]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: store RAMBlock pointer into memory region
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
777872e5 20#ifndef _WIN32
d5a8f07c
FB
21#include <sys/mman.h>
22#endif
54936004 23
055403b2 24#include "qemu-common.h"
6180a181 25#include "cpu.h"
b67d9a52 26#include "tcg.h"
b3c7724c 27#include "hw/hw.h"
4485bd26 28#if !defined(CONFIG_USER_ONLY)
47c8ca53 29#include "hw/boards.h"
4485bd26 30#endif
cc9e98cb 31#include "hw/qdev.h"
9c17d615 32#include "sysemu/kvm.h"
2ff3de68 33#include "sysemu/sysemu.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
0dc3f44a 48#include "qemu/rcu_queue.h"
4840f10e 49#include "qemu/main-loop.h"
5b6dd868 50#include "translate-all.h"
7615936e 51#include "sysemu/replay.h"
0cac1b66 52
022c62cb 53#include "exec/memory-internal.h"
220c3ebd 54#include "exec/ram_addr.h"
508127e2 55#include "exec/log.h"
67d95c15 56
b35ba30f 57#include "qemu/range.h"
794e8f30
MT
58#ifndef _WIN32
59#include "qemu/mmap-alloc.h"
60#endif
b35ba30f 61
db7b5426 62//#define DEBUG_SUBPAGE
1196be37 63
e2eef170 64#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
65/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
0d53d9fe 68RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
69
70static MemoryRegion *system_memory;
309cb471 71static MemoryRegion *system_io;
62152b8a 72
f6790af6
AK
73AddressSpace address_space_io;
74AddressSpace address_space_memory;
2673a5da 75
0844e007 76MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 77static MemoryRegion io_mem_unassigned;
0e0df1e2 78
7bd4f430
PB
79/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80#define RAM_PREALLOC (1 << 0)
81
dbcb8981
PB
82/* RAM is mmap-ed with MAP_SHARED */
83#define RAM_SHARED (1 << 1)
84
62be4e3a
MT
85/* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88#define RAM_RESIZEABLE (1 << 2)
89
e2eef170 90#endif
9fa3e853 91
bdc44640 92struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
93/* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
f240eb6f 95__thread CPUState *current_cpu;
2e70f6ef 96/* 0 = Do not count executed instructions.
bf20dc07 97 1 = Precise instruction counting.
2e70f6ef 98 2 = Adaptive rate instruction counting. */
5708fc66 99int use_icount;
6a00d601 100
e2eef170 101#if !defined(CONFIG_USER_ONLY)
4346ae3e 102
1db8abb1
PB
103typedef struct PhysPageEntry PhysPageEntry;
104
105struct PhysPageEntry {
9736e55b 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 107 uint32_t skip : 6;
9736e55b 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 109 uint32_t ptr : 26;
1db8abb1
PB
110};
111
8b795765
MT
112#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
03f49957 114/* Size of the L2 (and L3, etc) page tables. */
57271d63 115#define ADDR_SPACE_BITS 64
03f49957 116
026736ce 117#define P_L2_BITS 9
03f49957
PB
118#define P_L2_SIZE (1 << P_L2_BITS)
119
120#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 123
53cb28cb 124typedef struct PhysPageMap {
79e2b9ae
PB
125 struct rcu_head rcu;
126
53cb28cb
MA
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133} PhysPageMap;
134
1db8abb1 135struct AddressSpaceDispatch {
79e2b9ae
PB
136 struct rcu_head rcu;
137
1db8abb1
PB
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
140 */
141 PhysPageEntry phys_map;
53cb28cb 142 PhysPageMap map;
acc9d80b 143 AddressSpace *as;
1db8abb1
PB
144};
145
90260c6c
JK
146#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147typedef struct subpage_t {
148 MemoryRegion iomem;
acc9d80b 149 AddressSpace *as;
90260c6c
JK
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152} subpage_t;
153
b41aac4f
LPF
154#define PHYS_SECTION_UNASSIGNED 0
155#define PHYS_SECTION_NOTDIRTY 1
156#define PHYS_SECTION_ROM 2
157#define PHYS_SECTION_WATCH 3
5312bd8b 158
e2eef170 159static void io_mem_init(void);
62152b8a 160static void memory_map_init(void);
09daed84 161static void tcg_commit(MemoryListener *listener);
e2eef170 162
1ec9b909 163static MemoryRegion io_mem_watch;
32857f4d
PM
164
165/**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177};
178
6658ffb8 179#endif
fd6ce8f6 180
6d9a1304 181#if !defined(CONFIG_USER_ONLY)
d6f2ea22 182
53cb28cb 183static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 184{
53cb28cb
MA
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 189 }
f7bf5461
AK
190}
191
db94604b 192static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
193{
194 unsigned i;
8b795765 195 uint32_t ret;
db94604b
PB
196 PhysPageEntry e;
197 PhysPageEntry *p;
f7bf5461 198
53cb28cb 199 ret = map->nodes_nb++;
db94604b 200 p = map->nodes[ret];
f7bf5461 201 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 202 assert(ret != map->nodes_nb_alloc);
db94604b
PB
203
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 206 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 207 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 208 }
f7bf5461 209 return ret;
d6f2ea22
AK
210}
211
53cb28cb
MA
212static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 214 int level)
f7bf5461
AK
215{
216 PhysPageEntry *p;
03f49957 217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 218
9736e55b 219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 220 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 221 }
db94604b 222 p = map->nodes[lp->ptr];
03f49957 223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 224
03f49957 225 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 226 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 227 lp->skip = 0;
c19e8800 228 lp->ptr = leaf;
07f07b31
AK
229 *index += step;
230 *nb -= step;
2999097b 231 } else {
53cb28cb 232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
233 }
234 ++lp;
f7bf5461
AK
235 }
236}
237
ac1970fb 238static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 239 hwaddr index, hwaddr nb,
2999097b 240 uint16_t leaf)
f7bf5461 241{
2999097b 242 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 244
53cb28cb 245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
246}
247
b35ba30f
MT
248/* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
250 */
251static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
252{
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
257
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
260 }
261
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
266 }
267
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
272 }
273 }
274
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
278 }
279
280 assert(valid_ptr < P_L2_SIZE);
281
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
285 }
286
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
294 */
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
298 }
299}
300
301static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
302{
303 DECLARE_BITMAP(compacted, nodes_nb);
304
305 if (d->phys_map.skip) {
53cb28cb 306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
307 }
308}
309
97115a8d 310static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 311 Node *nodes, MemoryRegionSection *sections)
92e873b9 312{
31ab2b4a 313 PhysPageEntry *p;
97115a8d 314 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 315 int i;
f1f6e3b8 316
9736e55b 317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 319 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 320 }
9affd6fc 321 p = nodes[lp.ptr];
03f49957 322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 323 }
b35ba30f
MT
324
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
331 }
f3705d53
AK
332}
333
e5548617
BS
334bool memory_region_is_unassigned(MemoryRegion *mr)
335{
2a8e7499 336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 337 && mr != &io_mem_watch;
fd6ce8f6 338}
149f54b5 339
79e2b9ae 340/* Called from RCU critical section */
c7086b4a 341static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
342 hwaddr addr,
343 bool resolve_subpage)
9f029603 344{
90260c6c
JK
345 MemoryRegionSection *section;
346 subpage_t *subpage;
347
53cb28cb 348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
352 }
353 return section;
9f029603
JK
354}
355
79e2b9ae 356/* Called from RCU critical section */
90260c6c 357static MemoryRegionSection *
c7086b4a 358address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 359 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
360{
361 MemoryRegionSection *section;
965eb2fc 362 MemoryRegion *mr;
a87f3954 363 Int128 diff;
149f54b5 364
c7086b4a 365 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
368
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
371
965eb2fc 372 mr = section->mr;
b242e0e0
PB
373
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
380 *
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
384 */
965eb2fc 385 if (memory_region_is_ram(mr)) {
e4a511f8 386 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 }
149f54b5
PB
389 return section;
390}
90260c6c 391
41063e1e 392/* Called from RCU critical section */
5c8a00ce
PB
393MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
90260c6c 396{
30951157
AK
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
30951157
AK
400
401 for (;;) {
79e2b9ae
PB
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
404 mr = section->mr;
405
406 if (!mr->iommu_ops) {
407 break;
408 }
409
8d7b8cb9 410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
23820dbf 413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
417 }
418
419 as = iotlb.target_as;
420 }
421
fe680d0d 422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 424 *plen = MIN(page, *plen);
a87f3954
PB
425 }
426
30951157
AK
427 *xlat = addr;
428 return mr;
90260c6c
JK
429}
430
79e2b9ae 431/* Called from RCU critical section */
90260c6c 432MemoryRegionSection *
d7898cda 433address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 434 hwaddr *xlat, hwaddr *plen)
90260c6c 435{
30951157 436 MemoryRegionSection *section;
d7898cda
PM
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
438
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
440
441 assert(!section->mr->iommu_ops);
442 return section;
90260c6c 443}
5b6dd868 444#endif
fd6ce8f6 445
b170fce3 446#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
447
448static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 449{
259186a7 450 CPUState *cpu = opaque;
a513fe19 451
5b6dd868
BS
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
259186a7 454 cpu->interrupt_request &= ~0x01;
c01a71c1 455 tlb_flush(cpu, 1);
5b6dd868
BS
456
457 return 0;
a513fe19 458}
7501267e 459
6c3bff0e
PD
460static int cpu_common_pre_load(void *opaque)
461{
462 CPUState *cpu = opaque;
463
adee6424 464 cpu->exception_index = -1;
6c3bff0e
PD
465
466 return 0;
467}
468
469static bool cpu_common_exception_index_needed(void *opaque)
470{
471 CPUState *cpu = opaque;
472
adee6424 473 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
474}
475
476static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
5cd8cada 480 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
484 }
485};
486
bac05aa9
AS
487static bool cpu_common_crash_occurred_needed(void *opaque)
488{
489 CPUState *cpu = opaque;
490
491 return cpu->crash_occurred;
492}
493
494static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
502 }
503};
504
1a1562f5 505const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
6c3bff0e 509 .pre_load = cpu_common_pre_load,
5b6dd868 510 .post_load = cpu_common_post_load,
35d08458 511 .fields = (VMStateField[]) {
259186a7
AF
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 514 VMSTATE_END_OF_LIST()
6c3bff0e 515 },
5cd8cada
JQ
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
bac05aa9 518 &vmstate_cpu_common_crash_occurred,
5cd8cada 519 NULL
5b6dd868
BS
520 }
521};
1a1562f5 522
5b6dd868 523#endif
ea041c0e 524
38d8f5c8 525CPUState *qemu_get_cpu(int index)
ea041c0e 526{
bdc44640 527 CPUState *cpu;
ea041c0e 528
bdc44640 529 CPU_FOREACH(cpu) {
55e5c285 530 if (cpu->cpu_index == index) {
bdc44640 531 return cpu;
55e5c285 532 }
ea041c0e 533 }
5b6dd868 534
bdc44640 535 return NULL;
ea041c0e
FB
536}
537
09daed84 538#if !defined(CONFIG_USER_ONLY)
56943e8c 539void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 540{
12ebc9a7
PM
541 CPUAddressSpace *newas;
542
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
545
56943e8c
PM
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
549 }
550
12ebc9a7
PM
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
09daed84 553
12ebc9a7
PM
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 556 }
32857f4d 557
12ebc9a7
PM
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
56943e8c 561 if (tcg_enabled()) {
12ebc9a7
PM
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 564 }
09daed84 565}
651a5bc0
PM
566
567AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
568{
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
571}
09daed84
EI
572#endif
573
b7bca733
BR
574#ifndef CONFIG_USER_ONLY
575static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
576
577static int cpu_get_free_index(Error **errp)
578{
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
580
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
585 }
586
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
589}
590
591void cpu_exec_exit(CPUState *cpu)
592{
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
596 }
597
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
600}
601#else
602
603static int cpu_get_free_index(Error **errp)
604{
605 CPUState *some_cpu;
606 int cpu_index = 0;
607
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
610 }
611 return cpu_index;
612}
613
614void cpu_exec_exit(CPUState *cpu)
615{
616}
617#endif
618
4bad9e39 619void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 620{
b170fce3 621 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 622 int cpu_index;
b7bca733 623 Error *local_err = NULL;
5b6dd868 624
56943e8c 625 cpu->as = NULL;
12ebc9a7 626 cpu->num_ases = 0;
56943e8c 627
291135b5 628#ifndef CONFIG_USER_ONLY
291135b5 629 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
630
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
636 */
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
291135b5
EH
644#endif
645
5b6dd868
BS
646#if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648#endif
b7bca733
BR
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654#endif
655 return;
5b6dd868 656 }
bdc44640 657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
658#if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660#endif
e0d47944
AF
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
663 }
b170fce3
AF
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
666 }
ea041c0e
FB
667}
668
94df27fd 669#if defined(CONFIG_USER_ONLY)
00b941e5 670static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
671{
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
673}
674#else
00b941e5 675static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 676{
5232e4c7
PM
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 680 if (phys != -1) {
5232e4c7 681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 682 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 683 }
1e7855a5 684}
c27004ec 685#endif
d720b93d 686
c527ee8f 687#if defined(CONFIG_USER_ONLY)
75a34036 688void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
689
690{
691}
692
3ee887e8
PM
693int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
695{
696 return -ENOSYS;
697}
698
699void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
700{
701}
702
75a34036 703int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
704 int flags, CPUWatchpoint **watchpoint)
705{
706 return -ENOSYS;
707}
708#else
6658ffb8 709/* Add a watchpoint. */
75a34036 710int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 711 int flags, CPUWatchpoint **watchpoint)
6658ffb8 712{
c0ce998e 713 CPUWatchpoint *wp;
6658ffb8 714
05068c0d 715 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 716 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
719 return -EINVAL;
720 }
7267c094 721 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
722
723 wp->vaddr = addr;
05068c0d 724 wp->len = len;
a1d1bb31
AL
725 wp->flags = flags;
726
2dc9f411 727 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
732 }
6658ffb8 733
31b030d4 734 tlb_flush_page(cpu, addr);
a1d1bb31
AL
735
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
6658ffb8
PB
739}
740
a1d1bb31 741/* Remove a specific watchpoint. */
75a34036 742int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 743 int flags)
6658ffb8 744{
a1d1bb31 745 CPUWatchpoint *wp;
6658ffb8 746
ff4700b0 747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 748 if (addr == wp->vaddr && len == wp->len
6e140f28 749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 750 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
751 return 0;
752 }
753 }
a1d1bb31 754 return -ENOENT;
6658ffb8
PB
755}
756
a1d1bb31 757/* Remove a specific watchpoint by reference. */
75a34036 758void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 759{
ff4700b0 760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 761
31b030d4 762 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 763
7267c094 764 g_free(watchpoint);
a1d1bb31
AL
765}
766
767/* Remove all matching watchpoints. */
75a34036 768void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 769{
c0ce998e 770 CPUWatchpoint *wp, *next;
a1d1bb31 771
ff4700b0 772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
775 }
c0ce998e 776 }
7d03f82f 777}
05068c0d
PM
778
779/* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
783 */
784static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
787{
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
792 */
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
795
796 return !(addr > wpend || wp->vaddr > addrend);
797}
798
c527ee8f 799#endif
7d03f82f 800
a1d1bb31 801/* Add a breakpoint. */
b3310ab3 802int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 803 CPUBreakpoint **breakpoint)
4c3a88a2 804{
c0ce998e 805 CPUBreakpoint *bp;
3b46e624 806
7267c094 807 bp = g_malloc(sizeof(*bp));
4c3a88a2 808
a1d1bb31
AL
809 bp->pc = pc;
810 bp->flags = flags;
811
2dc9f411 812 /* keep all GDB-injected breakpoints in front */
00b941e5 813 if (flags & BP_GDB) {
f0c3c505 814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 815 } else {
f0c3c505 816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 817 }
3b46e624 818
f0c3c505 819 breakpoint_invalidate(cpu, pc);
a1d1bb31 820
00b941e5 821 if (breakpoint) {
a1d1bb31 822 *breakpoint = bp;
00b941e5 823 }
4c3a88a2 824 return 0;
4c3a88a2
FB
825}
826
a1d1bb31 827/* Remove a specific breakpoint. */
b3310ab3 828int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 829{
a1d1bb31
AL
830 CPUBreakpoint *bp;
831
f0c3c505 832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 833 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 834 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
835 return 0;
836 }
7d03f82f 837 }
a1d1bb31 838 return -ENOENT;
7d03f82f
EI
839}
840
a1d1bb31 841/* Remove a specific breakpoint by reference. */
b3310ab3 842void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 843{
f0c3c505
AF
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
845
846 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 847
7267c094 848 g_free(breakpoint);
a1d1bb31
AL
849}
850
851/* Remove all matching breakpoints. */
b3310ab3 852void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 853{
c0ce998e 854 CPUBreakpoint *bp, *next;
a1d1bb31 855
f0c3c505 856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
859 }
c0ce998e 860 }
4c3a88a2
FB
861}
862
c33a346e
FB
863/* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
3825b28f 865void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 866{
ed2803da
AF
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
38e478ec 870 kvm_update_guest_debug(cpu, 0);
ed2803da 871 } else {
ccbb4d44 872 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 873 /* XXX: only flush what is necessary */
bbd77c18 874 tb_flush(cpu);
e22a25c9 875 }
c33a346e 876 }
c33a346e
FB
877}
878
a47dddd7 879void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
880{
881 va_list ap;
493ae1f0 882 va_list ap2;
7501267e
FB
883
884 va_start(ap, fmt);
493ae1f0 885 va_copy(ap2, ap);
7501267e
FB
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
878096ee 889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 890 if (qemu_log_separate()) {
93fcfe39
AL
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
a0762859 894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 895 qemu_log_flush();
93fcfe39 896 qemu_log_close();
924edcae 897 }
493ae1f0 898 va_end(ap2);
f9373291 899 va_end(ap);
7615936e 900 replay_finish();
fd052bf6
RV
901#if defined(CONFIG_USER_ONLY)
902 {
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
907 }
908#endif
7501267e
FB
909 abort();
910}
911
0124311e 912#if !defined(CONFIG_USER_ONLY)
0dc3f44a 913/* Called from RCU critical section */
041603fe
PB
914static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
915{
916 RAMBlock *block;
917
43771539 918 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 919 if (block && addr - block->offset < block->max_length) {
68851b98 920 return block;
041603fe 921 }
0dc3f44a 922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 923 if (addr - block->offset < block->max_length) {
041603fe
PB
924 goto found;
925 }
926 }
927
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
930
931found:
43771539
PB
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
934 *
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
943 *
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
947 */
041603fe
PB
948 ram_list.mru_block = block;
949 return block;
950}
951
a2f4d5be 952static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 953{
9a13565d 954 CPUState *cpu;
041603fe 955 ram_addr_t start1;
a2f4d5be
JQ
956 RAMBlock *block;
957 ram_addr_t end;
958
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
d24981d3 961
0dc3f44a 962 rcu_read_lock();
041603fe
PB
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
1240be24 965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
968 }
0dc3f44a 969 rcu_read_unlock();
d24981d3
JQ
970}
971
5579c7f3 972/* Note: start and end must be within the same ram block. */
03eebc9e
SH
973bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
1ccde1cb 976{
5b82b703 977 DirtyMemoryBlocks *blocks;
03eebc9e 978 unsigned long end, page;
5b82b703 979 bool dirty = false;
03eebc9e
SH
980
981 if (length == 0) {
982 return false;
983 }
f23db169 984
03eebc9e
SH
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
987
988 rcu_read_lock();
989
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
991
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
996
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1000 }
1001
1002 rcu_read_unlock();
03eebc9e
SH
1003
1004 if (dirty && tcg_enabled()) {
a2f4d5be 1005 tlb_reset_dirty_range_all(start, length);
5579c7f3 1006 }
03eebc9e
SH
1007
1008 return dirty;
1ccde1cb
FB
1009}
1010
79e2b9ae 1011/* Called from RCU critical section */
bb0e627a 1012hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
e5548617 1018{
a8170e5e 1019 hwaddr iotlb;
e5548617
BS
1020 CPUWatchpoint *wp;
1021
cc5bea60 1022 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1025 + xlat;
e5548617 1026 if (!section->readonly) {
b41aac4f 1027 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1028 } else {
b41aac4f 1029 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1030 }
1031 } else {
0b8e2c10
PM
1032 AddressSpaceDispatch *d;
1033
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
149f54b5 1036 iotlb += xlat;
e5548617
BS
1037 }
1038
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
ff4700b0 1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1045 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1046 *address |= TLB_MMIO;
1047 break;
1048 }
1049 }
1050 }
1051
1052 return iotlb;
1053}
9fa3e853
FB
1054#endif /* defined(CONFIG_USER_ONLY) */
1055
e2eef170 1056#if !defined(CONFIG_USER_ONLY)
8da3ff18 1057
c227f099 1058static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1059 uint16_t section);
acc9d80b 1060static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1061
a2b257d6
IM
1062static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
91138037
MA
1064
1065/*
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1069 */
a2b257d6 1070void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1071{
1072 phys_mem_alloc = alloc;
1073}
1074
53cb28cb
MA
1075static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
5312bd8b 1077{
68f3f65b
PB
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1081 */
53cb28cb 1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1083
53cb28cb
MA
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
5312bd8b 1088 }
53cb28cb 1089 map->sections[map->sections_nb] = *section;
dfde4e6e 1090 memory_region_ref(section->mr);
53cb28cb 1091 return map->sections_nb++;
5312bd8b
AK
1092}
1093
058bc4b5
PB
1094static void phys_section_destroy(MemoryRegion *mr)
1095{
55b4e80b
DS
1096 bool have_sub_page = mr->subpage;
1097
dfde4e6e
PB
1098 memory_region_unref(mr);
1099
55b4e80b 1100 if (have_sub_page) {
058bc4b5 1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1102 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1103 g_free(subpage);
1104 }
1105}
1106
6092666e 1107static void phys_sections_free(PhysPageMap *map)
5312bd8b 1108{
9affd6fc
PB
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1111 phys_section_destroy(section->mr);
1112 }
9affd6fc
PB
1113 g_free(map->sections);
1114 g_free(map->nodes);
5312bd8b
AK
1115}
1116
ac1970fb 1117static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1118{
1119 subpage_t *subpage;
a8170e5e 1120 hwaddr base = section->offset_within_address_space
0f0cb164 1121 & TARGET_PAGE_MASK;
97115a8d 1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1123 d->map.nodes, d->map.sections);
0f0cb164
AK
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
052e87b0 1126 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1127 };
a8170e5e 1128 hwaddr start, end;
0f0cb164 1129
f3705d53 1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1131
f3705d53 1132 if (!(existing->mr->subpage)) {
acc9d80b 1133 subpage = subpage_init(d->as, base);
3be91e86 1134 subsection.address_space = d->as;
0f0cb164 1135 subsection.mr = &subpage->iomem;
ac1970fb 1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1137 phys_section_add(&d->map, &subsection));
0f0cb164 1138 } else {
f3705d53 1139 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1140 }
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1142 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
0f0cb164
AK
1145}
1146
1147
052e87b0
PB
1148static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
33417e70 1150{
a8170e5e 1151 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1152 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
dd81124b 1155
733d5ef5
PB
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1158}
1159
ac1970fb 1160static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1161{
89ae337a 1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1163 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1164 MemoryRegionSection now = *section, remain = *section;
052e87b0 1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1166
733d5ef5
PB
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1170
052e87b0 1171 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1172 register_subpage(d, &now);
733d5ef5 1173 } else {
052e87b0 1174 now.size = int128_zero();
733d5ef5 1175 }
052e87b0
PB
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
69b67646 1180 now = remain;
052e87b0 1181 if (int128_lt(remain.size, page_size)) {
733d5ef5 1182 register_subpage(d, &now);
88266249 1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1184 now.size = page_size;
ac1970fb 1185 register_subpage(d, &now);
69b67646 1186 } else {
052e87b0 1187 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1188 register_multipage(d, &now);
69b67646 1189 }
0f0cb164
AK
1190 }
1191}
1192
62a2744c
SY
1193void qemu_flush_coalesced_mmio_buffer(void)
1194{
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1197}
1198
b2a8658e
UD
1199void qemu_mutex_lock_ramlist(void)
1200{
1201 qemu_mutex_lock(&ram_list.mutex);
1202}
1203
1204void qemu_mutex_unlock_ramlist(void)
1205{
1206 qemu_mutex_unlock(&ram_list.mutex);
1207}
1208
e1e84ba0 1209#ifdef __linux__
c902760f
MT
1210
1211#include <sys/vfs.h>
1212
1213#define HUGETLBFS_MAGIC 0x958458f6
1214
fc7a5800 1215static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1216{
1217 struct statfs fs;
1218 int ret;
1219
1220 do {
9742bf26 1221 ret = statfs(path, &fs);
c902760f
MT
1222 } while (ret != 0 && errno == EINTR);
1223
1224 if (ret != 0) {
fc7a5800
HT
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
9742bf26 1227 return 0;
c902760f
MT
1228 }
1229
c902760f
MT
1230 return fs.f_bsize;
1231}
1232
04b16653
AW
1233static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
7f56e740
PB
1235 const char *path,
1236 Error **errp)
c902760f 1237{
8d31d6b6 1238 struct stat st;
c902760f 1239 char *filename;
8ca761f6
PF
1240 char *sanitized_name;
1241 char *c;
794e8f30 1242 void *area;
c902760f 1243 int fd;
557529dd 1244 uint64_t hpagesize;
fc7a5800 1245 Error *local_err = NULL;
c902760f 1246
fc7a5800
HT
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
f9a49dfa 1250 goto error;
c902760f 1251 }
a2b257d6 1252 block->mr->align = hpagesize;
c902760f
MT
1253
1254 if (memory < hpagesize) {
557529dd
HT
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
c902760f
MT
1259 }
1260
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1264 goto error;
c902760f
MT
1265 }
1266
8d31d6b6
PF
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1273 }
1274 }
8ca761f6 1275
8d31d6b6
PF
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1279
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1283 }
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1287 }
c902760f 1288
c902760f 1289 if (fd < 0) {
7f56e740
PB
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
f9a49dfa 1292 goto error;
c902760f 1293 }
c902760f 1294
9284f319 1295 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1296
1297 /*
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1302 */
7f56e740 1303 if (ftruncate(fd, memory)) {
9742bf26 1304 perror("ftruncate");
7f56e740 1305 }
c902760f 1306
794e8f30 1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1308 if (area == MAP_FAILED) {
7f56e740
PB
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
9742bf26 1311 close(fd);
f9a49dfa 1312 goto error;
c902760f 1313 }
ef36fa14
MT
1314
1315 if (mem_prealloc) {
38183310 1316 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1317 }
1318
04b16653 1319 block->fd = fd;
c902760f 1320 return area;
f9a49dfa
MT
1321
1322error:
f9a49dfa 1323 return NULL;
c902760f
MT
1324}
1325#endif
1326
0dc3f44a 1327/* Called with the ramlist lock held. */
d17b5288 1328static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1329{
1330 RAMBlock *block, *next_block;
3e837b2c 1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1332
49cd9ac6
SH
1333 assert(size != 0); /* it would hand out same offset multiple times */
1334
0dc3f44a 1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1336 return 0;
0d53d9fe 1337 }
04b16653 1338
0dc3f44a 1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1340 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1341
62be4e3a 1342 end = block->offset + block->max_length;
04b16653 1343
0dc3f44a 1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1347 }
1348 }
1349 if (next - end >= size && next - end < mingap) {
3e837b2c 1350 offset = end;
04b16653
AW
1351 mingap = next - end;
1352 }
1353 }
3e837b2c
AW
1354
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1359 }
1360
04b16653
AW
1361 return offset;
1362}
1363
652d7ec2 1364ram_addr_t last_ram_offset(void)
d17b5288
AW
1365{
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1368
0dc3f44a
MD
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1371 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1372 }
0dc3f44a 1373 rcu_read_unlock();
d17b5288
AW
1374 return last;
1375}
1376
ddb97f1d
JB
1377static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1378{
1379 int ret;
ddb97f1d
JB
1380
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1382 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1388 }
1389 }
1390}
1391
0dc3f44a
MD
1392/* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1394 */
20cfe881 1395static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1396{
20cfe881 1397 RAMBlock *block;
84b89d78 1398
0dc3f44a 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1400 if (block->offset == addr) {
20cfe881 1401 return block;
c5705a77
AK
1402 }
1403 }
20cfe881
HT
1404
1405 return NULL;
1406}
1407
422148d3
DDAG
1408const char *qemu_ram_get_idstr(RAMBlock *rb)
1409{
1410 return rb->idstr;
1411}
1412
ae3a7047 1413/* Called with iothread lock held. */
20cfe881
HT
1414void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1415{
ae3a7047 1416 RAMBlock *new_block, *block;
20cfe881 1417
0dc3f44a 1418 rcu_read_lock();
ae3a7047 1419 new_block = find_ram_block(addr);
c5705a77
AK
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
84b89d78 1422
09e5ab63
AL
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1427 g_free(id);
84b89d78
CM
1428 }
1429 }
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1431
0dc3f44a 1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1437 }
1438 }
0dc3f44a 1439 rcu_read_unlock();
c5705a77
AK
1440}
1441
ae3a7047 1442/* Called with iothread lock held. */
20cfe881
HT
1443void qemu_ram_unset_idstr(ram_addr_t addr)
1444{
ae3a7047 1445 RAMBlock *block;
20cfe881 1446
ae3a7047
MD
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1450 */
1451
0dc3f44a 1452 rcu_read_lock();
ae3a7047 1453 block = find_ram_block(addr);
20cfe881
HT
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1456 }
0dc3f44a 1457 rcu_read_unlock();
20cfe881
HT
1458}
1459
8490fc78
LC
1460static int memory_try_enable_merging(void *addr, size_t len)
1461{
75cc7f01 1462 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1463 /* disabled by the user */
1464 return 0;
1465 }
1466
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1468}
1469
62be4e3a
MT
1470/* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1472 *
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1476 */
1477int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1478{
1479 RAMBlock *block = find_ram_block(base);
1480
1481 assert(block);
1482
4ed023ce 1483 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1484
62be4e3a
MT
1485 if (block->used_length == newsize) {
1486 return 0;
1487 }
1488
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1495 }
1496
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1503 }
1504
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
58d2707e
PB
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1512 }
1513 return 0;
1514}
1515
5b82b703
SH
1516/* Called with ram_list.mutex held */
1517static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1519{
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1525
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1529 }
1530
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1535
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1539
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1543 }
1544
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1547 }
1548
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1550
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1553 }
1554 }
1555}
1556
ef701d7b 1557static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1558{
e1c57ab8 1559 RAMBlock *block;
0d53d9fe 1560 RAMBlock *last_block = NULL;
2152f5ca 1561 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1562 Error *err = NULL;
2152f5ca
JQ
1563
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1565
b2a8658e 1566 qemu_mutex_lock_ramlist();
9b8424d5 1567 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1568
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
9b8424d5 1571 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
1576 return -1;
1577 }
e1c57ab8 1578 } else {
9b8424d5 1579 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1580 &new_block->mr->align);
39228250 1581 if (!new_block->host) {
ef701d7b
HT
1582 error_setg_errno(errp, errno,
1583 "cannot set up guest memory '%s'",
1584 memory_region_name(new_block->mr));
1585 qemu_mutex_unlock_ramlist();
1586 return -1;
39228250 1587 }
9b8424d5 1588 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1589 }
c902760f 1590 }
94a6b54f 1591
dd631697
LZ
1592 new_ram_size = MAX(old_ram_size,
1593 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1594 if (new_ram_size > old_ram_size) {
1595 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1596 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1597 }
0d53d9fe
MD
1598 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1599 * QLIST (which has an RCU-friendly variant) does not have insertion at
1600 * tail, so save the last element in last_block.
1601 */
0dc3f44a 1602 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1603 last_block = block;
9b8424d5 1604 if (block->max_length < new_block->max_length) {
abb26d63
PB
1605 break;
1606 }
1607 }
1608 if (block) {
0dc3f44a 1609 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1610 } else if (last_block) {
0dc3f44a 1611 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1612 } else { /* list is empty */
0dc3f44a 1613 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1614 }
0d6d3c87 1615 ram_list.mru_block = NULL;
94a6b54f 1616
0dc3f44a
MD
1617 /* Write list before version */
1618 smp_wmb();
f798b07f 1619 ram_list.version++;
b2a8658e 1620 qemu_mutex_unlock_ramlist();
f798b07f 1621
9b8424d5 1622 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1623 new_block->used_length,
1624 DIRTY_CLIENTS_ALL);
94a6b54f 1625
a904c911
PB
1626 if (new_block->host) {
1627 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1628 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1629 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1630 if (kvm_enabled()) {
1631 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1632 }
e1c57ab8 1633 }
6f0437e8 1634
94a6b54f
PB
1635 return new_block->offset;
1636}
e9a1ab19 1637
0b183fc8 1638#ifdef __linux__
e1c57ab8 1639ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1640 bool share, const char *mem_path,
7f56e740 1641 Error **errp)
e1c57ab8
PB
1642{
1643 RAMBlock *new_block;
ef701d7b
HT
1644 ram_addr_t addr;
1645 Error *local_err = NULL;
e1c57ab8
PB
1646
1647 if (xen_enabled()) {
7f56e740
PB
1648 error_setg(errp, "-mem-path not supported with Xen");
1649 return -1;
e1c57ab8
PB
1650 }
1651
1652 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1653 /*
1654 * file_ram_alloc() needs to allocate just like
1655 * phys_mem_alloc, but we haven't bothered to provide
1656 * a hook there.
1657 */
7f56e740
PB
1658 error_setg(errp,
1659 "-mem-path not supported with this accelerator");
1660 return -1;
e1c57ab8
PB
1661 }
1662
4ed023ce 1663 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1664 new_block = g_malloc0(sizeof(*new_block));
1665 new_block->mr = mr;
9b8424d5
MT
1666 new_block->used_length = size;
1667 new_block->max_length = size;
dbcb8981 1668 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1669 new_block->host = file_ram_alloc(new_block, size,
1670 mem_path, errp);
1671 if (!new_block->host) {
1672 g_free(new_block);
1673 return -1;
1674 }
1675
ef701d7b
HT
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1681 }
1682 return addr;
e1c57ab8 1683}
0b183fc8 1684#endif
e1c57ab8 1685
62be4e3a
MT
1686static
1687ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1688 void (*resized)(const char*,
1689 uint64_t length,
1690 void *host),
1691 void *host, bool resizeable,
ef701d7b 1692 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1693{
1694 RAMBlock *new_block;
ef701d7b
HT
1695 ram_addr_t addr;
1696 Error *local_err = NULL;
e1c57ab8 1697
4ed023ce
DDAG
1698 size = HOST_PAGE_ALIGN(size);
1699 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1700 new_block = g_malloc0(sizeof(*new_block));
1701 new_block->mr = mr;
62be4e3a 1702 new_block->resized = resized;
9b8424d5
MT
1703 new_block->used_length = size;
1704 new_block->max_length = max_size;
62be4e3a 1705 assert(max_size >= size);
e1c57ab8
PB
1706 new_block->fd = -1;
1707 new_block->host = host;
1708 if (host) {
7bd4f430 1709 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1710 }
62be4e3a
MT
1711 if (resizeable) {
1712 new_block->flags |= RAM_RESIZEABLE;
1713 }
ef701d7b
HT
1714 addr = ram_block_add(new_block, &local_err);
1715 if (local_err) {
1716 g_free(new_block);
1717 error_propagate(errp, local_err);
1718 return -1;
1719 }
58eaa217
GA
1720
1721 mr->ram_block = new_block;
ef701d7b 1722 return addr;
e1c57ab8
PB
1723}
1724
62be4e3a
MT
1725ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1726 MemoryRegion *mr, Error **errp)
1727{
1728 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1729}
1730
ef701d7b 1731ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1732{
62be4e3a
MT
1733 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1734}
1735
1736ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1737 void (*resized)(const char*,
1738 uint64_t length,
1739 void *host),
1740 MemoryRegion *mr, Error **errp)
1741{
1742 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1743}
1744
43771539
PB
1745static void reclaim_ramblock(RAMBlock *block)
1746{
1747 if (block->flags & RAM_PREALLOC) {
1748 ;
1749 } else if (xen_enabled()) {
1750 xen_invalidate_map_cache_entry(block->host);
1751#ifndef _WIN32
1752 } else if (block->fd >= 0) {
2f3a2bb1 1753 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1754 close(block->fd);
1755#endif
1756 } else {
1757 qemu_anon_ram_free(block->host, block->max_length);
1758 }
1759 g_free(block);
1760}
1761
c227f099 1762void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1763{
04b16653
AW
1764 RAMBlock *block;
1765
b2a8658e 1766 qemu_mutex_lock_ramlist();
0dc3f44a 1767 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1768 if (addr == block->offset) {
0dc3f44a 1769 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1770 ram_list.mru_block = NULL;
0dc3f44a
MD
1771 /* Write list before version */
1772 smp_wmb();
f798b07f 1773 ram_list.version++;
43771539 1774 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1775 break;
04b16653
AW
1776 }
1777 }
b2a8658e 1778 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1779}
1780
cd19cfa2
HY
1781#ifndef _WIN32
1782void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1783{
1784 RAMBlock *block;
1785 ram_addr_t offset;
1786 int flags;
1787 void *area, *vaddr;
1788
0dc3f44a 1789 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1790 offset = addr - block->offset;
9b8424d5 1791 if (offset < block->max_length) {
1240be24 1792 vaddr = ramblock_ptr(block, offset);
7bd4f430 1793 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1794 ;
dfeaf2ab
MA
1795 } else if (xen_enabled()) {
1796 abort();
cd19cfa2
HY
1797 } else {
1798 flags = MAP_FIXED;
3435f395 1799 if (block->fd >= 0) {
dbcb8981
PB
1800 flags |= (block->flags & RAM_SHARED ?
1801 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1802 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1803 flags, block->fd, offset);
cd19cfa2 1804 } else {
2eb9fbaa
MA
1805 /*
1806 * Remap needs to match alloc. Accelerators that
1807 * set phys_mem_alloc never remap. If they did,
1808 * we'd need a remap hook here.
1809 */
1810 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1811
cd19cfa2
HY
1812 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1813 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1814 flags, -1, 0);
cd19cfa2
HY
1815 }
1816 if (area != vaddr) {
f15fbc4b
AP
1817 fprintf(stderr, "Could not remap addr: "
1818 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1819 length, addr);
1820 exit(1);
1821 }
8490fc78 1822 memory_try_enable_merging(vaddr, length);
ddb97f1d 1823 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1824 }
cd19cfa2
HY
1825 }
1826 }
1827}
1828#endif /* !_WIN32 */
1829
a35ba7be
PB
1830int qemu_get_ram_fd(ram_addr_t addr)
1831{
ae3a7047
MD
1832 RAMBlock *block;
1833 int fd;
a35ba7be 1834
0dc3f44a 1835 rcu_read_lock();
ae3a7047
MD
1836 block = qemu_get_ram_block(addr);
1837 fd = block->fd;
0dc3f44a 1838 rcu_read_unlock();
ae3a7047 1839 return fd;
a35ba7be
PB
1840}
1841
56a571d9
TM
1842void qemu_set_ram_fd(ram_addr_t addr, int fd)
1843{
1844 RAMBlock *block;
1845
1846 rcu_read_lock();
1847 block = qemu_get_ram_block(addr);
1848 block->fd = fd;
1849 rcu_read_unlock();
1850}
1851
3fd74b84
DM
1852void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1853{
ae3a7047
MD
1854 RAMBlock *block;
1855 void *ptr;
3fd74b84 1856
0dc3f44a 1857 rcu_read_lock();
ae3a7047
MD
1858 block = qemu_get_ram_block(addr);
1859 ptr = ramblock_ptr(block, 0);
0dc3f44a 1860 rcu_read_unlock();
ae3a7047 1861 return ptr;
3fd74b84
DM
1862}
1863
1b5ec234 1864/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1865 * This should not be used for general purpose DMA. Use address_space_map
1866 * or address_space_rw instead. For local memory (e.g. video ram) that the
1867 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1868 *
49b24afc 1869 * Called within RCU critical section.
1b5ec234
PB
1870 */
1871void *qemu_get_ram_ptr(ram_addr_t addr)
1872{
49b24afc 1873 RAMBlock *block = qemu_get_ram_block(addr);
ae3a7047
MD
1874
1875 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1876 /* We need to check if the requested address is in the RAM
1877 * because we don't want to map the entire memory in QEMU.
1878 * In that case just map until the end of the page.
1879 */
1880 if (block->offset == 0) {
49b24afc 1881 return xen_map_cache(addr, 0, 0);
0d6d3c87 1882 }
ae3a7047
MD
1883
1884 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1885 }
49b24afc 1886 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1887}
1888
38bee5dc 1889/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1890 * but takes a size argument.
0dc3f44a 1891 *
e81bcda5 1892 * Called within RCU critical section.
ae3a7047 1893 */
cb85f7ab 1894static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1895{
e81bcda5
PB
1896 RAMBlock *block;
1897 ram_addr_t offset_inside_block;
8ab934f9
SS
1898 if (*size == 0) {
1899 return NULL;
1900 }
e81bcda5
PB
1901
1902 block = qemu_get_ram_block(addr);
1903 offset_inside_block = addr - block->offset;
1904 *size = MIN(*size, block->max_length - offset_inside_block);
1905
1906 if (xen_enabled() && block->host == NULL) {
1907 /* We need to check if the requested address is in the RAM
1908 * because we don't want to map the entire memory in QEMU.
1909 * In that case just map the requested area.
1910 */
1911 if (block->offset == 0) {
1912 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1913 }
1914
e81bcda5 1915 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1916 }
e81bcda5
PB
1917
1918 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1919}
1920
422148d3
DDAG
1921/*
1922 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1923 * in that RAMBlock.
1924 *
1925 * ptr: Host pointer to look up
1926 * round_offset: If true round the result offset down to a page boundary
1927 * *ram_addr: set to result ram_addr
1928 * *offset: set to result offset within the RAMBlock
1929 *
1930 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1931 *
1932 * By the time this function returns, the returned pointer is not protected
1933 * by RCU anymore. If the caller is not within an RCU critical section and
1934 * does not hold the iothread lock, it must have other means of protecting the
1935 * pointer, such as a reference to the region that includes the incoming
1936 * ram_addr_t.
1937 */
422148d3
DDAG
1938RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1939 ram_addr_t *ram_addr,
1940 ram_addr_t *offset)
5579c7f3 1941{
94a6b54f
PB
1942 RAMBlock *block;
1943 uint8_t *host = ptr;
1944
868bb33f 1945 if (xen_enabled()) {
0dc3f44a 1946 rcu_read_lock();
e41d7c69 1947 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1948 block = qemu_get_ram_block(*ram_addr);
1949 if (block) {
1950 *offset = (host - block->host);
1951 }
0dc3f44a 1952 rcu_read_unlock();
422148d3 1953 return block;
712c2b41
SS
1954 }
1955
0dc3f44a
MD
1956 rcu_read_lock();
1957 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1958 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1959 goto found;
1960 }
1961
0dc3f44a 1962 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1963 /* This case append when the block is not mapped. */
1964 if (block->host == NULL) {
1965 continue;
1966 }
9b8424d5 1967 if (host - block->host < block->max_length) {
23887b79 1968 goto found;
f471a17e 1969 }
94a6b54f 1970 }
432d268c 1971
0dc3f44a 1972 rcu_read_unlock();
1b5ec234 1973 return NULL;
23887b79
PB
1974
1975found:
422148d3
DDAG
1976 *offset = (host - block->host);
1977 if (round_offset) {
1978 *offset &= TARGET_PAGE_MASK;
1979 }
1980 *ram_addr = block->offset + *offset;
0dc3f44a 1981 rcu_read_unlock();
422148d3
DDAG
1982 return block;
1983}
1984
e3dd7493
DDAG
1985/*
1986 * Finds the named RAMBlock
1987 *
1988 * name: The name of RAMBlock to find
1989 *
1990 * Returns: RAMBlock (or NULL if not found)
1991 */
1992RAMBlock *qemu_ram_block_by_name(const char *name)
1993{
1994 RAMBlock *block;
1995
1996 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1997 if (!strcmp(name, block->idstr)) {
1998 return block;
1999 }
2000 }
2001
2002 return NULL;
2003}
2004
422148d3
DDAG
2005/* Some of the softmmu routines need to translate from a host pointer
2006 (typically a TLB entry) back to a ram offset. */
2007MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2008{
2009 RAMBlock *block;
2010 ram_addr_t offset; /* Not used */
2011
2012 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2013
2014 if (!block) {
2015 return NULL;
2016 }
2017
2018 return block->mr;
e890261f 2019}
f471a17e 2020
49b24afc 2021/* Called within RCU critical section. */
a8170e5e 2022static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2023 uint64_t val, unsigned size)
9fa3e853 2024{
52159192 2025 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2026 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2027 }
0e0df1e2
AK
2028 switch (size) {
2029 case 1:
2030 stb_p(qemu_get_ram_ptr(ram_addr), val);
2031 break;
2032 case 2:
2033 stw_p(qemu_get_ram_ptr(ram_addr), val);
2034 break;
2035 case 4:
2036 stl_p(qemu_get_ram_ptr(ram_addr), val);
2037 break;
2038 default:
2039 abort();
3a7d929e 2040 }
58d2707e
PB
2041 /* Set both VGA and migration bits for simplicity and to remove
2042 * the notdirty callback faster.
2043 */
2044 cpu_physical_memory_set_dirty_range(ram_addr, size,
2045 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2046 /* we remove the notdirty callback only if the code has been
2047 flushed */
a2cd8c85 2048 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2049 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2050 }
9fa3e853
FB
2051}
2052
b018ddf6
PB
2053static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2054 unsigned size, bool is_write)
2055{
2056 return is_write;
2057}
2058
0e0df1e2 2059static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2060 .write = notdirty_mem_write,
b018ddf6 2061 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2062 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2063};
2064
0f459d16 2065/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2066static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2067{
93afeade 2068 CPUState *cpu = current_cpu;
568496c0 2069 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2070 CPUArchState *env = cpu->env_ptr;
06d55cc1 2071 target_ulong pc, cs_base;
0f459d16 2072 target_ulong vaddr;
a1d1bb31 2073 CPUWatchpoint *wp;
06d55cc1 2074 int cpu_flags;
0f459d16 2075
ff4700b0 2076 if (cpu->watchpoint_hit) {
06d55cc1
AL
2077 /* We re-entered the check after replacing the TB. Now raise
2078 * the debug interrupt so that is will trigger after the
2079 * current instruction. */
93afeade 2080 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2081 return;
2082 }
93afeade 2083 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2084 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2085 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2086 && (wp->flags & flags)) {
08225676
PM
2087 if (flags == BP_MEM_READ) {
2088 wp->flags |= BP_WATCHPOINT_HIT_READ;
2089 } else {
2090 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2091 }
2092 wp->hitaddr = vaddr;
66b9b43c 2093 wp->hitattrs = attrs;
ff4700b0 2094 if (!cpu->watchpoint_hit) {
568496c0
SF
2095 if (wp->flags & BP_CPU &&
2096 !cc->debug_check_watchpoint(cpu, wp)) {
2097 wp->flags &= ~BP_WATCHPOINT_HIT;
2098 continue;
2099 }
ff4700b0 2100 cpu->watchpoint_hit = wp;
239c51a5 2101 tb_check_watchpoint(cpu);
6e140f28 2102 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2103 cpu->exception_index = EXCP_DEBUG;
5638d180 2104 cpu_loop_exit(cpu);
6e140f28
AL
2105 } else {
2106 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2107 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2108 cpu_resume_from_signal(cpu, NULL);
6e140f28 2109 }
06d55cc1 2110 }
6e140f28
AL
2111 } else {
2112 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2113 }
2114 }
2115}
2116
6658ffb8
PB
2117/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2118 so these check for a hit then pass through to the normal out-of-line
2119 phys routines. */
66b9b43c
PM
2120static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2121 unsigned size, MemTxAttrs attrs)
6658ffb8 2122{
66b9b43c
PM
2123 MemTxResult res;
2124 uint64_t data;
79ed0416
PM
2125 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2126 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2127
2128 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2129 switch (size) {
66b9b43c 2130 case 1:
79ed0416 2131 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2132 break;
2133 case 2:
79ed0416 2134 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2135 break;
2136 case 4:
79ed0416 2137 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2138 break;
1ec9b909
AK
2139 default: abort();
2140 }
66b9b43c
PM
2141 *pdata = data;
2142 return res;
6658ffb8
PB
2143}
2144
66b9b43c
PM
2145static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2146 uint64_t val, unsigned size,
2147 MemTxAttrs attrs)
6658ffb8 2148{
66b9b43c 2149 MemTxResult res;
79ed0416
PM
2150 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2151 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2152
2153 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2154 switch (size) {
67364150 2155 case 1:
79ed0416 2156 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2157 break;
2158 case 2:
79ed0416 2159 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2160 break;
2161 case 4:
79ed0416 2162 address_space_stl(as, addr, val, attrs, &res);
67364150 2163 break;
1ec9b909
AK
2164 default: abort();
2165 }
66b9b43c 2166 return res;
6658ffb8
PB
2167}
2168
1ec9b909 2169static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2170 .read_with_attrs = watch_mem_read,
2171 .write_with_attrs = watch_mem_write,
1ec9b909 2172 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2173};
6658ffb8 2174
f25a49e0
PM
2175static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2176 unsigned len, MemTxAttrs attrs)
db7b5426 2177{
acc9d80b 2178 subpage_t *subpage = opaque;
ff6cff75 2179 uint8_t buf[8];
5c9eb028 2180 MemTxResult res;
791af8c8 2181
db7b5426 2182#if defined(DEBUG_SUBPAGE)
016e9d62 2183 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2184 subpage, len, addr);
db7b5426 2185#endif
5c9eb028
PM
2186 res = address_space_read(subpage->as, addr + subpage->base,
2187 attrs, buf, len);
2188 if (res) {
2189 return res;
f25a49e0 2190 }
acc9d80b
JK
2191 switch (len) {
2192 case 1:
f25a49e0
PM
2193 *data = ldub_p(buf);
2194 return MEMTX_OK;
acc9d80b 2195 case 2:
f25a49e0
PM
2196 *data = lduw_p(buf);
2197 return MEMTX_OK;
acc9d80b 2198 case 4:
f25a49e0
PM
2199 *data = ldl_p(buf);
2200 return MEMTX_OK;
ff6cff75 2201 case 8:
f25a49e0
PM
2202 *data = ldq_p(buf);
2203 return MEMTX_OK;
acc9d80b
JK
2204 default:
2205 abort();
2206 }
db7b5426
BS
2207}
2208
f25a49e0
PM
2209static MemTxResult subpage_write(void *opaque, hwaddr addr,
2210 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2211{
acc9d80b 2212 subpage_t *subpage = opaque;
ff6cff75 2213 uint8_t buf[8];
acc9d80b 2214
db7b5426 2215#if defined(DEBUG_SUBPAGE)
016e9d62 2216 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2217 " value %"PRIx64"\n",
2218 __func__, subpage, len, addr, value);
db7b5426 2219#endif
acc9d80b
JK
2220 switch (len) {
2221 case 1:
2222 stb_p(buf, value);
2223 break;
2224 case 2:
2225 stw_p(buf, value);
2226 break;
2227 case 4:
2228 stl_p(buf, value);
2229 break;
ff6cff75
PB
2230 case 8:
2231 stq_p(buf, value);
2232 break;
acc9d80b
JK
2233 default:
2234 abort();
2235 }
5c9eb028
PM
2236 return address_space_write(subpage->as, addr + subpage->base,
2237 attrs, buf, len);
db7b5426
BS
2238}
2239
c353e4cc 2240static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2241 unsigned len, bool is_write)
c353e4cc 2242{
acc9d80b 2243 subpage_t *subpage = opaque;
c353e4cc 2244#if defined(DEBUG_SUBPAGE)
016e9d62 2245 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2246 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2247#endif
2248
acc9d80b 2249 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2250 len, is_write);
c353e4cc
PB
2251}
2252
70c68e44 2253static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2254 .read_with_attrs = subpage_read,
2255 .write_with_attrs = subpage_write,
ff6cff75
PB
2256 .impl.min_access_size = 1,
2257 .impl.max_access_size = 8,
2258 .valid.min_access_size = 1,
2259 .valid.max_access_size = 8,
c353e4cc 2260 .valid.accepts = subpage_accepts,
70c68e44 2261 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2262};
2263
c227f099 2264static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2265 uint16_t section)
db7b5426
BS
2266{
2267 int idx, eidx;
2268
2269 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2270 return -1;
2271 idx = SUBPAGE_IDX(start);
2272 eidx = SUBPAGE_IDX(end);
2273#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2274 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2275 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2276#endif
db7b5426 2277 for (; idx <= eidx; idx++) {
5312bd8b 2278 mmio->sub_section[idx] = section;
db7b5426
BS
2279 }
2280
2281 return 0;
2282}
2283
acc9d80b 2284static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2285{
c227f099 2286 subpage_t *mmio;
db7b5426 2287
7267c094 2288 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2289
acc9d80b 2290 mmio->as = as;
1eec614b 2291 mmio->base = base;
2c9b15ca 2292 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2293 NULL, TARGET_PAGE_SIZE);
b3b00c78 2294 mmio->iomem.subpage = true;
db7b5426 2295#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2296 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2297 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2298#endif
b41aac4f 2299 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2300
2301 return mmio;
2302}
2303
a656e22f
PC
2304static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2305 MemoryRegion *mr)
5312bd8b 2306{
a656e22f 2307 assert(as);
5312bd8b 2308 MemoryRegionSection section = {
a656e22f 2309 .address_space = as,
5312bd8b
AK
2310 .mr = mr,
2311 .offset_within_address_space = 0,
2312 .offset_within_region = 0,
052e87b0 2313 .size = int128_2_64(),
5312bd8b
AK
2314 };
2315
53cb28cb 2316 return phys_section_add(map, &section);
5312bd8b
AK
2317}
2318
a54c87b6 2319MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2320{
a54c87b6
PM
2321 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2322 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2323 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2324 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2325
2326 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2327}
2328
e9179ce1
AK
2329static void io_mem_init(void)
2330{
1f6245e5 2331 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2332 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2333 NULL, UINT64_MAX);
2c9b15ca 2334 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2335 NULL, UINT64_MAX);
2c9b15ca 2336 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2337 NULL, UINT64_MAX);
e9179ce1
AK
2338}
2339
ac1970fb 2340static void mem_begin(MemoryListener *listener)
00752703
PB
2341{
2342 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2343 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2344 uint16_t n;
2345
a656e22f 2346 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2347 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2348 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2349 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2350 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2351 assert(n == PHYS_SECTION_ROM);
a656e22f 2352 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2353 assert(n == PHYS_SECTION_WATCH);
00752703 2354
9736e55b 2355 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2356 d->as = as;
2357 as->next_dispatch = d;
2358}
2359
79e2b9ae
PB
2360static void address_space_dispatch_free(AddressSpaceDispatch *d)
2361{
2362 phys_sections_free(&d->map);
2363 g_free(d);
2364}
2365
00752703 2366static void mem_commit(MemoryListener *listener)
ac1970fb 2367{
89ae337a 2368 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2369 AddressSpaceDispatch *cur = as->dispatch;
2370 AddressSpaceDispatch *next = as->next_dispatch;
2371
53cb28cb 2372 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2373
79e2b9ae 2374 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2375 if (cur) {
79e2b9ae 2376 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2377 }
9affd6fc
PB
2378}
2379
1d71148e 2380static void tcg_commit(MemoryListener *listener)
50c1e149 2381{
32857f4d
PM
2382 CPUAddressSpace *cpuas;
2383 AddressSpaceDispatch *d;
117712c3
AK
2384
2385 /* since each CPU stores ram addresses in its TLB cache, we must
2386 reset the modified entries */
32857f4d
PM
2387 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2388 cpu_reloading_memory_map();
2389 /* The CPU and TLB are protected by the iothread lock.
2390 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2391 * may have split the RCU critical section.
2392 */
2393 d = atomic_rcu_read(&cpuas->as->dispatch);
2394 cpuas->memory_dispatch = d;
2395 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2396}
2397
ac1970fb
AK
2398void address_space_init_dispatch(AddressSpace *as)
2399{
00752703 2400 as->dispatch = NULL;
89ae337a 2401 as->dispatch_listener = (MemoryListener) {
ac1970fb 2402 .begin = mem_begin,
00752703 2403 .commit = mem_commit,
ac1970fb
AK
2404 .region_add = mem_add,
2405 .region_nop = mem_add,
2406 .priority = 0,
2407 };
89ae337a 2408 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2409}
2410
6e48e8f9
PB
2411void address_space_unregister(AddressSpace *as)
2412{
2413 memory_listener_unregister(&as->dispatch_listener);
2414}
2415
83f3c251
AK
2416void address_space_destroy_dispatch(AddressSpace *as)
2417{
2418 AddressSpaceDispatch *d = as->dispatch;
2419
79e2b9ae
PB
2420 atomic_rcu_set(&as->dispatch, NULL);
2421 if (d) {
2422 call_rcu(d, address_space_dispatch_free, rcu);
2423 }
83f3c251
AK
2424}
2425
62152b8a
AK
2426static void memory_map_init(void)
2427{
7267c094 2428 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2429
57271d63 2430 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2431 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2432
7267c094 2433 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2434 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2435 65536);
7dca8043 2436 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2437}
2438
2439MemoryRegion *get_system_memory(void)
2440{
2441 return system_memory;
2442}
2443
309cb471
AK
2444MemoryRegion *get_system_io(void)
2445{
2446 return system_io;
2447}
2448
e2eef170
PB
2449#endif /* !defined(CONFIG_USER_ONLY) */
2450
13eb76e0
FB
2451/* physical memory access (slow version, mainly for debug) */
2452#if defined(CONFIG_USER_ONLY)
f17ec444 2453int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2454 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2455{
2456 int l, flags;
2457 target_ulong page;
53a5960a 2458 void * p;
13eb76e0
FB
2459
2460 while (len > 0) {
2461 page = addr & TARGET_PAGE_MASK;
2462 l = (page + TARGET_PAGE_SIZE) - addr;
2463 if (l > len)
2464 l = len;
2465 flags = page_get_flags(page);
2466 if (!(flags & PAGE_VALID))
a68fe89c 2467 return -1;
13eb76e0
FB
2468 if (is_write) {
2469 if (!(flags & PAGE_WRITE))
a68fe89c 2470 return -1;
579a97f7 2471 /* XXX: this code should not depend on lock_user */
72fb7daa 2472 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2473 return -1;
72fb7daa
AJ
2474 memcpy(p, buf, l);
2475 unlock_user(p, addr, l);
13eb76e0
FB
2476 } else {
2477 if (!(flags & PAGE_READ))
a68fe89c 2478 return -1;
579a97f7 2479 /* XXX: this code should not depend on lock_user */
72fb7daa 2480 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2481 return -1;
72fb7daa 2482 memcpy(buf, p, l);
5b257578 2483 unlock_user(p, addr, 0);
13eb76e0
FB
2484 }
2485 len -= l;
2486 buf += l;
2487 addr += l;
2488 }
a68fe89c 2489 return 0;
13eb76e0 2490}
8df1cd07 2491
13eb76e0 2492#else
51d7a9eb 2493
845b6214 2494static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2495 hwaddr length)
51d7a9eb 2496{
e87f7778
PB
2497 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2498 /* No early return if dirty_log_mask is or becomes 0, because
2499 * cpu_physical_memory_set_dirty_range will still call
2500 * xen_modified_memory.
2501 */
2502 if (dirty_log_mask) {
2503 dirty_log_mask =
2504 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2505 }
2506 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2507 tb_invalidate_phys_range(addr, addr + length);
2508 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2509 }
e87f7778 2510 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2511}
2512
23326164 2513static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2514{
e1622f4b 2515 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2516
2517 /* Regions are assumed to support 1-4 byte accesses unless
2518 otherwise specified. */
23326164
RH
2519 if (access_size_max == 0) {
2520 access_size_max = 4;
2521 }
2522
2523 /* Bound the maximum access by the alignment of the address. */
2524 if (!mr->ops->impl.unaligned) {
2525 unsigned align_size_max = addr & -addr;
2526 if (align_size_max != 0 && align_size_max < access_size_max) {
2527 access_size_max = align_size_max;
2528 }
82f2563f 2529 }
23326164
RH
2530
2531 /* Don't attempt accesses larger than the maximum. */
2532 if (l > access_size_max) {
2533 l = access_size_max;
82f2563f 2534 }
6554f5c0 2535 l = pow2floor(l);
23326164
RH
2536
2537 return l;
82f2563f
PB
2538}
2539
4840f10e 2540static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2541{
4840f10e
JK
2542 bool unlocked = !qemu_mutex_iothread_locked();
2543 bool release_lock = false;
2544
2545 if (unlocked && mr->global_locking) {
2546 qemu_mutex_lock_iothread();
2547 unlocked = false;
2548 release_lock = true;
2549 }
125b3806 2550 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2551 if (unlocked) {
2552 qemu_mutex_lock_iothread();
2553 }
125b3806 2554 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2555 if (unlocked) {
2556 qemu_mutex_unlock_iothread();
2557 }
125b3806 2558 }
4840f10e
JK
2559
2560 return release_lock;
125b3806
PB
2561}
2562
a203ac70
PB
2563/* Called within RCU critical section. */
2564static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2565 MemTxAttrs attrs,
2566 const uint8_t *buf,
2567 int len, hwaddr addr1,
2568 hwaddr l, MemoryRegion *mr)
13eb76e0 2569{
13eb76e0 2570 uint8_t *ptr;
791af8c8 2571 uint64_t val;
3b643495 2572 MemTxResult result = MEMTX_OK;
4840f10e 2573 bool release_lock = false;
3b46e624 2574
a203ac70 2575 for (;;) {
eb7eeb88
PB
2576 if (!memory_access_is_direct(mr, true)) {
2577 release_lock |= prepare_mmio_access(mr);
2578 l = memory_access_size(mr, l, addr1);
2579 /* XXX: could force current_cpu to NULL to avoid
2580 potential bugs */
2581 switch (l) {
2582 case 8:
2583 /* 64 bit write access */
2584 val = ldq_p(buf);
2585 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2586 attrs);
2587 break;
2588 case 4:
2589 /* 32 bit write access */
2590 val = ldl_p(buf);
2591 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2592 attrs);
2593 break;
2594 case 2:
2595 /* 16 bit write access */
2596 val = lduw_p(buf);
2597 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2598 attrs);
2599 break;
2600 case 1:
2601 /* 8 bit write access */
2602 val = ldub_p(buf);
2603 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2604 attrs);
2605 break;
2606 default:
2607 abort();
13eb76e0
FB
2608 }
2609 } else {
eb7eeb88
PB
2610 addr1 += memory_region_get_ram_addr(mr);
2611 /* RAM case */
2612 ptr = qemu_get_ram_ptr(addr1);
2613 memcpy(ptr, buf, l);
2614 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2615 }
4840f10e
JK
2616
2617 if (release_lock) {
2618 qemu_mutex_unlock_iothread();
2619 release_lock = false;
2620 }
2621
13eb76e0
FB
2622 len -= l;
2623 buf += l;
2624 addr += l;
a203ac70
PB
2625
2626 if (!len) {
2627 break;
2628 }
2629
2630 l = len;
2631 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2632 }
fd8aaa76 2633
3b643495 2634 return result;
13eb76e0 2635}
8df1cd07 2636
a203ac70
PB
2637MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2638 const uint8_t *buf, int len)
ac1970fb 2639{
eb7eeb88 2640 hwaddr l;
eb7eeb88
PB
2641 hwaddr addr1;
2642 MemoryRegion *mr;
2643 MemTxResult result = MEMTX_OK;
eb7eeb88 2644
a203ac70
PB
2645 if (len > 0) {
2646 rcu_read_lock();
eb7eeb88 2647 l = len;
a203ac70
PB
2648 mr = address_space_translate(as, addr, &addr1, &l, true);
2649 result = address_space_write_continue(as, addr, attrs, buf, len,
2650 addr1, l, mr);
2651 rcu_read_unlock();
2652 }
2653
2654 return result;
2655}
2656
2657/* Called within RCU critical section. */
2658MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2659 MemTxAttrs attrs, uint8_t *buf,
2660 int len, hwaddr addr1, hwaddr l,
2661 MemoryRegion *mr)
2662{
2663 uint8_t *ptr;
2664 uint64_t val;
2665 MemTxResult result = MEMTX_OK;
2666 bool release_lock = false;
eb7eeb88 2667
a203ac70 2668 for (;;) {
eb7eeb88
PB
2669 if (!memory_access_is_direct(mr, false)) {
2670 /* I/O case */
2671 release_lock |= prepare_mmio_access(mr);
2672 l = memory_access_size(mr, l, addr1);
2673 switch (l) {
2674 case 8:
2675 /* 64 bit read access */
2676 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2677 attrs);
2678 stq_p(buf, val);
2679 break;
2680 case 4:
2681 /* 32 bit read access */
2682 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2683 attrs);
2684 stl_p(buf, val);
2685 break;
2686 case 2:
2687 /* 16 bit read access */
2688 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2689 attrs);
2690 stw_p(buf, val);
2691 break;
2692 case 1:
2693 /* 8 bit read access */
2694 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2695 attrs);
2696 stb_p(buf, val);
2697 break;
2698 default:
2699 abort();
2700 }
2701 } else {
2702 /* RAM case */
2703 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2704 memcpy(buf, ptr, l);
2705 }
2706
2707 if (release_lock) {
2708 qemu_mutex_unlock_iothread();
2709 release_lock = false;
2710 }
2711
2712 len -= l;
2713 buf += l;
2714 addr += l;
a203ac70
PB
2715
2716 if (!len) {
2717 break;
2718 }
2719
2720 l = len;
2721 mr = address_space_translate(as, addr, &addr1, &l, false);
2722 }
2723
2724 return result;
2725}
2726
3cc8f884
PB
2727MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2728 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2729{
2730 hwaddr l;
2731 hwaddr addr1;
2732 MemoryRegion *mr;
2733 MemTxResult result = MEMTX_OK;
2734
2735 if (len > 0) {
2736 rcu_read_lock();
2737 l = len;
2738 mr = address_space_translate(as, addr, &addr1, &l, false);
2739 result = address_space_read_continue(as, addr, attrs, buf, len,
2740 addr1, l, mr);
2741 rcu_read_unlock();
eb7eeb88 2742 }
eb7eeb88
PB
2743
2744 return result;
ac1970fb
AK
2745}
2746
eb7eeb88
PB
2747MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2748 uint8_t *buf, int len, bool is_write)
2749{
2750 if (is_write) {
2751 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2752 } else {
2753 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2754 }
2755}
ac1970fb 2756
a8170e5e 2757void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2758 int len, int is_write)
2759{
5c9eb028
PM
2760 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2761 buf, len, is_write);
ac1970fb
AK
2762}
2763
582b55a9
AG
2764enum write_rom_type {
2765 WRITE_DATA,
2766 FLUSH_CACHE,
2767};
2768
2a221651 2769static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2770 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2771{
149f54b5 2772 hwaddr l;
d0ecd2aa 2773 uint8_t *ptr;
149f54b5 2774 hwaddr addr1;
5c8a00ce 2775 MemoryRegion *mr;
3b46e624 2776
41063e1e 2777 rcu_read_lock();
d0ecd2aa 2778 while (len > 0) {
149f54b5 2779 l = len;
2a221651 2780 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2781
5c8a00ce
PB
2782 if (!(memory_region_is_ram(mr) ||
2783 memory_region_is_romd(mr))) {
b242e0e0 2784 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2785 } else {
5c8a00ce 2786 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2787 /* ROM/RAM case */
5579c7f3 2788 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2789 switch (type) {
2790 case WRITE_DATA:
2791 memcpy(ptr, buf, l);
845b6214 2792 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2793 break;
2794 case FLUSH_CACHE:
2795 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2796 break;
2797 }
d0ecd2aa
FB
2798 }
2799 len -= l;
2800 buf += l;
2801 addr += l;
2802 }
41063e1e 2803 rcu_read_unlock();
d0ecd2aa
FB
2804}
2805
582b55a9 2806/* used for ROM loading : can write in RAM and ROM */
2a221651 2807void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2808 const uint8_t *buf, int len)
2809{
2a221651 2810 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2811}
2812
2813void cpu_flush_icache_range(hwaddr start, int len)
2814{
2815 /*
2816 * This function should do the same thing as an icache flush that was
2817 * triggered from within the guest. For TCG we are always cache coherent,
2818 * so there is no need to flush anything. For KVM / Xen we need to flush
2819 * the host's instruction cache at least.
2820 */
2821 if (tcg_enabled()) {
2822 return;
2823 }
2824
2a221651
EI
2825 cpu_physical_memory_write_rom_internal(&address_space_memory,
2826 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2827}
2828
6d16c2f8 2829typedef struct {
d3e71559 2830 MemoryRegion *mr;
6d16c2f8 2831 void *buffer;
a8170e5e
AK
2832 hwaddr addr;
2833 hwaddr len;
c2cba0ff 2834 bool in_use;
6d16c2f8
AL
2835} BounceBuffer;
2836
2837static BounceBuffer bounce;
2838
ba223c29 2839typedef struct MapClient {
e95205e1 2840 QEMUBH *bh;
72cf2d4f 2841 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2842} MapClient;
2843
38e047b5 2844QemuMutex map_client_list_lock;
72cf2d4f
BS
2845static QLIST_HEAD(map_client_list, MapClient) map_client_list
2846 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2847
e95205e1
FZ
2848static void cpu_unregister_map_client_do(MapClient *client)
2849{
2850 QLIST_REMOVE(client, link);
2851 g_free(client);
2852}
2853
33b6c2ed
FZ
2854static void cpu_notify_map_clients_locked(void)
2855{
2856 MapClient *client;
2857
2858 while (!QLIST_EMPTY(&map_client_list)) {
2859 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2860 qemu_bh_schedule(client->bh);
2861 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2862 }
2863}
2864
e95205e1 2865void cpu_register_map_client(QEMUBH *bh)
ba223c29 2866{
7267c094 2867 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2868
38e047b5 2869 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2870 client->bh = bh;
72cf2d4f 2871 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2872 if (!atomic_read(&bounce.in_use)) {
2873 cpu_notify_map_clients_locked();
2874 }
38e047b5 2875 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2876}
2877
38e047b5 2878void cpu_exec_init_all(void)
ba223c29 2879{
38e047b5 2880 qemu_mutex_init(&ram_list.mutex);
38e047b5 2881 io_mem_init();
680a4783 2882 memory_map_init();
38e047b5 2883 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2884}
2885
e95205e1 2886void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2887{
2888 MapClient *client;
2889
e95205e1
FZ
2890 qemu_mutex_lock(&map_client_list_lock);
2891 QLIST_FOREACH(client, &map_client_list, link) {
2892 if (client->bh == bh) {
2893 cpu_unregister_map_client_do(client);
2894 break;
2895 }
ba223c29 2896 }
e95205e1 2897 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2898}
2899
2900static void cpu_notify_map_clients(void)
2901{
38e047b5 2902 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2903 cpu_notify_map_clients_locked();
38e047b5 2904 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2905}
2906
51644ab7
PB
2907bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2908{
5c8a00ce 2909 MemoryRegion *mr;
51644ab7
PB
2910 hwaddr l, xlat;
2911
41063e1e 2912 rcu_read_lock();
51644ab7
PB
2913 while (len > 0) {
2914 l = len;
5c8a00ce
PB
2915 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2916 if (!memory_access_is_direct(mr, is_write)) {
2917 l = memory_access_size(mr, l, addr);
2918 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2919 return false;
2920 }
2921 }
2922
2923 len -= l;
2924 addr += l;
2925 }
41063e1e 2926 rcu_read_unlock();
51644ab7
PB
2927 return true;
2928}
2929
6d16c2f8
AL
2930/* Map a physical memory region into a host virtual address.
2931 * May map a subset of the requested range, given by and returned in *plen.
2932 * May return NULL if resources needed to perform the mapping are exhausted.
2933 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2934 * Use cpu_register_map_client() to know when retrying the map operation is
2935 * likely to succeed.
6d16c2f8 2936 */
ac1970fb 2937void *address_space_map(AddressSpace *as,
a8170e5e
AK
2938 hwaddr addr,
2939 hwaddr *plen,
ac1970fb 2940 bool is_write)
6d16c2f8 2941{
a8170e5e 2942 hwaddr len = *plen;
e3127ae0
PB
2943 hwaddr done = 0;
2944 hwaddr l, xlat, base;
2945 MemoryRegion *mr, *this_mr;
2946 ram_addr_t raddr;
e81bcda5 2947 void *ptr;
6d16c2f8 2948
e3127ae0
PB
2949 if (len == 0) {
2950 return NULL;
2951 }
38bee5dc 2952
e3127ae0 2953 l = len;
41063e1e 2954 rcu_read_lock();
e3127ae0 2955 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2956
e3127ae0 2957 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2958 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2959 rcu_read_unlock();
e3127ae0 2960 return NULL;
6d16c2f8 2961 }
e85d9db5
KW
2962 /* Avoid unbounded allocations */
2963 l = MIN(l, TARGET_PAGE_SIZE);
2964 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2965 bounce.addr = addr;
2966 bounce.len = l;
d3e71559
PB
2967
2968 memory_region_ref(mr);
2969 bounce.mr = mr;
e3127ae0 2970 if (!is_write) {
5c9eb028
PM
2971 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2972 bounce.buffer, l);
8ab934f9 2973 }
6d16c2f8 2974
41063e1e 2975 rcu_read_unlock();
e3127ae0
PB
2976 *plen = l;
2977 return bounce.buffer;
2978 }
2979
2980 base = xlat;
2981 raddr = memory_region_get_ram_addr(mr);
2982
2983 for (;;) {
6d16c2f8
AL
2984 len -= l;
2985 addr += l;
e3127ae0
PB
2986 done += l;
2987 if (len == 0) {
2988 break;
2989 }
2990
2991 l = len;
2992 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2993 if (this_mr != mr || xlat != base + done) {
2994 break;
2995 }
6d16c2f8 2996 }
e3127ae0 2997
d3e71559 2998 memory_region_ref(mr);
e3127ae0 2999 *plen = done;
e81bcda5
PB
3000 ptr = qemu_ram_ptr_length(raddr + base, plen);
3001 rcu_read_unlock();
3002
3003 return ptr;
6d16c2f8
AL
3004}
3005
ac1970fb 3006/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3007 * Will also mark the memory as dirty if is_write == 1. access_len gives
3008 * the amount of memory that was actually read or written by the caller.
3009 */
a8170e5e
AK
3010void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3011 int is_write, hwaddr access_len)
6d16c2f8
AL
3012{
3013 if (buffer != bounce.buffer) {
d3e71559
PB
3014 MemoryRegion *mr;
3015 ram_addr_t addr1;
3016
3017 mr = qemu_ram_addr_from_host(buffer, &addr1);
3018 assert(mr != NULL);
6d16c2f8 3019 if (is_write) {
845b6214 3020 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3021 }
868bb33f 3022 if (xen_enabled()) {
e41d7c69 3023 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3024 }
d3e71559 3025 memory_region_unref(mr);
6d16c2f8
AL
3026 return;
3027 }
3028 if (is_write) {
5c9eb028
PM
3029 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3030 bounce.buffer, access_len);
6d16c2f8 3031 }
f8a83245 3032 qemu_vfree(bounce.buffer);
6d16c2f8 3033 bounce.buffer = NULL;
d3e71559 3034 memory_region_unref(bounce.mr);
c2cba0ff 3035 atomic_mb_set(&bounce.in_use, false);
ba223c29 3036 cpu_notify_map_clients();
6d16c2f8 3037}
d0ecd2aa 3038
a8170e5e
AK
3039void *cpu_physical_memory_map(hwaddr addr,
3040 hwaddr *plen,
ac1970fb
AK
3041 int is_write)
3042{
3043 return address_space_map(&address_space_memory, addr, plen, is_write);
3044}
3045
a8170e5e
AK
3046void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3047 int is_write, hwaddr access_len)
ac1970fb
AK
3048{
3049 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3050}
3051
8df1cd07 3052/* warning: addr must be aligned */
50013115
PM
3053static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3054 MemTxAttrs attrs,
3055 MemTxResult *result,
3056 enum device_endian endian)
8df1cd07 3057{
8df1cd07 3058 uint8_t *ptr;
791af8c8 3059 uint64_t val;
5c8a00ce 3060 MemoryRegion *mr;
149f54b5
PB
3061 hwaddr l = 4;
3062 hwaddr addr1;
50013115 3063 MemTxResult r;
4840f10e 3064 bool release_lock = false;
8df1cd07 3065
41063e1e 3066 rcu_read_lock();
fdfba1a2 3067 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3068 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3069 release_lock |= prepare_mmio_access(mr);
125b3806 3070
8df1cd07 3071 /* I/O case */
50013115 3072 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3073#if defined(TARGET_WORDS_BIGENDIAN)
3074 if (endian == DEVICE_LITTLE_ENDIAN) {
3075 val = bswap32(val);
3076 }
3077#else
3078 if (endian == DEVICE_BIG_ENDIAN) {
3079 val = bswap32(val);
3080 }
3081#endif
8df1cd07
FB
3082 } else {
3083 /* RAM case */
5c8a00ce 3084 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3085 & TARGET_PAGE_MASK)
149f54b5 3086 + addr1);
1e78bcc1
AG
3087 switch (endian) {
3088 case DEVICE_LITTLE_ENDIAN:
3089 val = ldl_le_p(ptr);
3090 break;
3091 case DEVICE_BIG_ENDIAN:
3092 val = ldl_be_p(ptr);
3093 break;
3094 default:
3095 val = ldl_p(ptr);
3096 break;
3097 }
50013115
PM
3098 r = MEMTX_OK;
3099 }
3100 if (result) {
3101 *result = r;
8df1cd07 3102 }
4840f10e
JK
3103 if (release_lock) {
3104 qemu_mutex_unlock_iothread();
3105 }
41063e1e 3106 rcu_read_unlock();
8df1cd07
FB
3107 return val;
3108}
3109
50013115
PM
3110uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3111 MemTxAttrs attrs, MemTxResult *result)
3112{
3113 return address_space_ldl_internal(as, addr, attrs, result,
3114 DEVICE_NATIVE_ENDIAN);
3115}
3116
3117uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3118 MemTxAttrs attrs, MemTxResult *result)
3119{
3120 return address_space_ldl_internal(as, addr, attrs, result,
3121 DEVICE_LITTLE_ENDIAN);
3122}
3123
3124uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3125 MemTxAttrs attrs, MemTxResult *result)
3126{
3127 return address_space_ldl_internal(as, addr, attrs, result,
3128 DEVICE_BIG_ENDIAN);
3129}
3130
fdfba1a2 3131uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3132{
50013115 3133 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3134}
3135
fdfba1a2 3136uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3137{
50013115 3138 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3139}
3140
fdfba1a2 3141uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3142{
50013115 3143 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3144}
3145
84b7b8e7 3146/* warning: addr must be aligned */
50013115
PM
3147static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3148 MemTxAttrs attrs,
3149 MemTxResult *result,
3150 enum device_endian endian)
84b7b8e7 3151{
84b7b8e7
FB
3152 uint8_t *ptr;
3153 uint64_t val;
5c8a00ce 3154 MemoryRegion *mr;
149f54b5
PB
3155 hwaddr l = 8;
3156 hwaddr addr1;
50013115 3157 MemTxResult r;
4840f10e 3158 bool release_lock = false;
84b7b8e7 3159
41063e1e 3160 rcu_read_lock();
2c17449b 3161 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3162 false);
3163 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3164 release_lock |= prepare_mmio_access(mr);
125b3806 3165
84b7b8e7 3166 /* I/O case */
50013115 3167 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3168#if defined(TARGET_WORDS_BIGENDIAN)
3169 if (endian == DEVICE_LITTLE_ENDIAN) {
3170 val = bswap64(val);
3171 }
3172#else
3173 if (endian == DEVICE_BIG_ENDIAN) {
3174 val = bswap64(val);
3175 }
84b7b8e7
FB
3176#endif
3177 } else {
3178 /* RAM case */
5c8a00ce 3179 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3180 & TARGET_PAGE_MASK)
149f54b5 3181 + addr1);
1e78bcc1
AG
3182 switch (endian) {
3183 case DEVICE_LITTLE_ENDIAN:
3184 val = ldq_le_p(ptr);
3185 break;
3186 case DEVICE_BIG_ENDIAN:
3187 val = ldq_be_p(ptr);
3188 break;
3189 default:
3190 val = ldq_p(ptr);
3191 break;
3192 }
50013115
PM
3193 r = MEMTX_OK;
3194 }
3195 if (result) {
3196 *result = r;
84b7b8e7 3197 }
4840f10e
JK
3198 if (release_lock) {
3199 qemu_mutex_unlock_iothread();
3200 }
41063e1e 3201 rcu_read_unlock();
84b7b8e7
FB
3202 return val;
3203}
3204
50013115
PM
3205uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3206 MemTxAttrs attrs, MemTxResult *result)
3207{
3208 return address_space_ldq_internal(as, addr, attrs, result,
3209 DEVICE_NATIVE_ENDIAN);
3210}
3211
3212uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3213 MemTxAttrs attrs, MemTxResult *result)
3214{
3215 return address_space_ldq_internal(as, addr, attrs, result,
3216 DEVICE_LITTLE_ENDIAN);
3217}
3218
3219uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3220 MemTxAttrs attrs, MemTxResult *result)
3221{
3222 return address_space_ldq_internal(as, addr, attrs, result,
3223 DEVICE_BIG_ENDIAN);
3224}
3225
2c17449b 3226uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3227{
50013115 3228 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3229}
3230
2c17449b 3231uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3232{
50013115 3233 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3234}
3235
2c17449b 3236uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3237{
50013115 3238 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3239}
3240
aab33094 3241/* XXX: optimize */
50013115
PM
3242uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3243 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3244{
3245 uint8_t val;
50013115
PM
3246 MemTxResult r;
3247
3248 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3249 if (result) {
3250 *result = r;
3251 }
aab33094
FB
3252 return val;
3253}
3254
50013115
PM
3255uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3256{
3257 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3258}
3259
733f0b02 3260/* warning: addr must be aligned */
50013115
PM
3261static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3262 hwaddr addr,
3263 MemTxAttrs attrs,
3264 MemTxResult *result,
3265 enum device_endian endian)
aab33094 3266{
733f0b02
MT
3267 uint8_t *ptr;
3268 uint64_t val;
5c8a00ce 3269 MemoryRegion *mr;
149f54b5
PB
3270 hwaddr l = 2;
3271 hwaddr addr1;
50013115 3272 MemTxResult r;
4840f10e 3273 bool release_lock = false;
733f0b02 3274
41063e1e 3275 rcu_read_lock();
41701aa4 3276 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3277 false);
3278 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3279 release_lock |= prepare_mmio_access(mr);
125b3806 3280
733f0b02 3281 /* I/O case */
50013115 3282 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3283#if defined(TARGET_WORDS_BIGENDIAN)
3284 if (endian == DEVICE_LITTLE_ENDIAN) {
3285 val = bswap16(val);
3286 }
3287#else
3288 if (endian == DEVICE_BIG_ENDIAN) {
3289 val = bswap16(val);
3290 }
3291#endif
733f0b02
MT
3292 } else {
3293 /* RAM case */
5c8a00ce 3294 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3295 & TARGET_PAGE_MASK)
149f54b5 3296 + addr1);
1e78bcc1
AG
3297 switch (endian) {
3298 case DEVICE_LITTLE_ENDIAN:
3299 val = lduw_le_p(ptr);
3300 break;
3301 case DEVICE_BIG_ENDIAN:
3302 val = lduw_be_p(ptr);
3303 break;
3304 default:
3305 val = lduw_p(ptr);
3306 break;
3307 }
50013115
PM
3308 r = MEMTX_OK;
3309 }
3310 if (result) {
3311 *result = r;
733f0b02 3312 }
4840f10e
JK
3313 if (release_lock) {
3314 qemu_mutex_unlock_iothread();
3315 }
41063e1e 3316 rcu_read_unlock();
733f0b02 3317 return val;
aab33094
FB
3318}
3319
50013115
PM
3320uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3321 MemTxAttrs attrs, MemTxResult *result)
3322{
3323 return address_space_lduw_internal(as, addr, attrs, result,
3324 DEVICE_NATIVE_ENDIAN);
3325}
3326
3327uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3328 MemTxAttrs attrs, MemTxResult *result)
3329{
3330 return address_space_lduw_internal(as, addr, attrs, result,
3331 DEVICE_LITTLE_ENDIAN);
3332}
3333
3334uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3335 MemTxAttrs attrs, MemTxResult *result)
3336{
3337 return address_space_lduw_internal(as, addr, attrs, result,
3338 DEVICE_BIG_ENDIAN);
3339}
3340
41701aa4 3341uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3342{
50013115 3343 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3344}
3345
41701aa4 3346uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3347{
50013115 3348 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3349}
3350
41701aa4 3351uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3352{
50013115 3353 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3354}
3355
8df1cd07
FB
3356/* warning: addr must be aligned. The ram page is not masked as dirty
3357 and the code inside is not invalidated. It is useful if the dirty
3358 bits are used to track modified PTEs */
50013115
PM
3359void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3360 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3361{
8df1cd07 3362 uint8_t *ptr;
5c8a00ce 3363 MemoryRegion *mr;
149f54b5
PB
3364 hwaddr l = 4;
3365 hwaddr addr1;
50013115 3366 MemTxResult r;
845b6214 3367 uint8_t dirty_log_mask;
4840f10e 3368 bool release_lock = false;
8df1cd07 3369
41063e1e 3370 rcu_read_lock();
2198a121 3371 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3372 true);
3373 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3374 release_lock |= prepare_mmio_access(mr);
125b3806 3375
50013115 3376 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3377 } else {
5c8a00ce 3378 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3379 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3380 stl_p(ptr, val);
74576198 3381
845b6214
PB
3382 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3383 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3384 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3385 r = MEMTX_OK;
3386 }
3387 if (result) {
3388 *result = r;
8df1cd07 3389 }
4840f10e
JK
3390 if (release_lock) {
3391 qemu_mutex_unlock_iothread();
3392 }
41063e1e 3393 rcu_read_unlock();
8df1cd07
FB
3394}
3395
50013115
PM
3396void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3397{
3398 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3399}
3400
8df1cd07 3401/* warning: addr must be aligned */
50013115
PM
3402static inline void address_space_stl_internal(AddressSpace *as,
3403 hwaddr addr, uint32_t val,
3404 MemTxAttrs attrs,
3405 MemTxResult *result,
3406 enum device_endian endian)
8df1cd07 3407{
8df1cd07 3408 uint8_t *ptr;
5c8a00ce 3409 MemoryRegion *mr;
149f54b5
PB
3410 hwaddr l = 4;
3411 hwaddr addr1;
50013115 3412 MemTxResult r;
4840f10e 3413 bool release_lock = false;
8df1cd07 3414
41063e1e 3415 rcu_read_lock();
ab1da857 3416 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3417 true);
3418 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3419 release_lock |= prepare_mmio_access(mr);
125b3806 3420
1e78bcc1
AG
3421#if defined(TARGET_WORDS_BIGENDIAN)
3422 if (endian == DEVICE_LITTLE_ENDIAN) {
3423 val = bswap32(val);
3424 }
3425#else
3426 if (endian == DEVICE_BIG_ENDIAN) {
3427 val = bswap32(val);
3428 }
3429#endif
50013115 3430 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3431 } else {
8df1cd07 3432 /* RAM case */
5c8a00ce 3433 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3434 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3435 switch (endian) {
3436 case DEVICE_LITTLE_ENDIAN:
3437 stl_le_p(ptr, val);
3438 break;
3439 case DEVICE_BIG_ENDIAN:
3440 stl_be_p(ptr, val);
3441 break;
3442 default:
3443 stl_p(ptr, val);
3444 break;
3445 }
845b6214 3446 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3447 r = MEMTX_OK;
3448 }
3449 if (result) {
3450 *result = r;
8df1cd07 3451 }
4840f10e
JK
3452 if (release_lock) {
3453 qemu_mutex_unlock_iothread();
3454 }
41063e1e 3455 rcu_read_unlock();
8df1cd07
FB
3456}
3457
50013115
PM
3458void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3459 MemTxAttrs attrs, MemTxResult *result)
3460{
3461 address_space_stl_internal(as, addr, val, attrs, result,
3462 DEVICE_NATIVE_ENDIAN);
3463}
3464
3465void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3466 MemTxAttrs attrs, MemTxResult *result)
3467{
3468 address_space_stl_internal(as, addr, val, attrs, result,
3469 DEVICE_LITTLE_ENDIAN);
3470}
3471
3472void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3473 MemTxAttrs attrs, MemTxResult *result)
3474{
3475 address_space_stl_internal(as, addr, val, attrs, result,
3476 DEVICE_BIG_ENDIAN);
3477}
3478
ab1da857 3479void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3480{
50013115 3481 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3482}
3483
ab1da857 3484void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3485{
50013115 3486 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3487}
3488
ab1da857 3489void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3490{
50013115 3491 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3492}
3493
aab33094 3494/* XXX: optimize */
50013115
PM
3495void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3496 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3497{
3498 uint8_t v = val;
50013115
PM
3499 MemTxResult r;
3500
3501 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3502 if (result) {
3503 *result = r;
3504 }
3505}
3506
3507void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3508{
3509 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3510}
3511
733f0b02 3512/* warning: addr must be aligned */
50013115
PM
3513static inline void address_space_stw_internal(AddressSpace *as,
3514 hwaddr addr, uint32_t val,
3515 MemTxAttrs attrs,
3516 MemTxResult *result,
3517 enum device_endian endian)
aab33094 3518{
733f0b02 3519 uint8_t *ptr;
5c8a00ce 3520 MemoryRegion *mr;
149f54b5
PB
3521 hwaddr l = 2;
3522 hwaddr addr1;
50013115 3523 MemTxResult r;
4840f10e 3524 bool release_lock = false;
733f0b02 3525
41063e1e 3526 rcu_read_lock();
5ce5944d 3527 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3528 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3529 release_lock |= prepare_mmio_access(mr);
125b3806 3530
1e78bcc1
AG
3531#if defined(TARGET_WORDS_BIGENDIAN)
3532 if (endian == DEVICE_LITTLE_ENDIAN) {
3533 val = bswap16(val);
3534 }
3535#else
3536 if (endian == DEVICE_BIG_ENDIAN) {
3537 val = bswap16(val);
3538 }
3539#endif
50013115 3540 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3541 } else {
733f0b02 3542 /* RAM case */
5c8a00ce 3543 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3544 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3545 switch (endian) {
3546 case DEVICE_LITTLE_ENDIAN:
3547 stw_le_p(ptr, val);
3548 break;
3549 case DEVICE_BIG_ENDIAN:
3550 stw_be_p(ptr, val);
3551 break;
3552 default:
3553 stw_p(ptr, val);
3554 break;
3555 }
845b6214 3556 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3557 r = MEMTX_OK;
3558 }
3559 if (result) {
3560 *result = r;
733f0b02 3561 }
4840f10e
JK
3562 if (release_lock) {
3563 qemu_mutex_unlock_iothread();
3564 }
41063e1e 3565 rcu_read_unlock();
aab33094
FB
3566}
3567
50013115
PM
3568void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3569 MemTxAttrs attrs, MemTxResult *result)
3570{
3571 address_space_stw_internal(as, addr, val, attrs, result,
3572 DEVICE_NATIVE_ENDIAN);
3573}
3574
3575void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3576 MemTxAttrs attrs, MemTxResult *result)
3577{
3578 address_space_stw_internal(as, addr, val, attrs, result,
3579 DEVICE_LITTLE_ENDIAN);
3580}
3581
3582void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3583 MemTxAttrs attrs, MemTxResult *result)
3584{
3585 address_space_stw_internal(as, addr, val, attrs, result,
3586 DEVICE_BIG_ENDIAN);
3587}
3588
5ce5944d 3589void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3590{
50013115 3591 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3592}
3593
5ce5944d 3594void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3595{
50013115 3596 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3597}
3598
5ce5944d 3599void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3600{
50013115 3601 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3602}
3603
aab33094 3604/* XXX: optimize */
50013115
PM
3605void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3606 MemTxAttrs attrs, MemTxResult *result)
aab33094 3607{
50013115 3608 MemTxResult r;
aab33094 3609 val = tswap64(val);
50013115
PM
3610 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3611 if (result) {
3612 *result = r;
3613 }
aab33094
FB
3614}
3615
50013115
PM
3616void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3617 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3618{
50013115 3619 MemTxResult r;
1e78bcc1 3620 val = cpu_to_le64(val);
50013115
PM
3621 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3622 if (result) {
3623 *result = r;
3624 }
3625}
3626void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3627 MemTxAttrs attrs, MemTxResult *result)
3628{
3629 MemTxResult r;
3630 val = cpu_to_be64(val);
3631 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3632 if (result) {
3633 *result = r;
3634 }
3635}
3636
3637void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3638{
3639 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3640}
3641
3642void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3643{
3644 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3645}
3646
f606604f 3647void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3648{
50013115 3649 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3650}
3651
5e2972fd 3652/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3653int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3654 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3655{
3656 int l;
a8170e5e 3657 hwaddr phys_addr;
9b3c35e0 3658 target_ulong page;
13eb76e0
FB
3659
3660 while (len > 0) {
5232e4c7
PM
3661 int asidx;
3662 MemTxAttrs attrs;
3663
13eb76e0 3664 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3665 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3666 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3667 /* if no physical page mapped, return an error */
3668 if (phys_addr == -1)
3669 return -1;
3670 l = (page + TARGET_PAGE_SIZE) - addr;
3671 if (l > len)
3672 l = len;
5e2972fd 3673 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3674 if (is_write) {
5232e4c7
PM
3675 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3676 phys_addr, buf, l);
2e38847b 3677 } else {
5232e4c7
PM
3678 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3679 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3680 buf, l, 0);
2e38847b 3681 }
13eb76e0
FB
3682 len -= l;
3683 buf += l;
3684 addr += l;
3685 }
3686 return 0;
3687}
038629a6
DDAG
3688
3689/*
3690 * Allows code that needs to deal with migration bitmaps etc to still be built
3691 * target independent.
3692 */
3693size_t qemu_target_page_bits(void)
3694{
3695 return TARGET_PAGE_BITS;
3696}
3697
a68fe89c 3698#endif
13eb76e0 3699
8e4a424b
BS
3700/*
3701 * A helper function for the _utterly broken_ virtio device model to find out if
3702 * it's running on a big endian machine. Don't do this at home kids!
3703 */
98ed8ecf
GK
3704bool target_words_bigendian(void);
3705bool target_words_bigendian(void)
8e4a424b
BS
3706{
3707#if defined(TARGET_WORDS_BIGENDIAN)
3708 return true;
3709#else
3710 return false;
3711#endif
3712}
3713
76f35538 3714#ifndef CONFIG_USER_ONLY
a8170e5e 3715bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3716{
5c8a00ce 3717 MemoryRegion*mr;
149f54b5 3718 hwaddr l = 1;
41063e1e 3719 bool res;
76f35538 3720
41063e1e 3721 rcu_read_lock();
5c8a00ce
PB
3722 mr = address_space_translate(&address_space_memory,
3723 phys_addr, &phys_addr, &l, false);
76f35538 3724
41063e1e
PB
3725 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3726 rcu_read_unlock();
3727 return res;
76f35538 3728}
bd2fa51f 3729
e3807054 3730int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3731{
3732 RAMBlock *block;
e3807054 3733 int ret = 0;
bd2fa51f 3734
0dc3f44a
MD
3735 rcu_read_lock();
3736 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3737 ret = func(block->idstr, block->host, block->offset,
3738 block->used_length, opaque);
3739 if (ret) {
3740 break;
3741 }
bd2fa51f 3742 }
0dc3f44a 3743 rcu_read_unlock();
e3807054 3744 return ret;
bd2fa51f 3745}
ec3f8c99 3746#endif