_block;
ef701d7b 1711 Error *local_err = NULL;
e1c57ab8 1712
4ed023ce
DDAG
1713 size = HOST_PAGE_ALIGN(size);
1714 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1715 new_block = g_malloc0(sizeof(*new_block));
1716 new_block->mr = mr;
62be4e3a 1717 new_block->resized = resized;
9b8424d5
MT
1718 new_block->used_length = size;
1719 new_block->max_length = max_size;
62be4e3a 1720 assert(max_size >= size);
e1c57ab8
PB
1721 new_block->fd = -1;
1722 new_block->host = host;
1723 if (host) {
7bd4f430 1724 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1725 }
62be4e3a
MT
1726 if (resizeable) {
1727 new_block->flags |= RAM_RESIZEABLE;
1728 }
528f46af 1729 ram_block_add(new_block, &local_err);
ef701d7b
HT
1730 if (local_err) {
1731 g_free(new_block);
1732 error_propagate(errp, local_err);
528f46af 1733 return NULL;
ef701d7b 1734 }
528f46af 1735 return new_block;
e1c57ab8
PB
1736}
1737
528f46af 1738RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1739 MemoryRegion *mr, Error **errp)
1740{
1741 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1742}
1743
528f46af 1744RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1745{
62be4e3a
MT
1746 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1747}
1748
528f46af 1749RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1750 void (*resized)(const char*,
1751 uint64_t length,
1752 void *host),
1753 MemoryRegion *mr, Error **errp)
1754{
1755 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1756}
1757
43771539
PB
1758static void reclaim_ramblock(RAMBlock *block)
1759{
1760 if (block->flags & RAM_PREALLOC) {
1761 ;
1762 } else if (xen_enabled()) {
1763 xen_invalidate_map_cache_entry(block->host);
1764#ifndef _WIN32
1765 } else if (block->fd >= 0) {
2f3a2bb1 1766 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1767 close(block->fd);
1768#endif
1769 } else {
1770 qemu_anon_ram_free(block->host, block->max_length);
1771 }
1772 g_free(block);
1773}
1774
f1060c55 1775void qemu_ram_free(RAMBlock *block)
e9a1ab19 1776{
b2a8658e 1777 qemu_mutex_lock_ramlist();
f1060c55
FZ
1778 QLIST_REMOVE_RCU(block, next);
1779 ram_list.mru_block = NULL;
1780 /* Write list before version */
1781 smp_wmb();
1782 ram_list.version++;
1783 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1784 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1785}
1786
cd19cfa2
HY
1787#ifndef _WIN32
1788void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1789{
1790 RAMBlock *block;
1791 ram_addr_t offset;
1792 int flags;
1793 void *area, *vaddr;
1794
0dc3f44a 1795 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1796 offset = addr - block->offset;
9b8424d5 1797 if (offset < block->max_length) {
1240be24 1798 vaddr = ramblock_ptr(block, offset);
7bd4f430 1799 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1800 ;
dfeaf2ab
MA
1801 } else if (xen_enabled()) {
1802 abort();
cd19cfa2
HY
1803 } else {
1804 flags = MAP_FIXED;
3435f395 1805 if (block->fd >= 0) {
dbcb8981
PB
1806 flags |= (block->flags & RAM_SHARED ?
1807 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1808 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1809 flags, block->fd, offset);
cd19cfa2 1810 } else {
2eb9fbaa
MA
1811 /*
1812 * Remap needs to match alloc. Accelerators that
1813 * set phys_mem_alloc never remap. If they did,
1814 * we'd need a remap hook here.
1815 */
1816 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1817
cd19cfa2
HY
1818 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1819 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1820 flags, -1, 0);
cd19cfa2
HY
1821 }
1822 if (area != vaddr) {
f15fbc4b
AP
1823 fprintf(stderr, "Could not remap addr: "
1824 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1825 length, addr);
1826 exit(1);
1827 }
8490fc78 1828 memory_try_enable_merging(vaddr, length);
ddb97f1d 1829 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1830 }
cd19cfa2
HY
1831 }
1832 }
1833}
1834#endif /* !_WIN32 */
1835
a35ba7be
PB
1836int qemu_get_ram_fd(ram_addr_t addr)
1837{
ae3a7047
MD
1838 RAMBlock *block;
1839 int fd;
a35ba7be 1840
0dc3f44a 1841 rcu_read_lock();
ae3a7047
MD
1842 block = qemu_get_ram_block(addr);
1843 fd = block->fd;
0dc3f44a 1844 rcu_read_unlock();
ae3a7047 1845 return fd;
a35ba7be
PB
1846}
1847
56a571d9
TM
1848void qemu_set_ram_fd(ram_addr_t addr, int fd)
1849{
1850 RAMBlock *block;
1851
1852 rcu_read_lock();
1853 block = qemu_get_ram_block(addr);
1854 block->fd = fd;
1855 rcu_read_unlock();
1856}
1857
3fd74b84
DM
1858void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1859{
ae3a7047
MD
1860 RAMBlock *block;
1861 void *ptr;
3fd74b84 1862
0dc3f44a 1863 rcu_read_lock();
ae3a7047
MD
1864 block = qemu_get_ram_block(addr);
1865 ptr = ramblock_ptr(block, 0);
0dc3f44a 1866 rcu_read_unlock();
ae3a7047 1867 return ptr;
3fd74b84
DM
1868}
1869
1b5ec234 1870/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1871 * This should not be used for general purpose DMA. Use address_space_map
1872 * or address_space_rw instead. For local memory (e.g. video ram) that the
1873 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1874 *
49b24afc 1875 * Called within RCU critical section.
1b5ec234 1876 */
3655cb9c 1877void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1878{
3655cb9c
GA
1879 RAMBlock *block = ram_block;
1880
1881 if (block == NULL) {
1882 block = qemu_get_ram_block(addr);
1883 }
ae3a7047
MD
1884
1885 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1886 /* We need to check if the requested address is in the RAM
1887 * because we don't want to map the entire memory in QEMU.
1888 * In that case just map until the end of the page.
1889 */
1890 if (block->offset == 0) {
49b24afc 1891 return xen_map_cache(addr, 0, 0);
0d6d3c87 1892 }
ae3a7047
MD
1893
1894 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1895 }
49b24afc 1896 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1897}
1898
38bee5dc 1899/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1900 * but takes a size argument.
0dc3f44a 1901 *
e81bcda5 1902 * Called within RCU critical section.
ae3a7047 1903 */
3655cb9c
GA
1904static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1905 hwaddr *size)
38bee5dc 1906{
3655cb9c 1907 RAMBlock *block = ram_block;
e81bcda5 1908 ram_addr_t offset_inside_block;
8ab934f9
SS
1909 if (*size == 0) {
1910 return NULL;
1911 }
e81bcda5 1912
3655cb9c
GA
1913 if (block == NULL) {
1914 block = qemu_get_ram_block(addr);
1915 }
e81bcda5
PB
1916 offset_inside_block = addr - block->offset;
1917 *size = MIN(*size, block->max_length - offset_inside_block);
1918
1919 if (xen_enabled() && block->host == NULL) {
1920 /* We need to check if the requested address is in the RAM
1921 * because we don't want to map the entire memory in QEMU.
1922 * In that case just map the requested area.
1923 */
1924 if (block->offset == 0) {
1925 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1926 }
1927
e81bcda5 1928 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1929 }
e81bcda5
PB
1930
1931 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1932}
1933
422148d3
DDAG
1934/*
1935 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1936 * in that RAMBlock.
1937 *
1938 * ptr: Host pointer to look up
1939 * round_offset: If true round the result offset down to a page boundary
1940 * *ram_addr: set to result ram_addr
1941 * *offset: set to result offset within the RAMBlock
1942 *
1943 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1944 *
1945 * By the time this function returns, the returned pointer is not protected
1946 * by RCU anymore. If the caller is not within an RCU critical section and
1947 * does not hold the iothread lock, it must have other means of protecting the
1948 * pointer, such as a reference to the region that includes the incoming
1949 * ram_addr_t.
1950 */
422148d3
DDAG
1951RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1952 ram_addr_t *ram_addr,
1953 ram_addr_t *offset)
5579c7f3 1954{
94a6b54f
PB
1955 RAMBlock *block;
1956 uint8_t *host = ptr;
1957
868bb33f 1958 if (xen_enabled()) {
0dc3f44a 1959 rcu_read_lock();
e41d7c69 1960 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1961 block = qemu_get_ram_block(*ram_addr);
1962 if (block) {
1963 *offset = (host - block->host);
1964 }
0dc3f44a 1965 rcu_read_unlock();
422148d3 1966 return block;
712c2b41
SS
1967 }
1968
0dc3f44a
MD
1969 rcu_read_lock();
1970 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1971 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1972 goto found;
1973 }
1974
0dc3f44a 1975 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1976 /* This case append when the block is not mapped. */
1977 if (block->host == NULL) {
1978 continue;
1979 }
9b8424d5 1980 if (host - block->host < block->max_length) {
23887b79 1981 goto found;
f471a17e 1982 }
94a6b54f 1983 }
432d268c 1984
0dc3f44a 1985 rcu_read_unlock();
1b5ec234 1986 return NULL;
23887b79
PB
1987
1988found:
422148d3
DDAG
1989 *offset = (host - block->host);
1990 if (round_offset) {
1991 *offset &= TARGET_PAGE_MASK;
1992 }
1993 *ram_addr = block->offset + *offset;
0dc3f44a 1994 rcu_read_unlock();
422148d3
DDAG
1995 return block;
1996}
1997
e3dd7493
DDAG
1998/*
1999 * Finds the named RAMBlock
2000 *
2001 * name: The name of RAMBlock to find
2002 *
2003 * Returns: RAMBlock (or NULL if not found)
2004 */
2005RAMBlock *qemu_ram_block_by_name(const char *name)
2006{
2007 RAMBlock *block;
2008
2009 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2010 if (!strcmp(name, block->idstr)) {
2011 return block;
2012 }
2013 }
2014
2015 return NULL;
2016}
2017
422148d3
DDAG
2018/* Some of the softmmu routines need to translate from a host pointer
2019 (typically a TLB entry) back to a ram offset. */
2020MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2021{
2022 RAMBlock *block;
2023 ram_addr_t offset; /* Not used */
2024
2025 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2026
2027 if (!block) {
2028 return NULL;
2029 }
2030
2031 return block->mr;
e890261f 2032}
f471a17e 2033
49b24afc 2034/* Called within RCU critical section. */
a8170e5e 2035static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2036 uint64_t val, unsigned size)
9fa3e853 2037{
52159192 2038 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2039 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2040 }
0e0df1e2
AK
2041 switch (size) {
2042 case 1:
3655cb9c 2043 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2044 break;
2045 case 2:
3655cb9c 2046 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2047 break;
2048 case 4:
3655cb9c 2049 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2050 break;
2051 default:
2052 abort();
3a7d929e 2053 }
58d2707e
PB
2054 /* Set both VGA and migration bits for simplicity and to remove
2055 * the notdirty callback faster.
2056 */
2057 cpu_physical_memory_set_dirty_range(ram_addr, size,
2058 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2059 /* we remove the notdirty callback only if the code has been
2060 flushed */
a2cd8c85 2061 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2062 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2063 }
9fa3e853
FB
2064}
2065
b018ddf6
PB
2066static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2067 unsigned size, bool is_write)
2068{
2069 return is_write;
2070}
2071
0e0df1e2 2072static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2073 .write = notdirty_mem_write,
b018ddf6 2074 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2075 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2076};
2077
0f459d16 2078/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2079static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2080{
93afeade 2081 CPUState *cpu = current_cpu;
568496c0 2082 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2083 CPUArchState *env = cpu->env_ptr;
06d55cc1 2084 target_ulong pc, cs_base;
0f459d16 2085 target_ulong vaddr;
a1d1bb31 2086 CPUWatchpoint *wp;
06d55cc1 2087 int cpu_flags;
0f459d16 2088
ff4700b0 2089 if (cpu->watchpoint_hit) {
06d55cc1
AL
2090 /* We re-entered the check after replacing the TB. Now raise
2091 * the debug interrupt so that is will trigger after the
2092 * current instruction. */
93afeade 2093 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2094 return;
2095 }
93afeade 2096 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2097 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2098 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2099 && (wp->flags & flags)) {
08225676
PM
2100 if (flags == BP_MEM_READ) {
2101 wp->flags |= BP_WATCHPOINT_HIT_READ;
2102 } else {
2103 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2104 }
2105 wp->hitaddr = vaddr;
66b9b43c 2106 wp->hitattrs = attrs;
ff4700b0 2107 if (!cpu->watchpoint_hit) {
568496c0
SF
2108 if (wp->flags & BP_CPU &&
2109 !cc->debug_check_watchpoint(cpu, wp)) {
2110 wp->flags &= ~BP_WATCHPOINT_HIT;
2111 continue;
2112 }
ff4700b0 2113 cpu->watchpoint_hit = wp;
239c51a5 2114 tb_check_watchpoint(cpu);
6e140f28 2115 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2116 cpu->exception_index = EXCP_DEBUG;
5638d180 2117 cpu_loop_exit(cpu);
6e140f28
AL
2118 } else {
2119 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2120 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2121 cpu_resume_from_signal(cpu, NULL);
6e140f28 2122 }
06d55cc1 2123 }
6e140f28
AL
2124 } else {
2125 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2126 }
2127 }
2128}
2129
6658ffb8
PB
2130/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2131 so these check for a hit then pass through to the normal out-of-line
2132 phys routines. */
66b9b43c
PM
2133static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2134 unsigned size, MemTxAttrs attrs)
6658ffb8 2135{
66b9b43c
PM
2136 MemTxResult res;
2137 uint64_t data;
79ed0416
PM
2138 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2139 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2140
2141 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2142 switch (size) {
66b9b43c 2143 case 1:
79ed0416 2144 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2145 break;
2146 case 2:
79ed0416 2147 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2148 break;
2149 case 4:
79ed0416 2150 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2151 break;
1ec9b909
AK
2152 default: abort();
2153 }
66b9b43c
PM
2154 *pdata = data;
2155 return res;
6658ffb8
PB
2156}
2157
66b9b43c
PM
2158static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2159 uint64_t val, unsigned size,
2160 MemTxAttrs attrs)
6658ffb8 2161{
66b9b43c 2162 MemTxResult res;
79ed0416
PM
2163 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2164 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2165
2166 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2167 switch (size) {
67364150 2168 case 1:
79ed0416 2169 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2170 break;
2171 case 2:
79ed0416 2172 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2173 break;
2174 case 4:
79ed0416 2175 address_space_stl(as, addr, val, attrs, &res);
67364150 2176 break;
1ec9b909
AK
2177 default: abort();
2178 }
66b9b43c 2179 return res;
6658ffb8
PB
2180}
2181
1ec9b909 2182static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2183 .read_with_attrs = watch_mem_read,
2184 .write_with_attrs = watch_mem_write,
1ec9b909 2185 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2186};
6658ffb8 2187
f25a49e0
PM
2188static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2189 unsigned len, MemTxAttrs attrs)
db7b5426 2190{
acc9d80b 2191 subpage_t *subpage = opaque;
ff6cff75 2192 uint8_t buf[8];
5c9eb028 2193 MemTxResult res;
791af8c8 2194
db7b5426 2195#if defined(DEBUG_SUBPAGE)
016e9d62 2196 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2197 subpage, len, addr);
db7b5426 2198#endif
5c9eb028
PM
2199 res = address_space_read(subpage->as, addr + subpage->base,
2200 attrs, buf, len);
2201 if (res) {
2202 return res;
f25a49e0 2203 }
acc9d80b
JK
2204 switch (len) {
2205 case 1:
f25a49e0
PM
2206 *data = ldub_p(buf);
2207 return MEMTX_OK;
acc9d80b 2208 case 2:
f25a49e0
PM
2209 *data = lduw_p(buf);
2210 return MEMTX_OK;
acc9d80b 2211 case 4:
f25a49e0
PM
2212 *data = ldl_p(buf);
2213 return MEMTX_OK;
ff6cff75 2214 case 8:
f25a49e0
PM
2215 *data = ldq_p(buf);
2216 return MEMTX_OK;
acc9d80b
JK
2217 default:
2218 abort();
2219 }
db7b5426
BS
2220}
2221
f25a49e0
PM
2222static MemTxResult subpage_write(void *opaque, hwaddr addr,
2223 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2224{
acc9d80b 2225 subpage_t *subpage = opaque;
ff6cff75 2226 uint8_t buf[8];
acc9d80b 2227
db7b5426 2228#if defined(DEBUG_SUBPAGE)
016e9d62 2229 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2230 " value %"PRIx64"\n",
2231 __func__, subpage, len, addr, value);
db7b5426 2232#endif
acc9d80b
JK
2233 switch (len) {
2234 case 1:
2235 stb_p(buf, value);
2236 break;
2237 case 2:
2238 stw_p(buf, value);
2239 break;
2240 case 4:
2241 stl_p(buf, value);
2242 break;
ff6cff75
PB
2243 case 8:
2244 stq_p(buf, value);
2245 break;
acc9d80b
JK
2246 default:
2247 abort();
2248 }
5c9eb028
PM
2249 return address_space_write(subpage->as, addr + subpage->base,
2250 attrs, buf, len);
db7b5426
BS
2251}
2252
c353e4cc 2253static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2254 unsigned len, bool is_write)
c353e4cc 2255{
acc9d80b 2256 subpage_t *subpage = opaque;
c353e4cc 2257#if defined(DEBUG_SUBPAGE)
016e9d62 2258 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2259 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2260#endif
2261
acc9d80b 2262 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2263 len, is_write);
c353e4cc
PB
2264}
2265
70c68e44 2266static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2267 .read_with_attrs = subpage_read,
2268 .write_with_attrs = subpage_write,
ff6cff75
PB
2269 .impl.min_access_size = 1,
2270 .impl.max_access_size = 8,
2271 .valid.min_access_size = 1,
2272 .valid.max_access_size = 8,
c353e4cc 2273 .valid.accepts = subpage_accepts,
70c68e44 2274 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2275};
2276
c227f099 2277static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2278 uint16_t section)
db7b5426
BS
2279{
2280 int idx, eidx;
2281
2282 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2283 return -1;
2284 idx = SUBPAGE_IDX(start);
2285 eidx = SUBPAGE_IDX(end);
2286#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2287 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2288 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2289#endif
db7b5426 2290 for (; idx <= eidx; idx++) {
5312bd8b 2291 mmio->sub_section[idx] = section;
db7b5426
BS
2292 }
2293
2294 return 0;
2295}
2296
acc9d80b 2297static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2298{
c227f099 2299 subpage_t *mmio;
db7b5426 2300
7267c094 2301 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2302
acc9d80b 2303 mmio->as = as;
1eec614b 2304 mmio->base = base;
2c9b15ca 2305 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2306 NULL, TARGET_PAGE_SIZE);
b3b00c78 2307 mmio->iomem.subpage = true;
db7b5426 2308#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2309 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2310 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2311#endif
b41aac4f 2312 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2313
2314 return mmio;
2315}
2316
a656e22f
PC
2317static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2318 MemoryRegion *mr)
5312bd8b 2319{
a656e22f 2320 assert(as);
5312bd8b 2321 MemoryRegionSection section = {
a656e22f 2322 .address_space = as,
5312bd8b
AK
2323 .mr = mr,
2324 .offset_within_address_space = 0,
2325 .offset_within_region = 0,
052e87b0 2326 .size = int128_2_64(),
5312bd8b
AK
2327 };
2328
53cb28cb 2329 return phys_section_add(map, &section);
5312bd8b
AK
2330}
2331
a54c87b6 2332MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2333{
a54c87b6
PM
2334 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2335 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2336 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2337 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2338
2339 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2340}
2341
e9179ce1
AK
2342static void io_mem_init(void)
2343{
1f6245e5 2344 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2345 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2346 NULL, UINT64_MAX);
2c9b15ca 2347 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2348 NULL, UINT64_MAX);
2c9b15ca 2349 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2350 NULL, UINT64_MAX);
e9179ce1
AK
2351}
2352
ac1970fb 2353static void mem_begin(MemoryListener *listener)
00752703
PB
2354{
2355 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2356 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2357 uint16_t n;
2358
a656e22f 2359 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2360 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2361 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2362 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2363 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2364 assert(n == PHYS_SECTION_ROM);
a656e22f 2365 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2366 assert(n == PHYS_SECTION_WATCH);
00752703 2367
9736e55b 2368 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2369 d->as = as;
2370 as->next_dispatch = d;
2371}
2372
79e2b9ae
PB
2373static void address_space_dispatch_free(AddressSpaceDispatch *d)
2374{
2375 phys_sections_free(&d->map);
2376 g_free(d);
2377}
2378
00752703 2379static void mem_commit(MemoryListener *listener)
ac1970fb 2380{
89ae337a 2381 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2382 AddressSpaceDispatch *cur = as->dispatch;
2383 AddressSpaceDispatch *next = as->next_dispatch;
2384
53cb28cb 2385 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2386
79e2b9ae 2387 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2388 if (cur) {
79e2b9ae 2389 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2390 }
9affd6fc
PB
2391}
2392
1d71148e 2393static void tcg_commit(MemoryListener *listener)
50c1e149 2394{
32857f4d
PM
2395 CPUAddressSpace *cpuas;
2396 AddressSpaceDispatch *d;
117712c3
AK
2397
2398 /* since each CPU stores ram addresses in its TLB cache, we must
2399 reset the modified entries */
32857f4d
PM
2400 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2401 cpu_reloading_memory_map();
2402 /* The CPU and TLB are protected by the iothread lock.
2403 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2404 * may have split the RCU critical section.
2405 */
2406 d = atomic_rcu_read(&cpuas->as->dispatch);
2407 cpuas->memory_dispatch = d;
2408 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2409}
2410
ac1970fb
AK
2411void address_space_init_dispatch(AddressSpace *as)
2412{
00752703 2413 as->dispatch = NULL;
89ae337a 2414 as->dispatch_listener = (MemoryListener) {
ac1970fb 2415 .begin = mem_begin,
00752703 2416 .commit = mem_commit,
ac1970fb
AK
2417 .region_add = mem_add,
2418 .region_nop = mem_add,
2419 .priority = 0,
2420 };
89ae337a 2421 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2422}
2423
6e48e8f9
PB
2424void address_space_unregister(AddressSpace *as)
2425{
2426 memory_listener_unregister(&as->dispatch_listener);
2427}
2428
83f3c251
AK
2429void address_space_destroy_dispatch(AddressSpace *as)
2430{
2431 AddressSpaceDispatch *d = as->dispatch;
2432
79e2b9ae
PB
2433 atomic_rcu_set(&as->dispatch, NULL);
2434 if (d) {
2435 call_rcu(d, address_space_dispatch_free, rcu);
2436 }
83f3c251
AK
2437}
2438
62152b8a
AK
2439static void memory_map_init(void)
2440{
7267c094 2441 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2442
57271d63 2443 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2444 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2445
7267c094 2446 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2447 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2448 65536);
7dca8043 2449 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2450}
2451
2452MemoryRegion *get_system_memory(void)
2453{
2454 return system_memory;
2455}
2456
309cb471
AK
2457MemoryRegion *get_system_io(void)
2458{
2459 return system_io;
2460}
2461
e2eef170
PB
2462#endif /* !defined(CONFIG_USER_ONLY) */
2463
13eb76e0
FB
2464/* physical memory access (slow version, mainly for debug) */
2465#if defined(CONFIG_USER_ONLY)
f17ec444 2466int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2467 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2468{
2469 int l, flags;
2470 target_ulong page;
53a5960a 2471 void * p;
13eb76e0
FB
2472
2473 while (len > 0) {
2474 page = addr & TARGET_PAGE_MASK;
2475 l = (page + TARGET_PAGE_SIZE) - addr;
2476 if (l > len)
2477 l = len;
2478 flags = page_get_flags(page);
2479 if (!(flags & PAGE_VALID))
a68fe89c 2480 return -1;
13eb76e0
FB
2481 if (is_write) {
2482 if (!(flags & PAGE_WRITE))
a68fe89c 2483 return -1;
579a97f7 2484 /* XXX: this code should not depend on lock_user */
72fb7daa 2485 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2486 return -1;
72fb7daa
AJ
2487 memcpy(p, buf, l);
2488 unlock_user(p, addr, l);
13eb76e0
FB
2489 } else {
2490 if (!(flags & PAGE_READ))
a68fe89c 2491 return -1;
579a97f7 2492 /* XXX: this code should not depend on lock_user */
72fb7daa 2493 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2494 return -1;
72fb7daa 2495 memcpy(buf, p, l);
5b257578 2496 unlock_user(p, addr, 0);
13eb76e0
FB
2497 }
2498 len -= l;
2499 buf += l;
2500 addr += l;
2501 }
a68fe89c 2502 return 0;
13eb76e0 2503}
8df1cd07 2504
13eb76e0 2505#else
51d7a9eb 2506
845b6214 2507static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2508 hwaddr length)
51d7a9eb 2509{
e87f7778
PB
2510 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2511 /* No early return if dirty_log_mask is or becomes 0, because
2512 * cpu_physical_memory_set_dirty_range will still call
2513 * xen_modified_memory.
2514 */
2515 if (dirty_log_mask) {
2516 dirty_log_mask =
2517 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2518 }
2519 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2520 tb_invalidate_phys_range(addr, addr + length);
2521 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2522 }
e87f7778 2523 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2524}
2525
23326164 2526static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2527{
e1622f4b 2528 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2529
2530 /* Regions are assumed to support 1-4 byte accesses unless
2531 otherwise specified. */
23326164
RH
2532 if (access_size_max == 0) {
2533 access_size_max = 4;
2534 }
2535
2536 /* Bound the maximum access by the alignment of the address. */
2537 if (!mr->ops->impl.unaligned) {
2538 unsigned align_size_max = addr & -addr;
2539 if (align_size_max != 0 && align_size_max < access_size_max) {
2540 access_size_max = align_size_max;
2541 }
82f2563f 2542 }
23326164
RH
2543
2544 /* Don't attempt accesses larger than the maximum. */
2545 if (l > access_size_max) {
2546 l = access_size_max;
82f2563f 2547 }
6554f5c0 2548 l = pow2floor(l);
23326164
RH
2549
2550 return l;
82f2563f
PB
2551}
2552
4840f10e 2553static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2554{
4840f10e
JK
2555 bool unlocked = !qemu_mutex_iothread_locked();
2556 bool release_lock = false;
2557
2558 if (unlocked && mr->global_locking) {
2559 qemu_mutex_lock_iothread();
2560 unlocked = false;
2561 release_lock = true;
2562 }
125b3806 2563 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2564 if (unlocked) {
2565 qemu_mutex_lock_iothread();
2566 }
125b3806 2567 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2568 if (unlocked) {
2569 qemu_mutex_unlock_iothread();
2570 }
125b3806 2571 }
4840f10e
JK
2572
2573 return release_lock;
125b3806
PB
2574}
2575
a203ac70
PB
2576/* Called within RCU critical section. */
2577static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2578 MemTxAttrs attrs,
2579 const uint8_t *buf,
2580 int len, hwaddr addr1,
2581 hwaddr l, MemoryRegion *mr)
13eb76e0 2582{
13eb76e0 2583 uint8_t *ptr;
791af8c8 2584 uint64_t val;
3b643495 2585 MemTxResult result = MEMTX_OK;
4840f10e 2586 bool release_lock = false;
3b46e624 2587
a203ac70 2588 for (;;) {
eb7eeb88
PB
2589 if (!memory_access_is_direct(mr, true)) {
2590 release_lock |= prepare_mmio_access(mr);
2591 l = memory_access_size(mr, l, addr1);
2592 /* XXX: could force current_cpu to NULL to avoid
2593 potential bugs */
2594 switch (l) {
2595 case 8:
2596 /* 64 bit write access */
2597 val = ldq_p(buf);
2598 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2599 attrs);
2600 break;
2601 case 4:
2602 /* 32 bit write access */
2603 val = ldl_p(buf);
2604 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2605 attrs);
2606 break;
2607 case 2:
2608 /* 16 bit write access */
2609 val = lduw_p(buf);
2610 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2611 attrs);
2612 break;
2613 case 1:
2614 /* 8 bit write access */
2615 val = ldub_p(buf);
2616 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2617 attrs);
2618 break;
2619 default:
2620 abort();
13eb76e0
FB
2621 }
2622 } else {
eb7eeb88
PB
2623 addr1 += memory_region_get_ram_addr(mr);
2624 /* RAM case */
3655cb9c 2625 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2626 memcpy(ptr, buf, l);
2627 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2628 }
4840f10e
JK
2629
2630 if (release_lock) {
2631 qemu_mutex_unlock_iothread();
2632 release_lock = false;
2633 }
2634
13eb76e0
FB
2635 len -= l;
2636 buf += l;
2637 addr += l;
a203ac70
PB
2638
2639 if (!len) {
2640 break;
2641 }
2642
2643 l = len;
2644 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2645 }
fd8aaa76 2646
3b643495 2647 return result;
13eb76e0 2648}
8df1cd07 2649
a203ac70
PB
2650MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2651 const uint8_t *buf, int len)
ac1970fb 2652{
eb7eeb88 2653 hwaddr l;
eb7eeb88
PB
2654 hwaddr addr1;
2655 MemoryRegion *mr;
2656 MemTxResult result = MEMTX_OK;
eb7eeb88 2657
a203ac70
PB
2658 if (len > 0) {
2659 rcu_read_lock();
eb7eeb88 2660 l = len;
a203ac70
PB
2661 mr = address_space_translate(as, addr, &addr1, &l, true);
2662 result = address_space_write_continue(as, addr, attrs, buf, len,
2663 addr1, l, mr);
2664 rcu_read_unlock();
2665 }
2666
2667 return result;
2668}
2669
2670/* Called within RCU critical section. */
2671MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2672 MemTxAttrs attrs, uint8_t *buf,
2673 int len, hwaddr addr1, hwaddr l,
2674 MemoryRegion *mr)
2675{
2676 uint8_t *ptr;
2677 uint64_t val;
2678 MemTxResult result = MEMTX_OK;
2679 bool release_lock = false;
eb7eeb88 2680
a203ac70 2681 for (;;) {
eb7eeb88
PB
2682 if (!memory_access_is_direct(mr, false)) {
2683 /* I/O case */
2684 release_lock |= prepare_mmio_access(mr);
2685 l = memory_access_size(mr, l, addr1);
2686 switch (l) {
2687 case 8:
2688 /* 64 bit read access */
2689 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2690 attrs);
2691 stq_p(buf, val);
2692 break;
2693 case 4:
2694 /* 32 bit read access */
2695 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2696 attrs);
2697 stl_p(buf, val);
2698 break;
2699 case 2:
2700 /* 16 bit read access */
2701 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2702 attrs);
2703 stw_p(buf, val);
2704 break;
2705 case 1:
2706 /* 8 bit read access */
2707 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2708 attrs);
2709 stb_p(buf, val);
2710 break;
2711 default:
2712 abort();
2713 }
2714 } else {
2715 /* RAM case */
8e41fb63
FZ
2716 ptr = qemu_get_ram_ptr(mr->ram_block,
2717 memory_region_get_ram_addr(mr) + addr1);
eb7eeb88
PB
2718 memcpy(buf, ptr, l);
2719 }
2720
2721 if (release_lock) {
2722 qemu_mutex_unlock_iothread();
2723 release_lock = false;
2724 }
2725
2726 len -= l;
2727 buf += l;
2728 addr += l;
a203ac70
PB
2729
2730 if (!len) {
2731 break;
2732 }
2733
2734 l = len;
2735 mr = address_space_translate(as, addr, &addr1, &l, false);
2736 }
2737
2738 return result;
2739}
2740
3cc8f884
PB
2741MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2742 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2743{
2744 hwaddr l;
2745 hwaddr addr1;
2746 MemoryRegion *mr;
2747 MemTxResult result = MEMTX_OK;
2748
2749 if (len > 0) {
2750 rcu_read_lock();
2751 l = len;
2752 mr = address_space_translate(as, addr, &addr1, &l, false);
2753 result = address_space_read_continue(as, addr, attrs, buf, len,
2754 addr1, l, mr);
2755 rcu_read_unlock();
eb7eeb88 2756 }
eb7eeb88
PB
2757
2758 return result;
ac1970fb
AK
2759}
2760
eb7eeb88
PB
2761MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2762 uint8_t *buf, int len, bool is_write)
2763{
2764 if (is_write) {
2765 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2766 } else {
2767 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2768 }
2769}
ac1970fb 2770
a8170e5e 2771void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2772 int len, int is_write)
2773{
5c9eb028
PM
2774 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2775 buf, len, is_write);
ac1970fb
AK
2776}
2777
582b55a9
AG
2778enum write_rom_type {
2779 WRITE_DATA,
2780 FLUSH_CACHE,
2781};
2782
2a221651 2783static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2784 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2785{
149f54b5 2786 hwaddr l;
d0ecd2aa 2787 uint8_t *ptr;
149f54b5 2788 hwaddr addr1;
5c8a00ce 2789 MemoryRegion *mr;
3b46e624 2790
41063e1e 2791 rcu_read_lock();
d0ecd2aa 2792 while (len > 0) {
149f54b5 2793 l = len;
2a221651 2794 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2795
5c8a00ce
PB
2796 if (!(memory_region_is_ram(mr) ||
2797 memory_region_is_romd(mr))) {
b242e0e0 2798 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2799 } else {
5c8a00ce 2800 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2801 /* ROM/RAM case */
3655cb9c 2802 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2803 switch (type) {
2804 case WRITE_DATA:
2805 memcpy(ptr, buf, l);
845b6214 2806 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2807 break;
2808 case FLUSH_CACHE:
2809 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2810 break;
2811 }
d0ecd2aa
FB
2812 }
2813 len -= l;
2814 buf += l;
2815 addr += l;
2816 }
41063e1e 2817 rcu_read_unlock();
d0ecd2aa
FB
2818}
2819
582b55a9 2820/* used for ROM loading : can write in RAM and ROM */
2a221651 2821void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2822 const uint8_t *buf, int len)
2823{
2a221651 2824 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2825}
2826
2827void cpu_flush_icache_range(hwaddr start, int len)
2828{
2829 /*
2830 * This function should do the same thing as an icache flush that was
2831 * triggered from within the guest. For TCG we are always cache coherent,
2832 * so there is no need to flush anything. For KVM / Xen we need to flush
2833 * the host's instruction cache at least.
2834 */
2835 if (tcg_enabled()) {
2836 return;
2837 }
2838
2a221651
EI
2839 cpu_physical_memory_write_rom_internal(&address_space_memory,
2840 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2841}
2842
6d16c2f8 2843typedef struct {
d3e71559 2844 MemoryRegion *mr;
6d16c2f8 2845 void *buffer;
a8170e5e
AK
2846 hwaddr addr;
2847 hwaddr len;
c2cba0ff 2848 bool in_use;
6d16c2f8
AL
2849} BounceBuffer;
2850
2851static BounceBuffer bounce;
2852
ba223c29 2853typedef struct MapClient {
e95205e1 2854 QEMUBH *bh;
72cf2d4f 2855 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2856} MapClient;
2857
38e047b5 2858QemuMutex map_client_list_lock;
72cf2d4f
BS
2859static QLIST_HEAD(map_client_list, MapClient) map_client_list
2860 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2861
e95205e1
FZ
2862static void cpu_unregister_map_client_do(MapClient *client)
2863{
2864 QLIST_REMOVE(client, link);
2865 g_free(client);
2866}
2867
33b6c2ed
FZ
2868static void cpu_notify_map_clients_locked(void)
2869{
2870 MapClient *client;
2871
2872 while (!QLIST_EMPTY(&map_client_list)) {
2873 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2874 qemu_bh_schedule(client->bh);
2875 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2876 }
2877}
2878
e95205e1 2879void cpu_register_map_client(QEMUBH *bh)
ba223c29 2880{
7267c094 2881 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2882
38e047b5 2883 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2884 client->bh = bh;
72cf2d4f 2885 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2886 if (!atomic_read(&bounce.in_use)) {
2887 cpu_notify_map_clients_locked();
2888 }
38e047b5 2889 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2890}
2891
38e047b5 2892void cpu_exec_init_all(void)
ba223c29 2893{
38e047b5 2894 qemu_mutex_init(&ram_list.mutex);
38e047b5 2895 io_mem_init();
680a4783 2896 memory_map_init();
38e047b5 2897 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2898}
2899
e95205e1 2900void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2901{
2902 MapClient *client;
2903
e95205e1
FZ
2904 qemu_mutex_lock(&map_client_list_lock);
2905 QLIST_FOREACH(client, &map_client_list, link) {
2906 if (client->bh == bh) {
2907 cpu_unregister_map_client_do(client);
2908 break;
2909 }
ba223c29 2910 }
e95205e1 2911 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2912}
2913
2914static void cpu_notify_map_clients(void)
2915{
38e047b5 2916 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2917 cpu_notify_map_clients_locked();
38e047b5 2918 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2919}
2920
51644ab7
PB
2921bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2922{
5c8a00ce 2923 MemoryRegion *mr;
51644ab7
PB
2924 hwaddr l, xlat;
2925
41063e1e 2926 rcu_read_lock();
51644ab7
PB
2927 while (len > 0) {
2928 l = len;
5c8a00ce
PB
2929 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2930 if (!memory_access_is_direct(mr, is_write)) {
2931 l = memory_access_size(mr, l, addr);
2932 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2933 return false;
2934 }
2935 }
2936
2937 len -= l;
2938 addr += l;
2939 }
41063e1e 2940 rcu_read_unlock();
51644ab7
PB
2941 return true;
2942}
2943
6d16c2f8
AL
2944/* Map a physical memory region into a host virtual address.
2945 * May map a subset of the requested range, given by and returned in *plen.
2946 * May return NULL if resources needed to perform the mapping are exhausted.
2947 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2948 * Use cpu_register_map_client() to know when retrying the map operation is
2949 * likely to succeed.
6d16c2f8 2950 */
ac1970fb 2951void *address_space_map(AddressSpace *as,
a8170e5e
AK
2952 hwaddr addr,
2953 hwaddr *plen,
ac1970fb 2954 bool is_write)
6d16c2f8 2955{
a8170e5e 2956 hwaddr len = *plen;
e3127ae0
PB
2957 hwaddr done = 0;
2958 hwaddr l, xlat, base;
2959 MemoryRegion *mr, *this_mr;
2960 ram_addr_t raddr;
e81bcda5 2961 void *ptr;
6d16c2f8 2962
e3127ae0
PB
2963 if (len == 0) {
2964 return NULL;
2965 }
38bee5dc 2966
e3127ae0 2967 l = len;
41063e1e 2968 rcu_read_lock();
e3127ae0 2969 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2970
e3127ae0 2971 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2972 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2973 rcu_read_unlock();
e3127ae0 2974 return NULL;
6d16c2f8 2975 }
e85d9db5
KW
2976 /* Avoid unbounded allocations */
2977 l = MIN(l, TARGET_PAGE_SIZE);
2978 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2979 bounce.addr = addr;
2980 bounce.len = l;
d3e71559
PB
2981
2982 memory_region_ref(mr);
2983 bounce.mr = mr;
e3127ae0 2984 if (!is_write) {
5c9eb028
PM
2985 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2986 bounce.buffer, l);
8ab934f9 2987 }
6d16c2f8 2988
41063e1e 2989 rcu_read_unlock();
e3127ae0
PB
2990 *plen = l;
2991 return bounce.buffer;
2992 }
2993
2994 base = xlat;
2995 raddr = memory_region_get_ram_addr(mr);
2996
2997 for (;;) {
6d16c2f8
AL
2998 len -= l;
2999 addr += l;
e3127ae0
PB
3000 done += l;
3001 if (len == 0) {
3002 break;
3003 }
3004
3005 l = len;
3006 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
3007 if (this_mr != mr || xlat != base + done) {
3008 break;
3009 }
6d16c2f8 3010 }
e3127ae0 3011
d3e71559 3012 memory_region_ref(mr);
e3127ae0 3013 *plen = done;
3655cb9c 3014 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
e81bcda5
PB
3015 rcu_read_unlock();
3016
3017 return ptr;
6d16c2f8
AL
3018}
3019
ac1970fb 3020/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3021 * Will also mark the memory as dirty if is_write == 1. access_len gives
3022 * the amount of memory that was actually read or written by the caller.
3023 */
a8170e5e
AK
3024void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3025 int is_write, hwaddr access_len)
6d16c2f8
AL
3026{
3027 if (buffer != bounce.buffer) {
d3e71559
PB
3028 MemoryRegion *mr;
3029 ram_addr_t addr1;
3030
3031 mr = qemu_ram_addr_from_host(buffer, &addr1);
3032 assert(mr != NULL);
6d16c2f8 3033 if (is_write) {
845b6214 3034 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3035 }
868bb33f 3036 if (xen_enabled()) {
e41d7c69 3037 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3038 }
d3e71559 3039 memory_region_unref(mr);
6d16c2f8
AL
3040 return;
3041 }
3042 if (is_write) {
5c9eb028
PM
3043 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3044 bounce.buffer, access_len);
6d16c2f8 3045 }
f8a83245 3046 qemu_vfree(bounce.buffer);
6d16c2f8 3047 bounce.buffer = NULL;
d3e71559 3048 memory_region_unref(bounce.mr);
c2cba0ff 3049 atomic_mb_set(&bounce.in_use, false);
ba223c29 3050 cpu_notify_map_clients();
6d16c2f8 3051}
d0ecd2aa 3052
a8170e5e
AK
3053void *cpu_physical_memory_map(hwaddr addr,
3054 hwaddr *plen,
ac1970fb
AK
3055 int is_write)
3056{
3057 return address_space_map(&address_space_memory, addr, plen, is_write);
3058}
3059
a8170e5e
AK
3060void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3061 int is_write, hwaddr access_len)
ac1970fb
AK
3062{
3063 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3064}
3065
8df1cd07 3066/* warning: addr must be aligned */
50013115
PM
3067static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3068 MemTxAttrs attrs,
3069 MemTxResult *result,
3070 enum device_endian endian)
8df1cd07 3071{
8df1cd07 3072 uint8_t *ptr;
791af8c8 3073 uint64_t val;
5c8a00ce 3074 MemoryRegion *mr;
149f54b5
PB
3075 hwaddr l = 4;
3076 hwaddr addr1;
50013115 3077 MemTxResult r;
4840f10e 3078 bool release_lock = false;
8df1cd07 3079
41063e1e 3080 rcu_read_lock();
fdfba1a2 3081 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3082 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3083 release_lock |= prepare_mmio_access(mr);
125b3806 3084
8df1cd07 3085 /* I/O case */
50013115 3086 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3087#if defined(TARGET_WORDS_BIGENDIAN)
3088 if (endian == DEVICE_LITTLE_ENDIAN) {
3089 val = bswap32(val);
3090 }
3091#else
3092 if (endian == DEVICE_BIG_ENDIAN) {
3093 val = bswap32(val);
3094 }
3095#endif
8df1cd07
FB
3096 } else {
3097 /* RAM case */
3655cb9c
GA
3098 ptr = qemu_get_ram_ptr(mr->ram_block,
3099 (memory_region_get_ram_addr(mr)
06ef3525 3100 & TARGET_PAGE_MASK)
149f54b5 3101 + addr1);
1e78bcc1
AG
3102 switch (endian) {
3103 case DEVICE_LITTLE_ENDIAN:
3104 val = ldl_le_p(ptr);
3105 break;
3106 case DEVICE_BIG_ENDIAN:
3107 val = ldl_be_p(ptr);
3108 break;
3109 default:
3110 val = ldl_p(ptr);
3111 break;
3112 }
50013115
PM
3113 r = MEMTX_OK;
3114 }
3115 if (result) {
3116 *result = r;
8df1cd07 3117 }
4840f10e
JK
3118 if (release_lock) {
3119 qemu_mutex_unlock_iothread();
3120 }
41063e1e 3121 rcu_read_unlock();
8df1cd07
FB
3122 return val;
3123}
3124
50013115
PM
3125uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3126 MemTxAttrs attrs, MemTxResult *result)
3127{
3128 return address_space_ldl_internal(as, addr, attrs, result,
3129 DEVICE_NATIVE_ENDIAN);
3130}
3131
3132uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, MemTxResult *result)
3134{
3135 return address_space_ldl_internal(as, addr, attrs, result,
3136 DEVICE_LITTLE_ENDIAN);
3137}
3138
3139uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3140 MemTxAttrs attrs, MemTxResult *result)
3141{
3142 return address_space_ldl_internal(as, addr, attrs, result,
3143 DEVICE_BIG_ENDIAN);
3144}
3145
fdfba1a2 3146uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3147{
50013115 3148 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3149}
3150
fdfba1a2 3151uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3152{
50013115 3153 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3154}
3155
fdfba1a2 3156uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3157{
50013115 3158 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3159}
3160
84b7b8e7 3161/* warning: addr must be aligned */
50013115
PM
3162static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3163 MemTxAttrs attrs,
3164 MemTxResult *result,
3165 enum device_endian endian)
84b7b8e7 3166{
84b7b8e7
FB
3167 uint8_t *ptr;
3168 uint64_t val;
5c8a00ce 3169 MemoryRegion *mr;
149f54b5
PB
3170 hwaddr l = 8;
3171 hwaddr addr1;
50013115 3172 MemTxResult r;
4840f10e 3173 bool release_lock = false;
84b7b8e7 3174
41063e1e 3175 rcu_read_lock();
2c17449b 3176 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3177 false);
3178 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3179 release_lock |= prepare_mmio_access(mr);
125b3806 3180
84b7b8e7 3181 /* I/O case */
50013115 3182 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3183#if defined(TARGET_WORDS_BIGENDIAN)
3184 if (endian == DEVICE_LITTLE_ENDIAN) {
3185 val = bswap64(val);
3186 }
3187#else
3188 if (endian == DEVICE_BIG_ENDIAN) {
3189 val = bswap64(val);
3190 }
84b7b8e7
FB
3191#endif
3192 } else {
3193 /* RAM case */
3655cb9c
GA
3194 ptr = qemu_get_ram_ptr(mr->ram_block,
3195 (memory_region_get_ram_addr(mr)
06ef3525 3196 & TARGET_PAGE_MASK)
149f54b5 3197 + addr1);
1e78bcc1
AG
3198 switch (endian) {
3199 case DEVICE_LITTLE_ENDIAN:
3200 val = ldq_le_p(ptr);
3201 break;
3202 case DEVICE_BIG_ENDIAN:
3203 val = ldq_be_p(ptr);
3204 break;
3205 default:
3206 val = ldq_p(ptr);
3207 break;
3208 }
50013115
PM
3209 r = MEMTX_OK;
3210 }
3211 if (result) {
3212 *result = r;
84b7b8e7 3213 }
4840f10e
JK
3214 if (release_lock) {
3215 qemu_mutex_unlock_iothread();
3216 }
41063e1e 3217 rcu_read_unlock();
84b7b8e7
FB
3218 return val;
3219}
3220
50013115
PM
3221uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3222 MemTxAttrs attrs, MemTxResult *result)
3223{
3224 return address_space_ldq_internal(as, addr, attrs, result,
3225 DEVICE_NATIVE_ENDIAN);
3226}
3227
3228uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3229 MemTxAttrs attrs, MemTxResult *result)
3230{
3231 return address_space_ldq_internal(as, addr, attrs, result,
3232 DEVICE_LITTLE_ENDIAN);
3233}
3234
3235uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3236 MemTxAttrs attrs, MemTxResult *result)
3237{
3238 return address_space_ldq_internal(as, addr, attrs, result,
3239 DEVICE_BIG_ENDIAN);
3240}
3241
2c17449b 3242uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3243{
50013115 3244 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3245}
3246
2c17449b 3247uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3248{
50013115 3249 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3250}
3251
2c17449b 3252uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3253{
50013115 3254 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3255}
3256
aab33094 3257/* XXX: optimize */
50013115
PM
3258uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3259 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3260{
3261 uint8_t val;
50013115
PM
3262 MemTxResult r;
3263
3264 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3265 if (result) {
3266 *result = r;
3267 }
aab33094
FB
3268 return val;
3269}
3270
50013115
PM
3271uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3272{
3273 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3274}
3275
733f0b02 3276/* warning: addr must be aligned */
50013115
PM
3277static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3278 hwaddr addr,
3279 MemTxAttrs attrs,
3280 MemTxResult *result,
3281 enum device_endian endian)
aab33094 3282{
733f0b02
MT
3283 uint8_t *ptr;
3284 uint64_t val;
5c8a00ce 3285 MemoryRegion *mr;
149f54b5
PB
3286 hwaddr l = 2;
3287 hwaddr addr1;
50013115 3288 MemTxResult r;
4840f10e 3289 bool release_lock = false;
733f0b02 3290
41063e1e 3291 rcu_read_lock();
41701aa4 3292 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3293 false);
3294 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3295 release_lock |= prepare_mmio_access(mr);
125b3806 3296
733f0b02 3297 /* I/O case */
50013115 3298 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3299#if defined(TARGET_WORDS_BIGENDIAN)
3300 if (endian == DEVICE_LITTLE_ENDIAN) {
3301 val = bswap16(val);
3302 }
3303#else
3304 if (endian == DEVICE_BIG_ENDIAN) {
3305 val = bswap16(val);
3306 }
3307#endif
733f0b02
MT
3308 } else {
3309 /* RAM case */
3655cb9c
GA
3310 ptr = qemu_get_ram_ptr(mr->ram_block,
3311 (memory_region_get_ram_addr(mr)
06ef3525 3312 & TARGET_PAGE_MASK)
149f54b5 3313 + addr1);
1e78bcc1
AG
3314 switch (endian) {
3315 case DEVICE_LITTLE_ENDIAN:
3316 val = lduw_le_p(ptr);
3317 break;
3318 case DEVICE_BIG_ENDIAN:
3319 val = lduw_be_p(ptr);
3320 break;
3321 default:
3322 val = lduw_p(ptr);
3323 break;
3324 }
50013115
PM
3325 r = MEMTX_OK;
3326 }
3327 if (result) {
3328 *result = r;
733f0b02 3329 }
4840f10e
JK
3330 if (release_lock) {
3331 qemu_mutex_unlock_iothread();
3332 }
41063e1e 3333 rcu_read_unlock();
733f0b02 3334 return val;
aab33094
FB
3335}
3336
50013115
PM
3337uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3338 MemTxAttrs attrs, MemTxResult *result)
3339{
3340 return address_space_lduw_internal(as, addr, attrs, result,
3341 DEVICE_NATIVE_ENDIAN);
3342}
3343
3344uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3345 MemTxAttrs attrs, MemTxResult *result)
3346{
3347 return address_space_lduw_internal(as, addr, attrs, result,
3348 DEVICE_LITTLE_ENDIAN);
3349}
3350
3351uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3352 MemTxAttrs attrs, MemTxResult *result)
3353{
3354 return address_space_lduw_internal(as, addr, attrs, result,
3355 DEVICE_BIG_ENDIAN);
3356}
3357
41701aa4 3358uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3359{
50013115 3360 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3361}
3362
41701aa4 3363uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3364{
50013115 3365 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3366}
3367
41701aa4 3368uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3369{
50013115 3370 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3371}
3372
8df1cd07
FB
3373/* warning: addr must be aligned. The ram page is not masked as dirty
3374 and the code inside is not invalidated. It is useful if the dirty
3375 bits are used to track modified PTEs */
50013115
PM
3376void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3377 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3378{
8df1cd07 3379 uint8_t *ptr;
5c8a00ce 3380 MemoryRegion *mr;
149f54b5
PB
3381 hwaddr l = 4;
3382 hwaddr addr1;
50013115 3383 MemTxResult r;
845b6214 3384 uint8_t dirty_log_mask;
4840f10e 3385 bool release_lock = false;
8df1cd07 3386
41063e1e 3387 rcu_read_lock();
2198a121 3388 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3389 true);
3390 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3391 release_lock |= prepare_mmio_access(mr);
125b3806 3392
50013115 3393 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3394 } else {
5c8a00ce 3395 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3396 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
8df1cd07 3397 stl_p(ptr, val);
74576198 3398
845b6214
PB
3399 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3400 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3401 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3402 r = MEMTX_OK;
3403 }
3404 if (result) {
3405 *result = r;
8df1cd07 3406 }
4840f10e
JK
3407 if (release_lock) {
3408 qemu_mutex_unlock_iothread();
3409 }
41063e1e 3410 rcu_read_unlock();
8df1cd07
FB
3411}
3412
50013115
PM
3413void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3414{
3415 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3416}
3417
8df1cd07 3418/* warning: addr must be aligned */
50013115
PM
3419static inline void address_space_stl_internal(AddressSpace *as,
3420 hwaddr addr, uint32_t val,
3421 MemTxAttrs attrs,
3422 MemTxResult *result,
3423 enum device_endian endian)
8df1cd07 3424{
8df1cd07 3425 uint8_t *ptr;
5c8a00ce 3426 MemoryRegion *mr;
149f54b5
PB
3427 hwaddr l = 4;
3428 hwaddr addr1;
50013115 3429 MemTxResult r;
4840f10e 3430 bool release_lock = false;
8df1cd07 3431
41063e1e 3432 rcu_read_lock();
ab1da857 3433 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3434 true);
3435 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3436 release_lock |= prepare_mmio_access(mr);
125b3806 3437
1e78bcc1
AG
3438#if defined(TARGET_WORDS_BIGENDIAN)
3439 if (endian == DEVICE_LITTLE_ENDIAN) {
3440 val = bswap32(val);
3441 }
3442#else
3443 if (endian == DEVICE_BIG_ENDIAN) {
3444 val = bswap32(val);
3445 }
3446#endif
50013115 3447 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3448 } else {
8df1cd07 3449 /* RAM case */
5c8a00ce 3450 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3451 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3452 switch (endian) {
3453 case DEVICE_LITTLE_ENDIAN:
3454 stl_le_p(ptr, val);
3455 break;
3456 case DEVICE_BIG_ENDIAN:
3457 stl_be_p(ptr, val);
3458 break;
3459 default:
3460 stl_p(ptr, val);
3461 break;
3462 }
845b6214 3463 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3464 r = MEMTX_OK;
3465 }
3466 if (result) {
3467 *result = r;
8df1cd07 3468 }
4840f10e
JK
3469 if (release_lock) {
3470 qemu_mutex_unlock_iothread();
3471 }
41063e1e 3472 rcu_read_unlock();
8df1cd07
FB
3473}
3474
50013115
PM
3475void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3476 MemTxAttrs attrs, MemTxResult *result)
3477{
3478 address_space_stl_internal(as, addr, val, attrs, result,
3479 DEVICE_NATIVE_ENDIAN);
3480}
3481
3482void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3483 MemTxAttrs attrs, MemTxResult *result)
3484{
3485 address_space_stl_internal(as, addr, val, attrs, result,
3486 DEVICE_LITTLE_ENDIAN);
3487}
3488
3489void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3490 MemTxAttrs attrs, MemTxResult *result)
3491{
3492 address_space_stl_internal(as, addr, val, attrs, result,
3493 DEVICE_BIG_ENDIAN);
3494}
3495
ab1da857 3496void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3497{
50013115 3498 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3499}
3500
ab1da857 3501void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3502{
50013115 3503 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3504}
3505
ab1da857 3506void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3507{
50013115 3508 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3509}
3510
aab33094 3511/* XXX: optimize */
50013115
PM
3512void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3513 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3514{
3515 uint8_t v = val;
50013115
PM
3516 MemTxResult r;
3517
3518 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3519 if (result) {
3520 *result = r;
3521 }
3522}
3523
3524void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3525{
3526 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3527}
3528
733f0b02 3529/* warning: addr must be aligned */
50013115
PM
3530static inline void address_space_stw_internal(AddressSpace *as,
3531 hwaddr addr, uint32_t val,
3532 MemTxAttrs attrs,
3533 MemTxResult *result,
3534 enum device_endian endian)
aab33094 3535{
733f0b02 3536 uint8_t *ptr;
5c8a00ce 3537 MemoryRegion *mr;
149f54b5
PB
3538 hwaddr l = 2;
3539 hwaddr addr1;
50013115 3540 MemTxResult r;
4840f10e 3541 bool release_lock = false;
733f0b02 3542
41063e1e 3543 rcu_read_lock();
5ce5944d 3544 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3545 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3546 release_lock |= prepare_mmio_access(mr);
125b3806 3547
1e78bcc1
AG
3548#if defined(TARGET_WORDS_BIGENDIAN)
3549 if (endian == DEVICE_LITTLE_ENDIAN) {
3550 val = bswap16(val);
3551 }
3552#else
3553 if (endian == DEVICE_BIG_ENDIAN) {
3554 val = bswap16(val);
3555 }
3556#endif
50013115 3557 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3558 } else {
733f0b02 3559 /* RAM case */
5c8a00ce 3560 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3561 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3562 switch (endian) {
3563 case DEVICE_LITTLE_ENDIAN:
3564 stw_le_p(ptr, val);
3565 break;
3566 case DEVICE_BIG_ENDIAN:
3567 stw_be_p(ptr, val);
3568 break;
3569 default:
3570 stw_p(ptr, val);
3571 break;
3572 }
845b6214 3573 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3574 r = MEMTX_OK;
3575 }
3576 if (result) {
3577 *result = r;
733f0b02 3578 }
4840f10e
JK
3579 if (release_lock) {
3580 qemu_mutex_unlock_iothread();
3581 }
41063e1e 3582 rcu_read_unlock();
aab33094
FB
3583}
3584
50013115
PM
3585void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3586 MemTxAttrs attrs, MemTxResult *result)
3587{
3588 address_space_stw_internal(as, addr, val, attrs, result,
3589 DEVICE_NATIVE_ENDIAN);
3590}
3591
3592void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3593 MemTxAttrs attrs, MemTxResult *result)
3594{
3595 address_space_stw_internal(as, addr, val, attrs, result,
3596 DEVICE_LITTLE_ENDIAN);
3597}
3598
3599void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3600 MemTxAttrs attrs, MemTxResult *result)
3601{
3602 address_space_stw_internal(as, addr, val, attrs, result,
3603 DEVICE_BIG_ENDIAN);
3604}
3605
5ce5944d 3606void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3607{
50013115 3608 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3609}
3610
5ce5944d 3611void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3612{
50013115 3613 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3614}
3615
5ce5944d 3616void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3617{
50013115 3618 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3619}
3620
aab33094 3621/* XXX: optimize */
50013115
PM
3622void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3623 MemTxAttrs attrs, MemTxResult *result)
aab33094 3624{
50013115 3625 MemTxResult r;
aab33094 3626 val = tswap64(val);
50013115
PM
3627 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3628 if (result) {
3629 *result = r;
3630 }
aab33094
FB
3631}
3632
50013115
PM
3633void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3634 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3635{
50013115 3636 MemTxResult r;
1e78bcc1 3637 val = cpu_to_le64(val);
50013115
PM
3638 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3639 if (result) {
3640 *result = r;
3641 }
3642}
3643void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3644 MemTxAttrs attrs, MemTxResult *result)
3645{
3646 MemTxResult r;
3647 val = cpu_to_be64(val);
3648 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3649 if (result) {
3650 *result = r;
3651 }
3652}
3653
3654void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3655{
3656 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3657}
3658
3659void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3660{
3661 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3662}
3663
f606604f 3664void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3665{
50013115 3666 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3667}
3668
5e2972fd 3669/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3670int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3671 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3672{
3673 int l;
a8170e5e 3674 hwaddr phys_addr;
9b3c35e0 3675 target_ulong page;
13eb76e0
FB
3676
3677 while (len > 0) {
5232e4c7
PM
3678 int asidx;
3679 MemTxAttrs attrs;
3680
13eb76e0 3681 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3682 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3683 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3684 /* if no physical page mapped, return an error */
3685 if (phys_addr == -1)
3686 return -1;
3687 l = (page + TARGET_PAGE_SIZE) - addr;
3688 if (l > len)
3689 l = len;
5e2972fd 3690 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3691 if (is_write) {
5232e4c7
PM
3692 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3693 phys_addr, buf, l);
2e38847b 3694 } else {
5232e4c7
PM
3695 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3696 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3697 buf, l, 0);
2e38847b 3698 }
13eb76e0
FB
3699 len -= l;
3700 buf += l;
3701 addr += l;
3702 }
3703 return 0;
3704}
038629a6
DDAG
3705
3706/*
3707 * Allows code that needs to deal with migration bitmaps etc to still be built
3708 * target independent.
3709 */
3710size_t qemu_target_page_bits(void)
3711{
3712 return TARGET_PAGE_BITS;
3713}
3714
a68fe89c 3715#endif
13eb76e0 3716
8e4a424b
BS
3717/*
3718 * A helper function for the _utterly broken_ virtio device model to find out if
3719 * it's running on a big endian machine. Don't do this at home kids!
3720 */
98ed8ecf
GK
3721bool target_words_bigendian(void);
3722bool target_words_bigendian(void)
8e4a424b
BS
3723{
3724#if defined(TARGET_WORDS_BIGENDIAN)
3725 return true;
3726#else
3727 return false;
3728#endif
3729}
3730
76f35538 3731#ifndef CONFIG_USER_ONLY
a8170e5e 3732bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3733{
5c8a00ce 3734 MemoryRegion*mr;
149f54b5 3735 hwaddr l = 1;
41063e1e 3736 bool res;
76f35538 3737
41063e1e 3738 rcu_read_lock();
5c8a00ce
PB
3739 mr = address_space_translate(&address_space_memory,
3740 phys_addr, &phys_addr, &l, false);
76f35538 3741
41063e1e
PB
3742 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3743 rcu_read_unlock();
3744 return res;
76f35538 3745}
bd2fa51f 3746
e3807054 3747int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3748{
3749 RAMBlock *block;
e3807054 3750 int ret = 0;
bd2fa51f 3751
0dc3f44a
MD
3752 rcu_read_lock();
3753 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3754 ret = func(block->idstr, block->host, block->offset,
3755 block->used_length, opaque);
3756 if (ret) {
3757 break;
3758 }
bd2fa51f 3759 }
0dc3f44a 3760 rcu_read_unlock();
e3807054 3761 return ret;
bd2fa51f 3762}
ec3f8c99 3763#endif