]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
qom/cpu: Add MemoryRegion property
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
67d95c15 57
b35ba30f 58#include "qemu/range.h"
794e8f30
MT
59#ifndef _WIN32
60#include "qemu/mmap-alloc.h"
61#endif
b35ba30f 62
db7b5426 63//#define DEBUG_SUBPAGE
1196be37 64
e2eef170 65#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
66/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
0d53d9fe 69RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
70
71static MemoryRegion *system_memory;
309cb471 72static MemoryRegion *system_io;
62152b8a 73
f6790af6
AK
74AddressSpace address_space_io;
75AddressSpace address_space_memory;
2673a5da 76
0844e007 77MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 78static MemoryRegion io_mem_unassigned;
0e0df1e2 79
7bd4f430
PB
80/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81#define RAM_PREALLOC (1 << 0)
82
dbcb8981
PB
83/* RAM is mmap-ed with MAP_SHARED */
84#define RAM_SHARED (1 << 1)
85
62be4e3a
MT
86/* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89#define RAM_RESIZEABLE (1 << 2)
90
e2eef170 91#endif
9fa3e853 92
bdc44640 93struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
94/* current CPU in the current thread. It is only valid inside
95 cpu_exec() */
f240eb6f 96__thread CPUState *current_cpu;
2e70f6ef 97/* 0 = Do not count executed instructions.
bf20dc07 98 1 = Precise instruction counting.
2e70f6ef 99 2 = Adaptive rate instruction counting. */
5708fc66 100int use_icount;
6a00d601 101
e2eef170 102#if !defined(CONFIG_USER_ONLY)
4346ae3e 103
1db8abb1
PB
104typedef struct PhysPageEntry PhysPageEntry;
105
106struct PhysPageEntry {
9736e55b 107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 108 uint32_t skip : 6;
9736e55b 109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 110 uint32_t ptr : 26;
1db8abb1
PB
111};
112
8b795765
MT
113#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114
03f49957 115/* Size of the L2 (and L3, etc) page tables. */
57271d63 116#define ADDR_SPACE_BITS 64
03f49957 117
026736ce 118#define P_L2_BITS 9
03f49957
PB
119#define P_L2_SIZE (1 << P_L2_BITS)
120
121#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122
123typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 124
53cb28cb 125typedef struct PhysPageMap {
79e2b9ae
PB
126 struct rcu_head rcu;
127
53cb28cb
MA
128 unsigned sections_nb;
129 unsigned sections_nb_alloc;
130 unsigned nodes_nb;
131 unsigned nodes_nb_alloc;
132 Node *nodes;
133 MemoryRegionSection *sections;
134} PhysPageMap;
135
1db8abb1 136struct AddressSpaceDispatch {
79e2b9ae
PB
137 struct rcu_head rcu;
138
1db8abb1
PB
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
53cb28cb 143 PhysPageMap map;
acc9d80b 144 AddressSpace *as;
1db8abb1
PB
145};
146
90260c6c
JK
147#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148typedef struct subpage_t {
149 MemoryRegion iomem;
acc9d80b 150 AddressSpace *as;
90260c6c
JK
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153} subpage_t;
154
b41aac4f
LPF
155#define PHYS_SECTION_UNASSIGNED 0
156#define PHYS_SECTION_NOTDIRTY 1
157#define PHYS_SECTION_ROM 2
158#define PHYS_SECTION_WATCH 3
5312bd8b 159
e2eef170 160static void io_mem_init(void);
62152b8a 161static void memory_map_init(void);
09daed84 162static void tcg_commit(MemoryListener *listener);
e2eef170 163
1ec9b909 164static MemoryRegion io_mem_watch;
32857f4d
PM
165
166/**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178};
179
6658ffb8 180#endif
fd6ce8f6 181
6d9a1304 182#if !defined(CONFIG_USER_ONLY)
d6f2ea22 183
53cb28cb 184static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 185{
53cb28cb
MA
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 190 }
f7bf5461
AK
191}
192
db94604b 193static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
194{
195 unsigned i;
8b795765 196 uint32_t ret;
db94604b
PB
197 PhysPageEntry e;
198 PhysPageEntry *p;
f7bf5461 199
53cb28cb 200 ret = map->nodes_nb++;
db94604b 201 p = map->nodes[ret];
f7bf5461 202 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 203 assert(ret != map->nodes_nb_alloc);
db94604b
PB
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 207 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 208 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 209 }
f7bf5461 210 return ret;
d6f2ea22
AK
211}
212
53cb28cb
MA
213static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 215 int level)
f7bf5461
AK
216{
217 PhysPageEntry *p;
03f49957 218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 219
9736e55b 220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 221 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 222 }
db94604b 223 p = map->nodes[lp->ptr];
03f49957 224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 225
03f49957 226 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 227 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 228 lp->skip = 0;
c19e8800 229 lp->ptr = leaf;
07f07b31
AK
230 *index += step;
231 *nb -= step;
2999097b 232 } else {
53cb28cb 233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
234 }
235 ++lp;
f7bf5461
AK
236 }
237}
238
ac1970fb 239static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 240 hwaddr index, hwaddr nb,
2999097b 241 uint16_t leaf)
f7bf5461 242{
2999097b 243 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 245
53cb28cb 246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
247}
248
b35ba30f
MT
249/* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253{
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300}
301
302static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303{
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
53cb28cb 307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
308 }
309}
310
97115a8d 311static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 312 Node *nodes, MemoryRegionSection *sections)
92e873b9 313{
31ab2b4a 314 PhysPageEntry *p;
97115a8d 315 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 316 int i;
f1f6e3b8 317
9736e55b 318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 319 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 320 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 321 }
9affd6fc 322 p = nodes[lp.ptr];
03f49957 323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 324 }
b35ba30f
MT
325
326 if (sections[lp.ptr].size.hi ||
327 range_covers_byte(sections[lp.ptr].offset_within_address_space,
328 sections[lp.ptr].size.lo, addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
f3705d53
AK
333}
334
e5548617
BS
335bool memory_region_is_unassigned(MemoryRegion *mr)
336{
2a8e7499 337 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 338 && mr != &io_mem_watch;
fd6ce8f6 339}
149f54b5 340
79e2b9ae 341/* Called from RCU critical section */
c7086b4a 342static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
343 hwaddr addr,
344 bool resolve_subpage)
9f029603 345{
90260c6c
JK
346 MemoryRegionSection *section;
347 subpage_t *subpage;
348
53cb28cb 349 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
353 }
354 return section;
9f029603
JK
355}
356
79e2b9ae 357/* Called from RCU critical section */
90260c6c 358static MemoryRegionSection *
c7086b4a 359address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 360 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
361{
362 MemoryRegionSection *section;
965eb2fc 363 MemoryRegion *mr;
a87f3954 364 Int128 diff;
149f54b5 365
c7086b4a 366 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
965eb2fc 373 mr = section->mr;
b242e0e0
PB
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
965eb2fc 386 if (memory_region_is_ram(mr)) {
e4a511f8 387 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
149f54b5
PB
390 return section;
391}
90260c6c 392
41063e1e 393/* Called from RCU critical section */
5c8a00ce
PB
394MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
395 hwaddr *xlat, hwaddr *plen,
396 bool is_write)
90260c6c 397{
30951157
AK
398 IOMMUTLBEntry iotlb;
399 MemoryRegionSection *section;
400 MemoryRegion *mr;
30951157
AK
401
402 for (;;) {
79e2b9ae
PB
403 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
404 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
405 mr = section->mr;
406
407 if (!mr->iommu_ops) {
408 break;
409 }
410
8d7b8cb9 411 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
412 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
413 | (addr & iotlb.addr_mask));
23820dbf 414 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
415 if (!(iotlb.perm & (1 << is_write))) {
416 mr = &io_mem_unassigned;
417 break;
418 }
419
420 as = iotlb.target_as;
421 }
422
fe680d0d 423 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 424 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 425 *plen = MIN(page, *plen);
a87f3954
PB
426 }
427
30951157
AK
428 *xlat = addr;
429 return mr;
90260c6c
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433MemoryRegionSection *
d7898cda 434address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 435 hwaddr *xlat, hwaddr *plen)
90260c6c 436{
30951157 437 MemoryRegionSection *section;
d7898cda
PM
438 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
439
440 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
441
442 assert(!section->mr->iommu_ops);
443 return section;
90260c6c 444}
5b6dd868 445#endif
fd6ce8f6 446
b170fce3 447#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
448
449static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 450{
259186a7 451 CPUState *cpu = opaque;
a513fe19 452
5b6dd868
BS
453 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
454 version_id is increased. */
259186a7 455 cpu->interrupt_request &= ~0x01;
c01a71c1 456 tlb_flush(cpu, 1);
5b6dd868
BS
457
458 return 0;
a513fe19 459}
7501267e 460
6c3bff0e
PD
461static int cpu_common_pre_load(void *opaque)
462{
463 CPUState *cpu = opaque;
464
adee6424 465 cpu->exception_index = -1;
6c3bff0e
PD
466
467 return 0;
468}
469
470static bool cpu_common_exception_index_needed(void *opaque)
471{
472 CPUState *cpu = opaque;
473
adee6424 474 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
475}
476
477static const VMStateDescription vmstate_cpu_common_exception_index = {
478 .name = "cpu_common/exception_index",
479 .version_id = 1,
480 .minimum_version_id = 1,
5cd8cada 481 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
482 .fields = (VMStateField[]) {
483 VMSTATE_INT32(exception_index, CPUState),
484 VMSTATE_END_OF_LIST()
485 }
486};
487
bac05aa9
AS
488static bool cpu_common_crash_occurred_needed(void *opaque)
489{
490 CPUState *cpu = opaque;
491
492 return cpu->crash_occurred;
493}
494
495static const VMStateDescription vmstate_cpu_common_crash_occurred = {
496 .name = "cpu_common/crash_occurred",
497 .version_id = 1,
498 .minimum_version_id = 1,
499 .needed = cpu_common_crash_occurred_needed,
500 .fields = (VMStateField[]) {
501 VMSTATE_BOOL(crash_occurred, CPUState),
502 VMSTATE_END_OF_LIST()
503 }
504};
505
1a1562f5 506const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
507 .name = "cpu_common",
508 .version_id = 1,
509 .minimum_version_id = 1,
6c3bff0e 510 .pre_load = cpu_common_pre_load,
5b6dd868 511 .post_load = cpu_common_post_load,
35d08458 512 .fields = (VMStateField[]) {
259186a7
AF
513 VMSTATE_UINT32(halted, CPUState),
514 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 515 VMSTATE_END_OF_LIST()
6c3bff0e 516 },
5cd8cada
JQ
517 .subsections = (const VMStateDescription*[]) {
518 &vmstate_cpu_common_exception_index,
bac05aa9 519 &vmstate_cpu_common_crash_occurred,
5cd8cada 520 NULL
5b6dd868
BS
521 }
522};
1a1562f5 523
5b6dd868 524#endif
ea041c0e 525
38d8f5c8 526CPUState *qemu_get_cpu(int index)
ea041c0e 527{
bdc44640 528 CPUState *cpu;
ea041c0e 529
bdc44640 530 CPU_FOREACH(cpu) {
55e5c285 531 if (cpu->cpu_index == index) {
bdc44640 532 return cpu;
55e5c285 533 }
ea041c0e 534 }
5b6dd868 535
bdc44640 536 return NULL;
ea041c0e
FB
537}
538
09daed84 539#if !defined(CONFIG_USER_ONLY)
56943e8c 540void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 541{
12ebc9a7
PM
542 CPUAddressSpace *newas;
543
544 /* Target code should have set num_ases before calling us */
545 assert(asidx < cpu->num_ases);
546
56943e8c
PM
547 if (asidx == 0) {
548 /* address space 0 gets the convenience alias */
549 cpu->as = as;
550 }
551
12ebc9a7
PM
552 /* KVM cannot currently support multiple address spaces. */
553 assert(asidx == 0 || !kvm_enabled());
09daed84 554
12ebc9a7
PM
555 if (!cpu->cpu_ases) {
556 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 557 }
32857f4d 558
12ebc9a7
PM
559 newas = &cpu->cpu_ases[asidx];
560 newas->cpu = cpu;
561 newas->as = as;
56943e8c 562 if (tcg_enabled()) {
12ebc9a7
PM
563 newas->tcg_as_listener.commit = tcg_commit;
564 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 565 }
09daed84 566}
651a5bc0
PM
567
568AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
569{
570 /* Return the AddressSpace corresponding to the specified index */
571 return cpu->cpu_ases[asidx].as;
572}
09daed84
EI
573#endif
574
b7bca733
BR
575#ifndef CONFIG_USER_ONLY
576static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
577
578static int cpu_get_free_index(Error **errp)
579{
580 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
581
582 if (cpu >= MAX_CPUMASK_BITS) {
583 error_setg(errp, "Trying to use more CPUs than max of %d",
584 MAX_CPUMASK_BITS);
585 return -1;
586 }
587
588 bitmap_set(cpu_index_map, cpu, 1);
589 return cpu;
590}
591
592void cpu_exec_exit(CPUState *cpu)
593{
594 if (cpu->cpu_index == -1) {
595 /* cpu_index was never allocated by this @cpu or was already freed. */
596 return;
597 }
598
599 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
600 cpu->cpu_index = -1;
601}
602#else
603
604static int cpu_get_free_index(Error **errp)
605{
606 CPUState *some_cpu;
607 int cpu_index = 0;
608
609 CPU_FOREACH(some_cpu) {
610 cpu_index++;
611 }
612 return cpu_index;
613}
614
615void cpu_exec_exit(CPUState *cpu)
616{
617}
618#endif
619
4bad9e39 620void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 621{
b170fce3 622 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 623 int cpu_index;
b7bca733 624 Error *local_err = NULL;
5b6dd868 625
56943e8c 626 cpu->as = NULL;
12ebc9a7 627 cpu->num_ases = 0;
56943e8c 628
291135b5 629#ifndef CONFIG_USER_ONLY
291135b5 630 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
631
632 /* This is a softmmu CPU object, so create a property for it
633 * so users can wire up its memory. (This can't go in qom/cpu.c
634 * because that file is compiled only once for both user-mode
635 * and system builds.) The default if no link is set up is to use
636 * the system address space.
637 */
638 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
639 (Object **)&cpu->memory,
640 qdev_prop_allow_set_link_before_realize,
641 OBJ_PROP_LINK_UNREF_ON_RELEASE,
642 &error_abort);
643 cpu->memory = system_memory;
644 object_ref(OBJECT(cpu->memory));
291135b5
EH
645#endif
646
5b6dd868
BS
647#if defined(CONFIG_USER_ONLY)
648 cpu_list_lock();
649#endif
b7bca733
BR
650 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
651 if (local_err) {
652 error_propagate(errp, local_err);
653#if defined(CONFIG_USER_ONLY)
654 cpu_list_unlock();
655#endif
656 return;
5b6dd868 657 }
bdc44640 658 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
659#if defined(CONFIG_USER_ONLY)
660 cpu_list_unlock();
661#endif
e0d47944
AF
662 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
663 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
664 }
5b6dd868 665#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868 666 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
4bad9e39 667 cpu_save, cpu_load, cpu->env_ptr);
b170fce3 668 assert(cc->vmsd == NULL);
e0d47944 669 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 670#endif
b170fce3
AF
671 if (cc->vmsd != NULL) {
672 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
673 }
ea041c0e
FB
674}
675
94df27fd 676#if defined(CONFIG_USER_ONLY)
00b941e5 677static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
678{
679 tb_invalidate_phys_page_range(pc, pc + 1, 0);
680}
681#else
00b941e5 682static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 683{
5232e4c7
PM
684 MemTxAttrs attrs;
685 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
686 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 687 if (phys != -1) {
5232e4c7 688 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 689 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 690 }
1e7855a5 691}
c27004ec 692#endif
d720b93d 693
c527ee8f 694#if defined(CONFIG_USER_ONLY)
75a34036 695void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
696
697{
698}
699
3ee887e8
PM
700int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
701 int flags)
702{
703 return -ENOSYS;
704}
705
706void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
707{
708}
709
75a34036 710int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
711 int flags, CPUWatchpoint **watchpoint)
712{
713 return -ENOSYS;
714}
715#else
6658ffb8 716/* Add a watchpoint. */
75a34036 717int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 718 int flags, CPUWatchpoint **watchpoint)
6658ffb8 719{
c0ce998e 720 CPUWatchpoint *wp;
6658ffb8 721
05068c0d 722 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 723 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
724 error_report("tried to set invalid watchpoint at %"
725 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
726 return -EINVAL;
727 }
7267c094 728 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
729
730 wp->vaddr = addr;
05068c0d 731 wp->len = len;
a1d1bb31
AL
732 wp->flags = flags;
733
2dc9f411 734 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
735 if (flags & BP_GDB) {
736 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
737 } else {
738 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
739 }
6658ffb8 740
31b030d4 741 tlb_flush_page(cpu, addr);
a1d1bb31
AL
742
743 if (watchpoint)
744 *watchpoint = wp;
745 return 0;
6658ffb8
PB
746}
747
a1d1bb31 748/* Remove a specific watchpoint. */
75a34036 749int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 750 int flags)
6658ffb8 751{
a1d1bb31 752 CPUWatchpoint *wp;
6658ffb8 753
ff4700b0 754 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 755 if (addr == wp->vaddr && len == wp->len
6e140f28 756 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 757 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
758 return 0;
759 }
760 }
a1d1bb31 761 return -ENOENT;
6658ffb8
PB
762}
763
a1d1bb31 764/* Remove a specific watchpoint by reference. */
75a34036 765void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 766{
ff4700b0 767 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 768
31b030d4 769 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 770
7267c094 771 g_free(watchpoint);
a1d1bb31
AL
772}
773
774/* Remove all matching watchpoints. */
75a34036 775void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 776{
c0ce998e 777 CPUWatchpoint *wp, *next;
a1d1bb31 778
ff4700b0 779 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
780 if (wp->flags & mask) {
781 cpu_watchpoint_remove_by_ref(cpu, wp);
782 }
c0ce998e 783 }
7d03f82f 784}
05068c0d
PM
785
786/* Return true if this watchpoint address matches the specified
787 * access (ie the address range covered by the watchpoint overlaps
788 * partially or completely with the address range covered by the
789 * access).
790 */
791static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
792 vaddr addr,
793 vaddr len)
794{
795 /* We know the lengths are non-zero, but a little caution is
796 * required to avoid errors in the case where the range ends
797 * exactly at the top of the address space and so addr + len
798 * wraps round to zero.
799 */
800 vaddr wpend = wp->vaddr + wp->len - 1;
801 vaddr addrend = addr + len - 1;
802
803 return !(addr > wpend || wp->vaddr > addrend);
804}
805
c527ee8f 806#endif
7d03f82f 807
a1d1bb31 808/* Add a breakpoint. */
b3310ab3 809int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 810 CPUBreakpoint **breakpoint)
4c3a88a2 811{
c0ce998e 812 CPUBreakpoint *bp;
3b46e624 813
7267c094 814 bp = g_malloc(sizeof(*bp));
4c3a88a2 815
a1d1bb31
AL
816 bp->pc = pc;
817 bp->flags = flags;
818
2dc9f411 819 /* keep all GDB-injected breakpoints in front */
00b941e5 820 if (flags & BP_GDB) {
f0c3c505 821 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 822 } else {
f0c3c505 823 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 824 }
3b46e624 825
f0c3c505 826 breakpoint_invalidate(cpu, pc);
a1d1bb31 827
00b941e5 828 if (breakpoint) {
a1d1bb31 829 *breakpoint = bp;
00b941e5 830 }
4c3a88a2 831 return 0;
4c3a88a2
FB
832}
833
a1d1bb31 834/* Remove a specific breakpoint. */
b3310ab3 835int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 836{
a1d1bb31
AL
837 CPUBreakpoint *bp;
838
f0c3c505 839 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 840 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 841 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
842 return 0;
843 }
7d03f82f 844 }
a1d1bb31 845 return -ENOENT;
7d03f82f
EI
846}
847
a1d1bb31 848/* Remove a specific breakpoint by reference. */
b3310ab3 849void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 850{
f0c3c505
AF
851 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
852
853 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 854
7267c094 855 g_free(breakpoint);
a1d1bb31
AL
856}
857
858/* Remove all matching breakpoints. */
b3310ab3 859void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 860{
c0ce998e 861 CPUBreakpoint *bp, *next;
a1d1bb31 862
f0c3c505 863 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
864 if (bp->flags & mask) {
865 cpu_breakpoint_remove_by_ref(cpu, bp);
866 }
c0ce998e 867 }
4c3a88a2
FB
868}
869
c33a346e
FB
870/* enable or disable single step mode. EXCP_DEBUG is returned by the
871 CPU loop after each instruction */
3825b28f 872void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 873{
ed2803da
AF
874 if (cpu->singlestep_enabled != enabled) {
875 cpu->singlestep_enabled = enabled;
876 if (kvm_enabled()) {
38e478ec 877 kvm_update_guest_debug(cpu, 0);
ed2803da 878 } else {
ccbb4d44 879 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 880 /* XXX: only flush what is necessary */
bbd77c18 881 tb_flush(cpu);
e22a25c9 882 }
c33a346e 883 }
c33a346e
FB
884}
885
a47dddd7 886void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
887{
888 va_list ap;
493ae1f0 889 va_list ap2;
7501267e
FB
890
891 va_start(ap, fmt);
493ae1f0 892 va_copy(ap2, ap);
7501267e
FB
893 fprintf(stderr, "qemu: fatal: ");
894 vfprintf(stderr, fmt, ap);
895 fprintf(stderr, "\n");
878096ee 896 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 897 if (qemu_log_separate()) {
93fcfe39
AL
898 qemu_log("qemu: fatal: ");
899 qemu_log_vprintf(fmt, ap2);
900 qemu_log("\n");
a0762859 901 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 902 qemu_log_flush();
93fcfe39 903 qemu_log_close();
924edcae 904 }
493ae1f0 905 va_end(ap2);
f9373291 906 va_end(ap);
7615936e 907 replay_finish();
fd052bf6
RV
908#if defined(CONFIG_USER_ONLY)
909 {
910 struct sigaction act;
911 sigfillset(&act.sa_mask);
912 act.sa_handler = SIG_DFL;
913 sigaction(SIGABRT, &act, NULL);
914 }
915#endif
7501267e
FB
916 abort();
917}
918
0124311e 919#if !defined(CONFIG_USER_ONLY)
0dc3f44a 920/* Called from RCU critical section */
041603fe
PB
921static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
922{
923 RAMBlock *block;
924
43771539 925 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 926 if (block && addr - block->offset < block->max_length) {
68851b98 927 return block;
041603fe 928 }
0dc3f44a 929 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 930 if (addr - block->offset < block->max_length) {
041603fe
PB
931 goto found;
932 }
933 }
934
935 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
936 abort();
937
938found:
43771539
PB
939 /* It is safe to write mru_block outside the iothread lock. This
940 * is what happens:
941 *
942 * mru_block = xxx
943 * rcu_read_unlock()
944 * xxx removed from list
945 * rcu_read_lock()
946 * read mru_block
947 * mru_block = NULL;
948 * call_rcu(reclaim_ramblock, xxx);
949 * rcu_read_unlock()
950 *
951 * atomic_rcu_set is not needed here. The block was already published
952 * when it was placed into the list. Here we're just making an extra
953 * copy of the pointer.
954 */
041603fe
PB
955 ram_list.mru_block = block;
956 return block;
957}
958
a2f4d5be 959static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 960{
9a13565d 961 CPUState *cpu;
041603fe 962 ram_addr_t start1;
a2f4d5be
JQ
963 RAMBlock *block;
964 ram_addr_t end;
965
966 end = TARGET_PAGE_ALIGN(start + length);
967 start &= TARGET_PAGE_MASK;
d24981d3 968
0dc3f44a 969 rcu_read_lock();
041603fe
PB
970 block = qemu_get_ram_block(start);
971 assert(block == qemu_get_ram_block(end - 1));
1240be24 972 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
973 CPU_FOREACH(cpu) {
974 tlb_reset_dirty(cpu, start1, length);
975 }
0dc3f44a 976 rcu_read_unlock();
d24981d3
JQ
977}
978
5579c7f3 979/* Note: start and end must be within the same ram block. */
03eebc9e
SH
980bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
981 ram_addr_t length,
982 unsigned client)
1ccde1cb 983{
03eebc9e
SH
984 unsigned long end, page;
985 bool dirty;
986
987 if (length == 0) {
988 return false;
989 }
f23db169 990
03eebc9e
SH
991 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
992 page = start >> TARGET_PAGE_BITS;
993 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
994 page, end - page);
995
996 if (dirty && tcg_enabled()) {
a2f4d5be 997 tlb_reset_dirty_range_all(start, length);
5579c7f3 998 }
03eebc9e
SH
999
1000 return dirty;
1ccde1cb
FB
1001}
1002
79e2b9ae 1003/* Called from RCU critical section */
bb0e627a 1004hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1005 MemoryRegionSection *section,
1006 target_ulong vaddr,
1007 hwaddr paddr, hwaddr xlat,
1008 int prot,
1009 target_ulong *address)
e5548617 1010{
a8170e5e 1011 hwaddr iotlb;
e5548617
BS
1012 CPUWatchpoint *wp;
1013
cc5bea60 1014 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1015 /* Normal RAM. */
1016 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1017 + xlat;
e5548617 1018 if (!section->readonly) {
b41aac4f 1019 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1020 } else {
b41aac4f 1021 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1022 }
1023 } else {
0b8e2c10
PM
1024 AddressSpaceDispatch *d;
1025
1026 d = atomic_rcu_read(&section->address_space->dispatch);
1027 iotlb = section - d->map.sections;
149f54b5 1028 iotlb += xlat;
e5548617
BS
1029 }
1030
1031 /* Make accesses to pages with watchpoints go via the
1032 watchpoint trap routines. */
ff4700b0 1033 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1034 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1035 /* Avoid trapping reads of pages with a write breakpoint. */
1036 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1037 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1038 *address |= TLB_MMIO;
1039 break;
1040 }
1041 }
1042 }
1043
1044 return iotlb;
1045}
9fa3e853
FB
1046#endif /* defined(CONFIG_USER_ONLY) */
1047
e2eef170 1048#if !defined(CONFIG_USER_ONLY)
8da3ff18 1049
c227f099 1050static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1051 uint16_t section);
acc9d80b 1052static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1053
a2b257d6
IM
1054static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1055 qemu_anon_ram_alloc;
91138037
MA
1056
1057/*
1058 * Set a custom physical guest memory alloator.
1059 * Accelerators with unusual needs may need this. Hopefully, we can
1060 * get rid of it eventually.
1061 */
a2b257d6 1062void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1063{
1064 phys_mem_alloc = alloc;
1065}
1066
53cb28cb
MA
1067static uint16_t phys_section_add(PhysPageMap *map,
1068 MemoryRegionSection *section)
5312bd8b 1069{
68f3f65b
PB
1070 /* The physical section number is ORed with a page-aligned
1071 * pointer to produce the iotlb entries. Thus it should
1072 * never overflow into the page-aligned value.
1073 */
53cb28cb 1074 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1075
53cb28cb
MA
1076 if (map->sections_nb == map->sections_nb_alloc) {
1077 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1078 map->sections = g_renew(MemoryRegionSection, map->sections,
1079 map->sections_nb_alloc);
5312bd8b 1080 }
53cb28cb 1081 map->sections[map->sections_nb] = *section;
dfde4e6e 1082 memory_region_ref(section->mr);
53cb28cb 1083 return map->sections_nb++;
5312bd8b
AK
1084}
1085
058bc4b5
PB
1086static void phys_section_destroy(MemoryRegion *mr)
1087{
55b4e80b
DS
1088 bool have_sub_page = mr->subpage;
1089
dfde4e6e
PB
1090 memory_region_unref(mr);
1091
55b4e80b 1092 if (have_sub_page) {
058bc4b5 1093 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1094 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1095 g_free(subpage);
1096 }
1097}
1098
6092666e 1099static void phys_sections_free(PhysPageMap *map)
5312bd8b 1100{
9affd6fc
PB
1101 while (map->sections_nb > 0) {
1102 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1103 phys_section_destroy(section->mr);
1104 }
9affd6fc
PB
1105 g_free(map->sections);
1106 g_free(map->nodes);
5312bd8b
AK
1107}
1108
ac1970fb 1109static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1110{
1111 subpage_t *subpage;
a8170e5e 1112 hwaddr base = section->offset_within_address_space
0f0cb164 1113 & TARGET_PAGE_MASK;
97115a8d 1114 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1115 d->map.nodes, d->map.sections);
0f0cb164
AK
1116 MemoryRegionSection subsection = {
1117 .offset_within_address_space = base,
052e87b0 1118 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1119 };
a8170e5e 1120 hwaddr start, end;
0f0cb164 1121
f3705d53 1122 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1123
f3705d53 1124 if (!(existing->mr->subpage)) {
acc9d80b 1125 subpage = subpage_init(d->as, base);
3be91e86 1126 subsection.address_space = d->as;
0f0cb164 1127 subsection.mr = &subpage->iomem;
ac1970fb 1128 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1129 phys_section_add(&d->map, &subsection));
0f0cb164 1130 } else {
f3705d53 1131 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1132 }
1133 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1134 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1135 subpage_register(subpage, start, end,
1136 phys_section_add(&d->map, section));
0f0cb164
AK
1137}
1138
1139
052e87b0
PB
1140static void register_multipage(AddressSpaceDispatch *d,
1141 MemoryRegionSection *section)
33417e70 1142{
a8170e5e 1143 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1144 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1145 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1146 TARGET_PAGE_BITS));
dd81124b 1147
733d5ef5
PB
1148 assert(num_pages);
1149 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1150}
1151
ac1970fb 1152static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1153{
89ae337a 1154 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1155 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1156 MemoryRegionSection now = *section, remain = *section;
052e87b0 1157 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1158
733d5ef5
PB
1159 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1160 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1161 - now.offset_within_address_space;
1162
052e87b0 1163 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1164 register_subpage(d, &now);
733d5ef5 1165 } else {
052e87b0 1166 now.size = int128_zero();
733d5ef5 1167 }
052e87b0
PB
1168 while (int128_ne(remain.size, now.size)) {
1169 remain.size = int128_sub(remain.size, now.size);
1170 remain.offset_within_address_space += int128_get64(now.size);
1171 remain.offset_within_region += int128_get64(now.size);
69b67646 1172 now = remain;
052e87b0 1173 if (int128_lt(remain.size, page_size)) {
733d5ef5 1174 register_subpage(d, &now);
88266249 1175 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1176 now.size = page_size;
ac1970fb 1177 register_subpage(d, &now);
69b67646 1178 } else {
052e87b0 1179 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1180 register_multipage(d, &now);
69b67646 1181 }
0f0cb164
AK
1182 }
1183}
1184
62a2744c
SY
1185void qemu_flush_coalesced_mmio_buffer(void)
1186{
1187 if (kvm_enabled())
1188 kvm_flush_coalesced_mmio_buffer();
1189}
1190
b2a8658e
UD
1191void qemu_mutex_lock_ramlist(void)
1192{
1193 qemu_mutex_lock(&ram_list.mutex);
1194}
1195
1196void qemu_mutex_unlock_ramlist(void)
1197{
1198 qemu_mutex_unlock(&ram_list.mutex);
1199}
1200
e1e84ba0 1201#ifdef __linux__
c902760f
MT
1202
1203#include <sys/vfs.h>
1204
1205#define HUGETLBFS_MAGIC 0x958458f6
1206
fc7a5800 1207static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1208{
1209 struct statfs fs;
1210 int ret;
1211
1212 do {
9742bf26 1213 ret = statfs(path, &fs);
c902760f
MT
1214 } while (ret != 0 && errno == EINTR);
1215
1216 if (ret != 0) {
fc7a5800
HT
1217 error_setg_errno(errp, errno, "failed to get page size of file %s",
1218 path);
9742bf26 1219 return 0;
c902760f
MT
1220 }
1221
c902760f
MT
1222 return fs.f_bsize;
1223}
1224
04b16653
AW
1225static void *file_ram_alloc(RAMBlock *block,
1226 ram_addr_t memory,
7f56e740
PB
1227 const char *path,
1228 Error **errp)
c902760f 1229{
8d31d6b6 1230 struct stat st;
c902760f 1231 char *filename;
8ca761f6
PF
1232 char *sanitized_name;
1233 char *c;
794e8f30 1234 void *area;
c902760f 1235 int fd;
557529dd 1236 uint64_t hpagesize;
fc7a5800 1237 Error *local_err = NULL;
c902760f 1238
fc7a5800
HT
1239 hpagesize = gethugepagesize(path, &local_err);
1240 if (local_err) {
1241 error_propagate(errp, local_err);
f9a49dfa 1242 goto error;
c902760f 1243 }
a2b257d6 1244 block->mr->align = hpagesize;
c902760f
MT
1245
1246 if (memory < hpagesize) {
557529dd
HT
1247 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1248 "or larger than huge page size 0x%" PRIx64,
1249 memory, hpagesize);
1250 goto error;
c902760f
MT
1251 }
1252
1253 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1254 error_setg(errp,
1255 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1256 goto error;
c902760f
MT
1257 }
1258
8d31d6b6
PF
1259 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1260 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1261 sanitized_name = g_strdup(memory_region_name(block->mr));
1262 for (c = sanitized_name; *c != '\0'; c++) {
1263 if (*c == '/') {
1264 *c = '_';
1265 }
1266 }
8ca761f6 1267
8d31d6b6
PF
1268 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1269 sanitized_name);
1270 g_free(sanitized_name);
1271
1272 fd = mkstemp(filename);
1273 if (fd >= 0) {
1274 unlink(filename);
1275 }
1276 g_free(filename);
1277 } else {
1278 fd = open(path, O_RDWR | O_CREAT, 0644);
1279 }
c902760f 1280
c902760f 1281 if (fd < 0) {
7f56e740
PB
1282 error_setg_errno(errp, errno,
1283 "unable to create backing store for hugepages");
f9a49dfa 1284 goto error;
c902760f 1285 }
c902760f 1286
9284f319 1287 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1288
1289 /*
1290 * ftruncate is not supported by hugetlbfs in older
1291 * hosts, so don't bother bailing out on errors.
1292 * If anything goes wrong with it under other filesystems,
1293 * mmap will fail.
1294 */
7f56e740 1295 if (ftruncate(fd, memory)) {
9742bf26 1296 perror("ftruncate");
7f56e740 1297 }
c902760f 1298
794e8f30 1299 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1300 if (area == MAP_FAILED) {
7f56e740
PB
1301 error_setg_errno(errp, errno,
1302 "unable to map backing store for hugepages");
9742bf26 1303 close(fd);
f9a49dfa 1304 goto error;
c902760f 1305 }
ef36fa14
MT
1306
1307 if (mem_prealloc) {
38183310 1308 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1309 }
1310
04b16653 1311 block->fd = fd;
c902760f 1312 return area;
f9a49dfa
MT
1313
1314error:
f9a49dfa 1315 return NULL;
c902760f
MT
1316}
1317#endif
1318
0dc3f44a 1319/* Called with the ramlist lock held. */
d17b5288 1320static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1321{
1322 RAMBlock *block, *next_block;
3e837b2c 1323 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1324
49cd9ac6
SH
1325 assert(size != 0); /* it would hand out same offset multiple times */
1326
0dc3f44a 1327 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1328 return 0;
0d53d9fe 1329 }
04b16653 1330
0dc3f44a 1331 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1332 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1333
62be4e3a 1334 end = block->offset + block->max_length;
04b16653 1335
0dc3f44a 1336 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1337 if (next_block->offset >= end) {
1338 next = MIN(next, next_block->offset);
1339 }
1340 }
1341 if (next - end >= size && next - end < mingap) {
3e837b2c 1342 offset = end;
04b16653
AW
1343 mingap = next - end;
1344 }
1345 }
3e837b2c
AW
1346
1347 if (offset == RAM_ADDR_MAX) {
1348 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1349 (uint64_t)size);
1350 abort();
1351 }
1352
04b16653
AW
1353 return offset;
1354}
1355
652d7ec2 1356ram_addr_t last_ram_offset(void)
d17b5288
AW
1357{
1358 RAMBlock *block;
1359 ram_addr_t last = 0;
1360
0dc3f44a
MD
1361 rcu_read_lock();
1362 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1363 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1364 }
0dc3f44a 1365 rcu_read_unlock();
d17b5288
AW
1366 return last;
1367}
1368
ddb97f1d
JB
1369static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1370{
1371 int ret;
ddb97f1d
JB
1372
1373 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1374 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1375 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1376 if (ret) {
1377 perror("qemu_madvise");
1378 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1379 "but dump_guest_core=off specified\n");
1380 }
1381 }
1382}
1383
0dc3f44a
MD
1384/* Called within an RCU critical section, or while the ramlist lock
1385 * is held.
1386 */
20cfe881 1387static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1388{
20cfe881 1389 RAMBlock *block;
84b89d78 1390
0dc3f44a 1391 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1392 if (block->offset == addr) {
20cfe881 1393 return block;
c5705a77
AK
1394 }
1395 }
20cfe881
HT
1396
1397 return NULL;
1398}
1399
422148d3
DDAG
1400const char *qemu_ram_get_idstr(RAMBlock *rb)
1401{
1402 return rb->idstr;
1403}
1404
ae3a7047 1405/* Called with iothread lock held. */
20cfe881
HT
1406void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1407{
ae3a7047 1408 RAMBlock *new_block, *block;
20cfe881 1409
0dc3f44a 1410 rcu_read_lock();
ae3a7047 1411 new_block = find_ram_block(addr);
c5705a77
AK
1412 assert(new_block);
1413 assert(!new_block->idstr[0]);
84b89d78 1414
09e5ab63
AL
1415 if (dev) {
1416 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1417 if (id) {
1418 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1419 g_free(id);
84b89d78
CM
1420 }
1421 }
1422 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1423
0dc3f44a 1424 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1425 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1426 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1427 new_block->idstr);
1428 abort();
1429 }
1430 }
0dc3f44a 1431 rcu_read_unlock();
c5705a77
AK
1432}
1433
ae3a7047 1434/* Called with iothread lock held. */
20cfe881
HT
1435void qemu_ram_unset_idstr(ram_addr_t addr)
1436{
ae3a7047 1437 RAMBlock *block;
20cfe881 1438
ae3a7047
MD
1439 /* FIXME: arch_init.c assumes that this is not called throughout
1440 * migration. Ignore the problem since hot-unplug during migration
1441 * does not work anyway.
1442 */
1443
0dc3f44a 1444 rcu_read_lock();
ae3a7047 1445 block = find_ram_block(addr);
20cfe881
HT
1446 if (block) {
1447 memset(block->idstr, 0, sizeof(block->idstr));
1448 }
0dc3f44a 1449 rcu_read_unlock();
20cfe881
HT
1450}
1451
8490fc78
LC
1452static int memory_try_enable_merging(void *addr, size_t len)
1453{
75cc7f01 1454 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1455 /* disabled by the user */
1456 return 0;
1457 }
1458
1459 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1460}
1461
62be4e3a
MT
1462/* Only legal before guest might have detected the memory size: e.g. on
1463 * incoming migration, or right after reset.
1464 *
1465 * As memory core doesn't know how is memory accessed, it is up to
1466 * resize callback to update device state and/or add assertions to detect
1467 * misuse, if necessary.
1468 */
1469int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1470{
1471 RAMBlock *block = find_ram_block(base);
1472
1473 assert(block);
1474
4ed023ce 1475 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1476
62be4e3a
MT
1477 if (block->used_length == newsize) {
1478 return 0;
1479 }
1480
1481 if (!(block->flags & RAM_RESIZEABLE)) {
1482 error_setg_errno(errp, EINVAL,
1483 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1484 " in != 0x" RAM_ADDR_FMT, block->idstr,
1485 newsize, block->used_length);
1486 return -EINVAL;
1487 }
1488
1489 if (block->max_length < newsize) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length too large: %s: 0x" RAM_ADDR_FMT
1492 " > 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->max_length);
1494 return -EINVAL;
1495 }
1496
1497 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1498 block->used_length = newsize;
58d2707e
PB
1499 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1500 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1501 memory_region_set_size(block->mr, newsize);
1502 if (block->resized) {
1503 block->resized(block->idstr, newsize, block->host);
1504 }
1505 return 0;
1506}
1507
ef701d7b 1508static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1509{
e1c57ab8 1510 RAMBlock *block;
0d53d9fe 1511 RAMBlock *last_block = NULL;
2152f5ca
JQ
1512 ram_addr_t old_ram_size, new_ram_size;
1513
1514 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1515
b2a8658e 1516 qemu_mutex_lock_ramlist();
9b8424d5 1517 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1518
1519 if (!new_block->host) {
1520 if (xen_enabled()) {
9b8424d5
MT
1521 xen_ram_alloc(new_block->offset, new_block->max_length,
1522 new_block->mr);
e1c57ab8 1523 } else {
9b8424d5 1524 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1525 &new_block->mr->align);
39228250 1526 if (!new_block->host) {
ef701d7b
HT
1527 error_setg_errno(errp, errno,
1528 "cannot set up guest memory '%s'",
1529 memory_region_name(new_block->mr));
1530 qemu_mutex_unlock_ramlist();
1531 return -1;
39228250 1532 }
9b8424d5 1533 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1534 }
c902760f 1535 }
94a6b54f 1536
dd631697
LZ
1537 new_ram_size = MAX(old_ram_size,
1538 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1539 if (new_ram_size > old_ram_size) {
1540 migration_bitmap_extend(old_ram_size, new_ram_size);
1541 }
0d53d9fe
MD
1542 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1543 * QLIST (which has an RCU-friendly variant) does not have insertion at
1544 * tail, so save the last element in last_block.
1545 */
0dc3f44a 1546 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1547 last_block = block;
9b8424d5 1548 if (block->max_length < new_block->max_length) {
abb26d63
PB
1549 break;
1550 }
1551 }
1552 if (block) {
0dc3f44a 1553 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1554 } else if (last_block) {
0dc3f44a 1555 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1556 } else { /* list is empty */
0dc3f44a 1557 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1558 }
0d6d3c87 1559 ram_list.mru_block = NULL;
94a6b54f 1560
0dc3f44a
MD
1561 /* Write list before version */
1562 smp_wmb();
f798b07f 1563 ram_list.version++;
b2a8658e 1564 qemu_mutex_unlock_ramlist();
f798b07f 1565
2152f5ca
JQ
1566 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1567
1568 if (new_ram_size > old_ram_size) {
1ab4c8ce 1569 int i;
ae3a7047
MD
1570
1571 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1572 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1573 ram_list.dirty_memory[i] =
1574 bitmap_zero_extend(ram_list.dirty_memory[i],
1575 old_ram_size, new_ram_size);
1576 }
2152f5ca 1577 }
9b8424d5 1578 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1579 new_block->used_length,
1580 DIRTY_CLIENTS_ALL);
94a6b54f 1581
a904c911
PB
1582 if (new_block->host) {
1583 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1584 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1585 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1586 if (kvm_enabled()) {
1587 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1588 }
e1c57ab8 1589 }
6f0437e8 1590
94a6b54f
PB
1591 return new_block->offset;
1592}
e9a1ab19 1593
0b183fc8 1594#ifdef __linux__
e1c57ab8 1595ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1596 bool share, const char *mem_path,
7f56e740 1597 Error **errp)
e1c57ab8
PB
1598{
1599 RAMBlock *new_block;
ef701d7b
HT
1600 ram_addr_t addr;
1601 Error *local_err = NULL;
e1c57ab8
PB
1602
1603 if (xen_enabled()) {
7f56e740
PB
1604 error_setg(errp, "-mem-path not supported with Xen");
1605 return -1;
e1c57ab8
PB
1606 }
1607
1608 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1609 /*
1610 * file_ram_alloc() needs to allocate just like
1611 * phys_mem_alloc, but we haven't bothered to provide
1612 * a hook there.
1613 */
7f56e740
PB
1614 error_setg(errp,
1615 "-mem-path not supported with this accelerator");
1616 return -1;
e1c57ab8
PB
1617 }
1618
4ed023ce 1619 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1620 new_block = g_malloc0(sizeof(*new_block));
1621 new_block->mr = mr;
9b8424d5
MT
1622 new_block->used_length = size;
1623 new_block->max_length = size;
dbcb8981 1624 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1625 new_block->host = file_ram_alloc(new_block, size,
1626 mem_path, errp);
1627 if (!new_block->host) {
1628 g_free(new_block);
1629 return -1;
1630 }
1631
ef701d7b
HT
1632 addr = ram_block_add(new_block, &local_err);
1633 if (local_err) {
1634 g_free(new_block);
1635 error_propagate(errp, local_err);
1636 return -1;
1637 }
1638 return addr;
e1c57ab8 1639}
0b183fc8 1640#endif
e1c57ab8 1641
62be4e3a
MT
1642static
1643ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1644 void (*resized)(const char*,
1645 uint64_t length,
1646 void *host),
1647 void *host, bool resizeable,
ef701d7b 1648 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1649{
1650 RAMBlock *new_block;
ef701d7b
HT
1651 ram_addr_t addr;
1652 Error *local_err = NULL;
e1c57ab8 1653
4ed023ce
DDAG
1654 size = HOST_PAGE_ALIGN(size);
1655 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1656 new_block = g_malloc0(sizeof(*new_block));
1657 new_block->mr = mr;
62be4e3a 1658 new_block->resized = resized;
9b8424d5
MT
1659 new_block->used_length = size;
1660 new_block->max_length = max_size;
62be4e3a 1661 assert(max_size >= size);
e1c57ab8
PB
1662 new_block->fd = -1;
1663 new_block->host = host;
1664 if (host) {
7bd4f430 1665 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1666 }
62be4e3a
MT
1667 if (resizeable) {
1668 new_block->flags |= RAM_RESIZEABLE;
1669 }
ef701d7b
HT
1670 addr = ram_block_add(new_block, &local_err);
1671 if (local_err) {
1672 g_free(new_block);
1673 error_propagate(errp, local_err);
1674 return -1;
1675 }
1676 return addr;
e1c57ab8
PB
1677}
1678
62be4e3a
MT
1679ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1680 MemoryRegion *mr, Error **errp)
1681{
1682 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1683}
1684
ef701d7b 1685ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1686{
62be4e3a
MT
1687 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1688}
1689
1690ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1691 void (*resized)(const char*,
1692 uint64_t length,
1693 void *host),
1694 MemoryRegion *mr, Error **errp)
1695{
1696 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1697}
1698
43771539
PB
1699static void reclaim_ramblock(RAMBlock *block)
1700{
1701 if (block->flags & RAM_PREALLOC) {
1702 ;
1703 } else if (xen_enabled()) {
1704 xen_invalidate_map_cache_entry(block->host);
1705#ifndef _WIN32
1706 } else if (block->fd >= 0) {
2f3a2bb1 1707 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1708 close(block->fd);
1709#endif
1710 } else {
1711 qemu_anon_ram_free(block->host, block->max_length);
1712 }
1713 g_free(block);
1714}
1715
c227f099 1716void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1717{
04b16653
AW
1718 RAMBlock *block;
1719
b2a8658e 1720 qemu_mutex_lock_ramlist();
0dc3f44a 1721 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1722 if (addr == block->offset) {
0dc3f44a 1723 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1724 ram_list.mru_block = NULL;
0dc3f44a
MD
1725 /* Write list before version */
1726 smp_wmb();
f798b07f 1727 ram_list.version++;
43771539 1728 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1729 break;
04b16653
AW
1730 }
1731 }
b2a8658e 1732 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1733}
1734
cd19cfa2
HY
1735#ifndef _WIN32
1736void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1737{
1738 RAMBlock *block;
1739 ram_addr_t offset;
1740 int flags;
1741 void *area, *vaddr;
1742
0dc3f44a 1743 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1744 offset = addr - block->offset;
9b8424d5 1745 if (offset < block->max_length) {
1240be24 1746 vaddr = ramblock_ptr(block, offset);
7bd4f430 1747 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1748 ;
dfeaf2ab
MA
1749 } else if (xen_enabled()) {
1750 abort();
cd19cfa2
HY
1751 } else {
1752 flags = MAP_FIXED;
3435f395 1753 if (block->fd >= 0) {
dbcb8981
PB
1754 flags |= (block->flags & RAM_SHARED ?
1755 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1756 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1757 flags, block->fd, offset);
cd19cfa2 1758 } else {
2eb9fbaa
MA
1759 /*
1760 * Remap needs to match alloc. Accelerators that
1761 * set phys_mem_alloc never remap. If they did,
1762 * we'd need a remap hook here.
1763 */
1764 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1765
cd19cfa2
HY
1766 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1767 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1768 flags, -1, 0);
cd19cfa2
HY
1769 }
1770 if (area != vaddr) {
f15fbc4b
AP
1771 fprintf(stderr, "Could not remap addr: "
1772 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1773 length, addr);
1774 exit(1);
1775 }
8490fc78 1776 memory_try_enable_merging(vaddr, length);
ddb97f1d 1777 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1778 }
cd19cfa2
HY
1779 }
1780 }
1781}
1782#endif /* !_WIN32 */
1783
a35ba7be
PB
1784int qemu_get_ram_fd(ram_addr_t addr)
1785{
ae3a7047
MD
1786 RAMBlock *block;
1787 int fd;
a35ba7be 1788
0dc3f44a 1789 rcu_read_lock();
ae3a7047
MD
1790 block = qemu_get_ram_block(addr);
1791 fd = block->fd;
0dc3f44a 1792 rcu_read_unlock();
ae3a7047 1793 return fd;
a35ba7be
PB
1794}
1795
56a571d9
TM
1796void qemu_set_ram_fd(ram_addr_t addr, int fd)
1797{
1798 RAMBlock *block;
1799
1800 rcu_read_lock();
1801 block = qemu_get_ram_block(addr);
1802 block->fd = fd;
1803 rcu_read_unlock();
1804}
1805
3fd74b84
DM
1806void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1807{
ae3a7047
MD
1808 RAMBlock *block;
1809 void *ptr;
3fd74b84 1810
0dc3f44a 1811 rcu_read_lock();
ae3a7047
MD
1812 block = qemu_get_ram_block(addr);
1813 ptr = ramblock_ptr(block, 0);
0dc3f44a 1814 rcu_read_unlock();
ae3a7047 1815 return ptr;
3fd74b84
DM
1816}
1817
1b5ec234 1818/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1819 * This should not be used for general purpose DMA. Use address_space_map
1820 * or address_space_rw instead. For local memory (e.g. video ram) that the
1821 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1822 *
49b24afc 1823 * Called within RCU critical section.
1b5ec234
PB
1824 */
1825void *qemu_get_ram_ptr(ram_addr_t addr)
1826{
49b24afc 1827 RAMBlock *block = qemu_get_ram_block(addr);
ae3a7047
MD
1828
1829 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1830 /* We need to check if the requested address is in the RAM
1831 * because we don't want to map the entire memory in QEMU.
1832 * In that case just map until the end of the page.
1833 */
1834 if (block->offset == 0) {
49b24afc 1835 return xen_map_cache(addr, 0, 0);
0d6d3c87 1836 }
ae3a7047
MD
1837
1838 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1839 }
49b24afc 1840 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1841}
1842
38bee5dc 1843/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1844 * but takes a size argument.
0dc3f44a 1845 *
e81bcda5 1846 * Called within RCU critical section.
ae3a7047 1847 */
cb85f7ab 1848static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1849{
e81bcda5
PB
1850 RAMBlock *block;
1851 ram_addr_t offset_inside_block;
8ab934f9
SS
1852 if (*size == 0) {
1853 return NULL;
1854 }
e81bcda5
PB
1855
1856 block = qemu_get_ram_block(addr);
1857 offset_inside_block = addr - block->offset;
1858 *size = MIN(*size, block->max_length - offset_inside_block);
1859
1860 if (xen_enabled() && block->host == NULL) {
1861 /* We need to check if the requested address is in the RAM
1862 * because we don't want to map the entire memory in QEMU.
1863 * In that case just map the requested area.
1864 */
1865 if (block->offset == 0) {
1866 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1867 }
1868
e81bcda5 1869 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1870 }
e81bcda5
PB
1871
1872 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1873}
1874
422148d3
DDAG
1875/*
1876 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1877 * in that RAMBlock.
1878 *
1879 * ptr: Host pointer to look up
1880 * round_offset: If true round the result offset down to a page boundary
1881 * *ram_addr: set to result ram_addr
1882 * *offset: set to result offset within the RAMBlock
1883 *
1884 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1885 *
1886 * By the time this function returns, the returned pointer is not protected
1887 * by RCU anymore. If the caller is not within an RCU critical section and
1888 * does not hold the iothread lock, it must have other means of protecting the
1889 * pointer, such as a reference to the region that includes the incoming
1890 * ram_addr_t.
1891 */
422148d3
DDAG
1892RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1893 ram_addr_t *ram_addr,
1894 ram_addr_t *offset)
5579c7f3 1895{
94a6b54f
PB
1896 RAMBlock *block;
1897 uint8_t *host = ptr;
1898
868bb33f 1899 if (xen_enabled()) {
0dc3f44a 1900 rcu_read_lock();
e41d7c69 1901 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1902 block = qemu_get_ram_block(*ram_addr);
1903 if (block) {
1904 *offset = (host - block->host);
1905 }
0dc3f44a 1906 rcu_read_unlock();
422148d3 1907 return block;
712c2b41
SS
1908 }
1909
0dc3f44a
MD
1910 rcu_read_lock();
1911 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1912 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1913 goto found;
1914 }
1915
0dc3f44a 1916 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1917 /* This case append when the block is not mapped. */
1918 if (block->host == NULL) {
1919 continue;
1920 }
9b8424d5 1921 if (host - block->host < block->max_length) {
23887b79 1922 goto found;
f471a17e 1923 }
94a6b54f 1924 }
432d268c 1925
0dc3f44a 1926 rcu_read_unlock();
1b5ec234 1927 return NULL;
23887b79
PB
1928
1929found:
422148d3
DDAG
1930 *offset = (host - block->host);
1931 if (round_offset) {
1932 *offset &= TARGET_PAGE_MASK;
1933 }
1934 *ram_addr = block->offset + *offset;
0dc3f44a 1935 rcu_read_unlock();
422148d3
DDAG
1936 return block;
1937}
1938
e3dd7493
DDAG
1939/*
1940 * Finds the named RAMBlock
1941 *
1942 * name: The name of RAMBlock to find
1943 *
1944 * Returns: RAMBlock (or NULL if not found)
1945 */
1946RAMBlock *qemu_ram_block_by_name(const char *name)
1947{
1948 RAMBlock *block;
1949
1950 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1951 if (!strcmp(name, block->idstr)) {
1952 return block;
1953 }
1954 }
1955
1956 return NULL;
1957}
1958
422148d3
DDAG
1959/* Some of the softmmu routines need to translate from a host pointer
1960 (typically a TLB entry) back to a ram offset. */
1961MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1962{
1963 RAMBlock *block;
1964 ram_addr_t offset; /* Not used */
1965
1966 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
1967
1968 if (!block) {
1969 return NULL;
1970 }
1971
1972 return block->mr;
e890261f 1973}
f471a17e 1974
49b24afc 1975/* Called within RCU critical section. */
a8170e5e 1976static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1977 uint64_t val, unsigned size)
9fa3e853 1978{
52159192 1979 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1980 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1981 }
0e0df1e2
AK
1982 switch (size) {
1983 case 1:
1984 stb_p(qemu_get_ram_ptr(ram_addr), val);
1985 break;
1986 case 2:
1987 stw_p(qemu_get_ram_ptr(ram_addr), val);
1988 break;
1989 case 4:
1990 stl_p(qemu_get_ram_ptr(ram_addr), val);
1991 break;
1992 default:
1993 abort();
3a7d929e 1994 }
58d2707e
PB
1995 /* Set both VGA and migration bits for simplicity and to remove
1996 * the notdirty callback faster.
1997 */
1998 cpu_physical_memory_set_dirty_range(ram_addr, size,
1999 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2000 /* we remove the notdirty callback only if the code has been
2001 flushed */
a2cd8c85 2002 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2003 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2004 }
9fa3e853
FB
2005}
2006
b018ddf6
PB
2007static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2008 unsigned size, bool is_write)
2009{
2010 return is_write;
2011}
2012
0e0df1e2 2013static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2014 .write = notdirty_mem_write,
b018ddf6 2015 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2016 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2017};
2018
0f459d16 2019/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2020static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2021{
93afeade
AF
2022 CPUState *cpu = current_cpu;
2023 CPUArchState *env = cpu->env_ptr;
06d55cc1 2024 target_ulong pc, cs_base;
0f459d16 2025 target_ulong vaddr;
a1d1bb31 2026 CPUWatchpoint *wp;
06d55cc1 2027 int cpu_flags;
0f459d16 2028
ff4700b0 2029 if (cpu->watchpoint_hit) {
06d55cc1
AL
2030 /* We re-entered the check after replacing the TB. Now raise
2031 * the debug interrupt so that is will trigger after the
2032 * current instruction. */
93afeade 2033 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2034 return;
2035 }
93afeade 2036 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2037 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2038 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2039 && (wp->flags & flags)) {
08225676
PM
2040 if (flags == BP_MEM_READ) {
2041 wp->flags |= BP_WATCHPOINT_HIT_READ;
2042 } else {
2043 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2044 }
2045 wp->hitaddr = vaddr;
66b9b43c 2046 wp->hitattrs = attrs;
ff4700b0
AF
2047 if (!cpu->watchpoint_hit) {
2048 cpu->watchpoint_hit = wp;
239c51a5 2049 tb_check_watchpoint(cpu);
6e140f28 2050 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2051 cpu->exception_index = EXCP_DEBUG;
5638d180 2052 cpu_loop_exit(cpu);
6e140f28
AL
2053 } else {
2054 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2055 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2056 cpu_resume_from_signal(cpu, NULL);
6e140f28 2057 }
06d55cc1 2058 }
6e140f28
AL
2059 } else {
2060 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2061 }
2062 }
2063}
2064
6658ffb8
PB
2065/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2066 so these check for a hit then pass through to the normal out-of-line
2067 phys routines. */
66b9b43c
PM
2068static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2069 unsigned size, MemTxAttrs attrs)
6658ffb8 2070{
66b9b43c
PM
2071 MemTxResult res;
2072 uint64_t data;
79ed0416
PM
2073 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2074 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2075
2076 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2077 switch (size) {
66b9b43c 2078 case 1:
79ed0416 2079 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2080 break;
2081 case 2:
79ed0416 2082 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2083 break;
2084 case 4:
79ed0416 2085 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2086 break;
1ec9b909
AK
2087 default: abort();
2088 }
66b9b43c
PM
2089 *pdata = data;
2090 return res;
6658ffb8
PB
2091}
2092
66b9b43c
PM
2093static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2094 uint64_t val, unsigned size,
2095 MemTxAttrs attrs)
6658ffb8 2096{
66b9b43c 2097 MemTxResult res;
79ed0416
PM
2098 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2099 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2100
2101 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2102 switch (size) {
67364150 2103 case 1:
79ed0416 2104 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2105 break;
2106 case 2:
79ed0416 2107 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2108 break;
2109 case 4:
79ed0416 2110 address_space_stl(as, addr, val, attrs, &res);
67364150 2111 break;
1ec9b909
AK
2112 default: abort();
2113 }
66b9b43c 2114 return res;
6658ffb8
PB
2115}
2116
1ec9b909 2117static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2118 .read_with_attrs = watch_mem_read,
2119 .write_with_attrs = watch_mem_write,
1ec9b909 2120 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2121};
6658ffb8 2122
f25a49e0
PM
2123static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2124 unsigned len, MemTxAttrs attrs)
db7b5426 2125{
acc9d80b 2126 subpage_t *subpage = opaque;
ff6cff75 2127 uint8_t buf[8];
5c9eb028 2128 MemTxResult res;
791af8c8 2129
db7b5426 2130#if defined(DEBUG_SUBPAGE)
016e9d62 2131 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2132 subpage, len, addr);
db7b5426 2133#endif
5c9eb028
PM
2134 res = address_space_read(subpage->as, addr + subpage->base,
2135 attrs, buf, len);
2136 if (res) {
2137 return res;
f25a49e0 2138 }
acc9d80b
JK
2139 switch (len) {
2140 case 1:
f25a49e0
PM
2141 *data = ldub_p(buf);
2142 return MEMTX_OK;
acc9d80b 2143 case 2:
f25a49e0
PM
2144 *data = lduw_p(buf);
2145 return MEMTX_OK;
acc9d80b 2146 case 4:
f25a49e0
PM
2147 *data = ldl_p(buf);
2148 return MEMTX_OK;
ff6cff75 2149 case 8:
f25a49e0
PM
2150 *data = ldq_p(buf);
2151 return MEMTX_OK;
acc9d80b
JK
2152 default:
2153 abort();
2154 }
db7b5426
BS
2155}
2156
f25a49e0
PM
2157static MemTxResult subpage_write(void *opaque, hwaddr addr,
2158 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2159{
acc9d80b 2160 subpage_t *subpage = opaque;
ff6cff75 2161 uint8_t buf[8];
acc9d80b 2162
db7b5426 2163#if defined(DEBUG_SUBPAGE)
016e9d62 2164 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2165 " value %"PRIx64"\n",
2166 __func__, subpage, len, addr, value);
db7b5426 2167#endif
acc9d80b
JK
2168 switch (len) {
2169 case 1:
2170 stb_p(buf, value);
2171 break;
2172 case 2:
2173 stw_p(buf, value);
2174 break;
2175 case 4:
2176 stl_p(buf, value);
2177 break;
ff6cff75
PB
2178 case 8:
2179 stq_p(buf, value);
2180 break;
acc9d80b
JK
2181 default:
2182 abort();
2183 }
5c9eb028
PM
2184 return address_space_write(subpage->as, addr + subpage->base,
2185 attrs, buf, len);
db7b5426
BS
2186}
2187
c353e4cc 2188static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2189 unsigned len, bool is_write)
c353e4cc 2190{
acc9d80b 2191 subpage_t *subpage = opaque;
c353e4cc 2192#if defined(DEBUG_SUBPAGE)
016e9d62 2193 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2194 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2195#endif
2196
acc9d80b 2197 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2198 len, is_write);
c353e4cc
PB
2199}
2200
70c68e44 2201static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2202 .read_with_attrs = subpage_read,
2203 .write_with_attrs = subpage_write,
ff6cff75
PB
2204 .impl.min_access_size = 1,
2205 .impl.max_access_size = 8,
2206 .valid.min_access_size = 1,
2207 .valid.max_access_size = 8,
c353e4cc 2208 .valid.accepts = subpage_accepts,
70c68e44 2209 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2210};
2211
c227f099 2212static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2213 uint16_t section)
db7b5426
BS
2214{
2215 int idx, eidx;
2216
2217 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2218 return -1;
2219 idx = SUBPAGE_IDX(start);
2220 eidx = SUBPAGE_IDX(end);
2221#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2222 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2223 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2224#endif
db7b5426 2225 for (; idx <= eidx; idx++) {
5312bd8b 2226 mmio->sub_section[idx] = section;
db7b5426
BS
2227 }
2228
2229 return 0;
2230}
2231
acc9d80b 2232static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2233{
c227f099 2234 subpage_t *mmio;
db7b5426 2235
7267c094 2236 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2237
acc9d80b 2238 mmio->as = as;
1eec614b 2239 mmio->base = base;
2c9b15ca 2240 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2241 NULL, TARGET_PAGE_SIZE);
b3b00c78 2242 mmio->iomem.subpage = true;
db7b5426 2243#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2244 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2245 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2246#endif
b41aac4f 2247 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2248
2249 return mmio;
2250}
2251
a656e22f
PC
2252static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2253 MemoryRegion *mr)
5312bd8b 2254{
a656e22f 2255 assert(as);
5312bd8b 2256 MemoryRegionSection section = {
a656e22f 2257 .address_space = as,
5312bd8b
AK
2258 .mr = mr,
2259 .offset_within_address_space = 0,
2260 .offset_within_region = 0,
052e87b0 2261 .size = int128_2_64(),
5312bd8b
AK
2262 };
2263
53cb28cb 2264 return phys_section_add(map, &section);
5312bd8b
AK
2265}
2266
a54c87b6 2267MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2268{
a54c87b6
PM
2269 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2270 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2271 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2272 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2273
2274 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2275}
2276
e9179ce1
AK
2277static void io_mem_init(void)
2278{
1f6245e5 2279 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2280 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2281 NULL, UINT64_MAX);
2c9b15ca 2282 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2283 NULL, UINT64_MAX);
2c9b15ca 2284 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2285 NULL, UINT64_MAX);
e9179ce1
AK
2286}
2287
ac1970fb 2288static void mem_begin(MemoryListener *listener)
00752703
PB
2289{
2290 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2291 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2292 uint16_t n;
2293
a656e22f 2294 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2295 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2296 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2297 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2298 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2299 assert(n == PHYS_SECTION_ROM);
a656e22f 2300 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2301 assert(n == PHYS_SECTION_WATCH);
00752703 2302
9736e55b 2303 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2304 d->as = as;
2305 as->next_dispatch = d;
2306}
2307
79e2b9ae
PB
2308static void address_space_dispatch_free(AddressSpaceDispatch *d)
2309{
2310 phys_sections_free(&d->map);
2311 g_free(d);
2312}
2313
00752703 2314static void mem_commit(MemoryListener *listener)
ac1970fb 2315{
89ae337a 2316 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2317 AddressSpaceDispatch *cur = as->dispatch;
2318 AddressSpaceDispatch *next = as->next_dispatch;
2319
53cb28cb 2320 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2321
79e2b9ae 2322 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2323 if (cur) {
79e2b9ae 2324 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2325 }
9affd6fc
PB
2326}
2327
1d71148e 2328static void tcg_commit(MemoryListener *listener)
50c1e149 2329{
32857f4d
PM
2330 CPUAddressSpace *cpuas;
2331 AddressSpaceDispatch *d;
117712c3
AK
2332
2333 /* since each CPU stores ram addresses in its TLB cache, we must
2334 reset the modified entries */
32857f4d
PM
2335 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2336 cpu_reloading_memory_map();
2337 /* The CPU and TLB are protected by the iothread lock.
2338 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2339 * may have split the RCU critical section.
2340 */
2341 d = atomic_rcu_read(&cpuas->as->dispatch);
2342 cpuas->memory_dispatch = d;
2343 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2344}
2345
ac1970fb
AK
2346void address_space_init_dispatch(AddressSpace *as)
2347{
00752703 2348 as->dispatch = NULL;
89ae337a 2349 as->dispatch_listener = (MemoryListener) {
ac1970fb 2350 .begin = mem_begin,
00752703 2351 .commit = mem_commit,
ac1970fb
AK
2352 .region_add = mem_add,
2353 .region_nop = mem_add,
2354 .priority = 0,
2355 };
89ae337a 2356 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2357}
2358
6e48e8f9
PB
2359void address_space_unregister(AddressSpace *as)
2360{
2361 memory_listener_unregister(&as->dispatch_listener);
2362}
2363
83f3c251
AK
2364void address_space_destroy_dispatch(AddressSpace *as)
2365{
2366 AddressSpaceDispatch *d = as->dispatch;
2367
79e2b9ae
PB
2368 atomic_rcu_set(&as->dispatch, NULL);
2369 if (d) {
2370 call_rcu(d, address_space_dispatch_free, rcu);
2371 }
83f3c251
AK
2372}
2373
62152b8a
AK
2374static void memory_map_init(void)
2375{
7267c094 2376 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2377
57271d63 2378 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2379 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2380
7267c094 2381 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2382 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2383 65536);
7dca8043 2384 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2385}
2386
2387MemoryRegion *get_system_memory(void)
2388{
2389 return system_memory;
2390}
2391
309cb471
AK
2392MemoryRegion *get_system_io(void)
2393{
2394 return system_io;
2395}
2396
e2eef170
PB
2397#endif /* !defined(CONFIG_USER_ONLY) */
2398
13eb76e0
FB
2399/* physical memory access (slow version, mainly for debug) */
2400#if defined(CONFIG_USER_ONLY)
f17ec444 2401int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2402 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2403{
2404 int l, flags;
2405 target_ulong page;
53a5960a 2406 void * p;
13eb76e0
FB
2407
2408 while (len > 0) {
2409 page = addr & TARGET_PAGE_MASK;
2410 l = (page + TARGET_PAGE_SIZE) - addr;
2411 if (l > len)
2412 l = len;
2413 flags = page_get_flags(page);
2414 if (!(flags & PAGE_VALID))
a68fe89c 2415 return -1;
13eb76e0
FB
2416 if (is_write) {
2417 if (!(flags & PAGE_WRITE))
a68fe89c 2418 return -1;
579a97f7 2419 /* XXX: this code should not depend on lock_user */
72fb7daa 2420 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2421 return -1;
72fb7daa
AJ
2422 memcpy(p, buf, l);
2423 unlock_user(p, addr, l);
13eb76e0
FB
2424 } else {
2425 if (!(flags & PAGE_READ))
a68fe89c 2426 return -1;
579a97f7 2427 /* XXX: this code should not depend on lock_user */
72fb7daa 2428 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2429 return -1;
72fb7daa 2430 memcpy(buf, p, l);
5b257578 2431 unlock_user(p, addr, 0);
13eb76e0
FB
2432 }
2433 len -= l;
2434 buf += l;
2435 addr += l;
2436 }
a68fe89c 2437 return 0;
13eb76e0 2438}
8df1cd07 2439
13eb76e0 2440#else
51d7a9eb 2441
845b6214 2442static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2443 hwaddr length)
51d7a9eb 2444{
e87f7778
PB
2445 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2446 /* No early return if dirty_log_mask is or becomes 0, because
2447 * cpu_physical_memory_set_dirty_range will still call
2448 * xen_modified_memory.
2449 */
2450 if (dirty_log_mask) {
2451 dirty_log_mask =
2452 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2453 }
2454 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2455 tb_invalidate_phys_range(addr, addr + length);
2456 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2457 }
e87f7778 2458 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2459}
2460
23326164 2461static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2462{
e1622f4b 2463 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2464
2465 /* Regions are assumed to support 1-4 byte accesses unless
2466 otherwise specified. */
23326164
RH
2467 if (access_size_max == 0) {
2468 access_size_max = 4;
2469 }
2470
2471 /* Bound the maximum access by the alignment of the address. */
2472 if (!mr->ops->impl.unaligned) {
2473 unsigned align_size_max = addr & -addr;
2474 if (align_size_max != 0 && align_size_max < access_size_max) {
2475 access_size_max = align_size_max;
2476 }
82f2563f 2477 }
23326164
RH
2478
2479 /* Don't attempt accesses larger than the maximum. */
2480 if (l > access_size_max) {
2481 l = access_size_max;
82f2563f 2482 }
6554f5c0 2483 l = pow2floor(l);
23326164
RH
2484
2485 return l;
82f2563f
PB
2486}
2487
4840f10e 2488static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2489{
4840f10e
JK
2490 bool unlocked = !qemu_mutex_iothread_locked();
2491 bool release_lock = false;
2492
2493 if (unlocked && mr->global_locking) {
2494 qemu_mutex_lock_iothread();
2495 unlocked = false;
2496 release_lock = true;
2497 }
125b3806 2498 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2499 if (unlocked) {
2500 qemu_mutex_lock_iothread();
2501 }
125b3806 2502 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2503 if (unlocked) {
2504 qemu_mutex_unlock_iothread();
2505 }
125b3806 2506 }
4840f10e
JK
2507
2508 return release_lock;
125b3806
PB
2509}
2510
a203ac70
PB
2511/* Called within RCU critical section. */
2512static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2513 MemTxAttrs attrs,
2514 const uint8_t *buf,
2515 int len, hwaddr addr1,
2516 hwaddr l, MemoryRegion *mr)
13eb76e0 2517{
13eb76e0 2518 uint8_t *ptr;
791af8c8 2519 uint64_t val;
3b643495 2520 MemTxResult result = MEMTX_OK;
4840f10e 2521 bool release_lock = false;
3b46e624 2522
a203ac70 2523 for (;;) {
eb7eeb88
PB
2524 if (!memory_access_is_direct(mr, true)) {
2525 release_lock |= prepare_mmio_access(mr);
2526 l = memory_access_size(mr, l, addr1);
2527 /* XXX: could force current_cpu to NULL to avoid
2528 potential bugs */
2529 switch (l) {
2530 case 8:
2531 /* 64 bit write access */
2532 val = ldq_p(buf);
2533 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2534 attrs);
2535 break;
2536 case 4:
2537 /* 32 bit write access */
2538 val = ldl_p(buf);
2539 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2540 attrs);
2541 break;
2542 case 2:
2543 /* 16 bit write access */
2544 val = lduw_p(buf);
2545 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2546 attrs);
2547 break;
2548 case 1:
2549 /* 8 bit write access */
2550 val = ldub_p(buf);
2551 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2552 attrs);
2553 break;
2554 default:
2555 abort();
13eb76e0
FB
2556 }
2557 } else {
eb7eeb88
PB
2558 addr1 += memory_region_get_ram_addr(mr);
2559 /* RAM case */
2560 ptr = qemu_get_ram_ptr(addr1);
2561 memcpy(ptr, buf, l);
2562 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2563 }
4840f10e
JK
2564
2565 if (release_lock) {
2566 qemu_mutex_unlock_iothread();
2567 release_lock = false;
2568 }
2569
13eb76e0
FB
2570 len -= l;
2571 buf += l;
2572 addr += l;
a203ac70
PB
2573
2574 if (!len) {
2575 break;
2576 }
2577
2578 l = len;
2579 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2580 }
fd8aaa76 2581
3b643495 2582 return result;
13eb76e0 2583}
8df1cd07 2584
a203ac70
PB
2585MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2586 const uint8_t *buf, int len)
ac1970fb 2587{
eb7eeb88 2588 hwaddr l;
eb7eeb88
PB
2589 hwaddr addr1;
2590 MemoryRegion *mr;
2591 MemTxResult result = MEMTX_OK;
eb7eeb88 2592
a203ac70
PB
2593 if (len > 0) {
2594 rcu_read_lock();
eb7eeb88 2595 l = len;
a203ac70
PB
2596 mr = address_space_translate(as, addr, &addr1, &l, true);
2597 result = address_space_write_continue(as, addr, attrs, buf, len,
2598 addr1, l, mr);
2599 rcu_read_unlock();
2600 }
2601
2602 return result;
2603}
2604
2605/* Called within RCU critical section. */
2606MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2607 MemTxAttrs attrs, uint8_t *buf,
2608 int len, hwaddr addr1, hwaddr l,
2609 MemoryRegion *mr)
2610{
2611 uint8_t *ptr;
2612 uint64_t val;
2613 MemTxResult result = MEMTX_OK;
2614 bool release_lock = false;
eb7eeb88 2615
a203ac70 2616 for (;;) {
eb7eeb88
PB
2617 if (!memory_access_is_direct(mr, false)) {
2618 /* I/O case */
2619 release_lock |= prepare_mmio_access(mr);
2620 l = memory_access_size(mr, l, addr1);
2621 switch (l) {
2622 case 8:
2623 /* 64 bit read access */
2624 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2625 attrs);
2626 stq_p(buf, val);
2627 break;
2628 case 4:
2629 /* 32 bit read access */
2630 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2631 attrs);
2632 stl_p(buf, val);
2633 break;
2634 case 2:
2635 /* 16 bit read access */
2636 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2637 attrs);
2638 stw_p(buf, val);
2639 break;
2640 case 1:
2641 /* 8 bit read access */
2642 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2643 attrs);
2644 stb_p(buf, val);
2645 break;
2646 default:
2647 abort();
2648 }
2649 } else {
2650 /* RAM case */
2651 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2652 memcpy(buf, ptr, l);
2653 }
2654
2655 if (release_lock) {
2656 qemu_mutex_unlock_iothread();
2657 release_lock = false;
2658 }
2659
2660 len -= l;
2661 buf += l;
2662 addr += l;
a203ac70
PB
2663
2664 if (!len) {
2665 break;
2666 }
2667
2668 l = len;
2669 mr = address_space_translate(as, addr, &addr1, &l, false);
2670 }
2671
2672 return result;
2673}
2674
3cc8f884
PB
2675MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2676 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2677{
2678 hwaddr l;
2679 hwaddr addr1;
2680 MemoryRegion *mr;
2681 MemTxResult result = MEMTX_OK;
2682
2683 if (len > 0) {
2684 rcu_read_lock();
2685 l = len;
2686 mr = address_space_translate(as, addr, &addr1, &l, false);
2687 result = address_space_read_continue(as, addr, attrs, buf, len,
2688 addr1, l, mr);
2689 rcu_read_unlock();
eb7eeb88 2690 }
eb7eeb88
PB
2691
2692 return result;
ac1970fb
AK
2693}
2694
eb7eeb88
PB
2695MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2696 uint8_t *buf, int len, bool is_write)
2697{
2698 if (is_write) {
2699 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2700 } else {
2701 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2702 }
2703}
ac1970fb 2704
a8170e5e 2705void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2706 int len, int is_write)
2707{
5c9eb028
PM
2708 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2709 buf, len, is_write);
ac1970fb
AK
2710}
2711
582b55a9
AG
2712enum write_rom_type {
2713 WRITE_DATA,
2714 FLUSH_CACHE,
2715};
2716
2a221651 2717static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2718 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2719{
149f54b5 2720 hwaddr l;
d0ecd2aa 2721 uint8_t *ptr;
149f54b5 2722 hwaddr addr1;
5c8a00ce 2723 MemoryRegion *mr;
3b46e624 2724
41063e1e 2725 rcu_read_lock();
d0ecd2aa 2726 while (len > 0) {
149f54b5 2727 l = len;
2a221651 2728 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2729
5c8a00ce
PB
2730 if (!(memory_region_is_ram(mr) ||
2731 memory_region_is_romd(mr))) {
b242e0e0 2732 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2733 } else {
5c8a00ce 2734 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2735 /* ROM/RAM case */
5579c7f3 2736 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2737 switch (type) {
2738 case WRITE_DATA:
2739 memcpy(ptr, buf, l);
845b6214 2740 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2741 break;
2742 case FLUSH_CACHE:
2743 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2744 break;
2745 }
d0ecd2aa
FB
2746 }
2747 len -= l;
2748 buf += l;
2749 addr += l;
2750 }
41063e1e 2751 rcu_read_unlock();
d0ecd2aa
FB
2752}
2753
582b55a9 2754/* used for ROM loading : can write in RAM and ROM */
2a221651 2755void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2756 const uint8_t *buf, int len)
2757{
2a221651 2758 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2759}
2760
2761void cpu_flush_icache_range(hwaddr start, int len)
2762{
2763 /*
2764 * This function should do the same thing as an icache flush that was
2765 * triggered from within the guest. For TCG we are always cache coherent,
2766 * so there is no need to flush anything. For KVM / Xen we need to flush
2767 * the host's instruction cache at least.
2768 */
2769 if (tcg_enabled()) {
2770 return;
2771 }
2772
2a221651
EI
2773 cpu_physical_memory_write_rom_internal(&address_space_memory,
2774 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2775}
2776
6d16c2f8 2777typedef struct {
d3e71559 2778 MemoryRegion *mr;
6d16c2f8 2779 void *buffer;
a8170e5e
AK
2780 hwaddr addr;
2781 hwaddr len;
c2cba0ff 2782 bool in_use;
6d16c2f8
AL
2783} BounceBuffer;
2784
2785static BounceBuffer bounce;
2786
ba223c29 2787typedef struct MapClient {
e95205e1 2788 QEMUBH *bh;
72cf2d4f 2789 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2790} MapClient;
2791
38e047b5 2792QemuMutex map_client_list_lock;
72cf2d4f
BS
2793static QLIST_HEAD(map_client_list, MapClient) map_client_list
2794 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2795
e95205e1
FZ
2796static void cpu_unregister_map_client_do(MapClient *client)
2797{
2798 QLIST_REMOVE(client, link);
2799 g_free(client);
2800}
2801
33b6c2ed
FZ
2802static void cpu_notify_map_clients_locked(void)
2803{
2804 MapClient *client;
2805
2806 while (!QLIST_EMPTY(&map_client_list)) {
2807 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2808 qemu_bh_schedule(client->bh);
2809 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2810 }
2811}
2812
e95205e1 2813void cpu_register_map_client(QEMUBH *bh)
ba223c29 2814{
7267c094 2815 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2816
38e047b5 2817 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2818 client->bh = bh;
72cf2d4f 2819 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2820 if (!atomic_read(&bounce.in_use)) {
2821 cpu_notify_map_clients_locked();
2822 }
38e047b5 2823 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2824}
2825
38e047b5 2826void cpu_exec_init_all(void)
ba223c29 2827{
38e047b5 2828 qemu_mutex_init(&ram_list.mutex);
38e047b5 2829 io_mem_init();
680a4783 2830 memory_map_init();
38e047b5 2831 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2832}
2833
e95205e1 2834void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2835{
2836 MapClient *client;
2837
e95205e1
FZ
2838 qemu_mutex_lock(&map_client_list_lock);
2839 QLIST_FOREACH(client, &map_client_list, link) {
2840 if (client->bh == bh) {
2841 cpu_unregister_map_client_do(client);
2842 break;
2843 }
ba223c29 2844 }
e95205e1 2845 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2846}
2847
2848static void cpu_notify_map_clients(void)
2849{
38e047b5 2850 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2851 cpu_notify_map_clients_locked();
38e047b5 2852 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2853}
2854
51644ab7
PB
2855bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2856{
5c8a00ce 2857 MemoryRegion *mr;
51644ab7
PB
2858 hwaddr l, xlat;
2859
41063e1e 2860 rcu_read_lock();
51644ab7
PB
2861 while (len > 0) {
2862 l = len;
5c8a00ce
PB
2863 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2864 if (!memory_access_is_direct(mr, is_write)) {
2865 l = memory_access_size(mr, l, addr);
2866 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2867 return false;
2868 }
2869 }
2870
2871 len -= l;
2872 addr += l;
2873 }
41063e1e 2874 rcu_read_unlock();
51644ab7
PB
2875 return true;
2876}
2877
6d16c2f8
AL
2878/* Map a physical memory region into a host virtual address.
2879 * May map a subset of the requested range, given by and returned in *plen.
2880 * May return NULL if resources needed to perform the mapping are exhausted.
2881 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2882 * Use cpu_register_map_client() to know when retrying the map operation is
2883 * likely to succeed.
6d16c2f8 2884 */
ac1970fb 2885void *address_space_map(AddressSpace *as,
a8170e5e
AK
2886 hwaddr addr,
2887 hwaddr *plen,
ac1970fb 2888 bool is_write)
6d16c2f8 2889{
a8170e5e 2890 hwaddr len = *plen;
e3127ae0
PB
2891 hwaddr done = 0;
2892 hwaddr l, xlat, base;
2893 MemoryRegion *mr, *this_mr;
2894 ram_addr_t raddr;
e81bcda5 2895 void *ptr;
6d16c2f8 2896
e3127ae0
PB
2897 if (len == 0) {
2898 return NULL;
2899 }
38bee5dc 2900
e3127ae0 2901 l = len;
41063e1e 2902 rcu_read_lock();
e3127ae0 2903 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2904
e3127ae0 2905 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2906 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2907 rcu_read_unlock();
e3127ae0 2908 return NULL;
6d16c2f8 2909 }
e85d9db5
KW
2910 /* Avoid unbounded allocations */
2911 l = MIN(l, TARGET_PAGE_SIZE);
2912 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2913 bounce.addr = addr;
2914 bounce.len = l;
d3e71559
PB
2915
2916 memory_region_ref(mr);
2917 bounce.mr = mr;
e3127ae0 2918 if (!is_write) {
5c9eb028
PM
2919 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2920 bounce.buffer, l);
8ab934f9 2921 }
6d16c2f8 2922
41063e1e 2923 rcu_read_unlock();
e3127ae0
PB
2924 *plen = l;
2925 return bounce.buffer;
2926 }
2927
2928 base = xlat;
2929 raddr = memory_region_get_ram_addr(mr);
2930
2931 for (;;) {
6d16c2f8
AL
2932 len -= l;
2933 addr += l;
e3127ae0
PB
2934 done += l;
2935 if (len == 0) {
2936 break;
2937 }
2938
2939 l = len;
2940 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2941 if (this_mr != mr || xlat != base + done) {
2942 break;
2943 }
6d16c2f8 2944 }
e3127ae0 2945
d3e71559 2946 memory_region_ref(mr);
e3127ae0 2947 *plen = done;
e81bcda5
PB
2948 ptr = qemu_ram_ptr_length(raddr + base, plen);
2949 rcu_read_unlock();
2950
2951 return ptr;
6d16c2f8
AL
2952}
2953
ac1970fb 2954/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2955 * Will also mark the memory as dirty if is_write == 1. access_len gives
2956 * the amount of memory that was actually read or written by the caller.
2957 */
a8170e5e
AK
2958void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2959 int is_write, hwaddr access_len)
6d16c2f8
AL
2960{
2961 if (buffer != bounce.buffer) {
d3e71559
PB
2962 MemoryRegion *mr;
2963 ram_addr_t addr1;
2964
2965 mr = qemu_ram_addr_from_host(buffer, &addr1);
2966 assert(mr != NULL);
6d16c2f8 2967 if (is_write) {
845b6214 2968 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2969 }
868bb33f 2970 if (xen_enabled()) {
e41d7c69 2971 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2972 }
d3e71559 2973 memory_region_unref(mr);
6d16c2f8
AL
2974 return;
2975 }
2976 if (is_write) {
5c9eb028
PM
2977 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2978 bounce.buffer, access_len);
6d16c2f8 2979 }
f8a83245 2980 qemu_vfree(bounce.buffer);
6d16c2f8 2981 bounce.buffer = NULL;
d3e71559 2982 memory_region_unref(bounce.mr);
c2cba0ff 2983 atomic_mb_set(&bounce.in_use, false);
ba223c29 2984 cpu_notify_map_clients();
6d16c2f8 2985}
d0ecd2aa 2986
a8170e5e
AK
2987void *cpu_physical_memory_map(hwaddr addr,
2988 hwaddr *plen,
ac1970fb
AK
2989 int is_write)
2990{
2991 return address_space_map(&address_space_memory, addr, plen, is_write);
2992}
2993
a8170e5e
AK
2994void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2995 int is_write, hwaddr access_len)
ac1970fb
AK
2996{
2997 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2998}
2999
8df1cd07 3000/* warning: addr must be aligned */
50013115
PM
3001static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3002 MemTxAttrs attrs,
3003 MemTxResult *result,
3004 enum device_endian endian)
8df1cd07 3005{
8df1cd07 3006 uint8_t *ptr;
791af8c8 3007 uint64_t val;
5c8a00ce 3008 MemoryRegion *mr;
149f54b5
PB
3009 hwaddr l = 4;
3010 hwaddr addr1;
50013115 3011 MemTxResult r;
4840f10e 3012 bool release_lock = false;
8df1cd07 3013
41063e1e 3014 rcu_read_lock();
fdfba1a2 3015 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3016 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3017 release_lock |= prepare_mmio_access(mr);
125b3806 3018
8df1cd07 3019 /* I/O case */
50013115 3020 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3021#if defined(TARGET_WORDS_BIGENDIAN)
3022 if (endian == DEVICE_LITTLE_ENDIAN) {
3023 val = bswap32(val);
3024 }
3025#else
3026 if (endian == DEVICE_BIG_ENDIAN) {
3027 val = bswap32(val);
3028 }
3029#endif
8df1cd07
FB
3030 } else {
3031 /* RAM case */
5c8a00ce 3032 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3033 & TARGET_PAGE_MASK)
149f54b5 3034 + addr1);
1e78bcc1
AG
3035 switch (endian) {
3036 case DEVICE_LITTLE_ENDIAN:
3037 val = ldl_le_p(ptr);
3038 break;
3039 case DEVICE_BIG_ENDIAN:
3040 val = ldl_be_p(ptr);
3041 break;
3042 default:
3043 val = ldl_p(ptr);
3044 break;
3045 }
50013115
PM
3046 r = MEMTX_OK;
3047 }
3048 if (result) {
3049 *result = r;
8df1cd07 3050 }
4840f10e
JK
3051 if (release_lock) {
3052 qemu_mutex_unlock_iothread();
3053 }
41063e1e 3054 rcu_read_unlock();
8df1cd07
FB
3055 return val;
3056}
3057
50013115
PM
3058uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3059 MemTxAttrs attrs, MemTxResult *result)
3060{
3061 return address_space_ldl_internal(as, addr, attrs, result,
3062 DEVICE_NATIVE_ENDIAN);
3063}
3064
3065uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3066 MemTxAttrs attrs, MemTxResult *result)
3067{
3068 return address_space_ldl_internal(as, addr, attrs, result,
3069 DEVICE_LITTLE_ENDIAN);
3070}
3071
3072uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3073 MemTxAttrs attrs, MemTxResult *result)
3074{
3075 return address_space_ldl_internal(as, addr, attrs, result,
3076 DEVICE_BIG_ENDIAN);
3077}
3078
fdfba1a2 3079uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3080{
50013115 3081 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3082}
3083
fdfba1a2 3084uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3085{
50013115 3086 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3087}
3088
fdfba1a2 3089uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3090{
50013115 3091 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3092}
3093
84b7b8e7 3094/* warning: addr must be aligned */
50013115
PM
3095static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3096 MemTxAttrs attrs,
3097 MemTxResult *result,
3098 enum device_endian endian)
84b7b8e7 3099{
84b7b8e7
FB
3100 uint8_t *ptr;
3101 uint64_t val;
5c8a00ce 3102 MemoryRegion *mr;
149f54b5
PB
3103 hwaddr l = 8;
3104 hwaddr addr1;
50013115 3105 MemTxResult r;
4840f10e 3106 bool release_lock = false;
84b7b8e7 3107
41063e1e 3108 rcu_read_lock();
2c17449b 3109 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3110 false);
3111 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3112 release_lock |= prepare_mmio_access(mr);
125b3806 3113
84b7b8e7 3114 /* I/O case */
50013115 3115 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3116#if defined(TARGET_WORDS_BIGENDIAN)
3117 if (endian == DEVICE_LITTLE_ENDIAN) {
3118 val = bswap64(val);
3119 }
3120#else
3121 if (endian == DEVICE_BIG_ENDIAN) {
3122 val = bswap64(val);
3123 }
84b7b8e7
FB
3124#endif
3125 } else {
3126 /* RAM case */
5c8a00ce 3127 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3128 & TARGET_PAGE_MASK)
149f54b5 3129 + addr1);
1e78bcc1
AG
3130 switch (endian) {
3131 case DEVICE_LITTLE_ENDIAN:
3132 val = ldq_le_p(ptr);
3133 break;
3134 case DEVICE_BIG_ENDIAN:
3135 val = ldq_be_p(ptr);
3136 break;
3137 default:
3138 val = ldq_p(ptr);
3139 break;
3140 }
50013115
PM
3141 r = MEMTX_OK;
3142 }
3143 if (result) {
3144 *result = r;
84b7b8e7 3145 }
4840f10e
JK
3146 if (release_lock) {
3147 qemu_mutex_unlock_iothread();
3148 }
41063e1e 3149 rcu_read_unlock();
84b7b8e7
FB
3150 return val;
3151}
3152
50013115
PM
3153uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3154 MemTxAttrs attrs, MemTxResult *result)
3155{
3156 return address_space_ldq_internal(as, addr, attrs, result,
3157 DEVICE_NATIVE_ENDIAN);
3158}
3159
3160uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3161 MemTxAttrs attrs, MemTxResult *result)
3162{
3163 return address_space_ldq_internal(as, addr, attrs, result,
3164 DEVICE_LITTLE_ENDIAN);
3165}
3166
3167uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3168 MemTxAttrs attrs, MemTxResult *result)
3169{
3170 return address_space_ldq_internal(as, addr, attrs, result,
3171 DEVICE_BIG_ENDIAN);
3172}
3173
2c17449b 3174uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3175{
50013115 3176 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3177}
3178
2c17449b 3179uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3180{
50013115 3181 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3182}
3183
2c17449b 3184uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3185{
50013115 3186 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3187}
3188
aab33094 3189/* XXX: optimize */
50013115
PM
3190uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3191 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3192{
3193 uint8_t val;
50013115
PM
3194 MemTxResult r;
3195
3196 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3197 if (result) {
3198 *result = r;
3199 }
aab33094
FB
3200 return val;
3201}
3202
50013115
PM
3203uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3204{
3205 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3206}
3207
733f0b02 3208/* warning: addr must be aligned */
50013115
PM
3209static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3210 hwaddr addr,
3211 MemTxAttrs attrs,
3212 MemTxResult *result,
3213 enum device_endian endian)
aab33094 3214{
733f0b02
MT
3215 uint8_t *ptr;
3216 uint64_t val;
5c8a00ce 3217 MemoryRegion *mr;
149f54b5
PB
3218 hwaddr l = 2;
3219 hwaddr addr1;
50013115 3220 MemTxResult r;
4840f10e 3221 bool release_lock = false;
733f0b02 3222
41063e1e 3223 rcu_read_lock();
41701aa4 3224 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3225 false);
3226 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3227 release_lock |= prepare_mmio_access(mr);
125b3806 3228
733f0b02 3229 /* I/O case */
50013115 3230 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3231#if defined(TARGET_WORDS_BIGENDIAN)
3232 if (endian == DEVICE_LITTLE_ENDIAN) {
3233 val = bswap16(val);
3234 }
3235#else
3236 if (endian == DEVICE_BIG_ENDIAN) {
3237 val = bswap16(val);
3238 }
3239#endif
733f0b02
MT
3240 } else {
3241 /* RAM case */
5c8a00ce 3242 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3243 & TARGET_PAGE_MASK)
149f54b5 3244 + addr1);
1e78bcc1
AG
3245 switch (endian) {
3246 case DEVICE_LITTLE_ENDIAN:
3247 val = lduw_le_p(ptr);
3248 break;
3249 case DEVICE_BIG_ENDIAN:
3250 val = lduw_be_p(ptr);
3251 break;
3252 default:
3253 val = lduw_p(ptr);
3254 break;
3255 }
50013115
PM
3256 r = MEMTX_OK;
3257 }
3258 if (result) {
3259 *result = r;
733f0b02 3260 }
4840f10e
JK
3261 if (release_lock) {
3262 qemu_mutex_unlock_iothread();
3263 }
41063e1e 3264 rcu_read_unlock();
733f0b02 3265 return val;
aab33094
FB
3266}
3267
50013115
PM
3268uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3269 MemTxAttrs attrs, MemTxResult *result)
3270{
3271 return address_space_lduw_internal(as, addr, attrs, result,
3272 DEVICE_NATIVE_ENDIAN);
3273}
3274
3275uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3276 MemTxAttrs attrs, MemTxResult *result)
3277{
3278 return address_space_lduw_internal(as, addr, attrs, result,
3279 DEVICE_LITTLE_ENDIAN);
3280}
3281
3282uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3283 MemTxAttrs attrs, MemTxResult *result)
3284{
3285 return address_space_lduw_internal(as, addr, attrs, result,
3286 DEVICE_BIG_ENDIAN);
3287}
3288
41701aa4 3289uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3290{
50013115 3291 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3292}
3293
41701aa4 3294uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3295{
50013115 3296 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3297}
3298
41701aa4 3299uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3300{
50013115 3301 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3302}
3303
8df1cd07
FB
3304/* warning: addr must be aligned. The ram page is not masked as dirty
3305 and the code inside is not invalidated. It is useful if the dirty
3306 bits are used to track modified PTEs */
50013115
PM
3307void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3308 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3309{
8df1cd07 3310 uint8_t *ptr;
5c8a00ce 3311 MemoryRegion *mr;
149f54b5
PB
3312 hwaddr l = 4;
3313 hwaddr addr1;
50013115 3314 MemTxResult r;
845b6214 3315 uint8_t dirty_log_mask;
4840f10e 3316 bool release_lock = false;
8df1cd07 3317
41063e1e 3318 rcu_read_lock();
2198a121 3319 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3320 true);
3321 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3322 release_lock |= prepare_mmio_access(mr);
125b3806 3323
50013115 3324 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3325 } else {
5c8a00ce 3326 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3327 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3328 stl_p(ptr, val);
74576198 3329
845b6214
PB
3330 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3331 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3332 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3333 r = MEMTX_OK;
3334 }
3335 if (result) {
3336 *result = r;
8df1cd07 3337 }
4840f10e
JK
3338 if (release_lock) {
3339 qemu_mutex_unlock_iothread();
3340 }
41063e1e 3341 rcu_read_unlock();
8df1cd07
FB
3342}
3343
50013115
PM
3344void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3345{
3346 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3347}
3348
8df1cd07 3349/* warning: addr must be aligned */
50013115
PM
3350static inline void address_space_stl_internal(AddressSpace *as,
3351 hwaddr addr, uint32_t val,
3352 MemTxAttrs attrs,
3353 MemTxResult *result,
3354 enum device_endian endian)
8df1cd07 3355{
8df1cd07 3356 uint8_t *ptr;
5c8a00ce 3357 MemoryRegion *mr;
149f54b5
PB
3358 hwaddr l = 4;
3359 hwaddr addr1;
50013115 3360 MemTxResult r;
4840f10e 3361 bool release_lock = false;
8df1cd07 3362
41063e1e 3363 rcu_read_lock();
ab1da857 3364 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3365 true);
3366 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3367 release_lock |= prepare_mmio_access(mr);
125b3806 3368
1e78bcc1
AG
3369#if defined(TARGET_WORDS_BIGENDIAN)
3370 if (endian == DEVICE_LITTLE_ENDIAN) {
3371 val = bswap32(val);
3372 }
3373#else
3374 if (endian == DEVICE_BIG_ENDIAN) {
3375 val = bswap32(val);
3376 }
3377#endif
50013115 3378 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3379 } else {
8df1cd07 3380 /* RAM case */
5c8a00ce 3381 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3382 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3383 switch (endian) {
3384 case DEVICE_LITTLE_ENDIAN:
3385 stl_le_p(ptr, val);
3386 break;
3387 case DEVICE_BIG_ENDIAN:
3388 stl_be_p(ptr, val);
3389 break;
3390 default:
3391 stl_p(ptr, val);
3392 break;
3393 }
845b6214 3394 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3395 r = MEMTX_OK;
3396 }
3397 if (result) {
3398 *result = r;
8df1cd07 3399 }
4840f10e
JK
3400 if (release_lock) {
3401 qemu_mutex_unlock_iothread();
3402 }
41063e1e 3403 rcu_read_unlock();
8df1cd07
FB
3404}
3405
50013115
PM
3406void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3407 MemTxAttrs attrs, MemTxResult *result)
3408{
3409 address_space_stl_internal(as, addr, val, attrs, result,
3410 DEVICE_NATIVE_ENDIAN);
3411}
3412
3413void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3414 MemTxAttrs attrs, MemTxResult *result)
3415{
3416 address_space_stl_internal(as, addr, val, attrs, result,
3417 DEVICE_LITTLE_ENDIAN);
3418}
3419
3420void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3421 MemTxAttrs attrs, MemTxResult *result)
3422{
3423 address_space_stl_internal(as, addr, val, attrs, result,
3424 DEVICE_BIG_ENDIAN);
3425}
3426
ab1da857 3427void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3428{
50013115 3429 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3430}
3431
ab1da857 3432void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3433{
50013115 3434 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3435}
3436
ab1da857 3437void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3438{
50013115 3439 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3440}
3441
aab33094 3442/* XXX: optimize */
50013115
PM
3443void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3444 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3445{
3446 uint8_t v = val;
50013115
PM
3447 MemTxResult r;
3448
3449 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3450 if (result) {
3451 *result = r;
3452 }
3453}
3454
3455void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3456{
3457 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3458}
3459
733f0b02 3460/* warning: addr must be aligned */
50013115
PM
3461static inline void address_space_stw_internal(AddressSpace *as,
3462 hwaddr addr, uint32_t val,
3463 MemTxAttrs attrs,
3464 MemTxResult *result,
3465 enum device_endian endian)
aab33094 3466{
733f0b02 3467 uint8_t *ptr;
5c8a00ce 3468 MemoryRegion *mr;
149f54b5
PB
3469 hwaddr l = 2;
3470 hwaddr addr1;
50013115 3471 MemTxResult r;
4840f10e 3472 bool release_lock = false;
733f0b02 3473
41063e1e 3474 rcu_read_lock();
5ce5944d 3475 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3476 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3477 release_lock |= prepare_mmio_access(mr);
125b3806 3478
1e78bcc1
AG
3479#if defined(TARGET_WORDS_BIGENDIAN)
3480 if (endian == DEVICE_LITTLE_ENDIAN) {
3481 val = bswap16(val);
3482 }
3483#else
3484 if (endian == DEVICE_BIG_ENDIAN) {
3485 val = bswap16(val);
3486 }
3487#endif
50013115 3488 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3489 } else {
733f0b02 3490 /* RAM case */
5c8a00ce 3491 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3492 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3493 switch (endian) {
3494 case DEVICE_LITTLE_ENDIAN:
3495 stw_le_p(ptr, val);
3496 break;
3497 case DEVICE_BIG_ENDIAN:
3498 stw_be_p(ptr, val);
3499 break;
3500 default:
3501 stw_p(ptr, val);
3502 break;
3503 }
845b6214 3504 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3505 r = MEMTX_OK;
3506 }
3507 if (result) {
3508 *result = r;
733f0b02 3509 }
4840f10e
JK
3510 if (release_lock) {
3511 qemu_mutex_unlock_iothread();
3512 }
41063e1e 3513 rcu_read_unlock();
aab33094
FB
3514}
3515
50013115
PM
3516void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3517 MemTxAttrs attrs, MemTxResult *result)
3518{
3519 address_space_stw_internal(as, addr, val, attrs, result,
3520 DEVICE_NATIVE_ENDIAN);
3521}
3522
3523void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3524 MemTxAttrs attrs, MemTxResult *result)
3525{
3526 address_space_stw_internal(as, addr, val, attrs, result,
3527 DEVICE_LITTLE_ENDIAN);
3528}
3529
3530void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3531 MemTxAttrs attrs, MemTxResult *result)
3532{
3533 address_space_stw_internal(as, addr, val, attrs, result,
3534 DEVICE_BIG_ENDIAN);
3535}
3536
5ce5944d 3537void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3538{
50013115 3539 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3540}
3541
5ce5944d 3542void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3543{
50013115 3544 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3545}
3546
5ce5944d 3547void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3548{
50013115 3549 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3550}
3551
aab33094 3552/* XXX: optimize */
50013115
PM
3553void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3554 MemTxAttrs attrs, MemTxResult *result)
aab33094 3555{
50013115 3556 MemTxResult r;
aab33094 3557 val = tswap64(val);
50013115
PM
3558 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3559 if (result) {
3560 *result = r;
3561 }
aab33094
FB
3562}
3563
50013115
PM
3564void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3565 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3566{
50013115 3567 MemTxResult r;
1e78bcc1 3568 val = cpu_to_le64(val);
50013115
PM
3569 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3570 if (result) {
3571 *result = r;
3572 }
3573}
3574void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3575 MemTxAttrs attrs, MemTxResult *result)
3576{
3577 MemTxResult r;
3578 val = cpu_to_be64(val);
3579 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3580 if (result) {
3581 *result = r;
3582 }
3583}
3584
3585void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3586{
3587 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3588}
3589
3590void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3591{
3592 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3593}
3594
f606604f 3595void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3596{
50013115 3597 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3598}
3599
5e2972fd 3600/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3601int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3602 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3603{
3604 int l;
a8170e5e 3605 hwaddr phys_addr;
9b3c35e0 3606 target_ulong page;
13eb76e0
FB
3607
3608 while (len > 0) {
5232e4c7
PM
3609 int asidx;
3610 MemTxAttrs attrs;
3611
13eb76e0 3612 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3613 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3614 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3615 /* if no physical page mapped, return an error */
3616 if (phys_addr == -1)
3617 return -1;
3618 l = (page + TARGET_PAGE_SIZE) - addr;
3619 if (l > len)
3620 l = len;
5e2972fd 3621 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3622 if (is_write) {
5232e4c7
PM
3623 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3624 phys_addr, buf, l);
2e38847b 3625 } else {
5232e4c7
PM
3626 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3627 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3628 buf, l, 0);
2e38847b 3629 }
13eb76e0
FB
3630 len -= l;
3631 buf += l;
3632 addr += l;
3633 }
3634 return 0;
3635}
038629a6
DDAG
3636
3637/*
3638 * Allows code that needs to deal with migration bitmaps etc to still be built
3639 * target independent.
3640 */
3641size_t qemu_target_page_bits(void)
3642{
3643 return TARGET_PAGE_BITS;
3644}
3645
a68fe89c 3646#endif
13eb76e0 3647
8e4a424b
BS
3648/*
3649 * A helper function for the _utterly broken_ virtio device model to find out if
3650 * it's running on a big endian machine. Don't do this at home kids!
3651 */
98ed8ecf
GK
3652bool target_words_bigendian(void);
3653bool target_words_bigendian(void)
8e4a424b
BS
3654{
3655#if defined(TARGET_WORDS_BIGENDIAN)
3656 return true;
3657#else
3658 return false;
3659#endif
3660}
3661
76f35538 3662#ifndef CONFIG_USER_ONLY
a8170e5e 3663bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3664{
5c8a00ce 3665 MemoryRegion*mr;
149f54b5 3666 hwaddr l = 1;
41063e1e 3667 bool res;
76f35538 3668
41063e1e 3669 rcu_read_lock();
5c8a00ce
PB
3670 mr = address_space_translate(&address_space_memory,
3671 phys_addr, &phys_addr, &l, false);
76f35538 3672
41063e1e
PB
3673 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3674 rcu_read_unlock();
3675 return res;
76f35538 3676}
bd2fa51f 3677
e3807054 3678int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3679{
3680 RAMBlock *block;
e3807054 3681 int ret = 0;
bd2fa51f 3682
0dc3f44a
MD
3683 rcu_read_lock();
3684 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3685 ret = func(block->idstr, block->host, block->offset,
3686 block->used_length, opaque);
3687 if (ret) {
3688 break;
3689 }
bd2fa51f 3690 }
0dc3f44a 3691 rcu_read_unlock();
e3807054 3692 return ret;
bd2fa51f 3693}
ec3f8c99 3694#endif