]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
linux-user/ia64: workaround ia64 strangenesses
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
290
291#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
f01576f1
JL
327#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329#else
50a9569b 330 f = fopen("/proc/self/maps", "r");
f01576f1 331#endif
50a9569b 332 if (f) {
5cd2c5b6
RH
333 mmap_lock();
334
50a9569b 335 do {
5cd2c5b6
RH
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
350 }
351 } while (!feof(f));
5cd2c5b6 352
50a9569b 353 fclose(f);
5cd2c5b6 354 mmap_unlock();
50a9569b 355 }
f01576f1 356#endif
50a9569b
AZ
357 }
358#endif
54936004
FB
359}
360
41c1b1c9 361static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 362{
41c1b1c9
PB
363 PageDesc *pd;
364 void **lp;
365 int i;
366
5cd2c5b6
RH
367#if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377# define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387#else
388# define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 390#endif
434929bf 391
5cd2c5b6
RH
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
17e2377a 405 }
5cd2c5b6
RH
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
54936004 417 }
5cd2c5b6
RH
418
419#undef ALLOC
420#if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429#endif
430
431 return pd + (index & (L2_SIZE - 1));
54936004
FB
432}
433
41c1b1c9 434static inline PageDesc *page_find(tb_page_addr_t index)
54936004 435{
5cd2c5b6 436 return page_find_alloc(index, 0);
fd6ce8f6
FB
437}
438
6d9a1304 439#if !defined(CONFIG_USER_ONLY)
c227f099 440static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 441{
e3f4e2a4 442 PhysPageDesc *pd;
5cd2c5b6
RH
443 void **lp;
444 int i;
92e873b9 445
5cd2c5b6
RH
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 448
5cd2c5b6
RH
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 459 }
5cd2c5b6 460
e3f4e2a4 461 pd = *lp;
5cd2c5b6 462 if (pd == NULL) {
e3f4e2a4 463 int i;
5cd2c5b6
RH
464
465 if (!alloc) {
108c49b8 466 return NULL;
5cd2c5b6
RH
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
67c4d23c 471 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 474 }
92e873b9 475 }
5cd2c5b6
RH
476
477 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
478}
479
c227f099 480static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 481{
108c49b8 482 return phys_page_find_alloc(index, 0);
92e873b9
FB
483}
484
c227f099
AL
485static void tlb_protect_code(ram_addr_t ram_addr);
486static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 487 target_ulong vaddr);
c8a706fe
PB
488#define mmap_lock() do { } while(0)
489#define mmap_unlock() do { } while(0)
9fa3e853 490#endif
fd6ce8f6 491
4369415f
FB
492#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494#if defined(CONFIG_USER_ONLY)
ccbb4d44 495/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
496 user mode. It will change when a dedicated libc will be used */
497#define USE_STATIC_CODE_GEN_BUFFER
498#endif
499
500#ifdef USE_STATIC_CODE_GEN_BUFFER
501static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
502#endif
503
8fcd3692 504static void code_gen_alloc(unsigned long tb_size)
26a5f13b 505{
4369415f
FB
506#ifdef USE_STATIC_CODE_GEN_BUFFER
507 code_gen_buffer = static_code_gen_buffer;
508 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
509 map_exec(code_gen_buffer, code_gen_buffer_size);
510#else
26a5f13b
FB
511 code_gen_buffer_size = tb_size;
512 if (code_gen_buffer_size == 0) {
4369415f
FB
513#if defined(CONFIG_USER_ONLY)
514 /* in user mode, phys_ram_size is not meaningful */
515 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
516#else
ccbb4d44 517 /* XXX: needs adjustments */
94a6b54f 518 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 519#endif
26a5f13b
FB
520 }
521 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
522 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
523 /* The code gen buffer location may have constraints depending on
524 the host cpu and OS */
525#if defined(__linux__)
526 {
527 int flags;
141ac468
BS
528 void *start = NULL;
529
26a5f13b
FB
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531#if defined(__x86_64__)
532 flags |= MAP_32BIT;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
536#elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 start = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024))
541 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 542#elif defined(__arm__)
63d41246 543 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
544 flags |= MAP_FIXED;
545 start = (void *) 0x01000000UL;
546 if (code_gen_buffer_size > 16 * 1024 * 1024)
547 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 548#endif
141ac468
BS
549 code_gen_buffer = mmap(start, code_gen_buffer_size,
550 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
551 flags, -1, 0);
552 if (code_gen_buffer == MAP_FAILED) {
553 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
554 exit(1);
555 }
556 }
a167ba50 557#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
558 {
559 int flags;
560 void *addr = NULL;
561 flags = MAP_PRIVATE | MAP_ANONYMOUS;
562#if defined(__x86_64__)
563 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
564 * 0x40000000 is free */
565 flags |= MAP_FIXED;
566 addr = (void *)0x40000000;
567 /* Cannot map more than that */
568 if (code_gen_buffer_size > (800 * 1024 * 1024))
569 code_gen_buffer_size = (800 * 1024 * 1024);
570#endif
571 code_gen_buffer = mmap(addr, code_gen_buffer_size,
572 PROT_WRITE | PROT_READ | PROT_EXEC,
573 flags, -1, 0);
574 if (code_gen_buffer == MAP_FAILED) {
575 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
576 exit(1);
577 }
578 }
26a5f13b
FB
579#else
580 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
581 map_exec(code_gen_buffer, code_gen_buffer_size);
582#endif
4369415f 583#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
584 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
585 code_gen_buffer_max_size = code_gen_buffer_size -
586 code_gen_max_block_size();
587 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
588 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
589}
590
591/* Must be called before using the QEMU cpus. 'tb_size' is the size
592 (in bytes) allocated to the translation buffer. Zero means default
593 size. */
594void cpu_exec_init_all(unsigned long tb_size)
595{
26a5f13b
FB
596 cpu_gen_init();
597 code_gen_alloc(tb_size);
598 code_gen_ptr = code_gen_buffer;
4369415f 599 page_init();
e2eef170 600#if !defined(CONFIG_USER_ONLY)
26a5f13b 601 io_mem_init();
e2eef170 602#endif
26a5f13b
FB
603}
604
9656f324
PB
605#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
606
e59fb374 607static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
608{
609 CPUState *env = opaque;
9656f324 610
3098dba0
AJ
611 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
612 version_id is increased. */
613 env->interrupt_request &= ~0x01;
9656f324
PB
614 tlb_flush(env, 1);
615
616 return 0;
617}
e7f4eff7
JQ
618
619static const VMStateDescription vmstate_cpu_common = {
620 .name = "cpu_common",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .minimum_version_id_old = 1,
e7f4eff7
JQ
624 .post_load = cpu_common_post_load,
625 .fields = (VMStateField []) {
626 VMSTATE_UINT32(halted, CPUState),
627 VMSTATE_UINT32(interrupt_request, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630};
9656f324
PB
631#endif
632
950f1472
GC
633CPUState *qemu_get_cpu(int cpu)
634{
635 CPUState *env = first_cpu;
636
637 while (env) {
638 if (env->cpu_index == cpu)
639 break;
640 env = env->next_cpu;
641 }
642
643 return env;
644}
645
6a00d601 646void cpu_exec_init(CPUState *env)
fd6ce8f6 647{
6a00d601
FB
648 CPUState **penv;
649 int cpu_index;
650
c2764719
PB
651#if defined(CONFIG_USER_ONLY)
652 cpu_list_lock();
653#endif
6a00d601
FB
654 env->next_cpu = NULL;
655 penv = &first_cpu;
656 cpu_index = 0;
657 while (*penv != NULL) {
1e9fa730 658 penv = &(*penv)->next_cpu;
6a00d601
FB
659 cpu_index++;
660 }
661 env->cpu_index = cpu_index;
268a362c 662 env->numa_node = 0;
72cf2d4f
BS
663 QTAILQ_INIT(&env->breakpoints);
664 QTAILQ_INIT(&env->watchpoints);
6a00d601 665 *penv = env;
c2764719
PB
666#if defined(CONFIG_USER_ONLY)
667 cpu_list_unlock();
668#endif
b3c7724c 669#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 670 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
671 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
672 cpu_save, cpu_load, env);
673#endif
fd6ce8f6
FB
674}
675
9fa3e853
FB
676static inline void invalidate_page_bitmap(PageDesc *p)
677{
678 if (p->code_bitmap) {
59817ccb 679 qemu_free(p->code_bitmap);
9fa3e853
FB
680 p->code_bitmap = NULL;
681 }
682 p->code_write_count = 0;
683}
684
5cd2c5b6
RH
685/* Set to NULL all the 'first_tb' fields in all PageDescs. */
686
687static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 688{
5cd2c5b6 689 int i;
fd6ce8f6 690
5cd2c5b6
RH
691 if (*lp == NULL) {
692 return;
693 }
694 if (level == 0) {
695 PageDesc *pd = *lp;
7296abac 696 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
697 pd[i].first_tb = NULL;
698 invalidate_page_bitmap(pd + i);
fd6ce8f6 699 }
5cd2c5b6
RH
700 } else {
701 void **pp = *lp;
7296abac 702 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
703 page_flush_tb_1 (level - 1, pp + i);
704 }
705 }
706}
707
708static void page_flush_tb(void)
709{
710 int i;
711 for (i = 0; i < V_L1_SIZE; i++) {
712 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
713 }
714}
715
716/* flush all the translation blocks */
d4e8164f 717/* XXX: tb_flush is currently not thread safe */
6a00d601 718void tb_flush(CPUState *env1)
fd6ce8f6 719{
6a00d601 720 CPUState *env;
0124311e 721#if defined(DEBUG_FLUSH)
ab3d1727
BS
722 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
723 (unsigned long)(code_gen_ptr - code_gen_buffer),
724 nb_tbs, nb_tbs > 0 ?
725 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 726#endif
26a5f13b 727 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
728 cpu_abort(env1, "Internal error: code buffer overflow\n");
729
fd6ce8f6 730 nb_tbs = 0;
3b46e624 731
6a00d601
FB
732 for(env = first_cpu; env != NULL; env = env->next_cpu) {
733 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
734 }
9fa3e853 735
8a8a608f 736 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 737 page_flush_tb();
9fa3e853 738
fd6ce8f6 739 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
740 /* XXX: flush processor icache at this point if cache flush is
741 expensive */
e3db7226 742 tb_flush_count++;
fd6ce8f6
FB
743}
744
745#ifdef DEBUG_TB_CHECK
746
bc98a7ef 747static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
748{
749 TranslationBlock *tb;
750 int i;
751 address &= TARGET_PAGE_MASK;
99773bd4
PB
752 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
753 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
754 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
755 address >= tb->pc + tb->size)) {
0bf9e31a
BS
756 printf("ERROR invalidate: address=" TARGET_FMT_lx
757 " PC=%08lx size=%04x\n",
99773bd4 758 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
759 }
760 }
761 }
762}
763
764/* verify that all the pages have correct rights for code */
765static void tb_page_check(void)
766{
767 TranslationBlock *tb;
768 int i, flags1, flags2;
3b46e624 769
99773bd4
PB
770 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
771 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
772 flags1 = page_get_flags(tb->pc);
773 flags2 = page_get_flags(tb->pc + tb->size - 1);
774 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
775 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 776 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
777 }
778 }
779 }
780}
781
782#endif
783
784/* invalidate one TB */
785static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
786 int next_offset)
787{
788 TranslationBlock *tb1;
789 for(;;) {
790 tb1 = *ptb;
791 if (tb1 == tb) {
792 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
793 break;
794 }
795 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
796 }
797}
798
9fa3e853
FB
799static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
800{
801 TranslationBlock *tb1;
802 unsigned int n1;
803
804 for(;;) {
805 tb1 = *ptb;
806 n1 = (long)tb1 & 3;
807 tb1 = (TranslationBlock *)((long)tb1 & ~3);
808 if (tb1 == tb) {
809 *ptb = tb1->page_next[n1];
810 break;
811 }
812 ptb = &tb1->page_next[n1];
813 }
814}
815
d4e8164f
FB
816static inline void tb_jmp_remove(TranslationBlock *tb, int n)
817{
818 TranslationBlock *tb1, **ptb;
819 unsigned int n1;
820
821 ptb = &tb->jmp_next[n];
822 tb1 = *ptb;
823 if (tb1) {
824 /* find tb(n) in circular list */
825 for(;;) {
826 tb1 = *ptb;
827 n1 = (long)tb1 & 3;
828 tb1 = (TranslationBlock *)((long)tb1 & ~3);
829 if (n1 == n && tb1 == tb)
830 break;
831 if (n1 == 2) {
832 ptb = &tb1->jmp_first;
833 } else {
834 ptb = &tb1->jmp_next[n1];
835 }
836 }
837 /* now we can suppress tb(n) from the list */
838 *ptb = tb->jmp_next[n];
839
840 tb->jmp_next[n] = NULL;
841 }
842}
843
844/* reset the jump entry 'n' of a TB so that it is not chained to
845 another TB */
846static inline void tb_reset_jump(TranslationBlock *tb, int n)
847{
848 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
849}
850
41c1b1c9 851void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 852{
6a00d601 853 CPUState *env;
8a40a180 854 PageDesc *p;
d4e8164f 855 unsigned int h, n1;
41c1b1c9 856 tb_page_addr_t phys_pc;
8a40a180 857 TranslationBlock *tb1, *tb2;
3b46e624 858
8a40a180
FB
859 /* remove the TB from the hash list */
860 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
861 h = tb_phys_hash_func(phys_pc);
5fafdf24 862 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
863 offsetof(TranslationBlock, phys_hash_next));
864
865 /* remove the TB from the page list */
866 if (tb->page_addr[0] != page_addr) {
867 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
868 tb_page_remove(&p->first_tb, tb);
869 invalidate_page_bitmap(p);
870 }
871 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
872 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876
36bdbe54 877 tb_invalidated_flag = 1;
59817ccb 878
fd6ce8f6 879 /* remove the TB from the hash list */
8a40a180 880 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
881 for(env = first_cpu; env != NULL; env = env->next_cpu) {
882 if (env->tb_jmp_cache[h] == tb)
883 env->tb_jmp_cache[h] = NULL;
884 }
d4e8164f
FB
885
886 /* suppress this TB from the two jump lists */
887 tb_jmp_remove(tb, 0);
888 tb_jmp_remove(tb, 1);
889
890 /* suppress any remaining jumps to this TB */
891 tb1 = tb->jmp_first;
892 for(;;) {
893 n1 = (long)tb1 & 3;
894 if (n1 == 2)
895 break;
896 tb1 = (TranslationBlock *)((long)tb1 & ~3);
897 tb2 = tb1->jmp_next[n1];
898 tb_reset_jump(tb1, n1);
899 tb1->jmp_next[n1] = NULL;
900 tb1 = tb2;
901 }
902 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 903
e3db7226 904 tb_phys_invalidate_count++;
9fa3e853
FB
905}
906
907static inline void set_bits(uint8_t *tab, int start, int len)
908{
909 int end, mask, end1;
910
911 end = start + len;
912 tab += start >> 3;
913 mask = 0xff << (start & 7);
914 if ((start & ~7) == (end & ~7)) {
915 if (start < end) {
916 mask &= ~(0xff << (end & 7));
917 *tab |= mask;
918 }
919 } else {
920 *tab++ |= mask;
921 start = (start + 8) & ~7;
922 end1 = end & ~7;
923 while (start < end1) {
924 *tab++ = 0xff;
925 start += 8;
926 }
927 if (start < end) {
928 mask = ~(0xff << (end & 7));
929 *tab |= mask;
930 }
931 }
932}
933
934static void build_page_bitmap(PageDesc *p)
935{
936 int n, tb_start, tb_end;
937 TranslationBlock *tb;
3b46e624 938
b2a7081a 939 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
940
941 tb = p->first_tb;
942 while (tb != NULL) {
943 n = (long)tb & 3;
944 tb = (TranslationBlock *)((long)tb & ~3);
945 /* NOTE: this is subtle as a TB may span two physical pages */
946 if (n == 0) {
947 /* NOTE: tb_end may be after the end of the page, but
948 it is not a problem */
949 tb_start = tb->pc & ~TARGET_PAGE_MASK;
950 tb_end = tb_start + tb->size;
951 if (tb_end > TARGET_PAGE_SIZE)
952 tb_end = TARGET_PAGE_SIZE;
953 } else {
954 tb_start = 0;
955 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
956 }
957 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
958 tb = tb->page_next[n];
959 }
960}
961
2e70f6ef
PB
962TranslationBlock *tb_gen_code(CPUState *env,
963 target_ulong pc, target_ulong cs_base,
964 int flags, int cflags)
d720b93d
FB
965{
966 TranslationBlock *tb;
967 uint8_t *tc_ptr;
41c1b1c9
PB
968 tb_page_addr_t phys_pc, phys_page2;
969 target_ulong virt_page2;
d720b93d
FB
970 int code_gen_size;
971
41c1b1c9 972 phys_pc = get_page_addr_code(env, pc);
c27004ec 973 tb = tb_alloc(pc);
d720b93d
FB
974 if (!tb) {
975 /* flush must be done */
976 tb_flush(env);
977 /* cannot fail at this point */
c27004ec 978 tb = tb_alloc(pc);
2e70f6ef
PB
979 /* Don't forget to invalidate previous TB info. */
980 tb_invalidated_flag = 1;
d720b93d
FB
981 }
982 tc_ptr = code_gen_ptr;
983 tb->tc_ptr = tc_ptr;
984 tb->cs_base = cs_base;
985 tb->flags = flags;
986 tb->cflags = cflags;
d07bde88 987 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 988 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 989
d720b93d 990 /* check next page if needed */
c27004ec 991 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 992 phys_page2 = -1;
c27004ec 993 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 994 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 995 }
41c1b1c9 996 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 997 return tb;
d720b93d 998}
3b46e624 999
9fa3e853
FB
1000/* invalidate all TBs which intersect with the target physical page
1001 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1002 the same physical page. 'is_cpu_write_access' should be true if called
1003 from a real cpu write access: the virtual CPU will exit the current
1004 TB if code is modified inside this TB. */
41c1b1c9 1005void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1006 int is_cpu_write_access)
1007{
6b917547 1008 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1009 CPUState *env = cpu_single_env;
41c1b1c9 1010 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1011 PageDesc *p;
1012 int n;
1013#ifdef TARGET_HAS_PRECISE_SMC
1014 int current_tb_not_found = is_cpu_write_access;
1015 TranslationBlock *current_tb = NULL;
1016 int current_tb_modified = 0;
1017 target_ulong current_pc = 0;
1018 target_ulong current_cs_base = 0;
1019 int current_flags = 0;
1020#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1021
1022 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1023 if (!p)
9fa3e853 1024 return;
5fafdf24 1025 if (!p->code_bitmap &&
d720b93d
FB
1026 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1027 is_cpu_write_access) {
9fa3e853
FB
1028 /* build code bitmap */
1029 build_page_bitmap(p);
1030 }
1031
1032 /* we remove all the TBs in the range [start, end[ */
1033 /* XXX: see if in some cases it could be faster to invalidate all the code */
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (long)tb & 3;
1037 tb = (TranslationBlock *)((long)tb & ~3);
1038 tb_next = tb->page_next[n];
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044 tb_end = tb_start + tb->size;
1045 } else {
1046 tb_start = tb->page_addr[1];
1047 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
1049 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1050#ifdef TARGET_HAS_PRECISE_SMC
1051 if (current_tb_not_found) {
1052 current_tb_not_found = 0;
1053 current_tb = NULL;
2e70f6ef 1054 if (env->mem_io_pc) {
d720b93d 1055 /* now we have a real cpu fault */
2e70f6ef 1056 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1057 }
1058 }
1059 if (current_tb == tb &&
2e70f6ef 1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
3b46e624 1066
d720b93d 1067 current_tb_modified = 1;
5fafdf24 1068 cpu_restore_state(current_tb, env,
2e70f6ef 1069 env->mem_io_pc, NULL);
6b917547
AL
1070 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1071 &current_flags);
d720b93d
FB
1072 }
1073#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1074 /* we need to do that to handle the case where a signal
1075 occurs while doing tb_phys_invalidate() */
1076 saved_tb = NULL;
1077 if (env) {
1078 saved_tb = env->current_tb;
1079 env->current_tb = NULL;
1080 }
9fa3e853 1081 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1082 if (env) {
1083 env->current_tb = saved_tb;
1084 if (env->interrupt_request && env->current_tb)
1085 cpu_interrupt(env, env->interrupt_request);
1086 }
9fa3e853
FB
1087 }
1088 tb = tb_next;
1089 }
1090#if !defined(CONFIG_USER_ONLY)
1091 /* if no code remaining, no need to continue to use slow writes */
1092 if (!p->first_tb) {
1093 invalidate_page_bitmap(p);
d720b93d 1094 if (is_cpu_write_access) {
2e70f6ef 1095 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1096 }
1097 }
1098#endif
1099#ifdef TARGET_HAS_PRECISE_SMC
1100 if (current_tb_modified) {
1101 /* we generate a block containing just the instruction
1102 modifying the memory. It will ensure that it cannot modify
1103 itself */
ea1c1802 1104 env->current_tb = NULL;
2e70f6ef 1105 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1106 cpu_resume_from_signal(env, NULL);
9fa3e853 1107 }
fd6ce8f6 1108#endif
9fa3e853 1109}
fd6ce8f6 1110
9fa3e853 1111/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1112static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1113{
1114 PageDesc *p;
1115 int offset, b;
59817ccb 1116#if 0
a4193c8a 1117 if (1) {
93fcfe39
AL
1118 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1119 cpu_single_env->mem_io_vaddr, len,
1120 cpu_single_env->eip,
1121 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1122 }
1123#endif
9fa3e853 1124 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1125 if (!p)
9fa3e853
FB
1126 return;
1127 if (p->code_bitmap) {
1128 offset = start & ~TARGET_PAGE_MASK;
1129 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1130 if (b & ((1 << len) - 1))
1131 goto do_invalidate;
1132 } else {
1133 do_invalidate:
d720b93d 1134 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1135 }
1136}
1137
9fa3e853 1138#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1139static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1140 unsigned long pc, void *puc)
9fa3e853 1141{
6b917547 1142 TranslationBlock *tb;
9fa3e853 1143 PageDesc *p;
6b917547 1144 int n;
d720b93d 1145#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1146 TranslationBlock *current_tb = NULL;
d720b93d 1147 CPUState *env = cpu_single_env;
6b917547
AL
1148 int current_tb_modified = 0;
1149 target_ulong current_pc = 0;
1150 target_ulong current_cs_base = 0;
1151 int current_flags = 0;
d720b93d 1152#endif
9fa3e853
FB
1153
1154 addr &= TARGET_PAGE_MASK;
1155 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1156 if (!p)
9fa3e853
FB
1157 return;
1158 tb = p->first_tb;
d720b93d
FB
1159#ifdef TARGET_HAS_PRECISE_SMC
1160 if (tb && pc != 0) {
1161 current_tb = tb_find_pc(pc);
1162 }
1163#endif
9fa3e853
FB
1164 while (tb != NULL) {
1165 n = (long)tb & 3;
1166 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1167#ifdef TARGET_HAS_PRECISE_SMC
1168 if (current_tb == tb &&
2e70f6ef 1169 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1170 /* If we are modifying the current TB, we must stop
1171 its execution. We could be more precise by checking
1172 that the modification is after the current PC, but it
1173 would require a specialized function to partially
1174 restore the CPU state */
3b46e624 1175
d720b93d
FB
1176 current_tb_modified = 1;
1177 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1178 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1179 &current_flags);
d720b93d
FB
1180 }
1181#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1182 tb_phys_invalidate(tb, addr);
1183 tb = tb->page_next[n];
1184 }
fd6ce8f6 1185 p->first_tb = NULL;
d720b93d
FB
1186#ifdef TARGET_HAS_PRECISE_SMC
1187 if (current_tb_modified) {
1188 /* we generate a block containing just the instruction
1189 modifying the memory. It will ensure that it cannot modify
1190 itself */
ea1c1802 1191 env->current_tb = NULL;
2e70f6ef 1192 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1193 cpu_resume_from_signal(env, puc);
1194 }
1195#endif
fd6ce8f6 1196}
9fa3e853 1197#endif
fd6ce8f6
FB
1198
1199/* add the tb in the target page and protect it if necessary */
5fafdf24 1200static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1201 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1202{
1203 PageDesc *p;
9fa3e853
FB
1204 TranslationBlock *last_first_tb;
1205
1206 tb->page_addr[n] = page_addr;
5cd2c5b6 1207 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1208 tb->page_next[n] = p->first_tb;
1209 last_first_tb = p->first_tb;
1210 p->first_tb = (TranslationBlock *)((long)tb | n);
1211 invalidate_page_bitmap(p);
fd6ce8f6 1212
107db443 1213#if defined(TARGET_HAS_SMC) || 1
d720b93d 1214
9fa3e853 1215#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1216 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1217 target_ulong addr;
1218 PageDesc *p2;
9fa3e853
FB
1219 int prot;
1220
fd6ce8f6
FB
1221 /* force the host page as non writable (writes will have a
1222 page fault + mprotect overhead) */
53a5960a 1223 page_addr &= qemu_host_page_mask;
fd6ce8f6 1224 prot = 0;
53a5960a
PB
1225 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1226 addr += TARGET_PAGE_SIZE) {
1227
1228 p2 = page_find (addr >> TARGET_PAGE_BITS);
1229 if (!p2)
1230 continue;
1231 prot |= p2->flags;
1232 p2->flags &= ~PAGE_WRITE;
53a5960a 1233 }
5fafdf24 1234 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1235 (prot & PAGE_BITS) & ~PAGE_WRITE);
1236#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1237 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1238 page_addr);
fd6ce8f6 1239#endif
fd6ce8f6 1240 }
9fa3e853
FB
1241#else
1242 /* if some code is already present, then the pages are already
1243 protected. So we handle the case where only the first TB is
1244 allocated in a physical page */
1245 if (!last_first_tb) {
6a00d601 1246 tlb_protect_code(page_addr);
9fa3e853
FB
1247 }
1248#endif
d720b93d
FB
1249
1250#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1251}
1252
1253/* Allocate a new translation block. Flush the translation buffer if
1254 too many translation blocks or too much generated code. */
c27004ec 1255TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1256{
1257 TranslationBlock *tb;
fd6ce8f6 1258
26a5f13b
FB
1259 if (nb_tbs >= code_gen_max_blocks ||
1260 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1261 return NULL;
fd6ce8f6
FB
1262 tb = &tbs[nb_tbs++];
1263 tb->pc = pc;
b448f2f3 1264 tb->cflags = 0;
d4e8164f
FB
1265 return tb;
1266}
1267
2e70f6ef
PB
1268void tb_free(TranslationBlock *tb)
1269{
bf20dc07 1270 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1271 Ignore the hard cases and just back up if this TB happens to
1272 be the last one generated. */
1273 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1274 code_gen_ptr = tb->tc_ptr;
1275 nb_tbs--;
1276 }
1277}
1278
9fa3e853
FB
1279/* add a new TB and link it to the physical page tables. phys_page2 is
1280 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1281void tb_link_page(TranslationBlock *tb,
1282 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1283{
9fa3e853
FB
1284 unsigned int h;
1285 TranslationBlock **ptb;
1286
c8a706fe
PB
1287 /* Grab the mmap lock to stop another thread invalidating this TB
1288 before we are done. */
1289 mmap_lock();
9fa3e853
FB
1290 /* add in the physical hash table */
1291 h = tb_phys_hash_func(phys_pc);
1292 ptb = &tb_phys_hash[h];
1293 tb->phys_hash_next = *ptb;
1294 *ptb = tb;
fd6ce8f6
FB
1295
1296 /* add in the page list */
9fa3e853
FB
1297 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1298 if (phys_page2 != -1)
1299 tb_alloc_page(tb, 1, phys_page2);
1300 else
1301 tb->page_addr[1] = -1;
9fa3e853 1302
d4e8164f
FB
1303 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1306
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff)
1309 tb_reset_jump(tb, 0);
1310 if (tb->tb_next_offset[1] != 0xffff)
1311 tb_reset_jump(tb, 1);
8a40a180
FB
1312
1313#ifdef DEBUG_TB_CHECK
1314 tb_page_check();
1315#endif
c8a706fe 1316 mmap_unlock();
fd6ce8f6
FB
1317}
1318
9fa3e853
FB
1319/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1322{
9fa3e853
FB
1323 int m_min, m_max, m;
1324 unsigned long v;
1325 TranslationBlock *tb;
a513fe19
FB
1326
1327 if (nb_tbs <= 0)
1328 return NULL;
1329 if (tc_ptr < (unsigned long)code_gen_buffer ||
1330 tc_ptr >= (unsigned long)code_gen_ptr)
1331 return NULL;
1332 /* binary search (cf Knuth) */
1333 m_min = 0;
1334 m_max = nb_tbs - 1;
1335 while (m_min <= m_max) {
1336 m = (m_min + m_max) >> 1;
1337 tb = &tbs[m];
1338 v = (unsigned long)tb->tc_ptr;
1339 if (v == tc_ptr)
1340 return tb;
1341 else if (tc_ptr < v) {
1342 m_max = m - 1;
1343 } else {
1344 m_min = m + 1;
1345 }
5fafdf24 1346 }
a513fe19
FB
1347 return &tbs[m_max];
1348}
7501267e 1349
ea041c0e
FB
1350static void tb_reset_jump_recursive(TranslationBlock *tb);
1351
1352static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1353{
1354 TranslationBlock *tb1, *tb_next, **ptb;
1355 unsigned int n1;
1356
1357 tb1 = tb->jmp_next[n];
1358 if (tb1 != NULL) {
1359 /* find head of list */
1360 for(;;) {
1361 n1 = (long)tb1 & 3;
1362 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1363 if (n1 == 2)
1364 break;
1365 tb1 = tb1->jmp_next[n1];
1366 }
1367 /* we are now sure now that tb jumps to tb1 */
1368 tb_next = tb1;
1369
1370 /* remove tb from the jmp_first list */
1371 ptb = &tb_next->jmp_first;
1372 for(;;) {
1373 tb1 = *ptb;
1374 n1 = (long)tb1 & 3;
1375 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1376 if (n1 == n && tb1 == tb)
1377 break;
1378 ptb = &tb1->jmp_next[n1];
1379 }
1380 *ptb = tb->jmp_next[n];
1381 tb->jmp_next[n] = NULL;
3b46e624 1382
ea041c0e
FB
1383 /* suppress the jump to next tb in generated code */
1384 tb_reset_jump(tb, n);
1385
0124311e 1386 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1387 tb_reset_jump_recursive(tb_next);
1388 }
1389}
1390
1391static void tb_reset_jump_recursive(TranslationBlock *tb)
1392{
1393 tb_reset_jump_recursive2(tb, 0);
1394 tb_reset_jump_recursive2(tb, 1);
1395}
1396
1fddef4b 1397#if defined(TARGET_HAS_ICE)
94df27fd
PB
1398#if defined(CONFIG_USER_ONLY)
1399static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400{
1401 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1402}
1403#else
d720b93d
FB
1404static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1405{
c227f099 1406 target_phys_addr_t addr;
9b3c35e0 1407 target_ulong pd;
c227f099 1408 ram_addr_t ram_addr;
c2f07f81 1409 PhysPageDesc *p;
d720b93d 1410
c2f07f81
PB
1411 addr = cpu_get_phys_page_debug(env, pc);
1412 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 pd = IO_MEM_UNASSIGNED;
1415 } else {
1416 pd = p->phys_offset;
1417 }
1418 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1419 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1420}
c27004ec 1421#endif
94df27fd 1422#endif /* TARGET_HAS_ICE */
d720b93d 1423
c527ee8f
PB
1424#if defined(CONFIG_USER_ONLY)
1425void cpu_watchpoint_remove_all(CPUState *env, int mask)
1426
1427{
1428}
1429
1430int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1432{
1433 return -ENOSYS;
1434}
1435#else
6658ffb8 1436/* Add a watchpoint. */
a1d1bb31
AL
1437int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1439{
b4051334 1440 target_ulong len_mask = ~(len - 1);
c0ce998e 1441 CPUWatchpoint *wp;
6658ffb8 1442
b4051334
AL
1443 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1444 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1445 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1446 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1447 return -EINVAL;
1448 }
a1d1bb31 1449 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1450
1451 wp->vaddr = addr;
b4051334 1452 wp->len_mask = len_mask;
a1d1bb31
AL
1453 wp->flags = flags;
1454
2dc9f411 1455 /* keep all GDB-injected watchpoints in front */
c0ce998e 1456 if (flags & BP_GDB)
72cf2d4f 1457 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1458 else
72cf2d4f 1459 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1460
6658ffb8 1461 tlb_flush_page(env, addr);
a1d1bb31
AL
1462
1463 if (watchpoint)
1464 *watchpoint = wp;
1465 return 0;
6658ffb8
PB
1466}
1467
a1d1bb31
AL
1468/* Remove a specific watchpoint. */
1469int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1470 int flags)
6658ffb8 1471{
b4051334 1472 target_ulong len_mask = ~(len - 1);
a1d1bb31 1473 CPUWatchpoint *wp;
6658ffb8 1474
72cf2d4f 1475 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1476 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1477 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1478 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1479 return 0;
1480 }
1481 }
a1d1bb31 1482 return -ENOENT;
6658ffb8
PB
1483}
1484
a1d1bb31
AL
1485/* Remove a specific watchpoint by reference. */
1486void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1487{
72cf2d4f 1488 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1489
a1d1bb31
AL
1490 tlb_flush_page(env, watchpoint->vaddr);
1491
1492 qemu_free(watchpoint);
1493}
1494
1495/* Remove all matching watchpoints. */
1496void cpu_watchpoint_remove_all(CPUState *env, int mask)
1497{
c0ce998e 1498 CPUWatchpoint *wp, *next;
a1d1bb31 1499
72cf2d4f 1500 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1501 if (wp->flags & mask)
1502 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1503 }
7d03f82f 1504}
c527ee8f 1505#endif
7d03f82f 1506
a1d1bb31
AL
1507/* Add a breakpoint. */
1508int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1509 CPUBreakpoint **breakpoint)
4c3a88a2 1510{
1fddef4b 1511#if defined(TARGET_HAS_ICE)
c0ce998e 1512 CPUBreakpoint *bp;
3b46e624 1513
a1d1bb31 1514 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1515
a1d1bb31
AL
1516 bp->pc = pc;
1517 bp->flags = flags;
1518
2dc9f411 1519 /* keep all GDB-injected breakpoints in front */
c0ce998e 1520 if (flags & BP_GDB)
72cf2d4f 1521 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1522 else
72cf2d4f 1523 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1524
d720b93d 1525 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1526
1527 if (breakpoint)
1528 *breakpoint = bp;
4c3a88a2
FB
1529 return 0;
1530#else
a1d1bb31 1531 return -ENOSYS;
4c3a88a2
FB
1532#endif
1533}
1534
a1d1bb31
AL
1535/* Remove a specific breakpoint. */
1536int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1537{
7d03f82f 1538#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1539 CPUBreakpoint *bp;
1540
72cf2d4f 1541 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1542 if (bp->pc == pc && bp->flags == flags) {
1543 cpu_breakpoint_remove_by_ref(env, bp);
1544 return 0;
1545 }
7d03f82f 1546 }
a1d1bb31
AL
1547 return -ENOENT;
1548#else
1549 return -ENOSYS;
7d03f82f
EI
1550#endif
1551}
1552
a1d1bb31
AL
1553/* Remove a specific breakpoint by reference. */
1554void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1555{
1fddef4b 1556#if defined(TARGET_HAS_ICE)
72cf2d4f 1557 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1558
a1d1bb31
AL
1559 breakpoint_invalidate(env, breakpoint->pc);
1560
1561 qemu_free(breakpoint);
1562#endif
1563}
1564
1565/* Remove all matching breakpoints. */
1566void cpu_breakpoint_remove_all(CPUState *env, int mask)
1567{
1568#if defined(TARGET_HAS_ICE)
c0ce998e 1569 CPUBreakpoint *bp, *next;
a1d1bb31 1570
72cf2d4f 1571 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1572 if (bp->flags & mask)
1573 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1574 }
4c3a88a2
FB
1575#endif
1576}
1577
c33a346e
FB
1578/* enable or disable single step mode. EXCP_DEBUG is returned by the
1579 CPU loop after each instruction */
1580void cpu_single_step(CPUState *env, int enabled)
1581{
1fddef4b 1582#if defined(TARGET_HAS_ICE)
c33a346e
FB
1583 if (env->singlestep_enabled != enabled) {
1584 env->singlestep_enabled = enabled;
e22a25c9
AL
1585 if (kvm_enabled())
1586 kvm_update_guest_debug(env, 0);
1587 else {
ccbb4d44 1588 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1589 /* XXX: only flush what is necessary */
1590 tb_flush(env);
1591 }
c33a346e
FB
1592 }
1593#endif
1594}
1595
34865134
FB
1596/* enable or disable low levels log */
1597void cpu_set_log(int log_flags)
1598{
1599 loglevel = log_flags;
1600 if (loglevel && !logfile) {
11fcfab4 1601 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1602 if (!logfile) {
1603 perror(logfilename);
1604 _exit(1);
1605 }
9fa3e853
FB
1606#if !defined(CONFIG_SOFTMMU)
1607 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1608 {
b55266b5 1609 static char logfile_buf[4096];
9fa3e853
FB
1610 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1611 }
bf65f53f
FN
1612#elif !defined(_WIN32)
1613 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1614 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1615#endif
e735b91c
PB
1616 log_append = 1;
1617 }
1618 if (!loglevel && logfile) {
1619 fclose(logfile);
1620 logfile = NULL;
34865134
FB
1621 }
1622}
1623
1624void cpu_set_log_filename(const char *filename)
1625{
1626 logfilename = strdup(filename);
e735b91c
PB
1627 if (logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1630 }
1631 cpu_set_log(loglevel);
34865134 1632}
c33a346e 1633
3098dba0 1634static void cpu_unlink_tb(CPUState *env)
ea041c0e 1635{
3098dba0
AJ
1636 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1637 problem and hope the cpu will stop of its own accord. For userspace
1638 emulation this often isn't actually as bad as it sounds. Often
1639 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1640 TranslationBlock *tb;
c227f099 1641 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1642
cab1b4bd 1643 spin_lock(&interrupt_lock);
3098dba0
AJ
1644 tb = env->current_tb;
1645 /* if the cpu is currently executing code, we must unlink it and
1646 all the potentially executing TB */
f76cfe56 1647 if (tb) {
3098dba0
AJ
1648 env->current_tb = NULL;
1649 tb_reset_jump_recursive(tb);
be214e6c 1650 }
cab1b4bd 1651 spin_unlock(&interrupt_lock);
3098dba0
AJ
1652}
1653
1654/* mask must never be zero, except for A20 change call */
1655void cpu_interrupt(CPUState *env, int mask)
1656{
1657 int old_mask;
be214e6c 1658
2e70f6ef 1659 old_mask = env->interrupt_request;
68a79315 1660 env->interrupt_request |= mask;
3098dba0 1661
8edac960
AL
1662#ifndef CONFIG_USER_ONLY
1663 /*
1664 * If called from iothread context, wake the target cpu in
1665 * case its halted.
1666 */
1667 if (!qemu_cpu_self(env)) {
1668 qemu_cpu_kick(env);
1669 return;
1670 }
1671#endif
1672
2e70f6ef 1673 if (use_icount) {
266910c4 1674 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1675#ifndef CONFIG_USER_ONLY
2e70f6ef 1676 if (!can_do_io(env)
be214e6c 1677 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1678 cpu_abort(env, "Raised interrupt while not in I/O function");
1679 }
1680#endif
1681 } else {
3098dba0 1682 cpu_unlink_tb(env);
ea041c0e
FB
1683 }
1684}
1685
b54ad049
FB
1686void cpu_reset_interrupt(CPUState *env, int mask)
1687{
1688 env->interrupt_request &= ~mask;
1689}
1690
3098dba0
AJ
1691void cpu_exit(CPUState *env)
1692{
1693 env->exit_request = 1;
1694 cpu_unlink_tb(env);
1695}
1696
c7cd6a37 1697const CPULogItem cpu_log_items[] = {
5fafdf24 1698 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1699 "show generated host assembly code for each compiled TB" },
1700 { CPU_LOG_TB_IN_ASM, "in_asm",
1701 "show target assembly code for each compiled TB" },
5fafdf24 1702 { CPU_LOG_TB_OP, "op",
57fec1fe 1703 "show micro ops for each compiled TB" },
f193c797 1704 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1705 "show micro ops "
1706#ifdef TARGET_I386
1707 "before eflags optimization and "
f193c797 1708#endif
e01a1157 1709 "after liveness analysis" },
f193c797
FB
1710 { CPU_LOG_INT, "int",
1711 "show interrupts/exceptions in short format" },
1712 { CPU_LOG_EXEC, "exec",
1713 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1714 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1715 "show CPU state before block translation" },
f193c797
FB
1716#ifdef TARGET_I386
1717 { CPU_LOG_PCALL, "pcall",
1718 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1719 { CPU_LOG_RESET, "cpu_reset",
1720 "show CPU state before CPU resets" },
f193c797 1721#endif
8e3a9fd2 1722#ifdef DEBUG_IOPORT
fd872598
FB
1723 { CPU_LOG_IOPORT, "ioport",
1724 "show all i/o ports accesses" },
8e3a9fd2 1725#endif
f193c797
FB
1726 { 0, NULL, NULL },
1727};
1728
f6f3fbca
MT
1729#ifndef CONFIG_USER_ONLY
1730static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1731 = QLIST_HEAD_INITIALIZER(memory_client_list);
1732
1733static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1734 ram_addr_t size,
1735 ram_addr_t phys_offset)
1736{
1737 CPUPhysMemoryClient *client;
1738 QLIST_FOREACH(client, &memory_client_list, list) {
1739 client->set_memory(client, start_addr, size, phys_offset);
1740 }
1741}
1742
1743static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1744 target_phys_addr_t end)
1745{
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 int r = client->sync_dirty_bitmap(client, start, end);
1749 if (r < 0)
1750 return r;
1751 }
1752 return 0;
1753}
1754
1755static int cpu_notify_migration_log(int enable)
1756{
1757 CPUPhysMemoryClient *client;
1758 QLIST_FOREACH(client, &memory_client_list, list) {
1759 int r = client->migration_log(client, enable);
1760 if (r < 0)
1761 return r;
1762 }
1763 return 0;
1764}
1765
5cd2c5b6
RH
1766static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1767 int level, void **lp)
f6f3fbca 1768{
5cd2c5b6 1769 int i;
f6f3fbca 1770
5cd2c5b6
RH
1771 if (*lp == NULL) {
1772 return;
1773 }
1774 if (level == 0) {
1775 PhysPageDesc *pd = *lp;
7296abac 1776 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1777 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1778 client->set_memory(client, pd[i].region_offset,
1779 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1780 }
5cd2c5b6
RH
1781 }
1782 } else {
1783 void **pp = *lp;
7296abac 1784 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1785 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1786 }
1787 }
1788}
1789
1790static void phys_page_for_each(CPUPhysMemoryClient *client)
1791{
5cd2c5b6
RH
1792 int i;
1793 for (i = 0; i < P_L1_SIZE; ++i) {
1794 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1795 l1_phys_map + 1);
f6f3fbca 1796 }
f6f3fbca
MT
1797}
1798
1799void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1800{
1801 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1802 phys_page_for_each(client);
1803}
1804
1805void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1806{
1807 QLIST_REMOVE(client, list);
1808}
1809#endif
1810
f193c797
FB
1811static int cmp1(const char *s1, int n, const char *s2)
1812{
1813 if (strlen(s2) != n)
1814 return 0;
1815 return memcmp(s1, s2, n) == 0;
1816}
3b46e624 1817
f193c797
FB
1818/* takes a comma separated list of log masks. Return 0 if error. */
1819int cpu_str_to_log_mask(const char *str)
1820{
c7cd6a37 1821 const CPULogItem *item;
f193c797
FB
1822 int mask;
1823 const char *p, *p1;
1824
1825 p = str;
1826 mask = 0;
1827 for(;;) {
1828 p1 = strchr(p, ',');
1829 if (!p1)
1830 p1 = p + strlen(p);
8e3a9fd2
FB
1831 if(cmp1(p,p1-p,"all")) {
1832 for(item = cpu_log_items; item->mask != 0; item++) {
1833 mask |= item->mask;
1834 }
1835 } else {
f193c797
FB
1836 for(item = cpu_log_items; item->mask != 0; item++) {
1837 if (cmp1(p, p1 - p, item->name))
1838 goto found;
1839 }
1840 return 0;
8e3a9fd2 1841 }
f193c797
FB
1842 found:
1843 mask |= item->mask;
1844 if (*p1 != ',')
1845 break;
1846 p = p1 + 1;
1847 }
1848 return mask;
1849}
ea041c0e 1850
7501267e
FB
1851void cpu_abort(CPUState *env, const char *fmt, ...)
1852{
1853 va_list ap;
493ae1f0 1854 va_list ap2;
7501267e
FB
1855
1856 va_start(ap, fmt);
493ae1f0 1857 va_copy(ap2, ap);
7501267e
FB
1858 fprintf(stderr, "qemu: fatal: ");
1859 vfprintf(stderr, fmt, ap);
1860 fprintf(stderr, "\n");
1861#ifdef TARGET_I386
7fe48483
FB
1862 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1863#else
1864 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1865#endif
93fcfe39
AL
1866 if (qemu_log_enabled()) {
1867 qemu_log("qemu: fatal: ");
1868 qemu_log_vprintf(fmt, ap2);
1869 qemu_log("\n");
f9373291 1870#ifdef TARGET_I386
93fcfe39 1871 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1872#else
93fcfe39 1873 log_cpu_state(env, 0);
f9373291 1874#endif
31b1a7b4 1875 qemu_log_flush();
93fcfe39 1876 qemu_log_close();
924edcae 1877 }
493ae1f0 1878 va_end(ap2);
f9373291 1879 va_end(ap);
fd052bf6
RV
1880#if defined(CONFIG_USER_ONLY)
1881 {
1882 struct sigaction act;
1883 sigfillset(&act.sa_mask);
1884 act.sa_handler = SIG_DFL;
1885 sigaction(SIGABRT, &act, NULL);
1886 }
1887#endif
7501267e
FB
1888 abort();
1889}
1890
c5be9f08
TS
1891CPUState *cpu_copy(CPUState *env)
1892{
01ba9816 1893 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1894 CPUState *next_cpu = new_env->next_cpu;
1895 int cpu_index = new_env->cpu_index;
5a38f081
AL
1896#if defined(TARGET_HAS_ICE)
1897 CPUBreakpoint *bp;
1898 CPUWatchpoint *wp;
1899#endif
1900
c5be9f08 1901 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1902
1903 /* Preserve chaining and index. */
c5be9f08
TS
1904 new_env->next_cpu = next_cpu;
1905 new_env->cpu_index = cpu_index;
5a38f081
AL
1906
1907 /* Clone all break/watchpoints.
1908 Note: Once we support ptrace with hw-debug register access, make sure
1909 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1910 QTAILQ_INIT(&env->breakpoints);
1911 QTAILQ_INIT(&env->watchpoints);
5a38f081 1912#if defined(TARGET_HAS_ICE)
72cf2d4f 1913 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1914 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1915 }
72cf2d4f 1916 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1917 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1918 wp->flags, NULL);
1919 }
1920#endif
1921
c5be9f08
TS
1922 return new_env;
1923}
1924
0124311e
FB
1925#if !defined(CONFIG_USER_ONLY)
1926
5c751e99
EI
1927static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1928{
1929 unsigned int i;
1930
1931 /* Discard jump cache entries for any tb which might potentially
1932 overlap the flushed page. */
1933 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1934 memset (&env->tb_jmp_cache[i], 0,
1935 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1936
1937 i = tb_jmp_cache_hash_page(addr);
1938 memset (&env->tb_jmp_cache[i], 0,
1939 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1940}
1941
08738984
IK
1942static CPUTLBEntry s_cputlb_empty_entry = {
1943 .addr_read = -1,
1944 .addr_write = -1,
1945 .addr_code = -1,
1946 .addend = -1,
1947};
1948
ee8b7021
FB
1949/* NOTE: if flush_global is true, also flush global entries (not
1950 implemented yet) */
1951void tlb_flush(CPUState *env, int flush_global)
33417e70 1952{
33417e70 1953 int i;
0124311e 1954
9fa3e853
FB
1955#if defined(DEBUG_TLB)
1956 printf("tlb_flush:\n");
1957#endif
0124311e
FB
1958 /* must reset current TB so that interrupts cannot modify the
1959 links while we are modifying them */
1960 env->current_tb = NULL;
1961
33417e70 1962 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1963 int mmu_idx;
1964 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1965 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1966 }
33417e70 1967 }
9fa3e853 1968
8a40a180 1969 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1970
d4c430a8
PB
1971 env->tlb_flush_addr = -1;
1972 env->tlb_flush_mask = 0;
e3db7226 1973 tlb_flush_count++;
33417e70
FB
1974}
1975
274da6b2 1976static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1977{
5fafdf24 1978 if (addr == (tlb_entry->addr_read &
84b7b8e7 1979 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1980 addr == (tlb_entry->addr_write &
84b7b8e7 1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1982 addr == (tlb_entry->addr_code &
84b7b8e7 1983 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1984 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1985 }
61382a50
FB
1986}
1987
2e12669a 1988void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1989{
8a40a180 1990 int i;
cfde4bd9 1991 int mmu_idx;
0124311e 1992
9fa3e853 1993#if defined(DEBUG_TLB)
108c49b8 1994 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1995#endif
d4c430a8
PB
1996 /* Check if we need to flush due to large pages. */
1997 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1998#if defined(DEBUG_TLB)
1999 printf("tlb_flush_page: forced full flush ("
2000 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2001 env->tlb_flush_addr, env->tlb_flush_mask);
2002#endif
2003 tlb_flush(env, 1);
2004 return;
2005 }
0124311e
FB
2006 /* must reset current TB so that interrupts cannot modify the
2007 links while we are modifying them */
2008 env->current_tb = NULL;
61382a50
FB
2009
2010 addr &= TARGET_PAGE_MASK;
2011 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2012 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2013 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2014
5c751e99 2015 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2016}
2017
9fa3e853
FB
2018/* update the TLBs so that writes to code in the virtual page 'addr'
2019 can be detected */
c227f099 2020static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2021{
5fafdf24 2022 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2023 ram_addr + TARGET_PAGE_SIZE,
2024 CODE_DIRTY_FLAG);
9fa3e853
FB
2025}
2026
9fa3e853 2027/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2028 tested for self modifying code */
c227f099 2029static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2030 target_ulong vaddr)
9fa3e853 2031{
3a7d929e 2032 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
2033}
2034
5fafdf24 2035static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2036 unsigned long start, unsigned long length)
2037{
2038 unsigned long addr;
84b7b8e7
FB
2039 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2040 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2041 if ((addr - start) < length) {
0f459d16 2042 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2043 }
2044 }
2045}
2046
5579c7f3 2047/* Note: start and end must be within the same ram block. */
c227f099 2048void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2049 int dirty_flags)
1ccde1cb
FB
2050{
2051 CPUState *env;
4f2ac237 2052 unsigned long length, start1;
0a962c02
FB
2053 int i, mask, len;
2054 uint8_t *p;
1ccde1cb
FB
2055
2056 start &= TARGET_PAGE_MASK;
2057 end = TARGET_PAGE_ALIGN(end);
2058
2059 length = end - start;
2060 if (length == 0)
2061 return;
0a962c02 2062 len = length >> TARGET_PAGE_BITS;
f23db169
FB
2063 mask = ~dirty_flags;
2064 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2065 for(i = 0; i < len; i++)
2066 p[i] &= mask;
2067
1ccde1cb
FB
2068 /* we modify the TLB cache so that the dirty bit will be set again
2069 when accessing the range */
5579c7f3
PB
2070 start1 = (unsigned long)qemu_get_ram_ptr(start);
2071 /* Chek that we don't span multiple blocks - this breaks the
2072 address comparisons below. */
2073 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2074 != (end - 1) - start) {
2075 abort();
2076 }
2077
6a00d601 2078 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2079 int mmu_idx;
2080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2081 for(i = 0; i < CPU_TLB_SIZE; i++)
2082 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2083 start1, length);
2084 }
6a00d601 2085 }
1ccde1cb
FB
2086}
2087
74576198
AL
2088int cpu_physical_memory_set_dirty_tracking(int enable)
2089{
f6f3fbca 2090 int ret = 0;
74576198 2091 in_migration = enable;
f6f3fbca
MT
2092 ret = cpu_notify_migration_log(!!enable);
2093 return ret;
74576198
AL
2094}
2095
2096int cpu_physical_memory_get_dirty_tracking(void)
2097{
2098 return in_migration;
2099}
2100
c227f099
AL
2101int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2102 target_phys_addr_t end_addr)
2bec46dc 2103{
7b8f3b78 2104 int ret;
151f7749 2105
f6f3fbca 2106 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2107 return ret;
2bec46dc
AL
2108}
2109
3a7d929e
FB
2110static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2111{
c227f099 2112 ram_addr_t ram_addr;
5579c7f3 2113 void *p;
3a7d929e 2114
84b7b8e7 2115 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2116 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2117 + tlb_entry->addend);
2118 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2119 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2120 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2121 }
2122 }
2123}
2124
2125/* update the TLB according to the current state of the dirty bits */
2126void cpu_tlb_update_dirty(CPUState *env)
2127{
2128 int i;
cfde4bd9
IY
2129 int mmu_idx;
2130 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2131 for(i = 0; i < CPU_TLB_SIZE; i++)
2132 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2133 }
3a7d929e
FB
2134}
2135
0f459d16 2136static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2137{
0f459d16
PB
2138 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2139 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2140}
2141
0f459d16
PB
2142/* update the TLB corresponding to virtual page vaddr
2143 so that it is no longer dirty */
2144static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2145{
1ccde1cb 2146 int i;
cfde4bd9 2147 int mmu_idx;
1ccde1cb 2148
0f459d16 2149 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2150 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2151 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2152 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2153}
2154
d4c430a8
PB
2155/* Our TLB does not support large pages, so remember the area covered by
2156 large pages and trigger a full TLB flush if these are invalidated. */
2157static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2158 target_ulong size)
2159{
2160 target_ulong mask = ~(size - 1);
2161
2162 if (env->tlb_flush_addr == (target_ulong)-1) {
2163 env->tlb_flush_addr = vaddr & mask;
2164 env->tlb_flush_mask = mask;
2165 return;
2166 }
2167 /* Extend the existing region to include the new page.
2168 This is a compromise between unnecessary flushes and the cost
2169 of maintaining a full variable size TLB. */
2170 mask &= env->tlb_flush_mask;
2171 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2172 mask <<= 1;
2173 }
2174 env->tlb_flush_addr &= mask;
2175 env->tlb_flush_mask = mask;
2176}
2177
2178/* Add a new TLB entry. At most one entry for a given virtual address
2179 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2180 supplied size is only used by tlb_flush_page. */
2181void tlb_set_page(CPUState *env, target_ulong vaddr,
2182 target_phys_addr_t paddr, int prot,
2183 int mmu_idx, target_ulong size)
9fa3e853 2184{
92e873b9 2185 PhysPageDesc *p;
4f2ac237 2186 unsigned long pd;
9fa3e853 2187 unsigned int index;
4f2ac237 2188 target_ulong address;
0f459d16 2189 target_ulong code_address;
c227f099 2190 target_phys_addr_t addend;
84b7b8e7 2191 CPUTLBEntry *te;
a1d1bb31 2192 CPUWatchpoint *wp;
c227f099 2193 target_phys_addr_t iotlb;
9fa3e853 2194
d4c430a8
PB
2195 assert(size >= TARGET_PAGE_SIZE);
2196 if (size != TARGET_PAGE_SIZE) {
2197 tlb_add_large_page(env, vaddr, size);
2198 }
92e873b9 2199 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2200 if (!p) {
2201 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2202 } else {
2203 pd = p->phys_offset;
9fa3e853
FB
2204 }
2205#if defined(DEBUG_TLB)
6ebbf390
JM
2206 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2207 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2208#endif
2209
0f459d16
PB
2210 address = vaddr;
2211 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2212 /* IO memory case (romd handled later) */
2213 address |= TLB_MMIO;
2214 }
5579c7f3 2215 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2216 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2217 /* Normal RAM. */
2218 iotlb = pd & TARGET_PAGE_MASK;
2219 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2220 iotlb |= IO_MEM_NOTDIRTY;
2221 else
2222 iotlb |= IO_MEM_ROM;
2223 } else {
ccbb4d44 2224 /* IO handlers are currently passed a physical address.
0f459d16
PB
2225 It would be nice to pass an offset from the base address
2226 of that region. This would avoid having to special case RAM,
2227 and avoid full address decoding in every device.
2228 We can't use the high bits of pd for this because
2229 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2230 iotlb = (pd & ~TARGET_PAGE_MASK);
2231 if (p) {
8da3ff18
PB
2232 iotlb += p->region_offset;
2233 } else {
2234 iotlb += paddr;
2235 }
0f459d16
PB
2236 }
2237
2238 code_address = address;
2239 /* Make accesses to pages with watchpoints go via the
2240 watchpoint trap routines. */
72cf2d4f 2241 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2242 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2243 iotlb = io_mem_watch + paddr;
2244 /* TODO: The memory case can be optimized by not trapping
2245 reads of pages with a write breakpoint. */
2246 address |= TLB_MMIO;
6658ffb8 2247 }
0f459d16 2248 }
d79acba4 2249
0f459d16
PB
2250 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2251 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2252 te = &env->tlb_table[mmu_idx][index];
2253 te->addend = addend - vaddr;
2254 if (prot & PAGE_READ) {
2255 te->addr_read = address;
2256 } else {
2257 te->addr_read = -1;
2258 }
5c751e99 2259
0f459d16
PB
2260 if (prot & PAGE_EXEC) {
2261 te->addr_code = code_address;
2262 } else {
2263 te->addr_code = -1;
2264 }
2265 if (prot & PAGE_WRITE) {
2266 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2267 (pd & IO_MEM_ROMD)) {
2268 /* Write access calls the I/O callback. */
2269 te->addr_write = address | TLB_MMIO;
2270 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2271 !cpu_physical_memory_is_dirty(pd)) {
2272 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2273 } else {
0f459d16 2274 te->addr_write = address;
9fa3e853 2275 }
0f459d16
PB
2276 } else {
2277 te->addr_write = -1;
9fa3e853 2278 }
9fa3e853
FB
2279}
2280
0124311e
FB
2281#else
2282
ee8b7021 2283void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2284{
2285}
2286
2e12669a 2287void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2288{
2289}
2290
edf8e2af
MW
2291/*
2292 * Walks guest process memory "regions" one by one
2293 * and calls callback function 'fn' for each region.
2294 */
5cd2c5b6
RH
2295
2296struct walk_memory_regions_data
2297{
2298 walk_memory_regions_fn fn;
2299 void *priv;
2300 unsigned long start;
2301 int prot;
2302};
2303
2304static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2305 abi_ulong end, int new_prot)
5cd2c5b6
RH
2306{
2307 if (data->start != -1ul) {
2308 int rc = data->fn(data->priv, data->start, end, data->prot);
2309 if (rc != 0) {
2310 return rc;
2311 }
2312 }
2313
2314 data->start = (new_prot ? end : -1ul);
2315 data->prot = new_prot;
2316
2317 return 0;
2318}
2319
2320static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2321 abi_ulong base, int level, void **lp)
5cd2c5b6 2322{
b480d9b7 2323 abi_ulong pa;
5cd2c5b6
RH
2324 int i, rc;
2325
2326 if (*lp == NULL) {
2327 return walk_memory_regions_end(data, base, 0);
2328 }
2329
2330 if (level == 0) {
2331 PageDesc *pd = *lp;
7296abac 2332 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2333 int prot = pd[i].flags;
2334
2335 pa = base | (i << TARGET_PAGE_BITS);
2336 if (prot != data->prot) {
2337 rc = walk_memory_regions_end(data, pa, prot);
2338 if (rc != 0) {
2339 return rc;
9fa3e853 2340 }
9fa3e853 2341 }
5cd2c5b6
RH
2342 }
2343 } else {
2344 void **pp = *lp;
7296abac 2345 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2346 pa = base | ((abi_ulong)i <<
2347 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2348 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2349 if (rc != 0) {
2350 return rc;
2351 }
2352 }
2353 }
2354
2355 return 0;
2356}
2357
2358int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2359{
2360 struct walk_memory_regions_data data;
2361 unsigned long i;
2362
2363 data.fn = fn;
2364 data.priv = priv;
2365 data.start = -1ul;
2366 data.prot = 0;
2367
2368 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2369 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2370 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2371 if (rc != 0) {
2372 return rc;
9fa3e853 2373 }
33417e70 2374 }
5cd2c5b6
RH
2375
2376 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2377}
2378
b480d9b7
PB
2379static int dump_region(void *priv, abi_ulong start,
2380 abi_ulong end, unsigned long prot)
edf8e2af
MW
2381{
2382 FILE *f = (FILE *)priv;
2383
b480d9b7
PB
2384 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2385 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2386 start, end, end - start,
2387 ((prot & PAGE_READ) ? 'r' : '-'),
2388 ((prot & PAGE_WRITE) ? 'w' : '-'),
2389 ((prot & PAGE_EXEC) ? 'x' : '-'));
2390
2391 return (0);
2392}
2393
2394/* dump memory mappings */
2395void page_dump(FILE *f)
2396{
2397 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2398 "start", "end", "size", "prot");
2399 walk_memory_regions(f, dump_region);
33417e70
FB
2400}
2401
53a5960a 2402int page_get_flags(target_ulong address)
33417e70 2403{
9fa3e853
FB
2404 PageDesc *p;
2405
2406 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2407 if (!p)
9fa3e853
FB
2408 return 0;
2409 return p->flags;
2410}
2411
376a7909
RH
2412/* Modify the flags of a page and invalidate the code if necessary.
2413 The flag PAGE_WRITE_ORG is positioned automatically depending
2414 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2415void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2416{
376a7909
RH
2417 target_ulong addr, len;
2418
2419 /* This function should never be called with addresses outside the
2420 guest address space. If this assert fires, it probably indicates
2421 a missing call to h2g_valid. */
b480d9b7
PB
2422#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2423 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2424#endif
2425 assert(start < end);
9fa3e853
FB
2426
2427 start = start & TARGET_PAGE_MASK;
2428 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2429
2430 if (flags & PAGE_WRITE) {
9fa3e853 2431 flags |= PAGE_WRITE_ORG;
376a7909
RH
2432 }
2433
2434 for (addr = start, len = end - start;
2435 len != 0;
2436 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2437 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2438
2439 /* If the write protection bit is set, then we invalidate
2440 the code inside. */
5fafdf24 2441 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2442 (flags & PAGE_WRITE) &&
2443 p->first_tb) {
d720b93d 2444 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2445 }
2446 p->flags = flags;
2447 }
33417e70
FB
2448}
2449
3d97b40b
TS
2450int page_check_range(target_ulong start, target_ulong len, int flags)
2451{
2452 PageDesc *p;
2453 target_ulong end;
2454 target_ulong addr;
2455
376a7909
RH
2456 /* This function should never be called with addresses outside the
2457 guest address space. If this assert fires, it probably indicates
2458 a missing call to h2g_valid. */
338e9e6c
BS
2459#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2460 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2461#endif
2462
2463 if (start + len - 1 < start) {
2464 /* We've wrapped around. */
55f280c9 2465 return -1;
376a7909 2466 }
55f280c9 2467
3d97b40b
TS
2468 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2469 start = start & TARGET_PAGE_MASK;
2470
376a7909
RH
2471 for (addr = start, len = end - start;
2472 len != 0;
2473 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2474 p = page_find(addr >> TARGET_PAGE_BITS);
2475 if( !p )
2476 return -1;
2477 if( !(p->flags & PAGE_VALID) )
2478 return -1;
2479
dae3270c 2480 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2481 return -1;
dae3270c
FB
2482 if (flags & PAGE_WRITE) {
2483 if (!(p->flags & PAGE_WRITE_ORG))
2484 return -1;
2485 /* unprotect the page if it was put read-only because it
2486 contains translated code */
2487 if (!(p->flags & PAGE_WRITE)) {
2488 if (!page_unprotect(addr, 0, NULL))
2489 return -1;
2490 }
2491 return 0;
2492 }
3d97b40b
TS
2493 }
2494 return 0;
2495}
2496
9fa3e853 2497/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2498 page. Return TRUE if the fault was successfully handled. */
53a5960a 2499int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2500{
2501 unsigned int page_index, prot, pindex;
2502 PageDesc *p, *p1;
53a5960a 2503 target_ulong host_start, host_end, addr;
9fa3e853 2504
c8a706fe
PB
2505 /* Technically this isn't safe inside a signal handler. However we
2506 know this only ever happens in a synchronous SEGV handler, so in
2507 practice it seems to be ok. */
2508 mmap_lock();
2509
83fb7adf 2510 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2511 page_index = host_start >> TARGET_PAGE_BITS;
2512 p1 = page_find(page_index);
c8a706fe
PB
2513 if (!p1) {
2514 mmap_unlock();
9fa3e853 2515 return 0;
c8a706fe 2516 }
83fb7adf 2517 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2518 p = p1;
2519 prot = 0;
2520 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2521 prot |= p->flags;
2522 p++;
2523 }
2524 /* if the page was really writable, then we change its
2525 protection back to writable */
2526 if (prot & PAGE_WRITE_ORG) {
2527 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2528 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2529 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2530 (prot & PAGE_BITS) | PAGE_WRITE);
2531 p1[pindex].flags |= PAGE_WRITE;
2532 /* and since the content will be modified, we must invalidate
2533 the corresponding translated code. */
d720b93d 2534 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2535#ifdef DEBUG_TB_CHECK
2536 tb_invalidate_check(address);
2537#endif
c8a706fe 2538 mmap_unlock();
9fa3e853
FB
2539 return 1;
2540 }
2541 }
c8a706fe 2542 mmap_unlock();
9fa3e853
FB
2543 return 0;
2544}
2545
6a00d601
FB
2546static inline void tlb_set_dirty(CPUState *env,
2547 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2548{
2549}
9fa3e853
FB
2550#endif /* defined(CONFIG_USER_ONLY) */
2551
e2eef170 2552#if !defined(CONFIG_USER_ONLY)
8da3ff18 2553
c04b2b78
PB
2554#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2555typedef struct subpage_t {
2556 target_phys_addr_t base;
2557 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2558 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2559 void *opaque[TARGET_PAGE_SIZE][2][4];
2560 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2561} subpage_t;
2562
c227f099
AL
2563static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2564 ram_addr_t memory, ram_addr_t region_offset);
2565static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2566 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2567#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2568 need_subpage) \
2569 do { \
2570 if (addr > start_addr) \
2571 start_addr2 = 0; \
2572 else { \
2573 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2574 if (start_addr2 > 0) \
2575 need_subpage = 1; \
2576 } \
2577 \
49e9fba2 2578 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2579 end_addr2 = TARGET_PAGE_SIZE - 1; \
2580 else { \
2581 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2582 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2583 need_subpage = 1; \
2584 } \
2585 } while (0)
2586
8f2498f9
MT
2587/* register physical memory.
2588 For RAM, 'size' must be a multiple of the target page size.
2589 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2590 io memory page. The address used when calling the IO function is
2591 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2592 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2593 before calculating this offset. This should not be a problem unless
2594 the low bits of start_addr and region_offset differ. */
c227f099
AL
2595void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2596 ram_addr_t size,
2597 ram_addr_t phys_offset,
2598 ram_addr_t region_offset)
33417e70 2599{
c227f099 2600 target_phys_addr_t addr, end_addr;
92e873b9 2601 PhysPageDesc *p;
9d42037b 2602 CPUState *env;
c227f099 2603 ram_addr_t orig_size = size;
db7b5426 2604 void *subpage;
33417e70 2605
f6f3fbca
MT
2606 cpu_notify_set_memory(start_addr, size, phys_offset);
2607
67c4d23c
PB
2608 if (phys_offset == IO_MEM_UNASSIGNED) {
2609 region_offset = start_addr;
2610 }
8da3ff18 2611 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2612 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2613 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2614 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2615 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2616 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2617 ram_addr_t orig_memory = p->phys_offset;
2618 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2619 int need_subpage = 0;
2620
2621 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2622 need_subpage);
4254fab8 2623 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2624 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2625 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2626 &p->phys_offset, orig_memory,
2627 p->region_offset);
db7b5426
BS
2628 } else {
2629 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2630 >> IO_MEM_SHIFT];
2631 }
8da3ff18
PB
2632 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2633 region_offset);
2634 p->region_offset = 0;
db7b5426
BS
2635 } else {
2636 p->phys_offset = phys_offset;
2637 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2638 (phys_offset & IO_MEM_ROMD))
2639 phys_offset += TARGET_PAGE_SIZE;
2640 }
2641 } else {
2642 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2643 p->phys_offset = phys_offset;
8da3ff18 2644 p->region_offset = region_offset;
db7b5426 2645 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2646 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2647 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2648 } else {
c227f099 2649 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2650 int need_subpage = 0;
2651
2652 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2653 end_addr2, need_subpage);
2654
4254fab8 2655 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2656 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2657 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2658 addr & TARGET_PAGE_MASK);
db7b5426 2659 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2660 phys_offset, region_offset);
2661 p->region_offset = 0;
db7b5426
BS
2662 }
2663 }
2664 }
8da3ff18 2665 region_offset += TARGET_PAGE_SIZE;
33417e70 2666 }
3b46e624 2667
9d42037b
FB
2668 /* since each CPU stores ram addresses in its TLB cache, we must
2669 reset the modified entries */
2670 /* XXX: slow ! */
2671 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2672 tlb_flush(env, 1);
2673 }
33417e70
FB
2674}
2675
ba863458 2676/* XXX: temporary until new memory mapping API */
c227f099 2677ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2678{
2679 PhysPageDesc *p;
2680
2681 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2682 if (!p)
2683 return IO_MEM_UNASSIGNED;
2684 return p->phys_offset;
2685}
2686
c227f099 2687void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2688{
2689 if (kvm_enabled())
2690 kvm_coalesce_mmio_region(addr, size);
2691}
2692
c227f099 2693void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2694{
2695 if (kvm_enabled())
2696 kvm_uncoalesce_mmio_region(addr, size);
2697}
2698
62a2744c
SY
2699void qemu_flush_coalesced_mmio_buffer(void)
2700{
2701 if (kvm_enabled())
2702 kvm_flush_coalesced_mmio_buffer();
2703}
2704
c902760f
MT
2705#if defined(__linux__) && !defined(TARGET_S390X)
2706
2707#include <sys/vfs.h>
2708
2709#define HUGETLBFS_MAGIC 0x958458f6
2710
2711static long gethugepagesize(const char *path)
2712{
2713 struct statfs fs;
2714 int ret;
2715
2716 do {
2717 ret = statfs(path, &fs);
2718 } while (ret != 0 && errno == EINTR);
2719
2720 if (ret != 0) {
6adc0549 2721 perror(path);
c902760f
MT
2722 return 0;
2723 }
2724
2725 if (fs.f_type != HUGETLBFS_MAGIC)
2726 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2727
2728 return fs.f_bsize;
2729}
2730
2731static void *file_ram_alloc(ram_addr_t memory, const char *path)
2732{
2733 char *filename;
2734 void *area;
2735 int fd;
2736#ifdef MAP_POPULATE
2737 int flags;
2738#endif
2739 unsigned long hpagesize;
2740
2741 hpagesize = gethugepagesize(path);
2742 if (!hpagesize) {
2743 return NULL;
2744 }
2745
2746 if (memory < hpagesize) {
2747 return NULL;
2748 }
2749
2750 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2751 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2752 return NULL;
2753 }
2754
2755 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2756 return NULL;
2757 }
2758
2759 fd = mkstemp(filename);
2760 if (fd < 0) {
6adc0549 2761 perror("unable to create backing store for hugepages");
c902760f
MT
2762 free(filename);
2763 return NULL;
2764 }
2765 unlink(filename);
2766 free(filename);
2767
2768 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2769
2770 /*
2771 * ftruncate is not supported by hugetlbfs in older
2772 * hosts, so don't bother bailing out on errors.
2773 * If anything goes wrong with it under other filesystems,
2774 * mmap will fail.
2775 */
2776 if (ftruncate(fd, memory))
2777 perror("ftruncate");
2778
2779#ifdef MAP_POPULATE
2780 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2781 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2782 * to sidestep this quirk.
2783 */
2784 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2786#else
2787 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2788#endif
2789 if (area == MAP_FAILED) {
2790 perror("file_ram_alloc: can't mmap RAM pages");
2791 close(fd);
2792 return (NULL);
2793 }
2794 return area;
2795}
2796#endif
2797
c227f099 2798ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2799{
2800 RAMBlock *new_block;
2801
94a6b54f
PB
2802 size = TARGET_PAGE_ALIGN(size);
2803 new_block = qemu_malloc(sizeof(*new_block));
2804
c902760f
MT
2805 if (mem_path) {
2806#if defined (__linux__) && !defined(TARGET_S390X)
2807 new_block->host = file_ram_alloc(size, mem_path);
2808 if (!new_block->host)
2809 exit(1);
2810#else
2811 fprintf(stderr, "-mem-path option unsupported\n");
2812 exit(1);
2813#endif
2814 } else {
6b02494d 2815#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2816 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2817 new_block->host = mmap((void*)0x1000000, size,
2818 PROT_EXEC|PROT_READ|PROT_WRITE,
2819 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2820#else
c902760f 2821 new_block->host = qemu_vmalloc(size);
6b02494d 2822#endif
ccb167e9 2823#ifdef MADV_MERGEABLE
c902760f 2824 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2825#endif
c902760f 2826 }
94a6b54f
PB
2827 new_block->offset = last_ram_offset;
2828 new_block->length = size;
2829
2830 new_block->next = ram_blocks;
2831 ram_blocks = new_block;
2832
2833 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2834 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2835 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2836 0xff, size >> TARGET_PAGE_BITS);
2837
2838 last_ram_offset += size;
2839
6f0437e8
JK
2840 if (kvm_enabled())
2841 kvm_setup_guest_memory(new_block->host, size);
2842
94a6b54f
PB
2843 return new_block->offset;
2844}
e9a1ab19 2845
c227f099 2846void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2847{
94a6b54f 2848 /* TODO: implement this. */
e9a1ab19
FB
2849}
2850
dc828ca1 2851/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2852 With the exception of the softmmu code in this file, this should
2853 only be used for local memory (e.g. video ram) that the device owns,
2854 and knows it isn't going to access beyond the end of the block.
2855
2856 It should not be used for general purpose DMA.
2857 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2858 */
c227f099 2859void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2860{
94a6b54f
PB
2861 RAMBlock *prev;
2862 RAMBlock **prevp;
2863 RAMBlock *block;
2864
94a6b54f
PB
2865 prev = NULL;
2866 prevp = &ram_blocks;
2867 block = ram_blocks;
2868 while (block && (block->offset > addr
2869 || block->offset + block->length <= addr)) {
2870 if (prev)
2871 prevp = &prev->next;
2872 prev = block;
2873 block = block->next;
2874 }
2875 if (!block) {
2876 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2877 abort();
2878 }
2879 /* Move this entry to to start of the list. */
2880 if (prev) {
2881 prev->next = block->next;
2882 block->next = *prevp;
2883 *prevp = block;
2884 }
2885 return block->host + (addr - block->offset);
dc828ca1
PB
2886}
2887
5579c7f3
PB
2888/* Some of the softmmu routines need to translate from a host pointer
2889 (typically a TLB entry) back to a ram offset. */
c227f099 2890ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2891{
94a6b54f 2892 RAMBlock *prev;
94a6b54f
PB
2893 RAMBlock *block;
2894 uint8_t *host = ptr;
2895
94a6b54f 2896 prev = NULL;
94a6b54f
PB
2897 block = ram_blocks;
2898 while (block && (block->host > host
2899 || block->host + block->length <= host)) {
94a6b54f
PB
2900 prev = block;
2901 block = block->next;
2902 }
2903 if (!block) {
2904 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2905 abort();
2906 }
2907 return block->offset + (host - block->host);
5579c7f3
PB
2908}
2909
c227f099 2910static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2911{
67d3b957 2912#ifdef DEBUG_UNASSIGNED
ab3d1727 2913 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2914#endif
faed1c2a 2915#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2916 do_unassigned_access(addr, 0, 0, 0, 1);
2917#endif
2918 return 0;
2919}
2920
c227f099 2921static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2922{
2923#ifdef DEBUG_UNASSIGNED
2924 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2925#endif
faed1c2a 2926#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2927 do_unassigned_access(addr, 0, 0, 0, 2);
2928#endif
2929 return 0;
2930}
2931
c227f099 2932static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2933{
2934#ifdef DEBUG_UNASSIGNED
2935 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2936#endif
faed1c2a 2937#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2938 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2939#endif
33417e70
FB
2940 return 0;
2941}
2942
c227f099 2943static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2944{
67d3b957 2945#ifdef DEBUG_UNASSIGNED
ab3d1727 2946 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2947#endif
faed1c2a 2948#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2949 do_unassigned_access(addr, 1, 0, 0, 1);
2950#endif
2951}
2952
c227f099 2953static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2954{
2955#ifdef DEBUG_UNASSIGNED
2956 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2957#endif
faed1c2a 2958#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2959 do_unassigned_access(addr, 1, 0, 0, 2);
2960#endif
2961}
2962
c227f099 2963static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2964{
2965#ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2967#endif
faed1c2a 2968#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2969 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2970#endif
33417e70
FB
2971}
2972
d60efc6b 2973static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2974 unassigned_mem_readb,
e18231a3
BS
2975 unassigned_mem_readw,
2976 unassigned_mem_readl,
33417e70
FB
2977};
2978
d60efc6b 2979static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2980 unassigned_mem_writeb,
e18231a3
BS
2981 unassigned_mem_writew,
2982 unassigned_mem_writel,
33417e70
FB
2983};
2984
c227f099 2985static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2986 uint32_t val)
9fa3e853 2987{
3a7d929e 2988 int dirty_flags;
3a7d929e
FB
2989 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2990 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2991#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2992 tb_invalidate_phys_page_fast(ram_addr, 1);
2993 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2994#endif
3a7d929e 2995 }
5579c7f3 2996 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2997 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2998 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2999 /* we remove the notdirty callback only if the code has been
3000 flushed */
3001 if (dirty_flags == 0xff)
2e70f6ef 3002 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3003}
3004
c227f099 3005static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3006 uint32_t val)
9fa3e853 3007{
3a7d929e 3008 int dirty_flags;
3a7d929e
FB
3009 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3010 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3011#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
3012 tb_invalidate_phys_page_fast(ram_addr, 2);
3013 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 3014#endif
3a7d929e 3015 }
5579c7f3 3016 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
3017 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3018 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3019 /* we remove the notdirty callback only if the code has been
3020 flushed */
3021 if (dirty_flags == 0xff)
2e70f6ef 3022 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3023}
3024
c227f099 3025static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3026 uint32_t val)
9fa3e853 3027{
3a7d929e 3028 int dirty_flags;
3a7d929e
FB
3029 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3030 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3031#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
3032 tb_invalidate_phys_page_fast(ram_addr, 4);
3033 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 3034#endif
3a7d929e 3035 }
5579c7f3 3036 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
3037 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3038 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3039 /* we remove the notdirty callback only if the code has been
3040 flushed */
3041 if (dirty_flags == 0xff)
2e70f6ef 3042 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3043}
3044
d60efc6b 3045static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3046 NULL, /* never used */
3047 NULL, /* never used */
3048 NULL, /* never used */
3049};
3050
d60efc6b 3051static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3052 notdirty_mem_writeb,
3053 notdirty_mem_writew,
3054 notdirty_mem_writel,
3055};
3056
0f459d16 3057/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3058static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3059{
3060 CPUState *env = cpu_single_env;
06d55cc1
AL
3061 target_ulong pc, cs_base;
3062 TranslationBlock *tb;
0f459d16 3063 target_ulong vaddr;
a1d1bb31 3064 CPUWatchpoint *wp;
06d55cc1 3065 int cpu_flags;
0f459d16 3066
06d55cc1
AL
3067 if (env->watchpoint_hit) {
3068 /* We re-entered the check after replacing the TB. Now raise
3069 * the debug interrupt so that is will trigger after the
3070 * current instruction. */
3071 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3072 return;
3073 }
2e70f6ef 3074 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3075 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3076 if ((vaddr == (wp->vaddr & len_mask) ||
3077 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3078 wp->flags |= BP_WATCHPOINT_HIT;
3079 if (!env->watchpoint_hit) {
3080 env->watchpoint_hit = wp;
3081 tb = tb_find_pc(env->mem_io_pc);
3082 if (!tb) {
3083 cpu_abort(env, "check_watchpoint: could not find TB for "
3084 "pc=%p", (void *)env->mem_io_pc);
3085 }
3086 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3087 tb_phys_invalidate(tb, -1);
3088 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3089 env->exception_index = EXCP_DEBUG;
3090 } else {
3091 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3092 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3093 }
3094 cpu_resume_from_signal(env, NULL);
06d55cc1 3095 }
6e140f28
AL
3096 } else {
3097 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3098 }
3099 }
3100}
3101
6658ffb8
PB
3102/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3103 so these check for a hit then pass through to the normal out-of-line
3104 phys routines. */
c227f099 3105static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3106{
b4051334 3107 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3108 return ldub_phys(addr);
3109}
3110
c227f099 3111static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3112{
b4051334 3113 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3114 return lduw_phys(addr);
3115}
3116
c227f099 3117static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3118{
b4051334 3119 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3120 return ldl_phys(addr);
3121}
3122
c227f099 3123static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3124 uint32_t val)
3125{
b4051334 3126 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3127 stb_phys(addr, val);
3128}
3129
c227f099 3130static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3131 uint32_t val)
3132{
b4051334 3133 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3134 stw_phys(addr, val);
3135}
3136
c227f099 3137static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3138 uint32_t val)
3139{
b4051334 3140 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3141 stl_phys(addr, val);
3142}
3143
d60efc6b 3144static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3145 watch_mem_readb,
3146 watch_mem_readw,
3147 watch_mem_readl,
3148};
3149
d60efc6b 3150static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3151 watch_mem_writeb,
3152 watch_mem_writew,
3153 watch_mem_writel,
3154};
6658ffb8 3155
c227f099 3156static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3157 unsigned int len)
3158{
db7b5426
BS
3159 uint32_t ret;
3160 unsigned int idx;
3161
8da3ff18 3162 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3163#if defined(DEBUG_SUBPAGE)
3164 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3165 mmio, len, addr, idx);
3166#endif
8da3ff18
PB
3167 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3168 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3169
3170 return ret;
3171}
3172
c227f099 3173static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3174 uint32_t value, unsigned int len)
3175{
db7b5426
BS
3176 unsigned int idx;
3177
8da3ff18 3178 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3179#if defined(DEBUG_SUBPAGE)
3180 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3181 mmio, len, addr, idx, value);
3182#endif
8da3ff18
PB
3183 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3184 addr + mmio->region_offset[idx][1][len],
3185 value);
db7b5426
BS
3186}
3187
c227f099 3188static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3189{
3190#if defined(DEBUG_SUBPAGE)
3191 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3192#endif
3193
3194 return subpage_readlen(opaque, addr, 0);
3195}
3196
c227f099 3197static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3198 uint32_t value)
3199{
3200#if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3202#endif
3203 subpage_writelen(opaque, addr, value, 0);
3204}
3205
c227f099 3206static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3207{
3208#if defined(DEBUG_SUBPAGE)
3209 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3210#endif
3211
3212 return subpage_readlen(opaque, addr, 1);
3213}
3214
c227f099 3215static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3216 uint32_t value)
3217{
3218#if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3220#endif
3221 subpage_writelen(opaque, addr, value, 1);
3222}
3223
c227f099 3224static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3225{
3226#if defined(DEBUG_SUBPAGE)
3227 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3228#endif
3229
3230 return subpage_readlen(opaque, addr, 2);
3231}
3232
3233static void subpage_writel (void *opaque,
c227f099 3234 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3235{
3236#if defined(DEBUG_SUBPAGE)
3237 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3238#endif
3239 subpage_writelen(opaque, addr, value, 2);
3240}
3241
d60efc6b 3242static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3243 &subpage_readb,
3244 &subpage_readw,
3245 &subpage_readl,
3246};
3247
d60efc6b 3248static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3249 &subpage_writeb,
3250 &subpage_writew,
3251 &subpage_writel,
3252};
3253
c227f099
AL
3254static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3255 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3256{
3257 int idx, eidx;
4254fab8 3258 unsigned int i;
db7b5426
BS
3259
3260 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3261 return -1;
3262 idx = SUBPAGE_IDX(start);
3263 eidx = SUBPAGE_IDX(end);
3264#if defined(DEBUG_SUBPAGE)
0bf9e31a 3265 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3266 mmio, start, end, idx, eidx, memory);
3267#endif
3268 memory >>= IO_MEM_SHIFT;
3269 for (; idx <= eidx; idx++) {
4254fab8 3270 for (i = 0; i < 4; i++) {
3ee89922
BS
3271 if (io_mem_read[memory][i]) {
3272 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3273 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3274 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3275 }
3276 if (io_mem_write[memory][i]) {
3277 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3278 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3279 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3280 }
4254fab8 3281 }
db7b5426
BS
3282 }
3283
3284 return 0;
3285}
3286
c227f099
AL
3287static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3288 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3289{
c227f099 3290 subpage_t *mmio;
db7b5426
BS
3291 int subpage_memory;
3292
c227f099 3293 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3294
3295 mmio->base = base;
1eed09cb 3296 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3297#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3298 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3299 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3300#endif
1eec614b
AL
3301 *phys = subpage_memory | IO_MEM_SUBPAGE;
3302 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3303 region_offset);
db7b5426
BS
3304
3305 return mmio;
3306}
3307
88715657
AL
3308static int get_free_io_mem_idx(void)
3309{
3310 int i;
3311
3312 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3313 if (!io_mem_used[i]) {
3314 io_mem_used[i] = 1;
3315 return i;
3316 }
c6703b47 3317 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3318 return -1;
3319}
3320
33417e70
FB
3321/* mem_read and mem_write are arrays of functions containing the
3322 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3323 2). Functions can be omitted with a NULL function pointer.
3ee89922 3324 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3325 modified. If it is zero, a new io zone is allocated. The return
3326 value can be used with cpu_register_physical_memory(). (-1) is
3327 returned if error. */
1eed09cb 3328static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3329 CPUReadMemoryFunc * const *mem_read,
3330 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3331 void *opaque)
33417e70 3332{
4254fab8 3333 int i, subwidth = 0;
33417e70
FB
3334
3335 if (io_index <= 0) {
88715657
AL
3336 io_index = get_free_io_mem_idx();
3337 if (io_index == -1)
3338 return io_index;
33417e70 3339 } else {
1eed09cb 3340 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3341 if (io_index >= IO_MEM_NB_ENTRIES)
3342 return -1;
3343 }
b5ff1b31 3344
33417e70 3345 for(i = 0;i < 3; i++) {
4254fab8
BS
3346 if (!mem_read[i] || !mem_write[i])
3347 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3348 io_mem_read[io_index][i] = mem_read[i];
3349 io_mem_write[io_index][i] = mem_write[i];
3350 }
a4193c8a 3351 io_mem_opaque[io_index] = opaque;
4254fab8 3352 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3353}
61382a50 3354
d60efc6b
BS
3355int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3356 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3357 void *opaque)
3358{
3359 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3360}
3361
88715657
AL
3362void cpu_unregister_io_memory(int io_table_address)
3363{
3364 int i;
3365 int io_index = io_table_address >> IO_MEM_SHIFT;
3366
3367 for (i=0;i < 3; i++) {
3368 io_mem_read[io_index][i] = unassigned_mem_read[i];
3369 io_mem_write[io_index][i] = unassigned_mem_write[i];
3370 }
3371 io_mem_opaque[io_index] = NULL;
3372 io_mem_used[io_index] = 0;
3373}
3374
e9179ce1
AK
3375static void io_mem_init(void)
3376{
3377 int i;
3378
3379 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3380 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3381 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3382 for (i=0; i<5; i++)
3383 io_mem_used[i] = 1;
3384
3385 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3386 watch_mem_write, NULL);
e9179ce1
AK
3387}
3388
e2eef170
PB
3389#endif /* !defined(CONFIG_USER_ONLY) */
3390
13eb76e0
FB
3391/* physical memory access (slow version, mainly for debug) */
3392#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3393int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3394 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3395{
3396 int l, flags;
3397 target_ulong page;
53a5960a 3398 void * p;
13eb76e0
FB
3399
3400 while (len > 0) {
3401 page = addr & TARGET_PAGE_MASK;
3402 l = (page + TARGET_PAGE_SIZE) - addr;
3403 if (l > len)
3404 l = len;
3405 flags = page_get_flags(page);
3406 if (!(flags & PAGE_VALID))
a68fe89c 3407 return -1;
13eb76e0
FB
3408 if (is_write) {
3409 if (!(flags & PAGE_WRITE))
a68fe89c 3410 return -1;
579a97f7 3411 /* XXX: this code should not depend on lock_user */
72fb7daa 3412 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3413 return -1;
72fb7daa
AJ
3414 memcpy(p, buf, l);
3415 unlock_user(p, addr, l);
13eb76e0
FB
3416 } else {
3417 if (!(flags & PAGE_READ))
a68fe89c 3418 return -1;
579a97f7 3419 /* XXX: this code should not depend on lock_user */
72fb7daa 3420 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3421 return -1;
72fb7daa 3422 memcpy(buf, p, l);
5b257578 3423 unlock_user(p, addr, 0);
13eb76e0
FB
3424 }
3425 len -= l;
3426 buf += l;
3427 addr += l;
3428 }
a68fe89c 3429 return 0;
13eb76e0 3430}
8df1cd07 3431
13eb76e0 3432#else
c227f099 3433void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3434 int len, int is_write)
3435{
3436 int l, io_index;
3437 uint8_t *ptr;
3438 uint32_t val;
c227f099 3439 target_phys_addr_t page;
2e12669a 3440 unsigned long pd;
92e873b9 3441 PhysPageDesc *p;
3b46e624 3442
13eb76e0
FB
3443 while (len > 0) {
3444 page = addr & TARGET_PAGE_MASK;
3445 l = (page + TARGET_PAGE_SIZE) - addr;
3446 if (l > len)
3447 l = len;
92e873b9 3448 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3449 if (!p) {
3450 pd = IO_MEM_UNASSIGNED;
3451 } else {
3452 pd = p->phys_offset;
3453 }
3b46e624 3454
13eb76e0 3455 if (is_write) {
3a7d929e 3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3457 target_phys_addr_t addr1 = addr;
13eb76e0 3458 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3459 if (p)
6c2934db 3460 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3461 /* XXX: could force cpu_single_env to NULL to avoid
3462 potential bugs */
6c2934db 3463 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3464 /* 32 bit write access */
c27004ec 3465 val = ldl_p(buf);
6c2934db 3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3467 l = 4;
6c2934db 3468 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3469 /* 16 bit write access */
c27004ec 3470 val = lduw_p(buf);
6c2934db 3471 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3472 l = 2;
3473 } else {
1c213d19 3474 /* 8 bit write access */
c27004ec 3475 val = ldub_p(buf);
6c2934db 3476 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3477 l = 1;
3478 }
3479 } else {
b448f2f3
FB
3480 unsigned long addr1;
3481 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3482 /* RAM case */
5579c7f3 3483 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3484 memcpy(ptr, buf, l);
3a7d929e
FB
3485 if (!cpu_physical_memory_is_dirty(addr1)) {
3486 /* invalidate code */
3487 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3488 /* set dirty bit */
5fafdf24 3489 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3490 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3491 }
13eb76e0
FB
3492 }
3493 } else {
5fafdf24 3494 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3495 !(pd & IO_MEM_ROMD)) {
c227f099 3496 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3497 /* I/O case */
3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3499 if (p)
6c2934db
AJ
3500 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3501 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3502 /* 32 bit read access */
6c2934db 3503 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3504 stl_p(buf, val);
13eb76e0 3505 l = 4;
6c2934db 3506 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3507 /* 16 bit read access */
6c2934db 3508 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3509 stw_p(buf, val);
13eb76e0
FB
3510 l = 2;
3511 } else {
1c213d19 3512 /* 8 bit read access */
6c2934db 3513 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3514 stb_p(buf, val);
13eb76e0
FB
3515 l = 1;
3516 }
3517 } else {
3518 /* RAM case */
5579c7f3 3519 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3520 (addr & ~TARGET_PAGE_MASK);
3521 memcpy(buf, ptr, l);
3522 }
3523 }
3524 len -= l;
3525 buf += l;
3526 addr += l;
3527 }
3528}
8df1cd07 3529
d0ecd2aa 3530/* used for ROM loading : can write in RAM and ROM */
c227f099 3531void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3532 const uint8_t *buf, int len)
3533{
3534 int l;
3535 uint8_t *ptr;
c227f099 3536 target_phys_addr_t page;
d0ecd2aa
FB
3537 unsigned long pd;
3538 PhysPageDesc *p;
3b46e624 3539
d0ecd2aa
FB
3540 while (len > 0) {
3541 page = addr & TARGET_PAGE_MASK;
3542 l = (page + TARGET_PAGE_SIZE) - addr;
3543 if (l > len)
3544 l = len;
3545 p = phys_page_find(page >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3b46e624 3551
d0ecd2aa 3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3553 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3554 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3555 /* do nothing */
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* ROM/RAM case */
5579c7f3 3560 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3561 memcpy(ptr, buf, l);
3562 }
3563 len -= l;
3564 buf += l;
3565 addr += l;
3566 }
3567}
3568
6d16c2f8
AL
3569typedef struct {
3570 void *buffer;
c227f099
AL
3571 target_phys_addr_t addr;
3572 target_phys_addr_t len;
6d16c2f8
AL
3573} BounceBuffer;
3574
3575static BounceBuffer bounce;
3576
ba223c29
AL
3577typedef struct MapClient {
3578 void *opaque;
3579 void (*callback)(void *opaque);
72cf2d4f 3580 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3581} MapClient;
3582
72cf2d4f
BS
3583static QLIST_HEAD(map_client_list, MapClient) map_client_list
3584 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3585
3586void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3587{
3588 MapClient *client = qemu_malloc(sizeof(*client));
3589
3590 client->opaque = opaque;
3591 client->callback = callback;
72cf2d4f 3592 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3593 return client;
3594}
3595
3596void cpu_unregister_map_client(void *_client)
3597{
3598 MapClient *client = (MapClient *)_client;
3599
72cf2d4f 3600 QLIST_REMOVE(client, link);
34d5e948 3601 qemu_free(client);
ba223c29
AL
3602}
3603
3604static void cpu_notify_map_clients(void)
3605{
3606 MapClient *client;
3607
72cf2d4f
BS
3608 while (!QLIST_EMPTY(&map_client_list)) {
3609 client = QLIST_FIRST(&map_client_list);
ba223c29 3610 client->callback(client->opaque);
34d5e948 3611 cpu_unregister_map_client(client);
ba223c29
AL
3612 }
3613}
3614
6d16c2f8
AL
3615/* Map a physical memory region into a host virtual address.
3616 * May map a subset of the requested range, given by and returned in *plen.
3617 * May return NULL if resources needed to perform the mapping are exhausted.
3618 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3619 * Use cpu_register_map_client() to know when retrying the map operation is
3620 * likely to succeed.
6d16c2f8 3621 */
c227f099
AL
3622void *cpu_physical_memory_map(target_phys_addr_t addr,
3623 target_phys_addr_t *plen,
6d16c2f8
AL
3624 int is_write)
3625{
c227f099
AL
3626 target_phys_addr_t len = *plen;
3627 target_phys_addr_t done = 0;
6d16c2f8
AL
3628 int l;
3629 uint8_t *ret = NULL;
3630 uint8_t *ptr;
c227f099 3631 target_phys_addr_t page;
6d16c2f8
AL
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634 unsigned long addr1;
3635
3636 while (len > 0) {
3637 page = addr & TARGET_PAGE_MASK;
3638 l = (page + TARGET_PAGE_SIZE) - addr;
3639 if (l > len)
3640 l = len;
3641 p = phys_page_find(page >> TARGET_PAGE_BITS);
3642 if (!p) {
3643 pd = IO_MEM_UNASSIGNED;
3644 } else {
3645 pd = p->phys_offset;
3646 }
3647
3648 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3649 if (done || bounce.buffer) {
3650 break;
3651 }
3652 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3653 bounce.addr = addr;
3654 bounce.len = l;
3655 if (!is_write) {
3656 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3657 }
3658 ptr = bounce.buffer;
3659 } else {
3660 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3661 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3662 }
3663 if (!done) {
3664 ret = ptr;
3665 } else if (ret + done != ptr) {
3666 break;
3667 }
3668
3669 len -= l;
3670 addr += l;
3671 done += l;
3672 }
3673 *plen = done;
3674 return ret;
3675}
3676
3677/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3678 * Will also mark the memory as dirty if is_write == 1. access_len gives
3679 * the amount of memory that was actually read or written by the caller.
3680 */
c227f099
AL
3681void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3682 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3683{
3684 if (buffer != bounce.buffer) {
3685 if (is_write) {
c227f099 3686 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3687 while (access_len) {
3688 unsigned l;
3689 l = TARGET_PAGE_SIZE;
3690 if (l > access_len)
3691 l = access_len;
3692 if (!cpu_physical_memory_is_dirty(addr1)) {
3693 /* invalidate code */
3694 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3695 /* set dirty bit */
3696 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3697 (0xff & ~CODE_DIRTY_FLAG);
3698 }
3699 addr1 += l;
3700 access_len -= l;
3701 }
3702 }
3703 return;
3704 }
3705 if (is_write) {
3706 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3707 }
f8a83245 3708 qemu_vfree(bounce.buffer);
6d16c2f8 3709 bounce.buffer = NULL;
ba223c29 3710 cpu_notify_map_clients();
6d16c2f8 3711}
d0ecd2aa 3712
8df1cd07 3713/* warning: addr must be aligned */
c227f099 3714uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3715{
3716 int io_index;
3717 uint8_t *ptr;
3718 uint32_t val;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3b46e624 3728
5fafdf24 3729 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3730 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3731 /* I/O case */
3732 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3733 if (p)
3734 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3735 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3736 } else {
3737 /* RAM case */
5579c7f3 3738 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3739 (addr & ~TARGET_PAGE_MASK);
3740 val = ldl_p(ptr);
3741 }
3742 return val;
3743}
3744
84b7b8e7 3745/* warning: addr must be aligned */
c227f099 3746uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3747{
3748 int io_index;
3749 uint8_t *ptr;
3750 uint64_t val;
3751 unsigned long pd;
3752 PhysPageDesc *p;
3753
3754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3755 if (!p) {
3756 pd = IO_MEM_UNASSIGNED;
3757 } else {
3758 pd = p->phys_offset;
3759 }
3b46e624 3760
2a4188a3
FB
3761 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3762 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3763 /* I/O case */
3764 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3765 if (p)
3766 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3767#ifdef TARGET_WORDS_BIGENDIAN
3768 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3769 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3770#else
3771 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3772 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3773#endif
3774 } else {
3775 /* RAM case */
5579c7f3 3776 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3777 (addr & ~TARGET_PAGE_MASK);
3778 val = ldq_p(ptr);
3779 }
3780 return val;
3781}
3782
aab33094 3783/* XXX: optimize */
c227f099 3784uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3785{
3786 uint8_t val;
3787 cpu_physical_memory_read(addr, &val, 1);
3788 return val;
3789}
3790
3791/* XXX: optimize */
c227f099 3792uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3793{
3794 uint16_t val;
3795 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3796 return tswap16(val);
3797}
3798
8df1cd07
FB
3799/* warning: addr must be aligned. The ram page is not masked as dirty
3800 and the code inside is not invalidated. It is useful if the dirty
3801 bits are used to track modified PTEs */
c227f099 3802void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3803{
3804 int io_index;
3805 uint8_t *ptr;
3806 unsigned long pd;
3807 PhysPageDesc *p;
3808
3809 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3810 if (!p) {
3811 pd = IO_MEM_UNASSIGNED;
3812 } else {
3813 pd = p->phys_offset;
3814 }
3b46e624 3815
3a7d929e 3816 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3817 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3818 if (p)
3819 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3821 } else {
74576198 3822 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3823 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3824 stl_p(ptr, val);
74576198
AL
3825
3826 if (unlikely(in_migration)) {
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3830 /* set dirty bit */
3831 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3832 (0xff & ~CODE_DIRTY_FLAG);
3833 }
3834 }
8df1cd07
FB
3835 }
3836}
3837
c227f099 3838void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3839{
3840 int io_index;
3841 uint8_t *ptr;
3842 unsigned long pd;
3843 PhysPageDesc *p;
3844
3845 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3846 if (!p) {
3847 pd = IO_MEM_UNASSIGNED;
3848 } else {
3849 pd = p->phys_offset;
3850 }
3b46e624 3851
bc98a7ef
JM
3852 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3853 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3854 if (p)
3855 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3856#ifdef TARGET_WORDS_BIGENDIAN
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3859#else
3860 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3861 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3862#endif
3863 } else {
5579c7f3 3864 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3865 (addr & ~TARGET_PAGE_MASK);
3866 stq_p(ptr, val);
3867 }
3868}
3869
8df1cd07 3870/* warning: addr must be aligned */
c227f099 3871void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3872{
3873 int io_index;
3874 uint8_t *ptr;
3875 unsigned long pd;
3876 PhysPageDesc *p;
3877
3878 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3879 if (!p) {
3880 pd = IO_MEM_UNASSIGNED;
3881 } else {
3882 pd = p->phys_offset;
3883 }
3b46e624 3884
3a7d929e 3885 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3886 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3887 if (p)
3888 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3889 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3890 } else {
3891 unsigned long addr1;
3892 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3893 /* RAM case */
5579c7f3 3894 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3895 stl_p(ptr, val);
3a7d929e
FB
3896 if (!cpu_physical_memory_is_dirty(addr1)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3899 /* set dirty bit */
f23db169
FB
3900 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3901 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3902 }
8df1cd07
FB
3903 }
3904}
3905
aab33094 3906/* XXX: optimize */
c227f099 3907void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3908{
3909 uint8_t v = val;
3910 cpu_physical_memory_write(addr, &v, 1);
3911}
3912
3913/* XXX: optimize */
c227f099 3914void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3915{
3916 uint16_t v = tswap16(val);
3917 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3918}
3919
3920/* XXX: optimize */
c227f099 3921void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3922{
3923 val = tswap64(val);
3924 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3925}
3926
5e2972fd 3927/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3928int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3929 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3930{
3931 int l;
c227f099 3932 target_phys_addr_t phys_addr;
9b3c35e0 3933 target_ulong page;
13eb76e0
FB
3934
3935 while (len > 0) {
3936 page = addr & TARGET_PAGE_MASK;
3937 phys_addr = cpu_get_phys_page_debug(env, page);
3938 /* if no physical page mapped, return an error */
3939 if (phys_addr == -1)
3940 return -1;
3941 l = (page + TARGET_PAGE_SIZE) - addr;
3942 if (l > len)
3943 l = len;
5e2972fd 3944 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3945 if (is_write)
3946 cpu_physical_memory_write_rom(phys_addr, buf, l);
3947 else
5e2972fd 3948 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
3953 return 0;
3954}
a68fe89c 3955#endif
13eb76e0 3956
2e70f6ef
PB
3957/* in deterministic execution mode, instructions doing device I/Os
3958 must be at the end of the TB */
3959void cpu_io_recompile(CPUState *env, void *retaddr)
3960{
3961 TranslationBlock *tb;
3962 uint32_t n, cflags;
3963 target_ulong pc, cs_base;
3964 uint64_t flags;
3965
3966 tb = tb_find_pc((unsigned long)retaddr);
3967 if (!tb) {
3968 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3969 retaddr);
3970 }
3971 n = env->icount_decr.u16.low + tb->icount;
3972 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3973 /* Calculate how many instructions had been executed before the fault
bf20dc07 3974 occurred. */
2e70f6ef
PB
3975 n = n - env->icount_decr.u16.low;
3976 /* Generate a new TB ending on the I/O insn. */
3977 n++;
3978 /* On MIPS and SH, delay slot instructions can only be restarted if
3979 they were already the first instruction in the TB. If this is not
bf20dc07 3980 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3981 branch. */
3982#if defined(TARGET_MIPS)
3983 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3984 env->active_tc.PC -= 4;
3985 env->icount_decr.u16.low++;
3986 env->hflags &= ~MIPS_HFLAG_BMASK;
3987 }
3988#elif defined(TARGET_SH4)
3989 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3990 && n > 1) {
3991 env->pc -= 2;
3992 env->icount_decr.u16.low++;
3993 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3994 }
3995#endif
3996 /* This should never happen. */
3997 if (n > CF_COUNT_MASK)
3998 cpu_abort(env, "TB too big during recompile");
3999
4000 cflags = n | CF_LAST_IO;
4001 pc = tb->pc;
4002 cs_base = tb->cs_base;
4003 flags = tb->flags;
4004 tb_phys_invalidate(tb, -1);
4005 /* FIXME: In theory this could raise an exception. In practice
4006 we have already translated the block once so it's probably ok. */
4007 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4008 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4009 the first in the TB) then we end up generating a whole new TB and
4010 repeating the fault, which is horribly inefficient.
4011 Better would be to execute just this insn uncached, or generate a
4012 second new TB. */
4013 cpu_resume_from_signal(env, NULL);
4014}
4015
b3755a91
PB
4016#if !defined(CONFIG_USER_ONLY)
4017
e3db7226
FB
4018void dump_exec_info(FILE *f,
4019 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4020{
4021 int i, target_code_size, max_target_code_size;
4022 int direct_jmp_count, direct_jmp2_count, cross_page;
4023 TranslationBlock *tb;
3b46e624 4024
e3db7226
FB
4025 target_code_size = 0;
4026 max_target_code_size = 0;
4027 cross_page = 0;
4028 direct_jmp_count = 0;
4029 direct_jmp2_count = 0;
4030 for(i = 0; i < nb_tbs; i++) {
4031 tb = &tbs[i];
4032 target_code_size += tb->size;
4033 if (tb->size > max_target_code_size)
4034 max_target_code_size = tb->size;
4035 if (tb->page_addr[1] != -1)
4036 cross_page++;
4037 if (tb->tb_next_offset[0] != 0xffff) {
4038 direct_jmp_count++;
4039 if (tb->tb_next_offset[1] != 0xffff) {
4040 direct_jmp2_count++;
4041 }
4042 }
4043 }
4044 /* XXX: avoid using doubles ? */
57fec1fe 4045 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4046 cpu_fprintf(f, "gen code size %ld/%ld\n",
4047 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4048 cpu_fprintf(f, "TB count %d/%d\n",
4049 nb_tbs, code_gen_max_blocks);
5fafdf24 4050 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4051 nb_tbs ? target_code_size / nb_tbs : 0,
4052 max_target_code_size);
5fafdf24 4053 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4054 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4055 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4056 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4057 cross_page,
e3db7226
FB
4058 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4059 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4060 direct_jmp_count,
e3db7226
FB
4061 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4062 direct_jmp2_count,
4063 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4064 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4065 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4066 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4067 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4068 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4069}
4070
61382a50
FB
4071#define MMUSUFFIX _cmmu
4072#define GETPC() NULL
4073#define env cpu_single_env
b769d8fe 4074#define SOFTMMU_CODE_ACCESS
61382a50
FB
4075
4076#define SHIFT 0
4077#include "softmmu_template.h"
4078
4079#define SHIFT 1
4080#include "softmmu_template.h"
4081
4082#define SHIFT 2
4083#include "softmmu_template.h"
4084
4085#define SHIFT 3
4086#include "softmmu_template.h"
4087
4088#undef env
4089
4090#endif