]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
777872e5 | 20 | #ifndef _WIN32 |
d5a8f07c FB |
21 | #include <sys/mman.h> |
22 | #endif | |
54936004 | 23 | |
055403b2 | 24 | #include "qemu-common.h" |
6180a181 | 25 | #include "cpu.h" |
b67d9a52 | 26 | #include "tcg.h" |
b3c7724c | 27 | #include "hw/hw.h" |
4485bd26 | 28 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 29 | #include "hw/boards.h" |
4485bd26 | 30 | #endif |
cc9e98cb | 31 | #include "hw/qdev.h" |
9c17d615 | 32 | #include "sysemu/kvm.h" |
2ff3de68 | 33 | #include "sysemu/sysemu.h" |
0d09e41a | 34 | #include "hw/xen/xen.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
022c62cb | 38 | #include "exec/memory.h" |
9c17d615 | 39 | #include "sysemu/dma.h" |
022c62cb | 40 | #include "exec/address-spaces.h" |
53a5960a PB |
41 | #if defined(CONFIG_USER_ONLY) |
42 | #include <qemu.h> | |
432d268c | 43 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 44 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 45 | #include "trace.h" |
53a5960a | 46 | #endif |
0d6d3c87 | 47 | #include "exec/cpu-all.h" |
0dc3f44a | 48 | #include "qemu/rcu_queue.h" |
4840f10e | 49 | #include "qemu/main-loop.h" |
5b6dd868 | 50 | #include "translate-all.h" |
7615936e | 51 | #include "sysemu/replay.h" |
0cac1b66 | 52 | |
022c62cb | 53 | #include "exec/memory-internal.h" |
220c3ebd | 54 | #include "exec/ram_addr.h" |
508127e2 | 55 | #include "exec/log.h" |
67d95c15 | 56 | |
b35ba30f | 57 | #include "qemu/range.h" |
794e8f30 MT |
58 | #ifndef _WIN32 |
59 | #include "qemu/mmap-alloc.h" | |
60 | #endif | |
b35ba30f | 61 | |
db7b5426 | 62 | //#define DEBUG_SUBPAGE |
1196be37 | 63 | |
e2eef170 | 64 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
65 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
66 | * are protected by the ramlist lock. | |
67 | */ | |
0d53d9fe | 68 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
69 | |
70 | static MemoryRegion *system_memory; | |
309cb471 | 71 | static MemoryRegion *system_io; |
62152b8a | 72 | |
f6790af6 AK |
73 | AddressSpace address_space_io; |
74 | AddressSpace address_space_memory; | |
2673a5da | 75 | |
0844e007 | 76 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 77 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 78 | |
7bd4f430 PB |
79 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
80 | #define RAM_PREALLOC (1 << 0) | |
81 | ||
dbcb8981 PB |
82 | /* RAM is mmap-ed with MAP_SHARED */ |
83 | #define RAM_SHARED (1 << 1) | |
84 | ||
62be4e3a MT |
85 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
86 | * This used_length size can change across reboots. | |
87 | */ | |
88 | #define RAM_RESIZEABLE (1 << 2) | |
89 | ||
e2eef170 | 90 | #endif |
9fa3e853 | 91 | |
bdc44640 | 92 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
93 | /* current CPU in the current thread. It is only valid inside |
94 | cpu_exec() */ | |
f240eb6f | 95 | __thread CPUState *current_cpu; |
2e70f6ef | 96 | /* 0 = Do not count executed instructions. |
bf20dc07 | 97 | 1 = Precise instruction counting. |
2e70f6ef | 98 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 99 | int use_icount; |
6a00d601 | 100 | |
e2eef170 | 101 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 102 | |
1db8abb1 PB |
103 | typedef struct PhysPageEntry PhysPageEntry; |
104 | ||
105 | struct PhysPageEntry { | |
9736e55b | 106 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 107 | uint32_t skip : 6; |
9736e55b | 108 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 109 | uint32_t ptr : 26; |
1db8abb1 PB |
110 | }; |
111 | ||
8b795765 MT |
112 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
113 | ||
03f49957 | 114 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 115 | #define ADDR_SPACE_BITS 64 |
03f49957 | 116 | |
026736ce | 117 | #define P_L2_BITS 9 |
03f49957 PB |
118 | #define P_L2_SIZE (1 << P_L2_BITS) |
119 | ||
120 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
121 | ||
122 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 123 | |
53cb28cb | 124 | typedef struct PhysPageMap { |
79e2b9ae PB |
125 | struct rcu_head rcu; |
126 | ||
53cb28cb MA |
127 | unsigned sections_nb; |
128 | unsigned sections_nb_alloc; | |
129 | unsigned nodes_nb; | |
130 | unsigned nodes_nb_alloc; | |
131 | Node *nodes; | |
132 | MemoryRegionSection *sections; | |
133 | } PhysPageMap; | |
134 | ||
1db8abb1 | 135 | struct AddressSpaceDispatch { |
79e2b9ae PB |
136 | struct rcu_head rcu; |
137 | ||
1db8abb1 PB |
138 | /* This is a multi-level map on the physical address space. |
139 | * The bottom level has pointers to MemoryRegionSections. | |
140 | */ | |
141 | PhysPageEntry phys_map; | |
53cb28cb | 142 | PhysPageMap map; |
acc9d80b | 143 | AddressSpace *as; |
1db8abb1 PB |
144 | }; |
145 | ||
90260c6c JK |
146 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
147 | typedef struct subpage_t { | |
148 | MemoryRegion iomem; | |
acc9d80b | 149 | AddressSpace *as; |
90260c6c JK |
150 | hwaddr base; |
151 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
152 | } subpage_t; | |
153 | ||
b41aac4f LPF |
154 | #define PHYS_SECTION_UNASSIGNED 0 |
155 | #define PHYS_SECTION_NOTDIRTY 1 | |
156 | #define PHYS_SECTION_ROM 2 | |
157 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 158 | |
e2eef170 | 159 | static void io_mem_init(void); |
62152b8a | 160 | static void memory_map_init(void); |
09daed84 | 161 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 162 | |
1ec9b909 | 163 | static MemoryRegion io_mem_watch; |
32857f4d PM |
164 | |
165 | /** | |
166 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
167 | * @cpu: the CPU whose AddressSpace this is | |
168 | * @as: the AddressSpace itself | |
169 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
170 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
171 | */ | |
172 | struct CPUAddressSpace { | |
173 | CPUState *cpu; | |
174 | AddressSpace *as; | |
175 | struct AddressSpaceDispatch *memory_dispatch; | |
176 | MemoryListener tcg_as_listener; | |
177 | }; | |
178 | ||
6658ffb8 | 179 | #endif |
fd6ce8f6 | 180 | |
6d9a1304 | 181 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 182 | |
53cb28cb | 183 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 184 | { |
53cb28cb MA |
185 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
186 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
187 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
188 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 189 | } |
f7bf5461 AK |
190 | } |
191 | ||
db94604b | 192 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
193 | { |
194 | unsigned i; | |
8b795765 | 195 | uint32_t ret; |
db94604b PB |
196 | PhysPageEntry e; |
197 | PhysPageEntry *p; | |
f7bf5461 | 198 | |
53cb28cb | 199 | ret = map->nodes_nb++; |
db94604b | 200 | p = map->nodes[ret]; |
f7bf5461 | 201 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 202 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
203 | |
204 | e.skip = leaf ? 0 : 1; | |
205 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 206 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 207 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 208 | } |
f7bf5461 | 209 | return ret; |
d6f2ea22 AK |
210 | } |
211 | ||
53cb28cb MA |
212 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
213 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 214 | int level) |
f7bf5461 AK |
215 | { |
216 | PhysPageEntry *p; | |
03f49957 | 217 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 218 | |
9736e55b | 219 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 220 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 221 | } |
db94604b | 222 | p = map->nodes[lp->ptr]; |
03f49957 | 223 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 224 | |
03f49957 | 225 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 226 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 227 | lp->skip = 0; |
c19e8800 | 228 | lp->ptr = leaf; |
07f07b31 AK |
229 | *index += step; |
230 | *nb -= step; | |
2999097b | 231 | } else { |
53cb28cb | 232 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
233 | } |
234 | ++lp; | |
f7bf5461 AK |
235 | } |
236 | } | |
237 | ||
ac1970fb | 238 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 239 | hwaddr index, hwaddr nb, |
2999097b | 240 | uint16_t leaf) |
f7bf5461 | 241 | { |
2999097b | 242 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 243 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 244 | |
53cb28cb | 245 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
246 | } |
247 | ||
b35ba30f MT |
248 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
249 | * and update our entry so we can skip it and go directly to the destination. | |
250 | */ | |
251 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
252 | { | |
253 | unsigned valid_ptr = P_L2_SIZE; | |
254 | int valid = 0; | |
255 | PhysPageEntry *p; | |
256 | int i; | |
257 | ||
258 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
259 | return; | |
260 | } | |
261 | ||
262 | p = nodes[lp->ptr]; | |
263 | for (i = 0; i < P_L2_SIZE; i++) { | |
264 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
265 | continue; | |
266 | } | |
267 | ||
268 | valid_ptr = i; | |
269 | valid++; | |
270 | if (p[i].skip) { | |
271 | phys_page_compact(&p[i], nodes, compacted); | |
272 | } | |
273 | } | |
274 | ||
275 | /* We can only compress if there's only one child. */ | |
276 | if (valid != 1) { | |
277 | return; | |
278 | } | |
279 | ||
280 | assert(valid_ptr < P_L2_SIZE); | |
281 | ||
282 | /* Don't compress if it won't fit in the # of bits we have. */ | |
283 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
284 | return; | |
285 | } | |
286 | ||
287 | lp->ptr = p[valid_ptr].ptr; | |
288 | if (!p[valid_ptr].skip) { | |
289 | /* If our only child is a leaf, make this a leaf. */ | |
290 | /* By design, we should have made this node a leaf to begin with so we | |
291 | * should never reach here. | |
292 | * But since it's so simple to handle this, let's do it just in case we | |
293 | * change this rule. | |
294 | */ | |
295 | lp->skip = 0; | |
296 | } else { | |
297 | lp->skip += p[valid_ptr].skip; | |
298 | } | |
299 | } | |
300 | ||
301 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
302 | { | |
303 | DECLARE_BITMAP(compacted, nodes_nb); | |
304 | ||
305 | if (d->phys_map.skip) { | |
53cb28cb | 306 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
307 | } |
308 | } | |
309 | ||
97115a8d | 310 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 311 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 312 | { |
31ab2b4a | 313 | PhysPageEntry *p; |
97115a8d | 314 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 315 | int i; |
f1f6e3b8 | 316 | |
9736e55b | 317 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 318 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 319 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 320 | } |
9affd6fc | 321 | p = nodes[lp.ptr]; |
03f49957 | 322 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 323 | } |
b35ba30f MT |
324 | |
325 | if (sections[lp.ptr].size.hi || | |
326 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
327 | sections[lp.ptr].size.lo, addr)) { | |
328 | return §ions[lp.ptr]; | |
329 | } else { | |
330 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
331 | } | |
f3705d53 AK |
332 | } |
333 | ||
e5548617 BS |
334 | bool memory_region_is_unassigned(MemoryRegion *mr) |
335 | { | |
2a8e7499 | 336 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 337 | && mr != &io_mem_watch; |
fd6ce8f6 | 338 | } |
149f54b5 | 339 | |
79e2b9ae | 340 | /* Called from RCU critical section */ |
c7086b4a | 341 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
342 | hwaddr addr, |
343 | bool resolve_subpage) | |
9f029603 | 344 | { |
90260c6c JK |
345 | MemoryRegionSection *section; |
346 | subpage_t *subpage; | |
347 | ||
53cb28cb | 348 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); |
90260c6c JK |
349 | if (resolve_subpage && section->mr->subpage) { |
350 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 351 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
352 | } |
353 | return section; | |
9f029603 JK |
354 | } |
355 | ||
79e2b9ae | 356 | /* Called from RCU critical section */ |
90260c6c | 357 | static MemoryRegionSection * |
c7086b4a | 358 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 359 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
360 | { |
361 | MemoryRegionSection *section; | |
965eb2fc | 362 | MemoryRegion *mr; |
a87f3954 | 363 | Int128 diff; |
149f54b5 | 364 | |
c7086b4a | 365 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
366 | /* Compute offset within MemoryRegionSection */ |
367 | addr -= section->offset_within_address_space; | |
368 | ||
369 | /* Compute offset within MemoryRegion */ | |
370 | *xlat = addr + section->offset_within_region; | |
371 | ||
965eb2fc | 372 | mr = section->mr; |
b242e0e0 PB |
373 | |
374 | /* MMIO registers can be expected to perform full-width accesses based only | |
375 | * on their address, without considering adjacent registers that could | |
376 | * decode to completely different MemoryRegions. When such registers | |
377 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
378 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
379 | * here. | |
380 | * | |
381 | * If the length is small (as is the case for address_space_ldl/stl), | |
382 | * everything works fine. If the incoming length is large, however, | |
383 | * the caller really has to do the clamping through memory_access_size. | |
384 | */ | |
965eb2fc | 385 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 386 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
387 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
388 | } | |
149f54b5 PB |
389 | return section; |
390 | } | |
90260c6c | 391 | |
41063e1e | 392 | /* Called from RCU critical section */ |
5c8a00ce PB |
393 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
394 | hwaddr *xlat, hwaddr *plen, | |
395 | bool is_write) | |
90260c6c | 396 | { |
30951157 AK |
397 | IOMMUTLBEntry iotlb; |
398 | MemoryRegionSection *section; | |
399 | MemoryRegion *mr; | |
30951157 AK |
400 | |
401 | for (;;) { | |
79e2b9ae PB |
402 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
403 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
404 | mr = section->mr; |
405 | ||
406 | if (!mr->iommu_ops) { | |
407 | break; | |
408 | } | |
409 | ||
8d7b8cb9 | 410 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
411 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
412 | | (addr & iotlb.addr_mask)); | |
23820dbf | 413 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
414 | if (!(iotlb.perm & (1 << is_write))) { |
415 | mr = &io_mem_unassigned; | |
416 | break; | |
417 | } | |
418 | ||
419 | as = iotlb.target_as; | |
420 | } | |
421 | ||
fe680d0d | 422 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 423 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 424 | *plen = MIN(page, *plen); |
a87f3954 PB |
425 | } |
426 | ||
30951157 AK |
427 | *xlat = addr; |
428 | return mr; | |
90260c6c JK |
429 | } |
430 | ||
79e2b9ae | 431 | /* Called from RCU critical section */ |
90260c6c | 432 | MemoryRegionSection * |
d7898cda | 433 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 434 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 435 | { |
30951157 | 436 | MemoryRegionSection *section; |
d7898cda PM |
437 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
438 | ||
439 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
440 | |
441 | assert(!section->mr->iommu_ops); | |
442 | return section; | |
90260c6c | 443 | } |
5b6dd868 | 444 | #endif |
fd6ce8f6 | 445 | |
b170fce3 | 446 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
447 | |
448 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 449 | { |
259186a7 | 450 | CPUState *cpu = opaque; |
a513fe19 | 451 | |
5b6dd868 BS |
452 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
453 | version_id is increased. */ | |
259186a7 | 454 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 455 | tlb_flush(cpu, 1); |
5b6dd868 BS |
456 | |
457 | return 0; | |
a513fe19 | 458 | } |
7501267e | 459 | |
6c3bff0e PD |
460 | static int cpu_common_pre_load(void *opaque) |
461 | { | |
462 | CPUState *cpu = opaque; | |
463 | ||
adee6424 | 464 | cpu->exception_index = -1; |
6c3bff0e PD |
465 | |
466 | return 0; | |
467 | } | |
468 | ||
469 | static bool cpu_common_exception_index_needed(void *opaque) | |
470 | { | |
471 | CPUState *cpu = opaque; | |
472 | ||
adee6424 | 473 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
474 | } |
475 | ||
476 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
477 | .name = "cpu_common/exception_index", | |
478 | .version_id = 1, | |
479 | .minimum_version_id = 1, | |
5cd8cada | 480 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
481 | .fields = (VMStateField[]) { |
482 | VMSTATE_INT32(exception_index, CPUState), | |
483 | VMSTATE_END_OF_LIST() | |
484 | } | |
485 | }; | |
486 | ||
bac05aa9 AS |
487 | static bool cpu_common_crash_occurred_needed(void *opaque) |
488 | { | |
489 | CPUState *cpu = opaque; | |
490 | ||
491 | return cpu->crash_occurred; | |
492 | } | |
493 | ||
494 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
495 | .name = "cpu_common/crash_occurred", | |
496 | .version_id = 1, | |
497 | .minimum_version_id = 1, | |
498 | .needed = cpu_common_crash_occurred_needed, | |
499 | .fields = (VMStateField[]) { | |
500 | VMSTATE_BOOL(crash_occurred, CPUState), | |
501 | VMSTATE_END_OF_LIST() | |
502 | } | |
503 | }; | |
504 | ||
1a1562f5 | 505 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
506 | .name = "cpu_common", |
507 | .version_id = 1, | |
508 | .minimum_version_id = 1, | |
6c3bff0e | 509 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 510 | .post_load = cpu_common_post_load, |
35d08458 | 511 | .fields = (VMStateField[]) { |
259186a7 AF |
512 | VMSTATE_UINT32(halted, CPUState), |
513 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 514 | VMSTATE_END_OF_LIST() |
6c3bff0e | 515 | }, |
5cd8cada JQ |
516 | .subsections = (const VMStateDescription*[]) { |
517 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 518 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 519 | NULL |
5b6dd868 BS |
520 | } |
521 | }; | |
1a1562f5 | 522 | |
5b6dd868 | 523 | #endif |
ea041c0e | 524 | |
38d8f5c8 | 525 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 526 | { |
bdc44640 | 527 | CPUState *cpu; |
ea041c0e | 528 | |
bdc44640 | 529 | CPU_FOREACH(cpu) { |
55e5c285 | 530 | if (cpu->cpu_index == index) { |
bdc44640 | 531 | return cpu; |
55e5c285 | 532 | } |
ea041c0e | 533 | } |
5b6dd868 | 534 | |
bdc44640 | 535 | return NULL; |
ea041c0e FB |
536 | } |
537 | ||
09daed84 | 538 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 539 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 540 | { |
12ebc9a7 PM |
541 | CPUAddressSpace *newas; |
542 | ||
543 | /* Target code should have set num_ases before calling us */ | |
544 | assert(asidx < cpu->num_ases); | |
545 | ||
56943e8c PM |
546 | if (asidx == 0) { |
547 | /* address space 0 gets the convenience alias */ | |
548 | cpu->as = as; | |
549 | } | |
550 | ||
12ebc9a7 PM |
551 | /* KVM cannot currently support multiple address spaces. */ |
552 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 553 | |
12ebc9a7 PM |
554 | if (!cpu->cpu_ases) { |
555 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 556 | } |
32857f4d | 557 | |
12ebc9a7 PM |
558 | newas = &cpu->cpu_ases[asidx]; |
559 | newas->cpu = cpu; | |
560 | newas->as = as; | |
56943e8c | 561 | if (tcg_enabled()) { |
12ebc9a7 PM |
562 | newas->tcg_as_listener.commit = tcg_commit; |
563 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 564 | } |
09daed84 | 565 | } |
651a5bc0 PM |
566 | |
567 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
568 | { | |
569 | /* Return the AddressSpace corresponding to the specified index */ | |
570 | return cpu->cpu_ases[asidx].as; | |
571 | } | |
09daed84 EI |
572 | #endif |
573 | ||
b7bca733 BR |
574 | #ifndef CONFIG_USER_ONLY |
575 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
576 | ||
577 | static int cpu_get_free_index(Error **errp) | |
578 | { | |
579 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
580 | ||
581 | if (cpu >= MAX_CPUMASK_BITS) { | |
582 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
583 | MAX_CPUMASK_BITS); | |
584 | return -1; | |
585 | } | |
586 | ||
587 | bitmap_set(cpu_index_map, cpu, 1); | |
588 | return cpu; | |
589 | } | |
590 | ||
591 | void cpu_exec_exit(CPUState *cpu) | |
592 | { | |
593 | if (cpu->cpu_index == -1) { | |
594 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
595 | return; | |
596 | } | |
597 | ||
598 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
599 | cpu->cpu_index = -1; | |
600 | } | |
601 | #else | |
602 | ||
603 | static int cpu_get_free_index(Error **errp) | |
604 | { | |
605 | CPUState *some_cpu; | |
606 | int cpu_index = 0; | |
607 | ||
608 | CPU_FOREACH(some_cpu) { | |
609 | cpu_index++; | |
610 | } | |
611 | return cpu_index; | |
612 | } | |
613 | ||
614 | void cpu_exec_exit(CPUState *cpu) | |
615 | { | |
616 | } | |
617 | #endif | |
618 | ||
4bad9e39 | 619 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 620 | { |
b170fce3 | 621 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 622 | int cpu_index; |
b7bca733 | 623 | Error *local_err = NULL; |
5b6dd868 | 624 | |
56943e8c | 625 | cpu->as = NULL; |
12ebc9a7 | 626 | cpu->num_ases = 0; |
56943e8c | 627 | |
291135b5 | 628 | #ifndef CONFIG_USER_ONLY |
291135b5 | 629 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
630 | |
631 | /* This is a softmmu CPU object, so create a property for it | |
632 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
633 | * because that file is compiled only once for both user-mode | |
634 | * and system builds.) The default if no link is set up is to use | |
635 | * the system address space. | |
636 | */ | |
637 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
638 | (Object **)&cpu->memory, | |
639 | qdev_prop_allow_set_link_before_realize, | |
640 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
641 | &error_abort); | |
642 | cpu->memory = system_memory; | |
643 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
644 | #endif |
645 | ||
5b6dd868 BS |
646 | #if defined(CONFIG_USER_ONLY) |
647 | cpu_list_lock(); | |
648 | #endif | |
b7bca733 BR |
649 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
650 | if (local_err) { | |
651 | error_propagate(errp, local_err); | |
652 | #if defined(CONFIG_USER_ONLY) | |
653 | cpu_list_unlock(); | |
654 | #endif | |
655 | return; | |
5b6dd868 | 656 | } |
bdc44640 | 657 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
658 | #if defined(CONFIG_USER_ONLY) |
659 | cpu_list_unlock(); | |
660 | #endif | |
e0d47944 AF |
661 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
662 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
663 | } | |
b170fce3 AF |
664 | if (cc->vmsd != NULL) { |
665 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
666 | } | |
ea041c0e FB |
667 | } |
668 | ||
94df27fd | 669 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 670 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
671 | { |
672 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
673 | } | |
674 | #else | |
00b941e5 | 675 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 676 | { |
5232e4c7 PM |
677 | MemTxAttrs attrs; |
678 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
679 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 680 | if (phys != -1) { |
5232e4c7 | 681 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 682 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 683 | } |
1e7855a5 | 684 | } |
c27004ec | 685 | #endif |
d720b93d | 686 | |
c527ee8f | 687 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 688 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
689 | |
690 | { | |
691 | } | |
692 | ||
3ee887e8 PM |
693 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
694 | int flags) | |
695 | { | |
696 | return -ENOSYS; | |
697 | } | |
698 | ||
699 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
700 | { | |
701 | } | |
702 | ||
75a34036 | 703 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
704 | int flags, CPUWatchpoint **watchpoint) |
705 | { | |
706 | return -ENOSYS; | |
707 | } | |
708 | #else | |
6658ffb8 | 709 | /* Add a watchpoint. */ |
75a34036 | 710 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 711 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 712 | { |
c0ce998e | 713 | CPUWatchpoint *wp; |
6658ffb8 | 714 | |
05068c0d | 715 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 716 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
717 | error_report("tried to set invalid watchpoint at %" |
718 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
719 | return -EINVAL; |
720 | } | |
7267c094 | 721 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
722 | |
723 | wp->vaddr = addr; | |
05068c0d | 724 | wp->len = len; |
a1d1bb31 AL |
725 | wp->flags = flags; |
726 | ||
2dc9f411 | 727 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
728 | if (flags & BP_GDB) { |
729 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
730 | } else { | |
731 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
732 | } | |
6658ffb8 | 733 | |
31b030d4 | 734 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
735 | |
736 | if (watchpoint) | |
737 | *watchpoint = wp; | |
738 | return 0; | |
6658ffb8 PB |
739 | } |
740 | ||
a1d1bb31 | 741 | /* Remove a specific watchpoint. */ |
75a34036 | 742 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 743 | int flags) |
6658ffb8 | 744 | { |
a1d1bb31 | 745 | CPUWatchpoint *wp; |
6658ffb8 | 746 | |
ff4700b0 | 747 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 748 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 749 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 750 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
751 | return 0; |
752 | } | |
753 | } | |
a1d1bb31 | 754 | return -ENOENT; |
6658ffb8 PB |
755 | } |
756 | ||
a1d1bb31 | 757 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 758 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 759 | { |
ff4700b0 | 760 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 761 | |
31b030d4 | 762 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 763 | |
7267c094 | 764 | g_free(watchpoint); |
a1d1bb31 AL |
765 | } |
766 | ||
767 | /* Remove all matching watchpoints. */ | |
75a34036 | 768 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 769 | { |
c0ce998e | 770 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 771 | |
ff4700b0 | 772 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
773 | if (wp->flags & mask) { |
774 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
775 | } | |
c0ce998e | 776 | } |
7d03f82f | 777 | } |
05068c0d PM |
778 | |
779 | /* Return true if this watchpoint address matches the specified | |
780 | * access (ie the address range covered by the watchpoint overlaps | |
781 | * partially or completely with the address range covered by the | |
782 | * access). | |
783 | */ | |
784 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
785 | vaddr addr, | |
786 | vaddr len) | |
787 | { | |
788 | /* We know the lengths are non-zero, but a little caution is | |
789 | * required to avoid errors in the case where the range ends | |
790 | * exactly at the top of the address space and so addr + len | |
791 | * wraps round to zero. | |
792 | */ | |
793 | vaddr wpend = wp->vaddr + wp->len - 1; | |
794 | vaddr addrend = addr + len - 1; | |
795 | ||
796 | return !(addr > wpend || wp->vaddr > addrend); | |
797 | } | |
798 | ||
c527ee8f | 799 | #endif |
7d03f82f | 800 | |
a1d1bb31 | 801 | /* Add a breakpoint. */ |
b3310ab3 | 802 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 803 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 804 | { |
c0ce998e | 805 | CPUBreakpoint *bp; |
3b46e624 | 806 | |
7267c094 | 807 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 808 | |
a1d1bb31 AL |
809 | bp->pc = pc; |
810 | bp->flags = flags; | |
811 | ||
2dc9f411 | 812 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 813 | if (flags & BP_GDB) { |
f0c3c505 | 814 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 815 | } else { |
f0c3c505 | 816 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 817 | } |
3b46e624 | 818 | |
f0c3c505 | 819 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 820 | |
00b941e5 | 821 | if (breakpoint) { |
a1d1bb31 | 822 | *breakpoint = bp; |
00b941e5 | 823 | } |
4c3a88a2 | 824 | return 0; |
4c3a88a2 FB |
825 | } |
826 | ||
a1d1bb31 | 827 | /* Remove a specific breakpoint. */ |
b3310ab3 | 828 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 829 | { |
a1d1bb31 AL |
830 | CPUBreakpoint *bp; |
831 | ||
f0c3c505 | 832 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 833 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 834 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
835 | return 0; |
836 | } | |
7d03f82f | 837 | } |
a1d1bb31 | 838 | return -ENOENT; |
7d03f82f EI |
839 | } |
840 | ||
a1d1bb31 | 841 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 842 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 843 | { |
f0c3c505 AF |
844 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
845 | ||
846 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 847 | |
7267c094 | 848 | g_free(breakpoint); |
a1d1bb31 AL |
849 | } |
850 | ||
851 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 852 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 853 | { |
c0ce998e | 854 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 855 | |
f0c3c505 | 856 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
857 | if (bp->flags & mask) { |
858 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
859 | } | |
c0ce998e | 860 | } |
4c3a88a2 FB |
861 | } |
862 | ||
c33a346e FB |
863 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
864 | CPU loop after each instruction */ | |
3825b28f | 865 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 866 | { |
ed2803da AF |
867 | if (cpu->singlestep_enabled != enabled) { |
868 | cpu->singlestep_enabled = enabled; | |
869 | if (kvm_enabled()) { | |
38e478ec | 870 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 871 | } else { |
ccbb4d44 | 872 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 873 | /* XXX: only flush what is necessary */ |
bbd77c18 | 874 | tb_flush(cpu); |
e22a25c9 | 875 | } |
c33a346e | 876 | } |
c33a346e FB |
877 | } |
878 | ||
a47dddd7 | 879 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
880 | { |
881 | va_list ap; | |
493ae1f0 | 882 | va_list ap2; |
7501267e FB |
883 | |
884 | va_start(ap, fmt); | |
493ae1f0 | 885 | va_copy(ap2, ap); |
7501267e FB |
886 | fprintf(stderr, "qemu: fatal: "); |
887 | vfprintf(stderr, fmt, ap); | |
888 | fprintf(stderr, "\n"); | |
878096ee | 889 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 890 | if (qemu_log_separate()) { |
93fcfe39 AL |
891 | qemu_log("qemu: fatal: "); |
892 | qemu_log_vprintf(fmt, ap2); | |
893 | qemu_log("\n"); | |
a0762859 | 894 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 895 | qemu_log_flush(); |
93fcfe39 | 896 | qemu_log_close(); |
924edcae | 897 | } |
493ae1f0 | 898 | va_end(ap2); |
f9373291 | 899 | va_end(ap); |
7615936e | 900 | replay_finish(); |
fd052bf6 RV |
901 | #if defined(CONFIG_USER_ONLY) |
902 | { | |
903 | struct sigaction act; | |
904 | sigfillset(&act.sa_mask); | |
905 | act.sa_handler = SIG_DFL; | |
906 | sigaction(SIGABRT, &act, NULL); | |
907 | } | |
908 | #endif | |
7501267e FB |
909 | abort(); |
910 | } | |
911 | ||
0124311e | 912 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 913 | /* Called from RCU critical section */ |
041603fe PB |
914 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
915 | { | |
916 | RAMBlock *block; | |
917 | ||
43771539 | 918 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 919 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 920 | return block; |
041603fe | 921 | } |
0dc3f44a | 922 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 923 | if (addr - block->offset < block->max_length) { |
041603fe PB |
924 | goto found; |
925 | } | |
926 | } | |
927 | ||
928 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
929 | abort(); | |
930 | ||
931 | found: | |
43771539 PB |
932 | /* It is safe to write mru_block outside the iothread lock. This |
933 | * is what happens: | |
934 | * | |
935 | * mru_block = xxx | |
936 | * rcu_read_unlock() | |
937 | * xxx removed from list | |
938 | * rcu_read_lock() | |
939 | * read mru_block | |
940 | * mru_block = NULL; | |
941 | * call_rcu(reclaim_ramblock, xxx); | |
942 | * rcu_read_unlock() | |
943 | * | |
944 | * atomic_rcu_set is not needed here. The block was already published | |
945 | * when it was placed into the list. Here we're just making an extra | |
946 | * copy of the pointer. | |
947 | */ | |
041603fe PB |
948 | ram_list.mru_block = block; |
949 | return block; | |
950 | } | |
951 | ||
a2f4d5be | 952 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 953 | { |
9a13565d | 954 | CPUState *cpu; |
041603fe | 955 | ram_addr_t start1; |
a2f4d5be JQ |
956 | RAMBlock *block; |
957 | ram_addr_t end; | |
958 | ||
959 | end = TARGET_PAGE_ALIGN(start + length); | |
960 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 961 | |
0dc3f44a | 962 | rcu_read_lock(); |
041603fe PB |
963 | block = qemu_get_ram_block(start); |
964 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 965 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
966 | CPU_FOREACH(cpu) { |
967 | tlb_reset_dirty(cpu, start1, length); | |
968 | } | |
0dc3f44a | 969 | rcu_read_unlock(); |
d24981d3 JQ |
970 | } |
971 | ||
5579c7f3 | 972 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
973 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
974 | ram_addr_t length, | |
975 | unsigned client) | |
1ccde1cb | 976 | { |
5b82b703 | 977 | DirtyMemoryBlocks *blocks; |
03eebc9e | 978 | unsigned long end, page; |
5b82b703 | 979 | bool dirty = false; |
03eebc9e SH |
980 | |
981 | if (length == 0) { | |
982 | return false; | |
983 | } | |
f23db169 | 984 | |
03eebc9e SH |
985 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
986 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
987 | |
988 | rcu_read_lock(); | |
989 | ||
990 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
991 | ||
992 | while (page < end) { | |
993 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
994 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
995 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
996 | ||
997 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
998 | offset, num); | |
999 | page += num; | |
1000 | } | |
1001 | ||
1002 | rcu_read_unlock(); | |
03eebc9e SH |
1003 | |
1004 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1005 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1006 | } |
03eebc9e SH |
1007 | |
1008 | return dirty; | |
1ccde1cb FB |
1009 | } |
1010 | ||
79e2b9ae | 1011 | /* Called from RCU critical section */ |
bb0e627a | 1012 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1013 | MemoryRegionSection *section, |
1014 | target_ulong vaddr, | |
1015 | hwaddr paddr, hwaddr xlat, | |
1016 | int prot, | |
1017 | target_ulong *address) | |
e5548617 | 1018 | { |
a8170e5e | 1019 | hwaddr iotlb; |
e5548617 BS |
1020 | CPUWatchpoint *wp; |
1021 | ||
cc5bea60 | 1022 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
1023 | /* Normal RAM. */ |
1024 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 1025 | + xlat; |
e5548617 | 1026 | if (!section->readonly) { |
b41aac4f | 1027 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1028 | } else { |
b41aac4f | 1029 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1030 | } |
1031 | } else { | |
0b8e2c10 PM |
1032 | AddressSpaceDispatch *d; |
1033 | ||
1034 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1035 | iotlb = section - d->map.sections; | |
149f54b5 | 1036 | iotlb += xlat; |
e5548617 BS |
1037 | } |
1038 | ||
1039 | /* Make accesses to pages with watchpoints go via the | |
1040 | watchpoint trap routines. */ | |
ff4700b0 | 1041 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1042 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1043 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1044 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1045 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1046 | *address |= TLB_MMIO; |
1047 | break; | |
1048 | } | |
1049 | } | |
1050 | } | |
1051 | ||
1052 | return iotlb; | |
1053 | } | |
9fa3e853 FB |
1054 | #endif /* defined(CONFIG_USER_ONLY) */ |
1055 | ||
e2eef170 | 1056 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1057 | |
c227f099 | 1058 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1059 | uint16_t section); |
acc9d80b | 1060 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1061 | |
a2b257d6 IM |
1062 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1063 | qemu_anon_ram_alloc; | |
91138037 MA |
1064 | |
1065 | /* | |
1066 | * Set a custom physical guest memory alloator. | |
1067 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1068 | * get rid of it eventually. | |
1069 | */ | |
a2b257d6 | 1070 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1071 | { |
1072 | phys_mem_alloc = alloc; | |
1073 | } | |
1074 | ||
53cb28cb MA |
1075 | static uint16_t phys_section_add(PhysPageMap *map, |
1076 | MemoryRegionSection *section) | |
5312bd8b | 1077 | { |
68f3f65b PB |
1078 | /* The physical section number is ORed with a page-aligned |
1079 | * pointer to produce the iotlb entries. Thus it should | |
1080 | * never overflow into the page-aligned value. | |
1081 | */ | |
53cb28cb | 1082 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1083 | |
53cb28cb MA |
1084 | if (map->sections_nb == map->sections_nb_alloc) { |
1085 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1086 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1087 | map->sections_nb_alloc); | |
5312bd8b | 1088 | } |
53cb28cb | 1089 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1090 | memory_region_ref(section->mr); |
53cb28cb | 1091 | return map->sections_nb++; |
5312bd8b AK |
1092 | } |
1093 | ||
058bc4b5 PB |
1094 | static void phys_section_destroy(MemoryRegion *mr) |
1095 | { | |
55b4e80b DS |
1096 | bool have_sub_page = mr->subpage; |
1097 | ||
dfde4e6e PB |
1098 | memory_region_unref(mr); |
1099 | ||
55b4e80b | 1100 | if (have_sub_page) { |
058bc4b5 | 1101 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1102 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1103 | g_free(subpage); |
1104 | } | |
1105 | } | |
1106 | ||
6092666e | 1107 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1108 | { |
9affd6fc PB |
1109 | while (map->sections_nb > 0) { |
1110 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1111 | phys_section_destroy(section->mr); |
1112 | } | |
9affd6fc PB |
1113 | g_free(map->sections); |
1114 | g_free(map->nodes); | |
5312bd8b AK |
1115 | } |
1116 | ||
ac1970fb | 1117 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1118 | { |
1119 | subpage_t *subpage; | |
a8170e5e | 1120 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1121 | & TARGET_PAGE_MASK; |
97115a8d | 1122 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1123 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1124 | MemoryRegionSection subsection = { |
1125 | .offset_within_address_space = base, | |
052e87b0 | 1126 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1127 | }; |
a8170e5e | 1128 | hwaddr start, end; |
0f0cb164 | 1129 | |
f3705d53 | 1130 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1131 | |
f3705d53 | 1132 | if (!(existing->mr->subpage)) { |
acc9d80b | 1133 | subpage = subpage_init(d->as, base); |
3be91e86 | 1134 | subsection.address_space = d->as; |
0f0cb164 | 1135 | subsection.mr = &subpage->iomem; |
ac1970fb | 1136 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1137 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1138 | } else { |
f3705d53 | 1139 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1140 | } |
1141 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1142 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1143 | subpage_register(subpage, start, end, |
1144 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1145 | } |
1146 | ||
1147 | ||
052e87b0 PB |
1148 | static void register_multipage(AddressSpaceDispatch *d, |
1149 | MemoryRegionSection *section) | |
33417e70 | 1150 | { |
a8170e5e | 1151 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1152 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1153 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1154 | TARGET_PAGE_BITS)); | |
dd81124b | 1155 | |
733d5ef5 PB |
1156 | assert(num_pages); |
1157 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1158 | } |
1159 | ||
ac1970fb | 1160 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1161 | { |
89ae337a | 1162 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1163 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1164 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1165 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1166 | |
733d5ef5 PB |
1167 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1168 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1169 | - now.offset_within_address_space; | |
1170 | ||
052e87b0 | 1171 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1172 | register_subpage(d, &now); |
733d5ef5 | 1173 | } else { |
052e87b0 | 1174 | now.size = int128_zero(); |
733d5ef5 | 1175 | } |
052e87b0 PB |
1176 | while (int128_ne(remain.size, now.size)) { |
1177 | remain.size = int128_sub(remain.size, now.size); | |
1178 | remain.offset_within_address_space += int128_get64(now.size); | |
1179 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1180 | now = remain; |
052e87b0 | 1181 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1182 | register_subpage(d, &now); |
88266249 | 1183 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1184 | now.size = page_size; |
ac1970fb | 1185 | register_subpage(d, &now); |
69b67646 | 1186 | } else { |
052e87b0 | 1187 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1188 | register_multipage(d, &now); |
69b67646 | 1189 | } |
0f0cb164 AK |
1190 | } |
1191 | } | |
1192 | ||
62a2744c SY |
1193 | void qemu_flush_coalesced_mmio_buffer(void) |
1194 | { | |
1195 | if (kvm_enabled()) | |
1196 | kvm_flush_coalesced_mmio_buffer(); | |
1197 | } | |
1198 | ||
b2a8658e UD |
1199 | void qemu_mutex_lock_ramlist(void) |
1200 | { | |
1201 | qemu_mutex_lock(&ram_list.mutex); | |
1202 | } | |
1203 | ||
1204 | void qemu_mutex_unlock_ramlist(void) | |
1205 | { | |
1206 | qemu_mutex_unlock(&ram_list.mutex); | |
1207 | } | |
1208 | ||
e1e84ba0 | 1209 | #ifdef __linux__ |
c902760f MT |
1210 | |
1211 | #include <sys/vfs.h> | |
1212 | ||
1213 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1214 | ||
fc7a5800 | 1215 | static long gethugepagesize(const char *path, Error **errp) |
c902760f MT |
1216 | { |
1217 | struct statfs fs; | |
1218 | int ret; | |
1219 | ||
1220 | do { | |
9742bf26 | 1221 | ret = statfs(path, &fs); |
c902760f MT |
1222 | } while (ret != 0 && errno == EINTR); |
1223 | ||
1224 | if (ret != 0) { | |
fc7a5800 HT |
1225 | error_setg_errno(errp, errno, "failed to get page size of file %s", |
1226 | path); | |
9742bf26 | 1227 | return 0; |
c902760f MT |
1228 | } |
1229 | ||
c902760f MT |
1230 | return fs.f_bsize; |
1231 | } | |
1232 | ||
04b16653 AW |
1233 | static void *file_ram_alloc(RAMBlock *block, |
1234 | ram_addr_t memory, | |
7f56e740 PB |
1235 | const char *path, |
1236 | Error **errp) | |
c902760f | 1237 | { |
8d31d6b6 | 1238 | struct stat st; |
c902760f | 1239 | char *filename; |
8ca761f6 PF |
1240 | char *sanitized_name; |
1241 | char *c; | |
794e8f30 | 1242 | void *area; |
c902760f | 1243 | int fd; |
557529dd | 1244 | uint64_t hpagesize; |
fc7a5800 | 1245 | Error *local_err = NULL; |
c902760f | 1246 | |
fc7a5800 HT |
1247 | hpagesize = gethugepagesize(path, &local_err); |
1248 | if (local_err) { | |
1249 | error_propagate(errp, local_err); | |
f9a49dfa | 1250 | goto error; |
c902760f | 1251 | } |
a2b257d6 | 1252 | block->mr->align = hpagesize; |
c902760f MT |
1253 | |
1254 | if (memory < hpagesize) { | |
557529dd HT |
1255 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1256 | "or larger than huge page size 0x%" PRIx64, | |
1257 | memory, hpagesize); | |
1258 | goto error; | |
c902760f MT |
1259 | } |
1260 | ||
1261 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1262 | error_setg(errp, |
1263 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
f9a49dfa | 1264 | goto error; |
c902760f MT |
1265 | } |
1266 | ||
8d31d6b6 PF |
1267 | if (!stat(path, &st) && S_ISDIR(st.st_mode)) { |
1268 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1269 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1270 | for (c = sanitized_name; *c != '\0'; c++) { | |
1271 | if (*c == '/') { | |
1272 | *c = '_'; | |
1273 | } | |
1274 | } | |
8ca761f6 | 1275 | |
8d31d6b6 PF |
1276 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1277 | sanitized_name); | |
1278 | g_free(sanitized_name); | |
1279 | ||
1280 | fd = mkstemp(filename); | |
1281 | if (fd >= 0) { | |
1282 | unlink(filename); | |
1283 | } | |
1284 | g_free(filename); | |
1285 | } else { | |
1286 | fd = open(path, O_RDWR | O_CREAT, 0644); | |
1287 | } | |
c902760f | 1288 | |
c902760f | 1289 | if (fd < 0) { |
7f56e740 PB |
1290 | error_setg_errno(errp, errno, |
1291 | "unable to create backing store for hugepages"); | |
f9a49dfa | 1292 | goto error; |
c902760f | 1293 | } |
c902760f | 1294 | |
9284f319 | 1295 | memory = ROUND_UP(memory, hpagesize); |
c902760f MT |
1296 | |
1297 | /* | |
1298 | * ftruncate is not supported by hugetlbfs in older | |
1299 | * hosts, so don't bother bailing out on errors. | |
1300 | * If anything goes wrong with it under other filesystems, | |
1301 | * mmap will fail. | |
1302 | */ | |
7f56e740 | 1303 | if (ftruncate(fd, memory)) { |
9742bf26 | 1304 | perror("ftruncate"); |
7f56e740 | 1305 | } |
c902760f | 1306 | |
794e8f30 | 1307 | area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED); |
c902760f | 1308 | if (area == MAP_FAILED) { |
7f56e740 PB |
1309 | error_setg_errno(errp, errno, |
1310 | "unable to map backing store for hugepages"); | |
9742bf26 | 1311 | close(fd); |
f9a49dfa | 1312 | goto error; |
c902760f | 1313 | } |
ef36fa14 MT |
1314 | |
1315 | if (mem_prealloc) { | |
38183310 | 1316 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1317 | } |
1318 | ||
04b16653 | 1319 | block->fd = fd; |
c902760f | 1320 | return area; |
f9a49dfa MT |
1321 | |
1322 | error: | |
f9a49dfa | 1323 | return NULL; |
c902760f MT |
1324 | } |
1325 | #endif | |
1326 | ||
0dc3f44a | 1327 | /* Called with the ramlist lock held. */ |
d17b5288 | 1328 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1329 | { |
1330 | RAMBlock *block, *next_block; | |
3e837b2c | 1331 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1332 | |
49cd9ac6 SH |
1333 | assert(size != 0); /* it would hand out same offset multiple times */ |
1334 | ||
0dc3f44a | 1335 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1336 | return 0; |
0d53d9fe | 1337 | } |
04b16653 | 1338 | |
0dc3f44a | 1339 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1340 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1341 | |
62be4e3a | 1342 | end = block->offset + block->max_length; |
04b16653 | 1343 | |
0dc3f44a | 1344 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1345 | if (next_block->offset >= end) { |
1346 | next = MIN(next, next_block->offset); | |
1347 | } | |
1348 | } | |
1349 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1350 | offset = end; |
04b16653 AW |
1351 | mingap = next - end; |
1352 | } | |
1353 | } | |
3e837b2c AW |
1354 | |
1355 | if (offset == RAM_ADDR_MAX) { | |
1356 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1357 | (uint64_t)size); | |
1358 | abort(); | |
1359 | } | |
1360 | ||
04b16653 AW |
1361 | return offset; |
1362 | } | |
1363 | ||
652d7ec2 | 1364 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1365 | { |
1366 | RAMBlock *block; | |
1367 | ram_addr_t last = 0; | |
1368 | ||
0dc3f44a MD |
1369 | rcu_read_lock(); |
1370 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1371 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1372 | } |
0dc3f44a | 1373 | rcu_read_unlock(); |
d17b5288 AW |
1374 | return last; |
1375 | } | |
1376 | ||
ddb97f1d JB |
1377 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1378 | { | |
1379 | int ret; | |
ddb97f1d JB |
1380 | |
1381 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1382 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1383 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1384 | if (ret) { | |
1385 | perror("qemu_madvise"); | |
1386 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1387 | "but dump_guest_core=off specified\n"); | |
1388 | } | |
1389 | } | |
1390 | } | |
1391 | ||
0dc3f44a MD |
1392 | /* Called within an RCU critical section, or while the ramlist lock |
1393 | * is held. | |
1394 | */ | |
20cfe881 | 1395 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1396 | { |
20cfe881 | 1397 | RAMBlock *block; |
84b89d78 | 1398 | |
0dc3f44a | 1399 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1400 | if (block->offset == addr) { |
20cfe881 | 1401 | return block; |
c5705a77 AK |
1402 | } |
1403 | } | |
20cfe881 HT |
1404 | |
1405 | return NULL; | |
1406 | } | |
1407 | ||
422148d3 DDAG |
1408 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1409 | { | |
1410 | return rb->idstr; | |
1411 | } | |
1412 | ||
ae3a7047 | 1413 | /* Called with iothread lock held. */ |
20cfe881 HT |
1414 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1415 | { | |
ae3a7047 | 1416 | RAMBlock *new_block, *block; |
20cfe881 | 1417 | |
0dc3f44a | 1418 | rcu_read_lock(); |
ae3a7047 | 1419 | new_block = find_ram_block(addr); |
c5705a77 AK |
1420 | assert(new_block); |
1421 | assert(!new_block->idstr[0]); | |
84b89d78 | 1422 | |
09e5ab63 AL |
1423 | if (dev) { |
1424 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1425 | if (id) { |
1426 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1427 | g_free(id); |
84b89d78 CM |
1428 | } |
1429 | } | |
1430 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1431 | ||
0dc3f44a | 1432 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1433 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1434 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1435 | new_block->idstr); | |
1436 | abort(); | |
1437 | } | |
1438 | } | |
0dc3f44a | 1439 | rcu_read_unlock(); |
c5705a77 AK |
1440 | } |
1441 | ||
ae3a7047 | 1442 | /* Called with iothread lock held. */ |
20cfe881 HT |
1443 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1444 | { | |
ae3a7047 | 1445 | RAMBlock *block; |
20cfe881 | 1446 | |
ae3a7047 MD |
1447 | /* FIXME: arch_init.c assumes that this is not called throughout |
1448 | * migration. Ignore the problem since hot-unplug during migration | |
1449 | * does not work anyway. | |
1450 | */ | |
1451 | ||
0dc3f44a | 1452 | rcu_read_lock(); |
ae3a7047 | 1453 | block = find_ram_block(addr); |
20cfe881 HT |
1454 | if (block) { |
1455 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1456 | } | |
0dc3f44a | 1457 | rcu_read_unlock(); |
20cfe881 HT |
1458 | } |
1459 | ||
8490fc78 LC |
1460 | static int memory_try_enable_merging(void *addr, size_t len) |
1461 | { | |
75cc7f01 | 1462 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1463 | /* disabled by the user */ |
1464 | return 0; | |
1465 | } | |
1466 | ||
1467 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1468 | } | |
1469 | ||
62be4e3a MT |
1470 | /* Only legal before guest might have detected the memory size: e.g. on |
1471 | * incoming migration, or right after reset. | |
1472 | * | |
1473 | * As memory core doesn't know how is memory accessed, it is up to | |
1474 | * resize callback to update device state and/or add assertions to detect | |
1475 | * misuse, if necessary. | |
1476 | */ | |
1477 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1478 | { | |
1479 | RAMBlock *block = find_ram_block(base); | |
1480 | ||
1481 | assert(block); | |
1482 | ||
4ed023ce | 1483 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1484 | |
62be4e3a MT |
1485 | if (block->used_length == newsize) { |
1486 | return 0; | |
1487 | } | |
1488 | ||
1489 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1490 | error_setg_errno(errp, EINVAL, | |
1491 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1492 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1493 | newsize, block->used_length); | |
1494 | return -EINVAL; | |
1495 | } | |
1496 | ||
1497 | if (block->max_length < newsize) { | |
1498 | error_setg_errno(errp, EINVAL, | |
1499 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1500 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1501 | newsize, block->max_length); | |
1502 | return -EINVAL; | |
1503 | } | |
1504 | ||
1505 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1506 | block->used_length = newsize; | |
58d2707e PB |
1507 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1508 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1509 | memory_region_set_size(block->mr, newsize); |
1510 | if (block->resized) { | |
1511 | block->resized(block->idstr, newsize, block->host); | |
1512 | } | |
1513 | return 0; | |
1514 | } | |
1515 | ||
5b82b703 SH |
1516 | /* Called with ram_list.mutex held */ |
1517 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1518 | ram_addr_t new_ram_size) | |
1519 | { | |
1520 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1521 | DIRTY_MEMORY_BLOCK_SIZE); | |
1522 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1523 | DIRTY_MEMORY_BLOCK_SIZE); | |
1524 | int i; | |
1525 | ||
1526 | /* Only need to extend if block count increased */ | |
1527 | if (new_num_blocks <= old_num_blocks) { | |
1528 | return; | |
1529 | } | |
1530 | ||
1531 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1532 | DirtyMemoryBlocks *old_blocks; | |
1533 | DirtyMemoryBlocks *new_blocks; | |
1534 | int j; | |
1535 | ||
1536 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1537 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1538 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1539 | ||
1540 | if (old_num_blocks) { | |
1541 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1542 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1543 | } | |
1544 | ||
1545 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1546 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1547 | } | |
1548 | ||
1549 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1550 | ||
1551 | if (old_blocks) { | |
1552 | g_free_rcu(old_blocks, rcu); | |
1553 | } | |
1554 | } | |
1555 | } | |
1556 | ||
ef701d7b | 1557 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1558 | { |
e1c57ab8 | 1559 | RAMBlock *block; |
0d53d9fe | 1560 | RAMBlock *last_block = NULL; |
2152f5ca | 1561 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1562 | Error *err = NULL; |
2152f5ca JQ |
1563 | |
1564 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1565 | |
b2a8658e | 1566 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1567 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1568 | |
1569 | if (!new_block->host) { | |
1570 | if (xen_enabled()) { | |
9b8424d5 | 1571 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1572 | new_block->mr, &err); |
1573 | if (err) { | |
1574 | error_propagate(errp, err); | |
1575 | qemu_mutex_unlock_ramlist(); | |
1576 | return -1; | |
1577 | } | |
e1c57ab8 | 1578 | } else { |
9b8424d5 | 1579 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1580 | &new_block->mr->align); |
39228250 | 1581 | if (!new_block->host) { |
ef701d7b HT |
1582 | error_setg_errno(errp, errno, |
1583 | "cannot set up guest memory '%s'", | |
1584 | memory_region_name(new_block->mr)); | |
1585 | qemu_mutex_unlock_ramlist(); | |
1586 | return -1; | |
39228250 | 1587 | } |
9b8424d5 | 1588 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1589 | } |
c902760f | 1590 | } |
94a6b54f | 1591 | |
dd631697 LZ |
1592 | new_ram_size = MAX(old_ram_size, |
1593 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1594 | if (new_ram_size > old_ram_size) { | |
1595 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1596 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1597 | } |
0d53d9fe MD |
1598 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1599 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1600 | * tail, so save the last element in last_block. | |
1601 | */ | |
0dc3f44a | 1602 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1603 | last_block = block; |
9b8424d5 | 1604 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1605 | break; |
1606 | } | |
1607 | } | |
1608 | if (block) { | |
0dc3f44a | 1609 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1610 | } else if (last_block) { |
0dc3f44a | 1611 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1612 | } else { /* list is empty */ |
0dc3f44a | 1613 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1614 | } |
0d6d3c87 | 1615 | ram_list.mru_block = NULL; |
94a6b54f | 1616 | |
0dc3f44a MD |
1617 | /* Write list before version */ |
1618 | smp_wmb(); | |
f798b07f | 1619 | ram_list.version++; |
b2a8658e | 1620 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1621 | |
9b8424d5 | 1622 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1623 | new_block->used_length, |
1624 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1625 | |
a904c911 PB |
1626 | if (new_block->host) { |
1627 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1628 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1629 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1630 | if (kvm_enabled()) { | |
1631 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1632 | } | |
e1c57ab8 | 1633 | } |
6f0437e8 | 1634 | |
94a6b54f PB |
1635 | return new_block->offset; |
1636 | } | |
e9a1ab19 | 1637 | |
0b183fc8 | 1638 | #ifdef __linux__ |
e1c57ab8 | 1639 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
dbcb8981 | 1640 | bool share, const char *mem_path, |
7f56e740 | 1641 | Error **errp) |
e1c57ab8 PB |
1642 | { |
1643 | RAMBlock *new_block; | |
ef701d7b HT |
1644 | ram_addr_t addr; |
1645 | Error *local_err = NULL; | |
e1c57ab8 PB |
1646 | |
1647 | if (xen_enabled()) { | |
7f56e740 PB |
1648 | error_setg(errp, "-mem-path not supported with Xen"); |
1649 | return -1; | |
e1c57ab8 PB |
1650 | } |
1651 | ||
1652 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1653 | /* | |
1654 | * file_ram_alloc() needs to allocate just like | |
1655 | * phys_mem_alloc, but we haven't bothered to provide | |
1656 | * a hook there. | |
1657 | */ | |
7f56e740 PB |
1658 | error_setg(errp, |
1659 | "-mem-path not supported with this accelerator"); | |
1660 | return -1; | |
e1c57ab8 PB |
1661 | } |
1662 | ||
4ed023ce | 1663 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1664 | new_block = g_malloc0(sizeof(*new_block)); |
1665 | new_block->mr = mr; | |
9b8424d5 MT |
1666 | new_block->used_length = size; |
1667 | new_block->max_length = size; | |
dbcb8981 | 1668 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1669 | new_block->host = file_ram_alloc(new_block, size, |
1670 | mem_path, errp); | |
1671 | if (!new_block->host) { | |
1672 | g_free(new_block); | |
1673 | return -1; | |
1674 | } | |
1675 | ||
ef701d7b HT |
1676 | addr = ram_block_add(new_block, &local_err); |
1677 | if (local_err) { | |
1678 | g_free(new_block); | |
1679 | error_propagate(errp, local_err); | |
1680 | return -1; | |
1681 | } | |
1682 | return addr; | |
e1c57ab8 | 1683 | } |
0b183fc8 | 1684 | #endif |
e1c57ab8 | 1685 | |
62be4e3a MT |
1686 | static |
1687 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1688 | void (*resized)(const char*, | |
1689 | uint64_t length, | |
1690 | void *host), | |
1691 | void *host, bool resizeable, | |
ef701d7b | 1692 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
1693 | { |
1694 | RAMBlock *new_block; | |
ef701d7b HT |
1695 | ram_addr_t addr; |
1696 | Error *local_err = NULL; | |
e1c57ab8 | 1697 | |
4ed023ce DDAG |
1698 | size = HOST_PAGE_ALIGN(size); |
1699 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1700 | new_block = g_malloc0(sizeof(*new_block)); |
1701 | new_block->mr = mr; | |
62be4e3a | 1702 | new_block->resized = resized; |
9b8424d5 MT |
1703 | new_block->used_length = size; |
1704 | new_block->max_length = max_size; | |
62be4e3a | 1705 | assert(max_size >= size); |
e1c57ab8 PB |
1706 | new_block->fd = -1; |
1707 | new_block->host = host; | |
1708 | if (host) { | |
7bd4f430 | 1709 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1710 | } |
62be4e3a MT |
1711 | if (resizeable) { |
1712 | new_block->flags |= RAM_RESIZEABLE; | |
1713 | } | |
ef701d7b HT |
1714 | addr = ram_block_add(new_block, &local_err); |
1715 | if (local_err) { | |
1716 | g_free(new_block); | |
1717 | error_propagate(errp, local_err); | |
1718 | return -1; | |
1719 | } | |
58eaa217 GA |
1720 | |
1721 | mr->ram_block = new_block; | |
ef701d7b | 1722 | return addr; |
e1c57ab8 PB |
1723 | } |
1724 | ||
62be4e3a MT |
1725 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
1726 | MemoryRegion *mr, Error **errp) | |
1727 | { | |
1728 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1729 | } | |
1730 | ||
ef701d7b | 1731 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1732 | { |
62be4e3a MT |
1733 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1734 | } | |
1735 | ||
1736 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1737 | void (*resized)(const char*, | |
1738 | uint64_t length, | |
1739 | void *host), | |
1740 | MemoryRegion *mr, Error **errp) | |
1741 | { | |
1742 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1743 | } |
1744 | ||
43771539 PB |
1745 | static void reclaim_ramblock(RAMBlock *block) |
1746 | { | |
1747 | if (block->flags & RAM_PREALLOC) { | |
1748 | ; | |
1749 | } else if (xen_enabled()) { | |
1750 | xen_invalidate_map_cache_entry(block->host); | |
1751 | #ifndef _WIN32 | |
1752 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1753 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1754 | close(block->fd); |
1755 | #endif | |
1756 | } else { | |
1757 | qemu_anon_ram_free(block->host, block->max_length); | |
1758 | } | |
1759 | g_free(block); | |
1760 | } | |
1761 | ||
c227f099 | 1762 | void qemu_ram_free(ram_addr_t addr) |
e9a1ab19 | 1763 | { |
04b16653 AW |
1764 | RAMBlock *block; |
1765 | ||
b2a8658e | 1766 | qemu_mutex_lock_ramlist(); |
0dc3f44a | 1767 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
04b16653 | 1768 | if (addr == block->offset) { |
0dc3f44a | 1769 | QLIST_REMOVE_RCU(block, next); |
0d6d3c87 | 1770 | ram_list.mru_block = NULL; |
0dc3f44a MD |
1771 | /* Write list before version */ |
1772 | smp_wmb(); | |
f798b07f | 1773 | ram_list.version++; |
43771539 | 1774 | call_rcu(block, reclaim_ramblock, rcu); |
b2a8658e | 1775 | break; |
04b16653 AW |
1776 | } |
1777 | } | |
b2a8658e | 1778 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1779 | } |
1780 | ||
cd19cfa2 HY |
1781 | #ifndef _WIN32 |
1782 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1783 | { | |
1784 | RAMBlock *block; | |
1785 | ram_addr_t offset; | |
1786 | int flags; | |
1787 | void *area, *vaddr; | |
1788 | ||
0dc3f44a | 1789 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1790 | offset = addr - block->offset; |
9b8424d5 | 1791 | if (offset < block->max_length) { |
1240be24 | 1792 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1793 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1794 | ; |
dfeaf2ab MA |
1795 | } else if (xen_enabled()) { |
1796 | abort(); | |
cd19cfa2 HY |
1797 | } else { |
1798 | flags = MAP_FIXED; | |
3435f395 | 1799 | if (block->fd >= 0) { |
dbcb8981 PB |
1800 | flags |= (block->flags & RAM_SHARED ? |
1801 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1802 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1803 | flags, block->fd, offset); | |
cd19cfa2 | 1804 | } else { |
2eb9fbaa MA |
1805 | /* |
1806 | * Remap needs to match alloc. Accelerators that | |
1807 | * set phys_mem_alloc never remap. If they did, | |
1808 | * we'd need a remap hook here. | |
1809 | */ | |
1810 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1811 | ||
cd19cfa2 HY |
1812 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1813 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1814 | flags, -1, 0); | |
cd19cfa2 HY |
1815 | } |
1816 | if (area != vaddr) { | |
f15fbc4b AP |
1817 | fprintf(stderr, "Could not remap addr: " |
1818 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1819 | length, addr); |
1820 | exit(1); | |
1821 | } | |
8490fc78 | 1822 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1823 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1824 | } |
cd19cfa2 HY |
1825 | } |
1826 | } | |
1827 | } | |
1828 | #endif /* !_WIN32 */ | |
1829 | ||
a35ba7be PB |
1830 | int qemu_get_ram_fd(ram_addr_t addr) |
1831 | { | |
ae3a7047 MD |
1832 | RAMBlock *block; |
1833 | int fd; | |
a35ba7be | 1834 | |
0dc3f44a | 1835 | rcu_read_lock(); |
ae3a7047 MD |
1836 | block = qemu_get_ram_block(addr); |
1837 | fd = block->fd; | |
0dc3f44a | 1838 | rcu_read_unlock(); |
ae3a7047 | 1839 | return fd; |
a35ba7be PB |
1840 | } |
1841 | ||
56a571d9 TM |
1842 | void qemu_set_ram_fd(ram_addr_t addr, int fd) |
1843 | { | |
1844 | RAMBlock *block; | |
1845 | ||
1846 | rcu_read_lock(); | |
1847 | block = qemu_get_ram_block(addr); | |
1848 | block->fd = fd; | |
1849 | rcu_read_unlock(); | |
1850 | } | |
1851 | ||
3fd74b84 DM |
1852 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1853 | { | |
ae3a7047 MD |
1854 | RAMBlock *block; |
1855 | void *ptr; | |
3fd74b84 | 1856 | |
0dc3f44a | 1857 | rcu_read_lock(); |
ae3a7047 MD |
1858 | block = qemu_get_ram_block(addr); |
1859 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1860 | rcu_read_unlock(); |
ae3a7047 | 1861 | return ptr; |
3fd74b84 DM |
1862 | } |
1863 | ||
1b5ec234 | 1864 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1865 | * This should not be used for general purpose DMA. Use address_space_map |
1866 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1867 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1868 | * |
49b24afc | 1869 | * Called within RCU critical section. |
1b5ec234 PB |
1870 | */ |
1871 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1872 | { | |
49b24afc | 1873 | RAMBlock *block = qemu_get_ram_block(addr); |
ae3a7047 MD |
1874 | |
1875 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1876 | /* We need to check if the requested address is in the RAM |
1877 | * because we don't want to map the entire memory in QEMU. | |
1878 | * In that case just map until the end of the page. | |
1879 | */ | |
1880 | if (block->offset == 0) { | |
49b24afc | 1881 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1882 | } |
ae3a7047 MD |
1883 | |
1884 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1885 | } |
49b24afc | 1886 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1887 | } |
1888 | ||
38bee5dc | 1889 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1890 | * but takes a size argument. |
0dc3f44a | 1891 | * |
e81bcda5 | 1892 | * Called within RCU critical section. |
ae3a7047 | 1893 | */ |
cb85f7ab | 1894 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) |
38bee5dc | 1895 | { |
e81bcda5 PB |
1896 | RAMBlock *block; |
1897 | ram_addr_t offset_inside_block; | |
8ab934f9 SS |
1898 | if (*size == 0) { |
1899 | return NULL; | |
1900 | } | |
e81bcda5 PB |
1901 | |
1902 | block = qemu_get_ram_block(addr); | |
1903 | offset_inside_block = addr - block->offset; | |
1904 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1905 | ||
1906 | if (xen_enabled() && block->host == NULL) { | |
1907 | /* We need to check if the requested address is in the RAM | |
1908 | * because we don't want to map the entire memory in QEMU. | |
1909 | * In that case just map the requested area. | |
1910 | */ | |
1911 | if (block->offset == 0) { | |
1912 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1913 | } |
1914 | ||
e81bcda5 | 1915 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1916 | } |
e81bcda5 PB |
1917 | |
1918 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1919 | } |
1920 | ||
422148d3 DDAG |
1921 | /* |
1922 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1923 | * in that RAMBlock. | |
1924 | * | |
1925 | * ptr: Host pointer to look up | |
1926 | * round_offset: If true round the result offset down to a page boundary | |
1927 | * *ram_addr: set to result ram_addr | |
1928 | * *offset: set to result offset within the RAMBlock | |
1929 | * | |
1930 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1931 | * |
1932 | * By the time this function returns, the returned pointer is not protected | |
1933 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1934 | * does not hold the iothread lock, it must have other means of protecting the | |
1935 | * pointer, such as a reference to the region that includes the incoming | |
1936 | * ram_addr_t. | |
1937 | */ | |
422148d3 DDAG |
1938 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
1939 | ram_addr_t *ram_addr, | |
1940 | ram_addr_t *offset) | |
5579c7f3 | 1941 | { |
94a6b54f PB |
1942 | RAMBlock *block; |
1943 | uint8_t *host = ptr; | |
1944 | ||
868bb33f | 1945 | if (xen_enabled()) { |
0dc3f44a | 1946 | rcu_read_lock(); |
e41d7c69 | 1947 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
422148d3 DDAG |
1948 | block = qemu_get_ram_block(*ram_addr); |
1949 | if (block) { | |
1950 | *offset = (host - block->host); | |
1951 | } | |
0dc3f44a | 1952 | rcu_read_unlock(); |
422148d3 | 1953 | return block; |
712c2b41 SS |
1954 | } |
1955 | ||
0dc3f44a MD |
1956 | rcu_read_lock(); |
1957 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1958 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1959 | goto found; |
1960 | } | |
1961 | ||
0dc3f44a | 1962 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1963 | /* This case append when the block is not mapped. */ |
1964 | if (block->host == NULL) { | |
1965 | continue; | |
1966 | } | |
9b8424d5 | 1967 | if (host - block->host < block->max_length) { |
23887b79 | 1968 | goto found; |
f471a17e | 1969 | } |
94a6b54f | 1970 | } |
432d268c | 1971 | |
0dc3f44a | 1972 | rcu_read_unlock(); |
1b5ec234 | 1973 | return NULL; |
23887b79 PB |
1974 | |
1975 | found: | |
422148d3 DDAG |
1976 | *offset = (host - block->host); |
1977 | if (round_offset) { | |
1978 | *offset &= TARGET_PAGE_MASK; | |
1979 | } | |
1980 | *ram_addr = block->offset + *offset; | |
0dc3f44a | 1981 | rcu_read_unlock(); |
422148d3 DDAG |
1982 | return block; |
1983 | } | |
1984 | ||
e3dd7493 DDAG |
1985 | /* |
1986 | * Finds the named RAMBlock | |
1987 | * | |
1988 | * name: The name of RAMBlock to find | |
1989 | * | |
1990 | * Returns: RAMBlock (or NULL if not found) | |
1991 | */ | |
1992 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1993 | { | |
1994 | RAMBlock *block; | |
1995 | ||
1996 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1997 | if (!strcmp(name, block->idstr)) { | |
1998 | return block; | |
1999 | } | |
2000 | } | |
2001 | ||
2002 | return NULL; | |
2003 | } | |
2004 | ||
422148d3 DDAG |
2005 | /* Some of the softmmu routines need to translate from a host pointer |
2006 | (typically a TLB entry) back to a ram offset. */ | |
2007 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
2008 | { | |
2009 | RAMBlock *block; | |
2010 | ram_addr_t offset; /* Not used */ | |
2011 | ||
2012 | block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | |
2013 | ||
2014 | if (!block) { | |
2015 | return NULL; | |
2016 | } | |
2017 | ||
2018 | return block->mr; | |
e890261f | 2019 | } |
f471a17e | 2020 | |
49b24afc | 2021 | /* Called within RCU critical section. */ |
a8170e5e | 2022 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2023 | uint64_t val, unsigned size) |
9fa3e853 | 2024 | { |
52159192 | 2025 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 2026 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2027 | } |
0e0df1e2 AK |
2028 | switch (size) { |
2029 | case 1: | |
2030 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
2031 | break; | |
2032 | case 2: | |
2033 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
2034 | break; | |
2035 | case 4: | |
2036 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
2037 | break; | |
2038 | default: | |
2039 | abort(); | |
3a7d929e | 2040 | } |
58d2707e PB |
2041 | /* Set both VGA and migration bits for simplicity and to remove |
2042 | * the notdirty callback faster. | |
2043 | */ | |
2044 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2045 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2046 | /* we remove the notdirty callback only if the code has been |
2047 | flushed */ | |
a2cd8c85 | 2048 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2049 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2050 | } |
9fa3e853 FB |
2051 | } |
2052 | ||
b018ddf6 PB |
2053 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2054 | unsigned size, bool is_write) | |
2055 | { | |
2056 | return is_write; | |
2057 | } | |
2058 | ||
0e0df1e2 | 2059 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2060 | .write = notdirty_mem_write, |
b018ddf6 | 2061 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2062 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2063 | }; |
2064 | ||
0f459d16 | 2065 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2066 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2067 | { |
93afeade | 2068 | CPUState *cpu = current_cpu; |
568496c0 | 2069 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2070 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2071 | target_ulong pc, cs_base; |
0f459d16 | 2072 | target_ulong vaddr; |
a1d1bb31 | 2073 | CPUWatchpoint *wp; |
06d55cc1 | 2074 | int cpu_flags; |
0f459d16 | 2075 | |
ff4700b0 | 2076 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2077 | /* We re-entered the check after replacing the TB. Now raise |
2078 | * the debug interrupt so that is will trigger after the | |
2079 | * current instruction. */ | |
93afeade | 2080 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2081 | return; |
2082 | } | |
93afeade | 2083 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2084 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2085 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2086 | && (wp->flags & flags)) { | |
08225676 PM |
2087 | if (flags == BP_MEM_READ) { |
2088 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2089 | } else { | |
2090 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2091 | } | |
2092 | wp->hitaddr = vaddr; | |
66b9b43c | 2093 | wp->hitattrs = attrs; |
ff4700b0 | 2094 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2095 | if (wp->flags & BP_CPU && |
2096 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2097 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2098 | continue; | |
2099 | } | |
ff4700b0 | 2100 | cpu->watchpoint_hit = wp; |
239c51a5 | 2101 | tb_check_watchpoint(cpu); |
6e140f28 | 2102 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2103 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2104 | cpu_loop_exit(cpu); |
6e140f28 AL |
2105 | } else { |
2106 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2107 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2108 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2109 | } |
06d55cc1 | 2110 | } |
6e140f28 AL |
2111 | } else { |
2112 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2113 | } |
2114 | } | |
2115 | } | |
2116 | ||
6658ffb8 PB |
2117 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2118 | so these check for a hit then pass through to the normal out-of-line | |
2119 | phys routines. */ | |
66b9b43c PM |
2120 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2121 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2122 | { |
66b9b43c PM |
2123 | MemTxResult res; |
2124 | uint64_t data; | |
79ed0416 PM |
2125 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2126 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2127 | |
2128 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2129 | switch (size) { |
66b9b43c | 2130 | case 1: |
79ed0416 | 2131 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2132 | break; |
2133 | case 2: | |
79ed0416 | 2134 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2135 | break; |
2136 | case 4: | |
79ed0416 | 2137 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2138 | break; |
1ec9b909 AK |
2139 | default: abort(); |
2140 | } | |
66b9b43c PM |
2141 | *pdata = data; |
2142 | return res; | |
6658ffb8 PB |
2143 | } |
2144 | ||
66b9b43c PM |
2145 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2146 | uint64_t val, unsigned size, | |
2147 | MemTxAttrs attrs) | |
6658ffb8 | 2148 | { |
66b9b43c | 2149 | MemTxResult res; |
79ed0416 PM |
2150 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2151 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2152 | |
2153 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2154 | switch (size) { |
67364150 | 2155 | case 1: |
79ed0416 | 2156 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2157 | break; |
2158 | case 2: | |
79ed0416 | 2159 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2160 | break; |
2161 | case 4: | |
79ed0416 | 2162 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2163 | break; |
1ec9b909 AK |
2164 | default: abort(); |
2165 | } | |
66b9b43c | 2166 | return res; |
6658ffb8 PB |
2167 | } |
2168 | ||
1ec9b909 | 2169 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2170 | .read_with_attrs = watch_mem_read, |
2171 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2172 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2173 | }; |
6658ffb8 | 2174 | |
f25a49e0 PM |
2175 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2176 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2177 | { |
acc9d80b | 2178 | subpage_t *subpage = opaque; |
ff6cff75 | 2179 | uint8_t buf[8]; |
5c9eb028 | 2180 | MemTxResult res; |
791af8c8 | 2181 | |
db7b5426 | 2182 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2183 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2184 | subpage, len, addr); |
db7b5426 | 2185 | #endif |
5c9eb028 PM |
2186 | res = address_space_read(subpage->as, addr + subpage->base, |
2187 | attrs, buf, len); | |
2188 | if (res) { | |
2189 | return res; | |
f25a49e0 | 2190 | } |
acc9d80b JK |
2191 | switch (len) { |
2192 | case 1: | |
f25a49e0 PM |
2193 | *data = ldub_p(buf); |
2194 | return MEMTX_OK; | |
acc9d80b | 2195 | case 2: |
f25a49e0 PM |
2196 | *data = lduw_p(buf); |
2197 | return MEMTX_OK; | |
acc9d80b | 2198 | case 4: |
f25a49e0 PM |
2199 | *data = ldl_p(buf); |
2200 | return MEMTX_OK; | |
ff6cff75 | 2201 | case 8: |
f25a49e0 PM |
2202 | *data = ldq_p(buf); |
2203 | return MEMTX_OK; | |
acc9d80b JK |
2204 | default: |
2205 | abort(); | |
2206 | } | |
db7b5426 BS |
2207 | } |
2208 | ||
f25a49e0 PM |
2209 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2210 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2211 | { |
acc9d80b | 2212 | subpage_t *subpage = opaque; |
ff6cff75 | 2213 | uint8_t buf[8]; |
acc9d80b | 2214 | |
db7b5426 | 2215 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2216 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2217 | " value %"PRIx64"\n", |
2218 | __func__, subpage, len, addr, value); | |
db7b5426 | 2219 | #endif |
acc9d80b JK |
2220 | switch (len) { |
2221 | case 1: | |
2222 | stb_p(buf, value); | |
2223 | break; | |
2224 | case 2: | |
2225 | stw_p(buf, value); | |
2226 | break; | |
2227 | case 4: | |
2228 | stl_p(buf, value); | |
2229 | break; | |
ff6cff75 PB |
2230 | case 8: |
2231 | stq_p(buf, value); | |
2232 | break; | |
acc9d80b JK |
2233 | default: |
2234 | abort(); | |
2235 | } | |
5c9eb028 PM |
2236 | return address_space_write(subpage->as, addr + subpage->base, |
2237 | attrs, buf, len); | |
db7b5426 BS |
2238 | } |
2239 | ||
c353e4cc | 2240 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2241 | unsigned len, bool is_write) |
c353e4cc | 2242 | { |
acc9d80b | 2243 | subpage_t *subpage = opaque; |
c353e4cc | 2244 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2245 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2246 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2247 | #endif |
2248 | ||
acc9d80b | 2249 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2250 | len, is_write); |
c353e4cc PB |
2251 | } |
2252 | ||
70c68e44 | 2253 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2254 | .read_with_attrs = subpage_read, |
2255 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2256 | .impl.min_access_size = 1, |
2257 | .impl.max_access_size = 8, | |
2258 | .valid.min_access_size = 1, | |
2259 | .valid.max_access_size = 8, | |
c353e4cc | 2260 | .valid.accepts = subpage_accepts, |
70c68e44 | 2261 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2262 | }; |
2263 | ||
c227f099 | 2264 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2265 | uint16_t section) |
db7b5426 BS |
2266 | { |
2267 | int idx, eidx; | |
2268 | ||
2269 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2270 | return -1; | |
2271 | idx = SUBPAGE_IDX(start); | |
2272 | eidx = SUBPAGE_IDX(end); | |
2273 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2274 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2275 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2276 | #endif |
db7b5426 | 2277 | for (; idx <= eidx; idx++) { |
5312bd8b | 2278 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2279 | } |
2280 | ||
2281 | return 0; | |
2282 | } | |
2283 | ||
acc9d80b | 2284 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2285 | { |
c227f099 | 2286 | subpage_t *mmio; |
db7b5426 | 2287 | |
7267c094 | 2288 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2289 | |
acc9d80b | 2290 | mmio->as = as; |
1eec614b | 2291 | mmio->base = base; |
2c9b15ca | 2292 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2293 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2294 | mmio->iomem.subpage = true; |
db7b5426 | 2295 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2296 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2297 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2298 | #endif |
b41aac4f | 2299 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2300 | |
2301 | return mmio; | |
2302 | } | |
2303 | ||
a656e22f PC |
2304 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2305 | MemoryRegion *mr) | |
5312bd8b | 2306 | { |
a656e22f | 2307 | assert(as); |
5312bd8b | 2308 | MemoryRegionSection section = { |
a656e22f | 2309 | .address_space = as, |
5312bd8b AK |
2310 | .mr = mr, |
2311 | .offset_within_address_space = 0, | |
2312 | .offset_within_region = 0, | |
052e87b0 | 2313 | .size = int128_2_64(), |
5312bd8b AK |
2314 | }; |
2315 | ||
53cb28cb | 2316 | return phys_section_add(map, §ion); |
5312bd8b AK |
2317 | } |
2318 | ||
a54c87b6 | 2319 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2320 | { |
a54c87b6 PM |
2321 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2322 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2323 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2324 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2325 | |
2326 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2327 | } |
2328 | ||
e9179ce1 AK |
2329 | static void io_mem_init(void) |
2330 | { | |
1f6245e5 | 2331 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2332 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2333 | NULL, UINT64_MAX); |
2c9b15ca | 2334 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2335 | NULL, UINT64_MAX); |
2c9b15ca | 2336 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2337 | NULL, UINT64_MAX); |
e9179ce1 AK |
2338 | } |
2339 | ||
ac1970fb | 2340 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2341 | { |
2342 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2343 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2344 | uint16_t n; | |
2345 | ||
a656e22f | 2346 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2347 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2348 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2349 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2350 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2351 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2352 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2353 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2354 | |
9736e55b | 2355 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2356 | d->as = as; |
2357 | as->next_dispatch = d; | |
2358 | } | |
2359 | ||
79e2b9ae PB |
2360 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2361 | { | |
2362 | phys_sections_free(&d->map); | |
2363 | g_free(d); | |
2364 | } | |
2365 | ||
00752703 | 2366 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2367 | { |
89ae337a | 2368 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2369 | AddressSpaceDispatch *cur = as->dispatch; |
2370 | AddressSpaceDispatch *next = as->next_dispatch; | |
2371 | ||
53cb28cb | 2372 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2373 | |
79e2b9ae | 2374 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2375 | if (cur) { |
79e2b9ae | 2376 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2377 | } |
9affd6fc PB |
2378 | } |
2379 | ||
1d71148e | 2380 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2381 | { |
32857f4d PM |
2382 | CPUAddressSpace *cpuas; |
2383 | AddressSpaceDispatch *d; | |
117712c3 AK |
2384 | |
2385 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2386 | reset the modified entries */ | |
32857f4d PM |
2387 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2388 | cpu_reloading_memory_map(); | |
2389 | /* The CPU and TLB are protected by the iothread lock. | |
2390 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2391 | * may have split the RCU critical section. | |
2392 | */ | |
2393 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2394 | cpuas->memory_dispatch = d; | |
2395 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2396 | } |
2397 | ||
ac1970fb AK |
2398 | void address_space_init_dispatch(AddressSpace *as) |
2399 | { | |
00752703 | 2400 | as->dispatch = NULL; |
89ae337a | 2401 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2402 | .begin = mem_begin, |
00752703 | 2403 | .commit = mem_commit, |
ac1970fb AK |
2404 | .region_add = mem_add, |
2405 | .region_nop = mem_add, | |
2406 | .priority = 0, | |
2407 | }; | |
89ae337a | 2408 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2409 | } |
2410 | ||
6e48e8f9 PB |
2411 | void address_space_unregister(AddressSpace *as) |
2412 | { | |
2413 | memory_listener_unregister(&as->dispatch_listener); | |
2414 | } | |
2415 | ||
83f3c251 AK |
2416 | void address_space_destroy_dispatch(AddressSpace *as) |
2417 | { | |
2418 | AddressSpaceDispatch *d = as->dispatch; | |
2419 | ||
79e2b9ae PB |
2420 | atomic_rcu_set(&as->dispatch, NULL); |
2421 | if (d) { | |
2422 | call_rcu(d, address_space_dispatch_free, rcu); | |
2423 | } | |
83f3c251 AK |
2424 | } |
2425 | ||
62152b8a AK |
2426 | static void memory_map_init(void) |
2427 | { | |
7267c094 | 2428 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2429 | |
57271d63 | 2430 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2431 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2432 | |
7267c094 | 2433 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2434 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2435 | 65536); | |
7dca8043 | 2436 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2437 | } |
2438 | ||
2439 | MemoryRegion *get_system_memory(void) | |
2440 | { | |
2441 | return system_memory; | |
2442 | } | |
2443 | ||
309cb471 AK |
2444 | MemoryRegion *get_system_io(void) |
2445 | { | |
2446 | return system_io; | |
2447 | } | |
2448 | ||
e2eef170 PB |
2449 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2450 | ||
13eb76e0 FB |
2451 | /* physical memory access (slow version, mainly for debug) */ |
2452 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2453 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2454 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2455 | { |
2456 | int l, flags; | |
2457 | target_ulong page; | |
53a5960a | 2458 | void * p; |
13eb76e0 FB |
2459 | |
2460 | while (len > 0) { | |
2461 | page = addr & TARGET_PAGE_MASK; | |
2462 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2463 | if (l > len) | |
2464 | l = len; | |
2465 | flags = page_get_flags(page); | |
2466 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2467 | return -1; |
13eb76e0 FB |
2468 | if (is_write) { |
2469 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2470 | return -1; |
579a97f7 | 2471 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2472 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2473 | return -1; |
72fb7daa AJ |
2474 | memcpy(p, buf, l); |
2475 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2476 | } else { |
2477 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2478 | return -1; |
579a97f7 | 2479 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2480 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2481 | return -1; |
72fb7daa | 2482 | memcpy(buf, p, l); |
5b257578 | 2483 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2484 | } |
2485 | len -= l; | |
2486 | buf += l; | |
2487 | addr += l; | |
2488 | } | |
a68fe89c | 2489 | return 0; |
13eb76e0 | 2490 | } |
8df1cd07 | 2491 | |
13eb76e0 | 2492 | #else |
51d7a9eb | 2493 | |
845b6214 | 2494 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2495 | hwaddr length) |
51d7a9eb | 2496 | { |
e87f7778 PB |
2497 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2498 | /* No early return if dirty_log_mask is or becomes 0, because | |
2499 | * cpu_physical_memory_set_dirty_range will still call | |
2500 | * xen_modified_memory. | |
2501 | */ | |
2502 | if (dirty_log_mask) { | |
2503 | dirty_log_mask = | |
2504 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2505 | } | |
2506 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2507 | tb_invalidate_phys_range(addr, addr + length); | |
2508 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2509 | } |
e87f7778 | 2510 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2511 | } |
2512 | ||
23326164 | 2513 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2514 | { |
e1622f4b | 2515 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2516 | |
2517 | /* Regions are assumed to support 1-4 byte accesses unless | |
2518 | otherwise specified. */ | |
23326164 RH |
2519 | if (access_size_max == 0) { |
2520 | access_size_max = 4; | |
2521 | } | |
2522 | ||
2523 | /* Bound the maximum access by the alignment of the address. */ | |
2524 | if (!mr->ops->impl.unaligned) { | |
2525 | unsigned align_size_max = addr & -addr; | |
2526 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2527 | access_size_max = align_size_max; | |
2528 | } | |
82f2563f | 2529 | } |
23326164 RH |
2530 | |
2531 | /* Don't attempt accesses larger than the maximum. */ | |
2532 | if (l > access_size_max) { | |
2533 | l = access_size_max; | |
82f2563f | 2534 | } |
6554f5c0 | 2535 | l = pow2floor(l); |
23326164 RH |
2536 | |
2537 | return l; | |
82f2563f PB |
2538 | } |
2539 | ||
4840f10e | 2540 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2541 | { |
4840f10e JK |
2542 | bool unlocked = !qemu_mutex_iothread_locked(); |
2543 | bool release_lock = false; | |
2544 | ||
2545 | if (unlocked && mr->global_locking) { | |
2546 | qemu_mutex_lock_iothread(); | |
2547 | unlocked = false; | |
2548 | release_lock = true; | |
2549 | } | |
125b3806 | 2550 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2551 | if (unlocked) { |
2552 | qemu_mutex_lock_iothread(); | |
2553 | } | |
125b3806 | 2554 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2555 | if (unlocked) { |
2556 | qemu_mutex_unlock_iothread(); | |
2557 | } | |
125b3806 | 2558 | } |
4840f10e JK |
2559 | |
2560 | return release_lock; | |
125b3806 PB |
2561 | } |
2562 | ||
a203ac70 PB |
2563 | /* Called within RCU critical section. */ |
2564 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2565 | MemTxAttrs attrs, | |
2566 | const uint8_t *buf, | |
2567 | int len, hwaddr addr1, | |
2568 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2569 | { |
13eb76e0 | 2570 | uint8_t *ptr; |
791af8c8 | 2571 | uint64_t val; |
3b643495 | 2572 | MemTxResult result = MEMTX_OK; |
4840f10e | 2573 | bool release_lock = false; |
3b46e624 | 2574 | |
a203ac70 | 2575 | for (;;) { |
eb7eeb88 PB |
2576 | if (!memory_access_is_direct(mr, true)) { |
2577 | release_lock |= prepare_mmio_access(mr); | |
2578 | l = memory_access_size(mr, l, addr1); | |
2579 | /* XXX: could force current_cpu to NULL to avoid | |
2580 | potential bugs */ | |
2581 | switch (l) { | |
2582 | case 8: | |
2583 | /* 64 bit write access */ | |
2584 | val = ldq_p(buf); | |
2585 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2586 | attrs); | |
2587 | break; | |
2588 | case 4: | |
2589 | /* 32 bit write access */ | |
2590 | val = ldl_p(buf); | |
2591 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2592 | attrs); | |
2593 | break; | |
2594 | case 2: | |
2595 | /* 16 bit write access */ | |
2596 | val = lduw_p(buf); | |
2597 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2598 | attrs); | |
2599 | break; | |
2600 | case 1: | |
2601 | /* 8 bit write access */ | |
2602 | val = ldub_p(buf); | |
2603 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2604 | attrs); | |
2605 | break; | |
2606 | default: | |
2607 | abort(); | |
13eb76e0 FB |
2608 | } |
2609 | } else { | |
eb7eeb88 PB |
2610 | addr1 += memory_region_get_ram_addr(mr); |
2611 | /* RAM case */ | |
2612 | ptr = qemu_get_ram_ptr(addr1); | |
2613 | memcpy(ptr, buf, l); | |
2614 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2615 | } |
4840f10e JK |
2616 | |
2617 | if (release_lock) { | |
2618 | qemu_mutex_unlock_iothread(); | |
2619 | release_lock = false; | |
2620 | } | |
2621 | ||
13eb76e0 FB |
2622 | len -= l; |
2623 | buf += l; | |
2624 | addr += l; | |
a203ac70 PB |
2625 | |
2626 | if (!len) { | |
2627 | break; | |
2628 | } | |
2629 | ||
2630 | l = len; | |
2631 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2632 | } |
fd8aaa76 | 2633 | |
3b643495 | 2634 | return result; |
13eb76e0 | 2635 | } |
8df1cd07 | 2636 | |
a203ac70 PB |
2637 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2638 | const uint8_t *buf, int len) | |
ac1970fb | 2639 | { |
eb7eeb88 | 2640 | hwaddr l; |
eb7eeb88 PB |
2641 | hwaddr addr1; |
2642 | MemoryRegion *mr; | |
2643 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2644 | |
a203ac70 PB |
2645 | if (len > 0) { |
2646 | rcu_read_lock(); | |
eb7eeb88 | 2647 | l = len; |
a203ac70 PB |
2648 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2649 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2650 | addr1, l, mr); | |
2651 | rcu_read_unlock(); | |
2652 | } | |
2653 | ||
2654 | return result; | |
2655 | } | |
2656 | ||
2657 | /* Called within RCU critical section. */ | |
2658 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2659 | MemTxAttrs attrs, uint8_t *buf, | |
2660 | int len, hwaddr addr1, hwaddr l, | |
2661 | MemoryRegion *mr) | |
2662 | { | |
2663 | uint8_t *ptr; | |
2664 | uint64_t val; | |
2665 | MemTxResult result = MEMTX_OK; | |
2666 | bool release_lock = false; | |
eb7eeb88 | 2667 | |
a203ac70 | 2668 | for (;;) { |
eb7eeb88 PB |
2669 | if (!memory_access_is_direct(mr, false)) { |
2670 | /* I/O case */ | |
2671 | release_lock |= prepare_mmio_access(mr); | |
2672 | l = memory_access_size(mr, l, addr1); | |
2673 | switch (l) { | |
2674 | case 8: | |
2675 | /* 64 bit read access */ | |
2676 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2677 | attrs); | |
2678 | stq_p(buf, val); | |
2679 | break; | |
2680 | case 4: | |
2681 | /* 32 bit read access */ | |
2682 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2683 | attrs); | |
2684 | stl_p(buf, val); | |
2685 | break; | |
2686 | case 2: | |
2687 | /* 16 bit read access */ | |
2688 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2689 | attrs); | |
2690 | stw_p(buf, val); | |
2691 | break; | |
2692 | case 1: | |
2693 | /* 8 bit read access */ | |
2694 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2695 | attrs); | |
2696 | stb_p(buf, val); | |
2697 | break; | |
2698 | default: | |
2699 | abort(); | |
2700 | } | |
2701 | } else { | |
2702 | /* RAM case */ | |
2703 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2704 | memcpy(buf, ptr, l); | |
2705 | } | |
2706 | ||
2707 | if (release_lock) { | |
2708 | qemu_mutex_unlock_iothread(); | |
2709 | release_lock = false; | |
2710 | } | |
2711 | ||
2712 | len -= l; | |
2713 | buf += l; | |
2714 | addr += l; | |
a203ac70 PB |
2715 | |
2716 | if (!len) { | |
2717 | break; | |
2718 | } | |
2719 | ||
2720 | l = len; | |
2721 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2722 | } | |
2723 | ||
2724 | return result; | |
2725 | } | |
2726 | ||
3cc8f884 PB |
2727 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2728 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2729 | { |
2730 | hwaddr l; | |
2731 | hwaddr addr1; | |
2732 | MemoryRegion *mr; | |
2733 | MemTxResult result = MEMTX_OK; | |
2734 | ||
2735 | if (len > 0) { | |
2736 | rcu_read_lock(); | |
2737 | l = len; | |
2738 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2739 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2740 | addr1, l, mr); | |
2741 | rcu_read_unlock(); | |
eb7eeb88 | 2742 | } |
eb7eeb88 PB |
2743 | |
2744 | return result; | |
ac1970fb AK |
2745 | } |
2746 | ||
eb7eeb88 PB |
2747 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2748 | uint8_t *buf, int len, bool is_write) | |
2749 | { | |
2750 | if (is_write) { | |
2751 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2752 | } else { | |
2753 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2754 | } | |
2755 | } | |
ac1970fb | 2756 | |
a8170e5e | 2757 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2758 | int len, int is_write) |
2759 | { | |
5c9eb028 PM |
2760 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2761 | buf, len, is_write); | |
ac1970fb AK |
2762 | } |
2763 | ||
582b55a9 AG |
2764 | enum write_rom_type { |
2765 | WRITE_DATA, | |
2766 | FLUSH_CACHE, | |
2767 | }; | |
2768 | ||
2a221651 | 2769 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2770 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2771 | { |
149f54b5 | 2772 | hwaddr l; |
d0ecd2aa | 2773 | uint8_t *ptr; |
149f54b5 | 2774 | hwaddr addr1; |
5c8a00ce | 2775 | MemoryRegion *mr; |
3b46e624 | 2776 | |
41063e1e | 2777 | rcu_read_lock(); |
d0ecd2aa | 2778 | while (len > 0) { |
149f54b5 | 2779 | l = len; |
2a221651 | 2780 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2781 | |
5c8a00ce PB |
2782 | if (!(memory_region_is_ram(mr) || |
2783 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2784 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2785 | } else { |
5c8a00ce | 2786 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2787 | /* ROM/RAM case */ |
5579c7f3 | 2788 | ptr = qemu_get_ram_ptr(addr1); |
582b55a9 AG |
2789 | switch (type) { |
2790 | case WRITE_DATA: | |
2791 | memcpy(ptr, buf, l); | |
845b6214 | 2792 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2793 | break; |
2794 | case FLUSH_CACHE: | |
2795 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2796 | break; | |
2797 | } | |
d0ecd2aa FB |
2798 | } |
2799 | len -= l; | |
2800 | buf += l; | |
2801 | addr += l; | |
2802 | } | |
41063e1e | 2803 | rcu_read_unlock(); |
d0ecd2aa FB |
2804 | } |
2805 | ||
582b55a9 | 2806 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2807 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2808 | const uint8_t *buf, int len) |
2809 | { | |
2a221651 | 2810 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2811 | } |
2812 | ||
2813 | void cpu_flush_icache_range(hwaddr start, int len) | |
2814 | { | |
2815 | /* | |
2816 | * This function should do the same thing as an icache flush that was | |
2817 | * triggered from within the guest. For TCG we are always cache coherent, | |
2818 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2819 | * the host's instruction cache at least. | |
2820 | */ | |
2821 | if (tcg_enabled()) { | |
2822 | return; | |
2823 | } | |
2824 | ||
2a221651 EI |
2825 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2826 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2827 | } |
2828 | ||
6d16c2f8 | 2829 | typedef struct { |
d3e71559 | 2830 | MemoryRegion *mr; |
6d16c2f8 | 2831 | void *buffer; |
a8170e5e AK |
2832 | hwaddr addr; |
2833 | hwaddr len; | |
c2cba0ff | 2834 | bool in_use; |
6d16c2f8 AL |
2835 | } BounceBuffer; |
2836 | ||
2837 | static BounceBuffer bounce; | |
2838 | ||
ba223c29 | 2839 | typedef struct MapClient { |
e95205e1 | 2840 | QEMUBH *bh; |
72cf2d4f | 2841 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2842 | } MapClient; |
2843 | ||
38e047b5 | 2844 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2845 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2846 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2847 | |
e95205e1 FZ |
2848 | static void cpu_unregister_map_client_do(MapClient *client) |
2849 | { | |
2850 | QLIST_REMOVE(client, link); | |
2851 | g_free(client); | |
2852 | } | |
2853 | ||
33b6c2ed FZ |
2854 | static void cpu_notify_map_clients_locked(void) |
2855 | { | |
2856 | MapClient *client; | |
2857 | ||
2858 | while (!QLIST_EMPTY(&map_client_list)) { | |
2859 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2860 | qemu_bh_schedule(client->bh); |
2861 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2862 | } |
2863 | } | |
2864 | ||
e95205e1 | 2865 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2866 | { |
7267c094 | 2867 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2868 | |
38e047b5 | 2869 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2870 | client->bh = bh; |
72cf2d4f | 2871 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2872 | if (!atomic_read(&bounce.in_use)) { |
2873 | cpu_notify_map_clients_locked(); | |
2874 | } | |
38e047b5 | 2875 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2876 | } |
2877 | ||
38e047b5 | 2878 | void cpu_exec_init_all(void) |
ba223c29 | 2879 | { |
38e047b5 | 2880 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2881 | io_mem_init(); |
680a4783 | 2882 | memory_map_init(); |
38e047b5 | 2883 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2884 | } |
2885 | ||
e95205e1 | 2886 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2887 | { |
2888 | MapClient *client; | |
2889 | ||
e95205e1 FZ |
2890 | qemu_mutex_lock(&map_client_list_lock); |
2891 | QLIST_FOREACH(client, &map_client_list, link) { | |
2892 | if (client->bh == bh) { | |
2893 | cpu_unregister_map_client_do(client); | |
2894 | break; | |
2895 | } | |
ba223c29 | 2896 | } |
e95205e1 | 2897 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2898 | } |
2899 | ||
2900 | static void cpu_notify_map_clients(void) | |
2901 | { | |
38e047b5 | 2902 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2903 | cpu_notify_map_clients_locked(); |
38e047b5 | 2904 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2905 | } |
2906 | ||
51644ab7 PB |
2907 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2908 | { | |
5c8a00ce | 2909 | MemoryRegion *mr; |
51644ab7 PB |
2910 | hwaddr l, xlat; |
2911 | ||
41063e1e | 2912 | rcu_read_lock(); |
51644ab7 PB |
2913 | while (len > 0) { |
2914 | l = len; | |
5c8a00ce PB |
2915 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2916 | if (!memory_access_is_direct(mr, is_write)) { | |
2917 | l = memory_access_size(mr, l, addr); | |
2918 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2919 | return false; |
2920 | } | |
2921 | } | |
2922 | ||
2923 | len -= l; | |
2924 | addr += l; | |
2925 | } | |
41063e1e | 2926 | rcu_read_unlock(); |
51644ab7 PB |
2927 | return true; |
2928 | } | |
2929 | ||
6d16c2f8 AL |
2930 | /* Map a physical memory region into a host virtual address. |
2931 | * May map a subset of the requested range, given by and returned in *plen. | |
2932 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2933 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2934 | * Use cpu_register_map_client() to know when retrying the map operation is |
2935 | * likely to succeed. | |
6d16c2f8 | 2936 | */ |
ac1970fb | 2937 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2938 | hwaddr addr, |
2939 | hwaddr *plen, | |
ac1970fb | 2940 | bool is_write) |
6d16c2f8 | 2941 | { |
a8170e5e | 2942 | hwaddr len = *plen; |
e3127ae0 PB |
2943 | hwaddr done = 0; |
2944 | hwaddr l, xlat, base; | |
2945 | MemoryRegion *mr, *this_mr; | |
2946 | ram_addr_t raddr; | |
e81bcda5 | 2947 | void *ptr; |
6d16c2f8 | 2948 | |
e3127ae0 PB |
2949 | if (len == 0) { |
2950 | return NULL; | |
2951 | } | |
38bee5dc | 2952 | |
e3127ae0 | 2953 | l = len; |
41063e1e | 2954 | rcu_read_lock(); |
e3127ae0 | 2955 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2956 | |
e3127ae0 | 2957 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2958 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2959 | rcu_read_unlock(); |
e3127ae0 | 2960 | return NULL; |
6d16c2f8 | 2961 | } |
e85d9db5 KW |
2962 | /* Avoid unbounded allocations */ |
2963 | l = MIN(l, TARGET_PAGE_SIZE); | |
2964 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2965 | bounce.addr = addr; |
2966 | bounce.len = l; | |
d3e71559 PB |
2967 | |
2968 | memory_region_ref(mr); | |
2969 | bounce.mr = mr; | |
e3127ae0 | 2970 | if (!is_write) { |
5c9eb028 PM |
2971 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2972 | bounce.buffer, l); | |
8ab934f9 | 2973 | } |
6d16c2f8 | 2974 | |
41063e1e | 2975 | rcu_read_unlock(); |
e3127ae0 PB |
2976 | *plen = l; |
2977 | return bounce.buffer; | |
2978 | } | |
2979 | ||
2980 | base = xlat; | |
2981 | raddr = memory_region_get_ram_addr(mr); | |
2982 | ||
2983 | for (;;) { | |
6d16c2f8 AL |
2984 | len -= l; |
2985 | addr += l; | |
e3127ae0 PB |
2986 | done += l; |
2987 | if (len == 0) { | |
2988 | break; | |
2989 | } | |
2990 | ||
2991 | l = len; | |
2992 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2993 | if (this_mr != mr || xlat != base + done) { | |
2994 | break; | |
2995 | } | |
6d16c2f8 | 2996 | } |
e3127ae0 | 2997 | |
d3e71559 | 2998 | memory_region_ref(mr); |
e3127ae0 | 2999 | *plen = done; |
e81bcda5 PB |
3000 | ptr = qemu_ram_ptr_length(raddr + base, plen); |
3001 | rcu_read_unlock(); | |
3002 | ||
3003 | return ptr; | |
6d16c2f8 AL |
3004 | } |
3005 | ||
ac1970fb | 3006 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3007 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3008 | * the amount of memory that was actually read or written by the caller. | |
3009 | */ | |
a8170e5e AK |
3010 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3011 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3012 | { |
3013 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3014 | MemoryRegion *mr; |
3015 | ram_addr_t addr1; | |
3016 | ||
3017 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
3018 | assert(mr != NULL); | |
6d16c2f8 | 3019 | if (is_write) { |
845b6214 | 3020 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3021 | } |
868bb33f | 3022 | if (xen_enabled()) { |
e41d7c69 | 3023 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3024 | } |
d3e71559 | 3025 | memory_region_unref(mr); |
6d16c2f8 AL |
3026 | return; |
3027 | } | |
3028 | if (is_write) { | |
5c9eb028 PM |
3029 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3030 | bounce.buffer, access_len); | |
6d16c2f8 | 3031 | } |
f8a83245 | 3032 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3033 | bounce.buffer = NULL; |
d3e71559 | 3034 | memory_region_unref(bounce.mr); |
c2cba0ff | 3035 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3036 | cpu_notify_map_clients(); |
6d16c2f8 | 3037 | } |
d0ecd2aa | 3038 | |
a8170e5e AK |
3039 | void *cpu_physical_memory_map(hwaddr addr, |
3040 | hwaddr *plen, | |
ac1970fb AK |
3041 | int is_write) |
3042 | { | |
3043 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3044 | } | |
3045 | ||
a8170e5e AK |
3046 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3047 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3048 | { |
3049 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3050 | } | |
3051 | ||
8df1cd07 | 3052 | /* warning: addr must be aligned */ |
50013115 PM |
3053 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3054 | MemTxAttrs attrs, | |
3055 | MemTxResult *result, | |
3056 | enum device_endian endian) | |
8df1cd07 | 3057 | { |
8df1cd07 | 3058 | uint8_t *ptr; |
791af8c8 | 3059 | uint64_t val; |
5c8a00ce | 3060 | MemoryRegion *mr; |
149f54b5 PB |
3061 | hwaddr l = 4; |
3062 | hwaddr addr1; | |
50013115 | 3063 | MemTxResult r; |
4840f10e | 3064 | bool release_lock = false; |
8df1cd07 | 3065 | |
41063e1e | 3066 | rcu_read_lock(); |
fdfba1a2 | 3067 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3068 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3069 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3070 | |
8df1cd07 | 3071 | /* I/O case */ |
50013115 | 3072 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3073 | #if defined(TARGET_WORDS_BIGENDIAN) |
3074 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3075 | val = bswap32(val); | |
3076 | } | |
3077 | #else | |
3078 | if (endian == DEVICE_BIG_ENDIAN) { | |
3079 | val = bswap32(val); | |
3080 | } | |
3081 | #endif | |
8df1cd07 FB |
3082 | } else { |
3083 | /* RAM case */ | |
5c8a00ce | 3084 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3085 | & TARGET_PAGE_MASK) |
149f54b5 | 3086 | + addr1); |
1e78bcc1 AG |
3087 | switch (endian) { |
3088 | case DEVICE_LITTLE_ENDIAN: | |
3089 | val = ldl_le_p(ptr); | |
3090 | break; | |
3091 | case DEVICE_BIG_ENDIAN: | |
3092 | val = ldl_be_p(ptr); | |
3093 | break; | |
3094 | default: | |
3095 | val = ldl_p(ptr); | |
3096 | break; | |
3097 | } | |
50013115 PM |
3098 | r = MEMTX_OK; |
3099 | } | |
3100 | if (result) { | |
3101 | *result = r; | |
8df1cd07 | 3102 | } |
4840f10e JK |
3103 | if (release_lock) { |
3104 | qemu_mutex_unlock_iothread(); | |
3105 | } | |
41063e1e | 3106 | rcu_read_unlock(); |
8df1cd07 FB |
3107 | return val; |
3108 | } | |
3109 | ||
50013115 PM |
3110 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3111 | MemTxAttrs attrs, MemTxResult *result) | |
3112 | { | |
3113 | return address_space_ldl_internal(as, addr, attrs, result, | |
3114 | DEVICE_NATIVE_ENDIAN); | |
3115 | } | |
3116 | ||
3117 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3118 | MemTxAttrs attrs, MemTxResult *result) | |
3119 | { | |
3120 | return address_space_ldl_internal(as, addr, attrs, result, | |
3121 | DEVICE_LITTLE_ENDIAN); | |
3122 | } | |
3123 | ||
3124 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3125 | MemTxAttrs attrs, MemTxResult *result) | |
3126 | { | |
3127 | return address_space_ldl_internal(as, addr, attrs, result, | |
3128 | DEVICE_BIG_ENDIAN); | |
3129 | } | |
3130 | ||
fdfba1a2 | 3131 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3132 | { |
50013115 | 3133 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3134 | } |
3135 | ||
fdfba1a2 | 3136 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3137 | { |
50013115 | 3138 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3139 | } |
3140 | ||
fdfba1a2 | 3141 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3142 | { |
50013115 | 3143 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3144 | } |
3145 | ||
84b7b8e7 | 3146 | /* warning: addr must be aligned */ |
50013115 PM |
3147 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3148 | MemTxAttrs attrs, | |
3149 | MemTxResult *result, | |
3150 | enum device_endian endian) | |
84b7b8e7 | 3151 | { |
84b7b8e7 FB |
3152 | uint8_t *ptr; |
3153 | uint64_t val; | |
5c8a00ce | 3154 | MemoryRegion *mr; |
149f54b5 PB |
3155 | hwaddr l = 8; |
3156 | hwaddr addr1; | |
50013115 | 3157 | MemTxResult r; |
4840f10e | 3158 | bool release_lock = false; |
84b7b8e7 | 3159 | |
41063e1e | 3160 | rcu_read_lock(); |
2c17449b | 3161 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3162 | false); |
3163 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3164 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3165 | |
84b7b8e7 | 3166 | /* I/O case */ |
50013115 | 3167 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3168 | #if defined(TARGET_WORDS_BIGENDIAN) |
3169 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3170 | val = bswap64(val); | |
3171 | } | |
3172 | #else | |
3173 | if (endian == DEVICE_BIG_ENDIAN) { | |
3174 | val = bswap64(val); | |
3175 | } | |
84b7b8e7 FB |
3176 | #endif |
3177 | } else { | |
3178 | /* RAM case */ | |
5c8a00ce | 3179 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3180 | & TARGET_PAGE_MASK) |
149f54b5 | 3181 | + addr1); |
1e78bcc1 AG |
3182 | switch (endian) { |
3183 | case DEVICE_LITTLE_ENDIAN: | |
3184 | val = ldq_le_p(ptr); | |
3185 | break; | |
3186 | case DEVICE_BIG_ENDIAN: | |
3187 | val = ldq_be_p(ptr); | |
3188 | break; | |
3189 | default: | |
3190 | val = ldq_p(ptr); | |
3191 | break; | |
3192 | } | |
50013115 PM |
3193 | r = MEMTX_OK; |
3194 | } | |
3195 | if (result) { | |
3196 | *result = r; | |
84b7b8e7 | 3197 | } |
4840f10e JK |
3198 | if (release_lock) { |
3199 | qemu_mutex_unlock_iothread(); | |
3200 | } | |
41063e1e | 3201 | rcu_read_unlock(); |
84b7b8e7 FB |
3202 | return val; |
3203 | } | |
3204 | ||
50013115 PM |
3205 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3206 | MemTxAttrs attrs, MemTxResult *result) | |
3207 | { | |
3208 | return address_space_ldq_internal(as, addr, attrs, result, | |
3209 | DEVICE_NATIVE_ENDIAN); | |
3210 | } | |
3211 | ||
3212 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3213 | MemTxAttrs attrs, MemTxResult *result) | |
3214 | { | |
3215 | return address_space_ldq_internal(as, addr, attrs, result, | |
3216 | DEVICE_LITTLE_ENDIAN); | |
3217 | } | |
3218 | ||
3219 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3220 | MemTxAttrs attrs, MemTxResult *result) | |
3221 | { | |
3222 | return address_space_ldq_internal(as, addr, attrs, result, | |
3223 | DEVICE_BIG_ENDIAN); | |
3224 | } | |
3225 | ||
2c17449b | 3226 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3227 | { |
50013115 | 3228 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3229 | } |
3230 | ||
2c17449b | 3231 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3232 | { |
50013115 | 3233 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3234 | } |
3235 | ||
2c17449b | 3236 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3237 | { |
50013115 | 3238 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3239 | } |
3240 | ||
aab33094 | 3241 | /* XXX: optimize */ |
50013115 PM |
3242 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3243 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3244 | { |
3245 | uint8_t val; | |
50013115 PM |
3246 | MemTxResult r; |
3247 | ||
3248 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3249 | if (result) { | |
3250 | *result = r; | |
3251 | } | |
aab33094 FB |
3252 | return val; |
3253 | } | |
3254 | ||
50013115 PM |
3255 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3256 | { | |
3257 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3258 | } | |
3259 | ||
733f0b02 | 3260 | /* warning: addr must be aligned */ |
50013115 PM |
3261 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3262 | hwaddr addr, | |
3263 | MemTxAttrs attrs, | |
3264 | MemTxResult *result, | |
3265 | enum device_endian endian) | |
aab33094 | 3266 | { |
733f0b02 MT |
3267 | uint8_t *ptr; |
3268 | uint64_t val; | |
5c8a00ce | 3269 | MemoryRegion *mr; |
149f54b5 PB |
3270 | hwaddr l = 2; |
3271 | hwaddr addr1; | |
50013115 | 3272 | MemTxResult r; |
4840f10e | 3273 | bool release_lock = false; |
733f0b02 | 3274 | |
41063e1e | 3275 | rcu_read_lock(); |
41701aa4 | 3276 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3277 | false); |
3278 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3279 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3280 | |
733f0b02 | 3281 | /* I/O case */ |
50013115 | 3282 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3283 | #if defined(TARGET_WORDS_BIGENDIAN) |
3284 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3285 | val = bswap16(val); | |
3286 | } | |
3287 | #else | |
3288 | if (endian == DEVICE_BIG_ENDIAN) { | |
3289 | val = bswap16(val); | |
3290 | } | |
3291 | #endif | |
733f0b02 MT |
3292 | } else { |
3293 | /* RAM case */ | |
5c8a00ce | 3294 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3295 | & TARGET_PAGE_MASK) |
149f54b5 | 3296 | + addr1); |
1e78bcc1 AG |
3297 | switch (endian) { |
3298 | case DEVICE_LITTLE_ENDIAN: | |
3299 | val = lduw_le_p(ptr); | |
3300 | break; | |
3301 | case DEVICE_BIG_ENDIAN: | |
3302 | val = lduw_be_p(ptr); | |
3303 | break; | |
3304 | default: | |
3305 | val = lduw_p(ptr); | |
3306 | break; | |
3307 | } | |
50013115 PM |
3308 | r = MEMTX_OK; |
3309 | } | |
3310 | if (result) { | |
3311 | *result = r; | |
733f0b02 | 3312 | } |
4840f10e JK |
3313 | if (release_lock) { |
3314 | qemu_mutex_unlock_iothread(); | |
3315 | } | |
41063e1e | 3316 | rcu_read_unlock(); |
733f0b02 | 3317 | return val; |
aab33094 FB |
3318 | } |
3319 | ||
50013115 PM |
3320 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3321 | MemTxAttrs attrs, MemTxResult *result) | |
3322 | { | |
3323 | return address_space_lduw_internal(as, addr, attrs, result, | |
3324 | DEVICE_NATIVE_ENDIAN); | |
3325 | } | |
3326 | ||
3327 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3328 | MemTxAttrs attrs, MemTxResult *result) | |
3329 | { | |
3330 | return address_space_lduw_internal(as, addr, attrs, result, | |
3331 | DEVICE_LITTLE_ENDIAN); | |
3332 | } | |
3333 | ||
3334 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3335 | MemTxAttrs attrs, MemTxResult *result) | |
3336 | { | |
3337 | return address_space_lduw_internal(as, addr, attrs, result, | |
3338 | DEVICE_BIG_ENDIAN); | |
3339 | } | |
3340 | ||
41701aa4 | 3341 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3342 | { |
50013115 | 3343 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3344 | } |
3345 | ||
41701aa4 | 3346 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3347 | { |
50013115 | 3348 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3349 | } |
3350 | ||
41701aa4 | 3351 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3352 | { |
50013115 | 3353 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3354 | } |
3355 | ||
8df1cd07 FB |
3356 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3357 | and the code inside is not invalidated. It is useful if the dirty | |
3358 | bits are used to track modified PTEs */ | |
50013115 PM |
3359 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3360 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3361 | { |
8df1cd07 | 3362 | uint8_t *ptr; |
5c8a00ce | 3363 | MemoryRegion *mr; |
149f54b5 PB |
3364 | hwaddr l = 4; |
3365 | hwaddr addr1; | |
50013115 | 3366 | MemTxResult r; |
845b6214 | 3367 | uint8_t dirty_log_mask; |
4840f10e | 3368 | bool release_lock = false; |
8df1cd07 | 3369 | |
41063e1e | 3370 | rcu_read_lock(); |
2198a121 | 3371 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3372 | true); |
3373 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3374 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3375 | |
50013115 | 3376 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3377 | } else { |
5c8a00ce | 3378 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3379 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3380 | stl_p(ptr, val); |
74576198 | 3381 | |
845b6214 PB |
3382 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3383 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3384 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3385 | r = MEMTX_OK; |
3386 | } | |
3387 | if (result) { | |
3388 | *result = r; | |
8df1cd07 | 3389 | } |
4840f10e JK |
3390 | if (release_lock) { |
3391 | qemu_mutex_unlock_iothread(); | |
3392 | } | |
41063e1e | 3393 | rcu_read_unlock(); |
8df1cd07 FB |
3394 | } |
3395 | ||
50013115 PM |
3396 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3397 | { | |
3398 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3399 | } | |
3400 | ||
8df1cd07 | 3401 | /* warning: addr must be aligned */ |
50013115 PM |
3402 | static inline void address_space_stl_internal(AddressSpace *as, |
3403 | hwaddr addr, uint32_t val, | |
3404 | MemTxAttrs attrs, | |
3405 | MemTxResult *result, | |
3406 | enum device_endian endian) | |
8df1cd07 | 3407 | { |
8df1cd07 | 3408 | uint8_t *ptr; |
5c8a00ce | 3409 | MemoryRegion *mr; |
149f54b5 PB |
3410 | hwaddr l = 4; |
3411 | hwaddr addr1; | |
50013115 | 3412 | MemTxResult r; |
4840f10e | 3413 | bool release_lock = false; |
8df1cd07 | 3414 | |
41063e1e | 3415 | rcu_read_lock(); |
ab1da857 | 3416 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3417 | true); |
3418 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3419 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3420 | |
1e78bcc1 AG |
3421 | #if defined(TARGET_WORDS_BIGENDIAN) |
3422 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3423 | val = bswap32(val); | |
3424 | } | |
3425 | #else | |
3426 | if (endian == DEVICE_BIG_ENDIAN) { | |
3427 | val = bswap32(val); | |
3428 | } | |
3429 | #endif | |
50013115 | 3430 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3431 | } else { |
8df1cd07 | 3432 | /* RAM case */ |
5c8a00ce | 3433 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3434 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3435 | switch (endian) { |
3436 | case DEVICE_LITTLE_ENDIAN: | |
3437 | stl_le_p(ptr, val); | |
3438 | break; | |
3439 | case DEVICE_BIG_ENDIAN: | |
3440 | stl_be_p(ptr, val); | |
3441 | break; | |
3442 | default: | |
3443 | stl_p(ptr, val); | |
3444 | break; | |
3445 | } | |
845b6214 | 3446 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3447 | r = MEMTX_OK; |
3448 | } | |
3449 | if (result) { | |
3450 | *result = r; | |
8df1cd07 | 3451 | } |
4840f10e JK |
3452 | if (release_lock) { |
3453 | qemu_mutex_unlock_iothread(); | |
3454 | } | |
41063e1e | 3455 | rcu_read_unlock(); |
8df1cd07 FB |
3456 | } |
3457 | ||
50013115 PM |
3458 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3459 | MemTxAttrs attrs, MemTxResult *result) | |
3460 | { | |
3461 | address_space_stl_internal(as, addr, val, attrs, result, | |
3462 | DEVICE_NATIVE_ENDIAN); | |
3463 | } | |
3464 | ||
3465 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3466 | MemTxAttrs attrs, MemTxResult *result) | |
3467 | { | |
3468 | address_space_stl_internal(as, addr, val, attrs, result, | |
3469 | DEVICE_LITTLE_ENDIAN); | |
3470 | } | |
3471 | ||
3472 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3473 | MemTxAttrs attrs, MemTxResult *result) | |
3474 | { | |
3475 | address_space_stl_internal(as, addr, val, attrs, result, | |
3476 | DEVICE_BIG_ENDIAN); | |
3477 | } | |
3478 | ||
ab1da857 | 3479 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3480 | { |
50013115 | 3481 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3482 | } |
3483 | ||
ab1da857 | 3484 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3485 | { |
50013115 | 3486 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3487 | } |
3488 | ||
ab1da857 | 3489 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3490 | { |
50013115 | 3491 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3492 | } |
3493 | ||
aab33094 | 3494 | /* XXX: optimize */ |
50013115 PM |
3495 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3496 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3497 | { |
3498 | uint8_t v = val; | |
50013115 PM |
3499 | MemTxResult r; |
3500 | ||
3501 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3502 | if (result) { | |
3503 | *result = r; | |
3504 | } | |
3505 | } | |
3506 | ||
3507 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3508 | { | |
3509 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3510 | } |
3511 | ||
733f0b02 | 3512 | /* warning: addr must be aligned */ |
50013115 PM |
3513 | static inline void address_space_stw_internal(AddressSpace *as, |
3514 | hwaddr addr, uint32_t val, | |
3515 | MemTxAttrs attrs, | |
3516 | MemTxResult *result, | |
3517 | enum device_endian endian) | |
aab33094 | 3518 | { |
733f0b02 | 3519 | uint8_t *ptr; |
5c8a00ce | 3520 | MemoryRegion *mr; |
149f54b5 PB |
3521 | hwaddr l = 2; |
3522 | hwaddr addr1; | |
50013115 | 3523 | MemTxResult r; |
4840f10e | 3524 | bool release_lock = false; |
733f0b02 | 3525 | |
41063e1e | 3526 | rcu_read_lock(); |
5ce5944d | 3527 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3528 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3529 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3530 | |
1e78bcc1 AG |
3531 | #if defined(TARGET_WORDS_BIGENDIAN) |
3532 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3533 | val = bswap16(val); | |
3534 | } | |
3535 | #else | |
3536 | if (endian == DEVICE_BIG_ENDIAN) { | |
3537 | val = bswap16(val); | |
3538 | } | |
3539 | #endif | |
50013115 | 3540 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3541 | } else { |
733f0b02 | 3542 | /* RAM case */ |
5c8a00ce | 3543 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
733f0b02 | 3544 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3545 | switch (endian) { |
3546 | case DEVICE_LITTLE_ENDIAN: | |
3547 | stw_le_p(ptr, val); | |
3548 | break; | |
3549 | case DEVICE_BIG_ENDIAN: | |
3550 | stw_be_p(ptr, val); | |
3551 | break; | |
3552 | default: | |
3553 | stw_p(ptr, val); | |
3554 | break; | |
3555 | } | |
845b6214 | 3556 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3557 | r = MEMTX_OK; |
3558 | } | |
3559 | if (result) { | |
3560 | *result = r; | |
733f0b02 | 3561 | } |
4840f10e JK |
3562 | if (release_lock) { |
3563 | qemu_mutex_unlock_iothread(); | |
3564 | } | |
41063e1e | 3565 | rcu_read_unlock(); |
aab33094 FB |
3566 | } |
3567 | ||
50013115 PM |
3568 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3569 | MemTxAttrs attrs, MemTxResult *result) | |
3570 | { | |
3571 | address_space_stw_internal(as, addr, val, attrs, result, | |
3572 | DEVICE_NATIVE_ENDIAN); | |
3573 | } | |
3574 | ||
3575 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3576 | MemTxAttrs attrs, MemTxResult *result) | |
3577 | { | |
3578 | address_space_stw_internal(as, addr, val, attrs, result, | |
3579 | DEVICE_LITTLE_ENDIAN); | |
3580 | } | |
3581 | ||
3582 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3583 | MemTxAttrs attrs, MemTxResult *result) | |
3584 | { | |
3585 | address_space_stw_internal(as, addr, val, attrs, result, | |
3586 | DEVICE_BIG_ENDIAN); | |
3587 | } | |
3588 | ||
5ce5944d | 3589 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3590 | { |
50013115 | 3591 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3592 | } |
3593 | ||
5ce5944d | 3594 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3595 | { |
50013115 | 3596 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3597 | } |
3598 | ||
5ce5944d | 3599 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3600 | { |
50013115 | 3601 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3602 | } |
3603 | ||
aab33094 | 3604 | /* XXX: optimize */ |
50013115 PM |
3605 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3606 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3607 | { |
50013115 | 3608 | MemTxResult r; |
aab33094 | 3609 | val = tswap64(val); |
50013115 PM |
3610 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3611 | if (result) { | |
3612 | *result = r; | |
3613 | } | |
aab33094 FB |
3614 | } |
3615 | ||
50013115 PM |
3616 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3617 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3618 | { |
50013115 | 3619 | MemTxResult r; |
1e78bcc1 | 3620 | val = cpu_to_le64(val); |
50013115 PM |
3621 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3622 | if (result) { | |
3623 | *result = r; | |
3624 | } | |
3625 | } | |
3626 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3627 | MemTxAttrs attrs, MemTxResult *result) | |
3628 | { | |
3629 | MemTxResult r; | |
3630 | val = cpu_to_be64(val); | |
3631 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3632 | if (result) { | |
3633 | *result = r; | |
3634 | } | |
3635 | } | |
3636 | ||
3637 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3638 | { | |
3639 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3640 | } | |
3641 | ||
3642 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3643 | { | |
3644 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3645 | } |
3646 | ||
f606604f | 3647 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3648 | { |
50013115 | 3649 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3650 | } |
3651 | ||
5e2972fd | 3652 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3653 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3654 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3655 | { |
3656 | int l; | |
a8170e5e | 3657 | hwaddr phys_addr; |
9b3c35e0 | 3658 | target_ulong page; |
13eb76e0 FB |
3659 | |
3660 | while (len > 0) { | |
5232e4c7 PM |
3661 | int asidx; |
3662 | MemTxAttrs attrs; | |
3663 | ||
13eb76e0 | 3664 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3665 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3666 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3667 | /* if no physical page mapped, return an error */ |
3668 | if (phys_addr == -1) | |
3669 | return -1; | |
3670 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3671 | if (l > len) | |
3672 | l = len; | |
5e2972fd | 3673 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3674 | if (is_write) { |
5232e4c7 PM |
3675 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3676 | phys_addr, buf, l); | |
2e38847b | 3677 | } else { |
5232e4c7 PM |
3678 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3679 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3680 | buf, l, 0); |
2e38847b | 3681 | } |
13eb76e0 FB |
3682 | len -= l; |
3683 | buf += l; | |
3684 | addr += l; | |
3685 | } | |
3686 | return 0; | |
3687 | } | |
038629a6 DDAG |
3688 | |
3689 | /* | |
3690 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3691 | * target independent. | |
3692 | */ | |
3693 | size_t qemu_target_page_bits(void) | |
3694 | { | |
3695 | return TARGET_PAGE_BITS; | |
3696 | } | |
3697 | ||
a68fe89c | 3698 | #endif |
13eb76e0 | 3699 | |
8e4a424b BS |
3700 | /* |
3701 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3702 | * it's running on a big endian machine. Don't do this at home kids! | |
3703 | */ | |
98ed8ecf GK |
3704 | bool target_words_bigendian(void); |
3705 | bool target_words_bigendian(void) | |
8e4a424b BS |
3706 | { |
3707 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3708 | return true; | |
3709 | #else | |
3710 | return false; | |
3711 | #endif | |
3712 | } | |
3713 | ||
76f35538 | 3714 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3715 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3716 | { |
5c8a00ce | 3717 | MemoryRegion*mr; |
149f54b5 | 3718 | hwaddr l = 1; |
41063e1e | 3719 | bool res; |
76f35538 | 3720 | |
41063e1e | 3721 | rcu_read_lock(); |
5c8a00ce PB |
3722 | mr = address_space_translate(&address_space_memory, |
3723 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3724 | |
41063e1e PB |
3725 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3726 | rcu_read_unlock(); | |
3727 | return res; | |
76f35538 | 3728 | } |
bd2fa51f | 3729 | |
e3807054 | 3730 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3731 | { |
3732 | RAMBlock *block; | |
e3807054 | 3733 | int ret = 0; |
bd2fa51f | 3734 | |
0dc3f44a MD |
3735 | rcu_read_lock(); |
3736 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3737 | ret = func(block->idstr, block->host, block->offset, |
3738 | block->used_length, opaque); | |
3739 | if (ret) { | |
3740 | break; | |
3741 | } | |
bd2fa51f | 3742 | } |
0dc3f44a | 3743 | rcu_read_unlock(); |
e3807054 | 3744 | return ret; |
bd2fa51f | 3745 | } |
ec3f8c99 | 3746 | #endif |