]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
linux-user: Remove ELFLOAD32.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
290
291#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
fd436907 310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
fd436907 314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
fd436907
AJ
327#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329#else
50a9569b 330 f = fopen("/proc/self/maps", "r");
fd436907 331#endif
50a9569b 332 if (f) {
5cd2c5b6
RH
333 mmap_lock();
334
50a9569b 335 do {
5cd2c5b6
RH
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
350 }
351 } while (!feof(f));
5cd2c5b6 352
50a9569b 353 fclose(f);
5cd2c5b6 354 mmap_unlock();
50a9569b 355 }
f01576f1 356#endif
50a9569b
AZ
357 }
358#endif
54936004
FB
359}
360
41c1b1c9 361static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 362{
41c1b1c9
PB
363 PageDesc *pd;
364 void **lp;
365 int i;
366
5cd2c5b6
RH
367#if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377# define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387#else
388# define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 390#endif
434929bf 391
5cd2c5b6
RH
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
17e2377a 405 }
5cd2c5b6
RH
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
54936004 417 }
5cd2c5b6
RH
418
419#undef ALLOC
420#if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429#endif
430
431 return pd + (index & (L2_SIZE - 1));
54936004
FB
432}
433
41c1b1c9 434static inline PageDesc *page_find(tb_page_addr_t index)
54936004 435{
5cd2c5b6 436 return page_find_alloc(index, 0);
fd6ce8f6
FB
437}
438
6d9a1304 439#if !defined(CONFIG_USER_ONLY)
c227f099 440static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 441{
e3f4e2a4 442 PhysPageDesc *pd;
5cd2c5b6
RH
443 void **lp;
444 int i;
92e873b9 445
5cd2c5b6
RH
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 448
5cd2c5b6
RH
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 459 }
5cd2c5b6 460
e3f4e2a4 461 pd = *lp;
5cd2c5b6 462 if (pd == NULL) {
e3f4e2a4 463 int i;
5cd2c5b6
RH
464
465 if (!alloc) {
108c49b8 466 return NULL;
5cd2c5b6
RH
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
67c4d23c 471 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 474 }
92e873b9 475 }
5cd2c5b6
RH
476
477 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
478}
479
c227f099 480static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 481{
108c49b8 482 return phys_page_find_alloc(index, 0);
92e873b9
FB
483}
484
c227f099
AL
485static void tlb_protect_code(ram_addr_t ram_addr);
486static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 487 target_ulong vaddr);
c8a706fe
PB
488#define mmap_lock() do { } while(0)
489#define mmap_unlock() do { } while(0)
9fa3e853 490#endif
fd6ce8f6 491
4369415f
FB
492#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494#if defined(CONFIG_USER_ONLY)
ccbb4d44 495/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
496 user mode. It will change when a dedicated libc will be used */
497#define USE_STATIC_CODE_GEN_BUFFER
498#endif
499
500#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
501static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
502 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
503#endif
504
8fcd3692 505static void code_gen_alloc(unsigned long tb_size)
26a5f13b 506{
4369415f
FB
507#ifdef USE_STATIC_CODE_GEN_BUFFER
508 code_gen_buffer = static_code_gen_buffer;
509 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
510 map_exec(code_gen_buffer, code_gen_buffer_size);
511#else
26a5f13b
FB
512 code_gen_buffer_size = tb_size;
513 if (code_gen_buffer_size == 0) {
4369415f
FB
514#if defined(CONFIG_USER_ONLY)
515 /* in user mode, phys_ram_size is not meaningful */
516 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
517#else
ccbb4d44 518 /* XXX: needs adjustments */
94a6b54f 519 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 520#endif
26a5f13b
FB
521 }
522 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
523 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
524 /* The code gen buffer location may have constraints depending on
525 the host cpu and OS */
526#if defined(__linux__)
527 {
528 int flags;
141ac468
BS
529 void *start = NULL;
530
26a5f13b
FB
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532#if defined(__x86_64__)
533 flags |= MAP_32BIT;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
537#elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 start = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024))
542 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 543#elif defined(__arm__)
63d41246 544 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
545 flags |= MAP_FIXED;
546 start = (void *) 0x01000000UL;
547 if (code_gen_buffer_size > 16 * 1024 * 1024)
548 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 549#endif
141ac468
BS
550 code_gen_buffer = mmap(start, code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
552 flags, -1, 0);
553 if (code_gen_buffer == MAP_FAILED) {
554 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
555 exit(1);
556 }
557 }
a167ba50 558#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
559 {
560 int flags;
561 void *addr = NULL;
562 flags = MAP_PRIVATE | MAP_ANONYMOUS;
563#if defined(__x86_64__)
564 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
565 * 0x40000000 is free */
566 flags |= MAP_FIXED;
567 addr = (void *)0x40000000;
568 /* Cannot map more than that */
569 if (code_gen_buffer_size > (800 * 1024 * 1024))
570 code_gen_buffer_size = (800 * 1024 * 1024);
571#endif
572 code_gen_buffer = mmap(addr, code_gen_buffer_size,
573 PROT_WRITE | PROT_READ | PROT_EXEC,
574 flags, -1, 0);
575 if (code_gen_buffer == MAP_FAILED) {
576 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
577 exit(1);
578 }
579 }
26a5f13b
FB
580#else
581 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
582 map_exec(code_gen_buffer, code_gen_buffer_size);
583#endif
4369415f 584#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
585 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
586 code_gen_buffer_max_size = code_gen_buffer_size -
587 code_gen_max_block_size();
588 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
589 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
590}
591
592/* Must be called before using the QEMU cpus. 'tb_size' is the size
593 (in bytes) allocated to the translation buffer. Zero means default
594 size. */
595void cpu_exec_init_all(unsigned long tb_size)
596{
26a5f13b
FB
597 cpu_gen_init();
598 code_gen_alloc(tb_size);
599 code_gen_ptr = code_gen_buffer;
4369415f 600 page_init();
e2eef170 601#if !defined(CONFIG_USER_ONLY)
26a5f13b 602 io_mem_init();
e2eef170 603#endif
26a5f13b
FB
604}
605
9656f324
PB
606#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607
e59fb374 608static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
609{
610 CPUState *env = opaque;
9656f324 611
3098dba0
AJ
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env->interrupt_request &= ~0x01;
9656f324
PB
615 tlb_flush(env, 1);
616
617 return 0;
618}
e7f4eff7
JQ
619
620static const VMStateDescription vmstate_cpu_common = {
621 .name = "cpu_common",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
e7f4eff7
JQ
625 .post_load = cpu_common_post_load,
626 .fields = (VMStateField []) {
627 VMSTATE_UINT32(halted, CPUState),
628 VMSTATE_UINT32(interrupt_request, CPUState),
629 VMSTATE_END_OF_LIST()
630 }
631};
9656f324
PB
632#endif
633
950f1472
GC
634CPUState *qemu_get_cpu(int cpu)
635{
636 CPUState *env = first_cpu;
637
638 while (env) {
639 if (env->cpu_index == cpu)
640 break;
641 env = env->next_cpu;
642 }
643
644 return env;
645}
646
6a00d601 647void cpu_exec_init(CPUState *env)
fd6ce8f6 648{
6a00d601
FB
649 CPUState **penv;
650 int cpu_index;
651
c2764719
PB
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_lock();
654#endif
6a00d601
FB
655 env->next_cpu = NULL;
656 penv = &first_cpu;
657 cpu_index = 0;
658 while (*penv != NULL) {
1e9fa730 659 penv = &(*penv)->next_cpu;
6a00d601
FB
660 cpu_index++;
661 }
662 env->cpu_index = cpu_index;
268a362c 663 env->numa_node = 0;
72cf2d4f
BS
664 QTAILQ_INIT(&env->breakpoints);
665 QTAILQ_INIT(&env->watchpoints);
6a00d601 666 *penv = env;
c2764719
PB
667#if defined(CONFIG_USER_ONLY)
668 cpu_list_unlock();
669#endif
b3c7724c 670#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 671 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
672 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
673 cpu_save, cpu_load, env);
674#endif
fd6ce8f6
FB
675}
676
9fa3e853
FB
677static inline void invalidate_page_bitmap(PageDesc *p)
678{
679 if (p->code_bitmap) {
59817ccb 680 qemu_free(p->code_bitmap);
9fa3e853
FB
681 p->code_bitmap = NULL;
682 }
683 p->code_write_count = 0;
684}
685
5cd2c5b6
RH
686/* Set to NULL all the 'first_tb' fields in all PageDescs. */
687
688static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 689{
5cd2c5b6 690 int i;
fd6ce8f6 691
5cd2c5b6
RH
692 if (*lp == NULL) {
693 return;
694 }
695 if (level == 0) {
696 PageDesc *pd = *lp;
7296abac 697 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
698 pd[i].first_tb = NULL;
699 invalidate_page_bitmap(pd + i);
fd6ce8f6 700 }
5cd2c5b6
RH
701 } else {
702 void **pp = *lp;
7296abac 703 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
704 page_flush_tb_1 (level - 1, pp + i);
705 }
706 }
707}
708
709static void page_flush_tb(void)
710{
711 int i;
712 for (i = 0; i < V_L1_SIZE; i++) {
713 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
714 }
715}
716
717/* flush all the translation blocks */
d4e8164f 718/* XXX: tb_flush is currently not thread safe */
6a00d601 719void tb_flush(CPUState *env1)
fd6ce8f6 720{
6a00d601 721 CPUState *env;
0124311e 722#if defined(DEBUG_FLUSH)
ab3d1727
BS
723 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
724 (unsigned long)(code_gen_ptr - code_gen_buffer),
725 nb_tbs, nb_tbs > 0 ?
726 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 727#endif
26a5f13b 728 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
729 cpu_abort(env1, "Internal error: code buffer overflow\n");
730
fd6ce8f6 731 nb_tbs = 0;
3b46e624 732
6a00d601
FB
733 for(env = first_cpu; env != NULL; env = env->next_cpu) {
734 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
735 }
9fa3e853 736
8a8a608f 737 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 738 page_flush_tb();
9fa3e853 739
fd6ce8f6 740 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
741 /* XXX: flush processor icache at this point if cache flush is
742 expensive */
e3db7226 743 tb_flush_count++;
fd6ce8f6
FB
744}
745
746#ifdef DEBUG_TB_CHECK
747
bc98a7ef 748static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
749{
750 TranslationBlock *tb;
751 int i;
752 address &= TARGET_PAGE_MASK;
99773bd4
PB
753 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
754 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
755 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
756 address >= tb->pc + tb->size)) {
0bf9e31a
BS
757 printf("ERROR invalidate: address=" TARGET_FMT_lx
758 " PC=%08lx size=%04x\n",
99773bd4 759 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
760 }
761 }
762 }
763}
764
765/* verify that all the pages have correct rights for code */
766static void tb_page_check(void)
767{
768 TranslationBlock *tb;
769 int i, flags1, flags2;
3b46e624 770
99773bd4
PB
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
773 flags1 = page_get_flags(tb->pc);
774 flags2 = page_get_flags(tb->pc + tb->size - 1);
775 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
776 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 777 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
778 }
779 }
780 }
781}
782
783#endif
784
785/* invalidate one TB */
786static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
787 int next_offset)
788{
789 TranslationBlock *tb1;
790 for(;;) {
791 tb1 = *ptb;
792 if (tb1 == tb) {
793 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
794 break;
795 }
796 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
797 }
798}
799
9fa3e853
FB
800static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
801{
802 TranslationBlock *tb1;
803 unsigned int n1;
804
805 for(;;) {
806 tb1 = *ptb;
807 n1 = (long)tb1 & 3;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 if (tb1 == tb) {
810 *ptb = tb1->page_next[n1];
811 break;
812 }
813 ptb = &tb1->page_next[n1];
814 }
815}
816
d4e8164f
FB
817static inline void tb_jmp_remove(TranslationBlock *tb, int n)
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847static inline void tb_reset_jump(TranslationBlock *tb, int n)
848{
849 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
850}
851
41c1b1c9 852void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 853{
6a00d601 854 CPUState *env;
8a40a180 855 PageDesc *p;
d4e8164f 856 unsigned int h, n1;
41c1b1c9 857 tb_page_addr_t phys_pc;
8a40a180 858 TranslationBlock *tb1, *tb2;
3b46e624 859
8a40a180
FB
860 /* remove the TB from the hash list */
861 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
862 h = tb_phys_hash_func(phys_pc);
5fafdf24 863 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
864 offsetof(TranslationBlock, phys_hash_next));
865
866 /* remove the TB from the page list */
867 if (tb->page_addr[0] != page_addr) {
868 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
869 tb_page_remove(&p->first_tb, tb);
870 invalidate_page_bitmap(p);
871 }
872 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
873 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
874 tb_page_remove(&p->first_tb, tb);
875 invalidate_page_bitmap(p);
876 }
877
36bdbe54 878 tb_invalidated_flag = 1;
59817ccb 879
fd6ce8f6 880 /* remove the TB from the hash list */
8a40a180 881 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
883 if (env->tb_jmp_cache[h] == tb)
884 env->tb_jmp_cache[h] = NULL;
885 }
d4e8164f
FB
886
887 /* suppress this TB from the two jump lists */
888 tb_jmp_remove(tb, 0);
889 tb_jmp_remove(tb, 1);
890
891 /* suppress any remaining jumps to this TB */
892 tb1 = tb->jmp_first;
893 for(;;) {
894 n1 = (long)tb1 & 3;
895 if (n1 == 2)
896 break;
897 tb1 = (TranslationBlock *)((long)tb1 & ~3);
898 tb2 = tb1->jmp_next[n1];
899 tb_reset_jump(tb1, n1);
900 tb1->jmp_next[n1] = NULL;
901 tb1 = tb2;
902 }
903 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 904
e3db7226 905 tb_phys_invalidate_count++;
9fa3e853
FB
906}
907
908static inline void set_bits(uint8_t *tab, int start, int len)
909{
910 int end, mask, end1;
911
912 end = start + len;
913 tab += start >> 3;
914 mask = 0xff << (start & 7);
915 if ((start & ~7) == (end & ~7)) {
916 if (start < end) {
917 mask &= ~(0xff << (end & 7));
918 *tab |= mask;
919 }
920 } else {
921 *tab++ |= mask;
922 start = (start + 8) & ~7;
923 end1 = end & ~7;
924 while (start < end1) {
925 *tab++ = 0xff;
926 start += 8;
927 }
928 if (start < end) {
929 mask = ~(0xff << (end & 7));
930 *tab |= mask;
931 }
932 }
933}
934
935static void build_page_bitmap(PageDesc *p)
936{
937 int n, tb_start, tb_end;
938 TranslationBlock *tb;
3b46e624 939
b2a7081a 940 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
941
942 tb = p->first_tb;
943 while (tb != NULL) {
944 n = (long)tb & 3;
945 tb = (TranslationBlock *)((long)tb & ~3);
946 /* NOTE: this is subtle as a TB may span two physical pages */
947 if (n == 0) {
948 /* NOTE: tb_end may be after the end of the page, but
949 it is not a problem */
950 tb_start = tb->pc & ~TARGET_PAGE_MASK;
951 tb_end = tb_start + tb->size;
952 if (tb_end > TARGET_PAGE_SIZE)
953 tb_end = TARGET_PAGE_SIZE;
954 } else {
955 tb_start = 0;
956 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
957 }
958 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
959 tb = tb->page_next[n];
960 }
961}
962
2e70f6ef
PB
963TranslationBlock *tb_gen_code(CPUState *env,
964 target_ulong pc, target_ulong cs_base,
965 int flags, int cflags)
d720b93d
FB
966{
967 TranslationBlock *tb;
968 uint8_t *tc_ptr;
41c1b1c9
PB
969 tb_page_addr_t phys_pc, phys_page2;
970 target_ulong virt_page2;
d720b93d
FB
971 int code_gen_size;
972
41c1b1c9 973 phys_pc = get_page_addr_code(env, pc);
c27004ec 974 tb = tb_alloc(pc);
d720b93d
FB
975 if (!tb) {
976 /* flush must be done */
977 tb_flush(env);
978 /* cannot fail at this point */
c27004ec 979 tb = tb_alloc(pc);
2e70f6ef
PB
980 /* Don't forget to invalidate previous TB info. */
981 tb_invalidated_flag = 1;
d720b93d
FB
982 }
983 tc_ptr = code_gen_ptr;
984 tb->tc_ptr = tc_ptr;
985 tb->cs_base = cs_base;
986 tb->flags = flags;
987 tb->cflags = cflags;
d07bde88 988 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 989 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 990
d720b93d 991 /* check next page if needed */
c27004ec 992 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 993 phys_page2 = -1;
c27004ec 994 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 995 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 996 }
41c1b1c9 997 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 998 return tb;
d720b93d 999}
3b46e624 1000
9fa3e853
FB
1001/* invalidate all TBs which intersect with the target physical page
1002 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1003 the same physical page. 'is_cpu_write_access' should be true if called
1004 from a real cpu write access: the virtual CPU will exit the current
1005 TB if code is modified inside this TB. */
41c1b1c9 1006void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1007 int is_cpu_write_access)
1008{
6b917547 1009 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1010 CPUState *env = cpu_single_env;
41c1b1c9 1011 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1012 PageDesc *p;
1013 int n;
1014#ifdef TARGET_HAS_PRECISE_SMC
1015 int current_tb_not_found = is_cpu_write_access;
1016 TranslationBlock *current_tb = NULL;
1017 int current_tb_modified = 0;
1018 target_ulong current_pc = 0;
1019 target_ulong current_cs_base = 0;
1020 int current_flags = 0;
1021#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1022
1023 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1024 if (!p)
9fa3e853 1025 return;
5fafdf24 1026 if (!p->code_bitmap &&
d720b93d
FB
1027 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1028 is_cpu_write_access) {
9fa3e853
FB
1029 /* build code bitmap */
1030 build_page_bitmap(p);
1031 }
1032
1033 /* we remove all the TBs in the range [start, end[ */
1034 /* XXX: see if in some cases it could be faster to invalidate all the code */
1035 tb = p->first_tb;
1036 while (tb != NULL) {
1037 n = (long)tb & 3;
1038 tb = (TranslationBlock *)((long)tb & ~3);
1039 tb_next = tb->page_next[n];
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1041 if (n == 0) {
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1045 tb_end = tb_start + tb->size;
1046 } else {
1047 tb_start = tb->page_addr[1];
1048 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
1050 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1051#ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb_not_found) {
1053 current_tb_not_found = 0;
1054 current_tb = NULL;
2e70f6ef 1055 if (env->mem_io_pc) {
d720b93d 1056 /* now we have a real cpu fault */
2e70f6ef 1057 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1058 }
1059 }
1060 if (current_tb == tb &&
2e70f6ef 1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
3b46e624 1067
d720b93d 1068 current_tb_modified = 1;
5fafdf24 1069 cpu_restore_state(current_tb, env,
2e70f6ef 1070 env->mem_io_pc, NULL);
6b917547
AL
1071 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1072 &current_flags);
d720b93d
FB
1073 }
1074#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1075 /* we need to do that to handle the case where a signal
1076 occurs while doing tb_phys_invalidate() */
1077 saved_tb = NULL;
1078 if (env) {
1079 saved_tb = env->current_tb;
1080 env->current_tb = NULL;
1081 }
9fa3e853 1082 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1083 if (env) {
1084 env->current_tb = saved_tb;
1085 if (env->interrupt_request && env->current_tb)
1086 cpu_interrupt(env, env->interrupt_request);
1087 }
9fa3e853
FB
1088 }
1089 tb = tb_next;
1090 }
1091#if !defined(CONFIG_USER_ONLY)
1092 /* if no code remaining, no need to continue to use slow writes */
1093 if (!p->first_tb) {
1094 invalidate_page_bitmap(p);
d720b93d 1095 if (is_cpu_write_access) {
2e70f6ef 1096 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1097 }
1098 }
1099#endif
1100#ifdef TARGET_HAS_PRECISE_SMC
1101 if (current_tb_modified) {
1102 /* we generate a block containing just the instruction
1103 modifying the memory. It will ensure that it cannot modify
1104 itself */
ea1c1802 1105 env->current_tb = NULL;
2e70f6ef 1106 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1107 cpu_resume_from_signal(env, NULL);
9fa3e853 1108 }
fd6ce8f6 1109#endif
9fa3e853 1110}
fd6ce8f6 1111
9fa3e853 1112/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1113static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1114{
1115 PageDesc *p;
1116 int offset, b;
59817ccb 1117#if 0
a4193c8a 1118 if (1) {
93fcfe39
AL
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env->mem_io_vaddr, len,
1121 cpu_single_env->eip,
1122 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1123 }
1124#endif
9fa3e853 1125 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1126 if (!p)
9fa3e853
FB
1127 return;
1128 if (p->code_bitmap) {
1129 offset = start & ~TARGET_PAGE_MASK;
1130 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1131 if (b & ((1 << len) - 1))
1132 goto do_invalidate;
1133 } else {
1134 do_invalidate:
d720b93d 1135 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1136 }
1137}
1138
9fa3e853 1139#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1140static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1141 unsigned long pc, void *puc)
9fa3e853 1142{
6b917547 1143 TranslationBlock *tb;
9fa3e853 1144 PageDesc *p;
6b917547 1145 int n;
d720b93d 1146#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1147 TranslationBlock *current_tb = NULL;
d720b93d 1148 CPUState *env = cpu_single_env;
6b917547
AL
1149 int current_tb_modified = 0;
1150 target_ulong current_pc = 0;
1151 target_ulong current_cs_base = 0;
1152 int current_flags = 0;
d720b93d 1153#endif
9fa3e853
FB
1154
1155 addr &= TARGET_PAGE_MASK;
1156 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1157 if (!p)
9fa3e853
FB
1158 return;
1159 tb = p->first_tb;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (tb && pc != 0) {
1162 current_tb = tb_find_pc(pc);
1163 }
1164#endif
9fa3e853
FB
1165 while (tb != NULL) {
1166 n = (long)tb & 3;
1167 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1168#ifdef TARGET_HAS_PRECISE_SMC
1169 if (current_tb == tb &&
2e70f6ef 1170 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1171 /* If we are modifying the current TB, we must stop
1172 its execution. We could be more precise by checking
1173 that the modification is after the current PC, but it
1174 would require a specialized function to partially
1175 restore the CPU state */
3b46e624 1176
d720b93d
FB
1177 current_tb_modified = 1;
1178 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1179 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1180 &current_flags);
d720b93d
FB
1181 }
1182#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1183 tb_phys_invalidate(tb, addr);
1184 tb = tb->page_next[n];
1185 }
fd6ce8f6 1186 p->first_tb = NULL;
d720b93d
FB
1187#ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb_modified) {
1189 /* we generate a block containing just the instruction
1190 modifying the memory. It will ensure that it cannot modify
1191 itself */
ea1c1802 1192 env->current_tb = NULL;
2e70f6ef 1193 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1194 cpu_resume_from_signal(env, puc);
1195 }
1196#endif
fd6ce8f6 1197}
9fa3e853 1198#endif
fd6ce8f6
FB
1199
1200/* add the tb in the target page and protect it if necessary */
5fafdf24 1201static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1202 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1203{
1204 PageDesc *p;
9fa3e853
FB
1205 TranslationBlock *last_first_tb;
1206
1207 tb->page_addr[n] = page_addr;
5cd2c5b6 1208 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1209 tb->page_next[n] = p->first_tb;
1210 last_first_tb = p->first_tb;
1211 p->first_tb = (TranslationBlock *)((long)tb | n);
1212 invalidate_page_bitmap(p);
fd6ce8f6 1213
107db443 1214#if defined(TARGET_HAS_SMC) || 1
d720b93d 1215
9fa3e853 1216#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1217 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1218 target_ulong addr;
1219 PageDesc *p2;
9fa3e853
FB
1220 int prot;
1221
fd6ce8f6
FB
1222 /* force the host page as non writable (writes will have a
1223 page fault + mprotect overhead) */
53a5960a 1224 page_addr &= qemu_host_page_mask;
fd6ce8f6 1225 prot = 0;
53a5960a
PB
1226 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1227 addr += TARGET_PAGE_SIZE) {
1228
1229 p2 = page_find (addr >> TARGET_PAGE_BITS);
1230 if (!p2)
1231 continue;
1232 prot |= p2->flags;
1233 p2->flags &= ~PAGE_WRITE;
53a5960a 1234 }
5fafdf24 1235 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1236 (prot & PAGE_BITS) & ~PAGE_WRITE);
1237#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1238 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1239 page_addr);
fd6ce8f6 1240#endif
fd6ce8f6 1241 }
9fa3e853
FB
1242#else
1243 /* if some code is already present, then the pages are already
1244 protected. So we handle the case where only the first TB is
1245 allocated in a physical page */
1246 if (!last_first_tb) {
6a00d601 1247 tlb_protect_code(page_addr);
9fa3e853
FB
1248 }
1249#endif
d720b93d
FB
1250
1251#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1252}
1253
1254/* Allocate a new translation block. Flush the translation buffer if
1255 too many translation blocks or too much generated code. */
c27004ec 1256TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1257{
1258 TranslationBlock *tb;
fd6ce8f6 1259
26a5f13b
FB
1260 if (nb_tbs >= code_gen_max_blocks ||
1261 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1262 return NULL;
fd6ce8f6
FB
1263 tb = &tbs[nb_tbs++];
1264 tb->pc = pc;
b448f2f3 1265 tb->cflags = 0;
d4e8164f
FB
1266 return tb;
1267}
1268
2e70f6ef
PB
1269void tb_free(TranslationBlock *tb)
1270{
bf20dc07 1271 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1272 Ignore the hard cases and just back up if this TB happens to
1273 be the last one generated. */
1274 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1275 code_gen_ptr = tb->tc_ptr;
1276 nb_tbs--;
1277 }
1278}
1279
9fa3e853
FB
1280/* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1282void tb_link_page(TranslationBlock *tb,
1283 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1284{
9fa3e853
FB
1285 unsigned int h;
1286 TranslationBlock **ptb;
1287
c8a706fe
PB
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1290 mmap_lock();
9fa3e853
FB
1291 /* add in the physical hash table */
1292 h = tb_phys_hash_func(phys_pc);
1293 ptb = &tb_phys_hash[h];
1294 tb->phys_hash_next = *ptb;
1295 *ptb = tb;
fd6ce8f6
FB
1296
1297 /* add in the page list */
9fa3e853
FB
1298 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1299 if (phys_page2 != -1)
1300 tb_alloc_page(tb, 1, phys_page2);
1301 else
1302 tb->page_addr[1] = -1;
9fa3e853 1303
d4e8164f
FB
1304 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1305 tb->jmp_next[0] = NULL;
1306 tb->jmp_next[1] = NULL;
1307
1308 /* init original jump addresses */
1309 if (tb->tb_next_offset[0] != 0xffff)
1310 tb_reset_jump(tb, 0);
1311 if (tb->tb_next_offset[1] != 0xffff)
1312 tb_reset_jump(tb, 1);
8a40a180
FB
1313
1314#ifdef DEBUG_TB_CHECK
1315 tb_page_check();
1316#endif
c8a706fe 1317 mmap_unlock();
fd6ce8f6
FB
1318}
1319
9fa3e853
FB
1320/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1321 tb[1].tc_ptr. Return NULL if not found */
1322TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1323{
9fa3e853
FB
1324 int m_min, m_max, m;
1325 unsigned long v;
1326 TranslationBlock *tb;
a513fe19
FB
1327
1328 if (nb_tbs <= 0)
1329 return NULL;
1330 if (tc_ptr < (unsigned long)code_gen_buffer ||
1331 tc_ptr >= (unsigned long)code_gen_ptr)
1332 return NULL;
1333 /* binary search (cf Knuth) */
1334 m_min = 0;
1335 m_max = nb_tbs - 1;
1336 while (m_min <= m_max) {
1337 m = (m_min + m_max) >> 1;
1338 tb = &tbs[m];
1339 v = (unsigned long)tb->tc_ptr;
1340 if (v == tc_ptr)
1341 return tb;
1342 else if (tc_ptr < v) {
1343 m_max = m - 1;
1344 } else {
1345 m_min = m + 1;
1346 }
5fafdf24 1347 }
a513fe19
FB
1348 return &tbs[m_max];
1349}
7501267e 1350
ea041c0e
FB
1351static void tb_reset_jump_recursive(TranslationBlock *tb);
1352
1353static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354{
1355 TranslationBlock *tb1, *tb_next, **ptb;
1356 unsigned int n1;
1357
1358 tb1 = tb->jmp_next[n];
1359 if (tb1 != NULL) {
1360 /* find head of list */
1361 for(;;) {
1362 n1 = (long)tb1 & 3;
1363 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1364 if (n1 == 2)
1365 break;
1366 tb1 = tb1->jmp_next[n1];
1367 }
1368 /* we are now sure now that tb jumps to tb1 */
1369 tb_next = tb1;
1370
1371 /* remove tb from the jmp_first list */
1372 ptb = &tb_next->jmp_first;
1373 for(;;) {
1374 tb1 = *ptb;
1375 n1 = (long)tb1 & 3;
1376 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1377 if (n1 == n && tb1 == tb)
1378 break;
1379 ptb = &tb1->jmp_next[n1];
1380 }
1381 *ptb = tb->jmp_next[n];
1382 tb->jmp_next[n] = NULL;
3b46e624 1383
ea041c0e
FB
1384 /* suppress the jump to next tb in generated code */
1385 tb_reset_jump(tb, n);
1386
0124311e 1387 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1388 tb_reset_jump_recursive(tb_next);
1389 }
1390}
1391
1392static void tb_reset_jump_recursive(TranslationBlock *tb)
1393{
1394 tb_reset_jump_recursive2(tb, 0);
1395 tb_reset_jump_recursive2(tb, 1);
1396}
1397
1fddef4b 1398#if defined(TARGET_HAS_ICE)
94df27fd
PB
1399#if defined(CONFIG_USER_ONLY)
1400static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401{
1402 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1403}
1404#else
d720b93d
FB
1405static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1406{
c227f099 1407 target_phys_addr_t addr;
9b3c35e0 1408 target_ulong pd;
c227f099 1409 ram_addr_t ram_addr;
c2f07f81 1410 PhysPageDesc *p;
d720b93d 1411
c2f07f81
PB
1412 addr = cpu_get_phys_page_debug(env, pc);
1413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1414 if (!p) {
1415 pd = IO_MEM_UNASSIGNED;
1416 } else {
1417 pd = p->phys_offset;
1418 }
1419 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1420 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1421}
c27004ec 1422#endif
94df27fd 1423#endif /* TARGET_HAS_ICE */
d720b93d 1424
c527ee8f
PB
1425#if defined(CONFIG_USER_ONLY)
1426void cpu_watchpoint_remove_all(CPUState *env, int mask)
1427
1428{
1429}
1430
1431int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1433{
1434 return -ENOSYS;
1435}
1436#else
6658ffb8 1437/* Add a watchpoint. */
a1d1bb31
AL
1438int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1439 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1440{
b4051334 1441 target_ulong len_mask = ~(len - 1);
c0ce998e 1442 CPUWatchpoint *wp;
6658ffb8 1443
b4051334
AL
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1446 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1448 return -EINVAL;
1449 }
a1d1bb31 1450 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1451
1452 wp->vaddr = addr;
b4051334 1453 wp->len_mask = len_mask;
a1d1bb31
AL
1454 wp->flags = flags;
1455
2dc9f411 1456 /* keep all GDB-injected watchpoints in front */
c0ce998e 1457 if (flags & BP_GDB)
72cf2d4f 1458 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1459 else
72cf2d4f 1460 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1461
6658ffb8 1462 tlb_flush_page(env, addr);
a1d1bb31
AL
1463
1464 if (watchpoint)
1465 *watchpoint = wp;
1466 return 0;
6658ffb8
PB
1467}
1468
a1d1bb31
AL
1469/* Remove a specific watchpoint. */
1470int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags)
6658ffb8 1472{
b4051334 1473 target_ulong len_mask = ~(len - 1);
a1d1bb31 1474 CPUWatchpoint *wp;
6658ffb8 1475
72cf2d4f 1476 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1477 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1478 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1479 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1480 return 0;
1481 }
1482 }
a1d1bb31 1483 return -ENOENT;
6658ffb8
PB
1484}
1485
a1d1bb31
AL
1486/* Remove a specific watchpoint by reference. */
1487void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488{
72cf2d4f 1489 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1490
a1d1bb31
AL
1491 tlb_flush_page(env, watchpoint->vaddr);
1492
1493 qemu_free(watchpoint);
1494}
1495
1496/* Remove all matching watchpoints. */
1497void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498{
c0ce998e 1499 CPUWatchpoint *wp, *next;
a1d1bb31 1500
72cf2d4f 1501 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1502 if (wp->flags & mask)
1503 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1504 }
7d03f82f 1505}
c527ee8f 1506#endif
7d03f82f 1507
a1d1bb31
AL
1508/* Add a breakpoint. */
1509int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1510 CPUBreakpoint **breakpoint)
4c3a88a2 1511{
1fddef4b 1512#if defined(TARGET_HAS_ICE)
c0ce998e 1513 CPUBreakpoint *bp;
3b46e624 1514
a1d1bb31 1515 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1516
a1d1bb31
AL
1517 bp->pc = pc;
1518 bp->flags = flags;
1519
2dc9f411 1520 /* keep all GDB-injected breakpoints in front */
c0ce998e 1521 if (flags & BP_GDB)
72cf2d4f 1522 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1523 else
72cf2d4f 1524 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1525
d720b93d 1526 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1527
1528 if (breakpoint)
1529 *breakpoint = bp;
4c3a88a2
FB
1530 return 0;
1531#else
a1d1bb31 1532 return -ENOSYS;
4c3a88a2
FB
1533#endif
1534}
1535
a1d1bb31
AL
1536/* Remove a specific breakpoint. */
1537int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538{
7d03f82f 1539#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1540 CPUBreakpoint *bp;
1541
72cf2d4f 1542 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1543 if (bp->pc == pc && bp->flags == flags) {
1544 cpu_breakpoint_remove_by_ref(env, bp);
1545 return 0;
1546 }
7d03f82f 1547 }
a1d1bb31
AL
1548 return -ENOENT;
1549#else
1550 return -ENOSYS;
7d03f82f
EI
1551#endif
1552}
1553
a1d1bb31
AL
1554/* Remove a specific breakpoint by reference. */
1555void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1556{
1fddef4b 1557#if defined(TARGET_HAS_ICE)
72cf2d4f 1558 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1559
a1d1bb31
AL
1560 breakpoint_invalidate(env, breakpoint->pc);
1561
1562 qemu_free(breakpoint);
1563#endif
1564}
1565
1566/* Remove all matching breakpoints. */
1567void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568{
1569#if defined(TARGET_HAS_ICE)
c0ce998e 1570 CPUBreakpoint *bp, *next;
a1d1bb31 1571
72cf2d4f 1572 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1573 if (bp->flags & mask)
1574 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1575 }
4c3a88a2
FB
1576#endif
1577}
1578
c33a346e
FB
1579/* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581void cpu_single_step(CPUState *env, int enabled)
1582{
1fddef4b 1583#if defined(TARGET_HAS_ICE)
c33a346e
FB
1584 if (env->singlestep_enabled != enabled) {
1585 env->singlestep_enabled = enabled;
e22a25c9
AL
1586 if (kvm_enabled())
1587 kvm_update_guest_debug(env, 0);
1588 else {
ccbb4d44 1589 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1590 /* XXX: only flush what is necessary */
1591 tb_flush(env);
1592 }
c33a346e
FB
1593 }
1594#endif
1595}
1596
34865134
FB
1597/* enable or disable low levels log */
1598void cpu_set_log(int log_flags)
1599{
1600 loglevel = log_flags;
1601 if (loglevel && !logfile) {
11fcfab4 1602 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1603 if (!logfile) {
1604 perror(logfilename);
1605 _exit(1);
1606 }
9fa3e853
FB
1607#if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 {
b55266b5 1610 static char logfile_buf[4096];
9fa3e853
FB
1611 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 }
bf65f53f
FN
1613#elif !defined(_WIN32)
1614 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1615 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1616#endif
e735b91c
PB
1617 log_append = 1;
1618 }
1619 if (!loglevel && logfile) {
1620 fclose(logfile);
1621 logfile = NULL;
34865134
FB
1622 }
1623}
1624
1625void cpu_set_log_filename(const char *filename)
1626{
1627 logfilename = strdup(filename);
e735b91c
PB
1628 if (logfile) {
1629 fclose(logfile);
1630 logfile = NULL;
1631 }
1632 cpu_set_log(loglevel);
34865134 1633}
c33a346e 1634
3098dba0 1635static void cpu_unlink_tb(CPUState *env)
ea041c0e 1636{
3098dba0
AJ
1637 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1638 problem and hope the cpu will stop of its own accord. For userspace
1639 emulation this often isn't actually as bad as it sounds. Often
1640 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1641 TranslationBlock *tb;
c227f099 1642 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1643
cab1b4bd 1644 spin_lock(&interrupt_lock);
3098dba0
AJ
1645 tb = env->current_tb;
1646 /* if the cpu is currently executing code, we must unlink it and
1647 all the potentially executing TB */
f76cfe56 1648 if (tb) {
3098dba0
AJ
1649 env->current_tb = NULL;
1650 tb_reset_jump_recursive(tb);
be214e6c 1651 }
cab1b4bd 1652 spin_unlock(&interrupt_lock);
3098dba0
AJ
1653}
1654
1655/* mask must never be zero, except for A20 change call */
1656void cpu_interrupt(CPUState *env, int mask)
1657{
1658 int old_mask;
be214e6c 1659
2e70f6ef 1660 old_mask = env->interrupt_request;
68a79315 1661 env->interrupt_request |= mask;
3098dba0 1662
8edac960
AL
1663#ifndef CONFIG_USER_ONLY
1664 /*
1665 * If called from iothread context, wake the target cpu in
1666 * case its halted.
1667 */
1668 if (!qemu_cpu_self(env)) {
1669 qemu_cpu_kick(env);
1670 return;
1671 }
1672#endif
1673
2e70f6ef 1674 if (use_icount) {
266910c4 1675 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1676#ifndef CONFIG_USER_ONLY
2e70f6ef 1677 if (!can_do_io(env)
be214e6c 1678 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1679 cpu_abort(env, "Raised interrupt while not in I/O function");
1680 }
1681#endif
1682 } else {
3098dba0 1683 cpu_unlink_tb(env);
ea041c0e
FB
1684 }
1685}
1686
b54ad049
FB
1687void cpu_reset_interrupt(CPUState *env, int mask)
1688{
1689 env->interrupt_request &= ~mask;
1690}
1691
3098dba0
AJ
1692void cpu_exit(CPUState *env)
1693{
1694 env->exit_request = 1;
1695 cpu_unlink_tb(env);
1696}
1697
c7cd6a37 1698const CPULogItem cpu_log_items[] = {
5fafdf24 1699 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1700 "show generated host assembly code for each compiled TB" },
1701 { CPU_LOG_TB_IN_ASM, "in_asm",
1702 "show target assembly code for each compiled TB" },
5fafdf24 1703 { CPU_LOG_TB_OP, "op",
57fec1fe 1704 "show micro ops for each compiled TB" },
f193c797 1705 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1706 "show micro ops "
1707#ifdef TARGET_I386
1708 "before eflags optimization and "
f193c797 1709#endif
e01a1157 1710 "after liveness analysis" },
f193c797
FB
1711 { CPU_LOG_INT, "int",
1712 "show interrupts/exceptions in short format" },
1713 { CPU_LOG_EXEC, "exec",
1714 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1715 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1716 "show CPU state before block translation" },
f193c797
FB
1717#ifdef TARGET_I386
1718 { CPU_LOG_PCALL, "pcall",
1719 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1720 { CPU_LOG_RESET, "cpu_reset",
1721 "show CPU state before CPU resets" },
f193c797 1722#endif
8e3a9fd2 1723#ifdef DEBUG_IOPORT
fd872598
FB
1724 { CPU_LOG_IOPORT, "ioport",
1725 "show all i/o ports accesses" },
8e3a9fd2 1726#endif
f193c797
FB
1727 { 0, NULL, NULL },
1728};
1729
f6f3fbca
MT
1730#ifndef CONFIG_USER_ONLY
1731static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1732 = QLIST_HEAD_INITIALIZER(memory_client_list);
1733
1734static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1735 ram_addr_t size,
1736 ram_addr_t phys_offset)
1737{
1738 CPUPhysMemoryClient *client;
1739 QLIST_FOREACH(client, &memory_client_list, list) {
1740 client->set_memory(client, start_addr, size, phys_offset);
1741 }
1742}
1743
1744static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1745 target_phys_addr_t end)
1746{
1747 CPUPhysMemoryClient *client;
1748 QLIST_FOREACH(client, &memory_client_list, list) {
1749 int r = client->sync_dirty_bitmap(client, start, end);
1750 if (r < 0)
1751 return r;
1752 }
1753 return 0;
1754}
1755
1756static int cpu_notify_migration_log(int enable)
1757{
1758 CPUPhysMemoryClient *client;
1759 QLIST_FOREACH(client, &memory_client_list, list) {
1760 int r = client->migration_log(client, enable);
1761 if (r < 0)
1762 return r;
1763 }
1764 return 0;
1765}
1766
5cd2c5b6
RH
1767static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1768 int level, void **lp)
f6f3fbca 1769{
5cd2c5b6 1770 int i;
f6f3fbca 1771
5cd2c5b6
RH
1772 if (*lp == NULL) {
1773 return;
1774 }
1775 if (level == 0) {
1776 PhysPageDesc *pd = *lp;
7296abac 1777 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1778 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1779 client->set_memory(client, pd[i].region_offset,
1780 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1781 }
5cd2c5b6
RH
1782 }
1783 } else {
1784 void **pp = *lp;
7296abac 1785 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1786 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1787 }
1788 }
1789}
1790
1791static void phys_page_for_each(CPUPhysMemoryClient *client)
1792{
5cd2c5b6
RH
1793 int i;
1794 for (i = 0; i < P_L1_SIZE; ++i) {
1795 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1796 l1_phys_map + 1);
f6f3fbca 1797 }
f6f3fbca
MT
1798}
1799
1800void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1801{
1802 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1803 phys_page_for_each(client);
1804}
1805
1806void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1807{
1808 QLIST_REMOVE(client, list);
1809}
1810#endif
1811
f193c797
FB
1812static int cmp1(const char *s1, int n, const char *s2)
1813{
1814 if (strlen(s2) != n)
1815 return 0;
1816 return memcmp(s1, s2, n) == 0;
1817}
3b46e624 1818
f193c797
FB
1819/* takes a comma separated list of log masks. Return 0 if error. */
1820int cpu_str_to_log_mask(const char *str)
1821{
c7cd6a37 1822 const CPULogItem *item;
f193c797
FB
1823 int mask;
1824 const char *p, *p1;
1825
1826 p = str;
1827 mask = 0;
1828 for(;;) {
1829 p1 = strchr(p, ',');
1830 if (!p1)
1831 p1 = p + strlen(p);
8e3a9fd2
FB
1832 if(cmp1(p,p1-p,"all")) {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 mask |= item->mask;
1835 }
1836 } else {
f193c797
FB
1837 for(item = cpu_log_items; item->mask != 0; item++) {
1838 if (cmp1(p, p1 - p, item->name))
1839 goto found;
1840 }
1841 return 0;
8e3a9fd2 1842 }
f193c797
FB
1843 found:
1844 mask |= item->mask;
1845 if (*p1 != ',')
1846 break;
1847 p = p1 + 1;
1848 }
1849 return mask;
1850}
ea041c0e 1851
7501267e
FB
1852void cpu_abort(CPUState *env, const char *fmt, ...)
1853{
1854 va_list ap;
493ae1f0 1855 va_list ap2;
7501267e
FB
1856
1857 va_start(ap, fmt);
493ae1f0 1858 va_copy(ap2, ap);
7501267e
FB
1859 fprintf(stderr, "qemu: fatal: ");
1860 vfprintf(stderr, fmt, ap);
1861 fprintf(stderr, "\n");
1862#ifdef TARGET_I386
7fe48483
FB
1863 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1864#else
1865 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1866#endif
93fcfe39
AL
1867 if (qemu_log_enabled()) {
1868 qemu_log("qemu: fatal: ");
1869 qemu_log_vprintf(fmt, ap2);
1870 qemu_log("\n");
f9373291 1871#ifdef TARGET_I386
93fcfe39 1872 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1873#else
93fcfe39 1874 log_cpu_state(env, 0);
f9373291 1875#endif
31b1a7b4 1876 qemu_log_flush();
93fcfe39 1877 qemu_log_close();
924edcae 1878 }
493ae1f0 1879 va_end(ap2);
f9373291 1880 va_end(ap);
fd052bf6
RV
1881#if defined(CONFIG_USER_ONLY)
1882 {
1883 struct sigaction act;
1884 sigfillset(&act.sa_mask);
1885 act.sa_handler = SIG_DFL;
1886 sigaction(SIGABRT, &act, NULL);
1887 }
1888#endif
7501267e
FB
1889 abort();
1890}
1891
c5be9f08
TS
1892CPUState *cpu_copy(CPUState *env)
1893{
01ba9816 1894 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1895 CPUState *next_cpu = new_env->next_cpu;
1896 int cpu_index = new_env->cpu_index;
5a38f081
AL
1897#if defined(TARGET_HAS_ICE)
1898 CPUBreakpoint *bp;
1899 CPUWatchpoint *wp;
1900#endif
1901
c5be9f08 1902 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1903
1904 /* Preserve chaining and index. */
c5be9f08
TS
1905 new_env->next_cpu = next_cpu;
1906 new_env->cpu_index = cpu_index;
5a38f081
AL
1907
1908 /* Clone all break/watchpoints.
1909 Note: Once we support ptrace with hw-debug register access, make sure
1910 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1911 QTAILQ_INIT(&env->breakpoints);
1912 QTAILQ_INIT(&env->watchpoints);
5a38f081 1913#if defined(TARGET_HAS_ICE)
72cf2d4f 1914 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1915 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1916 }
72cf2d4f 1917 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1918 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1919 wp->flags, NULL);
1920 }
1921#endif
1922
c5be9f08
TS
1923 return new_env;
1924}
1925
0124311e
FB
1926#if !defined(CONFIG_USER_ONLY)
1927
5c751e99
EI
1928static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1929{
1930 unsigned int i;
1931
1932 /* Discard jump cache entries for any tb which might potentially
1933 overlap the flushed page. */
1934 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1935 memset (&env->tb_jmp_cache[i], 0,
1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1937
1938 i = tb_jmp_cache_hash_page(addr);
1939 memset (&env->tb_jmp_cache[i], 0,
1940 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1941}
1942
08738984
IK
1943static CPUTLBEntry s_cputlb_empty_entry = {
1944 .addr_read = -1,
1945 .addr_write = -1,
1946 .addr_code = -1,
1947 .addend = -1,
1948};
1949
ee8b7021
FB
1950/* NOTE: if flush_global is true, also flush global entries (not
1951 implemented yet) */
1952void tlb_flush(CPUState *env, int flush_global)
33417e70 1953{
33417e70 1954 int i;
0124311e 1955
9fa3e853
FB
1956#if defined(DEBUG_TLB)
1957 printf("tlb_flush:\n");
1958#endif
0124311e
FB
1959 /* must reset current TB so that interrupts cannot modify the
1960 links while we are modifying them */
1961 env->current_tb = NULL;
1962
33417e70 1963 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1964 int mmu_idx;
1965 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1966 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1967 }
33417e70 1968 }
9fa3e853 1969
8a40a180 1970 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1971
d4c430a8
PB
1972 env->tlb_flush_addr = -1;
1973 env->tlb_flush_mask = 0;
e3db7226 1974 tlb_flush_count++;
33417e70
FB
1975}
1976
274da6b2 1977static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1978{
5fafdf24 1979 if (addr == (tlb_entry->addr_read &
84b7b8e7 1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1981 addr == (tlb_entry->addr_write &
84b7b8e7 1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1983 addr == (tlb_entry->addr_code &
84b7b8e7 1984 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1985 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1986 }
61382a50
FB
1987}
1988
2e12669a 1989void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1990{
8a40a180 1991 int i;
cfde4bd9 1992 int mmu_idx;
0124311e 1993
9fa3e853 1994#if defined(DEBUG_TLB)
108c49b8 1995 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1996#endif
d4c430a8
PB
1997 /* Check if we need to flush due to large pages. */
1998 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1999#if defined(DEBUG_TLB)
2000 printf("tlb_flush_page: forced full flush ("
2001 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2002 env->tlb_flush_addr, env->tlb_flush_mask);
2003#endif
2004 tlb_flush(env, 1);
2005 return;
2006 }
0124311e
FB
2007 /* must reset current TB so that interrupts cannot modify the
2008 links while we are modifying them */
2009 env->current_tb = NULL;
61382a50
FB
2010
2011 addr &= TARGET_PAGE_MASK;
2012 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2013 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2014 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2015
5c751e99 2016 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2017}
2018
9fa3e853
FB
2019/* update the TLBs so that writes to code in the virtual page 'addr'
2020 can be detected */
c227f099 2021static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2022{
5fafdf24 2023 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2024 ram_addr + TARGET_PAGE_SIZE,
2025 CODE_DIRTY_FLAG);
9fa3e853
FB
2026}
2027
9fa3e853 2028/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2029 tested for self modifying code */
c227f099 2030static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2031 target_ulong vaddr)
9fa3e853 2032{
f7c11b53 2033 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2034}
2035
5fafdf24 2036static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2037 unsigned long start, unsigned long length)
2038{
2039 unsigned long addr;
84b7b8e7
FB
2040 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2041 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2042 if ((addr - start) < length) {
0f459d16 2043 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2044 }
2045 }
2046}
2047
5579c7f3 2048/* Note: start and end must be within the same ram block. */
c227f099 2049void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2050 int dirty_flags)
1ccde1cb
FB
2051{
2052 CPUState *env;
4f2ac237 2053 unsigned long length, start1;
f7c11b53 2054 int i;
1ccde1cb
FB
2055
2056 start &= TARGET_PAGE_MASK;
2057 end = TARGET_PAGE_ALIGN(end);
2058
2059 length = end - start;
2060 if (length == 0)
2061 return;
f7c11b53 2062 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2063
1ccde1cb
FB
2064 /* we modify the TLB cache so that the dirty bit will be set again
2065 when accessing the range */
5579c7f3
PB
2066 start1 = (unsigned long)qemu_get_ram_ptr(start);
2067 /* Chek that we don't span multiple blocks - this breaks the
2068 address comparisons below. */
2069 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2070 != (end - 1) - start) {
2071 abort();
2072 }
2073
6a00d601 2074 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2075 int mmu_idx;
2076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2077 for(i = 0; i < CPU_TLB_SIZE; i++)
2078 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2079 start1, length);
2080 }
6a00d601 2081 }
1ccde1cb
FB
2082}
2083
74576198
AL
2084int cpu_physical_memory_set_dirty_tracking(int enable)
2085{
f6f3fbca 2086 int ret = 0;
74576198 2087 in_migration = enable;
f6f3fbca
MT
2088 ret = cpu_notify_migration_log(!!enable);
2089 return ret;
74576198
AL
2090}
2091
2092int cpu_physical_memory_get_dirty_tracking(void)
2093{
2094 return in_migration;
2095}
2096
c227f099
AL
2097int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2098 target_phys_addr_t end_addr)
2bec46dc 2099{
7b8f3b78 2100 int ret;
151f7749 2101
f6f3fbca 2102 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2103 return ret;
2bec46dc
AL
2104}
2105
3a7d929e
FB
2106static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2107{
c227f099 2108 ram_addr_t ram_addr;
5579c7f3 2109 void *p;
3a7d929e 2110
84b7b8e7 2111 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2112 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2113 + tlb_entry->addend);
2114 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2115 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2116 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2117 }
2118 }
2119}
2120
2121/* update the TLB according to the current state of the dirty bits */
2122void cpu_tlb_update_dirty(CPUState *env)
2123{
2124 int i;
cfde4bd9
IY
2125 int mmu_idx;
2126 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2127 for(i = 0; i < CPU_TLB_SIZE; i++)
2128 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2129 }
3a7d929e
FB
2130}
2131
0f459d16 2132static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2133{
0f459d16
PB
2134 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2135 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2136}
2137
0f459d16
PB
2138/* update the TLB corresponding to virtual page vaddr
2139 so that it is no longer dirty */
2140static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2141{
1ccde1cb 2142 int i;
cfde4bd9 2143 int mmu_idx;
1ccde1cb 2144
0f459d16 2145 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2146 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2147 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2148 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2149}
2150
d4c430a8
PB
2151/* Our TLB does not support large pages, so remember the area covered by
2152 large pages and trigger a full TLB flush if these are invalidated. */
2153static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2154 target_ulong size)
2155{
2156 target_ulong mask = ~(size - 1);
2157
2158 if (env->tlb_flush_addr == (target_ulong)-1) {
2159 env->tlb_flush_addr = vaddr & mask;
2160 env->tlb_flush_mask = mask;
2161 return;
2162 }
2163 /* Extend the existing region to include the new page.
2164 This is a compromise between unnecessary flushes and the cost
2165 of maintaining a full variable size TLB. */
2166 mask &= env->tlb_flush_mask;
2167 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2168 mask <<= 1;
2169 }
2170 env->tlb_flush_addr &= mask;
2171 env->tlb_flush_mask = mask;
2172}
2173
2174/* Add a new TLB entry. At most one entry for a given virtual address
2175 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2176 supplied size is only used by tlb_flush_page. */
2177void tlb_set_page(CPUState *env, target_ulong vaddr,
2178 target_phys_addr_t paddr, int prot,
2179 int mmu_idx, target_ulong size)
9fa3e853 2180{
92e873b9 2181 PhysPageDesc *p;
4f2ac237 2182 unsigned long pd;
9fa3e853 2183 unsigned int index;
4f2ac237 2184 target_ulong address;
0f459d16 2185 target_ulong code_address;
355b1943 2186 unsigned long addend;
84b7b8e7 2187 CPUTLBEntry *te;
a1d1bb31 2188 CPUWatchpoint *wp;
c227f099 2189 target_phys_addr_t iotlb;
9fa3e853 2190
d4c430a8
PB
2191 assert(size >= TARGET_PAGE_SIZE);
2192 if (size != TARGET_PAGE_SIZE) {
2193 tlb_add_large_page(env, vaddr, size);
2194 }
92e873b9 2195 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2196 if (!p) {
2197 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2198 } else {
2199 pd = p->phys_offset;
9fa3e853
FB
2200 }
2201#if defined(DEBUG_TLB)
6ebbf390
JM
2202 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2203 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2204#endif
2205
0f459d16
PB
2206 address = vaddr;
2207 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2208 /* IO memory case (romd handled later) */
2209 address |= TLB_MMIO;
2210 }
5579c7f3 2211 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2212 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2213 /* Normal RAM. */
2214 iotlb = pd & TARGET_PAGE_MASK;
2215 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2216 iotlb |= IO_MEM_NOTDIRTY;
2217 else
2218 iotlb |= IO_MEM_ROM;
2219 } else {
ccbb4d44 2220 /* IO handlers are currently passed a physical address.
0f459d16
PB
2221 It would be nice to pass an offset from the base address
2222 of that region. This would avoid having to special case RAM,
2223 and avoid full address decoding in every device.
2224 We can't use the high bits of pd for this because
2225 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2226 iotlb = (pd & ~TARGET_PAGE_MASK);
2227 if (p) {
8da3ff18
PB
2228 iotlb += p->region_offset;
2229 } else {
2230 iotlb += paddr;
2231 }
0f459d16
PB
2232 }
2233
2234 code_address = address;
2235 /* Make accesses to pages with watchpoints go via the
2236 watchpoint trap routines. */
72cf2d4f 2237 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2238 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2239 iotlb = io_mem_watch + paddr;
2240 /* TODO: The memory case can be optimized by not trapping
2241 reads of pages with a write breakpoint. */
2242 address |= TLB_MMIO;
6658ffb8 2243 }
0f459d16 2244 }
d79acba4 2245
0f459d16
PB
2246 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2247 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2248 te = &env->tlb_table[mmu_idx][index];
2249 te->addend = addend - vaddr;
2250 if (prot & PAGE_READ) {
2251 te->addr_read = address;
2252 } else {
2253 te->addr_read = -1;
2254 }
5c751e99 2255
0f459d16
PB
2256 if (prot & PAGE_EXEC) {
2257 te->addr_code = code_address;
2258 } else {
2259 te->addr_code = -1;
2260 }
2261 if (prot & PAGE_WRITE) {
2262 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2263 (pd & IO_MEM_ROMD)) {
2264 /* Write access calls the I/O callback. */
2265 te->addr_write = address | TLB_MMIO;
2266 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2267 !cpu_physical_memory_is_dirty(pd)) {
2268 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2269 } else {
0f459d16 2270 te->addr_write = address;
9fa3e853 2271 }
0f459d16
PB
2272 } else {
2273 te->addr_write = -1;
9fa3e853 2274 }
9fa3e853
FB
2275}
2276
0124311e
FB
2277#else
2278
ee8b7021 2279void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2280{
2281}
2282
2e12669a 2283void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2284{
2285}
2286
edf8e2af
MW
2287/*
2288 * Walks guest process memory "regions" one by one
2289 * and calls callback function 'fn' for each region.
2290 */
5cd2c5b6
RH
2291
2292struct walk_memory_regions_data
2293{
2294 walk_memory_regions_fn fn;
2295 void *priv;
2296 unsigned long start;
2297 int prot;
2298};
2299
2300static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2301 abi_ulong end, int new_prot)
5cd2c5b6
RH
2302{
2303 if (data->start != -1ul) {
2304 int rc = data->fn(data->priv, data->start, end, data->prot);
2305 if (rc != 0) {
2306 return rc;
2307 }
2308 }
2309
2310 data->start = (new_prot ? end : -1ul);
2311 data->prot = new_prot;
2312
2313 return 0;
2314}
2315
2316static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2317 abi_ulong base, int level, void **lp)
5cd2c5b6 2318{
b480d9b7 2319 abi_ulong pa;
5cd2c5b6
RH
2320 int i, rc;
2321
2322 if (*lp == NULL) {
2323 return walk_memory_regions_end(data, base, 0);
2324 }
2325
2326 if (level == 0) {
2327 PageDesc *pd = *lp;
7296abac 2328 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2329 int prot = pd[i].flags;
2330
2331 pa = base | (i << TARGET_PAGE_BITS);
2332 if (prot != data->prot) {
2333 rc = walk_memory_regions_end(data, pa, prot);
2334 if (rc != 0) {
2335 return rc;
9fa3e853 2336 }
9fa3e853 2337 }
5cd2c5b6
RH
2338 }
2339 } else {
2340 void **pp = *lp;
7296abac 2341 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2342 pa = base | ((abi_ulong)i <<
2343 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2344 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2345 if (rc != 0) {
2346 return rc;
2347 }
2348 }
2349 }
2350
2351 return 0;
2352}
2353
2354int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2355{
2356 struct walk_memory_regions_data data;
2357 unsigned long i;
2358
2359 data.fn = fn;
2360 data.priv = priv;
2361 data.start = -1ul;
2362 data.prot = 0;
2363
2364 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2365 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2366 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2367 if (rc != 0) {
2368 return rc;
9fa3e853 2369 }
33417e70 2370 }
5cd2c5b6
RH
2371
2372 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2373}
2374
b480d9b7
PB
2375static int dump_region(void *priv, abi_ulong start,
2376 abi_ulong end, unsigned long prot)
edf8e2af
MW
2377{
2378 FILE *f = (FILE *)priv;
2379
b480d9b7
PB
2380 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2381 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2382 start, end, end - start,
2383 ((prot & PAGE_READ) ? 'r' : '-'),
2384 ((prot & PAGE_WRITE) ? 'w' : '-'),
2385 ((prot & PAGE_EXEC) ? 'x' : '-'));
2386
2387 return (0);
2388}
2389
2390/* dump memory mappings */
2391void page_dump(FILE *f)
2392{
2393 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2394 "start", "end", "size", "prot");
2395 walk_memory_regions(f, dump_region);
33417e70
FB
2396}
2397
53a5960a 2398int page_get_flags(target_ulong address)
33417e70 2399{
9fa3e853
FB
2400 PageDesc *p;
2401
2402 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2403 if (!p)
9fa3e853
FB
2404 return 0;
2405 return p->flags;
2406}
2407
376a7909
RH
2408/* Modify the flags of a page and invalidate the code if necessary.
2409 The flag PAGE_WRITE_ORG is positioned automatically depending
2410 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2411void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2412{
376a7909
RH
2413 target_ulong addr, len;
2414
2415 /* This function should never be called with addresses outside the
2416 guest address space. If this assert fires, it probably indicates
2417 a missing call to h2g_valid. */
b480d9b7
PB
2418#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2419 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2420#endif
2421 assert(start < end);
9fa3e853
FB
2422
2423 start = start & TARGET_PAGE_MASK;
2424 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2425
2426 if (flags & PAGE_WRITE) {
9fa3e853 2427 flags |= PAGE_WRITE_ORG;
376a7909
RH
2428 }
2429
2430 for (addr = start, len = end - start;
2431 len != 0;
2432 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2433 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2434
2435 /* If the write protection bit is set, then we invalidate
2436 the code inside. */
5fafdf24 2437 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2438 (flags & PAGE_WRITE) &&
2439 p->first_tb) {
d720b93d 2440 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2441 }
2442 p->flags = flags;
2443 }
33417e70
FB
2444}
2445
3d97b40b
TS
2446int page_check_range(target_ulong start, target_ulong len, int flags)
2447{
2448 PageDesc *p;
2449 target_ulong end;
2450 target_ulong addr;
2451
376a7909
RH
2452 /* This function should never be called with addresses outside the
2453 guest address space. If this assert fires, it probably indicates
2454 a missing call to h2g_valid. */
338e9e6c
BS
2455#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2456 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2457#endif
2458
2459 if (start + len - 1 < start) {
2460 /* We've wrapped around. */
55f280c9 2461 return -1;
376a7909 2462 }
55f280c9 2463
3d97b40b
TS
2464 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2465 start = start & TARGET_PAGE_MASK;
2466
376a7909
RH
2467 for (addr = start, len = end - start;
2468 len != 0;
2469 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2470 p = page_find(addr >> TARGET_PAGE_BITS);
2471 if( !p )
2472 return -1;
2473 if( !(p->flags & PAGE_VALID) )
2474 return -1;
2475
dae3270c 2476 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2477 return -1;
dae3270c
FB
2478 if (flags & PAGE_WRITE) {
2479 if (!(p->flags & PAGE_WRITE_ORG))
2480 return -1;
2481 /* unprotect the page if it was put read-only because it
2482 contains translated code */
2483 if (!(p->flags & PAGE_WRITE)) {
2484 if (!page_unprotect(addr, 0, NULL))
2485 return -1;
2486 }
2487 return 0;
2488 }
3d97b40b
TS
2489 }
2490 return 0;
2491}
2492
9fa3e853 2493/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2494 page. Return TRUE if the fault was successfully handled. */
53a5960a 2495int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2496{
45d679d6
AJ
2497 unsigned int prot;
2498 PageDesc *p;
53a5960a 2499 target_ulong host_start, host_end, addr;
9fa3e853 2500
c8a706fe
PB
2501 /* Technically this isn't safe inside a signal handler. However we
2502 know this only ever happens in a synchronous SEGV handler, so in
2503 practice it seems to be ok. */
2504 mmap_lock();
2505
45d679d6
AJ
2506 p = page_find(address >> TARGET_PAGE_BITS);
2507 if (!p) {
c8a706fe 2508 mmap_unlock();
9fa3e853 2509 return 0;
c8a706fe 2510 }
45d679d6 2511
9fa3e853
FB
2512 /* if the page was really writable, then we change its
2513 protection back to writable */
45d679d6
AJ
2514 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2515 host_start = address & qemu_host_page_mask;
2516 host_end = host_start + qemu_host_page_size;
2517
2518 prot = 0;
2519 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2520 p = page_find(addr >> TARGET_PAGE_BITS);
2521 p->flags |= PAGE_WRITE;
2522 prot |= p->flags;
2523
9fa3e853
FB
2524 /* and since the content will be modified, we must invalidate
2525 the corresponding translated code. */
45d679d6 2526 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2527#ifdef DEBUG_TB_CHECK
45d679d6 2528 tb_invalidate_check(addr);
9fa3e853 2529#endif
9fa3e853 2530 }
45d679d6
AJ
2531 mprotect((void *)g2h(host_start), qemu_host_page_size,
2532 prot & PAGE_BITS);
2533
2534 mmap_unlock();
2535 return 1;
9fa3e853 2536 }
c8a706fe 2537 mmap_unlock();
9fa3e853
FB
2538 return 0;
2539}
2540
6a00d601
FB
2541static inline void tlb_set_dirty(CPUState *env,
2542 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2543{
2544}
9fa3e853
FB
2545#endif /* defined(CONFIG_USER_ONLY) */
2546
e2eef170 2547#if !defined(CONFIG_USER_ONLY)
8da3ff18 2548
c04b2b78
PB
2549#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2550typedef struct subpage_t {
2551 target_phys_addr_t base;
2552 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2553 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2554 void *opaque[TARGET_PAGE_SIZE][2][4];
2555 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2556} subpage_t;
2557
c227f099
AL
2558static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2559 ram_addr_t memory, ram_addr_t region_offset);
2560static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2561 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2562#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2563 need_subpage) \
2564 do { \
2565 if (addr > start_addr) \
2566 start_addr2 = 0; \
2567 else { \
2568 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2569 if (start_addr2 > 0) \
2570 need_subpage = 1; \
2571 } \
2572 \
49e9fba2 2573 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2574 end_addr2 = TARGET_PAGE_SIZE - 1; \
2575 else { \
2576 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2577 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2578 need_subpage = 1; \
2579 } \
2580 } while (0)
2581
8f2498f9
MT
2582/* register physical memory.
2583 For RAM, 'size' must be a multiple of the target page size.
2584 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2585 io memory page. The address used when calling the IO function is
2586 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2587 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2588 before calculating this offset. This should not be a problem unless
2589 the low bits of start_addr and region_offset differ. */
c227f099
AL
2590void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2591 ram_addr_t size,
2592 ram_addr_t phys_offset,
2593 ram_addr_t region_offset)
33417e70 2594{
c227f099 2595 target_phys_addr_t addr, end_addr;
92e873b9 2596 PhysPageDesc *p;
9d42037b 2597 CPUState *env;
c227f099 2598 ram_addr_t orig_size = size;
db7b5426 2599 void *subpage;
33417e70 2600
f6f3fbca
MT
2601 cpu_notify_set_memory(start_addr, size, phys_offset);
2602
67c4d23c
PB
2603 if (phys_offset == IO_MEM_UNASSIGNED) {
2604 region_offset = start_addr;
2605 }
8da3ff18 2606 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2607 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2608 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2609 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2610 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2611 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2612 ram_addr_t orig_memory = p->phys_offset;
2613 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2614 int need_subpage = 0;
2615
2616 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2617 need_subpage);
4254fab8 2618 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2619 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2620 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2621 &p->phys_offset, orig_memory,
2622 p->region_offset);
db7b5426
BS
2623 } else {
2624 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2625 >> IO_MEM_SHIFT];
2626 }
8da3ff18
PB
2627 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2628 region_offset);
2629 p->region_offset = 0;
db7b5426
BS
2630 } else {
2631 p->phys_offset = phys_offset;
2632 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2633 (phys_offset & IO_MEM_ROMD))
2634 phys_offset += TARGET_PAGE_SIZE;
2635 }
2636 } else {
2637 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2638 p->phys_offset = phys_offset;
8da3ff18 2639 p->region_offset = region_offset;
db7b5426 2640 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2641 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2642 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2643 } else {
c227f099 2644 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2645 int need_subpage = 0;
2646
2647 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2648 end_addr2, need_subpage);
2649
4254fab8 2650 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2651 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2652 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2653 addr & TARGET_PAGE_MASK);
db7b5426 2654 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2655 phys_offset, region_offset);
2656 p->region_offset = 0;
db7b5426
BS
2657 }
2658 }
2659 }
8da3ff18 2660 region_offset += TARGET_PAGE_SIZE;
33417e70 2661 }
3b46e624 2662
9d42037b
FB
2663 /* since each CPU stores ram addresses in its TLB cache, we must
2664 reset the modified entries */
2665 /* XXX: slow ! */
2666 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2667 tlb_flush(env, 1);
2668 }
33417e70
FB
2669}
2670
ba863458 2671/* XXX: temporary until new memory mapping API */
c227f099 2672ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2673{
2674 PhysPageDesc *p;
2675
2676 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2677 if (!p)
2678 return IO_MEM_UNASSIGNED;
2679 return p->phys_offset;
2680}
2681
c227f099 2682void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2683{
2684 if (kvm_enabled())
2685 kvm_coalesce_mmio_region(addr, size);
2686}
2687
c227f099 2688void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2689{
2690 if (kvm_enabled())
2691 kvm_uncoalesce_mmio_region(addr, size);
2692}
2693
62a2744c
SY
2694void qemu_flush_coalesced_mmio_buffer(void)
2695{
2696 if (kvm_enabled())
2697 kvm_flush_coalesced_mmio_buffer();
2698}
2699
c902760f
MT
2700#if defined(__linux__) && !defined(TARGET_S390X)
2701
2702#include <sys/vfs.h>
2703
2704#define HUGETLBFS_MAGIC 0x958458f6
2705
2706static long gethugepagesize(const char *path)
2707{
2708 struct statfs fs;
2709 int ret;
2710
2711 do {
2712 ret = statfs(path, &fs);
2713 } while (ret != 0 && errno == EINTR);
2714
2715 if (ret != 0) {
6adc0549 2716 perror(path);
c902760f
MT
2717 return 0;
2718 }
2719
2720 if (fs.f_type != HUGETLBFS_MAGIC)
2721 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2722
2723 return fs.f_bsize;
2724}
2725
2726static void *file_ram_alloc(ram_addr_t memory, const char *path)
2727{
2728 char *filename;
2729 void *area;
2730 int fd;
2731#ifdef MAP_POPULATE
2732 int flags;
2733#endif
2734 unsigned long hpagesize;
2735
2736 hpagesize = gethugepagesize(path);
2737 if (!hpagesize) {
2738 return NULL;
2739 }
2740
2741 if (memory < hpagesize) {
2742 return NULL;
2743 }
2744
2745 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2746 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2747 return NULL;
2748 }
2749
2750 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2751 return NULL;
2752 }
2753
2754 fd = mkstemp(filename);
2755 if (fd < 0) {
6adc0549 2756 perror("unable to create backing store for hugepages");
c902760f
MT
2757 free(filename);
2758 return NULL;
2759 }
2760 unlink(filename);
2761 free(filename);
2762
2763 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2764
2765 /*
2766 * ftruncate is not supported by hugetlbfs in older
2767 * hosts, so don't bother bailing out on errors.
2768 * If anything goes wrong with it under other filesystems,
2769 * mmap will fail.
2770 */
2771 if (ftruncate(fd, memory))
2772 perror("ftruncate");
2773
2774#ifdef MAP_POPULATE
2775 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2776 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2777 * to sidestep this quirk.
2778 */
2779 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2780 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2781#else
2782 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2783#endif
2784 if (area == MAP_FAILED) {
2785 perror("file_ram_alloc: can't mmap RAM pages");
2786 close(fd);
2787 return (NULL);
2788 }
2789 return area;
2790}
2791#endif
2792
c227f099 2793ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2794{
2795 RAMBlock *new_block;
2796
94a6b54f
PB
2797 size = TARGET_PAGE_ALIGN(size);
2798 new_block = qemu_malloc(sizeof(*new_block));
2799
c902760f
MT
2800 if (mem_path) {
2801#if defined (__linux__) && !defined(TARGET_S390X)
2802 new_block->host = file_ram_alloc(size, mem_path);
2803 if (!new_block->host)
2804 exit(1);
2805#else
2806 fprintf(stderr, "-mem-path option unsupported\n");
2807 exit(1);
2808#endif
2809 } else {
6b02494d 2810#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2811 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2812 new_block->host = mmap((void*)0x1000000, size,
2813 PROT_EXEC|PROT_READ|PROT_WRITE,
2814 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2815#else
c902760f 2816 new_block->host = qemu_vmalloc(size);
6b02494d 2817#endif
ccb167e9 2818#ifdef MADV_MERGEABLE
c902760f 2819 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2820#endif
c902760f 2821 }
94a6b54f
PB
2822 new_block->offset = last_ram_offset;
2823 new_block->length = size;
2824
2825 new_block->next = ram_blocks;
2826 ram_blocks = new_block;
2827
2828 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2829 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2830 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2831 0xff, size >> TARGET_PAGE_BITS);
2832
2833 last_ram_offset += size;
2834
6f0437e8
JK
2835 if (kvm_enabled())
2836 kvm_setup_guest_memory(new_block->host, size);
2837
94a6b54f
PB
2838 return new_block->offset;
2839}
e9a1ab19 2840
c227f099 2841void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2842{
94a6b54f 2843 /* TODO: implement this. */
e9a1ab19
FB
2844}
2845
dc828ca1 2846/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2847 With the exception of the softmmu code in this file, this should
2848 only be used for local memory (e.g. video ram) that the device owns,
2849 and knows it isn't going to access beyond the end of the block.
2850
2851 It should not be used for general purpose DMA.
2852 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2853 */
c227f099 2854void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2855{
94a6b54f
PB
2856 RAMBlock *prev;
2857 RAMBlock **prevp;
2858 RAMBlock *block;
2859
94a6b54f
PB
2860 prev = NULL;
2861 prevp = &ram_blocks;
2862 block = ram_blocks;
2863 while (block && (block->offset > addr
2864 || block->offset + block->length <= addr)) {
2865 if (prev)
2866 prevp = &prev->next;
2867 prev = block;
2868 block = block->next;
2869 }
2870 if (!block) {
2871 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2872 abort();
2873 }
2874 /* Move this entry to to start of the list. */
2875 if (prev) {
2876 prev->next = block->next;
2877 block->next = *prevp;
2878 *prevp = block;
2879 }
2880 return block->host + (addr - block->offset);
dc828ca1
PB
2881}
2882
5579c7f3
PB
2883/* Some of the softmmu routines need to translate from a host pointer
2884 (typically a TLB entry) back to a ram offset. */
c227f099 2885ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2886{
94a6b54f
PB
2887 RAMBlock *block;
2888 uint8_t *host = ptr;
2889
94a6b54f
PB
2890 block = ram_blocks;
2891 while (block && (block->host > host
2892 || block->host + block->length <= host)) {
94a6b54f
PB
2893 block = block->next;
2894 }
2895 if (!block) {
2896 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2897 abort();
2898 }
2899 return block->offset + (host - block->host);
5579c7f3
PB
2900}
2901
c227f099 2902static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2903{
67d3b957 2904#ifdef DEBUG_UNASSIGNED
ab3d1727 2905 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2906#endif
faed1c2a 2907#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2908 do_unassigned_access(addr, 0, 0, 0, 1);
2909#endif
2910 return 0;
2911}
2912
c227f099 2913static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2914{
2915#ifdef DEBUG_UNASSIGNED
2916 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2917#endif
faed1c2a 2918#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2919 do_unassigned_access(addr, 0, 0, 0, 2);
2920#endif
2921 return 0;
2922}
2923
c227f099 2924static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2925{
2926#ifdef DEBUG_UNASSIGNED
2927 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2928#endif
faed1c2a 2929#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2930 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2931#endif
33417e70
FB
2932 return 0;
2933}
2934
c227f099 2935static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2936{
67d3b957 2937#ifdef DEBUG_UNASSIGNED
ab3d1727 2938 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2939#endif
faed1c2a 2940#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2941 do_unassigned_access(addr, 1, 0, 0, 1);
2942#endif
2943}
2944
c227f099 2945static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2946{
2947#ifdef DEBUG_UNASSIGNED
2948 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2949#endif
faed1c2a 2950#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2951 do_unassigned_access(addr, 1, 0, 0, 2);
2952#endif
2953}
2954
c227f099 2955static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2956{
2957#ifdef DEBUG_UNASSIGNED
2958 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2959#endif
faed1c2a 2960#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2961 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2962#endif
33417e70
FB
2963}
2964
d60efc6b 2965static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2966 unassigned_mem_readb,
e18231a3
BS
2967 unassigned_mem_readw,
2968 unassigned_mem_readl,
33417e70
FB
2969};
2970
d60efc6b 2971static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2972 unassigned_mem_writeb,
e18231a3
BS
2973 unassigned_mem_writew,
2974 unassigned_mem_writel,
33417e70
FB
2975};
2976
c227f099 2977static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2978 uint32_t val)
9fa3e853 2979{
3a7d929e 2980 int dirty_flags;
f7c11b53 2981 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2982 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2983#if !defined(CONFIG_USER_ONLY)
3a7d929e 2984 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2985 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2986#endif
3a7d929e 2987 }
5579c7f3 2988 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2989 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2990 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2991 /* we remove the notdirty callback only if the code has been
2992 flushed */
2993 if (dirty_flags == 0xff)
2e70f6ef 2994 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2995}
2996
c227f099 2997static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2998 uint32_t val)
9fa3e853 2999{
3a7d929e 3000 int dirty_flags;
f7c11b53 3001 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3002 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3003#if !defined(CONFIG_USER_ONLY)
3a7d929e 3004 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3005 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3006#endif
3a7d929e 3007 }
5579c7f3 3008 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3009 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3010 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3011 /* we remove the notdirty callback only if the code has been
3012 flushed */
3013 if (dirty_flags == 0xff)
2e70f6ef 3014 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3015}
3016
c227f099 3017static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3018 uint32_t val)
9fa3e853 3019{
3a7d929e 3020 int dirty_flags;
f7c11b53 3021 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3022 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3023#if !defined(CONFIG_USER_ONLY)
3a7d929e 3024 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3025 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3026#endif
3a7d929e 3027 }
5579c7f3 3028 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3029 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3030 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3031 /* we remove the notdirty callback only if the code has been
3032 flushed */
3033 if (dirty_flags == 0xff)
2e70f6ef 3034 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3035}
3036
d60efc6b 3037static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3038 NULL, /* never used */
3039 NULL, /* never used */
3040 NULL, /* never used */
3041};
3042
d60efc6b 3043static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3044 notdirty_mem_writeb,
3045 notdirty_mem_writew,
3046 notdirty_mem_writel,
3047};
3048
0f459d16 3049/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3050static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3051{
3052 CPUState *env = cpu_single_env;
06d55cc1
AL
3053 target_ulong pc, cs_base;
3054 TranslationBlock *tb;
0f459d16 3055 target_ulong vaddr;
a1d1bb31 3056 CPUWatchpoint *wp;
06d55cc1 3057 int cpu_flags;
0f459d16 3058
06d55cc1
AL
3059 if (env->watchpoint_hit) {
3060 /* We re-entered the check after replacing the TB. Now raise
3061 * the debug interrupt so that is will trigger after the
3062 * current instruction. */
3063 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3064 return;
3065 }
2e70f6ef 3066 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3067 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3068 if ((vaddr == (wp->vaddr & len_mask) ||
3069 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3070 wp->flags |= BP_WATCHPOINT_HIT;
3071 if (!env->watchpoint_hit) {
3072 env->watchpoint_hit = wp;
3073 tb = tb_find_pc(env->mem_io_pc);
3074 if (!tb) {
3075 cpu_abort(env, "check_watchpoint: could not find TB for "
3076 "pc=%p", (void *)env->mem_io_pc);
3077 }
3078 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3079 tb_phys_invalidate(tb, -1);
3080 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3081 env->exception_index = EXCP_DEBUG;
3082 } else {
3083 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3084 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3085 }
3086 cpu_resume_from_signal(env, NULL);
06d55cc1 3087 }
6e140f28
AL
3088 } else {
3089 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3090 }
3091 }
3092}
3093
6658ffb8
PB
3094/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3095 so these check for a hit then pass through to the normal out-of-line
3096 phys routines. */
c227f099 3097static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3098{
b4051334 3099 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3100 return ldub_phys(addr);
3101}
3102
c227f099 3103static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3104{
b4051334 3105 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3106 return lduw_phys(addr);
3107}
3108
c227f099 3109static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3110{
b4051334 3111 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3112 return ldl_phys(addr);
3113}
3114
c227f099 3115static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3116 uint32_t val)
3117{
b4051334 3118 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3119 stb_phys(addr, val);
3120}
3121
c227f099 3122static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3123 uint32_t val)
3124{
b4051334 3125 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3126 stw_phys(addr, val);
3127}
3128
c227f099 3129static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3130 uint32_t val)
3131{
b4051334 3132 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3133 stl_phys(addr, val);
3134}
3135
d60efc6b 3136static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3137 watch_mem_readb,
3138 watch_mem_readw,
3139 watch_mem_readl,
3140};
3141
d60efc6b 3142static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3143 watch_mem_writeb,
3144 watch_mem_writew,
3145 watch_mem_writel,
3146};
6658ffb8 3147
c227f099 3148static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3149 unsigned int len)
3150{
db7b5426
BS
3151 uint32_t ret;
3152 unsigned int idx;
3153
8da3ff18 3154 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3155#if defined(DEBUG_SUBPAGE)
3156 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3157 mmio, len, addr, idx);
3158#endif
8da3ff18
PB
3159 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3160 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3161
3162 return ret;
3163}
3164
c227f099 3165static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3166 uint32_t value, unsigned int len)
3167{
db7b5426
BS
3168 unsigned int idx;
3169
8da3ff18 3170 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3171#if defined(DEBUG_SUBPAGE)
3172 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3173 mmio, len, addr, idx, value);
3174#endif
8da3ff18
PB
3175 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3176 addr + mmio->region_offset[idx][1][len],
3177 value);
db7b5426
BS
3178}
3179
c227f099 3180static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3181{
3182#if defined(DEBUG_SUBPAGE)
3183 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3184#endif
3185
3186 return subpage_readlen(opaque, addr, 0);
3187}
3188
c227f099 3189static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3190 uint32_t value)
3191{
3192#if defined(DEBUG_SUBPAGE)
3193 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3194#endif
3195 subpage_writelen(opaque, addr, value, 0);
3196}
3197
c227f099 3198static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3199{
3200#if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3202#endif
3203
3204 return subpage_readlen(opaque, addr, 1);
3205}
3206
c227f099 3207static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3208 uint32_t value)
3209{
3210#if defined(DEBUG_SUBPAGE)
3211 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3212#endif
3213 subpage_writelen(opaque, addr, value, 1);
3214}
3215
c227f099 3216static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3217{
3218#if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3220#endif
3221
3222 return subpage_readlen(opaque, addr, 2);
3223}
3224
3225static void subpage_writel (void *opaque,
c227f099 3226 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3227{
3228#if defined(DEBUG_SUBPAGE)
3229 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3230#endif
3231 subpage_writelen(opaque, addr, value, 2);
3232}
3233
d60efc6b 3234static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3235 &subpage_readb,
3236 &subpage_readw,
3237 &subpage_readl,
3238};
3239
d60efc6b 3240static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3241 &subpage_writeb,
3242 &subpage_writew,
3243 &subpage_writel,
3244};
3245
c227f099
AL
3246static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3247 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3248{
3249 int idx, eidx;
4254fab8 3250 unsigned int i;
db7b5426
BS
3251
3252 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3253 return -1;
3254 idx = SUBPAGE_IDX(start);
3255 eidx = SUBPAGE_IDX(end);
3256#if defined(DEBUG_SUBPAGE)
0bf9e31a 3257 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3258 mmio, start, end, idx, eidx, memory);
3259#endif
3260 memory >>= IO_MEM_SHIFT;
3261 for (; idx <= eidx; idx++) {
4254fab8 3262 for (i = 0; i < 4; i++) {
3ee89922
BS
3263 if (io_mem_read[memory][i]) {
3264 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3265 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3266 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3267 }
3268 if (io_mem_write[memory][i]) {
3269 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3270 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3271 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3272 }
4254fab8 3273 }
db7b5426
BS
3274 }
3275
3276 return 0;
3277}
3278
c227f099
AL
3279static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3280 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3281{
c227f099 3282 subpage_t *mmio;
db7b5426
BS
3283 int subpage_memory;
3284
c227f099 3285 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3286
3287 mmio->base = base;
1eed09cb 3288 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3289#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3290 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3291 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3292#endif
1eec614b
AL
3293 *phys = subpage_memory | IO_MEM_SUBPAGE;
3294 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3295 region_offset);
db7b5426
BS
3296
3297 return mmio;
3298}
3299
88715657
AL
3300static int get_free_io_mem_idx(void)
3301{
3302 int i;
3303
3304 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3305 if (!io_mem_used[i]) {
3306 io_mem_used[i] = 1;
3307 return i;
3308 }
c6703b47 3309 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3310 return -1;
3311}
3312
33417e70
FB
3313/* mem_read and mem_write are arrays of functions containing the
3314 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3315 2). Functions can be omitted with a NULL function pointer.
3ee89922 3316 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3317 modified. If it is zero, a new io zone is allocated. The return
3318 value can be used with cpu_register_physical_memory(). (-1) is
3319 returned if error. */
1eed09cb 3320static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3321 CPUReadMemoryFunc * const *mem_read,
3322 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3323 void *opaque)
33417e70 3324{
4254fab8 3325 int i, subwidth = 0;
33417e70
FB
3326
3327 if (io_index <= 0) {
88715657
AL
3328 io_index = get_free_io_mem_idx();
3329 if (io_index == -1)
3330 return io_index;
33417e70 3331 } else {
1eed09cb 3332 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3333 if (io_index >= IO_MEM_NB_ENTRIES)
3334 return -1;
3335 }
b5ff1b31 3336
33417e70 3337 for(i = 0;i < 3; i++) {
4254fab8
BS
3338 if (!mem_read[i] || !mem_write[i])
3339 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3340 io_mem_read[io_index][i] = mem_read[i];
3341 io_mem_write[io_index][i] = mem_write[i];
3342 }
a4193c8a 3343 io_mem_opaque[io_index] = opaque;
4254fab8 3344 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3345}
61382a50 3346
d60efc6b
BS
3347int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3348 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3349 void *opaque)
3350{
3351 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3352}
3353
88715657
AL
3354void cpu_unregister_io_memory(int io_table_address)
3355{
3356 int i;
3357 int io_index = io_table_address >> IO_MEM_SHIFT;
3358
3359 for (i=0;i < 3; i++) {
3360 io_mem_read[io_index][i] = unassigned_mem_read[i];
3361 io_mem_write[io_index][i] = unassigned_mem_write[i];
3362 }
3363 io_mem_opaque[io_index] = NULL;
3364 io_mem_used[io_index] = 0;
3365}
3366
e9179ce1
AK
3367static void io_mem_init(void)
3368{
3369 int i;
3370
3371 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3372 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3373 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3374 for (i=0; i<5; i++)
3375 io_mem_used[i] = 1;
3376
3377 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3378 watch_mem_write, NULL);
e9179ce1
AK
3379}
3380
e2eef170
PB
3381#endif /* !defined(CONFIG_USER_ONLY) */
3382
13eb76e0
FB
3383/* physical memory access (slow version, mainly for debug) */
3384#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3385int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3386 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3387{
3388 int l, flags;
3389 target_ulong page;
53a5960a 3390 void * p;
13eb76e0
FB
3391
3392 while (len > 0) {
3393 page = addr & TARGET_PAGE_MASK;
3394 l = (page + TARGET_PAGE_SIZE) - addr;
3395 if (l > len)
3396 l = len;
3397 flags = page_get_flags(page);
3398 if (!(flags & PAGE_VALID))
a68fe89c 3399 return -1;
13eb76e0
FB
3400 if (is_write) {
3401 if (!(flags & PAGE_WRITE))
a68fe89c 3402 return -1;
579a97f7 3403 /* XXX: this code should not depend on lock_user */
72fb7daa 3404 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3405 return -1;
72fb7daa
AJ
3406 memcpy(p, buf, l);
3407 unlock_user(p, addr, l);
13eb76e0
FB
3408 } else {
3409 if (!(flags & PAGE_READ))
a68fe89c 3410 return -1;
579a97f7 3411 /* XXX: this code should not depend on lock_user */
72fb7daa 3412 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3413 return -1;
72fb7daa 3414 memcpy(buf, p, l);
5b257578 3415 unlock_user(p, addr, 0);
13eb76e0
FB
3416 }
3417 len -= l;
3418 buf += l;
3419 addr += l;
3420 }
a68fe89c 3421 return 0;
13eb76e0 3422}
8df1cd07 3423
13eb76e0 3424#else
c227f099 3425void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3426 int len, int is_write)
3427{
3428 int l, io_index;
3429 uint8_t *ptr;
3430 uint32_t val;
c227f099 3431 target_phys_addr_t page;
2e12669a 3432 unsigned long pd;
92e873b9 3433 PhysPageDesc *p;
3b46e624 3434
13eb76e0
FB
3435 while (len > 0) {
3436 page = addr & TARGET_PAGE_MASK;
3437 l = (page + TARGET_PAGE_SIZE) - addr;
3438 if (l > len)
3439 l = len;
92e873b9 3440 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3441 if (!p) {
3442 pd = IO_MEM_UNASSIGNED;
3443 } else {
3444 pd = p->phys_offset;
3445 }
3b46e624 3446
13eb76e0 3447 if (is_write) {
3a7d929e 3448 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3449 target_phys_addr_t addr1 = addr;
13eb76e0 3450 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3451 if (p)
6c2934db 3452 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3453 /* XXX: could force cpu_single_env to NULL to avoid
3454 potential bugs */
6c2934db 3455 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3456 /* 32 bit write access */
c27004ec 3457 val = ldl_p(buf);
6c2934db 3458 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3459 l = 4;
6c2934db 3460 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3461 /* 16 bit write access */
c27004ec 3462 val = lduw_p(buf);
6c2934db 3463 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3464 l = 2;
3465 } else {
1c213d19 3466 /* 8 bit write access */
c27004ec 3467 val = ldub_p(buf);
6c2934db 3468 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3469 l = 1;
3470 }
3471 } else {
b448f2f3
FB
3472 unsigned long addr1;
3473 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3474 /* RAM case */
5579c7f3 3475 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3476 memcpy(ptr, buf, l);
3a7d929e
FB
3477 if (!cpu_physical_memory_is_dirty(addr1)) {
3478 /* invalidate code */
3479 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3480 /* set dirty bit */
f7c11b53
YT
3481 cpu_physical_memory_set_dirty_flags(
3482 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3483 }
13eb76e0
FB
3484 }
3485 } else {
5fafdf24 3486 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3487 !(pd & IO_MEM_ROMD)) {
c227f099 3488 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3489 /* I/O case */
3490 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3491 if (p)
6c2934db
AJ
3492 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3493 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3494 /* 32 bit read access */
6c2934db 3495 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3496 stl_p(buf, val);
13eb76e0 3497 l = 4;
6c2934db 3498 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3499 /* 16 bit read access */
6c2934db 3500 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3501 stw_p(buf, val);
13eb76e0
FB
3502 l = 2;
3503 } else {
1c213d19 3504 /* 8 bit read access */
6c2934db 3505 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3506 stb_p(buf, val);
13eb76e0
FB
3507 l = 1;
3508 }
3509 } else {
3510 /* RAM case */
5579c7f3 3511 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3512 (addr & ~TARGET_PAGE_MASK);
3513 memcpy(buf, ptr, l);
3514 }
3515 }
3516 len -= l;
3517 buf += l;
3518 addr += l;
3519 }
3520}
8df1cd07 3521
d0ecd2aa 3522/* used for ROM loading : can write in RAM and ROM */
c227f099 3523void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3524 const uint8_t *buf, int len)
3525{
3526 int l;
3527 uint8_t *ptr;
c227f099 3528 target_phys_addr_t page;
d0ecd2aa
FB
3529 unsigned long pd;
3530 PhysPageDesc *p;
3b46e624 3531
d0ecd2aa
FB
3532 while (len > 0) {
3533 page = addr & TARGET_PAGE_MASK;
3534 l = (page + TARGET_PAGE_SIZE) - addr;
3535 if (l > len)
3536 l = len;
3537 p = phys_page_find(page >> TARGET_PAGE_BITS);
3538 if (!p) {
3539 pd = IO_MEM_UNASSIGNED;
3540 } else {
3541 pd = p->phys_offset;
3542 }
3b46e624 3543
d0ecd2aa 3544 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3545 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3546 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3547 /* do nothing */
3548 } else {
3549 unsigned long addr1;
3550 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3551 /* ROM/RAM case */
5579c7f3 3552 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3553 memcpy(ptr, buf, l);
3554 }
3555 len -= l;
3556 buf += l;
3557 addr += l;
3558 }
3559}
3560
6d16c2f8
AL
3561typedef struct {
3562 void *buffer;
c227f099
AL
3563 target_phys_addr_t addr;
3564 target_phys_addr_t len;
6d16c2f8
AL
3565} BounceBuffer;
3566
3567static BounceBuffer bounce;
3568
ba223c29
AL
3569typedef struct MapClient {
3570 void *opaque;
3571 void (*callback)(void *opaque);
72cf2d4f 3572 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3573} MapClient;
3574
72cf2d4f
BS
3575static QLIST_HEAD(map_client_list, MapClient) map_client_list
3576 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3577
3578void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3579{
3580 MapClient *client = qemu_malloc(sizeof(*client));
3581
3582 client->opaque = opaque;
3583 client->callback = callback;
72cf2d4f 3584 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3585 return client;
3586}
3587
3588void cpu_unregister_map_client(void *_client)
3589{
3590 MapClient *client = (MapClient *)_client;
3591
72cf2d4f 3592 QLIST_REMOVE(client, link);
34d5e948 3593 qemu_free(client);
ba223c29
AL
3594}
3595
3596static void cpu_notify_map_clients(void)
3597{
3598 MapClient *client;
3599
72cf2d4f
BS
3600 while (!QLIST_EMPTY(&map_client_list)) {
3601 client = QLIST_FIRST(&map_client_list);
ba223c29 3602 client->callback(client->opaque);
34d5e948 3603 cpu_unregister_map_client(client);
ba223c29
AL
3604 }
3605}
3606
6d16c2f8
AL
3607/* Map a physical memory region into a host virtual address.
3608 * May map a subset of the requested range, given by and returned in *plen.
3609 * May return NULL if resources needed to perform the mapping are exhausted.
3610 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3611 * Use cpu_register_map_client() to know when retrying the map operation is
3612 * likely to succeed.
6d16c2f8 3613 */
c227f099
AL
3614void *cpu_physical_memory_map(target_phys_addr_t addr,
3615 target_phys_addr_t *plen,
6d16c2f8
AL
3616 int is_write)
3617{
c227f099
AL
3618 target_phys_addr_t len = *plen;
3619 target_phys_addr_t done = 0;
6d16c2f8
AL
3620 int l;
3621 uint8_t *ret = NULL;
3622 uint8_t *ptr;
c227f099 3623 target_phys_addr_t page;
6d16c2f8
AL
3624 unsigned long pd;
3625 PhysPageDesc *p;
3626 unsigned long addr1;
3627
3628 while (len > 0) {
3629 page = addr & TARGET_PAGE_MASK;
3630 l = (page + TARGET_PAGE_SIZE) - addr;
3631 if (l > len)
3632 l = len;
3633 p = phys_page_find(page >> TARGET_PAGE_BITS);
3634 if (!p) {
3635 pd = IO_MEM_UNASSIGNED;
3636 } else {
3637 pd = p->phys_offset;
3638 }
3639
3640 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3641 if (done || bounce.buffer) {
3642 break;
3643 }
3644 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3645 bounce.addr = addr;
3646 bounce.len = l;
3647 if (!is_write) {
3648 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3649 }
3650 ptr = bounce.buffer;
3651 } else {
3652 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3653 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3654 }
3655 if (!done) {
3656 ret = ptr;
3657 } else if (ret + done != ptr) {
3658 break;
3659 }
3660
3661 len -= l;
3662 addr += l;
3663 done += l;
3664 }
3665 *plen = done;
3666 return ret;
3667}
3668
3669/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3670 * Will also mark the memory as dirty if is_write == 1. access_len gives
3671 * the amount of memory that was actually read or written by the caller.
3672 */
c227f099
AL
3673void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3674 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3675{
3676 if (buffer != bounce.buffer) {
3677 if (is_write) {
c227f099 3678 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3679 while (access_len) {
3680 unsigned l;
3681 l = TARGET_PAGE_SIZE;
3682 if (l > access_len)
3683 l = access_len;
3684 if (!cpu_physical_memory_is_dirty(addr1)) {
3685 /* invalidate code */
3686 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3687 /* set dirty bit */
f7c11b53
YT
3688 cpu_physical_memory_set_dirty_flags(
3689 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3690 }
3691 addr1 += l;
3692 access_len -= l;
3693 }
3694 }
3695 return;
3696 }
3697 if (is_write) {
3698 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3699 }
f8a83245 3700 qemu_vfree(bounce.buffer);
6d16c2f8 3701 bounce.buffer = NULL;
ba223c29 3702 cpu_notify_map_clients();
6d16c2f8 3703}
d0ecd2aa 3704
8df1cd07 3705/* warning: addr must be aligned */
c227f099 3706uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3707{
3708 int io_index;
3709 uint8_t *ptr;
3710 uint32_t val;
3711 unsigned long pd;
3712 PhysPageDesc *p;
3713
3714 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3715 if (!p) {
3716 pd = IO_MEM_UNASSIGNED;
3717 } else {
3718 pd = p->phys_offset;
3719 }
3b46e624 3720
5fafdf24 3721 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3722 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3723 /* I/O case */
3724 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3725 if (p)
3726 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3727 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3728 } else {
3729 /* RAM case */
5579c7f3 3730 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3731 (addr & ~TARGET_PAGE_MASK);
3732 val = ldl_p(ptr);
3733 }
3734 return val;
3735}
3736
84b7b8e7 3737/* warning: addr must be aligned */
c227f099 3738uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3739{
3740 int io_index;
3741 uint8_t *ptr;
3742 uint64_t val;
3743 unsigned long pd;
3744 PhysPageDesc *p;
3745
3746 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3747 if (!p) {
3748 pd = IO_MEM_UNASSIGNED;
3749 } else {
3750 pd = p->phys_offset;
3751 }
3b46e624 3752
2a4188a3
FB
3753 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3754 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3755 /* I/O case */
3756 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3757 if (p)
3758 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3759#ifdef TARGET_WORDS_BIGENDIAN
3760 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3761 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3762#else
3763 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3764 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3765#endif
3766 } else {
3767 /* RAM case */
5579c7f3 3768 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3769 (addr & ~TARGET_PAGE_MASK);
3770 val = ldq_p(ptr);
3771 }
3772 return val;
3773}
3774
aab33094 3775/* XXX: optimize */
c227f099 3776uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3777{
3778 uint8_t val;
3779 cpu_physical_memory_read(addr, &val, 1);
3780 return val;
3781}
3782
3783/* XXX: optimize */
c227f099 3784uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3785{
3786 uint16_t val;
3787 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3788 return tswap16(val);
3789}
3790
8df1cd07
FB
3791/* warning: addr must be aligned. The ram page is not masked as dirty
3792 and the code inside is not invalidated. It is useful if the dirty
3793 bits are used to track modified PTEs */
c227f099 3794void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3795{
3796 int io_index;
3797 uint8_t *ptr;
3798 unsigned long pd;
3799 PhysPageDesc *p;
3800
3801 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3802 if (!p) {
3803 pd = IO_MEM_UNASSIGNED;
3804 } else {
3805 pd = p->phys_offset;
3806 }
3b46e624 3807
3a7d929e 3808 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3809 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3810 if (p)
3811 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3812 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3813 } else {
74576198 3814 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3815 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3816 stl_p(ptr, val);
74576198
AL
3817
3818 if (unlikely(in_migration)) {
3819 if (!cpu_physical_memory_is_dirty(addr1)) {
3820 /* invalidate code */
3821 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3822 /* set dirty bit */
f7c11b53
YT
3823 cpu_physical_memory_set_dirty_flags(
3824 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3825 }
3826 }
8df1cd07
FB
3827 }
3828}
3829
c227f099 3830void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3831{
3832 int io_index;
3833 uint8_t *ptr;
3834 unsigned long pd;
3835 PhysPageDesc *p;
3836
3837 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3838 if (!p) {
3839 pd = IO_MEM_UNASSIGNED;
3840 } else {
3841 pd = p->phys_offset;
3842 }
3b46e624 3843
bc98a7ef
JM
3844 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3845 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3846 if (p)
3847 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3848#ifdef TARGET_WORDS_BIGENDIAN
3849 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3850 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3851#else
3852 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3853 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3854#endif
3855 } else {
5579c7f3 3856 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3857 (addr & ~TARGET_PAGE_MASK);
3858 stq_p(ptr, val);
3859 }
3860}
3861
8df1cd07 3862/* warning: addr must be aligned */
c227f099 3863void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3864{
3865 int io_index;
3866 uint8_t *ptr;
3867 unsigned long pd;
3868 PhysPageDesc *p;
3869
3870 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3871 if (!p) {
3872 pd = IO_MEM_UNASSIGNED;
3873 } else {
3874 pd = p->phys_offset;
3875 }
3b46e624 3876
3a7d929e 3877 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3878 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3879 if (p)
3880 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3881 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3882 } else {
3883 unsigned long addr1;
3884 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3885 /* RAM case */
5579c7f3 3886 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3887 stl_p(ptr, val);
3a7d929e
FB
3888 if (!cpu_physical_memory_is_dirty(addr1)) {
3889 /* invalidate code */
3890 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3891 /* set dirty bit */
f7c11b53
YT
3892 cpu_physical_memory_set_dirty_flags(addr1,
3893 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3894 }
8df1cd07
FB
3895 }
3896}
3897
aab33094 3898/* XXX: optimize */
c227f099 3899void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3900{
3901 uint8_t v = val;
3902 cpu_physical_memory_write(addr, &v, 1);
3903}
3904
3905/* XXX: optimize */
c227f099 3906void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3907{
3908 uint16_t v = tswap16(val);
3909 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3910}
3911
3912/* XXX: optimize */
c227f099 3913void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3914{
3915 val = tswap64(val);
3916 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3917}
3918
5e2972fd 3919/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3920int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3921 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3922{
3923 int l;
c227f099 3924 target_phys_addr_t phys_addr;
9b3c35e0 3925 target_ulong page;
13eb76e0
FB
3926
3927 while (len > 0) {
3928 page = addr & TARGET_PAGE_MASK;
3929 phys_addr = cpu_get_phys_page_debug(env, page);
3930 /* if no physical page mapped, return an error */
3931 if (phys_addr == -1)
3932 return -1;
3933 l = (page + TARGET_PAGE_SIZE) - addr;
3934 if (l > len)
3935 l = len;
5e2972fd 3936 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3937 if (is_write)
3938 cpu_physical_memory_write_rom(phys_addr, buf, l);
3939 else
5e2972fd 3940 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3941 len -= l;
3942 buf += l;
3943 addr += l;
3944 }
3945 return 0;
3946}
a68fe89c 3947#endif
13eb76e0 3948
2e70f6ef
PB
3949/* in deterministic execution mode, instructions doing device I/Os
3950 must be at the end of the TB */
3951void cpu_io_recompile(CPUState *env, void *retaddr)
3952{
3953 TranslationBlock *tb;
3954 uint32_t n, cflags;
3955 target_ulong pc, cs_base;
3956 uint64_t flags;
3957
3958 tb = tb_find_pc((unsigned long)retaddr);
3959 if (!tb) {
3960 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3961 retaddr);
3962 }
3963 n = env->icount_decr.u16.low + tb->icount;
3964 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3965 /* Calculate how many instructions had been executed before the fault
bf20dc07 3966 occurred. */
2e70f6ef
PB
3967 n = n - env->icount_decr.u16.low;
3968 /* Generate a new TB ending on the I/O insn. */
3969 n++;
3970 /* On MIPS and SH, delay slot instructions can only be restarted if
3971 they were already the first instruction in the TB. If this is not
bf20dc07 3972 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3973 branch. */
3974#if defined(TARGET_MIPS)
3975 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3976 env->active_tc.PC -= 4;
3977 env->icount_decr.u16.low++;
3978 env->hflags &= ~MIPS_HFLAG_BMASK;
3979 }
3980#elif defined(TARGET_SH4)
3981 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3982 && n > 1) {
3983 env->pc -= 2;
3984 env->icount_decr.u16.low++;
3985 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3986 }
3987#endif
3988 /* This should never happen. */
3989 if (n > CF_COUNT_MASK)
3990 cpu_abort(env, "TB too big during recompile");
3991
3992 cflags = n | CF_LAST_IO;
3993 pc = tb->pc;
3994 cs_base = tb->cs_base;
3995 flags = tb->flags;
3996 tb_phys_invalidate(tb, -1);
3997 /* FIXME: In theory this could raise an exception. In practice
3998 we have already translated the block once so it's probably ok. */
3999 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4000 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4001 the first in the TB) then we end up generating a whole new TB and
4002 repeating the fault, which is horribly inefficient.
4003 Better would be to execute just this insn uncached, or generate a
4004 second new TB. */
4005 cpu_resume_from_signal(env, NULL);
4006}
4007
b3755a91
PB
4008#if !defined(CONFIG_USER_ONLY)
4009
e3db7226
FB
4010void dump_exec_info(FILE *f,
4011 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4012{
4013 int i, target_code_size, max_target_code_size;
4014 int direct_jmp_count, direct_jmp2_count, cross_page;
4015 TranslationBlock *tb;
3b46e624 4016
e3db7226
FB
4017 target_code_size = 0;
4018 max_target_code_size = 0;
4019 cross_page = 0;
4020 direct_jmp_count = 0;
4021 direct_jmp2_count = 0;
4022 for(i = 0; i < nb_tbs; i++) {
4023 tb = &tbs[i];
4024 target_code_size += tb->size;
4025 if (tb->size > max_target_code_size)
4026 max_target_code_size = tb->size;
4027 if (tb->page_addr[1] != -1)
4028 cross_page++;
4029 if (tb->tb_next_offset[0] != 0xffff) {
4030 direct_jmp_count++;
4031 if (tb->tb_next_offset[1] != 0xffff) {
4032 direct_jmp2_count++;
4033 }
4034 }
4035 }
4036 /* XXX: avoid using doubles ? */
57fec1fe 4037 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4038 cpu_fprintf(f, "gen code size %ld/%ld\n",
4039 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4040 cpu_fprintf(f, "TB count %d/%d\n",
4041 nb_tbs, code_gen_max_blocks);
5fafdf24 4042 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4043 nb_tbs ? target_code_size / nb_tbs : 0,
4044 max_target_code_size);
5fafdf24 4045 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4046 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4047 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4048 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4049 cross_page,
e3db7226
FB
4050 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4051 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4052 direct_jmp_count,
e3db7226
FB
4053 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4054 direct_jmp2_count,
4055 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4056 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4057 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4058 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4059 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4060 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4061}
4062
61382a50
FB
4063#define MMUSUFFIX _cmmu
4064#define GETPC() NULL
4065#define env cpu_single_env
b769d8fe 4066#define SOFTMMU_CODE_ACCESS
61382a50
FB
4067
4068#define SHIFT 0
4069#include "softmmu_template.h"
4070
4071#define SHIFT 1
4072#include "softmmu_template.h"
4073
4074#define SHIFT 2
4075#include "softmmu_template.h"
4076
4077#define SHIFT 3
4078#include "softmmu_template.h"
4079
4080#undef env
4081
4082#endif